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Abstract 

 

Image Captioning is the multi-modal task of automatically generating natural language 

descriptions based on a visual input using various Deep Learning techniques. This research area is 

in the intersection of Computer Vision and Natural Language Processing fields, and it has gained 

an increasing popularity over the past few years. Image Captioning is an important part of scene 

understanding with various extensive applications, such as helping visually impaired people, 

recommendations in editing applications, and usage in virtual assistants. However, most of the 

previous work in this topic has been focused on purely objective content-based descriptions of the 

image scenes. The goal of this thesis is to generate more engaging captions by leveraging human-

like emotional responses in the captioning process. To achieve this task, a Mean Teacher Learning-

based method has been applied on the recently introduced ArtEmis dataset. This method includes 

a self distillation relationship between the memory-augmented language models with meshed 

connectivity, which will be first trained in a cross-entropy based phase, and then fine-tuned in a 

Self-Critical Sequence Training phase. In addition, we propose a novel classification module by 

decreasing texture bias and encouraging the model towards a shape-based classification. We also 

propose a method to utilize extra emotional supervision signals in the caption generation process, 

leveraging the image-to-emotion classifier. Comparing with the state-of-the-art results on ArtEmis 

dataset, our proposed model outperforms the current benchmark significantly in multiple popular 

evaluation metrics, such as BLEU, METEOR, ROUGE-L, and CIDEr. 

Keywords: Image Captioning, Computer Vision, Natural Language Processing, Mean Teacher 

Learning, Self-Critical Sequence Training   
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Chapter 1  

Introduction 

 

1 Introduction 

Image captioning is an important step towards developing scene-understanding ability in deep 

learning models for plenty of purposes. This multi-modal task deals with both textual and visual 

modalities with the goal of generating fluent natural language descriptions according to the 

contents of a digital image [1]. The applications of image captioning include usage in virtual 

assistants, helping visually impaired people to get a better perception of their surroundings, and 

industrial quality control. This field is a combination of both Computer Vision and Natural 

Language Processing (NLP), which are described in the following sections. 

1.1 Deep Learning 

Deep learning is a subset of machine learning that attempts to imitate the human brain’s behavior 

in the process of gaining knowledge from large amounts of data. It differs from machine learning 

with regards to the type of data it works with and its approach to learning. Deep learning does not 

necessarily require some of the data pre-processing needed in machine learning. These algorithms 

are also applying an automated feature extraction while being more robust to unstructured data, 

such as images, text, and videos. Deep learning is embedded in our everyday products, such as 

digital assistance or credit card fraud detection. Deep learning can be considered as a combination 

of statistics and predictive modeling, and in a sense, it is an automation of predictive modeling. 
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Artificial neural networks are the main components of the deep learning field, which were limited 

by the available computational power until recently. These are inspired by the human brain, where 

each neuron receives thousands of signals from other neurons. The neural networks consist of 

layers of nodes connected to the adjacent layers. The depth of the network is directly correlated 

with the number of layers. These nodes are assigned with their corresponding weights, which get 

adjusted during the training phase of the network. The last layer is responsible for compiling 

weighted inputs of the previous layers to generate a final output. A brief explanation of some deep 

learning concepts is mentioned below:   

 Neuron: Similar to the human brain, artificial neural networks consist of neurons. They 

receive the information, process it, and generate an output that can be either passed to 

other layers for further processing or considered as final output.    

 Weights: Each input to a neuron is multiplied by the weight associated with that neuron. 

The weights in the neural network are initialized randomly. As the training process goes 

on, the weights that are considered more important will increase, and the weights that are 

considered less important will decrease. 

 Bias: The bias is a linear component applied to the input in addition to the weights, which 

is analogous to the constants in linear functions. Figure 1 is an illustration of a neuron 

receiving multiple inputs and applying the corresponding weights and bias to them. 
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Figure 1. A neuron in a neural network receiving the inputs with their corresponding 

weights, along with the bias. 

 Activation Function: The weights and biases are the linear portions of operations applied 

on neuron inputs, while the activation function is utilized to add non-linearity to this linear 

combination. Some commonly used activation functions are Sigmoid, Softmax, and 

ReLU.    

 Input / Hidden / Output layer: As the names suggest, the input and output layers are the 

first and the last layers of a neural network, responsible for receiving the input and 

generating the output, respectively. On the other hand, hidden layers do the processing of 

their inputs and pass the result to the adjacent layers. Figure 2 is an illustration of these 

layers.  
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Figure 2. Input, hidden, and output layers of a neural network.  

The flow of the information from the input layer to the hidden layers, which finally reaches 

the output layer, is called forward propagation. 

 Loss Function: The goal of a neural network is usually to generate a prediction as 

accurately as possible. The loss function is utilized to measure the accuracy of the network, 

and it will penalize it in case of erroneous predictions. Therefore, the purpose of the neural 

network is to optimize its parameters to minimize the loss function.  

 Gradient Descent: Knowing the objective of the neural networks, which is to minimize 

the loss function, we need an algorithm to reach that goal. Gradient descent is an iterative 

optimization algorithm to find the minimum of the loss function as a differentiable 

function. This algorithm takes steps proportional to the negative of the gradient of the 

function.   

 Learning Rate: An indicator is required to determine the amount of minimization in the 

loss function in each optimization iteration. Therefore, the learning rate is utilized to 

control this matter. However, the value of the learning rate should be chosen carefully 
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since a high learning rate can lead to missing the global minimum, and a low learning rate 

causes the algorithm to take a very long time to converge. An illustration of the impact of 

choosing different values as the learning rate is provided in Figure 3. 

 

Figure 3. Impact of choosing different learning rate values on optimizing the loss 

function. 

 Back-Propagation: As mentioned before, the weights and biases of the neural network 

are initialized randomly. After the completion of each forward propagation iteration, the 

back-propagation process computes the gradient of the loss function with respect to the 

weights based on an example input-output. In addition, the weights get updated based on 

the computed error values to reduce the inaccuracy. This operation is done starting from 

the output layer towards the input layer; hence, it is called back-propagation. 
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 Batches: It is not efficient to feed the entire data to the neural network at once for several 

reasons, such as memory limitation and generalization issues. Therefore, the data is fed to 

the network in randomly selected batches of equal size. Basically, the amount of data 

utilized in a single forward propagation and back-propagation iteration is called a batch of 

data. 

 Epochs: A single iteration of passing all batches through the network is called an epoch, 

which is consisted of one forward propagation and one back-propagation. A higher 

number of epochs can lead to higher accuracy. However, this can also impact the 

generalization ability of the network, which is called the over-fitting problem. 

 Dropout: There are multiple techniques to help overcome the over-fitting problem. One 

of these techniques is called dropout, where randomly selected neurons of the network are 

dropped. The reasonable range for dropout value is between 0.5 and 0.8. 

1.2 Computer Vision 

The focus of Computer Vision is to extract meaningful information from digital images, videos, 

and other visual inputs. Recent advances in artificial intelligence, especially neural networks and 

deep learning, have enabled researchers to tackle multiple Computer Vision problems more 

efficiently, which include object detection [2], action recognition [3], and motion tracking [4]. 

These deep learning models rely on huge volumes of labeled data to figure out the mathematical 

equation that enables the model to predict proper labels for unseen visual inputs. The human 

process of visual perception is extremely complicated, and the ultimate goal is to reach a human-

level visual cognition in the models. 
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Let’s have a brief overview of the definitions of some computer vision applications: 

 Object Classification: Based on the objects in the visual input, which category of entities 

do they belong to? (e.g., vehicles, animals) 

 Object Detection: Locate different objects in the visual input. 

 Object Recognition: Finding out what objects exist in the visual input and where they 

are. 

 Object Segmentation: Which portions of the image are related to different objects. 

Convolutional Neural Networks or CNNs are widely used in computer vision to extract features 

of an input image. In this process, a level of importance is assigned to different portions of an 

image through learnable weights and biases. In general, the spatial and temporal dependencies of 

an image are captured through the relative filters. 

1.3 Natural Language Processing 

Natural Language Processing or NLP is concerned with the interaction of computers and human 

language, with the task of understanding human language as it is written and spoken. 

Computational linguistics is combined with statistical, deep learning, and machine learning models 

to solve different problems like machine translation [5], speech recognition [6], and sentiment 

analysis [7]. A brief review of some of the most popular applications of NLP are mentioned below: 

 Machine Translation: Automated translation from a particular language to a target 

language (e.g., German-to-English). 
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 Speech Recognition: Effectively transform spoken language to a format that can be 

processed by computers. (e.g., Siri and Alexa) 

 Sentiment Analysis: Extracting different sentiments from textual data, such as opinions 

and emotions. (e.g., social media monitoring) 

 Text Classification: The goal is to process, understand, and classify unstructured text, 

which includes sentiment analysis as part of its approach. 

 Text Summarization: As the name suggests, the goal is to automatically summarize 

textual data according to the most important information conveyed by the text. 

Similar to computer vision, the advances in NLP were boosted significantly as a consequence of 

the enhancements in deep learning and neural networks. Recurrent Neural Networks (RNNs) are 

one of the most popular architectures to deal with NLP problems since they are intuitively capable 

of handling sequential data, such as time-series and textual data. This capability is because, unlike 

feed-forward networks, an internal memory incorporates the previous computations in addition to 

the current input.  

Long Short-Term Memory or LSTM is a frequently used variation of RNNs, utilized to overcome 

the vanishing gradient problem in these networks by introducing forget gates. The vanishing 

gradient problem happens when the network has more layers, and the back-propagated long-term 

partial derivatives of the loss function tend to zero. The internal gates control the flow of 

information by learning which portions of a sequence is important and which portions should be 

ignored. Figure 4 is an illustration of an LSTM cell, where the input vector, hidden state, and cell 

state vectors go through the sigmoid and hyperbolic tangent functions, along with the other 
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arithmetic operations. Another similar network is Gated Recurrent Unit or GRU, with the 

difference of using fewer gates to control the information flow.  

 

Figure 4. A Long Short-Term Memory or LSTM cell structure. 

1.4 Multi-modal Deep Learning 

The existing developments in uni-modal deep learning has led to a new area of research, which is 

called multi-modal deep learning. Modality is the format of storing representations of a particular 

type of information. Uni-modal approaches are insufficient to model the human behaviour in an 

accurate manner, since human’s perceptions from outside world follows a multi-modal nature 

containing different senses like touch, smell, taste, hear, and sight. On a daily basis, people collect 

and process various information from numerous media sources, such as texts, images, and videos. 

Our ultimate goal in deep learning is to properly emulate human behaviour in the designed models, 

which cannot be achieved using only uni-modal approaches. Hence, researchers are tending to use 
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multi-modal deep learning to overcome these shortcomings. Some of the most important multi-

modal deep learning tasks are mentioned below: 

 Image Captioning: Generating textual descriptions for an input image. (Modalities: text 

+ image) 

 Video Captioning: Similar to image captioning, video captioning is the task of generating 

textual descriptions based on the contents of an input video. (Modalities: text + video) 

 Visual Question Answering: Providing answers in a few words or short phrases based 

on questions related to the contents of an input image or video. (Modalities: text + image, 

text + video) 

 Multi-modal Speech Synthesis: Developing systems capable of generating human-like 

speeches in a waveform format through Text To Speech (TTS) systems, after generating 

the textual modality. 

1.5 Image Captioning 

As mentioned earlier, the image captioning field is a hybrid field including both computer vision 

and NLP techniques. Recent advances in these deep learning fields have led to an increasing 

attention towards image captioning. The goal is to automatically generate accurate natural 

language descriptions according to the contents of visual input. Image captioning is concerned 

with textual and visual modalities; hence, it requires models capable of handling both modalities 

and their fusion. Figure 5 shows examples of purely objective content-based automatically 

generated captions. 

Some of the applications of image captioning are mentioned below:   
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 Medical Field: Assisting visually impaired persons by helping them to understand the 

environment and providing textual descriptions and interpretations about medical images. 

 Social Media: Generating captions for images in social media platforms, which are 

sometimes associated with the tags provided by users. This process can include 

eliminating erroneous and incorrect tags as well. 

 Industrial Applications: Assisting in quality control process by manufacturers and 

decreasing human involvement in various procedures. The robots employed can leverage 

the generated captions to make informed decisions. 

 Agricultural Applications: Providing descriptive data about plant requirements and fruit 

detection. In addition, image captioning can be utilized to assist fruit segmentation in order 

to decrease the need for human labor.  
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Figure 5. Examples of purely objective content-based captions generated by the model 

proposed by [13]. 

 

There are some important problems in the image captioning task, such as the parallax error which 

can happen with human eyes as well. This happens when objects are not detectable from specific 

angles. As another example, the scene clutter issue is another obstacle for a proper scene 

understanding which leads to erroneous captions to be generated. This problem happen when the 

scene is too chaotic, and it is difficult for the model to detect the objects.  

Our proposed model is capable of generating affective utterances describing the triggered human-

like emotional responses stemming from visual stimulus. The generated utterances are according 

to both the visual features and emotion-based supervision signals. The proposed pipeline consists 

of:  
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 auxiliary text-to-emotion and image-to-emotion classification tasks.  

 A visual encoder to extract visual features from the input image.  

 Two interconnected language models following a transformer-based encoder/decoder 

architecture.  

1.6 Contributions 

In this thesis, we introduce three main contributions:  

(1) A novel approach for the image-to-emotion classification task by decreasing the texture bias 

of the classifier and encouraging the model towards a shape-based classification. This is because 

of the differing local textures in our input images (artworks) in comparison to the real world. 

(2) A transformer-based architecture composed of stacks of memory-augmented encoders and 

meshed decoders to process the visual features and generate one word at each time-step 

accordingly. 

(3) Achieving state-of-the-art performance using the Nemesis on the ArtEmis dataset. We prove 

that our proposed pipeline, which consists of two language models interacting in a self-critical 

mean teacher learning-based approach, is a promising path toward generating more human-like, 

emotionally rich captions. We also propose a variation of Nemesis, which is supervised by extra 

emotional signals leveraging the proposed image-to-emotion classifier, called the Emotionally 

Grounded Nemesis or EGNemesis. 

1.7 Organization of the Thesis 

This thesis is organized as follows:  
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 Chapter 1 introduces the topic of image captioning and the contributions of this research. 

 Chapter 2 is a comprehensive literature review of the previous studies in the image 

captioning field. 

 Chapter 3 provides the definition of the different techniques and methods utilized in the 

proposed model. 

 Chapter 4 includes the architecture, pipeline, and training strategies of the proposed model. 

 Chapter 5 elaborates on the experimental settings, including the details about the utilized 

dataset, visual encoding modes, and implementation details. 

 Chapter 6 is about the evaluation process and the obtained results, which includes details 

about the evaluation metrics, ablation studies, and comparison with the state-of-the-art. 

 Chapter 7 provides a conclusion of the research and discusses the potential future direction 

of emotion-centric image captioning. 
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Chapter 2  

Literature Review 

 

2 Literature Review 

Over the past years, increasing efforts have been made in the field of image captioning to improve 

different aspects of the process. These endeavors are related to both the computer vision and NLP 

parts of the problem. The enhancement in the processing of the visual input provides the 

opportunity for a better understanding of the scene. At the same time, the improvement in the 

linguistic generation leads to a more articulated description of the extracted visual features. The 

two main components of an image captioning pipeline are the visual encoder and the language 

model. The visual encoder is responsible for extracting the visual features and passing them to the 

language model to generate the corresponding linguistic description. 

In this chapter, we will have a comprehensive literature review of the previous image captioning 

studies. First, we will discuss some early studies. Then, we will review the more recent studies 

with respect to their approach to the visual encoding process and the proposed language models 

separately. Next, we will review some of the most popular image captioning datasets and image 

captioning variants, followed by the performance comparison between the mentioned studies. 

Finally, the motivation of this thesis will be discussed. 
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2.1 Retrieval-based and Template-based Image Captioning 

The early studies were based on retrieval-based [8], [9], and template-based methods [10], [11], 

[12], where the captions are directly retrieved from an existing database causing the captions to be 

repetitive and not completely specific to the input image.  

Pan et al. [8] introduced a retrieval-based method in the proposed image captioning model, where 

the correlations between image features and keywords are discovered first, then the relative 

keywords according to the new images are retrieved from the pre-existing database. 

Yang et al. [10] proposed a template-based technique where the image description process is based 

on predicting proper nouns, verbs, scenes, and propositions that will eventually be put into an 

existing template for the sentence structure. 

2.2 Visual Encoding 

As an early stage in an image captioning pipeline, the spatial information and structure are 

extracted from our input image to achieve a proper visual representation. 

There are different approaches to tackle the visual encoding task; we divide these approaches into 

the following four categories based on their approach to processing the visual input: 1) non-

attentive CNNs to extract the global features. 2) Grid-based and region-based feature extraction 

using additive attention. 3) Graph-based attention. 4) Feature extraction using self-attention. 

2.2.1 Non-attentive CNNs to Extract the Global Features 

Non-attentive CNNs to extract the Global Features utilize the output of the last layers of the CNNs, 

which includes the high-level attributes of the image. The advantage of using global features is the 
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simplicity and the inclusion of the entire visual input. However, there are some drawbacks as well, 

such as leading to the extraction of over-generalized features, which causes the generated captions 

to be imprecise and not detailed enough. The general process is illustrated in Figure 6, where a 

non-attentive CNN receives the whole image and extracts the global features.  

 

Figure 6. Non-attentive CNNs to extract global features. 

Vinyals et al. [13] proposed “Show and tell”, which utilizes a CNN for image representation. The 

utilized CNN applies a batch normalization technique to each training mini-batch. The batch 

normalization process fixes the means and variances of the layer inputs, it can act as a regularizer, 

and it also provides the ability to choose higher learning rates. Karpathy et al. [14] used a CNN 

pre-trained and fine-tuned on ImageNet [15]. The image representation considers the top 19 

detected locations along with the whole image, which gives the advantage of learning a joint 

embedding space leading to a better scene-understanding capability. This process can be formally 

defined by the equation below: 

𝐼 = 𝑊𝑚[𝐶𝑁𝑁𝜃(𝑃𝑏)] + 𝑏𝑚, 

Where 𝑃𝑏 represents the pixels in each bounding box, 𝜃 is the parameters of the network, and 

𝐶𝑁𝑁(. ) function transforms the dimensions of the pixels to a desired value. 
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Mao et al. [16] utilized a pre-trained AlexNet [17] and VggNet [18] on the ImageNet dataset, and 

the CNN gets updated based on the gradient backpropagated from the multimodal layer. However, 

the main problem is that the model must process the whole global features at each time-step.   

You et al. [19] proposed a model to extract both top-down and bottom-up features from a visual 

input, gaining a global visual description of the input image. In addition, the model attempts to 

predict a set of concepts or visual attributes that are most likely to appear in the visual input. The 

utilization of these attributes can be considered the main advantage of the proposed model. 

Wu et al. [20] employed a CNN to solve a multi-class classification problem by minimizing an 

element-wise logistic loss function. The advantage of this model is the utilization of an 

intermediate image-to-attribute layer; however, the problem is that it requires an extra attribute 

vocabulary to be determined. Chen et al. [21] proposed training a visual parsing tree after 

extracting the global features using a CNN, which is responsible for extracting entities and their 

relationships in the visual input. The main contribution of this model is the group-based approach 

to model the similarities and differences between a group of images to obtain a collaborative 

captioning process. Rennie et al. [22] proposed an FC model which includes a CNN encoding the 

visual input and then embedding the output through a linear projection. Although this model offers 

compactness in obtaining the visual representations, it lacks granularity. 

2.2.2 Grid-based Feature Extraction using Additive Attention 

Additive attention has been utilized to extract grid-based and region-based features in order to 

overcome the limitations of extracting global features using non-attentive CNNs. In additive 

attention, the feed-forward network includes a single hidden layer to compute the attention 

weights. A hyperbolic tangent function is utilized to add non-linearity to the additive attention 



19 

 

 

equation. The additive attention between two members of two sets of vectors is formally defined 

as below: 

𝑓𝑎𝑡𝑡(𝑎𝑖, 𝑏𝑗) = 𝑊3
𝑇 tanh(𝑊1𝑎𝑖 + 𝑊2𝑏𝑗), 

where 𝑎𝑖 ∈ {𝑎1, … , 𝑎𝑛}, and 𝑏𝑗 ∈ {𝑏1, … , 𝑏𝑛}. On the other hand, 𝑊1 and 𝑊2 are learnable vectors, 

and 𝑊3 is the linear combination. The result is referred to as the alignment score, which will 

eventually get passed through a Softmax function to compute the alignment score indicating how 

relevant 𝑎𝑖 is to 𝑏𝑖.  

 

Figure 7. Grid-based feature extraction using additive attention. 

Xu et al. [23] utilized a CNN to extract 𝐷-dimensional feature vectors. This extractor produces 𝑁 

feature vectors corresponding to each grid of the input image. 

𝑣 = {𝑣1, … , 𝑣𝑁}, 𝑣𝑖 ∈ ℝ𝐷 

In addition, features are extracted from the lower convolutional layer to indicate the 

correspondence between the feature vectors and grids of the input image. Next, additive attention 

is used to compute the weight for each grid. 
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Li et al. [24] considered the output of the last convolutional layer of ResNet as the spatial features. 

The dimensionality of this layer is 2048 × 7 × 7, which calculates 𝑁 grid features that will finally 

produce the global image feature as defined below: 

𝑣𝑔𝑙𝑜𝑏𝑎𝑙 =
1

𝑁
∑ 𝑣𝑖

𝑁

𝑖=1

, 

where 𝑣𝑖 ∈ ℝ2048 is the extracted feature from the 𝑖𝑡ℎ grid. Next, these feature vectors are 

transformed to new feature vectors of dimension 𝐷 through the below equation: 

𝑡𝑖 = 𝑅𝑒𝐿𝑈(𝑊𝑣𝑣𝑖), 

𝑡𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑅𝑒𝐿𝑈(𝑊𝑔𝑙𝑜𝑏𝑎𝑙𝑣𝑔𝑙𝑜𝑏𝑎𝑙), 

where 𝑊𝑣 and 𝑊𝑔𝑙𝑜𝑏𝑎𝑙 are the weight parameters, and the transformed feature vectors form 𝑇 =

[𝑡1, … , 𝑡𝑁]. 

Yang et al. [25] introduced a CNN-based VggNet review network that calculates thought vectors 

by performing several review steps over the encoder hidden states with an attention mechanism. 

On the other hand, Chen et al. [26] suggested not using spatial features as it does not comply 

perfectly with the attention mechanism. Hence, they proposed a CNN-based architecture that 

combines spatial and channel-wise attentions. Jiang et al. [27] introduced a Recurrent Fusion 

Network (RFNet) to utilize complementary information from multiple visual encoders. It 

processes interactions between the image encoder outputs to produce compact information to be 

used by the decoder in later stages. 
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2.2.3 Region-based Feature Extraction using Additive Attention 

In region-based feature extraction using additive attention, the language model predicts the next 

word by attending to different regions of the visual input. In this top-down approach, the regions 

are selected based on the contents of the image, unlike the grid-based approach, where the grid 

placement is not relevant to the image content. In this technique, an object detector is deployed to 

propose the image regions. The detected image regions are either employed one at a time or 

multiple regions can be utilized simultaneously. Figure 8 illustrates region-based feature extraction 

using additive attention, where the object detector detects different image regions; then, the 

attention mechanism is applied to the corresponding extracted features while interacting with the 

language model. 

 

Figure 8. Region-based feature extraction using additive attention. 

Anderson et al. [28] proposed a bottom-up and top-down attention mechanism that calculates the 

attention scores with respect to different objects and image regions. The architecture of the visual 

encoder includes a bottom-up mechanism based on a Faster R-CNN [29] to propose the image 

regions, while the feature weightings are calculated by a top-down mechanism. The Faster R-CNN 

detects the image regions in two stages: 1) Image regions are predicted by the Region Proposal 

Network (RPN), where a non-maximum suppression for each object class using an Intersection-
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over-Union (IoU) threshold is applied on the final output of the Faster R-CNN. 2) Small feature 

maps are extracted based on a Region of Interest (RoI) pooling, which will be passed to the final 

CNN layers. A Softmax distribution over the object class labels for each bounding box proposal 

is considered the final output. 

Zha et al. [30] introduced the Context-Aware Visual Policy network (CAVP), which includes a 

variation of the attention mechanism that attends to complex compositions of visual regions instead 

of attending to a single image region at each time-step. This model uses an LSTM to incorporate 

the historical visual actions, and it is optimized by an actor-critic policy gradient method. 

2.2.4 Graph-based Attention 

Due to the ability to represent relations in graphs, they can be associated with the image regions 

to improve the region encodings. The utilized graphs include semantics and spatial relationships. 

The semantic relationships in the graph are concerned with the actions and reactions between the 

object pairs. On the other hand, spatial relationships are concerned with the geometrical 

information related to the bounding boxes of detected objects. Figure 9 is an illustration of graph-

based attention, where the object detector selects different image regions; then, after extracting the 

corresponding features, each of them will be represented by a node, while the edges represent their 

relationships. 
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Figure 9. Graph-based attention in visual encoding. 

Guo et al. [31] proposed using a Graph Convolutional Network (GCN) [32] to model the geometry 

and semantics of object interactions of the visual input. A geometry graph and a semantic graph 

are created according to each visual semantic unit, where the semantic and geometrical context-

aware embeddings are obtained via the corresponding GCNs. The geometrical relationship graph 

is constructed based on spatial measures between the object bounding boxes, while the semantic 

relationship graph is obtained by utilizing a Visual Genome-based [33] pre-trained classifier.  

Yang et al. [34] utilized a directed scene graph where its object nodes are connected to other nodes 

representing the corresponding adjectives and relationships. This procedure integrates the priori 

information obtained from textual data with the visual input. Similarly, Shi et al. [35] proposed a 

scene graph named Caption-Guided Visual Relationship Graph (CGVRG) based on a weakly 

supervised learning approach. The CGVRG construction process is initialized by a scene graph 

parser extracting relationship triplets from the ground-truth captions rather than external datasets. 

Furthermore, the object detection is done by a Faster R-CNN, which returns the corresponding 

image regions.  
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Yao et al. [36] proposed HIerarchy Parsing (HIP) architecture that integrates hierarchical structure 

with visual encoding. The image understanding is based on a hierarchical tree including different 

types of features, where the leaves represent instance-level features, intermediate nodes represent 

region-level features, and the root represents global features. These features are enhanced by 

utilizing a tree-structured Long Short-Term Memory (tree-LSTM) network acting as a feature 

refiner that outputs multi-level representations of the visual input. 

2.2.5 Feature Extraction using Self-attention 

In self-attention, the elements of the input set interact with each other while producing the output. 

This process includes five steps mentioned below: 

Step-1. During the training process, three weight matrices (𝑊𝑄 , 𝑊𝑉, 𝑊𝐾) are calculated 

and multiplied by each of the input vectors. This multiplication will result in three vectors 

(query vector, value vector, key vector) for each input vector. 

Step-2. The current input’s query vector is multiplied by the key vectors of other inputs. 

Step-3. The result of the multiplication in the second step can lead to a large value which 

can cause extremely small values after a Softmax function is applied to it. Hence, the result 

is divided by the square root of the dimension of the key vectors (𝑑𝑘) as a scale factor. 

Step-4. The Softmax function is applied to the self-attention scores calculated according 

to each query word. Next, the result is multiplied by the value vector. 

Step-5. The self-attention output for the given word is calculated by summing up the 

weighted value vectors generated in the previous step. 
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The above steps are applied to all input sequences; then the results are concatenated to 

generate the 𝑄, 𝑉, 𝐾 matrices for queries, values, and keys, respectively. This is formally 

expressed as the mathematical equation below: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝑉, 𝐾) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉, 

The outcome of this equation is the self-attention matrix. Figure 10 is an illustration of 

self-attention based visual encoding, where self-attention is applied to the extracted 

features from the detected image regions. These extracted features act as the input 

sequences described in the mentioned steps. 

Li et al. [37] proposed a transformer-based architecture named EnTangled Attention (ETA), which 

enables the transformer to utilize the semantic and visual information simultaneously. This 

information is extracted by encoders based on self-attention and feed-forward layers. The visual 

information is extracted by an encoder for the image regions, and the semantic information is 

obtained by an encoder exploiting knowledge from an external tagger.  

 

Figure 10. Self-attention based visual encoding. 

Herdade et al. [38] introduced the Object Relation Transformer, which utilizes feature vectors 

obtained from the information about the spatial relationship between the detected objects. This 
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information is extracted by an object detector using geometric self-attention, in which these 

geometric weights are used to scale the self-attention score. 

Guo et al. [39] proposed a variation of self-attention called Normalized Self-Attention (NSA), 

which applies the normalization process to the hidden activations inside self-attention. They also 

introduced Geometry-aware Self-Attention (GSA) to overcome the transformer-based 

architecture’s limitation in modeling the geometry structure of detected objects in the input image. 

This is achieved by utilizing the relative geometric relationship between the input objects. 

Huang et al. [40] proposed Attention-on-Attention (AoA), which utilizes attention scores and 

current context to calculate “information vectors” and “attention gates.” Next, “attended 

information” is obtained via another layer of attention by applying an element-wise multiplication 

to both mentioned results of AoA. An illustration of this visual encoder is provided in Figure 11. 

 

Figure 11. Attention-on-Attention mechanism. 

Pan et al. [41] proposed the X-Linear attention block, which captures the second-order unimodal 

and multi-modal interactions by employing both channel-wise and spatial bi-linear attention 
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simultaneously. These X-linear attentions blocks are integrated together to form the X-Linear 

Attention Network (X-LAN), which encodes the region-level and higher-order interactions to 

extract the corresponding features.   

Cornia et al. [42] introduced the Meshed-Memory transformer (𝑀2), which utilizes priori 

knowledge in the image encoding process through additional memory vectors in the self-attention. 

The proposed model learns multi-level representations for the input image, and it can extract both 

low- and high-level features via a meshed connection between the encoders and decoders, which 

is shown Figure 12. 

 

Figure 12. The meshed connectivity between the encoders and decoders in Meshed-

Memory architecture. 

Dosovitskiy et al. [43] proposed Vision Transformer (ViT), which is a pure transformer-based 

architecture applied to a sequence of image patches. They proved that the utilization of CNNs in 

image processing is not necessary and causes inductive biases. ViT splits the input image into 

several patches and calculates their linear embeddings after they are flattened. Next, the positional 

embedding is added to preserve the actual positions of the patches in the original image. Finally, 
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the transformer encoder is fed with the sequence, which is usually pre-trained on a huge dataset 

and fine-tuned for a downstream task afterward. As it is shown in Figure 13, the image is divided 

into different patches, then the patches, along with their positional encodings, are passed to the 

encoder module to extract the features. Next, the Multi-Layer Perceptron Head (MLP Head) 

classifies the extracted features. 

 

Figure 13. Vision Transformer (ViT) pipeline proposed by [43]. 

Another method of tackling the image captioning task is by utilizing early vision-language fusion. 

Zhou et al. [44] proposed a unified Vision Language Pretraining (VLP) model, which utilizes a 

shared transformer for both encoding and decoding. Therefore, it can be fine-tuned for either 

vision-language understanding or generation. The VLP model can perform both bidirectional and 

sequence-to-sequence predictions after a pretraining phase over a huge dataset of image-text pairs. 



29 

 

 

2.3 Language Models 

The second major stage of an image captioning process is generating the linguistic descriptions, 

which is done by language models. The task of these language models is to predict the probability 

of a sequence of words occurring in a sentence. The generation process stops when the language 

model outputs a special end-of-sequence (EOS) token. Language models can be categorized into 

the following four groups based on their approaches: 1) LSTM-based. 2) CNN-based. 3) 

Transformer-based. 4) Vision-language early fusion. 

2.3.1 LSTM-based Language Models 

Recurrent Neural Networks (RNNs) have always been a popular choice for the generation of 

sentences in image captioning because of their ability to deal with sequential data. One of the most 

dominant variants of these networks is the Long Short-Term Memory or LSTM. 

Vinyals et al. [13] utilized a single-layer LSTM as their language model, in which a copy of the 

LSTM memory is created for each word in the generated sentence. The output of the visual encoder 

is fed to the LSTM as the initial hidden state, which leads to the prediction of the next word at 

each time-step by applying a Softmax activation function. This prediction is also based on the 

previous words in the ground-truth caption during training time and previously generated words 

in the testing time. Figure 14 is an illustration of the general architecture of a single-layer LSTM-

based language model.   
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Figure 14. Single-layer LSTM-based language model. (𝑾𝒊 represents the 𝒊𝒕𝒉 generated 

word in the sequence) 

Xu et al. [23] improved the model introduced by [13] via utilizing additive attention. The proposed 

model weights the importance of features extracted from different locations of the input picture. 

This weighting process is achieved by assigning a coefficient 𝛼 calculated by the attention 

mechanism. Therefore, the language model receives the weighted feature vectors (context vectors) 

to predict the next word. As it is shown in Figure 15, the LSTM layer receives the previous hidden 

state (ℎ𝑡−1), the previous generated word (𝑤𝑡−1), and the weighted feature vector from the 

attention module. The MLP head receives the current hidden state, the weighted feature vectors, 

and the output of the LSTM layer to generate the next word.    
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Figure 15. Single-layer LSTM with attention. 

The previous studies have shown that utilizing multiple layers of deep networks can lead to 

improvements in their performances. Donahue et al. [45] proposed Long-term Recurrent 

Convolutional Network (LRCN), which uses two layers of LSTM networks in the language model. 

At each time-step, the bottom-most LSTM receives the word embedding from the previous time-

step, which are encoded as one-hot vectors. It also receives the output of the CNN and passes the 

result to the second LSTM layer, which generates the words one by one at each time-step. This 

process is illustrated in Figure 16. 

 

Figure 16. Two-layer LSTM language model. (<BOS> is the beginning-of-sentence token, 

and <EOS> is the end-of-sentence token.) 
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Anderson et al. [28] proposed a bottom-up and top-down image captioning model, where the 

language generation is done by a two-layer LSTM structure. The first LSTM layer is characterized 

as a visual attention model to attend to spatial image features, and the second LSTM layer is 

considered the language model. The input to the first LSTM layer is the previously generated word, 

the previous hidden state, and the mean-pooled image features. On the other hand, the second 

LSTM layer’s input is the output of the attention LSTM, concatenated with the attended image 

features.  

 

Figure 17. Two-layer LSTM language model with attention. 

The general architecture of two-layer LSTM language models with attention is illustrated in Figure 

17, where the first LSTM layer receives the previously generated word (𝑤𝑡−1), the previous hidden 

states from the first LSTM layer (ℎ𝑡−1
𝑙𝑎𝑦𝑒𝑟1

), and the previous hidden state from the second LSTM 

layer (ℎ𝑡−1
𝑙𝑎𝑦𝑒𝑟2

). Next, the second LSTM layer receives the attention result along with the current 

hidden state to generate the next word.   
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2.3.2 Transformer-based and BERT-like Language Models 

The image captioning task can be considered as a sequence-to-sequence process, where a sequence 

of image features are utilized to generate a sequence of textual linguistic descriptions.  

 

Figure 18. Transformer-based architecture for language models. 

Vaswani et al. [46] proposed a transformer-based fully-attentive paradigm for the language 

generation task, which was adopted by numerous studies later on. The general pipeline of the 

transformer decoder which generates the textual description includes 1) a masked self-attention 

process. 2) a cross-attention mechanism where the words act as queries, while keys and values are 

the outputs of the last encoder layer. 3) a feed-forward network.  

In addition, BERT-like architectures are also gaining popularity in image captioning tasks, 

especially in studies that utilize pretraining techniques. An early fusion occurs between the textual 

and visual modalities in these models, which are also capable of leveraging pre-trained parameters 
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in their initialization stage. These parameters are calculated based on a pretraining process over 

huge textual corpora. 

2.4 Image Captioning Variants 

Image captioning techniques can be categorized based on the type of captions they generate, which 

can be either factual or stylized. Factual image captioning is focused on generating purely objective 

content-based descriptions. Over time, these descriptions have gotten increasingly accurate, but 

they lack personality, emotion, and other human-like attributes. However, since factual captions 

are more directly reporting the contents of a visual input, they are more suitable for medical and 

assistive technologies. 

On the other hand, stylized image captioning is an emerging topic utilizing linguistic techniques 

to convey specific feelings to the person reading the generated caption. These styles can be 

categorized based on both their linguistic style (e.g., humorous or romantic) and their sentiment 

(e.g., positive or negative). The main goal is to generate more appealing captions by incorporating 

human-like attributes in the generated text.  

The absence of a large-scale dataset containing stylized (image, text) pairs has also led to adopting 

semi-supervised approaches, usually exploiting an unpaired stylized corpus to extract different 

styles [47], [48], [49], [50]. Gan et al. [47] proposed StyleNet framework, in which the target style 

for generated captions can be controlled utilizing a proposed module called “factored LSTM.” This 

module factors parameters of the traditional LSTM (𝑊𝑥) into three matrices (𝑈𝑥, 𝑆𝑥, 𝑉𝑥) to 

memorize the linguistic patterns. It can be defined as follows: 

𝑊𝑥 = 𝑈𝑥𝑆𝑥𝑉𝑥, 
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where 𝑈𝑥 and 𝑉𝑥 are learnable matrices intended to model the factual style in the textual data, while 

𝑆𝑥 is a learnable matrix to model the different style-specific factors. The StyleNet framework 

incorporates both a dataset containing factual (image, text) pairs, and a stylized monolingual 

corpus. 

Mathews et al. [48] proposed SemStyle, which similarly generates stylized captions utilizing a 

paired dataset along with an unpaired stylized corpus with the core idea of separating style from 

semantics. Their proposed language model chooses the generated words from different 

vocabularies depending on the target style. The language model first utilizes the term generator to 

translate the visual input into appropriate semantic term representations; then the final stylized 

caption is generated using the language generator. 

 

Figure 19. Stylized vs. Factual captions generated by MSCap model [49]. 
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Guo et al. [49] proposed Multi-Style Image Captioning (MSCap), which follows an adversarial 

learning-based paradigm. First, the captions are generated by a style-dependent caption generator, 

and then a caption discriminator is used to distinguish whether the generated caption is real or not. 

These two components are employed in an adversarial manner to increase accuracy and generate 

more human-like captions. Next, a classifier is utilized to determine the style class of the caption. 

Moreover, a back-translation module is incorporated to guarantee the consistency of the generated 

captions with the corresponding visual inputs. Figure 19 shows the MSCap’s generated captions 

for two input images, where the captions describe each image in the following styles: factual, 

romance, humor, positive, and negative. 

2.5 Image Captioning Datasets 

There are several image captioning datasets publicly available, and each one offers different 

unique properties. Some of these datasets are mentioned below:  

 Microsoft Common Objects in Context or MS COCO [51] is a popular large-scale dataset 

consisting of 328K images, 91 object classes, and 5 captions corresponding to each image. 

The MS COCO dataset contains annotations useful for various tasks, such as object detection, 

image captioning, and key-points detection. 

 Visual Genome [33] is a unique dataset including different captions corresponding to 

different regions of the same image. It contains over 101K images from the MS COCO 

dataset, accompanied by information about attributes, relationships, scene graphs, question-

answer pairs, and region descriptions.     
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 Google’s Conceptual Captions [52] contains approximately 3.3 million images paired with 

natural language captions. These image-text pairs include a wider variety of styles since they 

have been directly collected from the internet. To be specific, the captions are collected from 

the alt-text HTML attribute associated with the images, and they have been utilized after a 

filtering process. The pipeline is illustrated in Figure 20, which consists of the following 

stages: image filtering, text filtering, image/text filtering, and text transformation. In the 

image filtering process, the images are filtered based on their size, aspect ratio, inappropriate 

content, and encoding format. In the text filtering stage, the alt-text is filtered according to 

the analysis of sentiment and part-of-speech (POS) annotations. The next step is image/text 

filtering, in which the consistency between the text and the image is examined and evaluated. 

Finally, the final caption is generated based on the original alt-text in the text transformation 

process. 
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Figure 20. The pipeline used for collecting Google's Conceptual Captions dataset by 

Sharma et al. [52]. 

 Flickr30K [53] consists of 31K images collected from Flickr and 5 ground-truth captions 

written by human annotators for each image. 

 FlickrStyle10K [47] has been collected based on the Flickr30K dataset, while, unlike the 

original dataset, it contains stylized captions for its 10K images. The styles include humorous, 

romantic, poetic, and neutral (factual). 

2.6 Performance Comparison 

In this section, the performances of the mentioned studies are compared based on various standard 

evaluation metrics in the image captioning field. Table 1 includes the results of the non-stylized 

image captioning models with respect to the BLEU [54], METEOR [55], ROUGE [56], and CIDEr 

[57] metrics. These results are obtained by performing the evaluation on the MS COCO [51] 



39 

 

 

dataset. On the other hand, Table 2 contains the results of the stylized image captioning models 

with respect to the BLEU, METEOR, and CIDEr metrics. The utilized dataset to evaluate these 

studies is the FlickrStyle10K [47]. These results are also categorized based on the following: 1) 

whether the training process is a multi-style paradigm or not, in which a single model learns to 

generate the captions in various styles. 2) The styles of the generated captions. (i.e., positive, 

negative, humorous, and romantic) 

It is worth mentioning that for all these metrics, the higher values indicate better performance. In 

addition, these metrics are discussed elaborately in chapter 6. 

Table 1: Results of the non-stylized image captioning models. 

 BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr 

Vinyals et al. [13] 71.3 30.9 25.4 53.0 94.3 

Karpathy et al. [14] 62.5 23.0 19.5 - 66.0 

Mao et al. [16] 68.5 27.9 22.9 50.4 81.9 

You et al. [19] 73.1 31.6 25.0 53.5 94.2 

Wu et al. [20] 73.0 31.0 25.0 53.0 92.0 

Chen et al. [21] 74.4 33.8 26.2 - 94.0 

Rennie et al. [22] 78.0 35.3 27.1 56.7 117.4 

Xu et al. [23] 70.5 27.7 24.1 51.6 86.5 

Li et al. [24] 74.6 33.5 26.4 55.0 103.7 

Chen et al. [26] 71.2 30.2 24.4 52.4 91.2 
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Table 1: (continued). 

Jiang et al. [27] 76.4 37.0 27.4 - 112.5 

Anderson et al. [28] 79.4 36.7 27.9 57.6 122.7 

Zha et al. [30] 80.1 37.9 28.1 58.2 121.6 

Guo et al. [31] 79.9 37.4 28.2 57.9 123.1 

Herdade et al. [38] 80.5 38.6 28.7 58.4 128.3 

Guo et al. [39] 80.8 38.8 29.0 58.7 126.3 

Huang et al. [40] 80.2 38.9 29.2 58.8 129.8 

Pan et al. [41] 80.8 39.5 29.5 59.2 132.0 

Cornia et al. [42] 80.8 39.1 29.2 58.6 131.2 

Zhou et al. [44] 80.9 39.5 29.3 59.6 129.3 

Donahue et al. [45] 71.8 30.6 24.7 52.8 92.1 

Yang et al. [34] 81.0 39.0 28.4 58.9 129.1 

Shi et al. [35] 80.8 38.9 28.8 58.7 129.6 

Yao et al. [36] 81.6 39.3 28.8 59.0 127.9 

Li et al. [37] 81.2 38.9 28.6 58.6 122.1 
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Table 2: Results of the stylized image captioning models. 

 Multi-style Style BLEU-1 BLEU-3 METEOR CIDEr 

 

Gan et al. 

[47] 

 

No 

Pos 45.3 12.1 12.1 36.3 

Neg 43.7 10.6 10.9 36.6 

Roman 13.3 1.5 4.5 7.2 

Humor 13.4 0.9 4.3 11.3 

 

Guo et al. 

[49] 

 

Yes 

 

Pos 46.9 16.2 16.8 55.3 

Neg 45.5 15.4 16.2 51.6 

Roman 17.0 2.0 5.4 10.1 

Humor 16.3 1.9 5.3 15.2 

 

Zhao et 

al. [50] 

 

Yes 

Pos 51.1 17.0 16.6 52.8 

Neg 49.2 18.1 15.7 59.4 

Roman 19.7 4.0 7.7 19.7 

Humor 19.8 4.0 7.2 18.5 
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2.7 Motivation 

As it is inferable based on the literature review, most of the previous studies are focused on 

generating purely objective content-based descriptions. Their proposed models tend to describe 

the visual input in a factual approach and a neutral tone. On the other hand, more recently, some 

studies have focused on generating stylized captions to improve linguistic appeal. These studies 

aim to make the generated captions more attractive and diverse. However, these models still 

describe a visual input in an objective and content-based paradigm, with a difference in the 

generated descriptions' wordings. 

This thesis is focused on an emotional-based approach to the image captioning task. We aim to 

develop a model capable of generating emotion-centric utterances based on various emotions, such 

as anger, sadness, contentment, and excitement. Another goal is to incorporate supervisory 

emotional signals by utilizing an emotional encoder in addition to the visual encoder and the 

language model in our image captioning pipeline. This causes a deeper connection between the 

reader and the generated captions on an emotional level. The ultimate goal is to propose a neural 

speaker capable of describing images based on the feelings conveyed by the shapes, colors, and 

other visual characteristics and not solely based on the objects in an input image. 
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Chapter 3  

Methods 

 

3 Methods 

In this chapter, we provide a definition of the different methods and techniques that are utilized in 

this thesis. However, the exact role of these methods in the proposed model and the interactions 

between them will be discussed in the following chapters. 

3.1 Mean Teacher Learning 

Mean teacher learning is a semi-supervised paradigm based on the interaction between two models 

referred to as the teacher model and the student model. In the first place, Samuli et al. [58] 

proposed a novel architecture in which the temporal ensembling maintains an exponential moving 

average of the target predictions, while the inconsistent predictions get penalized by taking the 

mean squared error between the predictions of both models. However, temporal ensembling had a 

slow pace in utilizing the learned information in the training process since the targets are updated 

only once per epoch. Hence, it was not efficient when applied to large-scale datasets.  

Tarvainen et al. [59] proposed mean teacher learning, in which the teacher model maintains an 

average of the student model’s weights consecutively during the training steps instead of the label 

predictions. Figure 21 shows an illustration of the interaction between the two models in the mean 

teacher learning technique, where the teacher model utilizes the Exponential Moving Average 

(EMA) of weights of the student model. The important part of the method is the consistency cost 

between these two models, which is defined formally as below: 



44 

 

 

𝐽(𝜃) = 𝐸𝑥,𝜂′,𝜂[‖𝑓(𝑥, 𝜃′, 𝜂′) − 𝑓(𝑥, 𝜃, 𝜂)‖2] , 

 

 

Figure 21. The interaction between the teacher model and the student model in mean 

teacher learning approach.  

where 𝐽(. ) is the consistency cost function, which is equal to the expecting value for the difference 

between the predictions of the student model (with the parameters 𝜃 and noise 𝜂) and the 

predictions of the teacher model (with the parameters 𝜃′ and noise 𝜂′). On the other hand, the 

classification cost is calculated according to the student model’s predicted class and the actual 

label, which can be based on a cross-entropy loss. At time-step 𝑡, the parameters  𝜃′ are updated 

based on the EMA of the successive parameters 𝜃. This is formally defined as the equation below: 

𝜃𝑡
′ = 𝛼𝜃𝑡−1

′ + (1 − 𝛼)𝜃𝑡 , 
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where 𝛼 is the weight decay indicating the intensity of the update. 

3.2 Knowledge Distillation 

The latent knowledge encapsulated within a larger network is often referred to as “dark 

knowledge” [60]. Knowledge Distillation (KD) [61] is the self-supervised process of transferring 

the dark knowledge from a bigger model to a smaller one, which has been shown that it can be 

utilized effectively in various vision-language tasks. The same process is called self-distillation 

when the models have equal sizes. In our case, the teacher model supplies an extra supervision 

signal to the student model to improve in imitating its behavior by providing predicted soft labels 

[62]. 

Neural networks usually pass the output logits 𝑙𝑖 through the Softmax function, which computes a 

probability 𝑝𝑖 each logit corresponding to its class. This process is done by comparing the 𝑙𝑖 with 

other logits: 

𝑝𝑖 =
𝑒𝑥𝑝(𝑙𝑖/𝜏)

∑ 𝑒𝑥𝑝(𝑙𝑗/𝜏𝑗 )
, 

where 𝜏 is the temperature of the Softmax function. The temperature value is usually set to 1, but 

higher temperatures can be utilized if softened probabilities are desired. The simplest form of 

distillation includes transferring the soft target distribution computed by the larger model to the 

distilled model, which is attained by being trained on a transfer set using a high temperature in its 

Softmax.  

Based on the output logits of the distilled model 𝑙𝑖, and each case in the transfer set, the cross-

entropy gradient 𝜕𝐶/𝜕𝑙𝑖 can be computed following the equation below: 
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𝜕𝐶

𝜕𝑙𝑖
=

1

𝜏
(𝑝𝑖 − 𝑠𝑖) =

1

𝜏
(

𝑒
𝑙𝑖
𝜏

∑ 𝑒
𝑙𝑗

𝜏𝑗

−
𝑒

𝑔𝑖
𝜏

∑ 𝑒
𝑔𝑗

𝜏𝑗

), 

where 𝑔𝑖 is the output logits of the larger model which lead to the corresponding soft target 

probabilities 𝑠𝑖. If the logits are of a lower magnitude compared to the temperature, this can be 

defined as: 

𝜕𝐶

𝜕𝑙𝑖
≈

1

𝜏
(

1 +
𝑙𝑖

𝜏

𝑁 + ∑
𝑙𝑗
𝜏𝑗

−
1 +

𝑔𝑖

𝜏

𝑁 + ∑
𝑔𝑗

𝜏𝑗

) 

If we assume that the logits of each transfer case have been zero-mean, which mean that we have 

∑ 𝑙𝑗 = ∑ 𝑔𝑗 = 0𝑗𝑗 , the equation can be written as: 

𝜕𝐶

𝜕𝑙𝑖
≈

1

𝑁𝜏2
(𝑙𝑖 − 𝑔𝑖), 

hence, the distillation is equivalent to minimizing 1/2(𝑙𝑖 − 𝑔𝑖)
2 in the high temperature limit, 

assuming we have ∑ 𝑙𝑗 = ∑ 𝑔𝑗 = 0𝑗𝑗  for each transfer case. It has been shown that using moderate 

temperatures works best while using very small distilled models that are not able to capture all the 

knowledge, which indicates that ignoring large negative logits is helpful for the distillation process. 

3.3 REINFORCE Algorithm 

Reinforcement learning is an area of machine learning focused on the science of training intelligent 

agents to take out a series of actions with a particular goal in a potentially complex environment. 

The approach for artificial intelligence to learn the actions is to associate different acts with 
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rewards or penalties while the agent tries to maximize the reward. The method of maximizing the 

reward is based on trial and error while correcting the actions based on the corresponding rewards. 

The only human involvement in this process is limited to modifying the environment and the 

reward and penalty settings. Another action that can be carried out by humans is to prevent the 

agent from exploiting the rules. In general, we can summarize the main components of a 

reinforcement learning system as below: 

 Input: The initial state where the agent begins searching for the solution from there. 

 Output: The algorithm can have multiple outcomes since there may be different solutions 

for the same problem. 

 Training: Feeding rewards and penalties to the agent during the process of solving the 

problem.  

 Policy: The mapping between an agent’s state at a given time to the action that should be 

carried out is called the policy. Basically, the policy indicates behaviour of the agent at a 

given time. 

 Reward: At each time-step, a reward value is passed to the agent by the environment. This 

value is determined according to the action taken by the agent at that time-step, while the 

agent’s objection is to maximize this reward value.  

 Value Function: Unlike the reward value, which determines the fitness of an action in an 

immediate sense, the value function is more focused on the long-term consequences of an 
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action. Basically, the value function predicts the potential reward that can be achieved in the 

future, based on the current state of the agent. 

One of the main challenges in reinforcement learning is the exploitation-exploration dilemma. In 

order to find the best solution, the agent should exploit the previously found good actions while 

exploring the environment to find better solutions.  

Williams [63] proposed REINFORCE algorithm where in each training step, each network 

parameter 𝑤𝑖𝑗 gets incremented by the value defined below: 

∆𝑤𝑖𝑗 = 𝛼𝑖𝑗(𝑟 − 𝑏𝑖𝑗)𝑒𝑖𝑗, 

Where 𝛼𝑖𝑗 is the learning rate, 𝑟 is the reinforcement value, 𝑏𝑖𝑗 is the reinforcement baseline, and 

𝑒𝑖𝑗 refers to the characteristic eligibility which is defined as 𝑒𝑖𝑗 = 𝜕 ln 𝑔𝑖/ 𝜕𝑤𝑖𝑗. The name of the 

REINFORCE algorithm comes from “REward Increment = Nonnegative Factor × Offset 

Reinforcement × Characteristic Eligibility,” which matches the structure of the equation. 

3.4 Self-Critical Sequence Training 

Policy gradient-based reinforcement learning methods, such as REINFORCE [63], have been 

utilized in image captioning to overcome the mismatch and the exposure bias between the 

optimizing function and the non-differentiable evaluation metrics [64], [65], [66]. Self-Critical 

Sequence Training (SCST) [67] is a special case of REINFORCE in which the model’s own test-

time inference is used to normalize the rewards it experiences rather than estimating the reward 

and the normalization method.  
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Rennie et al. [67] proposed that directly optimizing the CIDEr metric [57] through the SCST 

process during the test time can be a highly effective way to overcome the non-differentiability of 

such metrics and boost the performance significantly. The recurrent network (LSTM) in this model 

is considered the “agent,” while the multi-modal problem space containing words and images is 

considered the “environment.” It is worth mentioning that the CIDEr metric is designed 

particularly to evaluate generated captions in image captioning. This metric is calculated by 

comparing the generated caption with a set of ground-truth human-written captions. 

The action that is being carried out by the agent is predicting the next word, based on the policy 

𝑝𝜃 defined by the network’s parameters 𝜃. A reward value is returned to the agent after reaching 

to the end-of-sequence (EOS) token, which in this case is the CIDEr score of the generated caption. 

The objective is to minimize the negative expected reward: 

𝐿(𝜃) = −𝐸𝑤𝑖~𝑝𝜃
[𝑟(𝑤𝑖)], 

where 𝑟(. ) is the reward function, and 𝑤𝑖 = (𝑤1
𝑖 , 𝑤2

𝑖 , … , 𝑤𝑇
𝑖 ) is the word sampled from the model 

at time-step 𝑡. In addition, we can estimate 𝐿(𝜃) based on a single sample from 𝑝𝜃: 

𝐿(𝜃) ≈ −𝑟(𝑤𝑖),    𝑤𝑖~𝑝𝜃. 

To compute the gradient ∇θ𝐿(𝜃), the REINFORCE algorithm is utilized as follows: 

∇θ𝐿(𝜃) = −𝐸𝑤𝑖~𝑝𝜃
[𝑟(𝑤𝑖)∇θ log 𝑝𝜃(𝑤𝑖)]. 

We can estimate the expected gradient based on a single sample from 𝑝𝜃: 

∇θ𝐿(𝜃) ≈ −𝑟(𝑤𝑖)∇θ log 𝑝𝜃(𝑤𝑖). 
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We can generalize the policy gradient based on a reference reward or a baseline. This baseline can 

be any arbitrary function; however, it should not be dependent on the action 𝑤𝑖. The generalized 

gradient is formally defined as below: 

∇θ𝐿(𝜃) = −𝐸𝑤𝑖~𝑝𝜃
[(𝑟(𝑤𝑖) − 𝑏)∇θ log 𝑝𝜃(𝑤𝑖)]. 

This gradient expression can be written in a different form as shown below: 

∇θ𝐿(𝜃) = ∑
𝜕𝐿(𝜃)

𝜕𝑠𝑡

𝑇

𝑡=1

𝜕𝑠𝑡

𝜕𝜃
, 

where 𝑠𝑡 represents the Softmax function’s input. The following statement will be achieved by 

utilizing REINFORCE with a baseline 𝑏: 

𝜕𝐿(𝜃)

𝜕𝑠𝑡
≈ (𝑟(𝑤𝑖) − 𝑏) (pθ(𝑤𝑡|ℎ𝑡) − 1𝑤𝑡

𝑖), 

where 𝑤𝑡 is the next generated word in the sequence, and ℎ𝑡 is the hidden state at time-step 𝑡. 

As mentioned previously, in SCST the model’s own test-time inference will be used as the baseline 

for reward values which results to the following expression:  

𝜕𝐿(𝜃)

𝜕𝑠𝑡
= (𝑟(𝑤𝑖) − 𝑟(𝑤𝑡𝑡𝑖)) (pθ(𝑤𝑡|ℎ𝑡) − 1𝑤𝑡

𝑖 ), 

where 𝑟(𝑤𝑡𝑡𝑖) is the reward function based on the model’s test-time inference, which leads to 

promoting the generated samples outperforming the current test-time system and suppressing the 

generated samples inferior to the current test-time system. 
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Figure 22. Self-Critical Sequence Training using the CIDEr metric. 

3.5 Auxiliary Emotion Classification Tasks 

Emotions in ArtEmis dataset [68] are divided into nine emotional classes; we have amusement, 

awe, contentment, and excitement as positive emotions, while we have anger, fear, disgust, and 

sadness as negative emotions. In addition, a ninth class named something else has been considered 

to express having no particular emotions or an additional feeling not listed. Following the work of 

[68], we employ two classifiers for our auxiliary emotion classification tasks, which will be 

utilized in both the captioning process and evaluation. We are basically facing a 9-way 

classification problem corresponding to each emotional class. The first module is a text-to-emotion 

classifier to predict the dominant emotional class of an utterance. This task is achieved by utilizing 

a fine-tuned pre-trained Bert model [69] to classify utterances to the emotional class to which they 

most likely belong. The second module is an image-to-emotion classifier to predict the dominant 

emotional class of a visual input. The module utilized by [68] is a ResNet-32 encoder pre-trained 

on the ImageNet [15] dataset. 
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Chapter 4  

The Proposed Model 

 

4 The Proposed Model 

Neural Mean Teacher Learning-based Emotion-centric Speaker or Nemesis is the proposed neural 

speaker capable of leveraging emotional supervision signals in the caption generation process. In 

this chapter, we elaborate on the methodology, pipeline, architecture, and finally, the training 

strategies. 

4.1 Methodology 

The focus of this section is to provide an overview of the proposed model’s workflow, starting 

from the model receiving an input image and ending with the generation of the caption’s last token. 

Further details about each step are discussed in the following sections. 

In the first step, the input image is passed to the visual encoder, which extracts the features and 

passes them to the language models. In the emotionally grounded version of the model, an 

encoding with respect to the dominant emotional class of the visual input is concatenated with the 

extracted visual features. The image-to-emotion classifier is responsible for detecting the dominant 

emotional class, while the emotional encoder obtains the corresponding emotional encoding.  

In each language model, the first layer of the memory-augmented encoder receives the visual 

features and produces the key, value, and query matrices for the bi-directional attention process. 

In addition, the bi-directional attention process leverages additional memory slots, which are 

learnable vectors to encode the priori knowledge. The attention result is then passed to a feed-
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forward network that gives us the final output of the memory-augmented encoder. Finally, this 

output is passed to both the next encoder layer and all the decoder layers via the meshed-like 

connectivity. The next encoder layer repeats the exact same steps. 

On the other hand, the meshed decoder is responsible for generating the words one-by-one at each 

time-step. The meshed decoder receives the outputs of all encoder layers along with the input 

sequence of vectors. The meshed attention operator connects all the encoder outputs to the input 

sequence through gated cross-attentions. The query vectors for the cross-attention operation are 

obtained by applying a right-masked self-attention to the input sequence, while the key and value 

vectors are obtained according to the encoder outputs. Next, the output of the right-masked self-

attention is concatenated with the cross-attention results. The result of the concatenation is then 

passed to a fully-connected network and a Softmax function to calculate a probability over words 

in the vocabulary. This process also repeats in each decoder layer to improve the generation of the 

next tokens and the understanding of the textual input. The caption generation process ends when 

the model predicts the end-of-sequence token. Figure 23 shows the flow diagram of the mentioned 

steps of the proposed model’s workflow. 
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Figure 23. The flow diagram of the different steps of the proposed model’s workflow. 

4.2 Pipeline 

The pipeline of Nemesis, as shown in Figure 24, consists of a visual encoder extracting visual 

features from the input image, then passing them to both the student model and the teacher model. 

Inspired by the work of Barraco et al. [70], both models have identical architectures linked based 

on two types of interactions: (1) the self-distillation process, where the teacher model provides 

regression targets via passing its predicted logits as soft labels to the equally sized student model 

[62]. This extra supervision signal enhances the ability of the student model to imitate the behavior 

of the teacher model. (2) The teacher model performs a form of model ensembling by updating its 
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parameters 𝜃𝑡 according to the exponential moving average (EMA) [71] of the student model’s 

parameters 𝜃𝑠. This updating procedure can be formally defined by the equation below: 

𝜃𝑡 ← 𝜆𝜃𝑡 + (1 − 𝜆)𝜃𝑠, 

where 𝜆 is a value between [0, 1], indicating the intensity of this update. The exact role of these 

interactions in the training process is discussed in the training strategies (Section 4.4). 

 

Figure 24. The interactions between our two language models: (1) the EMA update 

according to the student model’s weights. (2) The self-distillation process using the teacher 

model’s predicted logits passed to the student model, which will be treated as soft labels. 

4.2.1 Visual Encoding  

During the experimental studies of this research, multiple types of visual encoders have been 

employed in our proposed model. We will elaborate on each of these modules in the following: 

 Contrastive Language-Image Pre-Training or CLIP [72] is a neural network trained on 

a huge dataset of 400M image-text pairs. This multi-modal pre-trained model has the 

“zero-shot” ability [73], [74], where the model classifies unseen data based on very few 

or no labeled examples. 
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We use the CLIP-RN50×16 pre-trained visual encoder introduced within the CLIP study, 

which is based on a ResNet-50 structure following EfficientNet-style [75] scaling. In 

EfficientNet-style scaling, the dimensions of depth, width, and resolution of a network are 

scaled by using a compound coefficient. In addition, the improvements proposed by [76] 

have been leveraged, alongside the utilization of blur pooling and anti-aliasing filters [77]. 

He et al. [76] proposed ResNet-D, which is a modification of the standard ResNet 

architecture, where 75% of the input feature maps are ignored by the downsampling 

block’s 1×1 convolution. The downsampling block of the ResNet network is responsible 

for reducing the information in the case of deeper networks. Figure 25 illustrates the 

downsampling block of the ResNet-D architecture, where a 2×2 average pooling layer 

with a stride of 2 is added before the convolution, so no information gets ignored.  

 

Figure 25. The downsampling block in the ResNet-D architecture. 

On the other hand, the blur pooling process is done by replacing the standard average 

pooling filters with stronger filters to achieve a better shift-equivariance, while anti-

aliasing filter selection allows for a choice of the blur kernel. In addition, the pooling 
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mechanism has been changed from utilizing global pooling layers to attention pooling 

layers. 

The CLIP-RN50×16 has been pre-trained for 32 epochs with a batch size of 32768, using 

an Adam optimizer with a weight decay of 0.2, and a learning rate of 0.0004 with 2000 

warm-up iterations.  

 Bootstrapping Language-Image Pre-training or BLIP [78] is a pre-trained multi-modal 

model similar to CLIP. In our model, we have utilized the BLIP-ViT-L/16 variant of the 

BLIP visual encoders, which utilizes a framework based on the Vision Transformer [43]. 

Therefore, this visual encoder follows a purely transformer-based architecture dividing the 

input images into different patches. These patches and their positional encodings are 

embedded sequentially along with the CLS token to represent the visual input.  

The dataset utilized in BLIP is LAION400M [79], which has been gathered from the web 

through web scraping techniques. A novel method called Captioning and Filtering 

(CapFilt) has been employed to avoid low-quality and noisy data entries. Figure 26 

illustrates the CapFilt process, where the captioner generates the descriptions for the 

collected images from the web, then the noisy captions are removed through the filtering 

process. Unlike CLIP, which was trained from scratch, the visual encoder in BLIP is 

initialized based on a ViT pre-trained on the ImageNet [15]. Then, the visual encoder is 

pre-trained for 20 epochs on the LAION400M dataset using a batch size of 2400, using 

the AdamW [80] optimizer with a weight decay of 0.05. The learning rate is warmed-up 

to 0.0002 and linearly decayed with a rate of 0.85.   
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Figure 26. The CapFilter process in BLIP [78]. 

 Faster RCNN pre-trained on Visual Genome [81] is the third visual encoder used in this 

research, which is a ResNet101 network pre-trained on the Visual Genome [33] dataset. The 

pre-training has been done for 20 epochs with a batch size of 4, a learning rate of 0.001 with 

a decay of 5. Figure 27 shows the detected object-bounding-boxes by this visual encoder.  

 

 

Figure 27. The object-bounding-box detection by [79]. 
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4.2.2 Emotional Grounding 

In this process, at each time-step, an additional feature according to the dominant emotional class 

of the input image is also passed to the language models alongside the extracted visual features. 

This extra emotional signal will enable the model to decouple the emotion conveyed during the 

caption generation process from the input image’s dominant emotional class. This is inspired by 

how the human mind works while describing an emotional response, where we decide how to feel 

about something first, and then we put it into words. The dominant emotional class is selected 

utilizing the image-to-emotion classifier during evaluation. This process is illustrated in Figure 28. 

The neural speaker leveraging this supervision signal is called Emotionally Grounded Nemesis or 

EGNemesis.  

 

Figure 28. The emotional grounding process, in which the image-to-emotion classifier 

detects the dominant emotion-class, then a corresponding signal is concatenated to the 

visual encoding by the emotion encoder. 

For the image-to-emotion classifier, a ResNet-50 classifier pre-trained on the Stylized-ImageNet 

dataset (SIN) [82] has been utilized. Since we are dealing with artworks and sketches as our visual 

inputs, the textures mostly differ from the ones in the real world. On the other hand, convolutional 

neural networks trained on the standard ImageNet [15] suffer from being biased towards a texture-

based objection. For example, if there is a cat with elephant-like skin in the image, the model 
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classifies it as an elephant. Therefore, it was necessary to choose Stylized-ImageNet to overcome 

this bias. The local textures of images in Stylized-ImageNet have been distorted; however, the 

shapes are kept the same to increase the shape bias. Hence, we basically want our classifier to 

focus on shapes rather than textures. The style-transfer in Stylized-ImageNet has been achieved 

using the Adaptive Instance Normalization (AdaIN) [83] technique to change the original style to 

the style of a randomly selected painting. 

Figure 29 shows an example style-transfer of an original ImageNet picture. The local textures are 

heavily distorted, but the general shapes have remained intact. Hence, this encourages the classifier 

to detect objects based on the shapes rather than the local textures.  

It is worth mentioning that the image-to-emotion classification task is an auxiliary procedure, and 

the direct accuracy is not important. In chapter 6, we will see that our model performs better with 

this proposed classifier in comparison with utilizing the original image-to-emotion classifier 

utilized by [68]. 
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Figure 29. The style-transfer of an original ImageNet picture in the Stylized-ImageNet 

dataset [82]. 

4.3 Architecture 

Both language models follow the same architecture consisting of a stack of memory-augmented 

encoders and a stack of meshed decoders [42]. The architecture of both the teacher model and the 

student model is illustrated in Figure 30, which consists of a stack of memory-augmented encoders 

and a stack of meshed decoders. The memory-augmented encoder encodes the multi-level visual 

relationships leveraging the priori knowledge provided by the memory vectors. The meshed 

decoder generates the textual tokens leveraging the meshed connectivity illustrated by the red 

arrows in the figure. 
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Figure 30. The architecture of both the teacher model and the student model. 

4.3.1 Memory-augmented Encoder 

Memory-augmented encoder utilizes bi-directional attention to process the visual features received 

from the visual encoder. However, using only bi-directional attention will deprive us of 

incorporating any priori knowledge in our encoding procedure. Hence, we utilize additional 

independent learnable memory vectors along with the key and value vectors to encode the 

additional priori knowledge. Finally, the encoder’s output is the result of a feed-forward network 

applied to the memory-augmented bi-directional attention result. The outputs of all encoder layers 

are passed to each decoder layer via a meshed-like connectivity. The memory augmented attention 

is formally defined by the equation below: 

𝑀𝑒𝑚𝐴𝑢𝑔𝑎𝑡𝑡(𝑋) = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑊𝑞𝑋, 𝐾𝑀𝑒𝑚𝐴𝑢𝑔, 𝑉𝑀𝑒𝑚𝐴𝑢𝑔), 

𝐾𝑀𝑒𝑚𝐴𝑢𝑔 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑊𝑘𝑋, 𝑀𝑒𝑚𝑘), 

𝑉𝑀𝑒𝑚𝐴𝑢𝑔 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑊𝑣𝑋, 𝑀𝑒𝑚𝑣), 
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where 𝑋 is the input set, 𝑊𝑞 , 𝑊𝑘, 𝑊𝑣 are matrices of learnable weights, 𝑀𝑒𝑚𝑘 and 𝑀𝑒𝑚𝑣 are 

learnable memory matrices. 

4.3.2 Meshed Decoder 

Our decoder predicts the next word in an auto-regressive manner according to both the previously 

generated words and the encoder outputs. It applies right-masked self-attention to process the input 

sequence and utilizes cross-attention to process the encoder outputs received through the meshed-

like connection. This meshed-like connectivity enables our model to extract both low-level and 

high-level features through a meshed cross-attention process. The cross-attention module uses 

queries based on the self-attention results and keys and values from the encoder outputs. Finally, 

the output of the position-wise feed-forward layer gives us the output logit at each time-step. The 

meshed cross-attention process is formally defined by the equation below: 

𝑀𝑒𝑠ℎ𝑒𝑑𝐴𝑡𝑡(�̂�, 𝑌) = ∑ 𝛾𝑖 ⊙

𝑁

𝑖=1

𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡(�̂�𝑖, 𝑌), 

where �̂�𝑖 is the 𝑖𝑡ℎ encoder output, 𝑌 is the input sequence of vectors, 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡(. , . ) is the 

encoder-decoder cross-attention function, and 𝛾𝑖 is a learnable matrix representing the contribution 

of the 𝑖𝑡ℎ encoder layer along with its relevance importance compared to other encoder layers. The 

cross-attention function is defined by the equation below: 

𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡(�̂�𝑖 , 𝑌) = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑊𝑞𝑌, 𝑊𝑘�̂�𝑖, 𝑊𝑣�̂�𝑖), 

where 𝑊𝑞 , 𝑊𝑘, 𝑊𝑣 are matrices of learnable weights. 
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4.4 Training Strategies 

The purpose of the training process in image captioning is to optimize the model to generate a 

proper linguistic description for an image. At each time-step, the model predicts the most probable 

word according to a learned distribution over the vocabulary, based on both the previously 

generated words and the visual input. Hence, the prediction is a unigram-based process, which is 

based on a 1 to n-gram input, where n is the number of previously generated words. One of the 

most popular approaches for this process is to maintain several sequence candidates and choose 

between them at the final step. This will avoid the issue of accumulated errors that can happen 

with maintaining a single sequence during the generation process. 

Our training stage includes two phases: 1) cross-entropy (XE) training. 2) SCST fine-tuning. 

4.4.1 Cross-entropy (XE) Training 

In this phase, the student model faces two objectives. The first objective is to optimize the cross-

entropy loss according to the previously generated utterances, the input image, and the model 

parameters. This process is formally defined by the equation below: 

ℒ(𝜃) = 𝔼𝑥~𝐷 ∑ log(𝑢𝜏|𝑢𝑘<𝜏, 𝑖, 𝜃)𝜏 , 

where 𝜃 is the model parameters, 𝑢𝜏 is the generated utterance at time-step 𝜏, and 𝑖 is the input 

image. Cross-entropy loss optimizes the probability of each word in the ground-truth caption 

without considering the longer-range dependencies between the words in the generated sequence. 

The second objective for the student model is to optimize the self-distillation loss with respect to 

the student model’s parameters. The self-distillation loss is defined as the Mean Squared Error 

(MSE) between the output logits of both models. This process follows the expression below: 
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min
𝜃𝑠

∑ (𝑝𝑡,𝜏 − 𝑝𝑠,𝜏)
2

𝜏 , 

where 𝑝𝑡,𝜏 and 𝑝𝑠,𝜏 are the output logits over the vocabulary of N words at time-step 𝜏 for the 

teacher model and the student model, respectively. 

The next step is the EMA update of the teacher model’s parameters 𝜃𝑡 based on the student model’s 

parameters 𝜃𝑠. This process is done after each Stochastic Gradient Descent (SGD) update of the 

student model. It will enable the teacher model to keep up with the improvement of the student 

model in a stable and steady manner. Algorithm 1 is the pseudocode for the emotionally grounded 

version of the cross-entropy (XE) training loop, in which the emotional encodings and the visual 

encodings are concatenated in the teacher and student models, as depicted in Figure 28. 

 



66 

 

 

#lambda: the momentum of the teacher model’s update 

#I: the input image, E: the encoded emotional class, U: the utterance 

#tm, sm: the teacher model and the student model 

 

for I, U in dataloader: 

 t = tm(I.concat(E), U)    #teacher output 

 s = sm(I.concat(E), U)    #student output 

 

 loss = XE(softmax(s, dim=-1), U) + MSE(t, s) 

 loss.backward()     #backpropagate 

 

 update(sm)      #Stochastic Gradient Descent 

 tm.parameters = lambda * tm.parameters + (1 – lambda) * sm.parameters 

 

def MSE(teacher, student): 

 teacher = teacher.detach()   #stop gradient 

 return (teacher – student).square().mean() 
 

Algorithm 1. The cross-entropy (XE) training loop. 

4.4.2 SCST Fine-tuning 

This phase is a special case of REINFORCE [63], where the idea is to weight the samples 

outperforming the current test-time model positively and, in contrast, weight the samples inferior 

to the current test-time model negatively. This weighting process is done via the reward function 

utilized to assign a proper score to the generated utterances at each time-step. For this purpose, the 

CIDEr-D [57] metric has been used as the reward function, and we use the model’s own test-time 

inference to normalize the rewards. Specifically, at each time-step, the top-1 utterance in each of 

the 𝑘 returned beams is assigned with a proper reward, and the average of the rewards is used as a 

baseline to normalize them and reduce the variance.  
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This phase enables us to overcome the non-differentiability of such metrics and boost the 

performance significantly. The SCST-based fine-tuning process is formally defined by the 

expression below: 

∇𝜃ℒ(𝜃) = −
1

𝑘
∑ ((𝑟(𝑢𝑗) − ((∑ 𝑟(𝑢𝑗))/𝑘))𝑗 ∇𝜃 log 𝑝(𝑢𝑗))𝑘

𝑗=1 , 

where 𝑢𝑗 is the 𝑗-th utterance in the beam, 𝑟(. ) is the reward function, (∑ 𝑟(𝑢𝑗))/𝑘𝑗  is the average 

of rewards to normalize the value.  

The utilization of other metrics such as Emotional-Alignment [68] has been experimented as well. 

In this metric, the text-to-emotion classifier is utilized to predict the emotional class of the 

generated caption, then it is compared to the dominant emotional class of the ground-truth 

captions, and the percentage of matches is our score. However, the results were not acceptable due 

to the high variance of such metrics. It is worth mentioning that following the work of [68], a fine-

tuned pre-trained Bert model [69] has been utilized as the text-to-emotion classifier. 
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Chapter 5  

Experimental Settings 

 

5 Experimental Settings 

In this chapter, we will have a more experimental approach to discuss the proposed model in this 

research. We will discuss the dataset, utilized resources, implementation environment, tools, 

frameworks, and hyperparameters. 

5.1 Dataset 

The ArtEmis dataset [68] has been utilized for training and evaluating our proposed model. It 

contains 454,684 emotion-centric utterances related to 80,031 artworks publicly available in the 

WikiArt1 dataset. These artworks include 27 styles of paintings created between the 15th and 21st 

centuries. These painting styles are Abstract Expressionism, Action Painting, Analytical Cubism, 

Art Nouveau Modern, Baroque, Color Field Painting, Contemporary Realism, Cubism, Early 

Renaissance, Expressionism, Fauvism, High Renaissance, Impressionism, Mannerism, Late 

Renaissance, Minimalism, Naïve Art Primitivism, New Realism, Northern Renaissance, 

Pointillism, Pop Art, Post Impressionism, Realism, Rococo, Romanticism, Symbolism, Synthetic 

Cubism, and Ukiyo-e. These styles include paintings with different levels of abstraction, colors, 

forms, shapes, values, and textures. Figure 31 shows an example from the ArtEmis dataset, which 

includes multiple emotional responses to the same artwork. 

                                                           
1
 https://www.wikiart.org 
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The reason for using artworks is that they are the best tools to trigger emotional responses. Through 

Amazon’s Mechanical Turk (AMT) service, 6,377 annotators have been recruited to create a 

corpus of 36,347 distinct words, while the utterances include abstract concepts (e.g., love or 

freedom) and a wide variety of similes and metaphors. For each artwork, at least five annotators 

have expressed their emotional responses while explaining the reasons. Figure 32 shows an 

example AMT interface which has been utilized for the data collection, where the annotators first 

select the emotional response, then they explain the reason for choosing that specific emotion.     

 

Figure 31. An example from the ArtEmis dataset containing multiple emotional responses 

to the same artwork. You can see the different descriptions along with their corresponding 

emotional class (in bold font). 

Each utterance belongs to one of these nine emotional classes: amusement, awe, contentment, and 

excitement as positive emotions, and anger, fear, disgust, and sadness as negative emotions. In 

addition, a ninth class named something else has been considered to express having no particular 

emotions or an additional feeling not listed. Efforts have been made to include at least one negative 
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and one positive emotional response for each artwork. Partitions of 85%, 5%, and 10% have been 

considered for train, validation, and test splits, respectively. 

 

Figure 32. AMT interface utilized for the data collection of ArtEmis [68]. 

5.2 The Digital Research Alliance of Canada  

The Digital Research Alliance of Canada (the Alliance) is an organization responsible for the 

coordination of Canada’s advanced research computing (ARC) platform. A total of six national 

clusters have been installed, which offer various computational services, resources, and software 

packages. These clusters are Arbutus, Béluga, Cedar, Graham, Narval, and Niagara.  

In this research, the Graham cluster has been utilized by accessing the provided virtual machine 

through an SSH connection. Users can configure a cloud account and specify a computing 

environment according to their requirements. The cloud services also offer shared resources for 

the researchers to collaborate and share various contents. The Graham cluster offers a total volume 

of 133TB for the home space while offering a total volume of 3.2PB and 16PB for the scratch and 

project spaces, respectively. The home space is the location for the home directories, the scratch 
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space is used for active or temporary storage while the computational jobs are running, and the 

project space is a large adjustable storage dedicated per project. 

5.2.1 GPU Types 

The nodes in the Graham cluster offer a total of 520 GPU devices to provide the computational 

power required for various research purposes. This includes 320 NVIDIA P100 Pascal GPUs, 56 

NVIDIA V100 Volta GPUs, 16 NVIDIA V100l Volta GPUs, and 144 NVIDIA T4 Turing GPUs. 

The P100 Pascal GPUs offer 12GB of HBM2 memory, and they are high-performance cards used 

for all purposes. The V100 Volta GPUs offer 16GB of HBM2 memory, and they provide twice the 

computational power compared to P100 GPUs for standard purposes, while they provide 8x 

computational power for deep learning computations by using the tensor core computation units. 

The V100l Volta GPUs are similar to the V100 GPUs with the difference of providing 32GB of 

HBM2 memory and also utilizing NVIDIA NVLink interconnection, increasing the scaling 

capabilities in high-performance computing (HPC). Finally, the NVIDIA T4 Turing GPUs offer 

16GB of GDDR6 memory, and they are specifically designed to handle deep learning workloads. 

However, the T4 GPUs lack efficiency in double precision computations, which occupy 64 bits in 

memory instead of 32 bits. They also offer tensor core computation units; however, the V100 Volta 

GPUs are 2.2x-3.6x faster than the T4 Turing GPUs. 

5.2.2 Horovod 

The Digital Research Alliance of Canada also offers the option of utilizing Horovod to use multiple 

GPUs simultaneously. Horovod is a framework originally designed by Uber for distributed deep 

learning training. It helps reduce the training time by a matter of minutes and hours, or even days 

and weeks, based on how many GPUs are incorporated in the computation.  
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In Horovod, users can scale up the computation to run up to hundreds of GPUs by only writing a 

few lines of Python code. It is easy to use Horovod with different machine learning frameworks 

once configured, such as PyTorch, TensorFlow, and Keras. Horovod provides the same level of 

control as the DistributedDataParallel class in PyTorch effortlessly by abstracting away the 

configuration of process groups and handling environment variables of the cluster scheduler. In 

this research, Horovod has been utilized while training with the BLIP [77] visual encoder.   

5.3 Visual Encoding Modes 

The visual encoding process has been done in two different approaches based on the timing of the 

object-bounding-box detection. These modes are elaborated in the following: 

  Online Visual Encoding: The object-bounding-box detection is done during the training 

phase in real-time. The CLIP-RN50×16 [72] and BLIP-ViT-L/16 visual encoders have 

been employed in this approach. In training with the CLIP visual encoder, a single 

NVIDIA V100 Volta GPU has been utilized, and each training epoch takes ~4 hours in 

the cross-entropy (XE) training stage and ~6 hours in the SCST fine-tuning phase. On the 

other hand, while training with the BLIP visual encoder, two NVIDIA V100l Volta GPUs 

were utilized via the Horovod framework, and each training epoch takes ~1 hour in the 

cross-entropy (XE) training stage. In the SCST fine-tuning, a single NVIDIA V100l Volta 

GPU has been utilized, where each epoch takes ~7 hours.       

 Offline Visual Encoding: The object-bounding-box detection is done separately and 

before the training phase. The detections are stored in a .TSV document for further 

utilization during the training process. A Tab-Separated Values (TSV) file stores data in a 

table structure, where each separate line represents a record in the table, and the columns 
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are separated by tabs. The “Faster RCNN pre-trained on Visual Genome” [81] visual 

encoder has been employed in this visual encoding mode. Each cross-entropy (XE) 

training epoch takes ~1 hour on a single NVIDIA P100 Pascal GPU. However, the SCST 

fine-tuning was not done in this mode because of the incompetent results.  

5.4 Implementation Details 

The utilized framework in this research is PyTorch [84], which is a framework based on Python 

and the Torch [85] library. It is open-source and free and can be utilized to train and develop neural 

networks in deep learning models. The back-propagation process in neural networks is handled by 

computation graphs, where the neural network’s nodes and their connections are represented by 

the computation graph’s nodes and edges. Unlike most other popular libraries like TensorFlow 

[86], PyTorch employs a dynamic computation approach, allowing it to build complex 

architectures more flexibly. In addition, most Python debugging tools can be integrated because 

of the dynamic graph computations at run-time. This framework provides various machine 

learning packages and is compatible with multiple Python-based libraries, such as NumPy and 

SciPy. It is worth mentioning that PyTorch is also programmable via C/C++ since it shares the 

backend with Torch. However, a Python-based implementation has been done in this research. 

Furthermore, the following Python packages have been utilized: torch, torchvision, tensorboard, 

nltk, pandas, scipy, scikit-learn, plotly, Pillow, dask, traitlets, nbconvert, MarkupSafe, tifffile, 

decorator, networkx, ipython, ipykernel, jupyter, tqdm, seaborn, termcolor, scikit-image, 

PyWavelets, symspellpy, cycler, cython, fonttools, ftfy, kiwisolver, matplotlib, packaging, psutil, 

pycocotools, pyparsing, python-dateutil, wcwidth, numpy, timm, fairscale. 
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Regarding the hyperparameters, for the cross-entropy training and SCST fine-tuning stages, batch 

sizes of 50 and 30 have been considered, respectively. In the text-to-emotion classifier’s training, 

GloVe word embeddings [87] have been utilized for word representation. Global Vectors for word 

representations or GloVe is a tool to capture the meaning, semantics, and context of different 

words. The word embeddings in GloVe are obtained based on the aggregation of the global word 

co-occurrence matrices from a given corpus. The co-occurrence matrix contains the frequency of 

specific pairs of words occurring together, as shown in Figure 33.  

 

Figure 33. Co-occurrence matrix in GloVe. 

We use different statistic measurements to draw relationships between the words. Instead of using 

the co-occurrence probabilities directly, we use the ratios of co-occurrence probabilities as a 

starting point to get the word embeddings. GloVe’s objective is to minimize the difference between 

the dot product of two word-vectors and the logarithm of their number of co-occurrences. This 

process is formally defined as below: 

𝐽 = ∑ 𝑊(𝑋𝑖𝑗)(𝑤𝑖
𝑇�̂�𝑗 + 𝑏𝑖 + �̂�𝑗 − log 𝑋𝑖𝑗)

2
𝑉

𝑖,𝑗=1
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where 𝑤𝑖 and 𝑏𝑖 are the vector and bias for word 𝑖, �̂�𝑗 and �̂�𝑗 are the vector and bias for word 𝑗, 

𝑋𝑖𝑗 is the number occurrences of word 𝑖 in the context of word 𝑗, and 𝐽 is the weighted least squared 

objective.  

In the captioning model’s training phase, Byte Pair Encoding (BPE) [88] method has been utilized 

to represent the words. The first step is to initialize the symbol vocabulary, where each word is 

represented by a sequence of characters ending with a special end-of-sequence symbol “.”. The 

algorithm iteratively counts the occurrences of symbol pairs and replaces the most frequent symbol 

pair (“X,” “Y”) with a new symbol, “XY”. This merging process produces an n-gram character, 

and the frequent n-gram characters will merge into a single symbol eventually. In general, the BPE 

algorithm ensures that the frequent words are represented as a single token in the vocabulary, while 

the rare words are represented as two or more subword tokens.  

The sinusoidal positional encodings [46] have been employed to represent word positions. These 

positional encodings have the same dimension as the input embeddings; hence, they can get 

summed. The sine and cosine functions of different frequencies have been utilized: 

𝑃𝑜𝑠𝐸𝑛𝑐(𝑝𝑜𝑠,2𝑑) = sin (𝑝𝑜𝑠/100002𝑑/𝑑𝑚𝑜𝑑𝑒𝑙), 

𝑃𝑜𝑠𝐸𝑛𝑐(𝑝𝑜𝑠,2𝑑+1) = cos(𝑝𝑜𝑠/100002𝑑/𝑑𝑚𝑜𝑑𝑒𝑙), 

where 𝑝𝑜𝑠 is the position, 𝑑 is the positional encoding dimension, and 𝑑𝑚𝑜𝑑𝑒𝑙 is the embedding 

dimension. Since for each arbitrary fixed offset 𝑘, 𝑃𝑜𝑠𝐸𝑛𝑐𝑝𝑜𝑠+𝑘 is a linear function of 𝑃𝑜𝑠𝐸𝑛𝑐𝑝𝑜𝑠, 

the model can attend according to the relative positions. 
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Three layers of both encoders and decoders have been utilized, each with a dimensionality of 512. 

The emotional dimension is equal to 10, along with a feed-forward dimensionality of 2058 in 

EGNemesis and 2048 in Nemesis and a head-number of 8. The memory size has been set to 40. In 

addition, a dropout of 0.1 is applied to each sub-layer output. The position-wise feed-forward 

network applies identically to each position separately. 

In a single attention function, the keys, queries, and values have a dimensionality of 512, while in 

multi-head attention, we use 8 different learned linear projections to 𝑑𝑘𝑒𝑦, 𝑑𝑞𝑢𝑒𝑟𝑦, and 𝑑𝑣𝑎𝑙𝑢𝑒 

dimensions. Then, the attention function is applied to each of these projections in parallel, which 

leads to 𝑑𝑣𝑎𝑙𝑢𝑒-dimensional output values. The concatenation of these output values will give us 

the final result of the multi-head attention. This process which is also illustrated in Figure 34, 

follows the below equation: 

𝑀𝑢𝑡𝑙𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑(1), ℎ𝑒𝑎𝑑(2), … , ℎ𝑒𝑎𝑑(𝑛))𝑊𝑂 , 

ℎ𝑒𝑎𝑑(𝑖) = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄
𝑖 , 𝐾𝑊𝐾

𝑖 , 𝑉𝑊𝑉
𝑖), 

where 𝑊𝑄
𝑖 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘𝑒𝑦 , 𝑊𝐾

𝑖 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘𝑒𝑦 , 𝑊𝑉
𝑖 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣𝑎𝑙𝑢𝑒 , and 𝑊𝑂 ∈ ℝ𝑛𝑑𝑣𝑎𝑙𝑢𝑒×𝑑𝑚𝑜𝑑𝑒𝑙  

are the projection matrices. Since we are using 8 attention heads, the dimensions are 𝑑𝑣𝑎𝑙𝑢𝑒 =

𝑑𝑘𝑒𝑦 = 𝑑𝑚𝑜𝑑𝑒𝑙/8 = 64. 
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Figure 34. Multi-head attention. 

Adam [89] optimizer has been employed in all experiments along with a beam size of 5. In the 

cross-entropy training, the typical transformer learning rate scheduling strategy [46] has been 

utilized with a 10,000 iteration warmup. While in the SCST fine-tuning phase, a fixed learning 

rate of 5 × 10−6 has been considered, with a momentum λ of 0.999 for the teacher model. 
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Chapter 6  

Evaluation and Results 

 

6 Evaluation and Results 

The evaluation is one of the most important steps of research since it allows us to measure the 

performance of the proposed model. This chapter will discuss the evaluation metrics, ablation 

studies, and a comparison with the state-of-the-art. 

6.1 Evaluation Metrics 

In this research, we employ the following evaluation metrics: BLEU [54], METEOR [55], ROUGE 

[56], CIDEr [57], Emotional-Alignment [68]. These metrics are elaborated on in this section.  

6.1.1 BLEU 

The BiLingual Evaluation Understudy or BLEU metric [54] is an algorithm to evaluate the quality 

of a machine-generated text by comparing it to a set of ground-truth reference texts. The result is 

a value between 0 and 1 depending on the similarity, with values closer to a score of 1 indicating 

more similarity. However, some essential factors such as grammatic correctness and intelligibility 

are not considered in this metric. In addition, the BLEU metric is biased towards assigning higher 

scores to shorter texts. 

If we have a set of candidate captions 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = {𝑦1,  𝑦2, … ,  𝑦𝑛} and a set of ground-truth 

reference captions 𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ = {�̂�1,  �̂�2, … ,  �̂�𝑛}, for each candidate string 𝑦 = {𝑦1, … , 𝑦𝑘} we 

define a set of n-grams as follows:  
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𝑁𝐺𝑟𝑎𝑚𝑠(𝑛)(𝑦) = {𝑦1, … , 𝑦𝑛, 𝑦2, … , 𝑦𝑛+1, … , 𝑦𝑘−𝑛+1, … , 𝑦𝑘} 

On the other hand, we define a substring count function 𝐶𝑜𝑢𝑛𝑡(𝑠, 𝑦) to calculate the number of 

times the string 𝑠 appears as a substring of 𝑦. 

Finally, we define the n-gram precision function as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑛)(�̂�; 𝑦) =
∑ min(𝐶𝑜𝑢𝑛𝑡(𝑠, �̂�), 𝐶𝑜𝑢𝑛𝑡(𝑠, 𝑦))𝑠∈𝑁𝐺𝑟𝑎𝑚𝑠(𝑛)(�̂�)

∑ 𝐶𝑜𝑢𝑛𝑡(𝑠, �̂�)𝑠∈𝑁𝐺𝑟𝑎𝑚𝑠(𝑛)(�̂�)

 

The result of this function will give us the BLEU score. BLEU-𝑛 assigns a single weight to the 

computed 𝑛-grams of one to 𝑛, for example, BLEU-2 considers 1-grams and 2-grams associated 

with a weight of 0.5, while the final result will be the geometric mean of these values. 

6.1.2 METEOR 

The Metric for Evaluation of Translation with Explicit ORdering or METEOR metric [55] is based 

on unigram matching between the machine-generated and ground-truth reference texts. This 

matching process can consider stemmed forms and synonyms, in addition to the exact word 

matching, as can be observed in Table 3. The strength of the METEOR metric is in making 

sentence-level or segment-level correlations. 
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Table 3: The matching process by different modules in METEOR. 

Module Candidate Reference Match 

Exact Good Well Yes 

Stemmer Good Good Yes 

Synonym Bad Good No 

After the matching process, the unigram precision is calculated as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑚𝑎𝑡𝑐ℎ

𝑁𝑢𝑚𝑢𝑐
, 

where 𝑁𝑢𝑚𝑚𝑎𝑡𝑐ℎ is the number of matches between unigrams of the candidate caption and 

unigrams of the ground-truth reference caption, and 𝑁𝑢𝑚𝑢𝑐 is the number of unigrams in the 

candidate captions. 

Next, the unigram recall is obtained as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑢𝑚𝑚𝑎𝑡𝑐ℎ

𝑁𝑢𝑚𝑢𝑟
, 

where 𝑁𝑢𝑚𝑚𝑎𝑡𝑐ℎ is as above, and 𝑁𝑢𝑚𝑢𝑟 is the number of unigrams in the ground-truth reference 

caption. 

These two values are then combined to calculate the harmonic mean as below: 

𝐹𝑚𝑒𝑎𝑛 =
10 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑅𝑒𝑐𝑎𝑙𝑙 + 9 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

On the other hand, a penalty is calculated to consider the larger segment matchings in addition to 

the word-level matches. This penalty is calculated as follows: 
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𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 0.5(
𝑁𝑢𝑚𝑐ℎ𝑢𝑛𝑘

𝑁𝑢𝑚𝑢𝑚
), 

where 𝑁𝑢𝑚𝑐ℎ𝑢𝑛𝑘 is the number of adjacent unigrams in the candidate and ground-truth captions, 

which are referred to as chunks. Moreover, 𝑁𝑢𝑚𝑢𝑚 is the number of mapped unigrams. 

Finally, the METEOR score is calculated as below: 

𝑀𝐸𝑇𝐸𝑂𝑅 = 𝐹𝑚𝑒𝑎𝑛(1 − 𝑃𝑒𝑛𝑎𝑙𝑡𝑦) 

6.1.3 ROUGE 

The Recall-Oriented Understudy for Gisting Evaluation or ROUGE [56] is a recall-based metric, 

as its name suggests. This metric is suitable for evaluating the quality of text summarization; 

however, the performance downgrades while evaluating summaries in more than one text. There 

are different variants of ROUGE with respect to the mathematical approach: 

 ROUGE-N: Calculates an n-gram recall between a candidate caption and a set of ground-

truth reference captions. 

 ROUGE-L: Searches for the longest co-occurring sequences between a candidate caption 

and its corresponding ground-truth captions. This is a Longest Common Subsequence or 

LCS-based approach. 

 ROUGE-W: A weighted version of ROUGE-L with a bias towards favoring consecutive 

longest common subsequences. 
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 ROUGE-S: Measures co-occurring skip-bigrams between a generated caption and a 

group of ground-truth captions. Skip-bigram is any pair of words with respect to their 

sentence order. 

In this research, we have utilized the ROUGE-L; hence, we are referring to this specific variant 

when we mention the ROUGE metric. 

6.1.4 CIDEr 

The Consensus-based Image Description Evaluation or CIDEr metric [57] is a metric designed 

particularly to evaluate generated captions in image captioning. This metric evaluates the 

consensus between the generated captions and human judgment by utilizing Term-Frequency 

Inverse Document Frequency (TF-IDF). CIDEr measures the number of common 𝑛-grams 

between the generated caption and the ground-truth captions. In addition, the 𝑛-grams in the 

ground-truth captions that do not exist in the generated caption are considered. On the other hand, 

frequent 𝑛-grams in the entire dataset are likely to contain less information; hence, lower weights 

are assigned to them. Calculation of the CIDEr score for 𝑛-grams of a specific length follows the 

below expression: 

𝐶𝐼𝐷𝐸𝑟𝑛(𝑐𝑖, 𝐺𝑖) =
1

𝑚
∑

𝑡𝑛(𝑐𝑖). 𝑡𝑛(𝑔𝑖𝑗)

‖𝑡𝑛(𝑐𝑖)‖‖𝑡𝑛(𝑔𝑖𝑗)‖
,

𝑗

 

where 𝐶𝐼𝐷𝐸𝑟𝑛 is the CIDEr score function for 𝑛-grams of length 𝑛, 𝑐𝑖 is the 𝑖𝑡ℎ caption, 𝑔𝑖𝑗 is the 

𝑗𝑡ℎ ground-truth caption for the 𝑖𝑡ℎ caption, 𝐺𝑖 is the set of all ground-truth captions for the 𝑖𝑡ℎ 

caption, and 𝑡𝑛 is the TF-IDF weighting for all 𝑛-grams of length 𝑛. Furthermore, the overall 

CIDEr score is formally defined as below: 
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𝐶𝐼𝐷𝐸𝑟(𝑐𝑖, 𝐺𝑖) = ∑ 𝑤𝑛𝐶𝐼𝐷𝐸𝑟𝑛(𝑐𝑖, 𝐺𝑖)𝑁
𝑛=1 , 

where 𝑤𝑛 = 1/𝑁 is a uniform weight associated to each length-specific CIDEr score. 

6.1.5 Emotional-Alignment 

The Emotional-Alignment metric was proposed by Achlioptas 𝑒𝑡 𝑎𝑙. [68] to evaluate emotion-

centric captions according to their emotional class. A text-to-emotion classifier detects the 

emotion-class of the generated caption and compares it with the dominant emotion-class between 

the ground-truth captions for the same image; the percentage of the matches determines the 

Emotional-Alignment score. Following the work of [68], a fine-tuned pre-trained Bert model [69] 

has been utilized as the text-to-emotion classifier. This metric was utilized as a reward function in 

the SCST fine-tuning stage, which was unsuccessful because of the high variance of the scores, as 

explained in Section 4.4.2. 

6.2 Ablation Study 

In this section, we evaluate the impact of removing or modifying different components of the 

proposed model. This will help us to understand how each of the proposed components contributes 

to the overall performance of the model. 

6.2.1 Visual Encoder 

First, we evaluate the role of employing different models as the visual encoder to extract visual 

features. We have experimented detecting the object bounding boxes using the “Faster RCNN pre-

trained on Visual Genome” [81] visual encoder. Also, extracting grid-based features via CLIP [72] 

and region-based features via BLIP [78] have been examined. In particular, the CLIP-RN50×16 

variant has been utilized, which is based on an EfficientNet-style [75] scaling. On the other hand, 
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we have utilized the BLIP-ViT-L/16 variant, which is based on the Vision Transformer [43] 

approach. The details of these visual encoders have been discussed previously (Section 4.2.1). 

Table 4 and Table 5 contain the evaluation scores corresponding to the utilization of each visual 

encoder in the student model and the teacher model, respectively. As it can be observed, the best 

performance is achieved by the teacher model of Nemesis utilizing CLIP-RN50×16 as the visual 

encoder; hence, we will be referring to this exact configuration when mentioning the Nemesis. For 

the EGNemesis, the best performance is achieved by the student model utilizing BLIP-ViT-L/16; 

therefore, this particular configuration will be referred to as the EGNemesis in the following 

sections.  

Table 4: Performance of the student model utilizing different visual encoders for both the 

Nemesis and EGNemesis models. (B: BLEU, M: METEOR, R: ROUGE, C: CIDEr) 

Model Visual encoder B-1 B-2 B-3 B-4 M R C 

 

𝑵𝒆𝒎𝒆𝒔𝒊𝒔 

Faster R-CNN 0.498 0.273 0.151 0.086 0.130 0.276 0.087 

CLIP-RN50×16 0.532 0.304 0.172 0.102 0.137 0.290 0.120 

BLIP-ViT-L/16 0.509 0.290 0.165 0.097 0.137 0.281 0.116 

 

𝑬𝑮𝑵𝒆𝒎𝒆𝒔𝒊𝒔 

Faster R-CNN 0.455 0.233 0.122 0.066 0.114 0.243 0.066 

CLIP-RN50×16 0.472 0.251 0.134 0.076 0.124 0.254 0.095 

BLIP-ViT-L/16 0.479 0.260 0.141 0.080 0.129 0.262 0.099 
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Table 5: Performance of the teacher model utilizing different visual encoders for both the 

Nemesis and EGNemesis models. (B: BLEU, M: METEOR, R: ROUGE, C: CIDEr) 

Model Visual encoder B-1 B-2 B-3 B-4 M R C 

 

𝑵𝒆𝒎𝒆𝒔𝒊𝒔 

Faster R-CNN 0.503 0.277 0.154 0.089 0.141 0.278 0.093 

CLIP-RN50×16 0.539 0.311 0.178 0.106 0.141 0.294 0.130 

BLIP-ViT-L/16 0.526 0.304 0.175 0.105 0.138 0.291 0.127 

 

𝑬𝑮𝑵𝒆𝒎𝒆𝒔𝒊𝒔 

Faster R-CNN 0.458 0.233 0.121 0.066 0.118 0.242 0.070 

CLIP-RN50×16 0.475 0.252 0.136 0.076 0.124 0.254 0.095 

BLIP-ViT-L/16 0.470 0.252 0.137 0.077 0.123 0.255 0.099 

6.2.2 SCST Fine-tuning 

Table 6 shows the effect of the SCST fine-tuning stage, where the CIDEr metric is used as the 

reward function to encourage the model’s generations that outperform the current test-time model 

following the process discussed in Section 4.4.2. As it is observable, the model’s performance is 

boosted with respect to all utilized metrics in comparison with the same model after the cross-

entropy training phase. The most significant improvements are related to the CIDEr and BLEU-1 

scores. The BLEU-1 metric has been increased from 0.539 to 0.711 for the Nemesis, and from 

0.479 to 0.700 for the EGNemesis. On the other hand, the CIDEr score has boosted from 0.130 to 

0.219 for the Nemesis, and from 0.099 to 0.224 for the EGNemesis. 
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Table 6: The comparison of the results before and after applying the SCST fine-tuning. 

Metric 𝑵𝒆𝒎𝒆𝒔𝒊𝒔 𝑵𝒆𝒎𝒆𝒔𝒊𝒔𝑺𝑪𝑺𝑻 𝑬𝑮𝑵𝒆𝒎𝒆𝒔𝒊𝒔 𝑬𝑮𝑵𝒆𝒎𝒆𝒔𝒊𝒔𝑺𝑪𝑺𝑻 

BLEU-1 0.539 0.711 0.479 0.700 

BLEU-2 0.311 0.406 0.260 0.403 

BLEU-3 0.178 0.211 0.141 0.214 

BLEU-4 0.106 0.113 0.080 0.115 

METEOR 0.141 0.166 0.129 0.165 

ROUGE-L 0.294 0.341 0.262 0.336 

CIDEr 0.130 0.219 0.099 0.224 

 

6.2.3 Image-to-Emotion Classifier 

A comparison of the model’s performance according to the utilization of different image-to-

emotion classifiers can be found in Table 7. These classifiers are: (1) the ResNet-32 classifier pre-

trained on the ImageNet dataset (IN), which gave the best performance in the previous work by 

Achlioptas et al. [68]. (2) The ResNet-50 classifier pre-trained on the Stylized-ImageNet dataset 

(SIN), which is our proposed classifier.  
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Table 7: Results with respect to the utilized image-to-emotion classifier. 

Metric 𝑬𝑮𝑵𝒆𝒎𝒆𝒔𝒊𝒔𝑰𝑵 𝑬𝑮𝑵𝒆𝒎𝒆𝒔𝒊𝒔𝑺𝑰𝑵 

BLEU-1 0.466 0.479 

BLEU-2 0.251 0.260 

BLEU-3 0.137 0.141 

BLEU-4 0.077 0.080 

METEOR 0.128 0.129 

ROUGE-L 0.253 0.262 

CIDEr 0.093 0.099 

As it is observable, the performance has improved by using our proposed classifier module in all 

the utilized metrics. For instance, the BLUE-1 score has improved from 0.466 to 0.499, and the 

CIDEr metric has improved from 0.093 to 0.099. This proves that the decrease in texture bias while 

increasing shape bias will achieve a better performance in our auxiliary image-to-emotion 

classification task. 

6.2.4 Emotional Grounding 

The results with and without incorporating the extra emotional supervision signal are shown in 

Table 6. This signal is provided based on the emotional class indicated by the image-to-emotion 

classifier during the training time to keep the assessment fair. As it can be observed, the evaluation 

scores experience a decrease after emotional grounding; however, this degradation in evaluation 

metrics does not necessarily indicate a decrease in the quality of generated captions in our case. 

Most evaluation metrics return a higher score if the generated caption includes more words from 

the ground-truth captions or their synonyms, which is not the best way to assess generated captions 
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in our subjective emotion-centric utterances. In fact, an increase in the diversity of the captions 

can result in a degradation of evaluation metrics. As you can see in Figure 35, the generated caption 

of Nemesis for the first image is “it looks like a cold winter day.“. While the EGNemesis generated 

“this painting makes me feel nostalgic. it reminds me of my childhood” grounded on the 

“Contentment” emotion-class, which is more emotionally rich according to human judgment. 

However, the emotionally grounded utterance will achieve a lower evaluation score since it does 

not contain the frequent words in the ground-truth captions, which are “cold” and “winter.” 

 

Figure 35. Examples of the generated captions for unseen artworks. These samples include 

utterances from Nemesis model, and EGNemesis model along with the emotion-class 

extracted by the image-to-emotion classifier. 
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6.3 Comparison with the State-of-the-art 

In this section, we will compare our proposed model’s performance with the state-of-the-art 

emotion-centric neural speakers. This comparison is with respect to both the auxiliary 

classification task and the emotion-centric image captioning task. 

6.3.1 Auxiliary Classification 

The 9-way emotional classification problem is an extremely challenging task because of the 

subjectivity of emotions and diversity of emotional utterances. In the previous work, a user study 

has been done to measure the accuracy of this classification task by humans [68]. This study 

consisted of three human experts attempting to guess the dominant emotion-class based on a 

ground-truth utterance of ArtEmis, where they achieved an accuracy of only 61.2%. This depicts 

how challenging this task is, even based on human judgment. However, the BERT-based text-to-

emotion classifier utilized in our model achieved a 64.8% accuracy, which is a surprising 

performance compared to the human results.  

For the image-to-emotion classification task, which is arguably more difficult than the text-to-

emotion classification, the ResNet-32 module pre-trained on ImageNet (IN) achieved a 60.2% 

accuracy, while the ResNet-50 module pre-trained on Stylized-ImageNet (SIN) achieved a 59.4% 

accuracy. However, the accuracy of this auxiliary task is not directly important to us. As mentioned 

earlier, Table 7 shows that our model performs better utilizing the classifier trained on SIN because 

of the more diverse and shape-driven label predictions. 
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6.3.2 Emotion-centric Image Captioning Task 

We compare our proposed neural speaker to the best performing emotion-centric image captioning 

models introduced by [68] on the ArtEmis dataset. These neural speakers include a captioning 

model inspired by Meshed-Memory Transformer (𝑀2) [42] architecture, and an LSTM-based 

model inspired by “Show, Attend and Tell” (SAT) [23]. In addition, this comparison includes the 

emotionally grounded variations of these models (i.e. 𝑀2-EG and SATEG).  

As can be observed in Table 8, our proposed model outperforms both the emotionally grounded 

and standard variations of 𝑀2 and SAT speakers with respect to all incorporated metrics. This 

improvement is more notable in models after the SCST fine-tuning stage. The only exception is 

the EGNemesis, which is the reason for this degradation has been elaborated on previously. Figure 

36 shows some generated utterances from SATEG and EGNemesis models, where EGNemesis 

appears to generate more abstract, diverse, emotionally rich, and human-like captions. 

Table 8: Comparison of state-of-the-art results and Nemesis after both cross-entropy 

training and SCST fine-tuning. 

Metric 𝑺𝑨𝑻 𝑺𝑨𝑻𝑬𝑮 𝑴𝟐 𝑴𝟐-𝑬𝑮 𝑵𝒆𝒎𝒆𝒔𝒊𝒔 𝑵𝒆𝒎𝒆𝒔𝒊𝒔𝑺𝑪𝑺𝑻 𝑬𝑮𝑵𝒆𝒎𝒆𝒔𝒊𝒔 𝑬𝑮𝑵𝒆𝒎𝒆𝒔𝒊𝒔𝑺𝑪𝑺𝑻 

BLEU-1 0.536 0.520 0.507 0.511 0.539 0.711 0.479 0.700 

BLEU-2 0.290 0.280 0.282 0.282 0.311 0.406 0.260 0.403 

BLEU-3 0.155 0.146 0.159 0.154 0.178 0.211 0.141 0.241 

BLEU-4 0.087 0.079 0.095 0.090 0.106 0.113 0.080 0.115 

METEOR 0.142 0.134 0.140 0.137 0.141 0.166 0.129 0.165 

ROUGE-L 0.297 0.294 0.280 0.286 0.294 0.341 0.262 0.336 
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Figure 36. Comparison of state-of-the-art results and Nemesis after both cross-entropy 

training and SCST fine-tuning. 
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Figure 37. A comparison between the examples of generated captions by EGNemesis and 

SATEG models along with the emotional class extracted by the image-to-emotion classifier, 

which has been utilized in the emotional grounding process. 
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Chapter 7  

Conclusions and Future Work 

 

7 Conclusions and Future Work 

Most of the previous work in the image captioning field has been focused on generating purely 

logical objective-based captions according to the objects in the input image. These captions lack 

some human-like attributes such as personality and emotion since they only contain factual 

information in a neutral tone. This has led to a lack of connection between the user and the 

generated caption. 

Neural speakers capable of producing affective utterances are an important step toward generating 

more engaging captions by provoking human emotions. As humans, emotions are a crucial part of 

expressing ourselves when we aim to describe different phenomena. Therefore, it is logical to 

expect the automatic image captioning process to consider this essential aspect of our perceptions.    

In this research, we introduced Nemesis, Neural Mean Teacher Learning-based Emotion-centric 

Speaker, an image captioning model capable of describing emotional responses to visual stimuli. 

We showed that incorporating a mean teacher learning-based approach followed by SCST-based 

fine-tuning, which utilizes extra emotional supervision signals, is a promising path toward 

generating more human-like emotion-centric descriptions. This was achieved by both 

experimenting with the utilization of different modules in the proposed pipeline and comparing it 

with the latest state-of-the-art methods. The results indicated that utilizing the emotional grounding 

process improved the capability of incorporating various emotions to impact the word selection 
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and sentencing processes, which led to the increased diversity of the generated captions. On the 

other hand, we observed that the SCST-based fine-tuning stage boosted the evaluation scores 

significantly by overcoming the non-differentiability of the utilized metrics. 

Another part of this research was the auxiliary emotion classification tasks to classify both captions 

and images to the different emotion-classes. We proposed a novel image-to-emotion classifier that 

overcame the existing texture bias in the previously widely used classifiers. This was achieved by 

encouraging the model to favor the bias toward shapes instead of textures. 

7.1 Future Work 

The main challenge in the task of emotion-centric image captioning is the lack of a proper 

evaluation metric that aligns well with human judgment. Most of the evaluation metrics focus on 

comparing words in the generated captions with the words or synonyms in the reference captions, 

which is not the best approach for our diverse and subjective task. For example, the newly 

introduced StyleCIDEr [90] metric can be a suitable alternative to utilize in the SCST fine-tuning 

stage. This metric compares the captions with respect to their styles, which in our case, the styles 

are the emotion-classes. 

Another path for future research can be focused on utilizing a more efficient visual encoder to 

improve the scene-understanding ability of the model. A crucial indicator of the capability of a 

multi-modal pre-trained is the utilized dataset in the pre-training stage. Bigger datasets will 

enhance the model's generalizability, leading to better performance in the downstream tasks. 

Recently, the LAION-5B [91] dataset was introduced, including more than 5 billion CLIP-filtered 

[72] image-text pairs, which can be used to pre-train more capable visual encoders. 
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Finally, Mohamed et al. [92] showed that the ArtEmis dataset is biased towards some emotions. 

Therefore, they introduced the ArtEmis v2.0 dataset, which contains contrastive samples to 

balance the ArtEmis [68] dataset as a complementary dataset. Utilizing the balanced dataset can 

improve the proposed model's performance. 
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