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Abstract 

Agriculture is a field which is referred to as the main sector for the development of the economy 

in various countries, and it is also providing food to the large population of the world despite 

various limitations and boundaries. Food security is threatened by several factors including climate 

change, the decline in pollinators, plant diseases and others. Different efforts have been developed 

to prevent crop loss due to infections in the plants. The advancement in technology is helping 

farmers in developing different systems that can help in reducing the problem. Smartphones 

specifically offer very novel ways to identify diseases because of their computing power, high 

resolution displays, and extensive built-in sets of accessories, such as advanced HD cameras. This 

leads to a situation where disease diagnosis based on automated image recognition is needed. 

Image recognition is made possible by applying a deep learning approach. So the research is aimed 

to analyze deep learning-based image detection techniques to identify the various diseases in the 

plants. The “PlantVillage” dataset has been used to train models. Deep learning Architectures such 

as AlexNet and GoogleNet, ResNet50 and InceptionV3 are used. Two approaches are used to train 

the model: ‘training from scratch’ and ‘transfer learning’. It was found from the results of the 

primary analysis that the GoogleNet leaves behind the AlexNet, ResNet50 and InceptionV3 in 

training from scratch approach. And ResNet50 performed best in transfer learning. 

Keywords: Machine Learning, Deep Learning, crop disease, agriculture, Image detection 
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Abbreviation 

AI Artificial Intelligence 

ML Machine Learning 

DL Deep Learning 

SGD Stochastic gradient descent 

CNN convolutional neural network 
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Chapter 1 

Introduction 

1.1 Background 

Agriculture is crucial in developing countries where food security is becoming a major problem. 

A technology that shows promise for detecting plant diseases is hyperspectral imaging. 

Hyperspectral data cubes include redundant information, which makes deep learning identification 

of plant illnesses more believable. The purpose of this study is to describe a deep learning-based 

method for detecting crop diseases from images. Thus, the main objectives will be focusing on the 

technology that is based on crop disease detection and its types. Further, it eventually focuses on 

the predictions of agriculture and research applications that are using the automated phenotyping-

based platform.  

 

Panchal et al. [1], stated that as a result of transportation issues, plant diseases, and a lack of storage 

facilities, the crops were lost. The disease is a big problem that needs to be handled because it 

causes more than 15% of the world's crops to be lost. It is necessary to have an automated system 

that can detect these diseases and guide farmers in taking the proper action to control crop loss. 

Because timely detection is challenging in different parts of the infrastructure, crop diseases are 

also a significant component of food security. The farmers relied on a variety of age-old methods, 

but not all of them were equally successful in identifying plant illnesses with their unaided eyes. 

Computer vision can help to detect the product defects and sort the products by color, size, weight, 

rapines and other factors. Farmers can use computer vision to analyze their crops, it can help them 
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work faster and better. Chen et al. [2] asserted that deep learning, because of its extensive library, 

is now the greatest developer-friendly and user-friendly environment for applying computer vision 

techniques in the field of agriculture. Thus, deep learning provides useful techniques that helps 

computers to understand what naturally comes to humans.  

 

The main barrier inhibiting the spread of agriculture internationally is plant diseases, which cause 

yearly enormous losses. According to Jain et al.  [3] The management of plant diseases has 

garnered a lot of interest. For the purpose of putting into place efficient prevention measures, plant 

diseases must be discovered and treated as soon as feasible. Even though the impacts of plant 

diseases are extremely complicated and variable, the majority of forest producers in conventional 

agricultural and forestry production can identify the species and severity of a disease based on 

their prior experiences with plant illnesses. For forest farmers to do this, they must be able to 

identify disease indications. Nagasubramanian et al.  [4] Asserted that ignorance will result in 

uneven plant disease identification, improper treatment, and ultimately a delay in the treatment 

time, which will result in unneeded economic losses. Even with the aid of experts, a disease's 

diagnosis will take time. Therefore, developing an automated system for categorizing and 

identifying plant diseases is crucial. As a result of recent developments in computational systems, 

computer vision technologies are increasingly being employed to detect plant diseases. 

 

Plant or leaf disease costs money and jeopardizes the development of numerous agricultural goods 

globally [5]. The inappropriate use of pesticides and fungicides is due to the failure to recognize 

illnesses, bacteria, and viruses in plants. Since biological characteristics of diseases are of 

particular interest to scientists, they have become quite interested in plant diseases. The use of 
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modern technology in precision farming results in improved decisions. Expert visual inspections 

and biological investigations are frequently used in plant diagnosis. This tactic often costs money 

and time. Identification of plant diseases using complex and robust methods is essential to 

resolving these problems. To improve the effectiveness of disease identification, conventional 

machine learning (ML) approaches have been implemented in agricultural operations. Recent 

examples of deep learning (DL), a type of machine learning, have shown its outstanding capacity 

to find, identify, and categorize things in the real world. Conversely, this shift in agricultural 

research has resulted in DL-based fixes [6]. State-of-the-art outcomes employing DL techniques 

have been reached for agricultural tasks like harvesting fruit, identifying plants, and differentiating 

between crops and weeds. The present research emphasis has been on identifying crop diseases, 

which is a major agricultural concern.  

 

The illness severity is essential to forecast the production and to suggest treatment plan for the 

plants. Where the illness’s severity is accurately and rapidly diagnosed, it helps to reduce the cost 

of treatment. According to [7], the severity of a plant disease is determined by trained experts by 

evaluating plant tissues visually. The costly and inadequate study of human illness is a contributing 

factor in the slow development of modern agriculture. Precision agriculture, high-throughput plant 

phenotyping, smart greenhouses, and other industries are highly interested in automated disease 

diagnostic models as a result of the growing use of digital cameras and the development of 

computer vision. In this study, deep learning models for autonomous image-based diagnosis of 

plant disease severity are presented. It was motivated by the advancement in deep learning for 

image-based plant disease detection. The severity of each illness was highlighted in annotations 

made on photographs of healthy and black rot apples from the public PlantVillage collection [8]. 
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To assess the most effective educational program and network architecture, we start from scratch 

and build shallow networks of different depths to enhance the pre-trained, state-of-the-art deep 

networks. 

 

Additionally, great progress has been made recently in computer vision development with the use 

of deep learning technology, which has paved the way for the widespread use of smartphones. 

These technologies aid in the proper management of the circumstances even though climate 

change, pollinators, and other factors continue to pose a threat to food safety [9]. Plant diseases 

are seriously affecting smallholder farmers whose livelihoods depend on growing healthy crops, 

in addition to endangering global food security. It has been found that deep learning is considerably 

superior to the conventional approach in these problems in terms of the advancements in digital 

picture processes [9]. However, because it uses machine vision technology to examine 

photographs and determine whether or not disease and pests can be seen in plant images, plant 

disease represents a very important research area in machine vision. In the beginning, machine 

vision-based plant disease detection equipment were used in agriculture, taking the role of the 

conventional naked eye method of identification as redundant. Using deep learning for plant 

disease detection can help in treating the plants early on to reduce the negative impact of plant 

diseases on agricultural production. Ashqar and Abu-Naser [10] stated that plant diseases represent 

a major threat to smallholder farmers that depend on healthy crops to survive with 80% of the 

global production of agriculture being affected. Thus it is found that disease identification is a 

crucial step for disease management and traditional approaches that help to identify those diseases 

are done by visiting local plant clinics. 
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1.2 Research Aim 

The aim of this work is to analyse deep learning-based image detection techniques to identify crop 

diseases.  

 

1.2.1 Research Objectives 

• To analyse the Image-based plant disease detection technique.  

• To describe the feature extraction for disease identification using deep learning. 

• To analyse the types of crop diseases and relevant areas of sensors used during crop disease 

detection 

• To identify the challenges that occur during crop disease detection.  

• To recommend advanced image detection techniques for improving crop disease detection.  

 

1.2.2 Research Question 

• What is Image-based plant disease detection? 

• How deep learning helps in crop disease detection?  

• What are the issues that occur during crop disease detection?  

• What is feature extraction in disease identification using deep learning techniques? 

 

1.2.3 Problem Domain 

The crop disease alludes to a major issue of low agricultural productivity. Guo et al. [11] stated 

that farmers face issues in identifying the crop diseases for controlling and detecting them. Thus, 

fast detection is beneficial for those farmers to avoid further losses. In the modern times if 

agriculture gets affected by crop diseases, it can be harmful for a country. The food demand which 
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is growing exponentially for the production of agronomy requires control of plant diseases. To 

boost agricultural production and meet food demand, scientists, farmers, analysts, experts, and the 

government all work together and employ various tactics [12]. The precise detection of plant 

diseases is a significant problem that has an impact on crop production. Another problem that 

arises during the detection is the appropriate application of the detection methods. The variables 

that can alter the global climate and plant diseases are at the disposal of farmers who are dealing 

with these issues. Crop production is decreasing, and farmers are thinking about committing 

suicide, for a variety of possible reasons. Because it requires a lot of time, accuracy, money, and 

good crop quality, visually inspecting crops is a challenging task. The majority of recent studies 

have mostly concentrated on classifying plant diseases [5]. The difficult task of diagnosing plant 

diseases, which necessitates both the location and classification of the disease in the plant, has not 

received nearly enough attention. For the purpose of detecting or identifying crop diseases using 

high-level DL structures, none of the aforementioned methods has been thoroughly studied. Deep 

learning (DL) is a branch of machine learning that has been proven to be very successful in real-

world item identification, recognition, and classification tasks [13]. As a result, more and more 

DL-based approaches are being used in agricultural research. For agricultural tasks including 

crop/weed discrimination, fruit harvesting, and plant recognition, state-of-the-art outcomes using 

DL approaches have been attained.  

 

1.2.4 Overview of Research Methodology  

The explained research is based on the aim of analyzing crop disease with the help of deep 

learning-built image detection techniques. Further, to accomplish its results positively, the research 

will be focusing on some keywords such as image-based crop disease detection technology, types 
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of plant disease, relevant areas of sensors in crop disease detection, feature extractions for disease 

identification in deep learning, and more. Thus, the study will effectively help to describe the 

analysis of image-based crop disease detection with the help of deep learning. Also, it will help to 

describe the challenges, problems, types, and feature extraction, which is more helpful in plant 

disease detection. 

 

1.3 Outline of the Thesis 

The thesis is organized in six chapters, namely the introduction, literature review, Data 

Preparation, Deep Learning architectures, results and conclusion. The problem statement and the 

objectives are stated in the opening section of chapter 1 along with the study's background. The 

research questions, objectives, and significance of the study are all included in this chapter. The 

literature review is discussed in Chapter 2 which covers a variety of prior research. The data is 

discussed in Chapter 3. The deep learning architectures that were used to implement the crop 

disease detection are discussed in Chapter 4. The results and findings of methods are presented in 

chapter 5. The main conclusions of the study are presented in Chapter 6. Chapter 6 also highlights 

any limitations and suggestions for further research. 
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Chapter 2 

Literature review 

2.1 Image-Based Plant Disease Detection  

The image-based plant disease detection technology is recently represented in various areas. Crop 

waste is representing enhanced disease, which becomes a critical identification method of disease 

[1]. Currently in developing countries, most of the population is based on agriculture in the form 

of direct and indirect energy. It represents the significant usage of application-based plant disease 

detection that helps the farmers to understand the reason behind the disease based on the plant's 

size, the colour of the leaf, the size of the leaf, and the growth pattern. In the current generation 

with the usage of smartphones all over the world, it is easy to click pictures of plants. Where 

various peoples have internet access also across the globe. Currently, for their convenience and to 

use a variety of applications, more than 300 million individuals have access to the internet. 

Although the government has access to a variety of tools, including a 24-hour helpline number for 

farmers to place orders and obtain answers to their queries, it can be difficult to effectively assist 

those who live in rural areas when they are having issues finding solutions to their problems. Self-

paced image-based disease identification is a simple answer to this issue. Furthermore, according 

to van Bruggen et al. [14] crop disease is expanding globally and needs to be addressed if pesticides 

and insecticides are to be used to offer a short-term but ultimately beneficial answer. The chemicals 

have side effects on the crop which can ultimately hurt the health of the citizens. Currently, AI has 

spread in various domain areas and can be helpful in agriculture problems as well. The crops and 

leaves are also crucial in order to provide details regarding the amount and nature of horticultural 



9 
 

yield. Some of the factors affecting food production includes soil sterility, the presence of weeds, 

and climate change. However, in addition to these losses, leaf and plant diseases pose a global 

threat to the development of numerous agricultural goods [15]. Following the diagnosis of failure 

infection in plants, insufficient pesticide and fungicide usage occurs. The disease plan has therefore 

heavily taken into consideration the scientific community, with an emphasis on biological illness 

aspects. In precision farming, decision-making is optimized using the most cutting-edge 

technology. Expert visual inspection and biological assessments are used to complete the plant 

diagnosis when necessary. The method is well-known, labor-intensive, and cost-effective. It is 

essential to identify the plant disease using sophisticated and clever techniques in order to treat 

these issues.   

 

Inexperienced farmers often encounter challenges due to their limited knowledge and lack of 

practical experience. These challenges become particularly pronounced as crops become 

increasingly vulnerable to the effects of climate change, requiring expert management that 

experienced farmers are better equipped to handle [16]. In agriculture, it is essential to recognize 

plant diseases since they have a significant impact on crop output and product quality. Viral 

illnesses that go untreated can have catastrophic implications for the nation's economy and food 

supply [17]. To create new and precise methods for identifying plant diseases, researchers from 

several academic disciplines, including microbiology, agronomy, and plant science, are 

collaborating. The utilization of subject-matter experts and specialized tools is necessary for 

strategies that exploit domain expertise. It is now possible to diagnose diseases solely using picture 

data as a result of developments in the computational processing of high-dimensional data, such 

as images. Spotting diseases in image data can be considered as a visual anomaly detection task 
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[18]. Identifying or putting strange observations in data is the work of anomaly detection. It is 

critical to pinpoint these issues or abnormal occurrences, which can include electricity theft, 

dishonest business dealings, strange illnesses, product flaws, etc., because these anomalous data 

points may be connected to a variety of issues or abnormal happenings. The different data sets that 

can be used for anomaly identification are due to the rarity of anomalous events. Plant disease data 

sets are not an exception and frequently display a size imbalance [19]. To categorize and identify 

plant diseases, deep learning technology is also used. A significant issue now is the detection of 

plant diseases. Both the quantity and the quality of agricultural production can be affected by plant 

diseases. The crop-growing sector depends on early disease detection. Enhancing agricultural 

production is the primary goal of identifying and categorizing plant diseases. As a result of a shift 

in consumer behaviour and attitudes toward processed foods, as well as the accessibility of smart 

devices, internet connectivity, and the most recent technologies, a modern subset of agriculture 

known as "precision agriculture" or "smart farming" has, however, exploded in popularity. For 

smart farming and sustainable agriculture, early identification of any plant stress has proven to be 

a big challenge. 

 

Furthermore, Deep learning (DL) and machine learning (ML) algorithms are used to carry out 

agricultural tasks. Deep learning is the subset of machine learning that is exceptionally effective 

for real-world objectives based on rearrangement, detection, and classification reasons [20]. DL-

based treatments are becoming the main focus of agricultural research. In agricultural tasks like 

crop and weed discrimination, plant restructuring, and fruit harvesting, the adoption of DL 

methods has led to state-of-the-art results. The DL models have also been used to categorize plant 

diseases using a well-known DL architecture. The study described that the modified version of 
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algorithms helps to enhance the performance of classification in diseases of various plant species. 

Additionally, Saleem et al. [5] stated that the convolutional neural network (CNN) and DL 

optimizer attain better results in plant disease classification. The CNN model is utilised to 

categorize the results of the enhanced plant disease categorization. The deep learning architecture 

has fixed input sizes and acts as a broker in the case where the input size is not fixed. This helps 

to make the input data consistent and easier to handle, which can improve the accuracy and 

efficiency of the deep learning model. Ultimately, this can make the model more effective and 

useful for various applications. For categorizing various plant diseases, MobileNet models are 

used. Similar to this, other research has mostly concentrated on advanced training strategies that 

analyse ways that aid in assessing the effectiveness of AlexNet and GoogleNet, which were both 

entirely new systems, and in transferring the learning methodology. The value of the fine-tuning 

method can be seen by contrasting the most complex DL structures for plant disease categorization. 

To address the problem of task object categorization, meta architectures are utilised to categorise 

and localise the objectives on a single platform. Complex agricultural practices were found to be 

engaged in the reorganisation of plant diseases by DL methods [5]. Deep learning has been used 

to produce models for identifying and evaluating plant diseases. Two distinct types of 

methodologies are designed and compared for analysis in order to achieve automated pest 

identification using deep learning techniques. Results showed how recognising deep learning 

approaches helps in providing better results than those of rival technologies [21]. When diagnosing 

the disease in cassava leaves, the single shot multibox detector (SSD), which is used in the DL 

technique, helps to produce results that are satisfactory. As a result, it is discovered that deep 

learning is the most precise and accurate paradigm for the identification of plant diseases.  
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2.2 Relevant areas of image sensors used in plant disease detection   

A huge size of current development in path systems using various kinds of sensitive sensors and 

multiple data analysis pipelines helps to provide the various kind of sensor systems. It is classified 

as an optical sensor along with RGB, multi- and hyperspectral reflectance, thermal, and 

fluorescence imaging sensors [21]. Digital photographic images are extremely important in plant 

pathology because they may be used to access plant health. Figure 1 below provides a detailed 

description of various types of sensors. Digital cameras can easily manage the straightforward 

source of RGB (Red, Green, and Blue) images for identifying, quantifying, and detecting diseases. 

The technological requirements of simple-handled devices include a photo sensor with light 

sensitivity, spatial resolution, and digital and optical focus, all of which contribute to the 

improvement that is seen every year.  The latest and most powerful digital camera-based sensors 

that are available in mobile phones and tablets are being used by farmers and psychopathologists 

in the current age. Additionally the digital image of plant is organized from the roots to the 

inflorescences using video cameras and scanners as an alternative way [22]. During the growing 

season, the RGB sensors were used to monitor the health of the plants at every resolution scale. 

The detector type, spatial resolution, and spectral range of multi- and hyperspectral reflectance 

sensors are used to categorise them. The information on the objectives is typically accessed by the 

multispectral sensors in a variety of broad wavebands. The primary data source for the RGB 

wavebands is multispectral imaging cameras. Using this technique, the fruits and crops are also 

screened to avoid storage disease. The thermal sensors show the infrared thermography excess 

plant temperature, which is connected to the plant water status [23]. Thus, many pathogens can 

cause an increase in the transpiration rate of leaves and causes pathogens that can be negatively 
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impacting on the surface layer of the leaf and enhance the circular transportation in increased water 

loss rate. 

 

Figure 2.1. Current sensor technology used for the automated detection and identification of host plant interactions 

(Source: Mahlein, 2016) [24] 

The variability between and within leaves can also be used to analyze Infrared thermography (IRT) 

images effectively. Individual leaves, crop stands, and plant interior temperatures can all be used 

to identify the emergence of plant diseases. A variety of chlorophyll fluorescence properties are 

used to evaluate changes in a plant's photosynthetic activity [25]. It provides a technique that 

actively makes use of LED and laser light source sensors to access photosynthetic electron transfer. 

It was possible to examine the behaviors brought on by biotic and abiotic pressures in the leafy 

areas using this method. As with the painstaking planting and difficult execution of typical 

agricultural greenhouse and field conditions, chlorophyll fluorescence imaging technologies have 



14 
 

limitations. By deriving fluorescence parameters from field-based sun-induced reflectance, it 

would be able to evaluate plant diseases at both the canopy and field levels. A variety of sensor 

technologies are accessible to plant pathologists to offer high-resolution data for a crop that is 

standing and can act as the basis for the early detection and identification of plant disease [26]. 

These technologies have been developed and put into use in agriculture and plant disease 

diagnostics, both of which have seen impressive advancements. Crop and plant research can now 

be approached in a new and concentrated way thanks to advancements in precision agriculture and 

plant phenotyping. The sensors used to non-intrusively analyse the nutritional status of crops in 

the field were the most significant and useful ones. So, using low-cost sensor technologies with 

acceptable market performance, future useful applications in agriculture can be created. However, 

Arsenovic et al. [13] claimed that no specific plant disease detection sensors are presently available 

on the market. The potential for sensor-based sickness detection is shown. The instruments as well 

as technological solutions represent the field of greenhouse and phenotyping that is available. 

According to Polder et al. [27] these specialised and unique prototypes weren't appropriate for 

widespread use. The field systems currently represent a sophisticated system that may be utilised 

to develop an imaging platform for identifying the tulip-breaking virus (TBV), which infected the 

tulip decorations from the prototype of the hyperspectral imaging platform for detecting yellow 

rust. This technique has enabled two advancements: the multispectral corneal robot and online 

machine-version analysis pipelines. These could serve as driving factors for the development 

expenses of a reliable optical sensor platform for the prompt and accurate detection of plant disease 

in crops. 
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Hyperspectral sensors operate on the same fundamental principles as RGB and multispectral 

cameras. As per Thomas et al., [28] each of these gadgets records the data it collects by measuring 

the amount of light that reaches the sensor. A hyperspectral sensor can identify up to several 

hundred electromagnetic spectrum bands within its wavelength range, in contrast to RGB or 

multispectral cameras. The hyperspectral sensor has a high spectral resolution because each of 

these spectral regions only gauges the electromagnetic spectrum by a few nanometers. The two 

primary categories of sensors include both image sensors and non-imaging sensors [29]. Non-

imaging sensors analyze the normal reflectance spectrum over a certain area of a surface without 

retaining spatial data. The average area is affected by several variables, including the focal length, 

angle of view, and proximity to the object. Most non-imaging sensors are portable and do not need 

elaborate measurement infrastructure. They are small and light, with a good spectral resolution (1-

3 nm), and a broad spectral range (300-2500 nm). SVC, ImSpector, and ASD FieldSpec are the 

three most well-known spectrometers among them (Analytical Spectral Devices Inc., USA). To 

create a spectrum profile for each pixel, hyperspectral image sensors combine spectral and spatial 

resolution. With two spatial dimensions and an additional spectral dimension, the final image is a 

three-dimensional data array (hypercube) [30]. Depending on the type of sensors being used, there 

are four ways to acquire a hypercube of data, which are shown in Figure 2 below. Contrarily, due 

to their massive amount of data and high level of collinearity, hyperspectral images are a very 

challenging, emerging topic that necessitates non-trivial solutions. To successfully tackle this 

problem, machine learning, neural networks, and discriminant and cluster analysis techniques have 

been used.  
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Figure 1.2 Hyperspectral images-based acquisition approach (Author: Cheshkova, 2022) [29] 

Additionally, resistance screening represents the plant phenotyping that is used in numerous 

technological systems that have been developed [31]. The developments constituted an 

investigation into a single plant under carefully controlled conditions. It demonstrates how 

different genotypes differ in their susceptibility and resistance, and it demonstrates how this 

information aids in describing the specific disease that may be measured using optical sensors. 

Additionally, biological symptoms and presymptomatic physiological abnormalities were 

employed to identify plant illnesses. Depending on the plants modest deface reaction, pathogen 

development can be prevented during the resistance screening. The host resistance is a metaphor 

for a plant genotype's ability to prevent the establishment and spread of diseases [32]. Numerous 

genes influence complete resistance, although many genes have only minor effects on incomplete 

resistance. The terms polygenic effects and polygenic partial effects, respectively, refer to these 

two basic forms of resistance. Following the initial pathogen contact and subsequent compatible 

and incompatible interactions, which took into account the plant side for susceptibility or 

resistance of genotype, these alterations represented the distinctions in the tissues and cellular 

level. Because of this, the sensor-based and data-driven phenotyping approaches based on the 

small-scale host-pathogen interactions can be used to discriminate between barley genotypes with 

various susceptibilities to powdery mildew.      
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2.3 Issues/challenges in the image-based plant disease detection  

Various techniques are used to identify the diagnosis of the disease that has been developed and 

are proven in the molecular biology delivery that aids in the accurate identification of the 

pathogenic factors. These techniques are used to analyze plant disease, and significant damage, 

and the development of new techniques for the accurate identification of pathogenic factors [3]. 

However, many farmers are not able to use the numerous methodologies used during analysis 

because they are expensive and require a lot of resources to be implemented. The use of cutting-

edge technology is necessary for precision farming to improve the decision-making process. The 

best choices have reduced costs as a result of the deployment of machine learning technologies in 

decision-making. Additionally, the classification of issues involved the use of several 

technologies, such as decision trees, random forests, linear regression, K-nearest neighbours, 

logistic regression, support vector machines (SVM), Naive Bayesian, and clustering [12]. Because 

of the deep learning (DL) approaches' ground-breaking results, artificial intelligence and computer 

vision have advanced. These techniques, as opposed to the conventional approach, result in more 

accurate predictions, promoting better decision-making. DL techniques are currently being used 

to quickly resolve a range of complex problems due to developments in hardware. It is conceivable 

that for a brief period, CNN used DL frameworks as its main technology [33]. Predictions made 

with DL technology are based on instances that are not distributed equally across the training data. 

In addition, a variety of issues and applications might affect the plant disease diagnosis procedure. 

One problem is the way in which the data sets are set up to show the data collected at various 

levels. When collecting data from plants in villages, for instance, it could be difficult to explain 

the data uniformly because it was collected from a range of fields. The issue with data visualization 
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in tables and other exhibits originates from the fact that the bulk of datasets will have variable and 

inconsistent material.  

 

Farmers are unable to protect the plants because they struggle to identify these illnesses and are 

unable to do so. One area for identifying plant diseases is biomedicine [34]. The most suitable, 

effective, and trustworthy technology available today for the aim of identifying illness using 

photos of plant leaves is image processing techniques. To save time and rapidly and precisely 

diagnose all plant ailments, farmers require quick and effective techniques [35]. Scientists have 

developed several hypotheses for estimating agricultural yields with the use of labs and equipment 

for quickly diagnosing plant leaf diseases. Data input from several sources is needed for automated 

disease identification. The use of image-based plant disease detection may result in low-quality 

images of plant leaves, which are considered by all the different research publications. Further, 

various kind of issues and challenges in detecting the disease is identified when extensive 

collection of data is affected by noise and background data. The input image's training and testing 

samples are utilized to precisely segment the data, starting with the leaves and then on to the 

meaningful illness that can be recognized [36]. The impact of image processing using a machine 

learning technique on the ability to detect disease, however, necessitates an improvement of the 

existing research. Diagnosing plant diseases is a critical task for the safety and security of food. 

The PlantVillage project was started to develop accurate image classifiers for identifying plant 

diseases [37]. 

  

There are thousands of labelled photos of both healthy and diseased crop plants that were taken 

under controlled conditions. With the aid of such a large dataset, deep learning difficulties for 
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developing a reliable image classifier for plant disease diagnosis have been identified. Numerous 

deep neural network-based anomaly detection techniques have recently been proposed in the fields 

of machine learning and computer vision. The deep anomaly is divided into three groups that is 

depending on machine learning such as supervised, unsupervised, and semi-supervised approaches 

that help to provide a comprehensive review of the approach. 

 

In addition, the data sets that are difficult to explain graphically are related to additional concerns 

[33]. Leaders understand the content of the data sets better when solutions are presented as graphs. 

The graphs for some data sets, however, might need to be completely redone because they cannot 

be altered directly. Furthermore, the usage of deep learning technology is used to analyze plant 

disease detection, but the lack of data present the most difficulties [38]. Newhart et al. [39] stated 

that the statistical analysis of the data and the data sets may also be difficult to understand for 

persons without a background in mathematics or statistics by assessing some difficulties that 

include atmosphere, temperature, snow, and moisture. Therefore, there is no ideal approach to 

promote economic growth. The estimation of the K-nearest neighbour algorithm is studied using 

the bare minimum of climate data [40]. To collect the discriminating information, various forms 

of feature extraction are also carried out utilizing the IRT input photographs. Non-linear feature 

extraction methods make use of aspects including color, shape, and texture [41]. However, due to 

the lack of interpretability and transparency of the DL classifiers, the technology helps in providing 

a novel strategy using the random forest, CHAID, K-nearest neighbour, and Naïve Bayes for plant 

disease classification research. Thus, DL classifiers are usually considered to be mysterious, deep 

black boxes that lack any kind of justification or details regarding how they classify data and its 

high accuracy.  
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2.4 Feature extraction for disease identification  

The automatic plant disease detection system receives the images of the diseased leaves as input 

and diagnoses the illness correctly. According to Panchal et al. [1] this system's effectiveness will 

depend on the feature extraction techniques used. Images of infected leaves that are input into the 

system are processed using image processing algorithms to extract features from the pictures. 

According to Sapkal and Kulkarni [42], there are two different varieties of feature extraction 

methods. First, the image processing methods are used to extract features from the infected leaf 

images input to the system. Colour, Shape, Texture, HOG, SURF and many more properties can 

be extracted from images using image processing methods. A Gray Level Covariance Matrix is 

used to obtain the texture features. The second method makes use of Alexnet's pre-trained deep 

learning model, which will automatically detect features from the input image. From the submitted 

image of the sick leaf, the Alexnet model will automatically extract the features. The pretrained 

Alexnet model doesn't need much time to recognize the features in the given image. Both methods 

apply the Backpropagation Neural Network (BPNN) algorithm to the gathered features. The issue 

of slow convergence affects the BPNN. However, it should be noted that in this case, deep learning 

hyper parameters rather than texture features support the BPNN's faster convergence. Further, the 

BPNN is especially used for the deep neural network that is working on error-prone projects that 

includes images and other speech recognition tasks. The BPNN algorithm can collect sensitive 

noisy data if it is not properly designed or trained. Neural networks learn from the data they are 

trained on, and if the training data includes sensitive or noisy information, the network may 

inadvertently learn to use that information in its predictions or classifications. 
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Diseases are identified using a deep learning methodology based on texture and colour extraction 

methods. As per Magsi et al. [43], the proposed approach to disease diagnosis was tested using a 

dataset of 1200 photos of date palm disease, and it had an overall accuracy of 89.4%. On a national 

and international scale, this application will benefit harvesters and other stakeholders locally and 

regionally. A more precise Histogram for the coloured image-based database can be created by 

using the image thresholding technique to remove the region of interest from the input image's 

background. The data from the histogram and additional values produced from the characteristics' 

data are then used for statistical analysis [44]. Feature extraction happens following preprocessing 

of the input image. Color, size, morphology, and textural characteristics are only a few of the 

characteristics that make up an extraction. These approaches still have poor detection performance 

in terms of feature extraction. Xie et al. [45] described that CNN has developed into a complete 

deep-learning approach in recent years. They fully exploit image big data and find the 

discriminative features from the original photographs themselves to do away with memory-

intensive and time-consuming image processing. Due to CNNs' ability in pattern recognition, early 

plant leaf disease detection has become a new area of focus for smart agriculture.  

 

Magsi et al. [43] used feature extraction to find faults in mango fruit. The sequential forward 

selection method was used to retrieve the most important parts of the image. An effective neural 

network design that considered textural information produced a recognition accuracy of 90.26%. 

Colour is a characteristic that visual systems value highly. The input image is transformed into the 

HSV colour space to retrieve the leaf's colour values. Also, Viana et al. [46] claims that this allows 

for the separation of the damaged region from the rest of the image. After that, the segmented 

image is used to determine the size values (area) of the diseased (yellowish/pale) and healthy 
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(green) areas of a leaf. The smoothness and roughness of the damaged portion compared to the 

healthy part of the leaf are perceptual characteristics that can be quantified using texture data. The 

segmented contaminated area of the leaf's values is then extracted for statistical analysis utilizing 

morphological techniques. Following the histogram segment, the system pulls each bit of colour 

information from an image using the built-in tool for photos of Matlab [43]. In this instance, colour 

information extraction differs from thresholding. Each image pixel's RGB colour values are 

computed during the extraction of colour characteristics, accounting for any differences in the 

primary or secondary colours. Each pixel's processing results in a unique determination of the 

RGB ratio. The texturing feature is then used in the approach. In order for texturing to work, grey 

scaling is required. The image is changed to greyscale prior to utilising the "grey level co-

occurrence matrix technique" (GLCM) to look at the texture feature [43]. Utilizing the complete 

area of the selected image, the approach determines the size of the affected area. Expanding the 

system's already calculated colour feature, this feature increases accuracy and efficacy.  
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Chapter 3 

Data and Processing 

3.1  Data Selection 

There are several well-known datasets available for plant disease detection that can provide a 

collection of images showcasing both diseased and healthy crops. Notable examples include the 

Plant Pathology Dataset, Fruit Disease Dataset, Tomato Leaf dataset, and The PlantVillage dataset. 

The Plant Pathology dataset, conveniently provided by Kaggle, offers a diverse range of images 

featuring plant leaves affected by various diseases. The dataset includes classes for diseases such 

as rust, scab, and multiple types of leaf spots. If the focus is specifically on diseases impacting 

fruits, the Fruit Disease Dataset, also available on Kaggle, provides a comprehensive resource. For 

those specifically interested in tomato diseases, the Tomato Leaf dataset offers a dedicated 

compilation of images displaying tomato leaves affected by bacterial spot, early blight, and late 

blight, among other ailments. Similarly, crop-specific datasets exist for other plants like wheat, 

rice, or soybeans, proving valuable for targeted research and analysis. These datasets serve as 

valuable resources, particularly when the objective is to focus on a specific crop and study its 

associated diseases.  

 

To develop a computer vision algorithm for crop disease detection, we used the PlantVillage 

Dataset as a starting point for learning from scratch [41]. We used transfer learning with a pre-

trained model that was originally trained on the ImageNet dataset. This pre-trained model was 

already proficient at identifying objects and features in images, so we fine-tuned it using the 
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PlantVillage dataset to learn the specific features of plant images and improve its ability to classify 

plant species and its diseases. By combining these two approaches, an effective and efficient 

computer vision algorithm was developed for crop disease detection. 

 

3.1.1 The PlantVillage Dataset 

The PlantVillage dataset is a large and comprehensive dataset of plant images that was created to 

aid in the development of computer vision algorithms for crop disease diagnosis. It was created by 

the PlantVillage team at Penn State University, led by Dr. David Hughes, with funding from the 

National Science Foundation and the Bill and Melinda Gates Foundation. PlantVillage project 

provides the dataset available openly and freely. 

 

The dataset contains over 54,000 high-quality images of 26 different crop diseases and 14 plant 

species along with images of healthy plants, which have a spread of 38 class labels. The images 

were collected from multiple sources, including professional photographers, citizen scientists, and 

farmers. Figure 3.1 shows example of leaf images from PlantVillage dataset. 

 

 

 

 

Figure 3.2. Example of leaf images from the PlantVillage Dataset representing crop-disease pair used. 

       

             Apple_Healthy             Grape_Black_rot         Raspberry_healthy       Tomato_Bacterial_spot 
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The dataset includes images of both leaves and fruits from the various plant species. The plant 

species included in the dataset are: apple, blueberry, cherry, corn, grape, orange, peach, pepper, 

potato, raspberry, soybean, squash, strawberry, and tomato. The diseases included in the dataset 

are: apple scab, bacterial spot, cedar apple rust, common rust, early blight, late blight, leaf curl, 

mosaic virus, powdery mildew, septoria leaf spot, spider mites, target spot, tomato yellow leaf curl 

virus, and two-spotted spider mites. 

 

The dataset is available in two formats: as a collection of individual images and as a compressed 

file containing all the images in a standardized format (JPEG) with a resolution (256x256 pixels). 

There are three different versions for the whole PlantVillage dataset. 

1. Color – 54,305 images 

2. Gray scale - 54,305 images 

3. Leaf Segmented – 54,306 images 

Figure 3.2 shows sample images from the three versions of the PlantVillage dataset. 

 

 

 

 

 

 

Figure 3.2.Sample images from three different versions of the PlantVillage dataset. 

             

 Color_image               GrayScale_image          Segmented_leaf_image 
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The PlantVillage team has also created a website called PlantVillage.com, which provides a wealth 

of information on crop diseases, including diagnostic tools, treatment recommendations, and a 

community forum for plant enthusiasts and professionals. 

 

3.1.2 The ImageNet Dataset 

The ImageNet dataset [47] has several advantages in this research. It is one of the largest datasets 

currently available, which makes it a perfect source of data for creating machine learning models. 

By classifying the photos using the WorldNet hierarchy, the models created for identifying objects 

are accurate and efficient. The ImageNet dataset is a priceless tool for creating machine-learning 

models. This research's ideal data source contains more than 50,000 color photos of crop leaves, 

including both healthy and damaged plants. A high sample size, precise labelling, and the potential 

to identify agricultural diseases are just a few advantages of using this dataset. 

 

The ImageNet dataset contains 14,197,122 annotated images according to WorldNet hierarchy. It 

has 1000 different object categories, with an average of 1000 images per category. 

 

3.2 Data Processing 

Data analysis is a crucial step in cleaning and modelling the data once it has been acquired. 

Extraction of pertinent data from data sources is a step in the data analysis process. To ensure that 

the information is correct and dependable, this procedure also aids in cleaning and deleting 

extraneous data from the obtained data [48]. To deliver precise findings for the completion of the 

work, Tensor Flow—a system for managing information and analysis—was used.  
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Several libraries built on the Python programming language were used to examine the data in the 

PlantVillage datasets. Tensor Flow, Numpy, and Keras for building Neural Network Architecture, 

as well as MatplotLib for plotting libraries were utilized for the analysis. These libraries all serve 

various purposes and are essential to the study. A crucial library for developing and deploying 

machine learning models is TensorFlow [49]. It offers a thorough and adaptable environment for 

creating and developing neural networks. It also makes computing effective and scalable, which 

makes it a perfect library for the study of massive datasets. 

 

3.2.1 Tensor flow library 

To verify that the information is trustworthy and correct, data analysis is essential. The data is 

effectively evaluated by the Tensor Flow technology. The study of PlantVillage datasets is made 

possible by the use of many Python-based tools, including TensorFlow, Numpy, Keras, and 

MatplotLib. These libraries work together to ensure that the data is examined properly and 

efficiently, producing reliable findings. 

 

After Data preprocessing, dataset were trained on different models including: AlexNet, 

GoogLeNet, InceptionV3 and ResNet50. We perform modelling with various training-testing 

ratios of 90:10, 80:20, 70:30, and 60:40. 

 

3.3 Hardware Setup and Specifications 

The hardware specification for implementation of crop disease detection is as follows: 
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Table 3.1: Hardware Setup and Specifications 

Processor AMD Ryzen 7 5800H 

Memory 16 GB 

Storage 512 SSD 

Operating System Windows 10 

Graphics card NVIDIA GeForce RTX 3050ti (4 GB) 

Development Environment Jupyter Notebook 
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Chapter 4 

Methods 

4.1 Description 

AI refers to the broad field of computer science focused on creating intelligent systems that can 

mimic human intelligence. Machine learning (ML) is a subset of AI that uses algorithms to enable 

computers to learn from data and make predictions or decisions without explicit programming. 

Deep learning (DL) is a specific type of ML that utilizes artificial neural networks with multiple 

layers to learn complex patterns and hierarchies in data, enabling it to excel in tasks such as image 

and speech recognition. In crop disease detection for image classification problem, we focus on 

some popular deep learning architectures namely AlexNet, GooLeNet, ResNet50 and 

InceptionV3. These architectures are used to determine healthy and diseased crops with their 

names. 

 

4.2 Library  

There are few Libraries which are required during training of deep learning models. The main 

libraries such as ‘TensorFlow’, ’keras’, ’matplotlib’, ‘OS’, and ‘time’ has been used. TensorFlow 

provides a range of tools, that we used for building and training deep neural networks. Keras 

provides a simple and intuitive interface that we used to build and experiment with deep learning 

models. Matplotlib is used to plot images. We have used OS library to use operating system 

functionality like reading or writing to the file system and creating new directories. Time is used 
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to generate a unique run ID for each run of the model. Figure 4.1 shows the code snippet to import 

the libraries. 

 

Figure 4.1 Importing Libraries 

 

4.2.1 TensorFlow 

TensorFlow is an open-source deep learning framework developed by Google that allows 

developers to build, train, and deploy machine learning models. With TensorFlow, we can design 

a graph of calculations that represent the different mathematical processes involved in the model. 

Overall, TensorFlow makes it easier for developers to build and experiment with deep learning 

models [50]. Currently, TensorFlow is used in a variety of applications, including voice search, 

picture recognition, and text-based ones. 

 

4.2.2 Keras 

Keras is a high-level deep learning library and API created by Google that can be used as a stand-

alone framework or integrated into other deep learning frameworks like TensorFlow, Microsoft 

Cognitive Toolkit, or Theano. Keras provides a user-friendly and intuitive interface that allows 

developers to quickly build and experiment with deep learning models, without needing to have a 

deep understanding of the low-level details of neural networks. Keras was originally developed by 

François Chollet and is now a part of the TensorFlow project. It is utilized to simplify the 

development of neural networks using Python. Because it offers a high degree of abstraction 
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python frontend and the choice of many back-ends for computation, Keras is comparatively simple 

to understand and use. As a result, Keras is considerably more beginner-friendly yet a bit slower 

than other deep-learning frameworks [51]. 

 

4.2.3 Matplotlib 

Matplotlib is a data visualization library that works with the popular numerical computing library 

NumPy in Python. It provides a cross-platform toolkit for creating high-quality graphs and charts 

that can be used for data analysis, scientific research, and engineering. Matplotlib is an open-source 

alternative to proprietary tools like MATLAB and can be used to create visualizations that are both 

informative and aesthetically pleasing. Developers can also use the interfaces provided by 

Matplotlib to include graphs in GUI applications, making it a versatile and powerful tool for data 

visualization [52]. 

 

4.2.4 OS 

The OS module in Python provides a set of functions that allow us to interact with our operating 

system. It provides a variety of practical OS features that may be utilised to carry out OS-based 

operations and obtain OS-related data. Python's basic utility modules cover the OS [53]. 

 

4.2.5 Sklearn 

Scikit-learn is Python's most practical and reliable machine-learning library. It provides powerful 

tools and algorithms that can be used for statistical modeling and machine learning tasks. Sklearn 

is designed to be easy to use and integrates well with other Python libraries such as NumPy and 

Pandas. It also includes useful features such as data preprocessing, model selection, and 
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performance evaluation tools. With the help of scikit-learn we can employ various machine 

learning techniques such as clustering, classification, and regression. 

 

4.3 Parameters 

4.3.1 Loss function 

A loss function quantifies the error between a machine learning model's predicted output and the 

true output. It is a parameter that is specified when the model is constructed and helps determine 

the model's performance during training. The choice of loss function depends on the problem being 

solved and the type of data being used. We have used sparse_categorical_crossentropy given by 

equation 4.1.  

− ∑ log 𝑡𝑖 log(𝑝𝑖)
𝑁

𝑖=1
                           (4.1) 

For n classes, where 𝑡𝑖 is the truth label and 𝑝𝑖 is the Softmax probability for the 𝑖𝑡ℎclass [54]. 

Sparse categorical crossentropy is a loss function used in neural network training, particularly for 

multiclass classification problems where the number of classes is large. It calculates the cross-

entropy between the predicted probability distribution and the true probability distribution of the 

classes, but only considers the true class label as a single value, rather than a one-hot encoded 

vector. This makes it useful for cases where the number of classes is very large and the one-hot 

encoding of the labels would require a lot of memory. The sparse categorical crossentropy loss 

function encourages the model to assign a high probability to the correct class label, and penalizes 

the model for assigning high probabilities to incorrect labels. 
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4.3.2 Optimizer 

In machine learning, an optimizer is an algorithm used to adjust the parameters of a model during 

training to minimize the loss function. The goal of the optimizer is to find the set of parameters 

that result in the lowest possible loss value, thus improving the model's ability to make accurate 

predictions. 

 

Stochastic Gradient Descent (SGD) was used in this study,   Stochastic Gradient Descent (SGD) 

is a popular optimization algorithm used in machine learning for training deep neural networks. It 

is a gradient-based optimization algorithm that updates the model parameters in small steps based 

on the gradients of the loss function with respect to the parameters. SGD works by randomly 

selecting a small batch of data from the training set and computing the gradients of the loss function 

with respect to the parameters using that mini-batch. The model parameters are then updated in 

the direction of the negative gradient, scaled by a learning rate, to minimize the loss function. This 

process is repeated for multiple mini-batches until the model converges to a satisfactory solution. 

SGD is computationally efficient and can work well for large datasets and simple models. SGD 

performs a parameter update for each training example 𝑥(𝑖) and label 𝑦(𝑖): 

𝜃 =  𝜃 −  𝜂 · ∇𝜃𝐽(𝜃; 𝑥(𝑖); 𝑦(𝑖))                                                       (4.2) 

Where 𝜃 represents the current values of the model parameters that the algorithm is trying to 

optimize. 𝜂 is the learning rate, ∇𝜃𝐽(𝜃; 𝑥(𝑖); 𝑦(𝑖)) represents the gradient of the loss function. SGD 

eliminates redundancy by computing the gradient and updating the model parameters for each 

example one at a time [55]. 
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4.3.3 Learning rate 

The learning rate determines the step size at which a model's parameters are updated during 

training. It is critical in determining the model's ability to converge to the optimal parameters, and 

selecting an appropriate learning rate is an important part of training machine learning models. 
During the experimentation process, various learning rates were tested for the deep learning 

networks. However, it was observed that some of the tested learning rates led to overfitting of the 

model. On the other hand, a learning rate of 0.005 consistently resulted in the best accuracy for the 

deep learning networks. Therefore, 0.005 was chosen as the optimal learning rate for the final 

model. 

 

4.3.4 Epochs 

In machine learning, an epoch is a term used to describe one complete pass through the training 

dataset during the training of a model. During each epoch, the model makes a prediction on each 

training sample and updates its parameters to minimize the loss function. The number of epochs 

was 30 and it is a hyperparameter that is specified before training and determines the number of 

times the entire dataset will be used to train the model. Different number of epochs were used to 

test the model and the best accuracy was achieved with 30 epochs. 

 

4.3.5 Batch_size 

The batch size is a hyperparameter that determines the number of training samples used in each 

iteration of the model's training during an epoch, which was 30 for GoogLeNet and ResNet50, 20 

for AlexNet and InceptionV3. Different batch sizes were used to test on different architectures and 

the best accuracy was achieved with the given batch sizes. The batch size is used in conjunction 
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with the number of epochs and the learning rate to optimize the model's parameters. A larger batch 

size can result in faster training times and more stable updates to the model's parameters, while a 

smaller batch size can help the model generalize better and avoid getting stuck in local minima. 

  

4.4 Deep Learning Architectures 

Deep learning architectures are neural networks with multiple layers that can learn hierarchical 

representations of data. These architectures have revolutionized the field of artificial intelligence 

and have been successfully applied to various applications such as image recognition, speech 

recognition, natural language processing, and more. Some common deep learning architectures 

include: Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long 

Short-Term Memory Networks (LSTMs), Generative Adversarial Networks (GANs), and 

Autoencoders. These are just a few examples of the many deep learning architectures that exist, 

and each has its own strengths and weaknesses depending on the specific task at hand. We have 

used Convolutional Neural Networks for the crop disease detection. 

 

4.5 Convolutional Neural Networks (CNNs) 

Convolutional Neural Network is a type of deep learning architecture that is primarily used for 

image and video analysis. A CNN consists of several layers that are designed to extract meaningful 

features from the input images or videos. The first layer in a CNN is a convolutional layer, which 

applies a set of filters to the input image to extract low-level features such as edges and corners. 

The subsequent layers in a CNN use these low-level features to extract higher-level features such 

as shapes and objects. The pooling layers downsample the feature maps obtained from the 
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convolutional layers, reducing the spatial dimensions of the feature maps while retaining the 

important information. 

 

The output of the convolutional and pooling layers is then flattened and passed through a series of 

fully connected layers, which perform the classification or regression task. The unique aspect of 

CNNs is their ability to learn spatial hierarchies of features by performing convolutions and 

pooling operations. This allows them to effectively handle images of varying sizes and 

orientations, making them a powerful tool for tasks such as object detection, image segmentation, 

and more. We have used CNNs namely GoogLeNet, ResNet50, InceptionV3 and AlexNet. Figure 

4.2 shows a general architecture of the Convolutional Neural Network. 

 

 

Figure 4.2: Convolutional Neural Network (Turhan, 2019) [56] 

 

4.5.1 GoogLeNet  

GoogleNet, also known as Inception-v1, is a convolutional neural network architecture developed 

by researchers at Google in 2014. It was designed to be a deeper and more efficient neural network 

for image classification tasks, with fewer parameters and lower computational complexity 

compared to AlexNet architectures. GoogleNet consists of 22 layers, including several inception 

modules that perform parallel convolutions at multiple scales. These inception modules are 
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designed to capture a wide range of features at different levels of abstraction, allowing the network 

to effectively learn complex patterns in the input images. 

 

One of the key innovations of GoogleNet is the use of 1x1 convolutional layers to reduce the 

dimensionality of the feature maps before performing more computationally expensive 

convolutions. This helps to reduce the number of parameters in the network and improve its 

computational efficiency. GoogleNet achieved state-of-the-art performance on the ImageNet 

dataset at the time of its release, and it has since inspired numerous follow-up architectures such 

as Inception-v2, Inception-v3, and Inception-ResNet. To teach the network the features that are 

important for image classification, a sizable dataset of images is used for training. The picture data 

is fed into the network in the instance of crop disease detection, and the characteristics are retrieved 

from the images. The next step is to train a classifier with these attributes so that it can recognise 

the presence of a particular crop disease in fresh photos. Figure 4.3 shows the parameter settings 

for GoogleNet architecture.  

Table 4.1: GoogLeNet architecture Parameters 

Layer Output Shape Number of 

Parameters 

Input layer (None, 224, 224, 3) 0 

Conv2D (None,112, 112, 64) 9472 

MaxPooling2D (None, 56, 56, 64 ) 0 

BatchNormalization (None, 56, 56, 64 ) 256 

Conv2D (None, 56, 56, 64 ) 4160 

Conv2D (None, 56, 56, 192) 110784 

BatchNormalization (None, 56, 56, 192) 768 

MaxPooling2D (None, 28, 28, 192) 0 

Conv2D (None, 28, 28, 96) 18528 

Conv2D (None, 28, 28, 16) 3088 

MaxPooling2D (None, 28, 28, 192) 0 

Conv2D (None, 28, 28, 64) 12352 

Conv2D (None, 28, 28, 128) 110720 
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Conv2D (None, 28, 28 , 32) 12832 

Conv2D (None, 28, 28, 32) 6176 

Concatenate (None, 28, 28, 256) 0 

Conv2D (None, 28, 28, 128) 32896 

Conv2D (None,28, 28, 32) 8224 

MaxPooling2D (None, 28, 28, 256) 0 

Conv2D (None, 28, 28, 128) 32896 

Conv2D (None, 28, 28, 192) 221376 

Conv2D (None, 28, 28, 96) 76896 

Conv2D (None, 28, 28, 64) 16448 

Concatenate (None, 28, 28, 480) 0 

MaxPooling2D (None, 14, 14, 480) 0 

Conv2D (None, 14, 14, 96) 46176 

Conv2D (None, 14, 14, 16) 7696 

MaxPooling2D (None, 14, 14, 480) 0 

Conv2D (None, 14, 14, 192) 92352 

Conv2D (None, 14, 14, 208) 179920 

Conv2D (None, 14, 14, 48) 19248 

Conv2D (None, 14, 14, 64) 30784 

Concatenate (None, 14, 14, 512) 0 

Conv2D (None, 14, 14, 112) 57456 

Conv2D (None, 14, 14, 24) 12312 

MaxPooling2D (None, 14, 14, 512) 0 

Conv2D (None, 14, 14, 160) 82080 

Conv2D (None, 14, 14, 224) 226016 

Conv2D (None, 14, 14, 64) 38464 

Conv2D 27 (None, 14, 14, 64) 32832 

Concatenate (None, 14, 14, 512) 0 

Conv2D 29 (None, 14, 14, 128) 65664 

Conv2D 31 (None, 14, 14, 24) 12312 

MaxPooling2D (None, 14, 14, 512) 0 

Conv2D 28 (None, 14, 14, 128) 65664 

Conv2D 30 (None, 14, 14, 256) 295168 

Conv2D 32 (None, 14, 14, 64) 38464 

Conv2D 33 (None, 14, 14, 64) 32832 

Concatenate 4 (None, 14, 14, 512) 0 

Conv2D 35 (None, 14, 14, 144) 73872 

Conv2D 37 (None, 14, 14, 32) 16416 

MaxPooling2D (None, 14, 14, 512) 0 

Conv2D 34 (None, 14, 14, 112) 57456 

Conv2D 36 (None, 14, 14, 288) 373536 

Conv2D 38 (None, 14, 14, 64) 51264 

Conv2D 39 (None, 14, 14, 64) 32832 
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Concatenate 5 (None, 14, 14, 528) 0 

Conv2D 42 (None, 14, 14, 160) 84640 

Conv2D 44 (None, 14, 14, 32) 16928 

MaxPooling2D (None, 14, 14, 528) 0 

Conv2D 41 (None, 14, 14, 256) 135424 

Conv2D 43 (None, 14, 14, 320) 461120 

Conv2D 45 (None, 14, 14, 128) 102528 

Conv2D 46 (None, 14, 14, 128) 67712 

Concatenate 6 (None, 14, 14, 832) 0 

MaxPooling2D (None, 7, 7, 832) 0 

Conv2D 48 (None, 7, 7, 160) 133280 

Conv2D 50 (None, 7, 7, 32) 26656 

MaxPooling2D (None, 7, 7, 832) 0 

Conv2D 47 (None, 7, 7, 256) 213248 

Conv2D 49 (None, 7, 7, 320) 461120 

Conv2D 51 (None, 7, 7, 128) 102528 

Conv2D 52 (None, 7, 7, 128) 106624 

Concatenate 7 (None, 7, 7, 832) 0 

Conv2D 54 (None, 7, 7, 192) 159936 

Conv2D 56 (None, 7, 7, 48) 39984 

MaxPooling2D (None, 7, 7, 832) 0 

Conv2D 53 (None, 7, 7, 384) 319872 

Conv2D 55 (None, 7, 7, 384) 663936 

Conv2D 57 (None, 7, 7, 128) 153728 

Conv2D 58 (None, 7, 7, 128) 106624 

Concatenate 8 (None, 7, 7, 1024) 0 

AveragePooling (None, 4, 4, 512) 0 

AveragePooling 1 (None, 4, 4, 528) 0 

AveragePooling 2 (None, 1, 1, 1024) 0 

Conv2D 21 (None, 4, 4, 128) 65664 

Conv2D 40 (None, 4, 4, 128) 67712 

Flatten 2 (None, 1024) 0 

Flatten (None, 2048) 0 

Flatten 1 (None, 2048) 0 

Dropout 2 (None, 1024) 0 

Dense (None, 256) 524544 

Dense 1 (None, 256) 524544 

Dense 2 (None, 256) 262400 

Dropout (None, 256) 0 

Dropout 1 (None, 256) 0 

Main (Dense) (None, 38) 9766 

Aux1 (Dense) (None, 38) 9766 

Aux2 (Dense) (None, 38) 9766 
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Total params: 7,448,738 

Trainable params:7,448,226 

Non-trainable params: 512 

 
 

 

Figure 4.3: Inception block 
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Figure 4.4 shows an inception block in the GoogleNet architecture. An inception block consists of 

four paths, each of which performs a different type of convolution on the input feature maps. These 

four paths are then concatenated along the channel dimension and passed on to the next layer. By 

concatenating the output of each path along the channel dimension, the inception block is able to 

capture a wide range of patterns and features in the input feature maps, making it a powerful 

building block for deep neural networks.  

 

 

Figure 4.4: Auxiliary block 

Figure 4.5 shows an auxiliary block in the GoogleNet architecture. It is an additional block that is 

inserted into the network at an intermediate layer, and is used to provide additional supervision 

and regularization during training. The complete model of GoogleNet is shown in Figure 4.6. 

 

 

Figure 4.5: GoogLeNet model 

In our implementation, we used the Keras API to build the GoogleNet model. The ‘googlenet()’ 

function defines the architecture of the GoogleNet model. The input to the model is an image. The 
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‘googlenet()’ function returns a keras model object with the specified inputs and outputs. We 

trained the GoogLeNet model from scratch using the Keras library in Python. The weights of the 

model were initialized randomly, and the model was trained using the SGD optimizer with a 

learning rate of 0.005 for 30 epochs. No pre-trained weights were used in this study. There were 

7,448,226 trainable parameters in this GoogLeNet architecture. 

 

 4.5.2 AlexNet  

AlexNet is a deep convolutional neural network architecture that was developed by Alex 

Krizhevsky, Ilya Sutskever, and Geoffrey Hinton in 2012 [57]. It consists of eight layers, including 

five convolutional layers and three fully connected layers, with a total of 60 million parameters. 

AlexNet was the winner of the ImageNet Large Scale Visual Recognition Challenge in 2012, 

achieving state-of-the-art results in object recognition and image classification. It was one of the 

first deep learning models to demonstrate the power of convolutional neural networks for computer 

vision tasks, and has since inspired many other architectures in the field. Figure 4.7 shows the 

AlexNet model architecture. 

 

Figure 4.6: AlexNet model 
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Table 4.2: AlexNet architecture parameters  

Layer Output Shape Number of Parameters 

Conv2D (None, 55, 55, 96) 34,944 

BatchNormalization (None, 55, 55, 96) 384 

MaxPooling2D (None, 27, 27, 96) 0 

Conv2D (None, 27, 27, 256) 614,656 

BatchNormalization (None, 27, 27, 256) 1,024 

MaxPooling2D (None, 13, 13, 256) 0 

Conv2D (None, 13, 13, 384) 885,120 

BatchNormalization (None, 13, 13, 384) 1,536 

Conv2D (None, 13, 13, 384) 1,327,488 

BatchNormalization (None, 13, 13, 384) 1,536 

Conv2D (None, 13, 13, 256) 884,992 

BatchNormalization (None, 13, 13, 256) 1,024 

MaxPooling2D (None, 6, 6, 256) 0 

Flatten (None, 9216) 0 

Dense (None, 4096) 37,752,832 

Dropout (None, 4096) 0 

Dense (None, 4096) 16,781,312 

Dropout (None, 4096) 0 

Dense (None, 38) 155,686 

Total  58,442,534 

Trainable parameters  58,439,782 

Non-trainable parameters  2,752 

 

Figure 4.8 shows the parameter setting for AlexNet. AlexNet is a convolutional neural network 

architecture using the Sequential API in Keras. It consists of multiple layers including Conv2D 

(convolutional), BatchNormalization (normalization of layer inputs), MaxPool2D (max pooling), 

and Dense (fully connected) layers. The model uses the ReLU activation function for 

convolutional and dense layers, and softmax activation for the output layer. We have 38 class 

labels in our dataset. The model is designed for multi-class classification, with 38 output classes. 
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It uses convolutional layers to extract features from the input image and fully connected layers to 

classify the image into one of the 38 classes. The model uses the ReLU activation function for 

convolutional layers. We trained the AlexNet model from scratch using the Keras library in 

Python. The weights of the model were initialized randomly, and the model was trained using the 

SGD optimizer with a learning rate of 0.005 for 30 epochs. There were 58,439,782 trainable 

parameters in this architecture. 

 

4.5.3 ResNet50 

ResNet50 is a convolutional neural network architecture that was introduced in 2015 by 

researchers at Microsoft Research Asia [58]. The name "ResNet" comes from "residual network," 

which refers to the use of residual connections to overcome the degradation problem that can occur 

in deep neural networks. ResNet50 has been used for a variety of computer vision tasks, such as 

object detection, image classification, and image segmentation. Its architecture includes residual 

blocks, which allow for more efficient training and deeper network architectures. We trained 

ResNet50 in two way, first Learning from scratch and second Transfer learning. Figure 4.9 shows 

the parameter settings for ResNet50 architecture. 

→ ResNet50 Learning From Scratch: 

Table 4.3: ResNet50 architecture parameters 

Layer Output Shape 

Number of 

Parameters 

InputLayer (None, 224, 224, 3) 0 

Conv2D (None, 112, 112, 64) 9472 

BatchNormalization (None, 112, 112, 64) 256 

ReLu (None, 112, 112, 64) 0 

MaxPooling2D (None, 56, 56, 64) 0 
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Conv2D 1 (None, 56, 56, 64) 36928 

BatchNormalization 1 (None, 56, 56, 64) 256 

ReLu 1 (None, 56, 56, 64) 0 

Conv2D 2 (None, 56, 56, 64) 36928 

Conv2D 3 (None, 56, 56, 64) 4160 

BatchNormalization 2 (None, 56, 56, 64) 256 

BatchNormalization 3 (None, 56, 56, 64) 256 

Add (None, 56, 56, 64) 0 

ReLu 2 (None, 56, 56, 64) 0 

Conv2D 4 (None, 56, 56, 128) 73856 

BatchNormalization 4 (None, 56, 56, 128) 512 

ReLu 3 (None, 56, 56, 128) 0 

Conv2D 5 (None, 56, 56, 128) 147584 

Conv2D 6 (None, 56, 56, 128) 8320 

BatchNormalization 5 (None, 56, 56, 128) 512 

BatchNormalization 6 (None, 56, 56, 128) 512 

Add 1 (None, 56, 56, 128) 0 

ReLu 4 (None, 56, 56, 128) 0 

Conv2D 7 (None, 56, 56, 256) 295169 

BatchNormalization 7 (None, 56, 56, 256) 1024 

ReLu 5 (None, 56, 56, 256) 0 

Conv2D 8 (None, 56, 56, 256) 590080 

Conv2D 9 (None, 56, 56, 256) 33024 

BatchNormalization 8 (None, 56, 56, 256) 1024 

BatchNormalization 9 (None, 56, 56, 256) 1024 

Add 2 (None, 56, 56, 256) 0 

ReLu 6 (None, 56, 56, 256) 0 

GlobalAveragePooling (None, 256) 0 

Dense (None, 38) 9766 

Total params: 1,250,918 

Trainable param:1,248,102 

Non trainable para:2,816 
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We used two functions in ResNet50, ‘residual_block’ and ‘ResNet50’. Figure 4.10 shows the 

ResNet50 model architecture. 

 

Figure 4.7: ResNet50 model 

The ‘residual_block’ function takes an input tensor, the number of filters to use, and an optional 

stride value. It applies two convolutional layers, each with a 3x3 kernel size and 'same' padding, 

followed by batch normalization and ReLU activation. The residual connection is added by 

applying a 1x1 convolutional layer to the input tensor with the same number of filters and stride 

value, followed by batch normalization. The output of the convolutional layers is added to the 

residual connection, and then passed through a ReLU activation. 

 

The ’ResNet50’ function takes an input shape and the number of classes to predict, and defines a 

ResNet50 architecture using the ‘residual_block’ function. It applies a convolutional layer with 64 

filters, a 7x7 kernel size, and 'same' padding, followed by batch normalization and ReLU 

activation. It then applies max pooling with a pool size of 3x3 and stride of 2. The ResNet blocks 

are applied with increasing filter sizes of 64, 128, 256, and 512. The output of the last ResNet 

block is passed through global average pooling, and then a fully connected layer with softmax 

activation to predict the class probabilities. Overall, it is a ResNet50 neural network architecture 
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that can be used for crop disease detection image classification tasks. We trained the ResNet50 

model from scratch. The model was trained using the SGD optimizer with a learning rate of 0.005 

for 30 epochs. There were 1,248,102 trainable parameters in this ResNet50 architecture. 

 

→ ResNet50 Transfer Learning: 

ResNet50 is a deep neural network with 50 layers, and it has been pre-trained on the ImageNet 

dataset, which consists of over 1 million labeled images in 1,000 categories. This pre-training 

enables ResNet50 to recognize a wide range of objects and features in images. Figure 4.11 shows 

the parameter settings for ResNet50 Transfer Learning. 

Table 4.4: ResNet50 architecture for Transfer Learning Parameters 

Layer Output Shape 

Number of 

Parameters 

InputLayer (None, 224, 224, 3) 0 

ZeroPadding2D (None, 230, 230, 3 ) 0 

Conv2D (None, 112, 112, 64) 9472 

BatchNormalization (None, 112, 112, 64) 256 

Activation (None, 112, 112, 64) 0 

ZeroPadding2D (None, 114, 114, 64) 0 

MaxPooling2D (None, 56, 56, 64) 0 

Conv2D (None, 56, 56, 64) 4160 

BatchNormalization (None, 56, 56, 64) 256 

Activation (None, 56, 56, 64) 0 

Conv2D (None, 56, 56, 64) 036928 

BatchNormalization (None, 56, 56, 64) 256 

Activation (None, 56, 56, 64) 0 

Conv2D (None, 56, 56, 256) 16640 

Conv2D (None, 56, 56, 256) 16640 

BatchNormalization (None, 56, 56, 256) 1024 

BatchNormalization (None, 56, 56, 256) 1024 
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Add (None, 56, 56, 256) 0 

Activation (None, 56, 56, 256) 0 

Conv2D (None, 56, 56, 64) 16448 

Batch Normalization (None, 56, 56, 64) 256 

Activation (None, 56, 56, 64) 0 

Conv2D (None, 56, 56, 64) 36928 

BatchNormalization (None, 56, 56, 64) 256 

Activation (None, 56, 56, 64) 0 

Conv2D (None, 56, 56, 256) 16640 

BatchNormalization (None, 56, 56, 256) 1024 

Add (None, 56, 56, 256) 0 

Activation (None, 56, 56, 256) 0 

Conv2D (None, 56, 56, 64) 16448 

BatchNormalization (None, 56, 56, 64) 256 

Activation (None, 56, 56, 64) 0 

Conv2D (None, 56, 56, 64) 36928 

BatchNormalization (None, 56, 56, 64) 256 

Activation (None, 56, 56, 64) 0 

Conv2D (None, 56, 56, 256) 16640 

BatchNormalization (None, 56, 56, 256) 1024 

Add (None, 56, 56, 256) 0 

Activation (None, 56, 56, 256) 0 

Conv2D (None, 28, 28, 128) 32896 

BatchNormalization (None, 28, 28, 128) 512 

Activation (None, 28, 28, 128) 0 

Conv2D (None, 28, 28, 128) 147584 

BatchNormalization (None, 28, 28, 128) 512 

Activation (None, 28, 28, 128) 0 

Conv2D (None, 28, 28, 512) 131584 

Conv2D (None, 28, 28, 512) 66048 

BatchNormalization (None, 28, 28, 512) 2048 
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BatchNormalization (None, 28, 28, 512) 2048 

Add (None, 28, 28, 512) 0 

Activation (None, 28, 28, 512) 0 

Conv2D (None, 28, 28, 128) 65664 

BatchNormalization (None, 28, 28, 128) 512 

Activation (None, 28, 28, 128) 0 

Conv2D (None, 28, 28, 128) 147584 

BatchNormalization (None, 28, 28, 128) 512 

Activation (None, 28, 28, 128) 0 

Conv2D (None, 28, 28, 512) 66048 

BatchNormalization (None, 28, 28, 512) 2048 

Add (None, 28, 28, 512) 0 

Activation (None, 28, 28, 512) 0 

Conv2D (None, 28, 28, 128) 65664 

BatchNormalization (None, 28, 28, 128) 512 

Activation (None, 28, 28, 128) 0 

Conv2D (None, 28, 28, 128) 147584 

BatchNormalization (None, 28, 28, 128) 512 

Activation (None, 28, 28, 128) 0 

Conv2D (None, 28, 28, 512) 66048 

BatchNormalization (None, 28, 28, 512) 2048 

Add (None, 28, 28, 512) 0 

Activation (None, 28, 28, 512) 0 

Conv2D (None, 28, 28, 128) 65664 

BatchNormalization (None, 28, 28, 128) 512 

Activation (None, 28, 28, 128) 0 

Conv2D (None, 28, 28, 128) 147584 

BatchNormalization (None, 28, 28, 128) 512 

Activation (None, 28, 28, 128) 0 

Conv2D (None, 28, 28, 512) 66048 
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BatchNormalization (None, 28, 28, 512) 2048 

Add (None, 28, 28, 512) 0 

Activation (None, 28, 28, 512) 0 

Conv2D (None, 14, 14, 256) 131328 

BatchNormalization (None, 14, 14, 256) 1024 

Activation (None, 14, 14, 256) 0 

Conv2D (None, 14, 14, 256) 590080 

BatchNormalization (None, 14, 14, 256) 1024 

Activation (None, 14, 14, 256) 0 

Conv2D (None, 14, 14, 1024) 525312 

Conv2D (None, 14, 14, 1024) 263168 

BatchNormalization (None, 14, 14, 1024) 4096 

BatchNormalization (None, 14, 14, 1024) 4096 

Add (None, 14, 14, 1024) 0 

Activation (None, 14, 14, 1024) 0 

Conv2D (None, 14, 14, 256) 262400 

BatchNormalization (None, 14, 14, 256) 1024 

Activation (None, 14, 14, 256) 0 

Conv2D (None, 14, 14, 256) 590080 

BatchNormalization (None, 14, 14, 256) 1024 

Activation (None, 14, 14, 256) 0 

Conv2D (None, 14, 14, 1024) 263168 

BatchNormalization (None, 14, 14, 1024) 4096 

Add (None, 14, 14, 1024) 0 

Activation (None, 14, 14, 1024) 0 

Conv2D (None, 14, 14, 256) 262400 

BatchNormalization (None, 14, 14, 256) 1024 

Activation (None, 14, 14, 256) 0 

Conv2D (None, 14, 14, 256) 590080 

BatchNormalization (None, 14, 14, 256) 1024 



51 
 

Activation (None, 14, 14, 256) 0 

Conv2D (None, 14, 14, 1024) 263168 

BatchNormalization (None, 14, 14, 1024) 4096 

Add (None, 14, 14, 1024) 0 

Activation (None, 14, 14, 1024) 0 

Conv2D (None, 14, 14, 256) 262400 

BatchNormalization (None, 14, 14, 256) 1024 

Activation (None, 14, 14, 256) 0 

Conv2D (None, 14, 14, 256) 590080 

BatchNormalization (None, 14, 14, 256) 1024 

Activation (None, 14, 14, 1024) 0 

Conv2D (None, 14, 14, 256) 262400 

BatchNormalization (None, 14, 14, 256) 1024 

Activation (None, 14, 14, 256) 0 

Conv2D (None, 14, 14, 256) 590080 

BatchNormalization (None, 14, 14, 256) 1024 

Activation (None, 14, 14, 256) 0 

Conv2D (None, 14, 14, 1024) 263168 

BatchNormalization (None, 14, 14, 1024) 4096 

Add (None, 14, 14, 1024) 0 

Activation (None, 14, 14, 1024) 0 

Conv2D (None, 14, 14, 256) 262400 

BatchNormalization (None, 14, 14, 256) 1024 

Activation (None, 14, 14, 256) 0 

Conv2D (None, 14, 14, 256) 590080 

BatchNormalization (None, 14, 14, 256) 1024 

Activation (None, 14, 14, 256) 0 

Conv2D (None, 14, 14, 1024) 263168 

BatchNormalization (None, 14, 14, 1024) 4096 

Add (None, 14, 14, 1024) 0 
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Activation (None, 14, 14, 1024) 0 

Conv2D (None, 14, 14, 256) 262400 

BatchNormalization (None, 14, 14, 256) 1024 

Activation (None, 14, 14, 256) 0 

Conv2D (None, 14, 14, 256) 590080 

BatchNormalization (None, 14, 14, 256) 1024 

Activation (None, 14, 14, 256) 0 

Conv2D (None, 14, 14, 1024) 263168 

BatchNormalization (None, 14, 14, 1024) 4096 

Add (None, 14, 14, 1024) 0 

Activation (None, 14, 14, 1024) 0 

Conv2D (None, 7, 7, 512) 524800 

BatchNormalization (None, 7, 7, 512) 2048 

Activation (None, 7, 7, 512) 0 

Conv2D (None, 7, 7, 512) 2359808 

BatchNormalization (None, 7, 7, 512) 2048 

Activation (None, 7, 7, 512) 0 

Conv2D (None, 7, 7, 2048) 2099200 

Conv2D (None, 7, 7, 2048) 1050624 

BatchNormalization (None, 7, 7, 2048) 8192 

BatchNormalization (None, 7, 7, 2048) 8192 

Add (None, 7, 7, 2048) 0 

Activation (None, 7, 7, 2048) 0 

Conv2D (None, 7, 7, 512) 1049088 

BatchNormalization (None, 7, 7, 512) 2048 

Activation (None, 7, 7, 512) 0 

Conv2D (None, 7, 7, 512) 2359808 

BatchNormalization (None, 7, 7, 512) 2048 

Activation (None, 7, 7, 512) 0 

Conv2D (None, 7, 7, 2048) 1050624 
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BatchNormalization (None, 7, 7, 512) 2048 

Activation (None, 7, 7, 512) 0 

Conv2D (None, 7, 7, 2048) 1050624 

BatchNormalization (None, 7, 7, 2048) 8192 

Add (None, 7, 7, 2048) 0 

Activation (None, 7, 7, 2048) 0 

Conv2D (None, 7, 7, 512) 1049088 

BatchNormalization (None, 7, 7, 512) 2048 

Activation (None, 7, 7, 512) 0 

Conv2D (None, 7, 7, 512) 2359808 

BatchNormalization (None, 7, 7, 512) 2048 

Activation (None, 7, 7, 512) 0 

Conv2D (None, 7, 7, 2048) 1050624 

BatchNormalization (None, 7, 7, 2048) 8192 

Add (None, 7, 7, 2048) 0 

Activation (None, 7, 7, 2048) 0 

GlobalAveragePooling (None, 2048) 0 

Dense (None, 38) 77862 

Total param: 23,665,574 

Trainable param: 77,862 

Non trainable param: 23, 587, 712 

 

 

It is a pre-trained ResNet50 model from the Keras applications module, sets the weights to be those 

pre-trained on the ImageNet dataset, and freezes all layers in the base model to prevent them from 

being updated during training. 

 

The ‘include_top’ parameter is set to False, which means that the fully connected layer at the top 

of the network, which is responsible for classifying the input image into one of 1000 classes in the 
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original ImageNet dataset, is not included. Instead, a new dense layer with softmax activation is 

added on top of the base model to classify the input images into one of 38 classes in a new task. 

The ‘GlobalAveragePooling2D’ layer is used to reduce the spatial dimensions of the output of the 

base model to a 1D vector, which is then passed through the new dense layer with softmax 

activation to predict the class probabilities. 

 

Overall, it is the starting point for transfer learning, where the pre-trained ResNet50 model is fine-

tuned on a plantvillage dataset for crop disease detection. The new dense layer added on top of the 

base model is trained on our dataset to adapt the ResNet50 model to detect crop diseases. We used 

transfer learning to train the ResNet50 model. The model was trained using the SGD optimizer 

with a learning rate of 0.005 for 30 epochs. There were 77,862 trainable parameters in this 

ResNet50 architecture. 

 

4.5.4 InceptionV3 

InceptionV3 is a deep learning model commonly used for image classification tasks. It includes 

inception modules, which use convolutional layers with different kernel sizes to capture 

information at multiple scales and resolutions. InceptionV3 has 48 layers and it uses factorized 

convolutional layers to reduce the number of parameters and improve computational efficiency.  
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Figure 4.8: InceptionV3 model 

Figure 4.12 shows the InceptionV3 model and Figure 4.13 shows the parameter settings for 

Inceptionv3 architecture. 

→ InceptionV3 Learning From Scratch:  

 
Table 4.5: InceptionV3 architecture parameters 

Layer Output Shape 

Number of 

Parameters 

InputLayer (None, 224, 224, 3) 0 

Conv2D (None, 112, 112, 32) 896896 

Conv2D (None, 112, 112, 32) 9248 

Conv2D (None, 112, 112, 64) 18496 

MaxPooling2D (None, 56, 56, 64) 0 

BatchNormalization (None, 56, 56, 64) 256 

Conv2D (None, 56, 56, 96) 6240 

Conv2D (None, 56, 56, 16) 1040 

MaxPooling2D (None, 56, 56, 64) 0 

Conv2D (None, 56, 56, 64) 4160 

Conv2D (None, 56, 56, 128) 110720 

Conv2D (None, 56, 56, 32) 12832 

Conv2D (None, 56, 56, 32) 2080 
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Concatenate (None, 56, 56, 256) 0 

Conv2D (None, 56, 56, 128) 32896 

Conv2D (None, 56, 56, 32) 8224 

MaxPooling2D (None, 56, 56, 256) 0 

Conv2D (None, 56, 56, 128) 32896 

Conv2D (None, 56, 56, 192) 221376 

Conv2D (None, 56, 56, 96) 76896 

Conv2D (None, 56, 56, 64) 16448 

Concatenate (None, 56, 56, 480) 0 

MaxPooling2D (None, 28, 28, 480) 0 

Conv2D (None, 28, 28, 96) 46176 

Conv2D (None, 28, 28, 16) 7696 

MaxPooling2D (None, 28, 28, 480) 0 

Conv2D (None, 28, 28, 192) 92352 

Conv2D (None, 28, 28, 208) 179920 

Conv2D (None, 28, 28, 48) 19248 

Conv2D (None, 28, 28, 64) 30784 

Concatenate (None, 28, 28, 512) 0 

Conv2D (None, 28, 28, 112) 57456 

Conv2D (None, 28, 28, 24) 12312 

MaxPooling2D (None, 28, 28, 512) 0 

Conv2D (None, 28, 28, 160) 82080 

Conv2D (None, 28, 28, 224) 226016 

Conv2D (None, 28, 28, 64) 38464 

Conv2D (None, 28, 28, 64) 32832 

Concatenate (None, 28, 28, 512) 0 

Conv2D (None, 28, 28, 128) 65664 

Conv2D (None, 28, 28, 24) 12312 

MaxPooling2D (None, 28, 28, 512) 0 

Conv2D (None, 28, 28, 128) 65664 

Conv2D (None, 28, 28, 256) 295168 

Conv2D (None, 28, 28, 64) 38464 
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Conv2D (None, 28, 28, 64) 32832 

Concatenate (None, 28, 28, 512) 0 

Conv2D (None, 28, 28, 144) 73872 

Conv2D (None, 28, 28, 32) 16416 

MaxPooling2D (None, 28, 28, 512) 0 

Conv2D (None, 28, 28, 112) 57456 

Conv2D (None, 28, 28, 228) 373536 

Conv2D (None, 28, 28, 64) 51264 

Conv2D (None, 28, 28, 64) 32832 

Concatenate (None, 28, 28, 528) 0 

Conv2D (None, 28, 28, 160) 84640 

Conv2D (None, 28, 28, 32) 16928 

MaxPooling2D (None, 28, 28, 528) 0 

Conv2D (None, 28, 28, 256) 135424 

Conv2D (None, 28, 28, 320) 461120 

Conv2D (None, 28, 28, 128) 102528 

Conv2D (None, 28, 28, 128) 67712 

Concatenate (None, 28, 28, 832) 0 

MaxPooling2D (None, 14, 14, 832) 0 

Conv2D (None, 14, 14, 160) 133280 

Conv2D (None, 14, 14, 32) 26656 

MaxPooling2D (None, 14, 14, 832) 0 

Conv2D (None, 14, 14, 256) 213248 

Conv2D (None, 14, 14, 320) 461120 

Conv2D (None, 14, 14, 128) 102528 

Conv2D (None, 14, 14, 128) 106624 

Concatenate (None, 14, 14, 832) 0 

Conv2D (None, 14, 14, 192) 159936 

Conv2D (None, 14, 14, 48) 39984 

MaxPooling2D (None, 14, 14, 832) 0 
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Conv2D (None, 14, 14, 384) 319872 

Conv2D (None, 14, 14, 384) 663936 

Conv2D (None, 14, 14, 128) 153728 

Conv2D (None, 14, 14, 128) 106624 

Concatenate (None, 14, 14, 1024)  

GlobalAveragePooling (None, 1024)  

Dropout (None, 1024)  

Dense (None, 38)  

Total param: 5,890,358 

Trainable params: 5,890,230 

Non trainable params: 128 

 

 

Figure 4.13 shows an implementation of the InceptionV3 model using TensorFlow and Keras. The 

model consists of a stem, several inception blocks, and a classifier. The stem includes several 

convolutional layers and a max pooling layer to reduce the spatial dimensions of the input image. 

The inception blocks use convolutional layers with different kernel sizes to capture information at 

different scales and resolutions. Each block includes four parallel convolutional branches that are 

concatenated along the channel dimension. The classifier includes a global average pooling layer, 

a dropout layer for regularization, and a fully connected layer with softmax activation for 

classification. The ‘inception_block’ function is used to define the structure of each inception 

block. We trained the InceptionV3 model from scratch. The model was trained using the SGD 

optimizer with a learning rate of 0.005 for 30 epochs. There were 5,890,230 trainable parameters 

in this InceptionV3 architecture. Figure 4.14 shows the parameter settings for the InceptionV3 

Transfer Learning model. 

 

→ InceptionV3 Transfer Learning: 
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Table 4.6: InceptionV3 architecture transfer learning parameters 

Layer Output Shape 

Number of 

Parameters 

InputLayer 

 
(None, None, None,3) 

0 

 

Conv2D 

 
(None, None, None,32) 

 
864 

 

BatchNormalization 

 
(None, None, None,32) 

 
96 

Activation 

 
(None, None, None,32) 

 
0 

Conv2D 

 
(None, None, None,32) 

 
9216 

BatchNormalization 1 

 
(None, None, None,32) 

 
96 

Activation1 

 
(None, None, None,32) 

 
0 

Conv2D_2 
(None, None, None,64) 

 
18432 

BatchNormalization2 
(None, None, None,64) 

 
192 

Activation2 
(None, None, None,64) 

 
0 

MaxPooling2D 

 
(None, None, None,64) 

 
0 

Conv2D_3 

 
(None, None, None,80) 

 
5120 

BatchNormalization3 
(None, None, None,80) 

 
240 

Activation3 
(None, None, None,80) 

 
0 

Conv2D_4 
(None, None, None,192) 

 
138240 

BatchNormalization4 
(None, None, None,192) 

 
576 

Activation_4 
(None, None, None,192) 

 
0 

MaxPooling2D_1 
(None, None, None,192) 

 
0 

Conv2D_8 
(None, None, None,64) 

 
12288 

BatchNormalization8 
(None, None, None,64) 

 
192 

Activation_8 
(None, None, None,64) 

 
0 
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Conv2D_6 
(None, None, None,48) 

 
9216 

Conv2D_9 
(None, None, None,96) 

 
55296 

BatchNormalization_6 
(None, None, None,48) 

 
144 

BatchNormalization_9 
(None, None, None,96) 

 
288 

Activation_6 
(None, None, None,48) 

 
0 

Activation_9 
(None, None, None,96) 

 
0 

AveragePooling 

 
(None, None, None,192) 

 
0 

Conv2D_5 
(None, None, None,64) 

 
12288 

Conv2D_7 
(None, None, None,64) 

 
76800 

Conv2D_10 
(None, None, None,96) 

 
82944 

Conv2D_11 
(None, None, None,32) 

 
6144 

BatchNormalization_5 
(None, None, None,64) 

 
192 

BatchNormalization_7 
(None, None, None,64) 

 
192 

BatchNormalization_10 
(None, None, None,96) 

 
288 

BatchNormalization_11 
(None, None, None,32) 

 
96 

Activation_5 
(None, None, None,64) 

 
0 

Activation_7 
(None, None, None,64) 

 
0 

Activation_10 
(None, None, None,96) 

 
0 

Activation_11 
(None, None, None,32) 

 
0 

Concatenate 
(None, None, None,256) 

 
0 

Conv2D_15 
(None, None, None,64) 

 
16384 

BatchNormalization_15 
(None, None, None,64) 

 
192 

Activation_15 
(None, None, None,64) 

 
0 
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Conv2D_13 
(None, None, None,48) 

 
12288 

Conv2D_16 
(None, None, None,96) 

 
55296 

BatchNormalization_13 
(None, None, None,48) 

 
144 

BatchNormalization_16 
(None, None, None,96) 

 
288 

Activation_13 
(None, None, None,48) 

 
0 

Activation_16 
(None, None, None,96) 

 
0 

AveragePooling_1 

 
(None, None, None,256) 

 
0 

Conv2D_12 
(None, None, None,64) 

 
16384 

Conv2D_14 
(None, None, None,64) 

 
76800 

Conv2D_17 
(None, None, None,96) 

 
82944 

Conv2D_18 
(None, None, None,64) 

 
16384 

BatchNormalization_12 
(None, None, None,64) 

 
192 

BatchNormalization_14 
(None, None, None,64) 

 
192 

BatchNormalization_17 
(None, None, None,96) 

 
288 

BatchNormalization_18 
(None, None, None,64) 

 
192 

Activation_12 
(None, None, None,64) 

 
0 

Activation_14 
(None, None, None,64) 

 
0 

Activation_17 
(None, None, None,96) 

 
0 

Activation_18 
(None, None, None,64) 

 
0 

Concatenate 
(None, None, None,288) 

 
0 

Conv2D_22 
(None, None, None,64) 

 
18432 

BatchNormalization_22 
(None, None, None,64) 

 
192 

Activation_22 
(None, None, None,64) 

 
0 
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Conv2D_20 
(None, None, None,48) 

 
13824 

Conv2D_23 
(None, None, None,96) 

 
55296 

BatchNormalization_20 
(None, None, None,48) 

 
144 

BatchNormalization_23 
(None, None, None,96) 

 
288 

Activation_20 
(None, None, None,48) 

 
0 

Activation_23 
(None, None, None,96) 

 
0 

AveragePooling_2 
(None, None, None,288) 

 
0 

Conv2D_19 
(None, None, None,64) 

 
18432 

Conv2D_21 
(None, None, None,64) 

 
76800 

Conv2D_24 
(None, None, None,96) 

 
82944 

Conv2D_25 
(None, None, None,64) 

 
18432 

BatchNormalization_19 
(None, None, None,64) 

 
192 

BatchNormalization_21 
(None, None, None,64) 

 
192 

BatchNormalization_24 
(None, None, None,96) 

 
288 

BatchNormalization_25 
(None, None, None,64) 

 
192 

Activation_19 
(None, None, None,64) 

 
0 

Activation_21 
(None, None, None,64) 

 
0 

Activation_24 
(None, None, None,96) 

 
0 

Activation_25 
(None, None, None,64) 

 
0 

Concatenate 
(None, None, None,288) 

 
0 

Conv2D_27 
(None, None, None,64) 

 
18432 

BatchNormalization_27 
(None, None, None,64) 

 
192 

Activation_27 
(None, None, None,64) 

 
0 
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Conv2D_28 
(None, None, None,96) 

 
55296 

BatchNormalization_28 
(None, None, None,96) 

 
288 

Activation_28 
(None, None, None,96) 

 
0 

Conv2D_26 
(None, None, None,384) 

 
995328 

Conv2D_29 
(None, None, None,96) 

 
82944 

BatchNormalization_26 
(None, None, None,384) 

 
1152 

BatchNormalization_29 
(None, None, None,96) 

 
288 

Activation_26 
(None, None, None,384) 

 
0 

Activation_29 
(None, None, None,96) 

 
0 

MaxPooling2D_2 
(None, None, None,288) 

 
0 

Concatenate 
(None, None, None,768) 

 
0 

Conv2D_34 
(None, None, None,128) 

 
98304 

BatchNormalization_34 
(None, None, None,128) 

 
384 

Activation_34 
(None, None, None,128) 

 
0 

Conv2D_35 
(None, None, None,128) 

 
114688 

BatchNormalization_35 
(None, None, None,128) 

 
384 

Activation_35 
(None, None, None,128) 

 
0 

Conv2D_31 
(None, None, None,128) 

 
98304 

Conv2D_36 
(None, None, None,128) 

 
114688 

BatchNormalization_31 
(None, None, None,128) 

 
384 

BatchNormalization_36 
(None, None, None,128) 

 
384 

Activation_31 
(None, None, None,128) 

 
0 

Activation_36 
(None, None, None,128) 

 
0 
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Conv2D_32 
(None, None, None,128) 

 
114688 

Conv2D_37 
(None, None, None,128) 

 
114688 

BatchNormalization_32 
(None, None, None,128) 

 
384 

BatchNormalization_37 
(None, None, None,128) 

 
384 

Activation_32 
(None, None, None,128) 

 
0 

Activation_37 
(None, None, None,128) 

 
0 

AveragePooling_3 
(None, None, None,768) 

 
0 

Conv2D_30 
(None, None, None,192) 

 
147456 

Conv2D_33 
(None, None, None,192) 

 
172032 

Conv2D_38 
(None, None, None,192) 

 
172032 

Conv2D_39 
(None, None, None,192) 

 
147456 

BatchNormalization_30 
(None, None, None,192) 

 
576 

BatchNormalization_33 
(None, None, None,192) 

 
576 

BatchNormalization_38 
(None, None, None,192) 

 
576 

BatchNormalization_39 
(None, None, None,192) 

 
576 

Activation_30 
(None, None, None,192) 

 
0 

Activation_33 
(None, None, None,192) 

 
0 

Activation_38 
(None, None, None,192) 

 
0 

Activation_39 
(None, None, None,768) 

 
0 

Concatenate 
(None, None, None,160) 

 
0 

Conv2D_44 
(None, None, None,160) 

 
122880 

BatchNormalization_44 
(None, None, None,160) 

 
480 

Activation_44 
(None, None, None,160) 

 
0 
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Conv2D_45 
(None, None, None,160) 

 
179200 

BatchNormalization_45 
(None, None, None,160) 

 
480 

Activation_45 
(None, None, None,160) 

 
0 

Conv2D_41 
(None, None, None,160) 

 
122880 

Conv2D_46 
(None, None, None,160) 

 
179200 

BatchNormalization_41 
(None, None, None,160) 

 
480 

BatchNormalization_46 
(None, None, None,160) 

 
480 

Activation_41 
(None, None, None,160) 

 
0 

Activation_46 
(None, None, None,160) 

 
0 

Conv2D_42 
(None, None, None,160) 

 
179200 

Conv2D_47 
(None, None, None,160) 

 
179200 

BatchNormalization_42 
(None, None, None,160) 

 
480 

BatchNormalization_47 
(None, None, None,160) 

 
480 

Activation_42 
(None, None, None,768) 

 
0 

Activation_47 
(None, None, None,192) 

 
0 

AveragePooling_4 
(None, None, None,192) 

 
0 

Conv2D_40 
(None, None, None,192) 

 
147456 

Conv2D_43 
(None, None, None,192) 

 
215040 

Conv2D_48 
(None, None, None,192) 

 
215040 

Conv2D_49 
(None, None, None,192) 

 
147456 

BatchNormalization_40 
(None, None, None,192) 

 
576 

BatchNormalization_43 
(None, None, None,192) 

 
576 

BatchNormalization_48 
(None, None, None,192) 

 
576 
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BatchNormalization_49 
(None, None, None,192) 

 
576 

Activation_40 
(None, None, None,192) 

 
0 

Activation_43 
(None, None, None,768) 

 
0 

Activation_48 
(None, None, None,160) 

 
0 

Activation_49 
(None, None, None,160) 

 
0 

Concatenate 
(None, None, None,160) 

 
0 

Conv2D_54 
(None, None, None,160) 

 
122880 

BatchNormalization_54 
(None, None, None,160) 

 
480 

Activation_54 
(None, None, None,160) 

 
0 

Conv2D_55 
(None, None, None,160) 

 
179200 

BatchNormalization_55 
(None, None, None,160) 

 
480 

Activation_55 
(None, None, None,160) 

 
0 

Conv2D_51 
(None, None, None,160) 

 
122880 

Conv2D_56 
(None, None, None,160) 

 
179200 

BatchNormalization_51 
(None, None, None,160) 

 
480 

BatchNormalization_56 
(None, None, None,160) 

 
480 

Activation_51 
(None, None, None,160) 

 
0 

Activation_56 
(None, None, None,160) 

 
0 

Conv2D_52 
(None, None, None,160) 

 
179200 

Conv2D_57 
(None, None, None,160) 

 
179200 

BatchNormalization_52 
(None, None, None,786) 

 
480 

BatchNormalization_57 
(None, None, None,192) 

 
480 

Activation_52 
(None, None, None,192) 

 
0 
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Activation_57 
(None, None, None,192) 

 
0 

AveragePooling_5 
(None, None, None,192) 

 
0 

Conv2D_50 
(None, None, None,192) 

 
147456 

Conv2D_53 
(None, None, None,192) 

 
215040 

Conv2D_58 
(None, None, None,192) 

 
215040 

Conv2D_59 
(None, None, None,192) 

 
147456 

BatchNormalization_50 
(None, None, None,192) 

 
576 

BatchNormalization_53 
(None, None, None,192) 

 
576 

BatchNormalization_58 
(None, None, None,768) 

 
576 

BatchNormalization_59 
(None, None, None,192) 

 
576 

Activation_50 
(None, None, None,192) 

 
0 

Activation_53 
(None, None, None,192) 

 
0 

Activation_58 
(None, None, None,192) 

 
0 

Activation_59 
(None, None, None,192) 

 
0 

Concatenate 
(None, None, None,192) 

 
0 

Conv2D_64 
(None, None, None,192) 

 
147456 

BatchNormalization_64 
(None, None, None,192) 

 
576 

Activation_64 
(None, None, None,192) 

 
0 

Conv2D_65 
(None, None, None,192) 

 
258048 

BatchNormalization_65 
(None, None, None,192) 

 
576 

Activation_65 
(None, None, None,192) 

 
0 

Conv2D_61 
(None, None, None,192) 

 
147456 

Conv2D_66 
(None, None, None,192) 

 
258048 
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BatchNormalization_61 
(None, None, None,192) 

 
576 

BatchNormalization_66 
(None, None, None,192) 

 
576 

Activation_61 
(None, None, None,192) 

 
0 

Activation_66 
(None, None, None,768) 

 
0 

Conv2D_62 
(None, None, None,192) 

 
258048 

Conv2D_67 
(None, None, None,192) 

 
258048 

BatchNormalization_62 
(None, None, None,192) 

 
576 

BatchNormalization_67 
(None, None, None,192) 

 
576 

Activation_62 
(None, None, None,192) 

 
0 

Activation_67 
(None, None, None,192) 

 
0 

AveragePooling_6 
(None, None, None,192) 

 
0 

Conv2D_60 
(None, None, None,192) 

 
147456 

Conv2D_63 
(None, None, None,192) 

 
258048 

Conv2D_68 
(None, None, None,192) 

 
258048 

Conv2D_69 
(None, None, None,192) 

 
147456 

BatchNormalization_60 
(None, None, None,768) 

 
576 

BatchNormalization_63 
(None, None, None,192) 

 
576 

BatchNormalization_68 
(None, None, None,192) 

 
576 

BatchNormalization_69 
(None, None, None,192) 

 
576 

Activation_60 
(None, None, None,192) 

 
0 

Activation_63 
(None, None, None,192) 

 
0 

Activation_68 
(None, None, None,192) 

 
0 

Activation_69 
(None, None, None,192) 

 
0 
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Concatenate 
(None, None, None,192) 

 
0 

Conv2D_72 
(None, None, None,192) 

 
147456 

BatchNormalization_72 
(None, None, None,192) 

 
576 

Activation_72 
(None, None, None,192) 

 
0 

Conv2D_73 
(None, None, None,320) 

 
258048 

BatchNormalization_73 
(None, None, None,192) 

 
576 

Activation_73 
(None, None, None,320) 

 
0 

Conv2D_70 
(None, None, None,192) 

 
147456 

Conv2D_74 
(None, None, None,320) 

 
2580487 

BatchNormalization_70 
(None, None, None,192) 

 
576 

BatchNormalization_74 
(None, None, None,768) 

 
576 

Activation_70 
(None, None, None,1280) 

 
0 

Activation_74 
(None, None, None,448) 

 
0 

Conv2D_71 
(None, None, None,448) 

 
552960 

Conv2D_75 
(None, None, None,448) 

 
331776 

BatchNormalization_71 
(None, None, None,384) 

 
960 

BatchNormalization_75 
(None, None, None,384) 

 
576 

Activation_71 
(None, None, None,384) 

 
0 

Activation_75 
(None, None, None,384) 

 
0 

MaxPooling2D_3 
(None, None, None,384) 

 
0 

Concatenate 
(None, None, None,384) 

 
0 

Conv2D_80 
(None, None, None,384) 

 
573440 

BatchNormalization_80 
(None, None, None,384) 

 
1344 



70 
 

Activation_80 
(None, None, None,384) 

 
0 

Conv2D_77 
(None, None, None,1280) 

 
491520 

Conv2D_81 
(None, None, None,320) 

 
1548288 

BatchNormalization_77 
(None, None, None,384) 

 
1152 

BatchNormalization_81 
(None, None, None,384) 

 
1152 

Activation_77 
(None, None, None,384) 

 
0 

Activation_81 
(None, None, None,384) 

 
0 

Conv2D_78 
(None, None, None,192) 

 
442368 

Conv2D_79 
(None, None, None,320) 

 
442368 

Conv2D_82 
(None, None, None,384) 

 
442368 

Conv2D_83 
(None, None, None,384) 

 
442368 

AveragePooling_7 
(None, None, None,384) 

 
0 

Conv2D_76 
(None, None, None,384) 

 
409600 

BatchNormalization_78 
(None, None, None,192) 

 
1152 

BatchNormalization_79 
(None, None, None,320) 

 
1152 

BatchNormalization_82 
(None, None, None,768) 

 
1152 

BatchNormalization_83 
(None, None, None,768) 

 
1152 

Conv2D_84 
(None, None, None,192) 

 
245760 

BatchNormalization_76 
(None, None, None,2048) 

 
960 

Activation_78 
(None, None, None,448) 

 
0 

Activation_79 
(None, None, None,448) 

 
0 

Activation_82 
(None, None, None,448) 

 
0 

Activation_83 
(None, None, None,384) 

 
0 
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BatchNormalization_84 
(None, None, None,384) 

 
576 

Activation_76 
(None, None, None,384) 

 
0 

Concatenate 
(None, None, None,384) 

 
0 

Concatenate 
(None, None, None,384) 

 
0 

Activation_84 
(None, None, None,384) 

 
0 

Concatenate 
(None, None, None,384) 

 
0 

Conv2D_89 
(None, None, None,384) 

 
917504 

BatchNormalization_89 
(None, None, None,384) 

 
1344 

Activation_89 
(None, None, None,2048) 

 
0 

Conv2D_86 
(None, None, None,320) 

 
786432 

Conv2D_90 
(None, None, None,384) 

 
1548288 

BatchNormalization_86 
(None, None, None,384) 

 
1152 

BatchNormalization_90 
(None, None, None,384) 

 
1152 

Activation_86 
(None, None, None,384) 

 
0 

Activation_90 
(None, None, None,192) 

 
0 

Conv2D_87 
(None, None, None,320) 

 
442368 

Conv2D_88 
(None, None, None,384) 

 
442368 

Conv2D_91 
(None, None, None,384) 

 
442368 

Conv2D_92 
(None, None, None,384) 

 
442368 

AveragePooling_8 
(None, None, None,384) 

 
0 

Conv2D_85 
(None, None, None,192) 

 
655360 

BatchNormalization_87 
(None, None, None,320) 

 
1152 

BatchNormalization_88 
(None, None, None,384) 

 
1152 
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BatchNormalization_91 
(None, None, None,384) 

 
1152 

BatchNormalization_92 
(None, None, None,384) 

 
1152 

Conv2D_93 
(None, None, None,384) 

 
393216 

BatchNormalization_85 
(None, None, None,192) 

 
960 

Activation_87 
(None, None, None,320) 

 
0 

Activation_88 
(None, None, None,384) 

 
0 

Activation_91 
(None, None, None,384) 

 
0 

Activation_92 
(None, None, None,384) 

 
0 

BatchNormalization_93 
(None, None, None,192) 

 
576 

Activation_85 
(None, None, None,320) 

 
0 

Concatenate 
(None, None, None,768) 

 
0 

Concatenate 
(None, None, None,768) 

 
0 

Activation_93 
(None, None, None,192) 

 
0 

Concatenate 
(None, None, None,2048) 

 
0 

GlobalaveragePooling 
(None, 2048) 

 
0 

Dense 
(None,1024) 

 
2098176 

Dense_1 
(None, 38) 

 
38950 

Total param: 23,939,910 

Trainable params: 13,252,006 

Non trainable params: 10,687,904 

 

This code creates a transfer learning model using the InceptionV3 architecture that has been pre-

trained on the ImageNet dataset. The pre-trained model is loaded with the weights specified by the 

'weights' parameter and the top layer of the model is excluded by setting 'include_top' to False. A 
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global average pooling layer is then added to the model to reduce the spatial dimensions of the 

output from the convolutional layers. A fully connected layer with 1024 units and ReLU activation 

is added, followed by a softmax layer with 38 units (for classification into 38 classes). The layers 

of the pre-trained model are set to non-trainable to avoid modifying their weights during training. 

We used transfer learning to train the InceptionV3 model. The model was trained using the SGD 

optimizer with a learning rate of 0.005 for 30 epochs.  

 

4.6 Model assessment 

The PlantVillage dataset was split into training and test sets using different ratios to identify the 

optimal deep learning architecture among AlexNet, GoogLeNet, ResNet50, and InceptionV3. By 

using various train-test ratios, the models' ability to generalize and perform well on unseen data. 

The goal was to find the best performing architecture that can accurately classify the crop diseases. 

 

1. 90:10 where 90% data is used for training the model and 10% data is used for testing. 

2. 80:20 where 80% data is used for training the model and 20% data is used for testing. 

3. 70:30 where 70% data is used for training the model and 30% data is used for testing. 

4. 60:40 where 60% data is used for training the model and 40% data is used for testing.  
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Chapter 5 

Results 

5.1 Experiment Description 

This chapter discusses the results from implementation of deep learning architectures discussed in 

chapter 4. The study’s aim is to predict crop_disease pairs using deep learning. There are two 

learning approaches used to train the models which are training from scratch and transfer learning. 

The results suggest that AlexNet, GoogLeNet, ResNet50 and InceptionV3 did well in the task. The 

deep learning models were evaluated based on Accuracy and F1-score.  

 

5.2 Evaluation Metrics  

Evaluation metrics such as Accuracy, and F1 Score are used to measure the performance of the 

deep learning models. We will discuss the evaluation metrics which are used for image 

classification problem. 

 

Accuracy: it is one of the metric which is used for evaluation of classification models. Accuracy 

is a measure of how well a classification model can predict the correct class label for each instance 

in the dataset. It is calculated by dividing the number of correctly classified instances by the total 

number of instances in the dataset. The resulting value is usually reported as a percentage or a 

decimal value between 0 and 1. 

 



75 
 

F1 Score: The F1 score is useful when we want to balance the tradeoff between precision and 

recall, especially when the classes are imbalanced. A high F1 score means that the model has both 

high precision and high recall, indicating that it is making accurate predictions while also capturing 

most of the positive instances in the dataset. 

The formula for calculating the F1 score is: 

 

F1 score = 2 * (precision * recall) / (precision + recall) 

 

This formula calculates the harmonic mean of precision and recall, which is then scaled to a range 

of 0 to 1. The F1 score is a commonly used evaluation metric in machine learning, and it is 

especially useful when the classes are imbalanced or when we want to balance precision and recall. 

 

Validation Accuracy: Validation accuracy is a performance metric that measures the accuracy of 

a machine learning model on a validation dataset. In machine learning, we typically split the 

available data into two sets: the training set and the validation set. We use the training set to train 

the model and the validation set to evaluate the model's performance. 

Validation accuracy is the percentage of correctly classified instances in the validation set. It is a 

measure of how well the model can generalize to new data that it has not seen before. A higher 

validation accuracy indicates that the model is performing well on the validation dataset. 

 

Validation Loss: Validation loss is a performance metric that measures the difference between the 

predicted and actual values of the model on a validation dataset. Validation loss measures the 

difference between the predicted and actual values in the validation set. It is calculated as the 
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average of the losses of each instance in the validation set. The loss is typically a measure of how 

well the model is fitting the data, and a lower validation loss indicates that the model is performing 

well on the validation dataset. 

 

5.3 Ratio Comparison 

For the plantvillage dataset, we compared the performance of deep learning architectures AlexNet, 

GoogLeNet, ResNet50, and InceptionV3 with different train-test ratios. Specifically, we used 

train-test ratios of 60:40, 70:30, 80:20, and 90:10 to train and test each architecture. In the 

PlantVillage dataset, different batch sizes were used for the train, test, and validation sets. Table 

5.1 displays number of samples in the training, validation and test datasets for different training-

test ratios. We split the testing set into a testing and validation subset with a 50:50 ratio. 

Table 5.1 Comparison of DL Training-Test Ratios and Total Instances in Training, Validation, and Testing Sets 

Train-Test Ratio 

Total 

instances in 

training set 

Total 

instances in 

testing set 

Total instances 

in validation set 

90 - 10 48,880 2,740 2,700 

80 - 20 43,440 5,420 5,460 

70 – 30 38,020 8,160 8,140 

60 - 40 32,600 10,860 10,880 

 

5.4 Summary of Results 

5.4.1 AlexNet-Training from scratch  

AlexNet was trained from scratch in this experiment without using pre-trained model. Table 5.2 

shows the results for accuracy, loss and F1 score.  
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Table 5.2 Results from AlexNet Architecture 

Dataset Train-Test 90:10 80:20 70:30 60:40 

Color 

F1 Score 1.000 1.000 0.988 0.969 

Accuracy 0.998 0.991 0.989 0.982 

Loss 0.015 0.030 0.039 0.073 

Validation Accuracy 0.992 0.988 0.989 0.979 

Grayscale 

F1 Score 0.988 0.988 0.988 0.955 

Accuracy 0.983 0.983 0.980 0.926 

Loss 0.067 0.067 0.059 0.288 

Validation Accuracy 0.983 0.983 0.969 0.930 

Segmented Leaf 

F1 Score 1.000 0.988 0.977 0.966 

Accuracy 0.986 0.985 0.975 0.970 

Loss 0.053 0.067 0.093 0.121 

Validation Accuracy 0.988 0.986 0.987 0.970 

 

The evaluation of the AlexNet model on three different datasets, Color, Grayscale, and Segmented 

Leaf, demonstrated its effectiveness for crop disease detection. The model achieved high F1 score 

in Color and Segmented Leaf datasets with train-test split of 90:10. As the size of the training set 

decreased, the model's performance slightly decreased, but it still achieved good results on smaller 

training sets. The model's validation accuracy was consistently high across all datasets, indicating 

its ability to generalize well to unseen data. Overall, the AlexNet model proved to be a powerful 

tool, demonstrating its effectiveness on different types of image datasets. 

 

5.4.2 GoogLeNet- Training from scratch  

GoogleNet was trained from scratch in this experiment without using pre-trained model. Table 

5.3 shows the results for accuracy, loss and F1 score.  
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Table 5.3 Results from GoogLeNet Architecture 

Dataset Train-Test 90:10 80:20 70:30 60:40 

Color 

F1 Score 1.000 1.000 1.000 0.966 

Accuracy 0.999 0.997 0.996 0.975 

Loss 0.016 0.057 0.050 0.314 

Validation Accuracy 0.998 0.997 0.995 0.973 

Grayscale 

F1 Score 0.999 0.977 0.977 0.966 

Accuracy 0.989 0.977 0.977 0.975 

Loss 0.019 0.248 0.213 0.314 

Validation Accuracy 0.988 0.975 0.977 0.973 

Segmented Leaf 

F1 Score 1.000 1.000 0.999 0.988 

Accuracy 0.996 0.994 0.990 0.988 

Loss 0.042 0.067 0.094 0.158 

Validation Accuracy 0.998 0.995 0.995 0.990 

 

The evaluation results of the GoogLeNet architecture on three different datasets, Color, Grayscale, 

and Segmented Leaf, indicate its strong performance on crop disease detection. The model 

achieved perfect F1 score and high accuracy on the Color dataset for all train-test splits. For the 

Grayscale dataset, the model performed well on the 90:10 train-test split, but its performance 

decreased as the size of the training set reduced. For the Segmented Leaf dataset, the model 

achieved perfect F1 score and high accuracy on the 90:10 and 80:20 train-test splits. However, as 

the size of the training set decreased, its performance slightly decreased, but it still achieved good 

results on the 60:40 train-test split. The model's validation accuracy was consistently high across 

all datasets, indicating its generalization ability to new data. Overall, the results of GoogLeNet 

architecture demonstrate that it is effective in image classification tasks on different types of 

datasets. 
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5.4.3 ResNet50- Training from scratch  

ResNet50 was trained from scratch in this experiment without using pre-trained model. Table 5.4 

shows the results for accuracy, loss and F1 score.  

Table 5.4 Results from ResNet50 Architecture 

Dataset Train-Test 90:10 80:20 70:30 60:40 

Color 

F1 Score 1.000 1.000 0.966 0.966 

Accuracy 0.980 0.994 0.981 0.988 

Loss 0.057 0.023 0.065 0.045 

Validation Accuracy 0.985 0.993 0.978 0.988 

Grayscale 

F1 Score 0.977 0.966 0.933 0.900 

Accuracy 0.958 0.941 0.912 0.894 

Loss 0.179 0.177 0.266 0.328 

Validation Accuracy 0.963 0.940 0.901 0.884 

Segmented Leaf 

F1 Score 1.000 1.000 0.977 0.966 

Accuracy 0.993 0.985 0.988 0.960 

Loss 0.061 0.048 0.027 0.124 

Validation Accuracy 0.995 0.987 0.988 0.960 

 

The evaluation of the ResNet50 architecture on three different datasets, Color, Grayscale, and 

Segmented Leaf, while doing learning from scratch, shows its effectiveness in leaf disease 

detection. The model achieved high F1 score on the Color and Segmented Leaf datasets with 90:10 

and 80:20 train-test splits. For the Grayscale dataset, the model's performance decreased as the 

size of the training set decreased, but it still achieved reasonable results on smaller training sets. 

Overall, the results demonstrate that the model is effective in crop disease detection tasks on 

different types of datasets, especially on larger training sets. 

 

5.4.4 ResNet50- Transfer learning  

ResNet50 was trained using transfer learning in this experiment. Table 5.5 shows the results for 

accuracy, loss and F1 score.  
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Table 5.5 Results from ResNet50 Architecture (Pre-trained) 

Dataset Train-Test 90:10 80:20 70:30 60:40 

Color 

F1 Score 0.999 0.988 0.977 0.977 

Accuracy 0.994 0.992 0.990 0.989 

Loss 0.026 0.039 0.033 0.040 

Validation Accuracy 0.996 0.992 0.990 0.989 

Grayscale 

F1 Score 0.988 0.977 0.977 0.977 

Accuracy 0.988 0.982 0.988 0.975 

Loss 0.054 0.072 0.085 0.089 

Validation Accuracy 0.987 0.981 0.983 0.973 

Segmented Leaf 

F1 Score 0.988 0.988 0.988 0.988 

Accuracy 0.985 0.983 0.979 0.978 

Loss 0.066 0.071 0.077 0.080 

Validation Accuracy 0.983 0.984 0.989 0.978 

 

The ResNet50 model was pre-trained on ‘ImageNet’ dataset, and transfer learning was used to 

train and test three different datasets: color, grayscale, and segmented leaf. The performance of the 

model was evaluated using F1 score, accuracy, loss, and validation accuracy metrics. The results 

showed that the ResNet50 model achieved good accuracy and F1 score on all three datasets, with 

the highest performance seen in the color dataset. The model also exhibited relatively low loss 

values, indicating efficient training.  

 

The pre-trained model outperforms the non-pretrained model across all datasets in terms of 

accuracy and F1 score. The validation accuracy is also consistently higher for the pre-trained 

model. 

 

5.4.5 InceptionV3- Training from scratch  

InceptionV3 was trained from scratch in this experiment without using pre-trained model. Table 

5.6 shows the results for accuracy, loss and F1 score.  
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Table 5.6 Results from InceptionV3 Architecture 

Dataset Train-Test 90:10 80:20 70:30 60:40 

Color 

F1 Score 1.000 1.000 1.000 1.000 

Accuracy 0.997 0.995 0.989 0.985 

Loss 0.011 0.015 0.013 0.050 

Validation Accuracy 0.996 0.994 0.993 0.986 

Grayscale 

F1 Score 0.999 0.988 0.955 0.944 

Accuracy 0.994 0.980 0.978 0.961 

Loss 0.046 0.065 0.084 0.118 

Validation Accuracy 0.988 0.983 0.978 0.960 

Segmented Leaf 

F1 Score 1.000 1.000 0.977 0.966 

Accuracy 0.996 0.994 0.993 0.981 

Loss 0.022 0.025 0.037 0.060 

Validation Accuracy 0.995 0.990 0.988 0.982 

 

The results of training the InceptionV3 model from scratch on the three datasets - color, grayscale, 

and segmented leaf - showed that the model achieved high accuracy and F1 scores on the color 

and segmented leaf datasets, with perfect F1 score achieved on the color dataset. However, the 

performance on the grayscale dataset was comparatively lower, with a decrease in F1 score and 

accuracy as the proportion of training data decreased. The model exhibited relatively low loss 

values and high validation accuracy, suggesting good generalization performance. These results 

demonstrate the potential of the InceptionV3 model, especially in scenarios with high levels of 

complexity and variability in image characteristics, and highlight the importance of selecting 

appropriate datasets and proportions for training and testing. 

 

5.4.6 InceptionV3- Transfer learning  

InceptionV was trained using transfer learning in this experiment with pre-trained model on 

ImageNet dataset. Table 5.7 shows the results for accuracy, loss and F1 score.  
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Table 5.7 Results from InceptionV3 Architecture(Pre-trained) 

Dataset Train-Test 90:10 80:20 70:30 60:40 

Color 

F1 Score 0.977 0.966 0.955 0.933 

Accuracy 0.955 0.957 0.937 0.901 

Loss 0.196 0.238 0.498 0.602 

Validation Accuracy 0.964 0.957 0.924 0.906 

Grayscale 

F1 Score 0.966 0.944 0.911 0.922 

Accuracy 0.958 0.924 0.912 0.905 

Loss 0.213 0.328 0.369 0.455 

Validation Accuracy 0.977 0.969 0.909 0.897 

Segmented Leaf 

F1 Score 1.000 0.966 0.944 0.877 

Accuracy 0.987 0.943 0.921 0.893 

Loss 0.125 0.341 0.496 0.662 

Validation Accuracy 0.966 0.942 0.927 0.896 

 

The table shows the performance metrics for the InceptionV3 model with transfer learning on three 

different datasets: Color, Grayscale, and Segmented Leaf. Generally, the model performs well on 

all datasets, achieving good Accuracy and F1 score. For Segmented Leaf dataset the model 

achieved highest F1 Score with 90:10 train-test split. The validation accuracy is also provided, 

which indicates how well the model performs on unseen data.  

 

The results of non-pretrained InceptionV3 architecture show higher F1 score and accuracy 

compared to the pretrained InceptionV3 architecture, which shows lower scores for the pre-trained 

InceptionV3 architecture. Additionally, the validation accuracy is consistently higher for non-

pretrained InceptionV3 architecture compared to the pretrained InceptionV3 architecture.  
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5.6 Comparison of deep learning architecture 

Figure 5.1 shows the bar graph for the F1 score of all the models trained from scratch on the 

three datasets of color, grayscale and segmented leaf for all the training-testing ratios.  

 

a)  

 

b)  

 

c)  

    

Figure 5.1 F1 score from all non-pretrained models. a) F1 score - Learning from scratch (Color), b) F1 score - 

Learning from scratch (GrayScale), c) F1 score - Learning from scratch (Segmented_Leaf). 
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Overall, the models performed well on the color dataset, achieving F1 score of 96.9% to 100%. 

The grayscale dataset also yielded high F1 score, with models achieving between 90% and 99.9%. 

The segmented_leaf dataset produced lower accuracy rates, with models achieving between 90% 

and 99.9%. 

 

The InceptionV3 model achieved the highest accuracy rates in most cases, followed by GoogLeNet 

and ResNet50. The results suggest that the choice of dataset and model architecture has a 

significant impact on the accuracy of image classification tasks, highlighting the importance of 

proper dataset selection and model optimization for achieving high-performance image 

classification. 

 

Figure 5.2 shows the bar graph for the F1 score of all the models pre-trained on ImageNet dataset 

and transfer learning applied to the three datasets of color, grayscale and segmented leaf for all the 

training-testing ratios.  
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a)  

 

b)  

 

c)  

Figure 5.2 F1 score from all pretrained models. a) F1 score – Transfer Learning (Color), b) F1 score - Transfer 

Learning (GrayScale), c) F1 score – Transfer Learning (Segmented_Leaf). 

Overall, the transfer learning models performed well on all three datasets, with ResNet50 and 

InceptionV3 achieving high F1 score of up to 99.9% on the color and grayscale datasets. However, 

the F1 score were lower for the segmented_leaf dataset, with models achieving between 87.7% 

and 98.8%. 
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The results indicate that transfer learning can significantly improve the accuracy of image 

classification tasks, especially for datasets with limited training samples. The ResNet50 and 

InceptionV3 models performed similarly well in most cases, highlighting their suitability for a 

wide range of image classification tasks. 

 

Figure 5.3 shows the bar graph for the F1 score of all the models trained from scratch and pre-

trained models on the three datasets of color, grayscale and segmented leaf for 90:10 training-

testing ratio. 

 

Figure 5.3 F1 score (Train-Test ratio – 90:10) 

Overall, the models achieved high F1 score, with most models achieving perfect score of 1.0 on 

the color and segmented_leaf datasets. The pre-trained ResNet50 and InceptionV3 models 

performed well on the grayscale dataset, achieving F1 scores of 0.988 and 0.966, respectively. 

The results suggest that these models are highly effective in accurately classifying images across 

various image datasets, highlighting their suitability for a wide range of image classification tasks. 
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Pre-trained models can offer significant advantages in scenarios with limited training data, 

resulting in improved classification performance. 

 

Figure 5.4 Loss (Train-Test ratio – 90:10) 

 

Figure 5.4 shows the loss results for six different convolutional neural network models (AlexNet, 

GoogLeNet, ResNet50, ResNet50 pre-trained, InceptionV3, and InceptionV3 pre-trained) on three 

image datasets (color, grayscale, and segmented_leaf) at a train-test ratio of 90:10. 

Overall, the models achieved low loss values, indicating good performance in image classification 

tasks. The pre-trained InceptionV3 model achieved the lowest loss values on all three datasets, 

while the pre-trained ResNet50 and AlexNet models achieved relatively lower loss values on the 

color and grayscale datasets, respectively. The results suggest that these models are effective in 

accurately classifying images across various image datasets, with pre-trained models achieving 

superior performance due to the transfer of knowledge from large image datasets. The low loss 

values achieved by the models indicate good generalization ability and suggest their suitability for 

use in practical applications. 
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Table 5.8 Performance Comparison of Different CNN Models on Various Train-Test Splits  

  

AlexNet GoogLeNet ResNet50 InceptionV3 

Learning 
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from scratch 

Transfer 

Learning 

Learning 
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90%-

10% 

Color 1 0.998 1 0.999 1 0.980 0.999 0.994 1 0.997 0.977 0.955 

Grayscale 0.988 0.983 0.999 0.989 0.977 0.958 0.988 0.988 0.999 0.994 0.966 0.958 

segmented 1 0.986 1 0.996 1 0.993 0.988 0.985 1 0.996 1 0.987 

80%-

20% 

Color 1 0.991 1 0.997 1 0.994 0.988 0.992 1 0.995 0.966 0.957 

Grayscale 0.988 0.983 0.977 0.977 0.966 0.941 0.977 0.982 0.988 0.980 0.944 0.924 

segmented 0.988 0.985 1 0.994 1 0.985 0.988 0.983 1 0.994 0.966 0.943 

70%-

30% 

Color 0.988 0.989 1 0.996 0.966 0.981 0.977 0.990 1 0.989 0.955 0.937 

Grayscale 0.988 0.98 0.977 0.977 0.933 0.912 0.977 0.988 0.955 0.978 0.911 0.912 

segmented 0.977 0.975 0.999 0.990 0.977 0.988 0.988 0.979 0.977 0.993 0.944 0.921 

60%-

40% 

Color 0.969 0.982 0.966 0.975 0.966 0.988 0.977 0.989 1 0.985 0.933 0.901 

Grayscale 0.955 0.926 0.966 0.975 0.900 0.894 0.977 0.975 0.944 0.961 0.922 0.905 

segmented 0.966 0.970 0.988 0.988 0.966 0.960 0.988 0.978 0.966 0.981 0.877 0.893 

 

Table 5.8 compares the performance of four different Convolutional Neural Network (CNN) 

models, namely AlexNet, GoogLeNet, ResNet50, and InceptionV3, on various train-test splits and 

different types of images (color, grayscale, and segmented). The evaluation metrics used are F1 

Score and Accuracy. GoogLeNet architecture achieved the highest accuracy of 0.999 for color 

images and 0.996 for segmented images. For greyscale InceptionV3 trained from scratch gave the 

highest accuracy of 0.994. However, AlexNet, GoogleNet, ReNet50 trained from scratch and 

InceptionV3 gave the highest F1 score of 1.0. The best results were achieved with training:testing 

ratio of 90:10.  
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Table 5.9 Performance Comparison of AlexNet (Learning from scratch) and GoogLeNet (Learning from scratch) 

Models on Various Train-Test Splits [17] 

Learning from scratch 
AlexNet GoogLeNet 

Based on [17] 

Research paper 

Based on our 

implementation 

Based on [17] 

Research paper 

Based on our 

implementation 

Train-Test 

Split 
 F1 Score F1 Score F1 Score F1 Score 

80%-20% 

Color 0.9782 1.0000 0.9836 1.0000 

Grayscale 0.9449 0.9888 0.9621 0.9777 

segmented 0.9722 0.9888 0.9824 1.0000 

60%-40% 

Color 0.9724 0.9699 0.9824 0.9666 

Grayscale 0.9388 0.9555 0.9547 0.9666 

segmented 0.9595 0.9666 0.9740 0.9888 

50%-50% 

Color 0.9644 0.9666 0.9772 1.0000 

Grayscale 0.9312 0.9111 0.9507 0.9444 

segmented 0.9551 0.9666 0.9720 0.9777 

40%-60% 

Color 0.9555 0.9000 0.9729 0.9888 

Grayscale 0.9088 0.9444 0.9361 0.9555 

segmented 0.9404 0.9666 0.9643 0.9666 

20%-80% 

Color 0.9118 0.8888 0.9430 0.9555 

Grayscale 0.8524 0.8666 0.8828 0.8666 

segmented 0.8945 0.8666 0.9377 0.9777 

 

Table 5.9 compares the performance of two different Convolutional Neural Network (CNN) 

models, namely AlexNet, GoogLeNet, on various train-test splits and different types of images 

(color, grayscale, and segmented) in the paper by S. P. Mohanty et al. [17]. In their GoogLeNet 

architecture, they achieved the highest accuracy of 0.9934 for color images and 0.9925 for 

segmented images. In comparison to the results obtained in [17], our findings demonstrate a 

significant improvement. Specifically, we achieved a F1 score of 1 when utilizing an 80% - 20% 

train-test split, surpassing the performance of both AlexNet and GoogLeNet models.  
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Chapter 6 

Conclusion 

6.1 Conclusions 

Agriculture is stated as an important sector, which can be helpful in the development of the 

economy and in reducing the issues associated with food scarcity. Many countries need to improve 

agriculture practices and utilize the advanced technologies that can be helpful in the reduction of 

various issues. In the present time, disease in the crops is a big issue that is affecting the 

productivity of the agricultural lands. The utilization of artificial intelligence and computer vision 

can be helpful in the detection of various diseases. Therefore, the objectives of this research work 

were to analyze the Image-based crop disease detection. The other objectives of the work were to 

analyze the types of crop diseases and relevant areas used during crop disease detection along with 

the identification of the challenges that occur during crop disease detection and recommending 

advanced image detection techniques for improving crop disease detection.  

 

In comparison to other research studies, our work offers several notable contributions. Firstly, we 

trained and evaluated four distinct deep learning (DL) models using both learning from scratch 

and transfer learning approaches. By fine-tuning our trained models on different datasets, we can 

leverage the knowledge gained from our initial training and adapt it to new domains or specific 

tasks. This capability opens up possibilities for improving accuracy, robustness, and 

generalizability across various applications. 
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Using the deep convolutional neural network architectures (AlexNet, GoogLeNet, ResNet50, and 

InceptionV3) we trained the models on images of plant leaves to predict crop-disease pair. Within 

the PlantVillage dataset of 54,306 images containing 38 classes of 14 crop species and 26 diseases, 

this goal has been achieved as demonstrate by the top F1 score of 1.0. In learning from scratch we 

found that all deep convolutional neural network architectures (AlexNet, GoogLeNet, ResNet50, 

and InceptionV3) performed well while GoogleNet was the best. In transfer learning ResNet50 

performed well compared to InceptionV3.  The deep learning architectures used in this study 

achieved high accuracy and F1 score, indicating their potential for crop disease detection using 

crop images. 

 

6.2 Limitations 

The research encountered certain limitations stemming from constraints in hardware resources and 

data availability, as well as the need for more advanced deep learning (DL) models. Firstly, the 

limited hardware resources posed a challenge in terms of computational power and processing 

capabilities. The absence of high-performance computing infrastructure restricted the complexity 

and scale of the DL models that could be implemented. Consequently, the potential for exploring 

larger and more intricate models was constrained. Secondly, the availability and quality of the 

dataset proved to be a limiting factor. The research relied on a specific dataset, which might have 

had limitations in terms of size, diversity, or representativeness. The restricted dataset might have 

constrained the overall performance and generalizability of the DL models employed. 

Additionally, the rapid advancements in DL techniques and architectures necessitated further 

exploration of more advanced models. Understanding these limitations helps in interpreting the 

findings appropriately and provides valuable insights for future research endeavors. 
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6.3 Directions for future work  

For future research, it is recommended to use larger datasets with more images to further evaluate 

the performance of CNN models. Additionally, more computationally powerful deep learning 

architectures could be explored to potentially improve classification accuracy. These 

improvements can contribute to the development of more accurate and efficient crop disease 

detection. As technology continues to advance, it is possible that in the future, image data collected 

from smartphones for image classification tasks could be supplemented with location and time 

information. By incorporating this additional information, it may be possible to further enhance 

the accuracy and reliability for crop disease detection. Based on the findings of such research, a 

smartphone-assisted crop disease diagnosis system could be developed. Such a system has the 

potential to significantly benefit the agricultural industry by providing a cost-effective and easily 

accessible solution for crop disease detection and prevention. 

It is also recommended that the farmers and various stakeholders should be trained according to 

the need for modern technology so that various issues can be reduced. It is suggested that the 

information, which is taken for the experimental setup, can be improved and large data sets can be 

analyzed for the improvement of the result accuracy. 
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