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Abstract

The cervical spine is composed of seven vertebrae from C1 to C7 with a lordotic curve (C-shaped

curve) and joints between vertebrae for spine mobility. A computed tomography (CT) is

commonly used by experts and physicians in imaging diagnosis to give information about the

cervical spine and vertebrae in the neck. Diseases such as spinal stenosis (narrowing of the spinal

canal), herniated discs, tumors, and fractures in the cervical spine can be diagnosed by CT scans.

Quickly detecting the presence, and location of cervical spine fractures in CT scans helps

physicians prevent neurologic deterioration and paralysis after trauma. Throughout this thesis, a

U-Net model was trained for semantic segmentation on approximately 2019 study instances with

provided CT images, while only 87 of them have been segmented by spine radiology specialists.

After that, a combination of 2D CNN and bidirectional GRU deep learning models was used for

the detection of fractures in each vertebra, as a classification task.

The objectives of this research are to develop two deep-learning models for detecting and

localizing cervical spine fractures and evaluate the ongoing research activities on semantic

segmentation and classification in the medical field. This research aims to use a semantic

segmentation algorithm in deep learning by using U-Net architecture to estimate the location of

each cervical vertebra, as well as propose a deep convolutional neural network (DCNN) with a

bidirectional GRU memory (Bi-GRU) layer for the automated detection of cervical spine

fractures in CT images. This approach was trained and tested on a dataset provided by RSNA

(a team of the American Society of Neuroradiology and Spine Radiology).

Furthermore, the critical factors, such as preprocessing techniques and specialized loss functions
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were explored that must be taken into consideration when segmenting 3D medical images.

Whether used as a standalone framework for segmentation and classification tasks or as an

integrated backbone for medical image processing, this architecture is flexible enough to

accommodate other models. The proposed approach yields results that are comparable to those

of existing techniques, but it can be improved by using larger image sizes and more advanced

GPU workstations that will reduce the overall processing time.

Future research will be using other pretrained networks as an encoder and increasing image sizes

to examin the performance improvmet of the architecture which needed more advanced

computational resources and also integrate the current architecture into a simulated crash

scenarios to use in various applications such as producing protecive sport equipments.
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Chapter 1

Introduction

This chapter introduces the problem studied, its significance, and the objectives of this research.

In this chapter, a brief overview of the damage to the spinal area will be introduced. Then, the

application of AI in the medical industry will be discussed. Then, the objective of this

dissertation to detect the fracture in the cervical spine will be briefly presented in section 1.2.

1.1 problem statement and motivations

Motor vehicle accidents, sports-related injuries, and falling mostly result in damages to the

spinal area, particularly, the upper cervical spine. For high-risk patients such as those with

fractures or displacements seen on their plain radiographs, CT scans are taken to detect the

location of fractures. It is vital to quickly diagnose and treat fractures to prevent neurologic

deterioration and paralysis after trauma.

Artificial intelligence (AI) is being used in the healthcare industry in various areas such as cancer

detection and analyzing MRI or X-ray images. Also, Convolutional Neural Network (CNN) [5],

one type of deep learning algorithm, is particularly used in analyzing medical images. Image

segmentation can be used to show the exact location of tumors or vertebrae in the human body.

Previous studies in the segmentation of the cervical spine used models to detect the location of

the spine and then find the boundary of each vertebra by deforming a 2D contour. Different
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machine learning approaches, such as Hough-based and U-Net architectures, are used with

strong performances on semantic segmentation problems. U-Net is widely used in medical image

segmentation, and it has been applied in many areas such as brain, liver, and cell segmentation.

There are several different variations of the U-Net architecture that have been developed for

specific tasks and applications.

This project develops a deterministic and automated model for the detection of cervical spine

fractures, through the development, training, validation, and testing of a two-stage model. The

first stage involves a semantic segmentation task, and the second stage involves a CNN model.

The models use the patient’s CT scans provided in the Digital Imaging and Communications in

Medicine (DICOM) and Neuroimaging Informatics Technology Initiative (NIFTI) formats and

then observe their performance metrics, such as dice coefficient, sensitivity, specificity, and

accuracy [21].

It is expected the results of this research have a positive impact on the quick detection of

cervical spine fractures before complications of undiagnosed injuries. Ultimately, it is expected

that the deep learning models developed in this project will become useful models for research

labs, clinical environments, and industries to correctly estimate the location of fractures in the

cervical spine.

1.2 Objectives

The general objective of this research is to develop a system that can automatically and

accurately identify disruptions or breaks in the bones of the cervical spine using medical

imaging. In addition to the suitability of the proposed architecture as a standalone model, it can

be used in an integrated framework to enhance robustness.
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1.3 Outline of this Thesis

This dissertation is organized as follows. Chapter 2 presents background information about

cervical spine anatomy and different types of injuries and disorders. Then, the recent studies to

detect the disruptions in the cervical spine medical images and the application of AI will be

discussed in Chapter 3. Chapter 4 highlights the analysis of the dataset and the requirements of

training both segmentation and classification models. Both Chapter 5 and Chapter 6 present our

proposed deep learning models. Finally, Chapter 7 summarizes the contributions of this research,

provides the conclusions, and highlights future works to this thesis.
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Chapter 2

Theory and Background Materials

This chapter first provides basic information on related topics to the main study of this

dissertation in section 2.1. Then, diagnostic techniques of cervical spine fracture and image

segmentation will be discussed that have been explored prior to the rise of deep learning for

cervical spine fracture detection. Section 2.4 presents three significant deep-learning

architectures that were the inspiration for this research: U-Net, CNN, and Bi-GRU.

2.1 Cervical spine anatomy

The cervical spine is the uppermost portion of the spine that runs from the base of the skull to

the top of the thoracic spine. It is composed of seven vertebrae and is responsible for supporting

the weight of the head, protecting the spinal cord, and allowing for a wide range of motion,

including head and neck rotation, flexion, and extension. Understanding the anatomy of the

cervical spine is important for medical professionals, researchers, and anyone who wants to

maintain optimal neck health [12].

The cervical spine consists of seven vertebrae labeled C1 to C7. The first vertebra is an atlas

with a ring-shaped bone that begins at the base of the skull. The primary movements of the

atlas are flexion and extension, with a normal range of approximately 15° to 20° of flexion to

hyperextension at the atlanto-occipital joint [62].
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Figure 2.1: the anatomy of skull and cervical spine from greatbigcanvas [27]

The second vertebrae also called the axis, allows the atlas to pivot against it for the side-to-side

‘no’ rotation of the head. One of its prominent characteristics is the dens, a bony protuberance

that extends superiorly from the body of C2. The dens act as a pivot point and form a critical

articulation with the atlas, allowing for rotational movement of the head and neck. The typical

range of rotation for the atlas on the axis is approximately 50° in each direction [62].

C3 to C7 vertebrae are structurally similar, but each possesses distinct features that contribute

to their specific functions within the cervical spine. These vertebrae share common anatomical

elements, including vertebral bodies, vertebral arches, spinous processes, transverse processes,

and facet joints.

The cervical spine’s overall flexion or extension is not necessarily reflected in the movement of

individual vertebrae, and each vertebra contributes to motion differently. This distinct motion

pattern is relevant for understanding injury mechanisms in the cervical spine [6]. The main

structure of the cervical spine is shown in Figure 2.2.

Each cervical vertebra consists of a vertebral body, vertebral arch, and spinous process (Figure

2.3). The vertebral body is the anterior component of a cervical vertebra. It serves as the
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Figure 2.2: the structure of the cervical spine, the uppermost portion of the spine from Muscu-
loskeletal [61]

weight-bearing structure, responsible for providing stability and absorbing forces exerted on the

spine. The vertebral bodies are connected through intervertebral discs, which act as cushions

and allow for mobility. These cylindrical structures have a thick outer shell of compact bone,

while the inner core consists of cancellous bone, giving them strength and resilience[19].

The cervical spine also includes intervertebral discs, which are located between adjacent

vertebrae. They are essential components of the cervical spine, providing flexibility, shock

absorption, and spinal alignment. During daily activities, the discs absorb and distribute the

forces applied to the spine, reducing stress on the vertebrae and preventing damage to the spinal

structures. Also, intervertebral discs allow for controlled movement between adjacent vertebrae,

enabling the neck to bend, rotate, and flex in various directions. The discs contribute to

maintaining the natural curvature and alignment of the cervical spine, ensuring optimal posture

and balance [67].
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Figure 2.3: A superior view of one typical vertebra from Peter et al. [9]

Figure 2.4: intervertebral view from the American Academy of Orthopaedic Surgeons [14]
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Figure 2.5: Spinal Ligaments from Health Central [65]

The proper functioning of the cervical spine is attributed to a network of ligaments that connect

the vertebrae and provide structural integrity. Here, This research will be delved into the most

important cervical spine ligaments, their functions, and their importance in maintaining spinal

stability (Fig 2.5).
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2.2 Cervical spine injuries and disorders

Injuries to the cervical spine can result from trauma, repetitive stress, or degenerative changes.

These injuries can cause significant pain and discomfort and can lead to long-term disability. A

cervical spinal cord injury is damage to the spinal cord in the neck region, which can result in a

range of physical and neurological symptoms depending on the location and severity of the

injury. The spinal cord is a long, thin bundle of nerve fibers that runs from the brain down

through the spinal column and is responsible for transmitting signals between the brain and the

rest of the body (Fig 2.6).

Figure 2.6: Spinal Cord injury from INSYNC PHISIO [52]

Whiplash is a common injury of the cervical spine that occurs when the neck is forced to move

rapidly back and forth. This can happen in car accidents, sports injuries, or falls. Whiplash can

cause damage to the muscles, ligaments, and nerves of the cervical spine, resulting in pain,

stiffness, and limited range of motion. Symptoms of whiplash include neck pain, headache,

dizziness, and fatigue. Treatment options for whiplash include rest, ice, heat, and

over-the-counter pain medication. Physical therapy may also be recommended to strengthen the

neck muscles and improve the range of motion. In severe cases, surgery may be necessary to

repair damaged tissues [63].
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Cervical sprains and strains are injuries to the muscles and ligaments of the cervical spine.

These injuries can occur due to sudden trauma, repetitive stress, or poor posture. Symptoms of

cervical sprains and strains include neck pain, stiffness, and limited range of motion [4].

Cervical radiculopathy is a condition in which the nerve roots that exit the cervical spine become

compressed or irritated, causing pain, weakness, or numbness in the arms. This condition can be

caused by a herniated disc, degenerative changes, or spinal stenosis. Treatment options for

cervical radiculopathy include rest, over-the-counter pain medication, and physical therapy. In

severe cases, surgery may be necessary to decompress the nerve roots and relieve pressure [42].

A cervical herniated disc is a common spinal condition that occurs when the outer layer of a

spinal disc in the neck ruptures or tears, causing the inner gel-like material to leak out. This can

lead to compression or irritation of the nerves in the neck, causing pain, weakness, and other

symptoms. A cervical herniated disc can occur due to age-related wear and tear on the spinal

discs or due to trauma or injury to the neck. Factors that increase the risk of developing a

cervical herniated disc include aging, repetitive stress, poor posture, and genetics [53].

To conclude, injuries to the cervical spine can cause significant pain and discomfort and can lead

to long-term disability. It’s important to seek prompt medical attention if you experience any

symptoms of cervical spine injury. Treatment options vary depending on the type and severity of

the injury and may include rest, medication, physical therapy, or surgery.
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2.3 Cervical Spine fracture detection

Cervical spine fractures are significant injuries that can have severe consequences if not

diagnosed and managed promptly. They are commonly associated with traumatic events such as

motor vehicle accidents, falls, and sports injuries. Timely detection and accurate diagnosis of

cervical spine fractures are crucial to ensure appropriate treatment and prevent potential

complications. In recent years, advances in medical imaging technology and innovative

diagnostic techniques have greatly enhanced the detection of these fractures. This section

explores the previous approaches and emerging technologies in cervical spine fracture detection.

2.3.1 Diagnostic Techniques:

Traditionally, the evaluation of suspected cervical spine fractures involved a combination of

physical examination, plain radiographs, and computed tomography (CT) scans. Physical

examination, including the assessment of range of motion and the presence of neurologic deficits,

provides valuable initial information. However, it is not always reliable in identifying subtle

fractures or injuries in unconscious or uncooperative patients. Radiography, CT, dual-energy CT

(DECT), Magnetic resonance imaging (MRI), and Ultrasonography are some medical imaging

procedures that are used in cervical spine fracture detection.

Radiography is the most commonly used method for detecting cervical spine fractures. The

technique involves taking X-ray images of the cervical spine to identify any fractures or

dislocations. Radiography is a non-invasive and relatively inexpensive method that can

provide accurate results in most cases. However, it has some limitations, such as difficulty

in visualizing soft tissue injuries and limited sensitivity in detecting subtle fractures [45].

computed tomography (CT) is another commonly used method for detecting cervical spine

fractures. CT scans use X-rays to create cross-sectional images of the cervical spine,

allowing for detailed visualization of bone and soft tissue structures. CT is more sensitive
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than radiography in detecting subtle fractures and can also identify soft tissue injuries.

However, it exposes patients to higher levels of radiation than radiography [38].

dual-energy CT (DECT) is an advanced form of CT scanning that involves acquiring images

at two different energy spectra simultaneously or near-simultaneously. DECT uses different

peak energies for the low-energy and high-energy spectra, typically 80-100 kVp and

140-150 kVp, respectively. Dual-source DECT systems consist of two source-detector

combinations, while single-source DECT with rapid kVp switching utilizes a single

source-detector combination with fast switching between high and low tube voltages.

These technologies enable spectral tissue characterization and provide improved soft-tissue

contrast for various clinical applications [50].

Magnetic resonance imaging (MRI) is a non-invasive method that uses strong magnetic

fields and radio waves to create detailed images of the cervical spine. MRI is particularly

useful in detecting soft tissue injuries, such as ligamentous and disc injuries, which may not

be visible on radiography or CT. However, it is less sensitive in detecting bony injuries and

may not be suitable for patients with metal implants or claustrophobia [34].

Ultrasonography is a non-invasive imaging technique that uses high-frequency sound waves to

create images of the cervical spine. Ultrasonography is particularly useful in detecting

injuries to the spinal cord and nerve roots. However, it has limited sensitivity in detecting

bony injuries and may not be suitable for patients with obesity or bowel gas [64].

In conclusion, each method has its advantages and limitations, and the choice of approach

depends on the patient’s clinical presentation and the suspected mechanism of injury. A

combination of imaging and clinical evaluation is often necessary to make an accurate diagnosis

and provide appropriate treatment.
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2.3.2 Image segmentation

With the advancements in medical imaging technology, radiologists have access to

high-resolution three-dimensional images of the cervical spine. However, manual interpretation

of these images can be time-consuming and prone to human error. In recent years, image

segmentation techniques have emerged as a valuable tool to aid in the accurate and efficient

detection of cervical spine fractures.

Image segmentation is the process of partitioning an image into multiple regions, each of which

corresponds to a different object or part of an object. There are various techniques for image

segmentation, including thresholding, clustering, and contour detection[8].

Thresholding is one of the simplest and most commonly used methods for image segmentation.

It involves selecting a threshold value and partitioning the image into two regions: one with

pixel values below the threshold and the other with pixel values above the threshold. This

method works well when the objects to be segmented have a distinct difference in intensity

compared to the background[57]. Here are some commonly used thresholding methods:

Global thresholding involves selecting a single threshold value that applies uniformly

across the entire image. This technique assumes that there is a distinct intensity value

that can effectively separate the foreground and background. Common global

thresholding algorithms include the popular Otsu’s method [47], which automatically

determines an optimal threshold by minimizing the intra-class variance.

Adaptive Thresholding In scenarios where lighting conditions or image properties vary

across different regions, adaptive thresholding techniques are employed. These

methods compute a local threshold value for each pixel based on its neighborhood.

Adaptive thresholding accounts for variations in illumination, contrast, and noise

levels, making it suitable for handling non-uniform backgrounds or unevenly

illuminated images [54].

Clustering is a technique that involves grouping similar pixels in an image into clusters based
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on their color or intensity values. Cluster analysis can be used to segment images based on

the similarity of their pixel values, which can be useful for segmenting objects with

complex boundaries or for separating foreground and background pixels in an image[8].

Contour detection involves identifying the boundaries of objects in an image by detecting the

edges or contours of the objects. Contour detection is often used in combination with other

segmentation techniques, such as thresholding or clustering, to improve the accuracy and

reliability of the segmentation[8].

Traditional image processing techniques such as thresholding, edge detection, and contour

tracing are applied to the image to identify the edge of the spine and separate it from the

surrounding tissue. However, these methods can be sensitive to variations in image quality and

can be difficult to train[10].
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2.4 Deep Learning and its architectures

This section, the main concepts of deep learning and its three noteworthy models that inspired

the deep learning models developed in Chapters 3, 4, and 5 are discussed in greater detail.

2.4.1 Deep learning

Deep learning is a subset of machine learning that focuses on the development and application of

artificial neural networks to model and understand complex patterns and relationships in data

by using multiple layers of interconnected nodes, or artificial neurons, inspired by the structure

of the human brain. These networks can be trained using supervised and unsupervised learning

methods [15], depending on the available data and the specific application. Deep learning has

shown remarkable success in a wide range of tasks, including image and speech recognition,

natural language processing, and decision-making [16].

Training a deep neural network involves the following steps:

• Data collection, data preprocessing, and feature engineering

The first step in training a deep neural network is to prepare the data. High-quality and

representative data is crucial for the success of a deep learning model. By leveraging

exploratory data analysis (EDA), we can obtain vital insights including identifying trends

in time and data, removing data outliers, creating the correlation matrix, and uncovering

patterns related to the target.

• Assign Appropriate Model

The next step is to design the architecture of the neural network. Assigning an appropriate

model depends on the nature of the problem being solved (classification, Regression, Image

recognition, natural language processing problems and etc), the type of data being used

(numerical or categorical data), and it involves deciding on the number of layers and

neurons in each layer, the activation functions and etc.

• Define Loss Function
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The loss function is used to measure the difference between the predicted output and the

actual output of the network for a given input. The goal of the loss function is to provide a

measure of how well the model is performing and to guide the optimization process during

training. The choice of loss function depends on the nature of the problem being solved

and the type of output being predicted. Some common loss functions include mean squared

error, cross-entropy, and binary cross-entropy loss functions.

• Define Optimizer

During the training process, the optimizer adjusts the weights and biases of the model

based on the gradients of the loss function. The gradients provide information about the

direction in which the parameters should be updated to reduce the loss. The optimizer uses

this information to adjust the model’s parameters in a way that reduces the loss function,

and thus improves the performance of the model. There are various types of optimizers

available, each with their own strengths and weaknesses. Some of the most commonly used

optimizers include stochastic gradient descent (SGD), Adam, RMSprop, and Adagrad [16].

• Model Training

During training, the neural network updates the weights and biases of the neurons in each

layer to minimize the loss function. The process of model training can be an iterative

process, where the model is fine-tuned until it reaches a satisfactory level of performance.

• Validation

Once the model is trained, it is validated through a separate set of data that the network

has not seen before. This helps to determine if the model is overfitting or underfitting the

training data[23].

Overfitting occurs when the model performs well on the training data but performs poorly

on unseen data, which means it has not learned to generalize well. There are several

techniques to address overfitting such as regularization, early stopping,s and data

augmentation[40].
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On the other hand, underfitting can occur when the model may not perform well on either

the training data or the new data. To address underfitting, it is necessary to increase the

model’s complexity or the number of training data to help the model to learn the

underlying patterns in the data more effectively.

• Tuning the model

If the model is not performing well, it may be necessary to tune the model by adjusting the

hyperparameters (learning rate, the number of hidden layers, activation function, batch

size and etc) and other parameters used in the model architecture.

• Deploying the model

Once the model has been trained and evaluated, it can be deployed for use in real-world

applications.
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Data augmentation is a technique used in machine learning and computer vision to increase the

diversity and quantity of training data by applying various transformations or modifications to

the existing dataset. The goal of data augmentation is to improve the performance,

generalization, and robustness of machine learning models.

The process involves creating new artificial training examples by applying a set of predefined

transformations or modifications to the original data samples. These transformations are

designed to simulate realistic variations in real-world data and introduce different perspectives or

views of the same underlying information. By augmenting the dataset with these modified

examples, the model becomes exposed to a wider range of variations and can learn more robust

and generalized patterns.

Data augmentation techniques can be applied to various types of data, including images, text,

audio, and more. Common data augmentation techniques for image data include resizing,

cropping, rotation, flipping, adding noise, adjusting brightness/contrast, and changing color

channels. For text data, techniques like random word replacement, shuffling, and synonym

replacement can be used. Audio data can be augmented by adding noise, changing pitch, or

applying time stretching, among others.

The key advantages of data augmentation are:

• Increased dataset size

By generating new examples, data augmentation effectively increases the size of the

training dataset, allowing models to learn from a larger and more diverse set of samples.

• Improved generalization

Data augmentation introduces variations and perturbations in the data, which helps

models to generalize better to unseen or real-world scenarios. It reduces overfitting by

exposing the model to different perspectives of the same data.

• Robustness to variations

By simulating realistic variations in the data, data augmentation helps models become
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more robust to changes in lighting conditions, scale, rotation, and other factors that might

be encountered during inference.

Data augmentation is widely used in deep learning and is particularly effective when the

available training data is limited. It has become a standard practice to apply data augmentation

alongside other techniques like regularization and dropout to enhance model performance and

address common challenges in machine learning tasks.
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2.4.2 Semantic segmentation and U-Net

Semantic segmentation is a fundamental task in computer vision that aims to assign meaningful

labels to every pixel in an image. Unlike image classification, which predicts a single label for the

entire image, semantic segmentation goes a step further by providing a detailed understanding of

the visual content at a pixel level. It plays a crucial role in various applications, including

autonomous driving, robotics, and medical imaging.

Semantic segmentation and Instance segmentation are applications of image segmentation.

Instance segmentation goes further by classifying each pixel in addition to identifying each

object in the image, whereas semantic segmentation does pixels-wise classification based on

object category [59].

U-Net is a convolutional neural architecture designed for semantic segmentation in biomedical

images and it was first introduced in a paper by Ronneberger et al. in 2015[46]. Three areas of

particular concern in the field of medical imaging segmentation have been addressed by this

network. First, there is a lack of big datasets in this area. The U-Net architecture has been very

popular due to its high performance and ability to work well with small amounts of data. The

traditional feed-forwarding CNN with fully connected layers needs a large number of parameters

to learn, therefore requires considerable large datasets. Replacing the fully connected layer with

up convolutional layer on the decoder side, U-Net architecture has much fewer learnable

parameters than a fully connected layer. The second issue is to precisely capture local details,

handle varying image sizes, and leverage skip connections for feature fusion. Last but not least,

the noteworthy problem of objects of the same class overlap with each other has been alleviated

by using a weighted loss to separate background labels between touching segments.

U-Net is characterized by its “U” shape, with a contracting path to capture context and a

symmetric expanding path that enables precise localization. The contracting path is referred to

as the encoder, consists of a series of convolutional, max-pooling, and rectified linear unit

(ReLU) layers for feature extraction, while the expanding path referred to as the decoder,

involves convolution,and concatenation layers, and ReLU activation function to up-sampling the

20



Figure 2.7: Architecture of U-Net based on the paper by Ronneberger et.al[46]

extracted feature maps. It also introduces skip connections that connect the contracting path

with the corresponding expanding path at various resolutions. These skip connections allow the

model to preserve and combine features from different scales. By directly concatenating feature

maps from different levels, U-Net can exploit fine-grained details from early layers while

incorporating high-level context from later layers. This aids in precise localization and improves

segmentation accuracy, especially for small objects or fine structures. Figure 2.9 represents the

structure of U-Net architecture.

The medical images and their corresponding segmentation maps are given to the U-Net to train

the model. Ronneberger et al. [46] discussed several key aspects of training the U-Net model in

their article. The authors emphasized the importance of weight initialization in controlling the
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learning process. They recommended initializing the weights for each feature map in the U-Net

architecture to have unit variance. They suggested drawing the initial weights from a Gaussian

distribution to achieve this. Also, they utilized a combination of a pixel-wise softmax function

and a cross-entropy loss function for the final segmentation output. This combination helps

optimize the model’s performance in segmenting the input images accurately. As well as, due to

the limited size of medical image datasets, the authors highlighted the significance of data

augmentation techniques such as shifting, rotating, and adding noise to improve the

generalization and robustness of the model.

As a result, this thesis leverages the semantic segmentation-based deep learning U-Net

framework.
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2.4.3 CNN with Bidirectional GRU layer

One possible approach for developing a fracture detection model in the cervical spine is to use a

CNN. A CNN is a deep learning model to extract features from an input image and then uses

those features to classify the image into different categories.

The CNN can be designed with multiple layers that perform different operations, such as

convolution, pooling, and fully connected layers. The convolutional layers are responsible for

detecting features in the input images with a single map for the grayscale image or a three map

for a color image, while the pooling layers are used for classification tasks [16]. The convolutional

layer applies a set of learnable filters to the input data, which are used to extract features from

the input. The filters are usually 3×3 or 5×5 in size and applied in a sliding window fashion.

The filters are convolved with the input data to create a set of feature maps to represent the

presence of certain fractures in the input images. Fully connected layers then use the extracted

features to make a final prediction to classify the input image.

The addition of a Bidirectional GRU layer allows the model to take into account not only the

current input but also the previous and future inputs in the sequence.

GRU stands for ”Gated Recurrent Unit”, a type of recurrent neural network (RNN) architecture,

which consists of repeated blocks of several convolutional layers with skip connections between

them followed by a pooling layer that reduces the dimensions of the output. GRU was introduced

by Kyunghyun Cho et al. in 2014 [37]. GRUs are similar to traditional RNNs but have a more

complex structure that allows them to capture long-term dependencies in sequential data more

effectively. The key feature of GRUs is their use of gating mechanisms to control the flow of

information within the network. Specifically, GRUs have two gates: a reset and an update gate.

The reset gate determines how much of the previous state should be forgotten, while the update

gate determines how much of the current input should be used to update the current state. By

dynamically updating and resetting the hidden state in this way, GRUs can selectively retain or

discard information from previous time steps. The structure of GRU is shown in figure 2.10.

A Bidirectional GRU (Bi-GRU) [17], similar to the GRU model, consists of two GRU layers that
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Figure 2.8: Gated Recurrent Unit,variation of RNN, where xt is input vector, ht is output vector,
and ht-1 is hidden state at previous timestep. Image from towardsdatascience

process the input sequence in a positive time series and a reverse time series. The output of each

GRU layer is concatenated to form the final output of the network. The forward or positive layer

processes the input sequence from beginning to end, while the backward layer processes it from

end to beginning. This allows the network to capture information from both past and future

contexts at the same time. Figure 2.11 represents forward status and backward status in

BI-GRU structure. In this research, a Bi-GRU is used.
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Figure 2.9: Bi-GRU structure diagram

The features extracted from the semantic segmentation model will be used as an embedding for

a deep convolutional neural network (DCNN) with a bidirectional GRU layer to predict whether

a given study has any fracture or not.
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Chapter 3

Literature review

This chapter reviews different techniques that have been explored previously to detect cervical

spine fractures in medical images.

3.1 Previous approaches

Early studies on segmenting the cervical spine in medical images used the Active Shape Model

(ASM), a statistical method to model and track the shape and appearance of an object in an

image, in order to search through digitized spine X-rays to identify specific vertebra within the

images [39].

To assess the performance of ASM on the X-ray images, the research focused on one boundary

area (C2/C3) and one complete vertebra (C3) and used a leave-one-out cross-validation

technique. This involved selecting a single image from the dataset and using ASM to locate the

C2/C3 boundary or the C3 vertebra in that image while testing the model on all the other

images in the dataset. This was repeated for each image in the dataset, and the results were

compared with manually determined ground truth values.

Nevertheless, ASM has only segmented the cervical spine C1 to C3, where the boundaries of the

bones are clear, and the stacking effect of bones is not present. A mean point-to-point error of

0.2-0.3mm was achieved on 10000 X-rays images within this approach. Also, the performance of
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the ASM algorithm could be improved by refining the shape model and grayscale model and by

incorporating additional information such as the orientation of the spine in the image. Figure 3.1

displays a good convergence for C1/C2 with the ASM method.

Figure 3.1: A converged shape overlays a truth boundary for C2/C3 vertebrae with the ASM
model

Previous studies in the automatic localization of vertebrae were related to machine learning

frameworks such as Hough transform-based and Random forest-based approaches on x-ray

images and CT scans[26][55]. Within the random forest system, contextual information is

incorporated with a supervised non-linear regression forest algorithm[1] to provide a fast

estimation of vertebrae centers. Then, in the second stage, a joint model is used to provide a

refined localization as well as vertebrae identification. It was shown that a localization error of

less than 20mm with an overall success rate of 81% was achieved in the random forest method

for vertebra identification in 200 CT scans[26]. The Hough forest framework included

data-driven patch creation methods introduced to locate the vertebrae position, size, and

orientation in 90 cervical x-ray images. This approach allowed the author to obtain an accuracy
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of 92.4% accuracy with an average mean error of 2.01mm for the spine detection task[55].

However, there are certain features such as the c-shape and stacked appearance of the cervical

spines that make it difficult to distinguish between them. In recent studies[36][60], there has

been a shift toward using more advanced techniques such as deep learning and CNNs to

automatically identify ad segment the cervical spine in medical images.

U-Net, a deep learning architecture for fast and precise segmentation of images, can achieve high

accuracy and robustness in segmenting cervical vertebrae in CT and MRI images[46]. A

web-based automatic spine segmentation based on the U-Net architecture was developed by Kim

et al [36]. A flask server framework was implemented for providing accessibility over the web in

Python. This approach obtained a dice coefficient of 90.4% for the cervical spine segmentation

task.

The below table compared the results of the mentioned research methods to successfully identify

the location of the cervical spine in different medical images.

Reference Method
Medical Im-
ages

Cost Function Cost value
Applied
metric

Metric
value

Cloud-based architec-
ture[18]

ViT 2019 CT cross-entropy close to 0.01 accuracy 98%

Retrospective analysis
on an FDA-approved
CNN by Aidoc[60]

CNN 12000 CT K coefficient 0.70-0.82 accuracy 92%

Web-based automatic
spine segmentation[36]

U-Net 344 CT
Dice Coeffi-
cient

90.4% accuracy 91.64%

Automatic localization
in arbitrary field-of-
view[26]

Random
Forest

200 CT
Localization
error

Less than
6mm

accuracy 81%

Patch-based corner de-
tection[55]

Hough
Forest

90 X-rays
Average mean
error

2.01mm accuracy 92.4%

Use of Shape models to
search digitalized spine
x-rays [39]

ASM
10000 X-
rays

Mean point-to-
point error

0.2-0.3mm - -

Table 3.1: Comparison between the different methods in the detection of cervical spine fractures.

On the other hand, CNN can help extract relevant features from the segmented images to detect

the fracture in each vertebra and greatly improve the classification effect[66].

Small et al. [60] proposed a retrospective analysis of the predictions of an FDA-approved CNN
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developed by Aidoc for the presence or absence of cervical spine fractures on CT. The framework

consists of a region proposal stage with a 3D fully convolutional deep neural network and a

false-positive reduction stage. They compared their model with the radiologist’s results and

found out that their CNN model’s accuracy was 92% compared to 95% for radiologists. The

missing fractures for both methods were related to fractured anterior osteophytes, transverse

processes, and spinous processes. However, their results were based on a dataset with a high

fracture prevalence, which will need to be implemented in a low fracture prevalence dataset in

routine clinical practice.[60]

By leveraging cloud technologies in the medical industry, we will be able to use the development

of scalable tools, improve existing models, and facilitate the creation of medical datasets[18].

Pawel Chlad et al. [18] proposed a cloud-based system for training and evaluating of vision

transformer architecture for damage detection in vertebral CT scans. This article discusses the

Vision Transformer (ViT), which is a recent architecture in the fields of computer vision [3].
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Figure 3.2: vision transformer proposed in Deep Learning and Cloud-Based Computation for
Cervical Spine Fracture Detection System by Pawel Chald [18]
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ViT is based on the transformer architecture and utilizes the mechanism of attention to focus on

important parts of the input sequence. Unlike older architectures, attention in ViT is calculated

per input rather than being statically encoded in the model itself.

The computational complexity of attention calculation is quadratic, which makes it

computationally expensive. To address this, ViT uses an analysis space reduction technique by

dividing the image into patches of equal size. These patches are flattened and turned into

vectors, which are then encoded into a representation suitable for the transformer-encoder layer.

Each encoding layer has the same fixed dimensionality, and the output of this projection is called

patch embedding[18].

An encoder block in ViT consists of multi-head attention, add and norm, a feed-forward layer,

and another add and norm layer. The multi-head attention calculates the importance of different

parts of the input sequence using the scaled dot product attention function. Multiple attention

layers operate in parallel, allowing the model to focus on different parts of the input sequence or

image.

After passing through the multi-head attention layer, the input is added to the output,

normalized, and passed to the feed-forward layer for projecting the input sequence into latent

space. The parallel nature of the transformer and ViT architectures enables efficient evaluation

on hardware accelerators. ViT reduces the inductive bias compared to convolutional neural

networks (CNNs) and relies on learning spatial relationships during training (Figure 3.2).

In summary, the Vision Transformer architecture involves dividing an input image into patches,

projecting them into latent space, adding positional encoding, passing through encoder blocks,

and using an MLP head for producing the final prediction result. However, it emphasizes the

importance of finding a balance between factors such as model size, bandwidth, latency, and

data availability.

In conclusion, the above studies have sought to improve the accuracy of the provided models for

medical image diagnosis to ensure that the patients are rapidly diagnosed before neurologic

deterioration and paralysis after trauma. The present research explored U-Net and CNN for

31



detecting vertebra fractures.
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Chapter 4

Modelling and DataSet

This chapter provides all materials and methods used in this research. This chapter starts by

introducing and analyzing the used dataset for this research. U-Net architecture, as a semantic

segmentation model, will be discussed in section 4.2.1. A brief overview of the fracture detection

model will be introduced in section 4.2.2.

4.1 Exploratory Data Analysis

4.1.1 Dataset analysis

Approximately 3000 CT scans of 2019 patients were collected by the American Society of

Neuroradiology (ASNR) and American Society of Spine Radiology (ASSR) from 12 locations

across six continents [22]. Spine radiology specialists from the ASNR and ASSR provided image

annotations to indicate the presence, vertebral level, and location of any cervical spine fractures.

The objective is to predict the probability of fracture for each of the seven cervical vertebrae

denoted by C1, C2, C3, C4, C5, C6, and C7 as well as an overall probability of any fractures in

the cervical spine.

Each CT scan consists of 100 to 800 slices of different thicknesses. Also, 47.60% of the given CT

scans have fractures and 52.40% are normal images. Analyzing the data to know the prevalence
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of vertebrae fracture in each bone shows that the amounts vary from about 3.6% in C3 (lowest

proportion of fractures) to about 19.5% in C7 (highest proportion). Figure 4.1 represents the

overall percentage of the injured and intact cervical spine as well as the proportion of fractures

in each vertebra of this study.

Figure 4.1: The frequency of fractures in the cervical spine and each vertebra

As mentioned, 961 out of the 2019 studied instances (47.60%) had fractures in their related CT

scans. However, only 235 of the broken instances (24.45%) were annotated with bounding boxes

and classified according to the cervical spine classification. Therefore, it is essential to apply a

deep learning architecture that is suitable for medical imaging, where data availability can be

limited.

On the other hand to improve the accuracy and robustness of the model, transforming the input

images in various ways such as spatial transformations[29], and spatial-temporal

transformations[28] can be used. Spatial transformations refer to a set of techniques that modify

the input data by applying geometric transformations such as rotations, translations, scaling,

and flips to the images in order to augment the data and improve the performance of a machine

learning model. This has been done in this research by randomly applying the flipping spatial
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transformations and grid distortion to the images and adding these transformed images to the

training set.

4.1.2 Image Format

Throughout this research, DICOM and NIFTI, the most popular medical image formats were

used for storing and segmenting the images. Medical Images are visual representations of the

body or specific parts of the body that are used for diagnosis and therapeutic purposes. The key

properties of medical images are:

• Dimensionality

The number of features or variables that are used to represent an image.

• Pixel Depth

The number of bits required to encode each pixel is known as pixel depth.

• Photometric Interpretation

It represents how the pixel data should be interpreted.

• Metadata

It is used to annotate and exploit image-related information for research purposes.

• Pixel Data

It is an array of values to store the pixels of an image[56].

The CT scans in this research store up to 2 bytes per pixel in their grayscale DICOM files. They

are 3-dimensional volumes, where the third dimension is spatial to show different locations of

scans.

DICOM is a standard for handling, storing, printing, and transmitting information in medical

imaging. It was initiated by the National Electrical Manufacturers Association (NEMA) in the

1980s to address the need for a standard in medical images, such as X-rays, CT scans, and MRIs

to handle and share them between different devices and systems[11]. DICOM organizes
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information into a dataset that contains metadata to provide information about the patient’s

name and identification, the date the image was taken, and the image data itself. Images in this

research have resolutions of less than 1 mm deep and have an average of 512 pixels as width and

512 as height. An example of reading the metadata from a sample DICOM file is shown in

Figure 4.2.

Figure 4.2: The metadata, extracted from a DICOM file related to one patient.
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On the other hand, spine radiology specialists performed manual segmentations to provide

vertebra masks in the NIFTI format. NIFTI stands for ”Neuroimaging Informatics Technology

Initiative” and was developed by the National Institute of Health (NIH). Figure 4.3 represents

three planes in the anatomical space of a human used to describe the different anatomical

structures and movements. The sagittal plane divides the body into left and right halves, while

the coronal plane divides the body into front and back halves and the axial plane divides the

body into top and bottom halves. These three planes are important for understanding the

different anatomical structures and movements of the human body. They are used in medical

and scientific fields to describe and analyze various conditions, injuries, and diseases.

Figure 4.3 was extracted from the provided DICOM slices of one patient in this research. The

key issue is that NIFTI files (which combine all DICOM files related to each study) consist of

segmentation in the sagittal plane, whereas the DICOM files are in the axial plane. Therefore, a

3D semantic segmentation model was created for this research.

Figure 4.3: From left to right, the first one is the axial view, the middle one is the coronal view
(anterior or posterior), and the last one is the sagittal view (side) of the anatomical space of a
human.

Figure (4.4), extracted from the provided dataset, shows the process of vertebra segmentation

and fracture detection. The given CT scans were in the size of 512 × 512 pixels. Therefore, a

process of resizing images to the lower size of 128 × 128 pixels was implemented in the

dataloader. The process of segmentation consisted of selecting the area that the radiologist

identifies as the cervical vertebra (colored yellow in figure 4.4) and the remaining portion of the

image considered as the background (colored purple in figure 4.4). Finally, a red bounding box is
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used for the fracture area.

Figure 4.4: Steps of image processing, mask acquisition, and fracture detection
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4.2 Model training

4.2.1 3D Semantic Segmentation model

Depending on the medical equipments, medical images can be 2D or 3D. The 2D images need

less memory to store and can train faster on a segmentation model due to less number of learned

parameters. On the other hand, 3D medical images provide spatial coherence with important

information to improve the segmentation model performance [58]. This chapter will provide

important considerations to implement an efficient 3D medical image segmentation model.

The semantic segmentation model was implemented using Python programming language and

the machine learning libraries such as Torch, Monai, and Timm.

The CT scans and their respective segmentation masks were used as the input data for the

model. The architecture was designed to accept input tensors of shape 128 × 128 × 128, where

the third dimension indicates the number of image slices. K Fold Cross validation was used to

split the dataset into 5 subsets (k=5), and consider 4 subsets for training the model and one

subset for the validation set to test the model’s performance.

The U-Net architecture [46], a commonly used CNN for the purpose of biomedical image

semantic segmentation, was implemented and this architecture was chosen based on its good

performance on the small amount of data (only 87 of 2019 study instances were segmented by

radiologists), which was reported in its paper[46]. U-Net consists of two pathways, an encoder

and a decoder, for classifying and localizing each object in an image.

The encoder part involves multiple convolution, activation functions, and max-pooling layers to

downsample data for feature extraction. A pre-trained ResNet18d, an 18-layer Residual network,

was used for the encoder section of the U-Net to ease the training of the network and returned

all extracted feature maps from each layer[35]. The ResNet consists of multiple convolutional

layers, ReLU, and 3 × 3 max-pooling layers followed by 4 layers (blocks) with similar behavior.

Each of the layers follows the same pattern and performs 3x3 convolution with a fixed feature

map dimension[64, 128, 256, 512] respectively.
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The decoder part involves upsampling the extracted feature maps with convolution, and

concatenation for localization information. This research used the segmentation library in

PyTorch to automatically construct the decoder section of U-Net based on the number of

encoder channels.

The implemented model, through the encoder and decoder parts, extracted efficiently both the

segmentation and location of cervical vertebrae for each studied CT scan. The following code

shows how the U-Net segmentation model is defined in this research.

Figure 4.5: The pseudo-code of U-Net segmentation model
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The model was trained using a weighted sum of Dice loss and a binary cross-entropy to leverage

the flexibility of Dice loss and the curve smoothing property of cross-entropy[33]. These both

loss functions are defined as:

• Binary Cross Entropy (BCE)

It is a commonly used loss function in binary classification problems, where the goal is to

predict one of two outcomes (fractured or intact vertebra)[41]. It measures the dissimilarity

between the true label and predicted probability distribution over two classes, and can be

defined as:

LBCE(y, ŷ) = −(y × log(ŷ) + (1 − y) × log(1 − ŷ))

where ŷ is the prediction value by model.

• Dice Loss

It is a loss function commonly used in computer vision tasks and measures the overlap

between the predicted mask and the ground truth[33]. It can be defined as:

Dice Loss = 1 − 2×area−of−overlap−between−predicted−segmentation−and−ground−truth
total−number−of−pixel−in−both−predicted−segmentation−and−ground−truth

The training process consists of training the segmentation model on 87 study instances with

different numbers of CT scans or DICOM files. A process of resizing images to 128*128 pixels

was implemented in the data loader. During the training process, the Dice loss and BCE in

training and validation steps were recorded after each epoch within 5 folds. After the training

process, the prediction process used the model for each data on the validation dataset to

calculate the model performance since the validation dataset had ground truth segmentation

masks.

Segmentation model performance was evaluated against Dice coefficient or F1 score as described

by Shruti Jadon in 2020[33]. It is defined as:

Dice Coefficient = 2×area−of−overlap−between−predicted−segmentation−and−ground−truth
total−number−of−pixel−in−both−predicted−segmentation−and−ground−truth

The dice coefficient is similar to the Intersection-Over-Union (IoU), which is one of the most

commonly used metrics in semantic segmentation tasks[51]. It measures the overlap between the

41



predicted segmentation and the ground truth mask. It is defined as:

IoU =
TP

FP + FN + TN

where TP, FP, and FN indicate the true positive, false positive, and false negative counts,

respectively. The value of Dice coefficient and IoU ranges from 0 to 1, where a value of 1 indicates

a perfect overlap between the predicted and ground truth masks, and a value of 0 indicates no

overlap. A higher IoU value indicates a better performance of the segmentation algorithm.

In order to improve the model’s accuracy and reduce the loss, AdamW was used as an optimizer

in this research [31]. The Adam optimizer was presented by Diederik Kingma and Jimmy Ba [20]

after that, the following AdamW algorithm (Fig 3.6) was used to provide better generalization

performance than Adam with L2 regularization[31].

This algorithm receives α (learning rate),β1 and β2 ( coefficients used for computing running

averages of gradient and its square),θ0( iterable of the parameter to optimize),f(θ)(maximize the

parameter based on the objective),ϵ (term added to the denominator to improve numerical

stability), and λ (weight decay coefficient) to render the optimal setting of the learning rate and

improve regularization.

The following algorithm (Figure 4.6) shows the differences between Adam (purple background

color around the text) and AdamW (green background color around the text). The main

difference between AdamW and Adam optimization algorithms is that AdamW incorporates

weight decay regularization (λθ) into the learning rate calculation, whereas Adam does not.

Weight decay regularization is a technique used to prevent overfitting in neural networks by

adding a penalty term to the cost function that encourages the neural network’s weights to

remain small.

Therefore, the AdamW optimizer was used with an initial learning rate of 0.0005 and a decay

rate of 0.01 to minimize the loss function. Also, a cosine annealing scheduler with the following

formula [32], was used to adjust the learning rate based on the number of epochs and improve

42



Figure 4.6: AdamW (Adam with decoupled weight decay) algorithm by Loshchilov et. al. Source
from [31]

the optimization process during the training (Fig 4.7).

ηt = ηimin + 1
2
(ηimax − ηimin)(1 + cos(T cur

T i
π))

Where ηimin and ηimax are learning rate ranges, and Tcur shows the number of performed epochs.

The decrease in the learning rate is shown in Figure 4.7 for this research.

Figure 4.7: A cosine annealing scheduler to adjust learning rate for semantic segmentation model
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4.2.2 Fracture detection model

After training the 3D semantic segmentation model to precisely predict the location of the

vertebra in the cervical spine, it should be generalized to all the study instances to accurately

predict the location of vertebrae in the cervical spine for new study instances that were not

included in the training set. By achieving good generalization, the model can be used with

confidence to accurately identify and locate fractures in the cervical spine.

In addition, it should be considered that the original view of cervical spine CT scans includes not

only the cervical spine but also additional information on other bone parts. Therefore, there is a

need to crop the images to the Region of Interest (ROI) to remove the unnecessary parts (Fig

4.8). To accomplish this, YOLOv5 was used to detect vertebrae in the CT scan slices to remove

the irrelevant information[24]. YOLOv5 is an object detection algorithm developed by

Ultralytics and an evolution of the popular YOLO (You Only Look Once) series of real-time

object detection models.

Figure 4.8: The required steps to detect fractures of the cervical spine

In order to crop the cervical spine CT scan slices, the bounding boxes around the vertebrae were

detected after generalizing the segmentation model to all the studies and finally the region of

interest was cropped for later stage. Also, there is an overlap between cropped voxels of cervical

spine CT scans refers to the amount of redundant information that exists between adjacent

cropped sections of the scan that may skew the results of the model. This overlap can be

44



minimized by carefully selecting the size and location of each cropped section and by ensuring

that there is sufficient spacing between adjacent sections. Therefore, the cropped voxels were

resized to the fixed size of 256 × 256 to obtain more accurate results.

Picture 4.9, extracted from the result of the cropping step, shows one slice of a single vertebra

and its predicted mask from the segmentation model. We can see that the center part of the

vertebrae in the image does not belong to the vertebrae specified by this crop and this is the

reason that this part does not appear in the predicted mask.

Figure 4.9: From left to right, the first one is the cropped image of one vertebra of the cervical
spine related to study instance UID ’1.2.826.0.1.3680043.1363’ and the second image is its predicted
mask by the proposed segmentation mask

Figure 4.10 shows the architecture of the proposed model for the classification problem or

fracture detection. It has two steps, which are giving the input slice images to a CNN to extract

features of each slice and then using a Bi-GRU layer to predict the value of target. This

architecture will predict the probability of a fracture occurring in each cervical vertebra (C1-C7)

and then use the sum of them to determine an overall fracture probability for the entire cervical

spine. This approach provides a more comprehensive assessment of the risk of cervical spine

fractures since it considers the likelihood of multiple vertebrae being affected.

The input to this architecture will be the results of image cropping, seven cervical vertebrae
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Figure 4.10: CNN + Bi-GRU model architecture to detect fracture in the cervical spine

images for each study instance with a fracture label. Also, for each study instance, the different

number of CT scans provided in this dataset and therefore the number of image slices can vary

depending on the specific imaging protocol used by the radiology department or imaging center.

As a result, for each vertebra, 15 slices were extracted evenly to form the model’s input.

Therefore, we can represent each image with a vector xn and the corresponding image-level label

yn.

X = (X1, X2, ..., XN)

Y = (Y 1, Y 2, ..., Y N)

where yn = 1 means the image contains one fracture and yn = 0 is the opposite.

Similar to the proposed segmentation model, the U-Net architecture was implemented for the

classification task and a pre-trained network named EfficientNetv2 was used for the encoder

section of the U-Net to ease the training of the network. EfficientNet is a powerful CNN

architecture that uses compound coefficients to scale up models in order to be simple and

effective. It is also fine-tuned for maximum accuracy but penalized for heavy computational

networks. The model also includes batch normalization and ReLU activation functions to

improve the efficiency of the training process.

The following pseudo-code shows how the classification model was defined in this research to

precisely predict the fracture probability for each vertebra in the given cervical spine CT scan.

For training, an AdamW optimizer and a Cosine Annealing scheduler with an initial learning

rate of 0.00005 have been used within 5 cross-validation folds of 12 training epochs. Random
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Figure 4.11: The defined model for the classification stage

resized crop, horizontal flip, and shift scale rotation (50 degrees) have been used as the data

augmentation methods. The proposed classification model was trained, evaluated, and tested

using a 5-fold cross-validation method. dropout regularization and early stopping methods were

applied to prevent overfitting.
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Chapter 5

3D Segmentation model

This chapter includes the implementation of a segmentation model to detect the location of the

cervical spine in the provided dataset of CT scans. The U-Net architecture was selected to

perform segmentation based on the literature review. Fine-tuning of hyperparameters is

performed to achieve a reasonable performance to identify vertebra in CT scans. In this chapter,

we will compare, evaluate, and discuss the performance of the proposed 3D segmentation model

for vertebra detection on CT scans through a 5-fold cross-validation.

5.1 3D U-Net implementation and hyperparameter

tunning

The base implementation of the proposed segmentation model was based on the U-Net

architecture which the model’s implementation was shown in figure 4.5. Most portions of this

model involved loading data, doing augmentation, training the model, and an evaluation stage

for the model’s performance on unseen data.

The figure below shows the architecture of the proposed 3D segmentation model. The model

receives 3D CT scans as an input with the shape [batch-size, color-channel, depth, height,

width], then the Resnet18d network is used as an encoder to extract the main features which
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includes multiple convolutional layers, 3 × 3 max-pooling layers followed by 4 layers. The

decoder part receives the extracted features and concatenates them for localization information.

The segmentation head as a last bock takes input from the decoder and applies a 2D convolution

with a 3 × 3 kernel, a stride of (1, 1), and padding of (1,1). The output of this convolutional

layer will be in the shape of [batch-size, output-dimension, depth, height, width], which

output-dimension corresponds to the number of classes for the segmentation task. The model

was trained using a weighted sum of Dice loss and a binary cross-entropy (BCE). This section

will explain the details of this architecture.

Figure 5.1: the main architecture of the proposed 3D segmentation model

The initial segmentation model took a long time to choose the best combination of a pre-trained
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network for the encoder part and the appropriate decoder for the segmentation task because

changing the model requires writing a lot of code. The combination of MONAI [44] and

segmenation models pytorch [49], open-source PyTorch frameworks for deep learning in

healthcare imaging, was used to improve the process of model training. These libraries

streamline the development of deep learning models by offering a set of pre-built components

and functions, enabling researchers to focus on their specific research rather than spending time

on boilerplate codes.

Therefore, implementing a 3D U-Net model based on MONAI for transforming input medical

images and segmenation models pytorch for the decoder section of U-Net allows us to

quickly use different transforms and fine-tune the proposed model to improve the performance of

the image segmentation mode.

Using cross-fold validation, 5 folds were generated from the dataset, for each fold, 69 samples as

a training set and 18 samples as a validation set were formed (each sample included more than

150 slices of the taken CT scans), and then the score was computed at each CV iteration.

Data augmentation was used to increase the quantity of data and different techniques like

Random flipping, affine transformation, and grid distortion were applied in Monai with the 50%

chance of applying the flip along the width and height dimension in 3D medical images. The

affine transformation includes random translation along each spatial dimension within a

dynamically calculated range. The transformation is performed with a 70% probability and uses

zero padding to fill the areas outside the transformed image region. These techniques were

chosen based on the provided balanced dataset and improvement of the model’s performance and

generalization.

The hyperparameters such as batch size and optimized epochs were tested and assigned to

improve the accuracy of the proposed model. A single 3D CT scan in the provided dataset was

512 × 512 × 512 pixels. Even with the adequate memory resources to process these raw images,

the training time was incredibly long for a batch size of 1 without any flexibility to develop the

deep learning architecture. Therefore, after resizing the images to 128 × 128 × 128 pixels,
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different batch sizes including 3 and 4 were tested and finally batch size of 4 was utilized to get a

satisfactory result.

During the initial implementation, the value for learning rate was considered 0.01 to control the

weights at the end of each batch for which we could not get a satisfactory result. Pytorch has a

learning rate scheduler inside the optimizer function that decreases the learning rate during the

stochastic gradient descent optimization (SGD) algorithm. Therefore, an initial learning rate of

0.0005 was considered with the CosineAnnealingLR scheduler to automatically adjust the

learning rate during training based on its predefined schedules. This scheduler reduced the

learning rate from 0.0005 to 0.000001 over time, allowing the model to converge more effectively.

Additionally, in order to prevent overfittiong, dropout as a regularization technique was used

where during training a fraction of neurons in a layer are randomly set to zero with a defined

probability rate. So, the drop rate parameter in the timm library, an open-source PyTorch-based

library, which was used for the encoder section of the proposed U-Net model, was set to 0.01 to

reduce the risk of overfitting the training data.

The loss function plays a critical role in the training of the segmentation model and it can

significantly affect the performance of the model. The model was trained using a weighted sum

of Dice loss and a binary cross-entropy to leverage the flexibility of Dice loss and the curve

smoothing property of cross-entropy. The BCEWithLogitsLoss function on PyTorch combines

with the defined dice loss function (explained in section 3.2.1) to calculate the dice score for

training the segmentation model.

5.2 Experimental Results

Therefore, the first results were collected during the training process over two days by

monitoring the dice coefficient losses and F1 scores of training and validation of each fold.

Training for each fold was performed for 420 iterations which took about 8 hours on eight RTX

A6000 GPU with 48GB memory.
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The conclusion revealed a strong segmentation performance for cervical spine regions. Overall,

the proposed model achieved an F1 accuracy, a training loss, and a validation loss of around

0.9628, 0.0570, and 0.0288 respectively. Since the dataset was ideally balanced, accuracy was the

only metric that mattered. More details on inference performance are listed in Table 1 and

visualized in Figure 5.2.

In order to evaluate the model, average evaluation metrics were calculated for each k-fold

cross-validation (Table 5.1 and Figure 5.2) to see how well the model can predict the unseen

images. These test datasets have been achieved after splitting the main dataset into three sets,

training, testing, and validation.

Learning curves provide a mathematical representation of the training process during the

repetition tasks. Training and validation losses are two common minimizing metrics that are

used to indicate the model performance and a value near to 0.0 shows a perfect training model.

On the other hand, accuracy as a maximizing metric is used in the lurving curves meaning that

a better score indicates how well the model is learning.

Therefore, Figure 5.2 depicts learning curves of training loss, validation loss, and accuracy versus

epoch to compare five folds. In these plots, the shape and dynamics of the learning curves are a

way to observe likely underfitting and overfitting in the proposed model. It is obvious that a

decreasing trend for the training and validation losses and an increasing trend for accuracy can

be seen in these three plots.

we can see that underfitting occurs in the fourth fold and the model could not obtain a

sufficiently low validation loss for which the accuracy did not increase anymore. The reason for

underfitting in the fourth fold may be that the input data after splitting the dataset for this fold

are not a good representative of the whole dataset. Therefore, the fifth fold showed the best

performance on almost all evaluation metrics on the data set, while the forth fold

cross-validation was worst on the given data set as a result of occurring underfitting, particularly

in terms of average validation loss.

No overfitting was observed for the other folds through validation monitoring and as the learning
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rate decreased the training and validation losses decreased markedly. It is predictable that the

accuracy could not significantly increase if training were continued.

Also, Table 5.1 indicates that the third fold achieved better results than the fourth fold mainly

because the training dataset for the third fold provided sufficient information to learn the

problem.

Figure 5.2: Learning curves of five folds
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Table 5.1: Achieved results showing the lower and upper bound of the learning rate, average
training loss, average validation loss, and F1 score on cervical spine segmentation for each k-fold
cross-validation of the studied data set

To show the model performance, we obtained the predicted segmentation mask from the

proposed 3D segmentation model with the visualization of the ground truth of the related CT

scans. While the masks shown in Figures 5.3 and 4.4 focus on the bone section of the provided

CT scans of the cervical vertebrae, they can easily prove that the proposed model correctly

distinguished the vertebrae from the provided image.
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Figure 5.3 shows one sample of cervical spine CT scans related to C1 to C7 vertebrae with

corresponding ground-truth masks and predicted masks from the proposed segmentation model

trained on 128 × 128 × 128 image size in the Sagittal plane. The heatmap was generated by the

last layer of ResNet18d of the segmentation model. The vertebra regions are in yellow in both

ground truth and predicted masks, where the yellow region shows the relevant region. The figure

represents the proposed model can correctly do segmentation to detect the location of vertebra

in the given CT scan.

Figure 5.3: Examples of cervical spine CT scans and the predicted segmentation mask from the
proposed semantic segmentation model on the validation dataset - sagittal plane
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Figure 5.4: predicted segmentation mask for four selected images from the test set in axial view

Figure 5.4 shows our preliminary results of this proposed segmentation model on the cervical

spine dataset. While the right figures show the bone section of one vertebra, the left figures

depict the CT scans perfectly overlaid with the predicted masks from the U-Net architecture.
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5.3 Discussion

One of the biggest challenges for this thesis was the memory constraints. The training images

and their corresponding segmentation images in the dataset are around 300GB which needs

considerable hard disk capacity, and it needs even more memory to store the cropped CT scan

slices. The use of the cloud allows for storing and training of much bigger datasets and would

not burden researchers and medical clinics with additional resources to run deep learning

models. Also, the strategy of resizing the input size to 128 × 128 × 128, before proceeding to

the U-Net segmentation model is more memory efficient and highly advantageous when most 3D

models suffer from memory capacity.

Another challenge was training the segmentation and classification models on this big dataset

and the need to send the training models and the training dataset to GPU to accelerate

operations. Therefore, at first Cedar, a heterogeneous cluster at Simon Fraser University [13],

accessible by Compute Canada was used to train the deep learning models. The preliminary

results were obtained by training the proposed segmentation model after 20 hours and it only

trained for two epochs, after which have achieved 0.81 F1 score. However, unless mini batches

were used in the data loader of Torch, an open-source deep learning framework, the process of

loading images to GPU was slow and inefficient.

The exploitation of the m7248 datacenter [25], located in Sweden, solved this low speed issue

with an interesting observation which was the proposed model trained for around 50 epochs over

one hour. Therefore, the m7248 datacenter was used as the computational resource for this

research. This data center is comprised of 8 × RTX A6000 graphics processing units with 48 GB

GDDR6 of memory each and 16 × AMD EPYC 7252 8-core central processing units with 128

GB of memory.

Most of the previous approaches achieved a high level of accuracy (81-98%) in the detection of

cervical spine fractures shown in table 2.1. During the time of writing this thesis a study of

evaluating vision transformers (ViT) for detecting cervical spine fractures has been conducted

with an accuracy of 98% [18].
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However, the performance of the proposed segmentation model was similar to the Convolutional

Neural Networks (CNNs) and web-based automatic spine segmentation [36] shown in the

previous studies. The achievement of the proposed segmentation mode is significant in the

medical industry because the high performance of the U-Net segmentation model performed well

in terms of extracted metrics. The encoder and decoder of U-Net enable the extraction of rich

features, reducing the time and resources needed to train a model with good performance.

Additionally, using a pre-trained network for the encoder section of U-Net is clearly an effective

strategy to help the proposed model learn the location of the cervical spine.

It is evident how difficult this segmentation problem is regarding the big size of the training

dataset compared to the other datasets used in the previous approaches. However, the

visualization in Figure 5.3 suggests that if the model was trained long enough or even deeper

pretrained networks were used which needed more computational resources, it would identify the

adjacent vertebrae in a single CT scan. Therefore, these improvements could be made to this

model to have better performance. For future work, it is more likely to achieve greater accuracy

by using more powerful data centers to train the proposed segmentation model.

Also, there are some improvements that could be made to this model such as using different loss

functions or different architecture for the encoder and decoder of U-Net in order to get better

performance. Due to time and cost limitations, we were unable to perform evaluation metrics on

the effects of different loss functions for this dataset which will be the baseline for future works.

All of these improvements will be considered in our future research and endeavors.
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Chapter 6

Classification model

Once the proposed segmentation model was trained and optimized, it was used to predict the 3D

mask for all training images to detect the vertebrae. Then, YOLOv5 was used to crop the

regions of interest (ROI) from the cervical spine CT scans. Finally, cropped images with their

predicted masks are sent to the classification model to produce fracture probabilities for each

vertebra at the cervical spine. This chapter will provide the details related to the required steps

to use Ultralytics YOLOv5, the implementation of the proposed classification model, and the

results obtained from that model.

This chapter starts by implementing the Yolov5 as an object detection model, and then the

result of the predicted bounding box around the vertebra on the three test data. Section 6.2

presents the processing of training data, implementation of data augmentation, and finally the

proposed CNN and GRU classification model. Experimental results and evaluation metrics will

be discussed in section 6.3.

6.1 Yolov5 implementation

In order to crop the vertebra from the cervical spine CT scans dataset, there is a need to have

the coordinates of bounding boxes around the vertebra for all 2019 study instances. The

provided dataset includes the coordinates of the bounding boxes around of each vertebra for only
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235 study instances. Therefore, Ultralytics YOLOv5 [24] was used to create bounding boxes

around the images for which simple text-based files were created to contain the annotations for

each image in the dataset. The setup for using Ultralytics YOLOv5 involves the following steps:

• The annotated dataset was converted into the YOLO format, which consists of text files

for each image, where each line represents an object in the image with its class label and

normalized bounding box coordinates. Each row should have the class index, X coordinate,

Y coordinate, width and height of the bounding box. As we only have one class (vertebra)

a sample .txt file contains [0 0.478515625 0.46484375 0.298828125 0.177734375].

• In Ultralytics YOLOv5, data splitting into training and validation sets are needed to train

the model. The split ratio of 80-20 was considered to split data which provided enough

data for training while ensuring a sufficient amount for validation.

• A YAML file was created to specify the dataset information, including the path to the

training and validation image files, number of classes, and the list of classes. The data

configuration YAML file is used during the training process to locate and load the dataset.

The sample YAML file created for this problem contains:

train: /path/to/train/images

val: /path/to/val/image

nc: 1

names: [’vertebra’]

Finally, the YOLOv5 model was trained on the annotated dataset based on the official YOLOv5

repository’s instructions for setting up the training environment and configuring the model [24].

Cloning the repository and installing the requirements have been done by running the following

scripts in a Python environment:

git clone https://github.com/ultralytics/yolov5

cd yolov5

pip install -r requirements.txt
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The following training script ran to train the model:

python train.py --batch-size 16 --epochs 100 --data /path/to/data.yaml

The model was trained for 20,60 and 100 epochs and finally, it has given a satisfactory result

with the selection of batch size=16 and epochs=100 with an accuracy of 98%. Then, the trained

YOLOv5 model was used to perform inference on all the study instances to generate bounding

box predictions for the vertebrae. Figure 6.1 depicts three samples of the cervical spine CT scan

and their predicted bounding box around the vertebra with the proposed Yolov5 and predicted

segmentation mask. It is evident that the proposed Yolov5 is able to perfectly detect the cervical

vertebra from the unseen CT scan.

In conclusion, using YOLOv5 as an object detection model reduced the high amount of

irrelevant information and would improve the accuracy of the fracture detection model.
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Figure 6.1: Three samples of the predicted bounding box around the vertebra by Yolov5 model -
from left to right, the first one is the axial view of one vertebra of the cervical spine, the middle
one is the predicted bounding box around that vertebra by Yolov5 and the last one is the predicted
bounding box around that vertebra for the related segmentation mask.
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6.2 classification

6.2.1 Processing the training data

This large, diverse, and publicly available dataset contains cervical spine CT scans of 2019 cases

(961 positive and 1058 negative cases) which corresponds to 711601 images (each case contains

an average of 300 slices). Therefore, 30 slices of each vertebra from a case study were extracted

to be considered as an input to a 2D CNN. The input shape to the CNN was

(batch size,num slices, image size, image size).

Cropping the CT scans based on the bounding box coordinates, resizing them to 224 × 224, and

saving the cropped regions as individual images, produced around 14000 (2019 * 7) samples.

Figure 6.2 represents one slice of a cervical vertebra (left image), and its predicted mask (right

image) after the cropping process with the Pillow library in Python [48].

Figure 6.2: one sample of the cropped cervical vertebra CT scan with corresponding mask

Since K-fold cross-validation provides a robust estimate of a model’s performance, helps in

detecting overfitting and underfitting issues, and allows for a more thorough evaluation of the

model’s ability to generalize to unseen data, 5-fold cross-validation similar to the segmentation

model was used to split the dataset into training, validation, and test subsets.
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6.2.2 Implementation of data augmentation

For the augmentation procedure as a crucial part of the training process to prevent overfitting,

different augmentation techniques like Resizing, transposing, flipping, and Gaussian blur were

used in this classification model to prevent overfitting. These techniques have been chosen based

on the problem type and the characteristics of the provided dataset. Also, heaver data

augmentation like Grid Distortion and Shift scaling were tested which did not improve the

performance of the model. To apply all these image transformations, albumentation, an

open-source Python library for image augmentation in deep learning was used to enhance the

diversity and quality of the training dataset [2].

Ultimately, a novel data augmentation technique called Mixup was used to improve the accuracy

of the proposed model from 96.12% to 96.74%. The mixup technique improves the generalization

ability of the deep learning model beyond the traditional empirical risk minimization (ERM)

framework [30]. All the augmentation techniques used in the proposed classification model are

shown in Table 6.1.

Transforms Setting Probability

Resizing Image size (224,224) 1
HorizontalFlip Not needed 0.5
VerticalFlip Not needed 0.5
GuassianBlue kernel size (0,3) 1
Transpose Not needed 0.5
Mixup Not needed 1

Table 6.1: Augmentation techniques and their settings used in the proposed classification model

Traditional ERM methods aim to minimize the average loss over the training data. However,

they often struggle with overfitting, especially when the dataset is limited. Mixup addresses this

limitation by generating virtual training samples as convex combinations of pairs of original

samples and their corresponding labels. This process effectively interpolates between input

samples, creating new data points that lie along the line connecting them in the input space.

Mixup takes two randomly chosen examples (xi, yi) and (xj, yj) from the training data. It then

combines them using the following formulas:
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X̄ = λxi + (1 − λ) × xj

Ȳ = λyi + (1 − λ) × yj

Here, λ is a scalar parameter that determines the degree of interpolation and lies between 0 and

1. The resulting virtual example (X̄, Ȳ ) represents a linear combination of the original

examples, incorporating the prior knowledge that linear interpolations of input feature vectors

should correspond to linear interpolations of their associated labels.

One of the key advantages of mixup is its simplicity and ease of implementation. It requires just

a few lines of code and introduces minimal computational overhead compared to traditional data

augmentation techniques. Despite its simplicity, mixup consistently improves the generalization

performance of deep learning models, as demonstrated by experiments on various image

classification tasks.
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6.2.3 CNN + GRU Implementation

The following architecture shows an overall view of the proposed classification model, while the

pseudo-code of the model is described in Figure 4.11.

Figure 6.3: An overall view of the proposed classification model

The proposed classification model was defined by sending the input images into a 2D

convolutional neural network (CNN) to extract the features from each CT scan and then using a

GRU model to create the fracture label. A pre-trained network in PyTorch was chosen for the

CNN section.
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For selecting the proper backbone for the classification model, ResNet, VGG, and EfficientNet

are the popular pre-trained networks for image classification tasks. Also, more complex tasks or

datasets may benefit from deeper architectures with more layers and non-linearities, allowing the

model to learn intricate features and representations. For problems with limited computational

resources, architectures like Resnet and EfficientNet are designed to be lightweight and suitable

for deployment on resource-constrained architectures.

Resnet18d and EfficientNet-v2 models were implemented using Timm, an open-source PyTorch

library. Initially, ResNet18d was used to learn general features of the cervical spine but it did

not work well for the proposed CNN model as a feature extractor. Ultimately, EfficientNet-v2

[43], a pre-trained image classification model, was used to learn the general features of this large

dataset.

Moreover, a bi-directional GRU model was used to generate the fracture label for each of the

seven cervical vertebrae. The GRU function in the PyTorch library was used to apply a

multi-layer gated recurrent unit (GRU) to an input sequence. The number of GRU layers was

considered two to form a stacked GRU where the second GRU received the output of the first

GRU as an input. The bidirectional parameter in GRU was set to True to get the advantage of

Bi-GRU to capture both past and future context, making it more powerful and better suited for

the classification task. Although bidirectional models are computationally more expensive and

may require more parameters to train, we got a reasonable result by using the m7248 datacenter

[25] to train the proposed model.

The training setup of the proposed model was as follows: AdamW optimizer with a cosine

annealing learning rate, 50 training epochs, batch size of 8, and input size of 224*224.

Finally, the fracture probability for each vertebra was produced by the classification model. The

high probability shows that there is mostly likely damage in the given cervical spine CT scan.

The damage probability for two study instances has been shown in Table 6.2. It can be seen that

the proposed model predicted high fracture probability for C1 and C2 vertebrae related to the

first study instance and detected fracture for vertebra C2 in the second study instance.
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Ptient ID Fracture probability

1.2.826.0.1.3680043.6200 C1 0.8211108
1.2.826.0.1.3680043.6200 C2 0.91041774
1.2.826.0.1.3680043.6200 C3 0.04243563
1.2.826.0.1.3680043.6200 C4 0.01370981
1.2.826.0.1.3680043.6200 C5 0.05007572
1.2.826.0.1.3680043.6200 C6 0.21084881
1.2.826.0.1.3680043.6200 C7 0.25250828

1.2.826.0.1.3680043.27262 C1 0.46066386
1.2.826.0.1.3680043.27262 C2 0.89230376
1.2.826.0.1.3680043.27262 C3 0.0756408
1.2.826.0.1.3680043.27262 C4 0.069127046
1.2.826.0.1.3680043.27262 C5 0.022976296
1.2.826.0.1.3680043.27262 C6 0.01965953
1.2.826.0.1.3680043.27262 C7 0.024886766

Table 6.2: Predicting fracture probability for two study instances
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Figure 6.4 shows four samples of axial cervical spine images from the unseen test dataset,

highlighting the regions where the model focused its attention to predict fracture. The bounding

boxes were created around the fractured region in red. From the figure, we can observe that the

model can perfectly detect the location of the fracture in the cervical spine CT scans.

Figure 6.4: detected fractures within a single vertebra by the proposed model
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6.3 Experimental Results

The classification performance of the proposed model in fracture detection of the cervical spine is

presented in Table 6.3. To examine the proposed model’s performance and accuracy, the

confusion matrix has been used to determine if it is good at the prediction step or not. The

accuracy value is 96.74%, the sensitivity value is 78.74% and the specificity value is 98.74%.

These results indicate that the proposed model can be used to make predictions. Table 6.3 shows

further PPV (Positive predictive value), NPV (Negative Predictive value), and AUC (area under

the curve) values.

Metric TPR TNR PPV NPV Acc AUC

result 78.74 98.74 87.48 97.66 96.74 88.74

Table 6.3: Classification performance results on the dataset with 6299 negative cases and 701
positive cases extracted from the proposed model. TPR: sensitivity, TNR: Specificity, PPV:
Positive predictive value, NPV: Negative Predictive Value, Acc: Accuracy, AUC: Area under
curve. All the values are in percent

The value of 88.74% for the AUC as an important metric to measure the overall performance of

the proposed model is considered a good score although it needs to be improved to have a value

near or upper than 90%. The TPR value shows that 78.74% of the number of samples belonging

to the positive class (fractured) has been classified correctly by the predictive model.

We also observed that the proposed model was unable to correctly detect fractures in some

DICOM images. Figure 6.5 shows three samples of false positive error that the model falsely

predicted as the fractured vertebrae which are actually intact vertebrae. Any significant

differences between the fractures correctly labeled by the proposed model and those they missed

were not found after our analysis.

However, since the type of fracture within each slice of the cervical spine has significant

importance, it will be considered as future work to categorize all the fractures and examine their

effect on the detection of damage and improve the model’s performance.
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Figure 6.5: flase positive errors in the model related to patient IDs ’1.2.826.0.1.3680043.24606’,
’1.2.826.0.1.3680043.2243’,’1.2.826.0.1.3680043.10005’
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6.4 Discussion

In theory, 3D CNN is the most straightforward method for handling this classification problem.

Different studies showed that 3D models (an entire volume of the image) are more accurate,

represent better performance with limited training data, and are faster to train but require more

computational memory compared to 2.5D (five consecutive slices of the image ) or 2D (one slice

of the image) models [7]. Due to the lack of required GPU memory to train the dataset of this

research, it was preferred to use a 2D cnn to predict the presence of fracture in CT scans.

However, implementing a 3D classification model will be considered as future work for this

research to compare the results with this research.

On the other hand, Our classification model mainly focuses on Convolutional neural networks

(CNN) and Residual neural networks to detect the fracture. CNNs excel at recognizing specific

features like edges, corners, or textures, but they might struggle to understand how these

features interact or contribute to the overall context. Other types of neural networks or

approaches might be needed to address this limitation and consider the positioning of features

with respect to each other.

Transformers rely heavily on attention mechanisms, which is a concept inspired by human

cognitive processes, allowing models to focus on specific parts of input while processing

information. Although we used GRU to address this issue in our problem, as a future work, we

can use Vision Transformers (ViTs) to bring the powerful self-attention mechanism of

Transformers into our classification task.

The EfficientNet-v2 Classification model contains 24 million parameters [43] and requires 5 hours

to train the model on the 8 × RTX A6000 GPU with 48GB memory. The whole pipeline took

around 7 hours to train the proposed classification model. Different cases have been discussed

where the proposed model failed to perform well and we have suggested solutions to overcome

them. The proposed classification model has shown that the detection of fractures in cervical

spine CT scans can be done automatically by using a deep learning model. This model can be

used in the medical industry to help physicians detect fractures in medical images faster, more
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efficiently, and less expensive.
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Chapter 7

Concluding remarks and future works

In this thesis, a new architecture for fracture detection in cervical spine CT images was

successfully implemented to minimize the error of the previous studies. In this study, a two steps

deep learning model was proposed based on U-Net architecture to detect the location of

vertebrae and fracture on 128 ×128×128 image sizes with an accuracy of 96.74%, which

demonstrates the capability of deep neural networks to address this challenge. To conclude, this

architecture forms a reliable research and has the ability to be applied to critical industries such

as medical sciences.

This architecture can be classified into 4 steps. The first step is data preprocessing, loading, and

transforming training images in DICOM and NIFTI formats and labeling datasets to training,

validation, and testing datasets. The second step is training and validating a segmentation

U-Net-based model on the provided cervical spine CT scans. The third step is using that model

to predict the segmentation mask for all the study instances and using the Yolov5 model to

predict the bounding boxes around all vertebrae to crop them from the DICOM images to

reduce the irrelevant information. In the final step, a combination of CNN and GRU models is

performed to examine the capability of the model to detect fractures in an unseen medical image.

There are a number of challenges to developing a cervical spine fracture detection model for the

provided dataset. One of the primary challenges was the high volume of the training images and
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the necessity to load them in memory to train the deep-learning models. We solved this issue by

using the m7248 datacenter, comprised of 8 ×RTX A6000 GPU with 48 GB GDR6 of memory.

Therefore, our work demonstrates a pipeline of highly effective 3D segmentation and

classification models to detect injury from cervical spine CT scans.

This thesis proposed a deep-learning model to detect the cervical spine fracture in CT scans.

The four main contributions of our work are:

Improved the diversity of the training dataset Using mix-up as a novel data

augmentation technique produced results that are comparable to the original algorithm.

Improved fracture detection model Adding a step of creating a bounding box around each

vertebra to the pipeline, reduced the high amount of irrelevant information, and at the

same time, improved the accuracy of the model.

Proposed a flexible architecture This architecture has the flexibility of any changes to the

encoder section of U-Net architecture to the state-of-the-art pre-trained networks to make

classification over different datasets of CT scan images to detect fractures. This feature

results in a unique and flexible framework with acceptable accuracy and robust structure

to be applied in highly critical medical applications.

Proposed an integrated cervical spine fracture detection system The above

contributions were applied to construct our final integrated system. Experimental results

show that our proposed architecture produces better results compared to other popular

approaches discussed in the literature review.

In the future, we are planning to use higher input resolution to be trained on the proposed

models which will require more powerful computational resources. Our discussion in Chapter 6

prepared the base and foundation for improving the proposed model by including the fracture

types in our research and analysis. Moreover, using more depther networks such as ResNet-34

has the advantage of getting higher accuracy or better representation learning which also needs

sufficient computational resources to handle the increased model complexity.
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[30] Hongyi Zhang and Moustapha Cissé and Yann N. Dauphin and David Lopez-Paz. “mixup:

Beyond Empirical Risk Minimization”. MA thesis. 2017. url:

http://arxiv.org/abs/1710.09412.

[31] Ilya Loshchilov and Frank Hutter. “Fixing Weight Decay Regularization in Adam”.

MA thesis. 2017. url: http://arxiv.org/abs/1711.05101.

[32] Ilya Loshchilov and Frank Hutter. “SGDR: Stochastic Gradient Descent with Restarts”.

MA thesis. 2016. url: http://arxiv.org/abs/1608.03983.

79

https://doi.org/10.48550/ARXIV.1905.12787
https://arxiv.org/abs/1905.12787
https://doi.org/10.5281/zenodo.7347926
https://doi.org/10.5281/zenodo.7347926
https://cloud.vast.ai/create/
https://www.greatbigcanvas.com/view/lateral-view-of-a-womans-skull-and-cervical-spine-labeled,2595590/
https://www.greatbigcanvas.com/view/lateral-view-of-a-womans-skull-and-cervical-spine-labeled,2595590/
http://arxiv.org/abs/1809.10245
http://arxiv.org/abs/1708.04347
http://arxiv.org/abs/1710.09412
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1608.03983


[33] Jadon, Shruti. “A survey of loss functions for semantic segmentation”. In: 2020 IEEE

Conference on Computational Intelligence in Bioinformatics and Computational Biology

(CIBCB). 2020, pp. 1–7. doi: 10.1109/CIBCB48159.2020.9277638.

[34] Kadom, Nadja and Khademian, Zarir and Vezina, Gilbert and Shalaby-Rana, Eglal and

Rice, Amy and Hinds, Tanya. “Usefulness of MRI detection of cervical spine and brain

injuries in the evaluation of abusive head trauma”. MA thesis. July 2014, pp. 839–848.

[35] Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun. “Deep Residual Learning

for Image Recognition”. MA thesis. 2015. url: http://arxiv.org/abs/1512.03385.

[36] Kim Young Jae,Ganbold Bilegt,Kim Kwang Gi. “Web-Based Spine Segmentation Using

Deep Learning in Computed Tomography Images”. In: Healthc Inform Res 26.1 (2020),

pp. 61–67. doi: 10.4258/hir.2020.26.1.61. url:

http://e-hir.org/journal/view.php?number=1015.

[37] KyungHyun Cho and Bart van Merrienboer and Dzmitry Bahdanau and Yoshua Bengio.

“On the Properties of Neural Machine Translation: Encoder-Decoder Approaches”.

MA thesis. 2014. url: http://arxiv.org/abs/1409.1259.

[38] Lee, Christoph I. and Haims, Andrew H. and Monico, Edward P. and Brink, James A. and

Forman, Howard P. “Diagnostic CT Scans: Assessment of Patient, Physician, and

Radiologist Awareness of Radiation Dose and Possible Risks”. In: Radiology 231.2 (2004).

PMID: 15031431, pp. 393–398. doi: 10.1148/radiol.2312030767. url:

https://doi.org/10.1148/radiol.2312030767.

[39] Long, L.R. and Thoma, G.R. “Use of shape models to search digitized spine X-rays”. In:

Proceedings 13th IEEE Symposium on Computer-Based Medical Systems. CBMS 2000.

2000, pp. 255–260. doi: 10.1109/CBMS.2000.856908.

[40] Luis Perez and Jason Wang. “The Effectiveness of Data Augmentation in Image

Classification using Deep Learning”. MA thesis. 2017. url:

http://arxiv.org/abs/1712.04621.

80

https://doi.org/10.1109/CIBCB48159.2020.9277638
http://arxiv.org/abs/1512.03385
https://doi.org/10.4258/hir.2020.26.1.61
http://e-hir.org/journal/view.php?number=1015
http://arxiv.org/abs/1409.1259
https://doi.org/10.1148/radiol.2312030767
https://doi.org/10.1148/radiol.2312030767
https://doi.org/10.1109/CBMS.2000.856908
http://arxiv.org/abs/1712.04621


[41] Ma Yi-de and Liu Qing and Qian Zhi-bai. “Automated image segmentation using improved

PCNN model based on cross-entropy”. In: Proceedings of 2004 International Symposium

on Intelligent Multimedia, Video and Speech Processing, 2004. 2004, pp. 743–746. doi:

10.1109/ISIMP.2004.1434171.

[42] Maury R. Ellenberg and Joseph C. Honet and Walter J. Treanor. “Cervical

radiculopathy”. MA thesis. 1994, pp. 342–352. doi:

https://doi.org/10.1016/0003-9993(94)90040-X. url:

https://www.sciencedirect.com/science/mastersthesis/pii/000399939490040X.

[43] Mingxing Tan and Quoc V. Le. “EfficientNetV2: Smaller Models and Faster Training”.

MA thesis. 2021. url: https://arxiv.org/abs/2104.00298.

[44] Monai, PyTorch framework. en. url: https:

//catalog.ngc.nvidia.com/orgs/nvidia/teams/clara/containers/monai-toolkit.

[45] Mower, W R and Hoffman, J R and Pollack, Jr, C V and Zucker, M I and Browne, B J.

“Use of plain radiography to screen for cervical spine injuries”. en. MA thesis. July 2001,

pp. 1–7.

[46] Olaf Ronneberger and Philipp Fischer and Thomas Brox. “U-Net: Convolutional Networks

for Biomedical Image Segmentation”. MA thesis. 2015. url:

http://arxiv.org/abs/1505.04597.

[47] Nobuyuki Otsu. “A threshold selection method from gray-level histograms”. MA thesis.

1979, pp. 62–66.

[48] Pillow, a Python library for image manipulation.

[49] Python library with Neural Networks for Image Segmentation based on PyTorch. en. url:

https://github.com/qubvel/segmentation_models.pytorch.

81

https://doi.org/10.1109/ISIMP.2004.1434171
https://doi.org/https://doi.org/10.1016/0003-9993(94)90040-X
https://www.sciencedirect.com/science/mastersthesis/pii/000399939490040X
https://arxiv.org/abs/2104.00298
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara/containers/monai-toolkit
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara/containers/monai-toolkit
http://arxiv.org/abs/1505.04597
https://github.com/qubvel/segmentation_models.pytorch


[50] R. Forghani and S.K. Mukherji. “Advanced dual-energy CT applications for the evaluation

of the soft tissues of the neck”. Special Focus Edition on Head and Neck Imaging.

MA thesis. 2018, pp. 70–80. doi: https://doi.org/10.1016/j.crad.2017.04.002. url:

https://www.sciencedirect.com/science/mastersthesis/pii/S0009926017301393.

[51] Rahman, Md Atiqur and Wang, Yang. “Optimizing Intersection-Over-Union in Deep

Neural Networks for Image Segmentation”. In: Advances in Visual Computing. Ed. by

George Bebis et al. Cham: Springer International Publishing, 2016, pp. 234–244. isbn:

978-3-319-50835-1.

[52] Responding to a Cervical Spinal Cord Injury - InSync Physiotherapy. en. url:

https://insyncphysio.com/responding-to-a-cervical-spinal-cord-injury/.

[53] Robert W. Jahnke and Blaine L. Hart. “Cervical Stenosis, Spondylosis, and Herniated Disc

Disease”. MA thesis. 1991, pp. 777–791. doi:

https://doi.org/10.1016/S0033-8389(22)02083-8. url:

https://www.sciencedirect.com/science/mastersthesis/pii/S0033838922020838.

[54] Roy, Payel and Dutta, Saurab and Dey, Nilanjan and Dey, Goutami and Chakraborty,

Sayan and Ray, Ruben. “Adaptive thresholding: A comparative study”. In: 2014

International Conference on Control, Instrumentation, Communication and Computational

Technologies (ICCICCT). 2014, pp. 1182–1186. doi: 10.1109/ICCICCT.2014.6993140.

[55] S.M. Masudur Rahman, Muhammad Asad, Michael Gundry, Karen Knapp and Greg

Slabaugh. “Patch-based corner detection for cervical vertebrae in X-ray images”.

MA thesis. 2017, pp. 27–36. doi: https://doi.org/10.1016/j.image.2017.04.002. url:

https://www.sciencedirect.com/science/mastersthesis/pii/S0923596517300681.

[56] Saleem and Balaj. Medical image formats: An introduction. Sept. 2022. url:

https://ango.ai/medical-image-formats-introduction/.

[57] Sang Uk Lee and Seok Yoon Chung and Rae Hong Park. “A comparative performance

study of several global thresholding techniques for segmentation”. MA thesis. 1990,

82

https://doi.org/https://doi.org/10.1016/j.crad.2017.04.002
https://www.sciencedirect.com/science/mastersthesis/pii/S0009926017301393
https://insyncphysio.com/responding-to-a-cervical-spinal-cord-injury/
https://doi.org/https://doi.org/10.1016/S0033-8389(22)02083-8
https://www.sciencedirect.com/science/mastersthesis/pii/S0033838922020838
https://doi.org/10.1109/ICCICCT.2014.6993140
https://doi.org/https://doi.org/10.1016/j.image.2017.04.002
https://www.sciencedirect.com/science/mastersthesis/pii/S0923596517300681
https://ango.ai/medical-image-formats-introduction/


pp. 171–190. doi: https://doi.org/10.1016/0734-189X(90)90053-X. url:

https://www.sciencedirect.com/science/mastersthesis/pii/0734189X9090053X.

[58] Seff, Ari and Lu, Le and Barbu, Adrian and Roth, Holger and Shin, Hoo-Chang and

Summers, Ronald M. “Leveraging Mid-Level Semantic Boundary Cues for Automated

Lymph Node Detection”. In: Medical Image Computing and Computer-Assisted

Intervention – MICCAI 2015. Ed. by Nassir Navab et al. Cham: Springer International

Publishing, 2015, pp. 53–61.

[59] Shervin Minaee and Yuri Boykov and Fatih Porikli and Antonio Plaza and Nasser

Kehtarnavaz and Demetri Terzopoulos. “Image Segmentation Using Deep Learning: A

Survey”. MA thesis. 2020. url: https://arxiv.org/abs/2001.05566.

[60] Small, J.E. and Osler, P. and Paul, A.B. and Kunst, M. “CT Cervical Spine Fracture

Detection Using a Convolutional Neural Network”. MA thesis. 2021, pp. 1341–1347. doi:

10.3174/ajnr.A7094. url: http://www.ajnr.org/content/42/7/1341.

[61] structure of cervical spine. en. url:

https://musculoskeletalkey.com/cervical-spine-10/.

[62] Swartz, Erik E and Floyd, R T and Cendoma, Mike. “Cervical spine functional anatomy

and the biomechanics of injury due to compressive loading”. en. MA thesis. United States,

July 2005, pp. 155–161.

[63] Tanaka, Nobuhiro and Atesok, Kivanc and Nakanishi, Kazuyoshi and Kamei, Naosuke and

Nakamae, Toshio and Kotaka, Shinji and Adachi, Nobuo. “Pathology and Treatment of

Traumatic Cervical Spine Syndrome: Whiplash Injury”. MA thesis. Feb. 2018, p. 4765050.

doi: 10.1155/2018/4765050. url: https://doi.org/10.1155/2018/4765050.

[64] Van Eerd, Maarten and Patijn, Jacob and Sieben, Judith M. and Sommer, Mischa and Van

Zundert, Jan and van Kleef, Maarten and Lataster, Arno. “Ultrasonography of the

Cervical Spine: An In Vitro Anatomical Validation Model”. MA thesis. Jan. 2014,

83

https://doi.org/https://doi.org/10.1016/0734-189X(90)90053-X
https://www.sciencedirect.com/science/mastersthesis/pii/0734189X9090053X
https://arxiv.org/abs/2001.05566
https://doi.org/10.3174/ajnr.A7094
http://www.ajnr.org/content/42/7/1341
https://musculoskeletalkey.com/cervical-spine-10/
https://doi.org/10.1155/2018/4765050
https://doi.org/10.1155/2018/4765050


pp. 86–96. doi: 10.1097/ALN.0000000000000006. url:

https://doi.org/10.1097/ALN.0000000000000006.

[65] What to Know About Spinal Ligaments. en. url:

https://www.healthcentral.com/condition/back-pain/ligaments.

[66] Zheng, Zhenyu and Chen, Zhencheng and Hu, Fangrong and Zhu, Jianming and Tang,

Qunfeng and Liang, Yongbo. “An Automatic Diagnosis of Arrhythmias Using a

Combination of CNN and LSTM Technology”. MA thesis. 2020. doi:

10.3390/electronics9010121. url: https://www.mdpi.com/2079-9292/9/1/121.

[67] Zhou, Zhiyu and Gao, Manman and Wei, Fuxin and Liang, Jiabi and Deng, Wenbin and

Dai, Xuejun and Zhou, Guangqian and Zou, Xuenong. “Shock Absorbing Function Study

on Denucleated Intervertebral Disc with or without Hydrogel Injection through Static and

Dynamic Biomechanical Tests In Vitro”. MA thesis. June 2014, p. 461724. doi:

10.1155/2014/461724. url: https://doi.org/10.1155/2014/461724.

84

https://doi.org/10.1097/ALN.0000000000000006
https://doi.org/10.1097/ALN.0000000000000006
https://www.healthcentral.com/condition/back-pain/ligaments
https://doi.org/10.3390/electronics9010121
https://www.mdpi.com/2079-9292/9/1/121
https://doi.org/10.1155/2014/461724
https://doi.org/10.1155/2014/461724

	Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	problem statement and motivations
	Objectives
	Outline of this Thesis

	Theory and Background Materials
	Cervical spine anatomy
	Cervical spine injuries and disorders
	Cervical Spine fracture detection
	Diagnostic Techniques:
	Image segmentation

	Deep Learning and its architectures
	Deep learning
	Semantic segmentation and U-Net
	 CNN with Bidirectional GRU layer


	Literature review
	Previous approaches

	Modelling and DataSet
	Exploratory Data Analysis
	Dataset analysis
	Image Format

	Model training
	3D Semantic Segmentation model
	Fracture detection model


	3D Segmentation model
	3D U-Net implementation and hyperparameter tunning
	Experimental Results
	Discussion

	Classification model
	Yolov5 implementation
	classification
	Processing the training data 
	Implementation of data augmentation
	CNN + GRU Implementation

	Experimental Results
	Discussion

	Concluding remarks and future works



