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Abstract– The origin of the acoustic emissions from a bed of musical grains, impacted by a
pestle, is sought in a boundary layer at the leading front of the pestle. The frequencies of
the shear modes of vibration in such a layer are compared with the observed frequencies. It
is assumed that such a layer is the result of the fluidization of the grain asperities due to
the high stress level at the front end. Such a boundary layer can also account for the
emissions from plates of sand sliding on a dune surface and from grains shaken in a jar.
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1. INTRODUCTION

Acoustic emissions occur when singing beach sands are stepped on or impacted in a dish
by a pestle, with dominant frequency, fd, in the range from about 250 to 2500 Hz (Takahara
[1], Nishiyama and Mori [2], Miwa et al. [3], Haff [4], Qu et al. [5], Sholtz et al. [6], Nori et
al. [7], Brown et al. [8]). The emitted sound has musical quality, especially with fd under
about 1000 Hz, hence the terms; singing, musical, and sonorous sands. When nearly spherical
glass beads are placed in a dish and impacted by a pestle, they present little resistance to
the motion of the pestle and there is no acoustic emission. However, when such beads, 0.18
mm in diameter, were placed in a dish, 5 cm in diameter, and impacted by a pestle, 4.3
cm in diameter, an acoustic emission described as, ”a shrill unpleasant note” was recorded
having a wide frequency spectrum peaking at about 3000 Hz (Brown et al. [8]). Furthermore,
when silent grains, such as common salt, were squeezed by a pestle 12 mm in diameter in
a plastic cell 20 mm in diameter, an acoustic emission was evoked with dominant frequency
somewhat above 1000 Hz (Patitsas [9]). When sand grains, from the dunes in the Kalahari
Desert, South Africa, were heated in an oven at 200 Co for half hour and then placed in a
glass jar, 1/2 full, a strong emission (roar) occured upon a rapid tilt of the jar (Lewis [10]).
Furthermore, by rotating the jar about a horizontal axis along its length, at about 120 rev-
olutions per minute, a continuous roar was obtained. When grains from the booming dunes
of Sand Mountain, NEV., USA, were placed in a glass jar, about 1/3 full and shaken back
and forth, an acoustic emission occured with fd ≈ 280 Hz (Leach and Rubin [11]). However,
no sound was emitted when the same grains were placed in a large dish, several cm in depth,
and impacted by a pestle. In a natural avalanche at Sand Mountain, fd is about 66 Hz (Nori
et al. [7]). In the report by Grambo [12], there is reference to wind-blown singing sand grains
at the Basin Head Beach in Prince Edward Island, Canada. In a private communication, the
author described the sound as a high pitched whistle, when the grains are blown across the
beach by strong winds. Furthermore, a similar account can be found in the book by Courzon
[13], regarding the sand dunes at Jebel Nakus (Hill of the Bell) in the Peninsula of Sinai on
the eastern shore of the Red Sea.

Silica gel grains, used for humidity control purposes and characterized by non-spherical
geometry and by extreme surface angularity, resist the motion of the pestle and emit a low
frequency pleasant note when impacted by a pestle. Reference to resistance to shear in mu-
sical grain beds can be found in the report by Sholtz et al. [6]. All grains become somewhat
musical, the silent less so, when placed in a dish with depth of only about 1 cm and impacted
by a rod, about 2 cm in diameter. Glass beads, 0.6 mm in diameter, become musical in
such an arrangement, as can be seen in Fig. 6 in the report by Nishiyama and Mori [2].
Therefore, we proceed to classify certain grains as singing or musical, if a pleasant sound is
emitted when the grains are placed in a large dish, to a depth of several cm, and impacted
lightly by a rod about 2 cm in diameter. The signals observed on an oscilloscope screen,
corresponding to the acoustic emissions from repeated impactions, are not identical and at
times they differ appreciably, especially after the grain bed is shaken about. The values of
the dominant frequency, fd, can vary by as much as ±15 % between successive impacts. We
think that this is mainly due to the history dependence of the geometric configuration of the
void and arching distributions in the grain bed.

As far back as 1889, regarding the booming dunes, it was assumed by Bolton [14] that,
”the sounds result from thin films of soluble impurities deposited on the grains”. Further-
more, in the book by Bagnold [15] we read as follows, ” Hence it seems that the disturbance
speed which will set a given sand in vibration is determined by some unknown property of
the grains themselves-some property, it is most likely, of their molecular surface structure”.
In the report by Qu et al. [5], it is argued that honeycomb-like pits on the surface of the
quartz grains could play a role towards their musicality. Goldsack et al. [16] used infrared
(IR) spectroscopy to study the chemical composition of the molecular layer on the surface of
musical grains and they suggest that the relevant absorption bands could be due to clusters
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of water in an amorphous silica layer. However, such a layer cannot be viewed as an added
impurity, since grains regain their musicality after prolonged milling and washing (Nishiyama
and Mori [2], Miwa et al. [3]). In the case of the silica gel grains, it is suggested that the
existence of a surface layer of the same composition as the core but of different density, pre-
sumably due to the presence of water, is responsible for the musicality of the grains (Kilkeny
et al. [17]). Therefore, it is fairly safe to argue that the singability (musicality) of a grain
mass is determined by the physical state of the grain surface. In the report by Sholtz et
al. [6], there is an account of the various suggestions, or hypotheses, as to the cause of such
acoustic emissions. However, no sufficient attention has been devoted to the principal physi-
cal observable, i. e., the Energy Density Spectrum, or the Frequency Spectrum for brevity, of
the acoustic emissions. In a recent report by Patitsas [9], there was an attempt to account
for such spectra, based on compression standing wave patterns in the shear zones or slip
channels in the impacted grain bed.

2. EXPERIMENTAL RESULTS AND CONCEPT DEVELOPMENT
2.1 Asperity fluidization and the slip channel

Figure. 1 depicts the only known radiograph of the motion of sonorous and silent sand
grains, in a large dish, impacted by a plunger with speed of penetration somewhat above 30
cm/s. According to the report by Miwa et al. [3], the acoustic emission occurs concurrently
with the slip layers. In the report by Patitsas [9], the slip layers are referred to as the slip
channels, or otherwise known as the shear zones, or shear bands.

a bPlunger
Slip Layers

Plunger

Fig. 1. X-ray radiographs depicting a rectangular steel plunger, 3 cm wide by 5 cm deep,
impacting a bed of (a) musical sand and (b) silent sand. (a) the slip channels (shear zones)
were labeled as, Slip Layers, by Miwa et al. [3]. (b) silent sand has no slip channels.
Reproduced by permission of the principal author.

Evidence of the existence of such a slip channel was observed by the following procedure:
an ordinary paint mixing wood stick, 30 mm wide by 4.4 mm thick, tapered to a sharper
edge in the last 3 mm, was used to impact manually the silica gel grains seen in Fig. 2. The
grains were placed in a glass jar, 9 cm in diameter by 14 cm in height, filled to the height of
6 cm. After a few impacts, with the stick slanted a few degrees from the vertical direction,
a small crater was formed and a strip of grains, about 2 mm wide and parallel to the plane
of the stick, could be seen emerging simultaneously with the acoustic emission. The distance
of the strip from the tapered side of the stick was about 15 mm and the angle between the
plane of the stick and the line from the tapered end to the strip was about 40o.

Fig. 2. Photographs of silica gel grains, utilized in this report, obtained by optical
microscopy. Part (c) depicts better than part (a) the lack of roundness of the grains. Parts
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(b) and (d) are magnifications of parts (a) and (c) in order to depict the ridge formations.
Average diameter, d̄ ≈ 0.4 mm.

Figure 3 depicts a schematic of the paint stick geometry, but in the more conventional form,
where the bottom of the pestle is rounded and is driven vertically into the grain bed. The
grains are assumed to flow into the boundary layer at around θ = 0o and exit at around
θ = 60o.

Fig. 3. Schematic of a vertical cross-section of a descending rectangular pestle of width 2R
rounded at the bottom with radius R. The pestle dimension, L, along ẑ, is assumed to be
considerably larger than R. R1 = R + b, i e., the boundary layer has thickness b. The pestle
could also be a rounded circular rod of radius R.

The jar was kept closed and in a dark environment for nearly two years, since grains
were removed for the recording of the signals seen in Figs. 4 and 5. At that time, the mu-
sicality of the grains was at a higher level and a light touch of the surface, by some pestle,
could result in a pleasant note. The signal in Fig. 4 was obtained by the light touch of
the silica gel grains placed in a small plastic cell, 3 cm in diameter by 3 cm in height. It is
estimated that the small rounded end of the brass pestle, 8.5 mm in diameter, penetrated
the grain bed by about 10 mm in 0.1 s, implying an average velocity of penetration equal
to about 10 cm/s. One could argue that the contact of the pestle with the grains lasted for
only a fraction of the duration of the signal in Fig. 4, resulting in higher penetration velocity.
However, that would imply a resonance-like vibration in the entire grain bed, resulting in a
signal with large initial amplitude and decaying with time, contrary to the inserts in Figs.
4 and 5. Furthermore, the dominant frequency, fd, would decrease with increased bed size,
contrary to the frequency spectrum shown in Fig. 5, where the mortar size is considerably
larger than that of the plastic cell. Since the signal ceased to exist when the pestle came to
rest, it can be concluded that the grain bed was viscous. The frequency spectrum in Fig.
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6 depicts a noticeable frequency content at around 2000 Hz, and the insert depicts the fre-
quency spectrum of the signal emitted when (silent) local beach sand grains were impacted
by the small end of the brass pestle in the same porcelain mortar. The frequency content
around 2250 Hz is deemed to be due to the incoherent grain-grain collisions around the pestle.
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Fig. 4. Energy density spectrum (frequency spectrum) of the signal shown in the insert. The
microphone recorded signal was emitted when the small rounded end of a brass pestle, 8.5
mm in diameter, impacted the silica gel grains in a small plastic cell, 3 cm in diameter by 3
cm in height. Depth of penetration was about 10 mm. Dominant frequency, fd ≈ 252 Hz.
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Fig. 5. Same as in Fig. 4, but the grains were impacted, with more force in a porcelain
mortar, 5.5 cm in diameter by 5 cm in height. Depth of penetration was about 2 cm and
fd ≈ 297 Hz.
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Fig. 6. Same as in Fig. 5, but extended to 3000 Hz in order to show the frequency content
around 2000 Hz due to the incoherent grain-grain collisions. Insert: Frequency spectrum of
the hissing-like sound from silent sand grains, d̂ ≈ 0.3 mm, when impacted by the small end
of the brass pestle in the porcelain mortar. The signal is not shown.

Fig. 7. A microphone recorded signal from silent local beach sand grains impacted by the
eraser end of a regular pencil with diameter D = 7 mm. The grains were placed in a
porcelain cup with flat bottom and diameter D = 9 cm. Sand depth, H ≈ 1 cm, fd ≈ 700
Hz. When H was about 5 cm, the signal was noise-like.

Figure 7 depicts the signal emitted when the same silent sand grains were impacted
sharply by the rubber end of a regular pencil in a large porcelain coffee cup with flat bottom
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and with sand depth, H , of only about 1 cm. The signal is of short duration, but it has
the distinct dominant frequency, fd ≈ 700 Hz. Figure 8 depicts the signal emitted when
Kotobikihama sand, from the Kyoto prefecture, Japan, was impacted in the same cup with
a wood rod, D = 25 mm, in a sand depth H ≈ 7 cm in part (a), and H ≈ 1 cm in part (b).
In part (a), we observe the emergence of a lower frequency, fd ≈ 500 Hz, in the last few ms.
In part (b), the signal is considerably more monochromatic, with fd ≈ 700 Hz. The effect of
the rigidity of the cup floor on the musicality of the grains is more evident in Fig. 9, where
Ottawa sand was used in the same cup. The signal in part (a) can be considered as noise-like.
In order to examine the effect of the rigidity and of the surface texture of the floor, a circular
cloth piece, cut from a wash towel, was inserted at the bottom of the cup and then silica gel
grains or other musical sand grains were poured on top to the depth of about 1 cm. There was
no acoustic emission when the grains were impacted with the 25 mm wood rod. Only a faint
emission was produced when the cloth was replaced by a plastic piece cut from an ordinary
yogurt container cap. The importance of the rigidity of the medium around the leading front
of the pestle can be seen in the experimental reports by Takahara [1], Brown et al. [8] and
Patitsas [9], where normally silent grains placed in a cylindrical vessel produced a somewhat
musical sound, when impacted by a rod with diameter slightly smaller than that of the vessel.

Fig. 8. Same as in Fig. 7, but with Kotobikihama sand grains in the same cup impacted
with a wood rod, D = 25 mm. (a): H ≈ 7 cm. fd ≈ 1200 Hz during the first 30 ms, then,
fd ≈ 500 Hz during the last 20 ms. (b): H ≈ 1 cm, fd ≈ 700 Hz.

The most efficient approach, in generating the acoustic emissions, was to hold the rod
vertically with one hand, the bottom touching the grain surface, and then to tap or to push
the top of the rod with the other hand. The depth of penetration could thus be controlled to
vary from about 2 cm to 5 cm. It was observed that fd was nearly the same when the rods
were allowed to free fall from a certain height, as when tapped into the grain bed, implying
that the mass of the tapping hand was not an important factor in the determination of the
frequency, fd. However, the signal in the former case was of shorter duration and not as
well-defined. More discussion in this regard can be found at the end of Section A1.
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Fig. 9. Same as in Fig. 8, but with Ottawa sand. (a): H ≈ 7cm, signal is noise-like, (b):
H ≈ 1 cm, fd ≈ 700 Hz.

On the basis of the experimental evidence presented above, it can be argued that the grain
mass, around the impacting pestle, is in a quasi-gaseous and possibly turbulent kinematical
state, in the case of the silent grains. Effectively, the grains aquire sufficient kinetic energy to
move past one another with relative ease, i. e., the grains interact with each other primarily
during collisions, which last only for a few µs. In what follows, d̄, v̄ and s are the average
grain diameter, the average grain random velocity and the average inter granular separation
distance respectively. Then the collision rate between two grains can be roughly estimated
from the relation, rc = 1/2(v̄/s) = 1/(2d̄)(d̄/s)v̄ = 1875 Hz, for d̄ = 0.4mm, d̄/s = 30 and v̄
= 5 cm/s. Therefore, the frequency content around 2000 Hz in the insert in Fig. 6, which is
perceived as a hissing sound, can be attributed to such a random collision rate. Considerable
frequency content at around 6000 Hz, in other cases involving sand grains, can be attributed
to larger values of d̄/s. However, a large part of the hissing sound has to originate with the
direct contact, rubbing and colliding, of the grains with the pestle surface.

Fig. 10. Microphone recorded signal when Kotobikihama sand grains were impacted by a
wood rod, D = 16 mm, in the porcelain cup. Sand depth, H ≈ 5 cm, fd ≈ 1050 Hz.

In the case of the musical grains, such flowability appears to be impossible due to surface
conditions, which are not yet well understood. It is possible that, in the static configuration,
there is a kind of interlocking between the grain asperities that results in a relatively high
degree of rigidity. Then, the high rigidity results in the build-up of the stress level in the
entire grain bed, until ruptures (slip channels) occur at the regions of weakness, as the pestle
penetrates into the grain bed (Fig. 1a). In such regions, there is a precipitous decrease in
the modulus of rigidity and the slip channels tend to act like roller boards for the overburden
to slide towards the surface. This is an economical way of displacing the grain mass towards
the surface in view of the interlocking between the grain asperities in the regions outside the
slip channels.
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We assume that the grain mass, in a slip channel, is in a state of a viscoelastic liquid
with sufficient viscosity to support a shear wave with phase velocity, cs, on the order of a few
m/s, while the compression phase velocity, cp, is considerably higher. In the context of this
hypothesis, when sufficient energy is delivered to the channel by the pestle, the stresses acting
on the grain contact points, combined with the relative motion between the grains, result in
the liquidization (fluidization) of the grain asperities at the contact points. Such a fluidization
could be the result of the heat generated locally and or the result of the generation of µm
size sub-grains, which act as ball bearings between two hard surfaces. Such an assumption
is consistent with the colloidal nature of silica gel, where the gel consists primarily of silicon
dioxide sub-micron colloidal particles. Such fluidization results in the precipitous reduction
in the value of the modulus of rigidity of the asperities and in the precipitous reduction in
the shear phase velocity in the grain mass. In the report by Qu et al. [5], it is suggested
that the pits on the singing grains could contribute to their singability, and in Fig. 2, we ob-
serve ridges on the surface of some grains, suggesting the presence of large asperities. When
the viscosity, η, becomes very large so that the fluid begins to behave like a solid, η can be
estimated from (31.1) in the book by Landau and Lifshitz [18], i. e., η ≈ τµ, where τ is the
relaxation time and µ is the Lame′ constant, or the modulus of rigidity, defined in (2) in the
Appendix. Then, with mass density, ρ = 1500 kg m−3, cs = 2 m/s and τ ≈ 1/fd, fd = 250
Hz, η is on the order of 24 kg/(ms), i. e., 24000 times that of water at 20oC. In the book
by Joseph [19], it is stated that some liquids can display rigidity when the viscosity is larger
than a critical value and in Table F. 1., in the same source, we read that for honey, cs = 13.5
m/s, while for 50 % aqueous Glycerol, cs = 0.047 m/s.

2.2 Asperity fluidization and the boundary layer

The radiograph shown in Fig. 1a implies that the slip channels do not move downwards
with the pestle, but that new channels are generated as the pestle penetrates deeper into the
grain bed. If the acoustic emission were due to the slip channel closest to the end of the pestle,
then, when it is replaced by the most recent farther below, a discontinuation in the emission
would be inevitable,. However, Figs. 8a and 10 suggest otherwise, i. e., that the geometry of
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the source of the acoustic emission remains fairly stable during the pestle penetration. Such
a stable source has to be sought in a boundary layer around the leading front of the pestle,
as depicted in Fig. 3. The vibration takes place, principally, in the central part, where the
thickness, b, can be assumed to be constant. In such a boundary layer, the stress level is
highest, thus providing for the excitation of the modes of vibration in such a layer. However,
the presence of the slip channel(s) is critical in regulating the stress level around the pestle
so that a well-defined layer can be realized. In order to establish that the boundary layer is
limited to the leading front surface of the pestle, a 16 mm hole was drilled at the bottom of
a plastic container, 6.2×6.2 cm in size. A long wood rod of the same diameter was passed
through the hole and musical grains were poured into the container to a height of about 10
cm. The rod could be moved up and down with relative ease without an acoustic emission,
apart from a low level hissing sound.

In order to better understand the conditions that lead to the formation of the boundary
layer, we may visualize the grain mass in the container to move upwards with the velocity, Vp,
towards the stationary pestle having cross-sectional area S. The grains, lying a few mm away
from the bottom of the pestle, experience intense shear and compression stresses as they are
forced to change direction of motion by nearly 90o. Such stresses lead to the liquidization
of the grain asperities at the contact points and this in turn leads to the drastic reduction
in the modulus of rigidity. The boundary layer is treated as a continuum, and the grains
vibrate according to the particle motion dictated by the given shear mode of vibration in the
boundary layer. In order for the stress level, around the bottom of the pestle, to rise to a
sufficient level to bring about the formation of the boundary layer, the grain mass as a whole
must be characterized by a level of rigidity not found in a silent grain mass. The grains in
the boundary layer remain in close contact as they slide past one another. In this sense, the
determining factor for musicality is the physical state of the grain asperities, while shape and
roundness are nearly irrelevant (Fig. 2).

When a grain bed in the large cup, H ≈ 1 cm, was impacted by the larger rods, D ≥ 25
mm, it was observed that H was reduced to about 5 mm after the impact, suggesting that the
boundary layer thickness, b, was about 5 mm. On the basis of the above observation, we may
argue that in the case of Fig. 8b, where fd ≈ 700 Hz, the boundary layer thickness, b, was on
the order of 5 mm. In the case of Fig. 8a, fd ≈ 1200 Hz and thus, it can be concluded that
either b was smaller than 5 mm and or the phase velocity, cs, was higher than in the case of
Fig. 8b, the latter being the more plausible. However, the important conclusion is that only
a small part of the grain column below the pestle was responsible for the acoustic emission
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when H ≈ 7 cm. Effectively, if the entire column was responsible for the acoustic emission,
then, fd in Fig. 8a ought to be appreciably lower than in Fig. 8b. In order to examine the
effect of the surface texture of the large cup, D ≈ 9 cm, on the acoustic emissions, a pouch
was formed from a flexible plastic net-like mesh used to wrap items for decorative purposes.
The pouch was then placed inside the cup and the silica gel grains were poured inside to the
depth of about 5 cm. The mesh openings were small enough so that the grains could not
pass through. It was determined that the acoustic emissions were not affected perceptibly by
such a pouch.

In the first part of the Appendix, A1, we show that the frequencies of vibration, generated
by the pestle-grain interaction, cannot be specified in terms of propagating waves, but rather
in terms of standing wave patterns or standing modes of vibration. In the second part A2,
we examine the modes of vibration when the pestle bottom is the flat end of a rectangular
plunger with dimensions L and 2R along ẑ and ŷ respectively (Fig. 3). In part A3, we
examine the case when the pestle is the same as in part A2, but the bottom is rounded as
shown in Fig. 3. In part A4, we examine the case when the pestle bottom is the rounded
end of a rod of radius R, and in part A5, when the pestle bottom is the flat end of a rod of
radius R.

In part A2, we argue that the frequencies corresponding to the shear modes of vibration
in the boundary layer of thickness, b, are given by the rather familiar transcendental equation
(8). The lower root, r1 = α1b, corresponds to the vibration of a loaded short spring, when
the load factor, Lf → ∞. The corresponding wave number is, ks1 ≈ α1 and thus, the
corresponding lower frequency is, f1 = ω/(2π) = csks1/(2π) = cs/(2π)(r1/b). The lower root
lies in the range, 0 < r1 < π/2, and tends to zero as Lf → ∞. Similarly, the second frequency
is, f2 = cs/(2π)(r2/b), where the root r2 lies in the range, π < r2 < 3π/2. The third root lies
in the range, 2π < r3 < 5π/2 and so on. The plots in Fig. 11 show that the lower frequency,
f1, decreases very slowly with Lf and consequently with the pestle mass M for Lf < 0.1,
and the higher frequencies decrease very slowly with Lf for all values of Lf . The plots in Fig
12 show a similar behavior even though the pestle geometry is significantly different. The
frequency f3 is slightly lower than 2f2. It is thus demonstrated that the geometry of the
pestle bottom is not a critical factor, i. e., the frequencies are determined principally by the
thickness of the boundary layer and by the shear phase velocity, cs, in the same layer. Such
lack of dependence of the dominant frequency, fd, on the geometry of the pestle bottom was
verified by impacting the grain bed with the flat and the rounded bottom of a given rod.
The near equality of fd, measured by the microphone, when the pestle was tapped into the
grain bed (Figs. 8 and 9), as when the pestle was allowed to free fall from a certain height,
suggests that the microphone recorded the frequency f2, more likely than the frequency f1.
It is the frequency f2 that varies very weakly with Lf in the entire range of Lf . There is
more discussion on this point in Sections 2.3 and 2.6.

Fig. 11. Plots of the three lower frequencies, f1, f2, f3 versus the load factor Lf when the
pestle is a rectangular plunger with flat bottom (Eq. 8 in the Appendix A2). The shear
phase velocity, cs, in the boundary layer, and the layer thickness, b, are assumed to be 5
m/s and 5 mm respectively. The Log is to the base 10.

11



1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

3.3

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

L
o

g
 (

F
re

q
u

en
cy

 (
H

z)
)

Log (Load Factor)

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

3.3

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

L
o

g
 (

F
re

q
u

en
cy

 (
H

z)
)

Log (Load Factor)

Fig. 12. Same as in Fig. 11 when the pestle is a circular rod with rounded bottom. Rod
diameter, D = 2R = 20 mm, cs = 5 m/s, b = 5mm, and χ = 1 + b/R = 1.5 (Eq. (18).

It is evident, from Fig. 12, that in order for Log(f1) to decrease somewhat linearly with
Log(M), cs/cp and M must be large enough so that Lf > 0.1 (18). Specifically, with Lf =
0.1, M = 0.5 kg, ρ = 1500 kg/m3, and R = 10−2 m, cs/cp is equal to 1/33. In Fig. 4 in
the report by Nishiyama and Mori [2], it is demonstrated that the observed frequency varies
approximately as M−0.5. Thus, the authors concluded that the sand mass under a rod acts
like a loaded short spring. However, this could be the case only when H ≈ 1 cm and in the
limit, Lf → ∞, as is pointed out above, regarding the signals in Fig. 8, and at the end of
Section A2. The authors used piezoelectric films (igniters) attached to the rods to record the
vibration signals and the frequency of vibration. The use of such transducers is in line with
the use of a geophone to record the frequency f1 in this study (Section 2.3). It is understood
that in the same report, the rods were allowed to free-fall on the grain bed presumably from
a height approaching zero. In the preparation of this report, it was not possible to similarly
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generate strong enough signals to be detected by the geophone, seemingly due to the reduced
musicality of the grains.
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2.3 Measurement of the frequency f1

Figure 13 depicts the signals emitted when the silica gel grains in the glass jar, diameter
D =9 cm, were impacted with the wood rod, D = 16 mm. In part (a), the signal was
recorded by the microphone and has frequency fd ≈ 720 Hz, which is assumed to be equal
to the frequency f2. We can observe the superimposed noise-like higher frequency content,
at about 2500 Hz, due to the incoherent grain-grain collisions around the pestle and due to
grain pestle collisions, as in a silent bed. In part (b), the geophone recorded only the lower
frequency of 280 Hz, which we assume is equal to the lower frequency f1.
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Fig. 13. Signals emitted when the silica gel grains in the glass jar, D = 9 cm, grain depth
H ≈ 6 cm, were impacted with the wood rod, D = 16 mm. (a): The signal was recorded by
the microphone, fd ≈ 720 Hz. (b): The signal was recorded by the geophone placed on one
side from the center of the jar, fd ≈ 280 Hz. The slow oscillation was due to the motion of
the foam pad under the jar.

The grains exhibited signs of fatigue and the bed became overly compacted after several
impactions. In Fig. 14, it is shown that the same grain mass became more musical after the
jar was turned about its axes. The rod penetrated the bed with less force and the higher
frequency content is absent. The microphone registered the frequency, f2, during the first 35
ms and then, it registerd primarily the frequency, f1 ≈ 235 Hz. During the same event, the
geophone registered a nearly sinusoidal signal, not shown, with f1 ≈ 240 Hz. In Fig. 15, it
is demonstrated that it is possible for the geophone to detect the higher frequency f2 and
in Fig. 16 it is shown that the frequencies f1 and f2 can also be recorded using sand grains
with H ≈1 cm.

Fig. 14. The same as in Fig 13a, but after the jar was rotated about its axes so that the
grains were rearranged. The signal was recorded by the microphone. During the first 35 ms,
fd = f2 ≈ 750 Hz. Then, the major peaks are thought to correspond to f1 ≈ 235 Hz. A
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nearly sinusoidal signal with fd ≈ 240 Hz, not shown, was also recorded by the geophone
during the same event.
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Fig. 15. The signal was recored by the geophone when the silica gel grains, in the porcelain
cup, H ≈ 1 cm, were impacted by the wood rod, D = 25 mm. The geophone recorded the
frequency, f2 ≈ 650 Hz, in the first 20 ms, but then only the fundamental, f1 ≈ 250 Hz.
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Fig. 16. Same as in Fig. 15, but with the Kotobikihama sand in the porcelain cup, H ≈ 1
cm. (a): The signal was recorded by the geophone, f1 ≈ 360 Hz. (b): The signal was
recorded by the microphone, f2 ≈ 760 Hz.

It can be inferred from Fig. 8a, and from Figs. 13 to 16 that the ratio, f2/f1 ≈ 2.5
on average. From the same numerical data that led to Fig. 12, it can also be inferred that
f2/f1 ≈ 2.5, provided Lf < 0.1. For larger Lf , the ratio f2/f1 is larger than 2.5. These
results can be reconciled if we assume that the velocity ratio cs/cp was sufficiently low as
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to render the exact value of the combined mass of the pestle and that of the hand nearly
irrelevant, i. e., the rods were lightly loaded.

2.4 Blocks of sand sliding on a sand dune

The video program by The National Geographic Society, Survivors of the Skeleton Coast
Park, Namibia, Africa (1993), depicts the avalanche on the slip face of a sand dune. At first,
blocks (plates) of sand, about 10 cm thick, break off and begin to slide downhill, accompanied
by a low frequency sound in the neighborhood of 100 Hz. In about 5 s, the plates begin to
break-up and grain avalanche on the surface becomes visible soon after. The avalanche front
gradually loses thickness and comes to rest when its thickness amounts to about 3 cm, pre-
sumably at the bottom of the dune. A somewhat similar account of the avalanche evolution
can be found in the reports by Haff [4] and by Sholtz et al. [6]. In the last source, it is
stated that in fully developed avalanches, the sliding plates can remain intact for most of the
motion and in the report by Nori et al. [7], it is stated that sliding plates of sand have the
greatest acoustic output. The recent reports by Andreotti [20] and by Douady et al. [21],
on the seismic and acoustic emissions due to grain flow on sand dunes, are limited to surface
avalanches. In these reports, it is claimed that the dominant frequency of the seismic and
acoustic emissions, fd ≈ 100 Hz, is equal to the rate of collisions of a given grain with those
in the layer below, as it avalanches downhill. Thus, with grain diameter d̄ = 0.2 mm, the
relative velocity between layers is, Vr = 2 cm/s. Such a hypothesis implies that the 20 or
so surface layers avalanching downhill are well defined. However, on p. 334 in the report
by Sholtz et al. [6], there is reference to, ”unusually turbulent motion, resembling a rush of
water in slow motion”. Towards the end of the avalanche, seen in The National Geographic
video presentation, the surface grains appear to be in a kinematical state resembling that of
the surface of a boiling viscous liquid. Furthermore, from observations of avalanching sand
at Dumont Dunes, just south of Death Valley, California, USA, it is concluded that seismic
emissions persisted after all surface grain motion appeared to have subsided (Vriend et al.
[22]).

In the context of this study, the explanation of the acoustic emissions from sliding plates
can be sought in (8), where a boundary layer of thickness, b, and phase velocity, cs, is assumed
to exist between the sand plate and the compacted sand mass below. Thus, with αb = π and
b = 10 mm, ks ≈ α is equal to 314, resulting in cs = ω/ks = 2.0 m/s, for f2 = 100 Hz.

It is possible that such a boundary layer continues to exist between the fixed sand mass
and the mobile sand mass above, after the break-up of the plate. If that were the case, it
would put an end to the nearly 150 year old mystery and controversy as to the origin of
such emissions. It can be argued that the liquidization of the grain contact points occurs
at some finite depth, where the stress level is sufficiently high. On p. 151 in the report by
Humphries [23], regarding the booming dunes of Korizo, at the border of Libya with Chad,
the author wrote; ”the enormous volume of sound produced suggests that in some way a
natural resonator must be involved in magnifying the sound”. Then, there is reference to
some 10 cm below the surface where some or all of the sound is generated. Furthermore, in
the report by Andreotti [20], it is estimated that the gravitational potential energy lost per
second, during an avalanche 4 m long by 1 m wide, amounts to 3 kw. Therefore, it can be
inferred that the avalanche depth amounts to 9 cm, if the average grain velocity is 25 cm/s.
Moreover, in the report by Douady et al. [21], it is shown that slumping sand on the dune
face can result in acoustic emission with initial depth equal to 5 cm.

On p. 4969 in the report by Criswell et al. [24] the authors wrote; ”Booming could also be
evoked by simply pulling sand downhill with one’s hand. It was necessary to keep the hand
and fingers straight and to run the fingers 10-14 cm below the surface. Strong vibrations
could be felt in the fingertips”. The signal was recorded by a geophone at Sand Mountain
and fd was equal to 53 Hz. The signal was sufficiently intense to be heard a few m away.
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Such an observation is in line with the continuous acoustic emission evoked when the 16 mm
wood rod was rotated inside the 9 cm glass jar filled with silica gel grains to the depth of
about 6 cm. The rod was immersed to the depth of about 4 cm and was turned, manually,
at the rate of about one turn per second on a circle, with radius of about 4 cm about the
center of the jar. The signal was recorded several months before those described in Figs. 13
and 14, and is characterized by frequency content centered at 500 Hz.

In the report by Nori et al. [7], it is reported that fd is in the range of 50 to 80 Hz
during avalanches at Sand Mountain. The near equality of fd, when the sand is ”pulled” or
pushed or sheared by the hand at the depth of about 10 cm and when the sand avalanches
freely, merits special consideration. Namely, if the vibration is due to a boundary layer at
the bottom of the fingers, then it could also be due to such a layer induced by the weight of
the overburden, when the conditions exist for an avalanche to be triggered. Furthermore, if
Lf < 0.1, then fd = f1 is independent of M = SHρ, where H is the depth of the boundary
layer (8). Specifically, if H = 10 cm, b = 5 mm and cs/cp = 1/20, then Lf = 0.05. In such
a scenario, the grains in the surface layers oscillate to the tune of the modes of vibration
in the boundary layer, i. e., the grain-grain collisions become synchronized. However, fd is
not determined by the time required for one grain to overtake another. The vibration in the
boundary layer can give rise to surface waves propagating in the avalanching sand mass and
in the sand bed ahead of the avalanche, as reported by Andreotti [20]. Furthermore, in the
case of the avalanching dunes (Andreotti [20]) and in the case of the grains shaken in a jar
(Leach and Rubin [11]), the weak decrease of fd with increasing average diameter, d̄, can
be attributed to the weak increase of the thickness of the boundary layer and or the weak
decrease of the shear phase velocity, with increasing d̄.

However, it can also be argued that under the sliding plate there is a quasi-compacted
sand band of well-defined thickness, for example 20 cm, with cs ≈ 40 m/s, resulting in the
frequency f2 ≈ 100 Hz. Then, the modes of vibration would become excited by the sliding
plate in the same sense the modes in a violin string become excited by the sliding bow chord.
In such a scenario, the mechanism for the seismic and acoustic emissions is centered around
the existence of a well-defined sand band and a substrate where cs is much larger than 40
m/s. However, the observation described by Lewis [10] is not consistent with such a scenario.
That is, when the dune sand mass was pushed uphill by the four fingers, the frequency of the
acoustic emission was higher than when pushed downhill. In the context of this study, when
the sand is pushed uphill, the stress level around the fingers is higher, resulting in a higher
frequency. Similarly, in the case of the impacted grains in a dish, the higher pestle velocity
results in a higher stress level around the pestle and in a higher frequency.

In the most recent report by Vriend et al. [22], the authors conclude that the seismic
emission in an avalanching sand dune is due to a compression wave propagating in a band of
dry sand, about 1.5 m in depth. The phase velocity in the sand band was determined to be
260 m/s and that in the air above and in the substrate was determined to be 356 and 310 m/s
respectively, in a given case. They argue that for such phase velocities, a compression wave
propagating downhill experiences total reflection at the upper and lower boundaries of the
band as it bounces between the two boundaries, and thus, all the energy from the avalanching
sand is converted to wave energy in the dry sand band. The spectrum from a booming dune,
shown in the report by Nori et al. [7], is centered at about 85 Hz and has half width of about
6 Hz. Its overall appearance is similar to that of the main envelope shown in Figs. 4 and
5. Such a spectrum implies uniform thickness and well-defined boundaries of the dry sand
band. However, the phase velocity of the avalanching sand mass, about 10 cm thick, is not
likely to be equal to that in the stationary sand below and the band thickness is not likely to
remain the same with distance downhill. Then, there is the question of the reflected waves
at the top and the bottom of the hill. Furthermore, such an approach cannot account for the
observations described above (Lewis [10] and Criswell et al. [24]), regarding the emissions
when the sand mass is pushed by the hand. In the context of this study, the boundary layer
plays the role of the violin string and the dry sand band below plays the role of the sound box.
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2.5 Grains shaken in a jar

In order to investigate the possibility that layers near the surface, sliding over one another,
are responsible for the acoustic emissions when musical grains are shaken in a jar, silica gel
grains were placed in a glass jar, 6 cm in diameter by 10 cm in height, with the grain depth
amounting to about 4 cm. The jar was shaken up-down along an axis about 45o from the
vertical, the microphone being about 10 cm away. The signals, viewed on the oscilloscope
screen, were characterized by a dominant frequency, fd ≈ 336 ± 100 Hz. Then, the same
grains were placed in a plastic jar, 4 × 4 cm in cross-section by 9 cm in height. The same
procedure was followed, and the dominant frequency was, fd ≈ 463±100 Hz. The assumption
that the emitted sound originates with several grain layers sliding over one another leads to
relative velocity between layers, Vr = 16 cm/s, if d̄ = 0.4 mm and fd = 400 Hz. This, in turn,
leads to surface grain velocity equal to 1.6 m/s, if there are 10 sliding layers. This velocity
is even higher since there is bound to be sliding at the jar wall. However, such high grain
velocities are not present in the jars. Moreover, it will be argued in Section 2.6 that, in the
context of the theory of sliding surface layers, the impact signal generated by a given grain
as it overtakes the grains below, has to be nearly periodic. However, the lack of roundness
and the large spread in the grain size (Fig. 2) nearly preclude such periodicity. Therefore,
we have to seek the origin of the acoustic emission in the boundary layer at the wall of the
jar, where the stress level is maximum. Furthermore, the dependence of fd on the rigidity
and surface texture of the jar wall is consistent with such a scenario.

In the plots of the period, Td = 1/fd, versus the number of grains, N , in a glass jar (Leach
et al. [25]), we observe a weak increase of Td with N , suggesting that Lf < 0.1, on the basis
of Fig. 11, if fd = f1. When sand grains from Sand Mountain were shaken in a glass jar,
fd ≈ 280 Hz (Leach and Rubin [11]), while, when the same grains avalanched on the slip face
of Sand Mountain, fd ≈ 66 Hz (Nori et al. [7]). Such a difference in fd can be attributed
to the lower rigidity of the dune substrate relative to that of the jar wall, which results in
a larger boundary layer thickness b. Similarly, when a glass jar is rapidly tilted or rotated
about its axis along a horizontal direction (Lewis [10]), the origin of the acoustic emission
can be sought in the boundary layer at the jar wall. There is a good analogy between the
rapid tilting of the glass jar and the sudden opening of the gate controlling the height of the
sand mass above the slip face on a sand dune (Douady et al. [21]).

In order for the acoustic emission to be evoked, the acceleration and deceleration of the
jar must have substantial values. Effectively, a minimum amount of energy is required for
the asperity fluidization to take place. Another observation supportive of the existence of a
boundary layer at the jar wall, responsible for such emissions, can be found in the so called
”frog sand cell”. The cell, which was obtained from the Nima Sand Museum, in Nima ,
Japan, is an acrylic resin cylinder, 12 cm in length by 6 cm in diameter, sealed at both ends.
It contains 100 ml of water and enough quartz sand so that, when its axis remains horizontal,
the water level stands about 2 mm above the sand. When the cell is shaken back and forth,
it emits a frog-like sound with fd ≈ 700 Hz. Such signals can be seen in (Patitsas [9]). When
the cell was rotated slowly about its axis so as no avalanches could be seen, a tactile sensation
could be felt, however, no sound could be heard.

2.6 The harmony of the overtones and the periodicity of the impact waves

The scope of the inclusion of this Section is to establish that the harmonics, observed in
the frequency spectra of the impacted singing grains, are not due to modes of vibration, but
rather due to the periodic nature of the strings of the impact waves generated as the grains
collide with the pestle. Since the depth of penetration amounted to less than 10 mm, it is safe
to assume that the dominant frequency at 252 Hz, in Fig. 4, corresponds to the frequency f2

and that the frequency f1 was not excited due to insufficient stress level very near the surface.
Furthermore, we can observe the presence of harmonics of f2 at 500 and 750 Hz. The radial
particle displacement, ξr, corresponding to the frequency f1, has a relatively large particle
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displacement at the pestle boundary and decreases monotonically to zero at r = R + b. The
expression for ξr is listed below Equation (17). The large amplitude of vibration at r = R
implies that a relatively large amount of energy is required for it to become excited, since the
amplitude of oscillation of the rod is also relatively large. This explains why the microphone
detects this mode when the depth of penetration is larger and the stress level is higher, as
can be seen in Figs. 8a and 14.

The radial particle displacement, for the mode with frequency f2, resembles the first half
of a sine function, where ξr = 0 at r = R + b, but slightly less than zero at r = R. The
grain mass oscillates in unison between the two boundaries, thus, drawing energy from the
collisions between the pestle surface and the adjacent grains, as a violin string draws en-
ergy from the moving bow chord. It can be argued that most of the energy detected by the
microphone originates directly from such interaction, and that can explain why the signal
often becomes fainter with pestle depth, and why the geophone cannot detect such a signal
(Figs. 13, 14 and 16). Effectively, we think that once the mode with frequency f2 is set
in motion, the particle displacement is low, so as not to be detected by the geophone, but
sufficiently large to result in the near synchronization of the collisions between the pestle and
the adjacent grains. Then, the string of impact waves (pulses), generated by a given grain as
it collides repeatedly with the descending pestle, is nearly periodic, the average time interval
between impacts, T̄ , being equal to 1/f2. Such impact waves travel through the air to the
site of the microphone and are invisible to the geophone. In the reports by Andreotti [20]
and by Bonneau et al. [26], we encounter the somewhat similar concept, where the modes of
vibration in the sand mass on a sand dune are thought to result in the ”synchronization” of
the collisions between the avalanching grains.

The amplitude of a given impact wave was defined as, cos[(π/2)(q/Tj)t′] in the inter-
val, 0 < t′ < Tj/q, and as 0.5cos[(π/2)(q/Tj)t′] in the interval, Tj/q < t < 3Tj/q, where,
t′ = t − tj , where tj is the time of the jth collision in a given string, and Tj = tj+1 − tj . The
parameter q determines the time span of a given impact wave. The signal, ζM(t), generated
by the string of M such impacts of a given grain with the pestle, is perfectly periodic if Tj =
constant =Td = 1/fd. Furthermore, the superposition of N such signals, from N grains, is
also perfectly periodic. The factor, 0.5, was included so that the net area under the curve is
equal to 0. This, in turn minimizes the DC effect in the computation of the Fourier transform
of the signal so synthesized. The square of the absolute value of the Fourier transform is iden-
tified as the Energy Density Spectrum, or the Frequency Spectrum, of the signal. Otherwise,
the choice of the function representing the impact waves is not critical in the computation
of the frequency spectrum. When Tj = constant, the frequency spectrum of the net signal
comprises a bell shaped major envelope centered at fd and minor envelopes centered at 2fd,
3fd, etc. Furthermore, the height of the minor envelopes, relative to that of the major enve-
lope, decreases with increasing q, i. e., with the duration of the impact waves. In the case of
the Fraunhofer diffraction pattern by a set of M slits arranged along a line (Stone [27]), the
relative height of the minor envelopes decreases with the width of the slits. When Tj vary
randomly in the range Td(1 ± ∆), where ∆ = 0.08, secondary peaks appear adjacent to the
various envelopes, and for q =4.0 and fd = 252 Hz, the spectrum of the synthesized signal
resembles quite well the spectrum seen in Fig. 4. For larger values of ∆, the envelopes are
lost in the multitude of adjacent peaks and the spectrum resembles that of a noise-signal.

The secondary envelopes, at 500 and 750 Hz in Fig. 4, could be due to the excitation of
the modes with frequencies f3 and f4, and or, due to the near periodicity of the strings of
the impact waves. The computation that leads to Fig. 12 reveals that the ratios f3/f2 and
f4/f2 are equal to 1.62 and 2.24 when Lf = 0.001, 1.9 and 2.83 when Lf = 1.0, and 1.95
and 2.92 when Lf = 6.0. These results are consistent with (8), where the roots above the
first occur at αb = π, 2π, 3π etc as Lf → ∞. Therefore, unless the pestle is overloaded, i. e.,
Lf → ∞, the minor envelopes cannot be due to the excitation of the modes with frequencies
f3, f4 etc. Such a dilemma has to be resolved by the proper experimental procedures, where
the mass M and the velocity ratio cs/cp can be determined. The mode with frequency f3

has the same nodes at the boundaries as the mode with frequency f2 and a node at about
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the middle. The excitation of such a mode is not consistent with the lack of cohesive forces
between the grains and it is not likely to become excited, especially when the boundary layer
thickness, b, is very small. The frequency spectrum, in Fig. 5, compared to that in Fig. 4,
suggests that the higher velocity of penetration of the pestle resulted in a larger value of the
parameter ∆, described above, i. e., ∆ was somewhat larger than 0.08. The sound associated
with the signal in Fig. 5 was not as musical as that associated with the signal in Fig. 4. Such
a reduction in musicality with the velocity of the pestle penetration was also recognized by
Miwa et al. [3].

In the report by Nori et al. [7], we find the emission signal, having duration about 30 ms,
from a so called ”squeaking” sand. However, the depth of the sand bed and the type of the
pestle used is not described. The frequency spectrum has a pronounced envelope at fd = 860
Hz and distinct secondary envelopes at multiples of fd, i. e., at 1720 and 2580 Hz. Similarly
in the report by Takahara [1], the signal emitted, when Kotobikihama sand in a glass funnel
was impacted by a rounded wood rod, has a frequency spectrum with dominant frequency,
fd = 599 Hz, and four minor components at multiples of fd. Evidently, fd is equal to f2.
The mode corresponding to the highest frequency, f6 = 5f2, has four nodes in the interval,
R < r < R + b, rendering its excitation highly unlikely. From the discussion that leads to
(31.1) in the book by Landau and Lifshitz [18], it can be concluded that the fluid behaves
more like a solid as the frequency of the wave motion increases, and thus, the phase velocity
increases with frequency, i. e., there is frequency dispersion. Therefore, the reason for the
harmony in the frequency components has to be sought in the periodicity of the strings of
the impact waves.

3. CONCLUSIONS

The study of the frequency spectra of the seismic and acoustic emissions, from a bed of
musical grains impacted by a pestle, is an effective approach towards the understanding of
the mechanism responsible for such emissions. There is experimental evidence that when the
grain bed is impacted by a pestle, the relatively high rigidity in a bed of musical grains results
in shear bands or slip channels, where presumably the modulus of rigidity approaches zero.
However, such slip channels cannot account for the observed acoustic emissions. The overall
continuity of the acoustic signals, during the pestle penetration into the grain bed, leads to
the conclusion that the source of such emissions has to be sought in a relatively thin grain
boundary layer at the bottom of the pestle. Such a layer, only a few mm thick, has very low
modulus of rigidity and thus very low shear phase velocity. The grains in the boundary layer
remain in close contact as they slide past one another. In this sense, the determining factor
for musicality is the physical state of the grain asperities, while grain shape and roundness
are nearly irrelevant. The high stress level in the boundary layer results in the liquidization
of the grain asperities at the contact points and this in turn results in the drastic reduction in
the modulus of rigidity. Alternatively, this effect could be due to the formation, at the grain
contact points, of sub-micron colloidal particles, which act as ball bearings between two hard
surfaces.

The theoretical frequency spectrum, corresponding to the modes of vibration in such a
layer, is nearly independent of the geometry of the bottom of the pestle, in agreement with
experimental observations. The spectrum comprises a relatively low frequency, f1, and a
series of frequencies, f2, f3, f4 .., where f3, f4 .. are somewhat lower than the multiples of
f2. The mode of vibration corresponding to the frequency, f1, resembles that of a thin elastic
rod fixed at one end and loaded with the mass, M , at the other end. As M → ∞, the mode
of vibration resembles that of a short weightless spring loaded with the mass M , thus, f1

decreases as M−0.5.
In the present study, the signals with frequency, f1, were recorded more reliably using a

geophone, while the signals with the higher frequency, f2, were recorded more reliably using
a microphone. Furthermore, the signals recorded by the geophone were nearly sinusoidal
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and not characterized by the usual higher frequency components, as in the signals recorded
by the microphone. The reason for such difference can be found in the fundamentally dif-
ferent processes in generating the signals. That is, whereas, in the case of the frequency,
f1, the signals are generated by the usual up-down motion of the pestle, in the case of the
frequency, f2, the signals are generated predominately by the superposition of the different
quasi-periodic strings of the impact waves generated by the grains, as they collide with the
descending pestle.

Grains can be classified as singing or musical, if a pleasant sound is emitted when they
are placed in a large dish, to a depth of several cm, and impacted lightly by a rod about 2 cm
in diameter. The hissing sound emitted by a bed of ordinary (silent) grains, when impacted
by a pestle, has frequency content extending up to several thousand Hz. In the context
of this study, the upper end of the frequency content is due, primarily, to the incoherent
grain-grain collisions in the neighborhood of the pestle, not unlike the collision process in an
assembly of molecules in the gaseous state. Furthermore, the lower end of the frequency con-
tent is attributable to modes of vibration in a diffuse and ill-defined boundary layer around
the impacting bottom of the pestle. Even the silent grains become somewhat musical when
squeezed in a confined geometry, in particular, when impacted by a pestle in a cup to the
depth of only about 1 cm. Effectively, the rigidity of the cup floor results in the formation of
a boundary layer, albeit a not so well-defined layer.

The origin of the acoustic emissions when jars, about half filled with musical grains, are
rapidly tilted or shaken along their axis, can be sought in the boundary layer at the jar wall.
Furthermore, the concept of the boundary layer, at the bottom of an avalanching sand bed
on the face of a dune, can provide another way of looking at the nearly 150 year old mystery
and controversy surrounding the seismic and acoustic emissions from booming dunes. In the
context of this study, the boundary layer plays the role of the violin string and the dry sand
band below, reported to be about 1.5 m thick, plays the role of the sound box. The relatively
low frequencies characterizing the emissions from sand avalanches, compared to those when
the same sand is shaken in a jar, can be justified in terms of the relatively low rigidity of the
sand mass below the avalanching grains. Effectively, the lower rigidity of the stationary sand
mass below the avalanching grains results in a thicker boundary layer. It is conceivable that
such a boundary layer could contribute to the sound emitted during a snow avalanche.

Hopefully, this study will serve to stimulate further investigation into the mechanism re-
sponsible for such seismic and acoustic emissions. In particular, more experimental results
are needed in order to establish directly the existence of the boundary layer and the reasons
for the precipitous decrease in the modulus of rigidity in the boundary layer, when the mu-
sical grains are impacted or squeezed. What is the physical state of the grain surface that is
responsible for such a decrease?
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APPENDIX. Wave motion

A1. Wave propagation

Firstly, we attempt to establish that the observed frequency spectra cannot originate with
waves propagating in a semi-infinite interval, since in such a case the frequencies have to be
defined by some parameter(s), which does not exist when the pestle penetrates into the grain
bed. In particular, if there were wave propagation away from the pestle, it would propagate
along the slip channels and or along the surface of the pestle towards the surface. For the
sake of simplicity, we assume that the pestle, in Fig. 3, is wide enough so that there is no
variation of the particle displacement with, z, and that a wave propagates along the surface
of the pestle along -x̂ on the xz plane. In particular, we assume that the boundary layer, of
thickness b, extends all along the pestle surface, and that it serves as a conduit, where the
energy generated at the bottom of the pestle is transported upwards. We consider only the
layer on the right side of the pestle and we assume that y = 0 on the pestle surface. The
bottom front end of the pestle is ignored for the sake of this argument. Furthermore, in what
follows we assume that the fluid is non-viscous in order not to have to deal with complex
phase velocities. Then, we write,

Ψ = [A1cosγy + B1sinγy]ej(kx+ωt), Az = [A2cosβy + B2sinβy]ej(kx+ωt), (1)

where the scalar Ψ represents the compression or dilatational wave and Az is the component
along ẑ of the vector A representing the shear wave. Ψ(x, y) satisfies the scalar wave equation
with phase velocities cp, and A(x, y) satisfies the vector wave equation with phase velocity
cs (Graff [28]). These bulk phase velocities are expressed as,

cp =

√
λe + 2µ

ρ
, cs =

√
µ

ρ
, (2)

where λe, µ are the Lame′ constants and ρ is the mass density. In particular, µ is the shear
modulus or the modulus of rigidity. The wave number k satisfies the following equations,

k = ω/c , kp = ω/cp , ks = ω/cs , k2 = k2
p − γ2 , k2 = k2

s − β2, (3)

where cs < cp. The particle displacement, which is also the grain displacement due to the
compression wave can be written as,

ξp = ∇Ψ = x̂(jk)[A1cosγy + B1sinγy] + ŷ(γ)[−A1sinγy + B1cosγy], (4)

and that due to the shear wave as,

ξs = ∇× A = x̂(β)[−A2sinβy + B2cosβy] + ŷ(−jk)[A2cosβy + B2sinβy], (5)

where the factor ej(kx+ωt) is understood to be included. According to the grain contact
fluidization hypothesis, the grain mass outside the boundary layer remains in a quasi-solid
state, whereas, the grain mass in the boundary layer is in a viscoelastic-liquid state, where
cp � cs. From the boundary condition, ξpy = 0 at y = 0, we conclude that A1 = 0, and
from the condition, ξpy = 0 at y = b, we conclude that γ = π/b = 500π, if b = 2 mm.
From the propagation condition, k = ω/c , kp = ω/cp , k2 = k2

p −γ2, we conclude that for
propagation to occur, kp has to be larger than γ, and that implies that cp has to be smaller
than ω/γ = fd/250 = 1.8 m/s, if fd = 450 Hz. However, according to our hypothesis, cp is
on the order of hundreds of m/s. Therefore, we need consider only shear wave propagation.
Then, the above arguments are applicable with B2, β, ks, cs in place of B1, γ, kp, cp, in (4).
Thus, we can write, βb = nπ, n= 1, 2, 3, which defines the cut-off frequencies, ωn = nπcs/b.
These cut-off frequencies are the eigenfrequencies in the case of the standing wave patterns.
Thus, when wave propagation is in effect, the angular frequencies ω cannot be specified by
the physical parameters, cs and b alone. Effectively, the frequencies have to be specified by
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a parameter outside the boundary layer and the only such parameter is the velocity of the
descending pestle. However, when a wood rod, 16 mm in diameter by 123 cm in length, was
allowed to free-fall on the silica gel grains in the 9 cm diameter glass jar, the average frequency
of the acoustic emission increased from 420 Hz to 500 Hz, while the drop height increased
from about 2 cm to 15 cm. That is, while the impact velocity increased by the factor of 2.7,
the frequency increased only by 17 %. In general, when the pestle was driven into the grain
bed with more force and more velocity, the increase in the frequency was moderate. In the
report by Nishiyama and Mori [3], it is stated that the frequency of the signal, emitted from
a bed of singing sand, increased by about 20 % as the mean penetration velocity of the rod
increased from 7 to 35 cm/s. Furthermore, on page 43 in the report by Lewis [11], we read
that, a plank, 45 cm long by 5 cm wide and 1.25 cm thick, was used to push the sand mass
on a dune surface with various velocities V . It was then estimated, using a series of tuning
pitch pipes, that when V was about 15 cm/s, fd was about 100 Hz (low C), while when V
was about four times as large, fd was about twice as large.

A2. Flat rectangular bottom

For the sake of simplicity, we assume that the pestle has a flat bottom and that the
boundary layer, on the yz plane in Fig. 3, has uniform thickness, b, and extends from y = 0
to y = 2R along the surface of the pestle and R � b. The length of the pestle along ẑ, L, is
assumed to be considerably larger than R. Again, we write,

Az = [A1cosαx + B1sinαx][A2cosβy + B2sinβy] (6)

where k2
s = α2 + β2. The expressions for the particle displacements are, ξx = [A1cosαx +

B1sinαx]β[−A2sinβy + B2cosβy], and ξy = α[A1sinαx − B1cosαx][A2cosβy + B2sinαy].
From the condition, ξx = 0 at x = b, it follows that B1 = −A1cotαb. The normal stress along
x̂ is, σxx = (λe + 2µ)∂ξx/∂x ≈ λe∂ξx/∂x, since µ � λe. Furthermore, at x = 0 we can write,

σxxS = M
∂2ξx

∂t2
= −Mω2ξx (7)

Then, the following transcendental equation can be derived,

cot(αb) =
M

ρSb
(
cs

cp
)2(αb) = Lf (αb) (8)

where Lf , the load factor, is the slope of the straight line, S is the surface of the bottom
of the pestle, i. e., S = 2LR, M is the mass of the pestle, and ks ≈ α since β � α, since
R � b. It is the familiar equation that gives the frequencies of vibration of an elastic thin
rod, fixed at one end and loaded with the mass, M , at the other end. The first root, α1b,
corresponding to the vibration of a loaded short spring, lies in the interval, 0 < αb < π/2,
the second root lies in the interval, π < αb < 3/2π and so on. When M(cs/cp)2 is sufficiently
large so that α1b → 0, cot(αb) → 1/αb, and the first root varies as 1/

√
M . Such a variation

of the frequency of the emission with the mass of the pestle can be seen in the report by
Nishiyama and Mori [3].

A3. Rounded cylindrical bottom

In this section, we consider the same pestle, i. e., wide enough along the z axis so that
there is no variation with z, but rounded to a circular end at the bottom, as depicted in
Fig. 3. The boundary layer has thickness b and outer radius R1 = R + b and is limited
nearly to the bottom of the pestle, where the stress level is maximum. We proceed to write
in cylindrical coordinates, A = Az(r, θ)ẑej(ωt), where

∇2A = ∇(∇ ·A) −∇×∇×A =
1
c2
s

∂2A
∂t2

(9)
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It is straight forward process to show that, ∇ ·A = 0, and that,

∇2A = −ẑ[−1
r

∂Az

∂r
− ∂2Az

∂r2
− 1

r2

∂2Az

∂θ2
] = −k2

sAz ẑ (10)

The above equation is the Bessel differential equation and the solutions can be written in the
form of (VI.4) in the book by Stratton [29] i. e.,

Az = Anf1(θ)f2(r)ej(ωt) (11)

where, f1(θ) is cos(nθ) or sin(nθ), and f2(r) is one of the ordinary Bessel functions, Jn(r) of
the first kind or Yn(r) of the second kind. The particle displacement is,

ξ = ∇× A = r̂
1
r

∂Az

∂θ
− θ̂

∂Az

∂r
(12)

The index, n = 0, results in the unrealistic mode where the radial displacement, ξr = 0, and
values of n greater than 1 result in modes with nodal points in the boundary layer. We tend
to think that such modes cannot become excited in a boundary layer, only about 5mm thick,
due to lack of cohesive forces between the grains and also due to lack of roundness and due
to a large size distribution of the grains. We choose −sinθ rather than cosθ so that we can
write the more suitable expressions,

ξr = −1
r
cosθ[A1J1(kr) + Y1(kr)] , ξθ = ksinθ[A1J

′
1(kr) + B1Y

′
1(kr)] (13)

As in the previous section, we write, 2RLλeσrr = M∂2ξ/∂t2 at the surface of the pestle and
we arrive at the equation,

[(1− Lfζ2)J1(ζ) − ζJ ′
1(ζ)]A1 + [(1− Lfζ2)Y1(ζ) − ζY ′

1(ζ)]B1 = 0 (14)

where the load factor is written as, Lf = M/(ρ2LR2)(cs/cp)2 where L is the length of
the pestle along the z axis, and ζ = kR. In the above derivation, the contribution from
the tangential stress, σrθ = µ(1/r∂ξr/∂r + ∂ξθ/∂r − ξθ/r), was neglected since µ � λe.
Furthermore, we assume that at r = R + b = R1, ξr=0, resulting in the equation,

J1(ζχ)A1 + Y1(ζχ)B1 = 0 (15)

where, χ = 1 + b/R. Equations (14, 15) take the place of (8) in seeking the roots for k and
ω for given Lf , R, b, and cs.

A4. Rounded spherical bottom

In Fig. 3, the z axis takes the place of the x axis, and the x axis is into the plane of the
paper. Thus, the angle θ, in Fig. 3, becomes the azimuthal angle φ. We proceed to write in
spherical polar coordinates,

A = θ̂Aθ(r, φ)ej(ωt) (16)

Furthermore, due to the symmetry about the z axis, we restrict the variation with r and φ
on the yz plane where θ = π/2. Then, it follows that ∇ ·A = 0, and also the components of
∇×∇ ×A along r̂ and φ̂ are equal to 0, and we arrive at an equation similar to (VII.3) in
the book by Stratton [29], namely,

r2∂2Aθ

∂r2
+ 2r

∂Aθ

∂r
+

∂2Aθ

∂φ2
= −r2k2Aθ (17)
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As in the previous section, we choose to write, Aθ = −sinφ[A1j1(kr) + B1y1(kr)], and then,
ξr = 1/rcosφ[A1j1(kr)+B1y1(kr)], and ξφ = −1/rcosφ[A1j1(kr)+B1y1(kr)]−kcosφ[A1j

′
1(kr)+

B1y
′
1(kr)], where j1(kr) and y1(kr) are the spherical Bessel functions of the first and second

kind. Next, we write again at r = R, σrrπR2 = M∂2ξr/∂t2, and we arrive at (14, 15) above
with 2L replaced by πR, and J1(kR), Y1(kR) replaced by j1(kR), y1(kR), i. e., the load factor
is written as,

Lf =
M

ρπR3
(
cs

cp
)2 (18)

A5. Flat circular bottom

As in the previous section, the z axis points straight down in Fig. 3, and the x axis
points into the plane of the paper. The boundary layer has the form of a disk of radius R
and thickness b, at the bottom of the pestle. We write in cylindrical coordinates,

A = θ̂Aθ(r, z)ej(ωt) (19)

Then, from the component of ∇(∇ ·A) − ∇×∇× A along r̂, we obtain the equation,

∂2Aθ

∂r2
+

1
r

∂Aθ

∂r
− 1

r2
Aθ +

∂2Aθ

∂z2
= −k2

sAθ (20)

This is an unfamiliar differential equation, however, its solution, f1(r), is of no importance
in the context of this study. Thus,

ξz =
1
r

∂

∂r
(rf1)[A1cosαz + B1sinαz] (21)

Then, as in section A2, we obtain (8) with S = πR2.
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