Please use this identifier to cite or link to this item: https://zone.biblio.laurentian.ca/handle/10219/2186
Title: Model based fault detection for two-dimensional systems
Authors: Wang, Zhenheng
Keywords: Two dimensional systems;Fault detection;Kalman filter;Polynomial theory
Issue Date: 5-May-2014
Publisher: Laurentian University of Sudbury
Abstract: Fault detection and isolation (FDI) are essential in ensuring safe and reliable operations in industrial systems. Extensive research has been carried out on FDI for one dimensional (1-D) systems, where variables vary only with time. The existing FDI strategies are mainly focussed on 1-D systems and can generally be classified as model based and process history data based methods. In many industrial systems, the state variables change with space and time (e.g., sheet forming, fixed bed reactors, and furnaces). These systems are termed as distributed parameter systems (DPS) or two dimensional (2-D) systems. 2-D systems have been commonly represented by the Roesser Model and the F-M model. Fault detection and isolation for 2-D systems represent a great challenge in both theoretical development and applications and only limited research results are available. In this thesis, model based fault detection strategies for 2-D systems have been investigated based on the F-M and the Roesser models. A dead-beat observer based fault detection has been available for the F-M model. In this work, an observer based fault detection strategy is investigated for systems modelled by the Roesser model. Using the 2-D polynomial matrix technique, a dead-beat observer is developed and the state estimate from the observer is then input to a residual generator to monitor occurrence of faults. An enhanced realization technique is combined to achieve efficient fault detection with reduced computations. Simulation results indicate that the proposed method is effective in detecting faults for systems without disturbances as well as those affected by unknown disturbances.The dead-beat observer based fault detection has been shown to be effective for 2-D systems but strict conditions are required in order for an observer and a residual generator to exist. These strict conditions may not be satisfied for some systems. The effect of process noises are also not considered in the observer based fault detection approaches for 2-D systems. To overcome the disadvantages, 2-D Kalman filter based fault detection algorithms are proposed in the thesis. A recursive 2-D Kalman filter is applied to obtain state estimate minimizing the estimation error variances. Based on the state estimate from the Kalman filter, a residual is generated reflecting fault information. A model is formulated for the relation of the residual with faults over a moving evaluation window. Simulations are performed on two F-M models and results indicate that faults can be detected effectively and efficiently using the Kalman filter based fault detection. In the observer based and Kalman filter based fault detection approaches, the residual signals are used to determine whether a fault occurs. For systems with complicated fault information and/or noises, it is necessary to evaluate the residual signals using statistical techniques. Fault detection of 2-D systems is proposed with the residuals evaluated using dynamic principal component analysis (DPCA). Based on historical data, the reference residuals are first generated using either the observer or the Kalman filter based approach. Based on the residual time-lagged data matrices for the reference data, the principal components are calculated and the threshold value obtained. In online applications, the T2 value of the residual signals are compared with the threshold value to determine fault occurrence. Simulation results show that applying DPCA to evaluation of 2-D residuals is effective.
URI: https://zone.biblio.laurentian.ca/dspace/handle/10219/2186
Appears in Collections:Doctoral Theses
Doctoral theses

Files in This Item:
File Description SizeFormat 
Wang_Zhenheng_PhD_Thesis.pdf1.85 MBAdobe PDFThumbnail
View/Open


Items in LU|ZONE|UL are protected by copyright, with all rights reserved, unless otherwise indicated.