Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMeyer, Ralf-
dc.identifier.citationR. Meyer, Phys. Status Solidi A 213, No. 11, 29272935 (2016)en_CA
dc.descriptionThis is the peer reviewed version of the following article: R. Meyer, Vibrational band structure of nanoscale phononic crystals, Phys. Status Solidi A 213, No. 11, 29272935 (2016), which has been published in final form at This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.en_CA
dc.description.abstractThe vibrational properties of two-dimensional phononic crystals are studied with large-scale molecular dynamics simulations and finite element method calculation. The vibrational band structure derived from the molecular dynamics simulations shows the existence of partial acoustic band gaps along the Γ-M direction. The band structure is in excellent agreement with the results from the finite element model, proving that molecular dynamics simulations can be used to study the vibrational properties of such complex systems. An analysis of the structure of the vibrational modes reveals how the acoustic modes deviate from the homogeneous bulk behaviour for shorter wavelengths and hints towards a decoupling of vibrations in the phononic crystal.en_CA
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada (NSERC) [grant number 371446-11] , Laurentian Universityen_CA
dc.subjectphononic crystalsen_CA
dc.subjectmolecular dynamics simulationsen_CA
dc.subjectlattice vibrationsen_CA
dc.subjectfinite element methoden_CA
dc.titleVibrational band structure of nanoscale phononic crystalsen_CA
Appears in Collections:Articles

Files in This Item:
File Description SizeFormat 
arxiv.pdf6.9 MBAdobe PDFThumbnail

Items in LU|ZONE|UL are protected by copyright, with all rights reserved, unless otherwise indicated.