Please use this identifier to cite or link to this item:
Title: Physical and chemical changes in planarian and non-living aqueous systems from exposure to temporally patterned magnetic fields
Authors: Murugan, Nirosha J.
Keywords: Planarian;Aquesous systems;spring water;magnetic field
Issue Date: 11-Nov-2013
Publisher: Laurentian University of Sudbury
Abstract: Planarian maintained in spring water and exposed for two hours to temporally patterned, weak (1 to 5 μT) magnetic field in the dark displayed diminished mobility that simulated the effects of morphine and enhanced this effect at concentrations associated with receptor subtypes. A single (5 hr) exposure to this same pattern following several days of exposure to a very complex patterned field in darkness dissolved the planarian and was associated with an expansion of their volume. Spectral power density analyses of direct measurements of the spring water only following exposure to this field in darkness showed emission spectra that were displayed from control conditions by ~10 nm and associated with an energy increment of ~10-20 J. This value is an intrinsic solution for the physical properties of the water molecule. “Shielding” the exposed water with plastic, aluminum foil or copper foil indicated that only the latter eliminated a powerful spike in photon emission around 280 nm. Continuous measurement of pH indicated that the slow shift towards alkalinity over 12 hours of exposure was associated with enhanced transient pH shifts of .02 units with typical durations between 20 and 40 ms. These results indicate that the appropriately patterned and amplitude of magnetic field that affects water directly could mediate some of the powerful effects displayed by biological aquatic systems.
Appears in Collections:Biology - Master's Theses
Master's Theses

Files in This Item:
File Description SizeFormat 
Murugan_Nirosha_Master_Thesis.pdf2.14 MBAdobe PDFThumbnail

Items in LU|ZONE|UL are protected by copyright, with all rights reserved, unless otherwise indicated.