
i

Crop Disease Detection Using Deep Learning Techniques on Images

By

Kinjal Vijaybhai Deputy

A thesis submitted in partial fulfillment

Of the requirements for the degree of

Master of Science (M.Sc.) Computational Sciences

The Office of Graduate Studies

Laurentian University

Sudbury, Ontario, Canada

© Kinjal Vijaybhai Deputy, 2023

ii

THESIS DEFENCE COMMITTEE/COMITÉ DE SOUTENANCE DE THÈSE
Laurentian Université/Université Laurentienne

Office of Graduate Studies/Bureau des études supérieures

Title of Thesis
Titre de la thèse Crop Disease Detection Using Deep Learning Techniques on Images

Name of Candidate
Nom du candidat Deputy, Kinjal

Degree

Diplôme Master of Science

Program Date of Defence
Programme Computational Sciences Date de la soutenance May 23, 2023

APPROVED/APPROUVÉ

Thesis Examiners/Examinateurs de thèse:

Dr. Kalpdrum Passi
(Supervisor/Directeur(trice) de thèse)

Dr. Ratvinder Grewal
(Committee member/Membre du comité)

Dr. Abdel Omri
(Committee member/Membre du comité)
 Approved for the Office of Graduate Studies
 Approuvé pour le Bureau des études supérieures

 Tammy Eger, PhD
 Vice-President Research (Office of Graduate Studies)
Dr. Jyoti Singh Kirar Vice-rectrice à la recherche (Bureau des études supérieures)
(External Examiner/Examinateur externe) Laurentian University / Université Laurentienne

ACCESSIBILITY CLAUSE AND PERMISSION TO USE

I, Kinjal Deputy, hereby grant to Laurentian University and/or its agents the non-exclusive license to archive and make
accessible my thesis, dissertation, or project report in whole or in part in all forms of media, now or for the duration of my
copyright ownership. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also reserve
the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. I further agree
that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the
professor or professors who supervised my thesis work or, in their absence, by the Head of the Department in which my thesis
work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not
be allowed without my written permission. It is also understood that this copy is being made available in this form by the authority
of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as
permitted by the copyright laws without written authority from the copyright owner.

iii

Abstract

Agriculture is a field which is referred to as the main sector for the development of the economy

in various countries, and it is also providing food to the large population of the world despite

various limitations and boundaries. Food security is threatened by several factors including climate

change, the decline in pollinators, plant diseases and others. Different efforts have been developed

to prevent crop loss due to infections in the plants. The advancement in technology is helping

farmers in developing different systems that can help in reducing the problem. Smartphones

specifically offer very novel ways to identify diseases because of their computing power, high

resolution displays, and extensive built-in sets of accessories, such as advanced HD cameras. This

leads to a situation where disease diagnosis based on automated image recognition is needed.

Image recognition is made possible by applying a deep learning approach. So the research is aimed

to analyze deep learning-based image detection techniques to identify the various diseases in the

plants. The “PlantVillage” dataset has been used to train models. Deep learning Architectures such

as AlexNet and GoogleNet, ResNet50 and InceptionV3 are used. Two approaches are used to train

the model: ‘training from scratch’ and ‘transfer learning’. It was found from the results of the

primary analysis that the GoogleNet leaves behind the AlexNet, ResNet50 and InceptionV3 in

training from scratch approach. And ResNet50 performed best in transfer learning.

Keywords: Machine Learning, Deep Learning, crop disease, agriculture, Image detection

iv

Acknowledgements

I am grateful to my professor, Dr. Kalpdrum Passi for his significant support and insights that

helped me during my studies. It was golden opportunity to do the research in his guidance.

I’d like to thank my friends for encouraging me. I would like to thank my loving parents, who

supported me during my studies financially. It would not have been possible without their support.

Thank you very much.

v

Abbreviation

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

SGD Stochastic gradient descent

CNN convolutional neural network

vi

Table of Contents

Thesis Defense Committee………………………………………………………………. ii

Abstract…………………………………………………………………………………… iii

Acknowledgments……………………………………….……………………………...... iv

Abbreviation………………………………………………………………………..…….. v

Table of Contents………………………………………………………………………… iv

List of Tables……………………………………………………………………………... ix

List of Figures…………………………………………………………………………….. x

Chapter 1………………………………………………………………………………….. 1

Introduction………………………………………………………………………….....… 1

 1.1 Background……………..………………………………………………………… 1

 1.2 Research Aim……………………………………………………………………... 5

 1.2.1 Research Objectives………………………………………………………. 5

 1.2.2 Research Question………………………………………………………... 5

 1.2.3 Problem Domain….………………………………………………………. 5

 1.2.4 Overview of Research Methodology……………..………………………. 6

 1.3 Outline of the Thesis……………………………………………………………… 7

Chapter 2………………………………………………………………………………….. 8

Literature Review…………………………………………………………….................... 8

 2.1 Image-Based Plant Disease Detection………………………………..................... 8

 2.2 Relevant areas of images sensors used in plant disease detection...……………… 12

 2.3 Issues/challenges in the image-based plant disease detection……………………. 17

 2.4 Feature extraction for disease identification……………………………………… 20

Chapter 3………………………………………………………………………………….. 23

Data and Processing……………………………………………………………………… 23

 3.1 Data Selection…………………………………………………………………….. 23

 3.1.1 The PlantVillage Dataset…………………………………………………. 24

 3.1.1 The ImageNet Dataset……………………………………………………. 26

 3.2 Data Processing…………………………………………………………………… 26

vii

 3.2.1 Tensor flow library……………………………………………………….. 27

 3.3 Hardware Setup and Specifications………………………………………………. 27

Chapter 4………………………………………………………………………………….. 29

Methods………………………………………………………………………………….... 29

 4.1 Description………………..………………………………………………………. 29

 4.2 Library……………………………………………………………………………. 29

 4.2.1 Tensorflow………..……………………………………………………….. 30

 4.2.2 Keras………………….……………………………………………………. 30

 4.2.3 Matplotlib………………..………………………………………………… 31

 4.2.4 OS………………………………………………………………………….. 31

 4.2.5 Sklearn……………………………………………………………………... 31

 4.3 Parameters……………………………………...…………………………………. 32

 4.3.1 Loss function………………………………………………………………. 32

 4.3.2 Optimizer………………………………………………………………....... 33

 4.3.3 Learning rate…………...………………………………………………….. 34

 4.3.4 Epochs……….…………………………………………………………….. 34

 4.3.5 Batch_size.………………………………………………………………… 34

 4.4 Deep Learning Architectures...…………………………………………………… 34

 4.5 Convolutional Neural Networks (CNNs)………………………………………… 35

 4.5.1 GoogLeNet………………………………………………………………… 36

 4.5.2 AlexNet……………………………………………………………………. 42

 4.5.3 ResNet50…………………………………………………………………... 44

 4.5.4 InceptionV3………………………………………………………………... 54

 4.6 Model assessment………………………………………………………………… 73

Chapter 5………………………………………………………………………………..... 74

Results.……………….…………………………………………………………………… 74

 5.1 Experiment Descriptions………………………………………………………….. 74

 5.2 Evaluation Metrics………………………………………………………………... 74

 5.3 Ratio Comparison………………………………………………………………… 76

 5.4 Summary of Results………………………………………………………………. 76

 5.4.1 AlexNet-Training from scratch……………………………………………. 76

viii

 5.4.2 GoogLeNet-Training from scratch………………………………………… 77

 5.4.3 ResNet50-Training from scratch...………………………………………… 79

 5.4.4 ResNet50-Transfer learning.………………………………………………. 79

 5.4.5 InceptionV3-Training from scratch ………………………………………. 80

 5.4.6 InceptionV3-Transfer learning…......……………………………………… 81

 5.6 Comparison of deep learning architecture...……………………………………… 83

Chapter 6…………………………………………………………………………………. 90

Conclusions……………………………………………………………………………….. 90

 6.1 Conclusions………………………………………………..…..………………….. 90

 6.2 Limitations………………………………………………………………………... 91

 6.3 Directions for future work….…………….. 92

References………………………………………………………………………………… 93

ix

List of Tables

Table 4.7: Hardware Setup and Specifications……………………………………………. 28

Table 4.1: GoogLeNet architecture Parameters……………….. 40

Table 4.2: AlexNet architecture Parameters………………………………………………. 43

Table 4.3: ResNet50 architecture Parameters……………………………………….......... 45

Table 4.4: ResNet50 architecture for Transfer Learning Parameters……………............... 53

Table 4.5: InceptionV3 architecture Parameters …………………………………….......... 58

Table 4.6: InceptionV3 architecture for Transfer Learning Parameters ………………….. 72

Table 5.1: Comparison of DL Training-Test Ratios and Total Instances in Training,

Validation, and Testing Sets …………………………………………................................

76

Table 5.2: Results from AlexNet architecture……………………………………………... 77

Table 5.3: Results from GoogLeNet architecture ……………………………………….... 78

Table 5.4: Results from ResNet50 architecture ………………………………………....... 79

Table 5.5: Results from ResNet50 architecture (Pre-trained)……………………………... 80

Table 5.6: Results from InceptionV3 architecture ………………………………………... 81

Table 5.7: Results from InceptionV3 architecture (Pre-trained)…………………………... 82

Table 5.8: Performance Comparison of Different CNN Models on Various Train-Test

Splits…….

88

Table 5.9: Performance Comparison of AlexNet and GoogLeNet Model on Various

Train-Test Splits - Crop Disease Diagnosis with Deep Learning‑Based Image Captioning

and Object Detection………………………………………………………………………

89

x

List of Figures

Figure 2.1: Current sensor technology used for the automated detection and identification

of host plant interactions………………...…………..

13

Figure 2.2: Hyperspectral images-based acquisition approach ………………...…………. 16

Figure 3.1: Example of leaf images from the PlantVillage Dataset representing crop-

disease pair used.…………….…...…………………………………...................................

24

Figure 3.2: Sample images from three different versions of the PlantVillage dataset ……. 25

Figure 4.1: Importing Libraries………………………………….…………………............ 30

Figure 4.2: Convolutional Neural Network……………..…..………………….................. 36

Figure 4.3: Inception block……………………..………………………………………..... 40

Figure 4.4: Auxiliary block……………………………...……………………………..….. 41

Figure 4.5: GoogLeNet model…………………………....…………………….................. 41

Figure 4.6: AlexNet model………………………….………………………….................. 42

Figure 4.7:ResNet50 model…………………….……………………..…………………... 46

Figure 4.8: InceptionV3 model…………………..………………………………............... 55

Figure 5.1: F1 score from all non-pretrained models...……………………………………. 83

Figure 5.2: F1 score from all pretrained models...………………………………………… 85

Figure 5.3: F1 score (Train-Test ratio – 90:10)……………………………………………. 86

Figure 5.4: Loss (Train-Test ratio – 90:10)………………………………………………... 87

1

Chapter 1

Introduction

1.1 Background

Agriculture is crucial in developing countries where food security is becoming a major problem.

A technology that shows promise for detecting plant diseases is hyperspectral imaging.

Hyperspectral data cubes include redundant information, which makes deep learning identification

of plant illnesses more believable. The purpose of this study is to describe a deep learning-based

method for detecting crop diseases from images. Thus, the main objectives will be focusing on the

technology that is based on crop disease detection and its types. Further, it eventually focuses on

the predictions of agriculture and research applications that are using the automated phenotyping-

based platform.

Panchal et al. [1], stated that as a result of transportation issues, plant diseases, and a lack of storage

facilities, the crops were lost. The disease is a big problem that needs to be handled because it

causes more than 15% of the world's crops to be lost. It is necessary to have an automated system

that can detect these diseases and guide farmers in taking the proper action to control crop loss.

Because timely detection is challenging in different parts of the infrastructure, crop diseases are

also a significant component of food security. The farmers relied on a variety of age-old methods,

but not all of them were equally successful in identifying plant illnesses with their unaided eyes.

Computer vision can help to detect the product defects and sort the products by color, size, weight,

rapines and other factors. Farmers can use computer vision to analyze their crops, it can help them

2

work faster and better. Chen et al. [2] asserted that deep learning, because of its extensive library,

is now the greatest developer-friendly and user-friendly environment for applying computer vision

techniques in the field of agriculture. Thus, deep learning provides useful techniques that helps

computers to understand what naturally comes to humans.

The main barrier inhibiting the spread of agriculture internationally is plant diseases, which cause

yearly enormous losses. According to Jain et al. [3] The management of plant diseases has

garnered a lot of interest. For the purpose of putting into place efficient prevention measures, plant

diseases must be discovered and treated as soon as feasible. Even though the impacts of plant

diseases are extremely complicated and variable, the majority of forest producers in conventional

agricultural and forestry production can identify the species and severity of a disease based on

their prior experiences with plant illnesses. For forest farmers to do this, they must be able to

identify disease indications. Nagasubramanian et al. [4] Asserted that ignorance will result in

uneven plant disease identification, improper treatment, and ultimately a delay in the treatment

time, which will result in unneeded economic losses. Even with the aid of experts, a disease's

diagnosis will take time. Therefore, developing an automated system for categorizing and

identifying plant diseases is crucial. As a result of recent developments in computational systems,

computer vision technologies are increasingly being employed to detect plant diseases.

Plant or leaf disease costs money and jeopardizes the development of numerous agricultural goods

globally [5]. The inappropriate use of pesticides and fungicides is due to the failure to recognize

illnesses, bacteria, and viruses in plants. Since biological characteristics of diseases are of

particular interest to scientists, they have become quite interested in plant diseases. The use of

3

modern technology in precision farming results in improved decisions. Expert visual inspections

and biological investigations are frequently used in plant diagnosis. This tactic often costs money

and time. Identification of plant diseases using complex and robust methods is essential to

resolving these problems. To improve the effectiveness of disease identification, conventional

machine learning (ML) approaches have been implemented in agricultural operations. Recent

examples of deep learning (DL), a type of machine learning, have shown its outstanding capacity

to find, identify, and categorize things in the real world. Conversely, this shift in agricultural

research has resulted in DL-based fixes [6]. State-of-the-art outcomes employing DL techniques

have been reached for agricultural tasks like harvesting fruit, identifying plants, and differentiating

between crops and weeds. The present research emphasis has been on identifying crop diseases,

which is a major agricultural concern.

The illness severity is essential to forecast the production and to suggest treatment plan for the

plants. Where the illness’s severity is accurately and rapidly diagnosed, it helps to reduce the cost

of treatment. According to [7], the severity of a plant disease is determined by trained experts by

evaluating plant tissues visually. The costly and inadequate study of human illness is a contributing

factor in the slow development of modern agriculture. Precision agriculture, high-throughput plant

phenotyping, smart greenhouses, and other industries are highly interested in automated disease

diagnostic models as a result of the growing use of digital cameras and the development of

computer vision. In this study, deep learning models for autonomous image-based diagnosis of

plant disease severity are presented. It was motivated by the advancement in deep learning for

image-based plant disease detection. The severity of each illness was highlighted in annotations

made on photographs of healthy and black rot apples from the public PlantVillage collection [8].

4

To assess the most effective educational program and network architecture, we start from scratch

and build shallow networks of different depths to enhance the pre-trained, state-of-the-art deep

networks.

Additionally, great progress has been made recently in computer vision development with the use

of deep learning technology, which has paved the way for the widespread use of smartphones.

These technologies aid in the proper management of the circumstances even though climate

change, pollinators, and other factors continue to pose a threat to food safety [9]. Plant diseases

are seriously affecting smallholder farmers whose livelihoods depend on growing healthy crops,

in addition to endangering global food security. It has been found that deep learning is considerably

superior to the conventional approach in these problems in terms of the advancements in digital

picture processes [9]. However, because it uses machine vision technology to examine

photographs and determine whether or not disease and pests can be seen in plant images, plant

disease represents a very important research area in machine vision. In the beginning, machine

vision-based plant disease detection equipment were used in agriculture, taking the role of the

conventional naked eye method of identification as redundant. Using deep learning for plant

disease detection can help in treating the plants early on to reduce the negative impact of plant

diseases on agricultural production. Ashqar and Abu-Naser [10] stated that plant diseases represent

a major threat to smallholder farmers that depend on healthy crops to survive with 80% of the

global production of agriculture being affected. Thus it is found that disease identification is a

crucial step for disease management and traditional approaches that help to identify those diseases

are done by visiting local plant clinics.

5

1.2 Research Aim

The aim of this work is to analyse deep learning-based image detection techniques to identify crop

diseases.

1.2.1 Research Objectives

• To analyse the Image-based plant disease detection technique.

• To describe the feature extraction for disease identification using deep learning.

• To analyse the types of crop diseases and relevant areas of sensors used during crop disease

detection

• To identify the challenges that occur during crop disease detection.

• To recommend advanced image detection techniques for improving crop disease detection.

1.2.2 Research Question

• What is Image-based plant disease detection?

• How deep learning helps in crop disease detection?

• What are the issues that occur during crop disease detection?

• What is feature extraction in disease identification using deep learning techniques?

1.2.3 Problem Domain

The crop disease alludes to a major issue of low agricultural productivity. Guo et al. [11] stated

that farmers face issues in identifying the crop diseases for controlling and detecting them. Thus,

fast detection is beneficial for those farmers to avoid further losses. In the modern times if

agriculture gets affected by crop diseases, it can be harmful for a country. The food demand which

6

is growing exponentially for the production of agronomy requires control of plant diseases. To

boost agricultural production and meet food demand, scientists, farmers, analysts, experts, and the

government all work together and employ various tactics [12]. The precise detection of plant

diseases is a significant problem that has an impact on crop production. Another problem that

arises during the detection is the appropriate application of the detection methods. The variables

that can alter the global climate and plant diseases are at the disposal of farmers who are dealing

with these issues. Crop production is decreasing, and farmers are thinking about committing

suicide, for a variety of possible reasons. Because it requires a lot of time, accuracy, money, and

good crop quality, visually inspecting crops is a challenging task. The majority of recent studies

have mostly concentrated on classifying plant diseases [5]. The difficult task of diagnosing plant

diseases, which necessitates both the location and classification of the disease in the plant, has not

received nearly enough attention. For the purpose of detecting or identifying crop diseases using

high-level DL structures, none of the aforementioned methods has been thoroughly studied. Deep

learning (DL) is a branch of machine learning that has been proven to be very successful in real-

world item identification, recognition, and classification tasks [13]. As a result, more and more

DL-based approaches are being used in agricultural research. For agricultural tasks including

crop/weed discrimination, fruit harvesting, and plant recognition, state-of-the-art outcomes using

DL approaches have been attained.

1.2.4 Overview of Research Methodology

The explained research is based on the aim of analyzing crop disease with the help of deep

learning-built image detection techniques. Further, to accomplish its results positively, the research

will be focusing on some keywords such as image-based crop disease detection technology, types

7

of plant disease, relevant areas of sensors in crop disease detection, feature extractions for disease

identification in deep learning, and more. Thus, the study will effectively help to describe the

analysis of image-based crop disease detection with the help of deep learning. Also, it will help to

describe the challenges, problems, types, and feature extraction, which is more helpful in plant

disease detection.

1.3 Outline of the Thesis

The thesis is organized in six chapters, namely the introduction, literature review, Data

Preparation, Deep Learning architectures, results and conclusion. The problem statement and the

objectives are stated in the opening section of chapter 1 along with the study's background. The

research questions, objectives, and significance of the study are all included in this chapter. The

literature review is discussed in Chapter 2 which covers a variety of prior research. The data is

discussed in Chapter 3. The deep learning architectures that were used to implement the crop

disease detection are discussed in Chapter 4. The results and findings of methods are presented in

chapter 5. The main conclusions of the study are presented in Chapter 6. Chapter 6 also highlights

any limitations and suggestions for further research.

8

Chapter 2

Literature review

2.1 Image-Based Plant Disease Detection

The image-based plant disease detection technology is recently represented in various areas. Crop

waste is representing enhanced disease, which becomes a critical identification method of disease

[1]. Currently in developing countries, most of the population is based on agriculture in the form

of direct and indirect energy. It represents the significant usage of application-based plant disease

detection that helps the farmers to understand the reason behind the disease based on the plant's

size, the colour of the leaf, the size of the leaf, and the growth pattern. In the current generation

with the usage of smartphones all over the world, it is easy to click pictures of plants. Where

various peoples have internet access also across the globe. Currently, for their convenience and to

use a variety of applications, more than 300 million individuals have access to the internet.

Although the government has access to a variety of tools, including a 24-hour helpline number for

farmers to place orders and obtain answers to their queries, it can be difficult to effectively assist

those who live in rural areas when they are having issues finding solutions to their problems. Self-

paced image-based disease identification is a simple answer to this issue. Furthermore, according

to van Bruggen et al. [14] crop disease is expanding globally and needs to be addressed if pesticides

and insecticides are to be used to offer a short-term but ultimately beneficial answer. The chemicals

have side effects on the crop which can ultimately hurt the health of the citizens. Currently, AI has

spread in various domain areas and can be helpful in agriculture problems as well. The crops and

leaves are also crucial in order to provide details regarding the amount and nature of horticultural

9

yield. Some of the factors affecting food production includes soil sterility, the presence of weeds,

and climate change. However, in addition to these losses, leaf and plant diseases pose a global

threat to the development of numerous agricultural goods [15]. Following the diagnosis of failure

infection in plants, insufficient pesticide and fungicide usage occurs. The disease plan has therefore

heavily taken into consideration the scientific community, with an emphasis on biological illness

aspects. In precision farming, decision-making is optimized using the most cutting-edge

technology. Expert visual inspection and biological assessments are used to complete the plant

diagnosis when necessary. The method is well-known, labor-intensive, and cost-effective. It is

essential to identify the plant disease using sophisticated and clever techniques in order to treat

these issues.

Inexperienced farmers often encounter challenges due to their limited knowledge and lack of

practical experience. These challenges become particularly pronounced as crops become

increasingly vulnerable to the effects of climate change, requiring expert management that

experienced farmers are better equipped to handle [16]. In agriculture, it is essential to recognize

plant diseases since they have a significant impact on crop output and product quality. Viral

illnesses that go untreated can have catastrophic implications for the nation's economy and food

supply [17]. To create new and precise methods for identifying plant diseases, researchers from

several academic disciplines, including microbiology, agronomy, and plant science, are

collaborating. The utilization of subject-matter experts and specialized tools is necessary for

strategies that exploit domain expertise. It is now possible to diagnose diseases solely using picture

data as a result of developments in the computational processing of high-dimensional data, such

as images. Spotting diseases in image data can be considered as a visual anomaly detection task

10

[18]. Identifying or putting strange observations in data is the work of anomaly detection. It is

critical to pinpoint these issues or abnormal occurrences, which can include electricity theft,

dishonest business dealings, strange illnesses, product flaws, etc., because these anomalous data

points may be connected to a variety of issues or abnormal happenings. The different data sets that

can be used for anomaly identification are due to the rarity of anomalous events. Plant disease data

sets are not an exception and frequently display a size imbalance [19]. To categorize and identify

plant diseases, deep learning technology is also used. A significant issue now is the detection of

plant diseases. Both the quantity and the quality of agricultural production can be affected by plant

diseases. The crop-growing sector depends on early disease detection. Enhancing agricultural

production is the primary goal of identifying and categorizing plant diseases. As a result of a shift

in consumer behaviour and attitudes toward processed foods, as well as the accessibility of smart

devices, internet connectivity, and the most recent technologies, a modern subset of agriculture

known as "precision agriculture" or "smart farming" has, however, exploded in popularity. For

smart farming and sustainable agriculture, early identification of any plant stress has proven to be

a big challenge.

Furthermore, Deep learning (DL) and machine learning (ML) algorithms are used to carry out

agricultural tasks. Deep learning is the subset of machine learning that is exceptionally effective

for real-world objectives based on rearrangement, detection, and classification reasons [20]. DL-

based treatments are becoming the main focus of agricultural research. In agricultural tasks like

crop and weed discrimination, plant restructuring, and fruit harvesting, the adoption of DL

methods has led to state-of-the-art results. The DL models have also been used to categorize plant

diseases using a well-known DL architecture. The study described that the modified version of

11

algorithms helps to enhance the performance of classification in diseases of various plant species.

Additionally, Saleem et al. [5] stated that the convolutional neural network (CNN) and DL

optimizer attain better results in plant disease classification. The CNN model is utilised to

categorize the results of the enhanced plant disease categorization. The deep learning architecture

has fixed input sizes and acts as a broker in the case where the input size is not fixed. This helps

to make the input data consistent and easier to handle, which can improve the accuracy and

efficiency of the deep learning model. Ultimately, this can make the model more effective and

useful for various applications. For categorizing various plant diseases, MobileNet models are

used. Similar to this, other research has mostly concentrated on advanced training strategies that

analyse ways that aid in assessing the effectiveness of AlexNet and GoogleNet, which were both

entirely new systems, and in transferring the learning methodology. The value of the fine-tuning

method can be seen by contrasting the most complex DL structures for plant disease categorization.

To address the problem of task object categorization, meta architectures are utilised to categorise

and localise the objectives on a single platform. Complex agricultural practices were found to be

engaged in the reorganisation of plant diseases by DL methods [5]. Deep learning has been used

to produce models for identifying and evaluating plant diseases. Two distinct types of

methodologies are designed and compared for analysis in order to achieve automated pest

identification using deep learning techniques. Results showed how recognising deep learning

approaches helps in providing better results than those of rival technologies [21]. When diagnosing

the disease in cassava leaves, the single shot multibox detector (SSD), which is used in the DL

technique, helps to produce results that are satisfactory. As a result, it is discovered that deep

learning is the most precise and accurate paradigm for the identification of plant diseases.

12

2.2 Relevant areas of image sensors used in plant disease detection

A huge size of current development in path systems using various kinds of sensitive sensors and

multiple data analysis pipelines helps to provide the various kind of sensor systems. It is classified

as an optical sensor along with RGB, multi- and hyperspectral reflectance, thermal, and

fluorescence imaging sensors [21]. Digital photographic images are extremely important in plant

pathology because they may be used to access plant health. Figure 1 below provides a detailed

description of various types of sensors. Digital cameras can easily manage the straightforward

source of RGB (Red, Green, and Blue) images for identifying, quantifying, and detecting diseases.

The technological requirements of simple-handled devices include a photo sensor with light

sensitivity, spatial resolution, and digital and optical focus, all of which contribute to the

improvement that is seen every year. The latest and most powerful digital camera-based sensors

that are available in mobile phones and tablets are being used by farmers and psychopathologists

in the current age. Additionally the digital image of plant is organized from the roots to the

inflorescences using video cameras and scanners as an alternative way [22]. During the growing

season, the RGB sensors were used to monitor the health of the plants at every resolution scale.

The detector type, spatial resolution, and spectral range of multi- and hyperspectral reflectance

sensors are used to categorise them. The information on the objectives is typically accessed by the

multispectral sensors in a variety of broad wavebands. The primary data source for the RGB

wavebands is multispectral imaging cameras. Using this technique, the fruits and crops are also

screened to avoid storage disease. The thermal sensors show the infrared thermography excess

plant temperature, which is connected to the plant water status [23]. Thus, many pathogens can

cause an increase in the transpiration rate of leaves and causes pathogens that can be negatively

13

impacting on the surface layer of the leaf and enhance the circular transportation in increased water

loss rate.

Figure 2.1. Current sensor technology used for the automated detection and identification of host plant interactions

(Source: Mahlein, 2016) [24]

The variability between and within leaves can also be used to analyze Infrared thermography (IRT)

images effectively. Individual leaves, crop stands, and plant interior temperatures can all be used

to identify the emergence of plant diseases. A variety of chlorophyll fluorescence properties are

used to evaluate changes in a plant's photosynthetic activity [25]. It provides a technique that

actively makes use of LED and laser light source sensors to access photosynthetic electron transfer.

It was possible to examine the behaviors brought on by biotic and abiotic pressures in the leafy

areas using this method. As with the painstaking planting and difficult execution of typical

agricultural greenhouse and field conditions, chlorophyll fluorescence imaging technologies have

14

limitations. By deriving fluorescence parameters from field-based sun-induced reflectance, it

would be able to evaluate plant diseases at both the canopy and field levels. A variety of sensor

technologies are accessible to plant pathologists to offer high-resolution data for a crop that is

standing and can act as the basis for the early detection and identification of plant disease [26].

These technologies have been developed and put into use in agriculture and plant disease

diagnostics, both of which have seen impressive advancements. Crop and plant research can now

be approached in a new and concentrated way thanks to advancements in precision agriculture and

plant phenotyping. The sensors used to non-intrusively analyse the nutritional status of crops in

the field were the most significant and useful ones. So, using low-cost sensor technologies with

acceptable market performance, future useful applications in agriculture can be created. However,

Arsenovic et al. [13] claimed that no specific plant disease detection sensors are presently available

on the market. The potential for sensor-based sickness detection is shown. The instruments as well

as technological solutions represent the field of greenhouse and phenotyping that is available.

According to Polder et al. [27] these specialised and unique prototypes weren't appropriate for

widespread use. The field systems currently represent a sophisticated system that may be utilised

to develop an imaging platform for identifying the tulip-breaking virus (TBV), which infected the

tulip decorations from the prototype of the hyperspectral imaging platform for detecting yellow

rust. This technique has enabled two advancements: the multispectral corneal robot and online

machine-version analysis pipelines. These could serve as driving factors for the development

expenses of a reliable optical sensor platform for the prompt and accurate detection of plant disease

in crops.

15

Hyperspectral sensors operate on the same fundamental principles as RGB and multispectral

cameras. As per Thomas et al., [28] each of these gadgets records the data it collects by measuring

the amount of light that reaches the sensor. A hyperspectral sensor can identify up to several

hundred electromagnetic spectrum bands within its wavelength range, in contrast to RGB or

multispectral cameras. The hyperspectral sensor has a high spectral resolution because each of

these spectral regions only gauges the electromagnetic spectrum by a few nanometers. The two

primary categories of sensors include both image sensors and non-imaging sensors [29]. Non-

imaging sensors analyze the normal reflectance spectrum over a certain area of a surface without

retaining spatial data. The average area is affected by several variables, including the focal length,

angle of view, and proximity to the object. Most non-imaging sensors are portable and do not need

elaborate measurement infrastructure. They are small and light, with a good spectral resolution (1-

3 nm), and a broad spectral range (300-2500 nm). SVC, ImSpector, and ASD FieldSpec are the

three most well-known spectrometers among them (Analytical Spectral Devices Inc., USA). To

create a spectrum profile for each pixel, hyperspectral image sensors combine spectral and spatial

resolution. With two spatial dimensions and an additional spectral dimension, the final image is a

three-dimensional data array (hypercube) [30]. Depending on the type of sensors being used, there

are four ways to acquire a hypercube of data, which are shown in Figure 2 below. Contrarily, due

to their massive amount of data and high level of collinearity, hyperspectral images are a very

challenging, emerging topic that necessitates non-trivial solutions. To successfully tackle this

problem, machine learning, neural networks, and discriminant and cluster analysis techniques have

been used.

16

Figure 1.2 Hyperspectral images-based acquisition approach (Author: Cheshkova, 2022) [29]

Additionally, resistance screening represents the plant phenotyping that is used in numerous

technological systems that have been developed [31]. The developments constituted an

investigation into a single plant under carefully controlled conditions. It demonstrates how

different genotypes differ in their susceptibility and resistance, and it demonstrates how this

information aids in describing the specific disease that may be measured using optical sensors.

Additionally, biological symptoms and presymptomatic physiological abnormalities were

employed to identify plant illnesses. Depending on the plants modest deface reaction, pathogen

development can be prevented during the resistance screening. The host resistance is a metaphor

for a plant genotype's ability to prevent the establishment and spread of diseases [32]. Numerous

genes influence complete resistance, although many genes have only minor effects on incomplete

resistance. The terms polygenic effects and polygenic partial effects, respectively, refer to these

two basic forms of resistance. Following the initial pathogen contact and subsequent compatible

and incompatible interactions, which took into account the plant side for susceptibility or

resistance of genotype, these alterations represented the distinctions in the tissues and cellular

level. Because of this, the sensor-based and data-driven phenotyping approaches based on the

small-scale host-pathogen interactions can be used to discriminate between barley genotypes with

various susceptibilities to powdery mildew.

17

2.3 Issues/challenges in the image-based plant disease detection

Various techniques are used to identify the diagnosis of the disease that has been developed and

are proven in the molecular biology delivery that aids in the accurate identification of the

pathogenic factors. These techniques are used to analyze plant disease, and significant damage,

and the development of new techniques for the accurate identification of pathogenic factors [3].

However, many farmers are not able to use the numerous methodologies used during analysis

because they are expensive and require a lot of resources to be implemented. The use of cutting-

edge technology is necessary for precision farming to improve the decision-making process. The

best choices have reduced costs as a result of the deployment of machine learning technologies in

decision-making. Additionally, the classification of issues involved the use of several

technologies, such as decision trees, random forests, linear regression, K-nearest neighbours,

logistic regression, support vector machines (SVM), Naive Bayesian, and clustering [12]. Because

of the deep learning (DL) approaches' ground-breaking results, artificial intelligence and computer

vision have advanced. These techniques, as opposed to the conventional approach, result in more

accurate predictions, promoting better decision-making. DL techniques are currently being used

to quickly resolve a range of complex problems due to developments in hardware. It is conceivable

that for a brief period, CNN used DL frameworks as its main technology [33]. Predictions made

with DL technology are based on instances that are not distributed equally across the training data.

In addition, a variety of issues and applications might affect the plant disease diagnosis procedure.

One problem is the way in which the data sets are set up to show the data collected at various

levels. When collecting data from plants in villages, for instance, it could be difficult to explain

the data uniformly because it was collected from a range of fields. The issue with data visualization

18

in tables and other exhibits originates from the fact that the bulk of datasets will have variable and

inconsistent material.

Farmers are unable to protect the plants because they struggle to identify these illnesses and are

unable to do so. One area for identifying plant diseases is biomedicine [34]. The most suitable,

effective, and trustworthy technology available today for the aim of identifying illness using

photos of plant leaves is image processing techniques. To save time and rapidly and precisely

diagnose all plant ailments, farmers require quick and effective techniques [35]. Scientists have

developed several hypotheses for estimating agricultural yields with the use of labs and equipment

for quickly diagnosing plant leaf diseases. Data input from several sources is needed for automated

disease identification. The use of image-based plant disease detection may result in low-quality

images of plant leaves, which are considered by all the different research publications. Further,

various kind of issues and challenges in detecting the disease is identified when extensive

collection of data is affected by noise and background data. The input image's training and testing

samples are utilized to precisely segment the data, starting with the leaves and then on to the

meaningful illness that can be recognized [36]. The impact of image processing using a machine

learning technique on the ability to detect disease, however, necessitates an improvement of the

existing research. Diagnosing plant diseases is a critical task for the safety and security of food.

The PlantVillage project was started to develop accurate image classifiers for identifying plant

diseases [37].

There are thousands of labelled photos of both healthy and diseased crop plants that were taken

under controlled conditions. With the aid of such a large dataset, deep learning difficulties for

19

developing a reliable image classifier for plant disease diagnosis have been identified. Numerous

deep neural network-based anomaly detection techniques have recently been proposed in the fields

of machine learning and computer vision. The deep anomaly is divided into three groups that is

depending on machine learning such as supervised, unsupervised, and semi-supervised approaches

that help to provide a comprehensive review of the approach.

In addition, the data sets that are difficult to explain graphically are related to additional concerns

[33]. Leaders understand the content of the data sets better when solutions are presented as graphs.

The graphs for some data sets, however, might need to be completely redone because they cannot

be altered directly. Furthermore, the usage of deep learning technology is used to analyze plant

disease detection, but the lack of data present the most difficulties [38]. Newhart et al. [39] stated

that the statistical analysis of the data and the data sets may also be difficult to understand for

persons without a background in mathematics or statistics by assessing some difficulties that

include atmosphere, temperature, snow, and moisture. Therefore, there is no ideal approach to

promote economic growth. The estimation of the K-nearest neighbour algorithm is studied using

the bare minimum of climate data [40]. To collect the discriminating information, various forms

of feature extraction are also carried out utilizing the IRT input photographs. Non-linear feature

extraction methods make use of aspects including color, shape, and texture [41]. However, due to

the lack of interpretability and transparency of the DL classifiers, the technology helps in providing

a novel strategy using the random forest, CHAID, K-nearest neighbour, and Naïve Bayes for plant

disease classification research. Thus, DL classifiers are usually considered to be mysterious, deep

black boxes that lack any kind of justification or details regarding how they classify data and its

high accuracy.

20

2.4 Feature extraction for disease identification

The automatic plant disease detection system receives the images of the diseased leaves as input

and diagnoses the illness correctly. According to Panchal et al. [1] this system's effectiveness will

depend on the feature extraction techniques used. Images of infected leaves that are input into the

system are processed using image processing algorithms to extract features from the pictures.

According to Sapkal and Kulkarni [42], there are two different varieties of feature extraction

methods. First, the image processing methods are used to extract features from the infected leaf

images input to the system. Colour, Shape, Texture, HOG, SURF and many more properties can

be extracted from images using image processing methods. A Gray Level Covariance Matrix is

used to obtain the texture features. The second method makes use of Alexnet's pre-trained deep

learning model, which will automatically detect features from the input image. From the submitted

image of the sick leaf, the Alexnet model will automatically extract the features. The pretrained

Alexnet model doesn't need much time to recognize the features in the given image. Both methods

apply the Backpropagation Neural Network (BPNN) algorithm to the gathered features. The issue

of slow convergence affects the BPNN. However, it should be noted that in this case, deep learning

hyper parameters rather than texture features support the BPNN's faster convergence. Further, the

BPNN is especially used for the deep neural network that is working on error-prone projects that

includes images and other speech recognition tasks. The BPNN algorithm can collect sensitive

noisy data if it is not properly designed or trained. Neural networks learn from the data they are

trained on, and if the training data includes sensitive or noisy information, the network may

inadvertently learn to use that information in its predictions or classifications.

21

Diseases are identified using a deep learning methodology based on texture and colour extraction

methods. As per Magsi et al. [43], the proposed approach to disease diagnosis was tested using a

dataset of 1200 photos of date palm disease, and it had an overall accuracy of 89.4%. On a national

and international scale, this application will benefit harvesters and other stakeholders locally and

regionally. A more precise Histogram for the coloured image-based database can be created by

using the image thresholding technique to remove the region of interest from the input image's

background. The data from the histogram and additional values produced from the characteristics'

data are then used for statistical analysis [44]. Feature extraction happens following preprocessing

of the input image. Color, size, morphology, and textural characteristics are only a few of the

characteristics that make up an extraction. These approaches still have poor detection performance

in terms of feature extraction. Xie et al. [45] described that CNN has developed into a complete

deep-learning approach in recent years. They fully exploit image big data and find the

discriminative features from the original photographs themselves to do away with memory-

intensive and time-consuming image processing. Due to CNNs' ability in pattern recognition, early

plant leaf disease detection has become a new area of focus for smart agriculture.

Magsi et al. [43] used feature extraction to find faults in mango fruit. The sequential forward

selection method was used to retrieve the most important parts of the image. An effective neural

network design that considered textural information produced a recognition accuracy of 90.26%.

Colour is a characteristic that visual systems value highly. The input image is transformed into the

HSV colour space to retrieve the leaf's colour values. Also, Viana et al. [46] claims that this allows

for the separation of the damaged region from the rest of the image. After that, the segmented

image is used to determine the size values (area) of the diseased (yellowish/pale) and healthy

22

(green) areas of a leaf. The smoothness and roughness of the damaged portion compared to the

healthy part of the leaf are perceptual characteristics that can be quantified using texture data. The

segmented contaminated area of the leaf's values is then extracted for statistical analysis utilizing

morphological techniques. Following the histogram segment, the system pulls each bit of colour

information from an image using the built-in tool for photos of Matlab [43]. In this instance, colour

information extraction differs from thresholding. Each image pixel's RGB colour values are

computed during the extraction of colour characteristics, accounting for any differences in the

primary or secondary colours. Each pixel's processing results in a unique determination of the

RGB ratio. The texturing feature is then used in the approach. In order for texturing to work, grey

scaling is required. The image is changed to greyscale prior to utilising the "grey level co-

occurrence matrix technique" (GLCM) to look at the texture feature [43]. Utilizing the complete

area of the selected image, the approach determines the size of the affected area. Expanding the

system's already calculated colour feature, this feature increases accuracy and efficacy.

23

Chapter 3

Data and Processing

3.1 Data Selection

There are several well-known datasets available for plant disease detection that can provide a

collection of images showcasing both diseased and healthy crops. Notable examples include the

Plant Pathology Dataset, Fruit Disease Dataset, Tomato Leaf dataset, and The PlantVillage dataset.

The Plant Pathology dataset, conveniently provided by Kaggle, offers a diverse range of images

featuring plant leaves affected by various diseases. The dataset includes classes for diseases such

as rust, scab, and multiple types of leaf spots. If the focus is specifically on diseases impacting

fruits, the Fruit Disease Dataset, also available on Kaggle, provides a comprehensive resource. For

those specifically interested in tomato diseases, the Tomato Leaf dataset offers a dedicated

compilation of images displaying tomato leaves affected by bacterial spot, early blight, and late

blight, among other ailments. Similarly, crop-specific datasets exist for other plants like wheat,

rice, or soybeans, proving valuable for targeted research and analysis. These datasets serve as

valuable resources, particularly when the objective is to focus on a specific crop and study its

associated diseases.

To develop a computer vision algorithm for crop disease detection, we used the PlantVillage

Dataset as a starting point for learning from scratch [41]. We used transfer learning with a pre-

trained model that was originally trained on the ImageNet dataset. This pre-trained model was

already proficient at identifying objects and features in images, so we fine-tuned it using the

24

PlantVillage dataset to learn the specific features of plant images and improve its ability to classify

plant species and its diseases. By combining these two approaches, an effective and efficient

computer vision algorithm was developed for crop disease detection.

3.1.1 The PlantVillage Dataset

The PlantVillage dataset is a large and comprehensive dataset of plant images that was created to

aid in the development of computer vision algorithms for crop disease diagnosis. It was created by

the PlantVillage team at Penn State University, led by Dr. David Hughes, with funding from the

National Science Foundation and the Bill and Melinda Gates Foundation. PlantVillage project

provides the dataset available openly and freely.

The dataset contains over 54,000 high-quality images of 26 different crop diseases and 14 plant

species along with images of healthy plants, which have a spread of 38 class labels. The images

were collected from multiple sources, including professional photographers, citizen scientists, and

farmers. Figure 3.1 shows example of leaf images from PlantVillage dataset.

Figure 3.2. Example of leaf images from the PlantVillage Dataset representing crop-disease pair used.

 Apple_Healthy Grape_Black_rot Raspberry_healthy Tomato_Bacterial_spot

25

The dataset includes images of both leaves and fruits from the various plant species. The plant

species included in the dataset are: apple, blueberry, cherry, corn, grape, orange, peach, pepper,

potato, raspberry, soybean, squash, strawberry, and tomato. The diseases included in the dataset

are: apple scab, bacterial spot, cedar apple rust, common rust, early blight, late blight, leaf curl,

mosaic virus, powdery mildew, septoria leaf spot, spider mites, target spot, tomato yellow leaf curl

virus, and two-spotted spider mites.

The dataset is available in two formats: as a collection of individual images and as a compressed

file containing all the images in a standardized format (JPEG) with a resolution (256x256 pixels).

There are three different versions for the whole PlantVillage dataset.

1. Color – 54,305 images

2. Gray scale - 54,305 images

3. Leaf Segmented – 54,306 images

Figure 3.2 shows sample images from the three versions of the PlantVillage dataset.

Figure 3.2.Sample images from three different versions of the PlantVillage dataset.

 Color_image GrayScale_image Segmented_leaf_image

26

The PlantVillage team has also created a website called PlantVillage.com, which provides a wealth

of information on crop diseases, including diagnostic tools, treatment recommendations, and a

community forum for plant enthusiasts and professionals.

3.1.2 The ImageNet Dataset

The ImageNet dataset [47] has several advantages in this research. It is one of the largest datasets

currently available, which makes it a perfect source of data for creating machine learning models.

By classifying the photos using the WorldNet hierarchy, the models created for identifying objects

are accurate and efficient. The ImageNet dataset is a priceless tool for creating machine-learning

models. This research's ideal data source contains more than 50,000 color photos of crop leaves,

including both healthy and damaged plants. A high sample size, precise labelling, and the potential

to identify agricultural diseases are just a few advantages of using this dataset.

The ImageNet dataset contains 14,197,122 annotated images according to WorldNet hierarchy. It

has 1000 different object categories, with an average of 1000 images per category.

3.2 Data Processing

Data analysis is a crucial step in cleaning and modelling the data once it has been acquired.

Extraction of pertinent data from data sources is a step in the data analysis process. To ensure that

the information is correct and dependable, this procedure also aids in cleaning and deleting

extraneous data from the obtained data [48]. To deliver precise findings for the completion of the

work, Tensor Flow—a system for managing information and analysis—was used.

27

Several libraries built on the Python programming language were used to examine the data in the

PlantVillage datasets. Tensor Flow, Numpy, and Keras for building Neural Network Architecture,

as well as MatplotLib for plotting libraries were utilized for the analysis. These libraries all serve

various purposes and are essential to the study. A crucial library for developing and deploying

machine learning models is TensorFlow [49]. It offers a thorough and adaptable environment for

creating and developing neural networks. It also makes computing effective and scalable, which

makes it a perfect library for the study of massive datasets.

3.2.1 Tensor flow library

To verify that the information is trustworthy and correct, data analysis is essential. The data is

effectively evaluated by the Tensor Flow technology. The study of PlantVillage datasets is made

possible by the use of many Python-based tools, including TensorFlow, Numpy, Keras, and

MatplotLib. These libraries work together to ensure that the data is examined properly and

efficiently, producing reliable findings.

After Data preprocessing, dataset were trained on different models including: AlexNet,

GoogLeNet, InceptionV3 and ResNet50. We perform modelling with various training-testing

ratios of 90:10, 80:20, 70:30, and 60:40.

3.3 Hardware Setup and Specifications

The hardware specification for implementation of crop disease detection is as follows:

28

Table 3.1: Hardware Setup and Specifications

Processor AMD Ryzen 7 5800H

Memory 16 GB

Storage 512 SSD

Operating System Windows 10

Graphics card NVIDIA GeForce RTX 3050ti (4 GB)

Development Environment Jupyter Notebook

29

Chapter 4

Methods

4.1 Description

AI refers to the broad field of computer science focused on creating intelligent systems that can

mimic human intelligence. Machine learning (ML) is a subset of AI that uses algorithms to enable

computers to learn from data and make predictions or decisions without explicit programming.

Deep learning (DL) is a specific type of ML that utilizes artificial neural networks with multiple

layers to learn complex patterns and hierarchies in data, enabling it to excel in tasks such as image

and speech recognition. In crop disease detection for image classification problem, we focus on

some popular deep learning architectures namely AlexNet, GooLeNet, ResNet50 and

InceptionV3. These architectures are used to determine healthy and diseased crops with their

names.

4.2 Library

There are few Libraries which are required during training of deep learning models. The main

libraries such as ‘TensorFlow’, ’keras’, ’matplotlib’, ‘OS’, and ‘time’ has been used. TensorFlow

provides a range of tools, that we used for building and training deep neural networks. Keras

provides a simple and intuitive interface that we used to build and experiment with deep learning

models. Matplotlib is used to plot images. We have used OS library to use operating system

functionality like reading or writing to the file system and creating new directories. Time is used

30

to generate a unique run ID for each run of the model. Figure 4.1 shows the code snippet to import

the libraries.

Figure 4.1 Importing Libraries

4.2.1 TensorFlow

TensorFlow is an open-source deep learning framework developed by Google that allows

developers to build, train, and deploy machine learning models. With TensorFlow, we can design

a graph of calculations that represent the different mathematical processes involved in the model.

Overall, TensorFlow makes it easier for developers to build and experiment with deep learning

models [50]. Currently, TensorFlow is used in a variety of applications, including voice search,

picture recognition, and text-based ones.

4.2.2 Keras

Keras is a high-level deep learning library and API created by Google that can be used as a stand-

alone framework or integrated into other deep learning frameworks like TensorFlow, Microsoft

Cognitive Toolkit, or Theano. Keras provides a user-friendly and intuitive interface that allows

developers to quickly build and experiment with deep learning models, without needing to have a

deep understanding of the low-level details of neural networks. Keras was originally developed by

François Chollet and is now a part of the TensorFlow project. It is utilized to simplify the

development of neural networks using Python. Because it offers a high degree of abstraction

31

python frontend and the choice of many back-ends for computation, Keras is comparatively simple

to understand and use. As a result, Keras is considerably more beginner-friendly yet a bit slower

than other deep-learning frameworks [51].

4.2.3 Matplotlib

Matplotlib is a data visualization library that works with the popular numerical computing library

NumPy in Python. It provides a cross-platform toolkit for creating high-quality graphs and charts

that can be used for data analysis, scientific research, and engineering. Matplotlib is an open-source

alternative to proprietary tools like MATLAB and can be used to create visualizations that are both

informative and aesthetically pleasing. Developers can also use the interfaces provided by

Matplotlib to include graphs in GUI applications, making it a versatile and powerful tool for data

visualization [52].

4.2.4 OS

The OS module in Python provides a set of functions that allow us to interact with our operating

system. It provides a variety of practical OS features that may be utilised to carry out OS-based

operations and obtain OS-related data. Python's basic utility modules cover the OS [53].

4.2.5 Sklearn

Scikit-learn is Python's most practical and reliable machine-learning library. It provides powerful

tools and algorithms that can be used for statistical modeling and machine learning tasks. Sklearn

is designed to be easy to use and integrates well with other Python libraries such as NumPy and

Pandas. It also includes useful features such as data preprocessing, model selection, and

32

performance evaluation tools. With the help of scikit-learn we can employ various machine

learning techniques such as clustering, classification, and regression.

4.3 Parameters

4.3.1 Loss function

A loss function quantifies the error between a machine learning model's predicted output and the

true output. It is a parameter that is specified when the model is constructed and helps determine

the model's performance during training. The choice of loss function depends on the problem being

solved and the type of data being used. We have used sparse_categorical_crossentropy given by

equation 4.1.

− ∑ log 𝑡𝑖 log(𝑝𝑖)
𝑁

𝑖=1
 (4.1)

For n classes, where 𝑡𝑖 is the truth label and 𝑝𝑖 is the Softmax probability for the 𝑖𝑡ℎclass [54].

Sparse categorical crossentropy is a loss function used in neural network training, particularly for

multiclass classification problems where the number of classes is large. It calculates the cross-

entropy between the predicted probability distribution and the true probability distribution of the

classes, but only considers the true class label as a single value, rather than a one-hot encoded

vector. This makes it useful for cases where the number of classes is very large and the one-hot

encoding of the labels would require a lot of memory. The sparse categorical crossentropy loss

function encourages the model to assign a high probability to the correct class label, and penalizes

the model for assigning high probabilities to incorrect labels.

33

4.3.2 Optimizer

In machine learning, an optimizer is an algorithm used to adjust the parameters of a model during

training to minimize the loss function. The goal of the optimizer is to find the set of parameters

that result in the lowest possible loss value, thus improving the model's ability to make accurate

predictions.

Stochastic Gradient Descent (SGD) was used in this study, Stochastic Gradient Descent (SGD)

is a popular optimization algorithm used in machine learning for training deep neural networks. It

is a gradient-based optimization algorithm that updates the model parameters in small steps based

on the gradients of the loss function with respect to the parameters. SGD works by randomly

selecting a small batch of data from the training set and computing the gradients of the loss function

with respect to the parameters using that mini-batch. The model parameters are then updated in

the direction of the negative gradient, scaled by a learning rate, to minimize the loss function. This

process is repeated for multiple mini-batches until the model converges to a satisfactory solution.

SGD is computationally efficient and can work well for large datasets and simple models. SGD

performs a parameter update for each training example 𝑥(𝑖) and label 𝑦(𝑖):

𝜃 = 𝜃 − 𝜂 · ∇𝜃𝐽(𝜃; 𝑥(𝑖); 𝑦(𝑖)) (4.2)

Where 𝜃 represents the current values of the model parameters that the algorithm is trying to

optimize. 𝜂 is the learning rate, ∇𝜃𝐽(𝜃; 𝑥(𝑖); 𝑦(𝑖)) represents the gradient of the loss function. SGD

eliminates redundancy by computing the gradient and updating the model parameters for each

example one at a time [55].

34

4.3.3 Learning rate

The learning rate determines the step size at which a model's parameters are updated during

training. It is critical in determining the model's ability to converge to the optimal parameters, and

selecting an appropriate learning rate is an important part of training machine learning models.
During the experimentation process, various learning rates were tested for the deep learning

networks. However, it was observed that some of the tested learning rates led to overfitting of the

model. On the other hand, a learning rate of 0.005 consistently resulted in the best accuracy for the

deep learning networks. Therefore, 0.005 was chosen as the optimal learning rate for the final

model.

4.3.4 Epochs

In machine learning, an epoch is a term used to describe one complete pass through the training

dataset during the training of a model. During each epoch, the model makes a prediction on each

training sample and updates its parameters to minimize the loss function. The number of epochs

was 30 and it is a hyperparameter that is specified before training and determines the number of

times the entire dataset will be used to train the model. Different number of epochs were used to

test the model and the best accuracy was achieved with 30 epochs.

4.3.5 Batch_size

The batch size is a hyperparameter that determines the number of training samples used in each

iteration of the model's training during an epoch, which was 30 for GoogLeNet and ResNet50, 20

for AlexNet and InceptionV3. Different batch sizes were used to test on different architectures and

the best accuracy was achieved with the given batch sizes. The batch size is used in conjunction

35

with the number of epochs and the learning rate to optimize the model's parameters. A larger batch

size can result in faster training times and more stable updates to the model's parameters, while a

smaller batch size can help the model generalize better and avoid getting stuck in local minima.

4.4 Deep Learning Architectures

Deep learning architectures are neural networks with multiple layers that can learn hierarchical

representations of data. These architectures have revolutionized the field of artificial intelligence

and have been successfully applied to various applications such as image recognition, speech

recognition, natural language processing, and more. Some common deep learning architectures

include: Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long

Short-Term Memory Networks (LSTMs), Generative Adversarial Networks (GANs), and

Autoencoders. These are just a few examples of the many deep learning architectures that exist,

and each has its own strengths and weaknesses depending on the specific task at hand. We have

used Convolutional Neural Networks for the crop disease detection.

4.5 Convolutional Neural Networks (CNNs)

Convolutional Neural Network is a type of deep learning architecture that is primarily used for

image and video analysis. A CNN consists of several layers that are designed to extract meaningful

features from the input images or videos. The first layer in a CNN is a convolutional layer, which

applies a set of filters to the input image to extract low-level features such as edges and corners.

The subsequent layers in a CNN use these low-level features to extract higher-level features such

as shapes and objects. The pooling layers downsample the feature maps obtained from the

36

convolutional layers, reducing the spatial dimensions of the feature maps while retaining the

important information.

The output of the convolutional and pooling layers is then flattened and passed through a series of

fully connected layers, which perform the classification or regression task. The unique aspect of

CNNs is their ability to learn spatial hierarchies of features by performing convolutions and

pooling operations. This allows them to effectively handle images of varying sizes and

orientations, making them a powerful tool for tasks such as object detection, image segmentation,

and more. We have used CNNs namely GoogLeNet, ResNet50, InceptionV3 and AlexNet. Figure

4.2 shows a general architecture of the Convolutional Neural Network.

Figure 4.2: Convolutional Neural Network (Turhan, 2019) [56]

4.5.1 GoogLeNet

GoogleNet, also known as Inception-v1, is a convolutional neural network architecture developed

by researchers at Google in 2014. It was designed to be a deeper and more efficient neural network

for image classification tasks, with fewer parameters and lower computational complexity

compared to AlexNet architectures. GoogleNet consists of 22 layers, including several inception

modules that perform parallel convolutions at multiple scales. These inception modules are

37

designed to capture a wide range of features at different levels of abstraction, allowing the network

to effectively learn complex patterns in the input images.

One of the key innovations of GoogleNet is the use of 1x1 convolutional layers to reduce the

dimensionality of the feature maps before performing more computationally expensive

convolutions. This helps to reduce the number of parameters in the network and improve its

computational efficiency. GoogleNet achieved state-of-the-art performance on the ImageNet

dataset at the time of its release, and it has since inspired numerous follow-up architectures such

as Inception-v2, Inception-v3, and Inception-ResNet. To teach the network the features that are

important for image classification, a sizable dataset of images is used for training. The picture data

is fed into the network in the instance of crop disease detection, and the characteristics are retrieved

from the images. The next step is to train a classifier with these attributes so that it can recognise

the presence of a particular crop disease in fresh photos. Figure 4.3 shows the parameter settings

for GoogleNet architecture.

Table 4.1: GoogLeNet architecture Parameters

Layer Output Shape Number of

Parameters

Input layer (None, 224, 224, 3) 0

Conv2D (None,112, 112, 64) 9472

MaxPooling2D (None, 56, 56, 64) 0

BatchNormalization (None, 56, 56, 64) 256

Conv2D (None, 56, 56, 64) 4160

Conv2D (None, 56, 56, 192) 110784

BatchNormalization (None, 56, 56, 192) 768

MaxPooling2D (None, 28, 28, 192) 0

Conv2D (None, 28, 28, 96) 18528

Conv2D (None, 28, 28, 16) 3088

MaxPooling2D (None, 28, 28, 192) 0

Conv2D (None, 28, 28, 64) 12352

Conv2D (None, 28, 28, 128) 110720

38

Conv2D (None, 28, 28 , 32) 12832

Conv2D (None, 28, 28, 32) 6176

Concatenate (None, 28, 28, 256) 0

Conv2D (None, 28, 28, 128) 32896

Conv2D (None,28, 28, 32) 8224

MaxPooling2D (None, 28, 28, 256) 0

Conv2D (None, 28, 28, 128) 32896

Conv2D (None, 28, 28, 192) 221376

Conv2D (None, 28, 28, 96) 76896

Conv2D (None, 28, 28, 64) 16448

Concatenate (None, 28, 28, 480) 0

MaxPooling2D (None, 14, 14, 480) 0

Conv2D (None, 14, 14, 96) 46176

Conv2D (None, 14, 14, 16) 7696

MaxPooling2D (None, 14, 14, 480) 0

Conv2D (None, 14, 14, 192) 92352

Conv2D (None, 14, 14, 208) 179920

Conv2D (None, 14, 14, 48) 19248

Conv2D (None, 14, 14, 64) 30784

Concatenate (None, 14, 14, 512) 0

Conv2D (None, 14, 14, 112) 57456

Conv2D (None, 14, 14, 24) 12312

MaxPooling2D (None, 14, 14, 512) 0

Conv2D (None, 14, 14, 160) 82080

Conv2D (None, 14, 14, 224) 226016

Conv2D (None, 14, 14, 64) 38464

Conv2D 27 (None, 14, 14, 64) 32832

Concatenate (None, 14, 14, 512) 0

Conv2D 29 (None, 14, 14, 128) 65664

Conv2D 31 (None, 14, 14, 24) 12312

MaxPooling2D (None, 14, 14, 512) 0

Conv2D 28 (None, 14, 14, 128) 65664

Conv2D 30 (None, 14, 14, 256) 295168

Conv2D 32 (None, 14, 14, 64) 38464

Conv2D 33 (None, 14, 14, 64) 32832

Concatenate 4 (None, 14, 14, 512) 0

Conv2D 35 (None, 14, 14, 144) 73872

Conv2D 37 (None, 14, 14, 32) 16416

MaxPooling2D (None, 14, 14, 512) 0

Conv2D 34 (None, 14, 14, 112) 57456

Conv2D 36 (None, 14, 14, 288) 373536

Conv2D 38 (None, 14, 14, 64) 51264

Conv2D 39 (None, 14, 14, 64) 32832

39

Concatenate 5 (None, 14, 14, 528) 0

Conv2D 42 (None, 14, 14, 160) 84640

Conv2D 44 (None, 14, 14, 32) 16928

MaxPooling2D (None, 14, 14, 528) 0

Conv2D 41 (None, 14, 14, 256) 135424

Conv2D 43 (None, 14, 14, 320) 461120

Conv2D 45 (None, 14, 14, 128) 102528

Conv2D 46 (None, 14, 14, 128) 67712

Concatenate 6 (None, 14, 14, 832) 0

MaxPooling2D (None, 7, 7, 832) 0

Conv2D 48 (None, 7, 7, 160) 133280

Conv2D 50 (None, 7, 7, 32) 26656

MaxPooling2D (None, 7, 7, 832) 0

Conv2D 47 (None, 7, 7, 256) 213248

Conv2D 49 (None, 7, 7, 320) 461120

Conv2D 51 (None, 7, 7, 128) 102528

Conv2D 52 (None, 7, 7, 128) 106624

Concatenate 7 (None, 7, 7, 832) 0

Conv2D 54 (None, 7, 7, 192) 159936

Conv2D 56 (None, 7, 7, 48) 39984

MaxPooling2D (None, 7, 7, 832) 0

Conv2D 53 (None, 7, 7, 384) 319872

Conv2D 55 (None, 7, 7, 384) 663936

Conv2D 57 (None, 7, 7, 128) 153728

Conv2D 58 (None, 7, 7, 128) 106624

Concatenate 8 (None, 7, 7, 1024) 0

AveragePooling (None, 4, 4, 512) 0

AveragePooling 1 (None, 4, 4, 528) 0

AveragePooling 2 (None, 1, 1, 1024) 0

Conv2D 21 (None, 4, 4, 128) 65664

Conv2D 40 (None, 4, 4, 128) 67712

Flatten 2 (None, 1024) 0

Flatten (None, 2048) 0

Flatten 1 (None, 2048) 0

Dropout 2 (None, 1024) 0

Dense (None, 256) 524544

Dense 1 (None, 256) 524544

Dense 2 (None, 256) 262400

Dropout (None, 256) 0

Dropout 1 (None, 256) 0

Main (Dense) (None, 38) 9766

Aux1 (Dense) (None, 38) 9766

Aux2 (Dense) (None, 38) 9766

40

Total params: 7,448,738

Trainable params:7,448,226

Non-trainable params: 512

Figure 4.3: Inception block

41

Figure 4.4 shows an inception block in the GoogleNet architecture. An inception block consists of

four paths, each of which performs a different type of convolution on the input feature maps. These

four paths are then concatenated along the channel dimension and passed on to the next layer. By

concatenating the output of each path along the channel dimension, the inception block is able to

capture a wide range of patterns and features in the input feature maps, making it a powerful

building block for deep neural networks.

Figure 4.4: Auxiliary block

Figure 4.5 shows an auxiliary block in the GoogleNet architecture. It is an additional block that is

inserted into the network at an intermediate layer, and is used to provide additional supervision

and regularization during training. The complete model of GoogleNet is shown in Figure 4.6.

Figure 4.5: GoogLeNet model

In our implementation, we used the Keras API to build the GoogleNet model. The ‘googlenet()’

function defines the architecture of the GoogleNet model. The input to the model is an image. The

42

‘googlenet()’ function returns a keras model object with the specified inputs and outputs. We

trained the GoogLeNet model from scratch using the Keras library in Python. The weights of the

model were initialized randomly, and the model was trained using the SGD optimizer with a

learning rate of 0.005 for 30 epochs. No pre-trained weights were used in this study. There were

7,448,226 trainable parameters in this GoogLeNet architecture.

 4.5.2 AlexNet

AlexNet is a deep convolutional neural network architecture that was developed by Alex

Krizhevsky, Ilya Sutskever, and Geoffrey Hinton in 2012 [57]. It consists of eight layers, including

five convolutional layers and three fully connected layers, with a total of 60 million parameters.

AlexNet was the winner of the ImageNet Large Scale Visual Recognition Challenge in 2012,

achieving state-of-the-art results in object recognition and image classification. It was one of the

first deep learning models to demonstrate the power of convolutional neural networks for computer

vision tasks, and has since inspired many other architectures in the field. Figure 4.7 shows the

AlexNet model architecture.

Figure 4.6: AlexNet model

43

Table 4.2: AlexNet architecture parameters

Layer Output Shape Number of Parameters

Conv2D (None, 55, 55, 96) 34,944

BatchNormalization (None, 55, 55, 96) 384

MaxPooling2D (None, 27, 27, 96) 0

Conv2D (None, 27, 27, 256) 614,656

BatchNormalization (None, 27, 27, 256) 1,024

MaxPooling2D (None, 13, 13, 256) 0

Conv2D (None, 13, 13, 384) 885,120

BatchNormalization (None, 13, 13, 384) 1,536

Conv2D (None, 13, 13, 384) 1,327,488

BatchNormalization (None, 13, 13, 384) 1,536

Conv2D (None, 13, 13, 256) 884,992

BatchNormalization (None, 13, 13, 256) 1,024

MaxPooling2D (None, 6, 6, 256) 0

Flatten (None, 9216) 0

Dense (None, 4096) 37,752,832

Dropout (None, 4096) 0

Dense (None, 4096) 16,781,312

Dropout (None, 4096) 0

Dense (None, 38) 155,686

Total 58,442,534

Trainable parameters 58,439,782

Non-trainable parameters 2,752

Figure 4.8 shows the parameter setting for AlexNet. AlexNet is a convolutional neural network

architecture using the Sequential API in Keras. It consists of multiple layers including Conv2D

(convolutional), BatchNormalization (normalization of layer inputs), MaxPool2D (max pooling),

and Dense (fully connected) layers. The model uses the ReLU activation function for

convolutional and dense layers, and softmax activation for the output layer. We have 38 class

labels in our dataset. The model is designed for multi-class classification, with 38 output classes.

44

It uses convolutional layers to extract features from the input image and fully connected layers to

classify the image into one of the 38 classes. The model uses the ReLU activation function for

convolutional layers. We trained the AlexNet model from scratch using the Keras library in

Python. The weights of the model were initialized randomly, and the model was trained using the

SGD optimizer with a learning rate of 0.005 for 30 epochs. There were 58,439,782 trainable

parameters in this architecture.

4.5.3 ResNet50

ResNet50 is a convolutional neural network architecture that was introduced in 2015 by

researchers at Microsoft Research Asia [58]. The name "ResNet" comes from "residual network,"

which refers to the use of residual connections to overcome the degradation problem that can occur

in deep neural networks. ResNet50 has been used for a variety of computer vision tasks, such as

object detection, image classification, and image segmentation. Its architecture includes residual

blocks, which allow for more efficient training and deeper network architectures. We trained

ResNet50 in two way, first Learning from scratch and second Transfer learning. Figure 4.9 shows

the parameter settings for ResNet50 architecture.

→ ResNet50 Learning From Scratch:

Table 4.3: ResNet50 architecture parameters

Layer Output Shape

Number of

Parameters

InputLayer (None, 224, 224, 3) 0

Conv2D (None, 112, 112, 64) 9472

BatchNormalization (None, 112, 112, 64) 256

ReLu (None, 112, 112, 64) 0

MaxPooling2D (None, 56, 56, 64) 0

45

Conv2D 1 (None, 56, 56, 64) 36928

BatchNormalization 1 (None, 56, 56, 64) 256

ReLu 1 (None, 56, 56, 64) 0

Conv2D 2 (None, 56, 56, 64) 36928

Conv2D 3 (None, 56, 56, 64) 4160

BatchNormalization 2 (None, 56, 56, 64) 256

BatchNormalization 3 (None, 56, 56, 64) 256

Add (None, 56, 56, 64) 0

ReLu 2 (None, 56, 56, 64) 0

Conv2D 4 (None, 56, 56, 128) 73856

BatchNormalization 4 (None, 56, 56, 128) 512

ReLu 3 (None, 56, 56, 128) 0

Conv2D 5 (None, 56, 56, 128) 147584

Conv2D 6 (None, 56, 56, 128) 8320

BatchNormalization 5 (None, 56, 56, 128) 512

BatchNormalization 6 (None, 56, 56, 128) 512

Add 1 (None, 56, 56, 128) 0

ReLu 4 (None, 56, 56, 128) 0

Conv2D 7 (None, 56, 56, 256) 295169

BatchNormalization 7 (None, 56, 56, 256) 1024

ReLu 5 (None, 56, 56, 256) 0

Conv2D 8 (None, 56, 56, 256) 590080

Conv2D 9 (None, 56, 56, 256) 33024

BatchNormalization 8 (None, 56, 56, 256) 1024

BatchNormalization 9 (None, 56, 56, 256) 1024

Add 2 (None, 56, 56, 256) 0

ReLu 6 (None, 56, 56, 256) 0

GlobalAveragePooling (None, 256) 0

Dense (None, 38) 9766

Total params: 1,250,918

Trainable param:1,248,102

Non trainable para:2,816

46

We used two functions in ResNet50, ‘residual_block’ and ‘ResNet50’. Figure 4.10 shows the

ResNet50 model architecture.

Figure 4.7: ResNet50 model

The ‘residual_block’ function takes an input tensor, the number of filters to use, and an optional

stride value. It applies two convolutional layers, each with a 3x3 kernel size and 'same' padding,

followed by batch normalization and ReLU activation. The residual connection is added by

applying a 1x1 convolutional layer to the input tensor with the same number of filters and stride

value, followed by batch normalization. The output of the convolutional layers is added to the

residual connection, and then passed through a ReLU activation.

The ’ResNet50’ function takes an input shape and the number of classes to predict, and defines a

ResNet50 architecture using the ‘residual_block’ function. It applies a convolutional layer with 64

filters, a 7x7 kernel size, and 'same' padding, followed by batch normalization and ReLU

activation. It then applies max pooling with a pool size of 3x3 and stride of 2. The ResNet blocks

are applied with increasing filter sizes of 64, 128, 256, and 512. The output of the last ResNet

block is passed through global average pooling, and then a fully connected layer with softmax

activation to predict the class probabilities. Overall, it is a ResNet50 neural network architecture

47

that can be used for crop disease detection image classification tasks. We trained the ResNet50

model from scratch. The model was trained using the SGD optimizer with a learning rate of 0.005

for 30 epochs. There were 1,248,102 trainable parameters in this ResNet50 architecture.

→ ResNet50 Transfer Learning:

ResNet50 is a deep neural network with 50 layers, and it has been pre-trained on the ImageNet

dataset, which consists of over 1 million labeled images in 1,000 categories. This pre-training

enables ResNet50 to recognize a wide range of objects and features in images. Figure 4.11 shows

the parameter settings for ResNet50 Transfer Learning.

Table 4.4: ResNet50 architecture for Transfer Learning Parameters

Layer Output Shape

Number of

Parameters

InputLayer (None, 224, 224, 3) 0

ZeroPadding2D (None, 230, 230, 3) 0

Conv2D (None, 112, 112, 64) 9472

BatchNormalization (None, 112, 112, 64) 256

Activation (None, 112, 112, 64) 0

ZeroPadding2D (None, 114, 114, 64) 0

MaxPooling2D (None, 56, 56, 64) 0

Conv2D (None, 56, 56, 64) 4160

BatchNormalization (None, 56, 56, 64) 256

Activation (None, 56, 56, 64) 0

Conv2D (None, 56, 56, 64) 036928

BatchNormalization (None, 56, 56, 64) 256

Activation (None, 56, 56, 64) 0

Conv2D (None, 56, 56, 256) 16640

Conv2D (None, 56, 56, 256) 16640

BatchNormalization (None, 56, 56, 256) 1024

BatchNormalization (None, 56, 56, 256) 1024

48

Add (None, 56, 56, 256) 0

Activation (None, 56, 56, 256) 0

Conv2D (None, 56, 56, 64) 16448

Batch Normalization (None, 56, 56, 64) 256

Activation (None, 56, 56, 64) 0

Conv2D (None, 56, 56, 64) 36928

BatchNormalization (None, 56, 56, 64) 256

Activation (None, 56, 56, 64) 0

Conv2D (None, 56, 56, 256) 16640

BatchNormalization (None, 56, 56, 256) 1024

Add (None, 56, 56, 256) 0

Activation (None, 56, 56, 256) 0

Conv2D (None, 56, 56, 64) 16448

BatchNormalization (None, 56, 56, 64) 256

Activation (None, 56, 56, 64) 0

Conv2D (None, 56, 56, 64) 36928

BatchNormalization (None, 56, 56, 64) 256

Activation (None, 56, 56, 64) 0

Conv2D (None, 56, 56, 256) 16640

BatchNormalization (None, 56, 56, 256) 1024

Add (None, 56, 56, 256) 0

Activation (None, 56, 56, 256) 0

Conv2D (None, 28, 28, 128) 32896

BatchNormalization (None, 28, 28, 128) 512

Activation (None, 28, 28, 128) 0

Conv2D (None, 28, 28, 128) 147584

BatchNormalization (None, 28, 28, 128) 512

Activation (None, 28, 28, 128) 0

Conv2D (None, 28, 28, 512) 131584

Conv2D (None, 28, 28, 512) 66048

BatchNormalization (None, 28, 28, 512) 2048

49

BatchNormalization (None, 28, 28, 512) 2048

Add (None, 28, 28, 512) 0

Activation (None, 28, 28, 512) 0

Conv2D (None, 28, 28, 128) 65664

BatchNormalization (None, 28, 28, 128) 512

Activation (None, 28, 28, 128) 0

Conv2D (None, 28, 28, 128) 147584

BatchNormalization (None, 28, 28, 128) 512

Activation (None, 28, 28, 128) 0

Conv2D (None, 28, 28, 512) 66048

BatchNormalization (None, 28, 28, 512) 2048

Add (None, 28, 28, 512) 0

Activation (None, 28, 28, 512) 0

Conv2D (None, 28, 28, 128) 65664

BatchNormalization (None, 28, 28, 128) 512

Activation (None, 28, 28, 128) 0

Conv2D (None, 28, 28, 128) 147584

BatchNormalization (None, 28, 28, 128) 512

Activation (None, 28, 28, 128) 0

Conv2D (None, 28, 28, 512) 66048

BatchNormalization (None, 28, 28, 512) 2048

Add (None, 28, 28, 512) 0

Activation (None, 28, 28, 512) 0

Conv2D (None, 28, 28, 128) 65664

BatchNormalization (None, 28, 28, 128) 512

Activation (None, 28, 28, 128) 0

Conv2D (None, 28, 28, 128) 147584

BatchNormalization (None, 28, 28, 128) 512

Activation (None, 28, 28, 128) 0

Conv2D (None, 28, 28, 512) 66048

50

BatchNormalization (None, 28, 28, 512) 2048

Add (None, 28, 28, 512) 0

Activation (None, 28, 28, 512) 0

Conv2D (None, 14, 14, 256) 131328

BatchNormalization (None, 14, 14, 256) 1024

Activation (None, 14, 14, 256) 0

Conv2D (None, 14, 14, 256) 590080

BatchNormalization (None, 14, 14, 256) 1024

Activation (None, 14, 14, 256) 0

Conv2D (None, 14, 14, 1024) 525312

Conv2D (None, 14, 14, 1024) 263168

BatchNormalization (None, 14, 14, 1024) 4096

BatchNormalization (None, 14, 14, 1024) 4096

Add (None, 14, 14, 1024) 0

Activation (None, 14, 14, 1024) 0

Conv2D (None, 14, 14, 256) 262400

BatchNormalization (None, 14, 14, 256) 1024

Activation (None, 14, 14, 256) 0

Conv2D (None, 14, 14, 256) 590080

BatchNormalization (None, 14, 14, 256) 1024

Activation (None, 14, 14, 256) 0

Conv2D (None, 14, 14, 1024) 263168

BatchNormalization (None, 14, 14, 1024) 4096

Add (None, 14, 14, 1024) 0

Activation (None, 14, 14, 1024) 0

Conv2D (None, 14, 14, 256) 262400

BatchNormalization (None, 14, 14, 256) 1024

Activation (None, 14, 14, 256) 0

Conv2D (None, 14, 14, 256) 590080

BatchNormalization (None, 14, 14, 256) 1024

51

Activation (None, 14, 14, 256) 0

Conv2D (None, 14, 14, 1024) 263168

BatchNormalization (None, 14, 14, 1024) 4096

Add (None, 14, 14, 1024) 0

Activation (None, 14, 14, 1024) 0

Conv2D (None, 14, 14, 256) 262400

BatchNormalization (None, 14, 14, 256) 1024

Activation (None, 14, 14, 256) 0

Conv2D (None, 14, 14, 256) 590080

BatchNormalization (None, 14, 14, 256) 1024

Activation (None, 14, 14, 1024) 0

Conv2D (None, 14, 14, 256) 262400

BatchNormalization (None, 14, 14, 256) 1024

Activation (None, 14, 14, 256) 0

Conv2D (None, 14, 14, 256) 590080

BatchNormalization (None, 14, 14, 256) 1024

Activation (None, 14, 14, 256) 0

Conv2D (None, 14, 14, 1024) 263168

BatchNormalization (None, 14, 14, 1024) 4096

Add (None, 14, 14, 1024) 0

Activation (None, 14, 14, 1024) 0

Conv2D (None, 14, 14, 256) 262400

BatchNormalization (None, 14, 14, 256) 1024

Activation (None, 14, 14, 256) 0

Conv2D (None, 14, 14, 256) 590080

BatchNormalization (None, 14, 14, 256) 1024

Activation (None, 14, 14, 256) 0

Conv2D (None, 14, 14, 1024) 263168

BatchNormalization (None, 14, 14, 1024) 4096

Add (None, 14, 14, 1024) 0

52

Activation (None, 14, 14, 1024) 0

Conv2D (None, 14, 14, 256) 262400

BatchNormalization (None, 14, 14, 256) 1024

Activation (None, 14, 14, 256) 0

Conv2D (None, 14, 14, 256) 590080

BatchNormalization (None, 14, 14, 256) 1024

Activation (None, 14, 14, 256) 0

Conv2D (None, 14, 14, 1024) 263168

BatchNormalization (None, 14, 14, 1024) 4096

Add (None, 14, 14, 1024) 0

Activation (None, 14, 14, 1024) 0

Conv2D (None, 7, 7, 512) 524800

BatchNormalization (None, 7, 7, 512) 2048

Activation (None, 7, 7, 512) 0

Conv2D (None, 7, 7, 512) 2359808

BatchNormalization (None, 7, 7, 512) 2048

Activation (None, 7, 7, 512) 0

Conv2D (None, 7, 7, 2048) 2099200

Conv2D (None, 7, 7, 2048) 1050624

BatchNormalization (None, 7, 7, 2048) 8192

BatchNormalization (None, 7, 7, 2048) 8192

Add (None, 7, 7, 2048) 0

Activation (None, 7, 7, 2048) 0

Conv2D (None, 7, 7, 512) 1049088

BatchNormalization (None, 7, 7, 512) 2048

Activation (None, 7, 7, 512) 0

Conv2D (None, 7, 7, 512) 2359808

BatchNormalization (None, 7, 7, 512) 2048

Activation (None, 7, 7, 512) 0

Conv2D (None, 7, 7, 2048) 1050624

53

BatchNormalization (None, 7, 7, 512) 2048

Activation (None, 7, 7, 512) 0

Conv2D (None, 7, 7, 2048) 1050624

BatchNormalization (None, 7, 7, 2048) 8192

Add (None, 7, 7, 2048) 0

Activation (None, 7, 7, 2048) 0

Conv2D (None, 7, 7, 512) 1049088

BatchNormalization (None, 7, 7, 512) 2048

Activation (None, 7, 7, 512) 0

Conv2D (None, 7, 7, 512) 2359808

BatchNormalization (None, 7, 7, 512) 2048

Activation (None, 7, 7, 512) 0

Conv2D (None, 7, 7, 2048) 1050624

BatchNormalization (None, 7, 7, 2048) 8192

Add (None, 7, 7, 2048) 0

Activation (None, 7, 7, 2048) 0

GlobalAveragePooling (None, 2048) 0

Dense (None, 38) 77862

Total param: 23,665,574

Trainable param: 77,862

Non trainable param: 23, 587, 712

It is a pre-trained ResNet50 model from the Keras applications module, sets the weights to be those

pre-trained on the ImageNet dataset, and freezes all layers in the base model to prevent them from

being updated during training.

The ‘include_top’ parameter is set to False, which means that the fully connected layer at the top

of the network, which is responsible for classifying the input image into one of 1000 classes in the

54

original ImageNet dataset, is not included. Instead, a new dense layer with softmax activation is

added on top of the base model to classify the input images into one of 38 classes in a new task.

The ‘GlobalAveragePooling2D’ layer is used to reduce the spatial dimensions of the output of the

base model to a 1D vector, which is then passed through the new dense layer with softmax

activation to predict the class probabilities.

Overall, it is the starting point for transfer learning, where the pre-trained ResNet50 model is fine-

tuned on a plantvillage dataset for crop disease detection. The new dense layer added on top of the

base model is trained on our dataset to adapt the ResNet50 model to detect crop diseases. We used

transfer learning to train the ResNet50 model. The model was trained using the SGD optimizer

with a learning rate of 0.005 for 30 epochs. There were 77,862 trainable parameters in this

ResNet50 architecture.

4.5.4 InceptionV3

InceptionV3 is a deep learning model commonly used for image classification tasks. It includes

inception modules, which use convolutional layers with different kernel sizes to capture

information at multiple scales and resolutions. InceptionV3 has 48 layers and it uses factorized

convolutional layers to reduce the number of parameters and improve computational efficiency.

55

Figure 4.8: InceptionV3 model

Figure 4.12 shows the InceptionV3 model and Figure 4.13 shows the parameter settings for

Inceptionv3 architecture.

→ InceptionV3 Learning From Scratch:

Table 4.5: InceptionV3 architecture parameters

Layer Output Shape

Number of

Parameters

InputLayer (None, 224, 224, 3) 0

Conv2D (None, 112, 112, 32) 896896

Conv2D (None, 112, 112, 32) 9248

Conv2D (None, 112, 112, 64) 18496

MaxPooling2D (None, 56, 56, 64) 0

BatchNormalization (None, 56, 56, 64) 256

Conv2D (None, 56, 56, 96) 6240

Conv2D (None, 56, 56, 16) 1040

MaxPooling2D (None, 56, 56, 64) 0

Conv2D (None, 56, 56, 64) 4160

Conv2D (None, 56, 56, 128) 110720

Conv2D (None, 56, 56, 32) 12832

Conv2D (None, 56, 56, 32) 2080

56

Concatenate (None, 56, 56, 256) 0

Conv2D (None, 56, 56, 128) 32896

Conv2D (None, 56, 56, 32) 8224

MaxPooling2D (None, 56, 56, 256) 0

Conv2D (None, 56, 56, 128) 32896

Conv2D (None, 56, 56, 192) 221376

Conv2D (None, 56, 56, 96) 76896

Conv2D (None, 56, 56, 64) 16448

Concatenate (None, 56, 56, 480) 0

MaxPooling2D (None, 28, 28, 480) 0

Conv2D (None, 28, 28, 96) 46176

Conv2D (None, 28, 28, 16) 7696

MaxPooling2D (None, 28, 28, 480) 0

Conv2D (None, 28, 28, 192) 92352

Conv2D (None, 28, 28, 208) 179920

Conv2D (None, 28, 28, 48) 19248

Conv2D (None, 28, 28, 64) 30784

Concatenate (None, 28, 28, 512) 0

Conv2D (None, 28, 28, 112) 57456

Conv2D (None, 28, 28, 24) 12312

MaxPooling2D (None, 28, 28, 512) 0

Conv2D (None, 28, 28, 160) 82080

Conv2D (None, 28, 28, 224) 226016

Conv2D (None, 28, 28, 64) 38464

Conv2D (None, 28, 28, 64) 32832

Concatenate (None, 28, 28, 512) 0

Conv2D (None, 28, 28, 128) 65664

Conv2D (None, 28, 28, 24) 12312

MaxPooling2D (None, 28, 28, 512) 0

Conv2D (None, 28, 28, 128) 65664

Conv2D (None, 28, 28, 256) 295168

Conv2D (None, 28, 28, 64) 38464

57

Conv2D (None, 28, 28, 64) 32832

Concatenate (None, 28, 28, 512) 0

Conv2D (None, 28, 28, 144) 73872

Conv2D (None, 28, 28, 32) 16416

MaxPooling2D (None, 28, 28, 512) 0

Conv2D (None, 28, 28, 112) 57456

Conv2D (None, 28, 28, 228) 373536

Conv2D (None, 28, 28, 64) 51264

Conv2D (None, 28, 28, 64) 32832

Concatenate (None, 28, 28, 528) 0

Conv2D (None, 28, 28, 160) 84640

Conv2D (None, 28, 28, 32) 16928

MaxPooling2D (None, 28, 28, 528) 0

Conv2D (None, 28, 28, 256) 135424

Conv2D (None, 28, 28, 320) 461120

Conv2D (None, 28, 28, 128) 102528

Conv2D (None, 28, 28, 128) 67712

Concatenate (None, 28, 28, 832) 0

MaxPooling2D (None, 14, 14, 832) 0

Conv2D (None, 14, 14, 160) 133280

Conv2D (None, 14, 14, 32) 26656

MaxPooling2D (None, 14, 14, 832) 0

Conv2D (None, 14, 14, 256) 213248

Conv2D (None, 14, 14, 320) 461120

Conv2D (None, 14, 14, 128) 102528

Conv2D (None, 14, 14, 128) 106624

Concatenate (None, 14, 14, 832) 0

Conv2D (None, 14, 14, 192) 159936

Conv2D (None, 14, 14, 48) 39984

MaxPooling2D (None, 14, 14, 832) 0

58

Conv2D (None, 14, 14, 384) 319872

Conv2D (None, 14, 14, 384) 663936

Conv2D (None, 14, 14, 128) 153728

Conv2D (None, 14, 14, 128) 106624

Concatenate (None, 14, 14, 1024)

GlobalAveragePooling (None, 1024)

Dropout (None, 1024)

Dense (None, 38)

Total param: 5,890,358

Trainable params: 5,890,230

Non trainable params: 128

Figure 4.13 shows an implementation of the InceptionV3 model using TensorFlow and Keras. The

model consists of a stem, several inception blocks, and a classifier. The stem includes several

convolutional layers and a max pooling layer to reduce the spatial dimensions of the input image.

The inception blocks use convolutional layers with different kernel sizes to capture information at

different scales and resolutions. Each block includes four parallel convolutional branches that are

concatenated along the channel dimension. The classifier includes a global average pooling layer,

a dropout layer for regularization, and a fully connected layer with softmax activation for

classification. The ‘inception_block’ function is used to define the structure of each inception

block. We trained the InceptionV3 model from scratch. The model was trained using the SGD

optimizer with a learning rate of 0.005 for 30 epochs. There were 5,890,230 trainable parameters

in this InceptionV3 architecture. Figure 4.14 shows the parameter settings for the InceptionV3

Transfer Learning model.

→ InceptionV3 Transfer Learning:

59

Table 4.6: InceptionV3 architecture transfer learning parameters

Layer Output Shape

Number of

Parameters

InputLayer

(None, None, None,3)

0

Conv2D

(None, None, None,32)

864

BatchNormalization

(None, None, None,32)

96

Activation

(None, None, None,32)

0

Conv2D

(None, None, None,32)

9216

BatchNormalization 1

(None, None, None,32)

96

Activation1

(None, None, None,32)

0

Conv2D_2
(None, None, None,64)

18432

BatchNormalization2
(None, None, None,64)

192

Activation2
(None, None, None,64)

0

MaxPooling2D

(None, None, None,64)

0

Conv2D_3

(None, None, None,80)

5120

BatchNormalization3
(None, None, None,80)

240

Activation3
(None, None, None,80)

0

Conv2D_4
(None, None, None,192)

138240

BatchNormalization4
(None, None, None,192)

576

Activation_4
(None, None, None,192)

0

MaxPooling2D_1
(None, None, None,192)

0

Conv2D_8
(None, None, None,64)

12288

BatchNormalization8
(None, None, None,64)

192

Activation_8
(None, None, None,64)

0

60

Conv2D_6
(None, None, None,48)

9216

Conv2D_9
(None, None, None,96)

55296

BatchNormalization_6
(None, None, None,48)

144

BatchNormalization_9
(None, None, None,96)

288

Activation_6
(None, None, None,48)

0

Activation_9
(None, None, None,96)

0

AveragePooling

(None, None, None,192)

0

Conv2D_5
(None, None, None,64)

12288

Conv2D_7
(None, None, None,64)

76800

Conv2D_10
(None, None, None,96)

82944

Conv2D_11
(None, None, None,32)

6144

BatchNormalization_5
(None, None, None,64)

192

BatchNormalization_7
(None, None, None,64)

192

BatchNormalization_10
(None, None, None,96)

288

BatchNormalization_11
(None, None, None,32)

96

Activation_5
(None, None, None,64)

0

Activation_7
(None, None, None,64)

0

Activation_10
(None, None, None,96)

0

Activation_11
(None, None, None,32)

0

Concatenate
(None, None, None,256)

0

Conv2D_15
(None, None, None,64)

16384

BatchNormalization_15
(None, None, None,64)

192

Activation_15
(None, None, None,64)

0

61

Conv2D_13
(None, None, None,48)

12288

Conv2D_16
(None, None, None,96)

55296

BatchNormalization_13
(None, None, None,48)

144

BatchNormalization_16
(None, None, None,96)

288

Activation_13
(None, None, None,48)

0

Activation_16
(None, None, None,96)

0

AveragePooling_1

(None, None, None,256)

0

Conv2D_12
(None, None, None,64)

16384

Conv2D_14
(None, None, None,64)

76800

Conv2D_17
(None, None, None,96)

82944

Conv2D_18
(None, None, None,64)

16384

BatchNormalization_12
(None, None, None,64)

192

BatchNormalization_14
(None, None, None,64)

192

BatchNormalization_17
(None, None, None,96)

288

BatchNormalization_18
(None, None, None,64)

192

Activation_12
(None, None, None,64)

0

Activation_14
(None, None, None,64)

0

Activation_17
(None, None, None,96)

0

Activation_18
(None, None, None,64)

0

Concatenate
(None, None, None,288)

0

Conv2D_22
(None, None, None,64)

18432

BatchNormalization_22
(None, None, None,64)

192

Activation_22
(None, None, None,64)

0

62

Conv2D_20
(None, None, None,48)

13824

Conv2D_23
(None, None, None,96)

55296

BatchNormalization_20
(None, None, None,48)

144

BatchNormalization_23
(None, None, None,96)

288

Activation_20
(None, None, None,48)

0

Activation_23
(None, None, None,96)

0

AveragePooling_2
(None, None, None,288)

0

Conv2D_19
(None, None, None,64)

18432

Conv2D_21
(None, None, None,64)

76800

Conv2D_24
(None, None, None,96)

82944

Conv2D_25
(None, None, None,64)

18432

BatchNormalization_19
(None, None, None,64)

192

BatchNormalization_21
(None, None, None,64)

192

BatchNormalization_24
(None, None, None,96)

288

BatchNormalization_25
(None, None, None,64)

192

Activation_19
(None, None, None,64)

0

Activation_21
(None, None, None,64)

0

Activation_24
(None, None, None,96)

0

Activation_25
(None, None, None,64)

0

Concatenate
(None, None, None,288)

0

Conv2D_27
(None, None, None,64)

18432

BatchNormalization_27
(None, None, None,64)

192

Activation_27
(None, None, None,64)

0

63

Conv2D_28
(None, None, None,96)

55296

BatchNormalization_28
(None, None, None,96)

288

Activation_28
(None, None, None,96)

0

Conv2D_26
(None, None, None,384)

995328

Conv2D_29
(None, None, None,96)

82944

BatchNormalization_26
(None, None, None,384)

1152

BatchNormalization_29
(None, None, None,96)

288

Activation_26
(None, None, None,384)

0

Activation_29
(None, None, None,96)

0

MaxPooling2D_2
(None, None, None,288)

0

Concatenate
(None, None, None,768)

0

Conv2D_34
(None, None, None,128)

98304

BatchNormalization_34
(None, None, None,128)

384

Activation_34
(None, None, None,128)

0

Conv2D_35
(None, None, None,128)

114688

BatchNormalization_35
(None, None, None,128)

384

Activation_35
(None, None, None,128)

0

Conv2D_31
(None, None, None,128)

98304

Conv2D_36
(None, None, None,128)

114688

BatchNormalization_31
(None, None, None,128)

384

BatchNormalization_36
(None, None, None,128)

384

Activation_31
(None, None, None,128)

0

Activation_36
(None, None, None,128)

0

64

Conv2D_32
(None, None, None,128)

114688

Conv2D_37
(None, None, None,128)

114688

BatchNormalization_32
(None, None, None,128)

384

BatchNormalization_37
(None, None, None,128)

384

Activation_32
(None, None, None,128)

0

Activation_37
(None, None, None,128)

0

AveragePooling_3
(None, None, None,768)

0

Conv2D_30
(None, None, None,192)

147456

Conv2D_33
(None, None, None,192)

172032

Conv2D_38
(None, None, None,192)

172032

Conv2D_39
(None, None, None,192)

147456

BatchNormalization_30
(None, None, None,192)

576

BatchNormalization_33
(None, None, None,192)

576

BatchNormalization_38
(None, None, None,192)

576

BatchNormalization_39
(None, None, None,192)

576

Activation_30
(None, None, None,192)

0

Activation_33
(None, None, None,192)

0

Activation_38
(None, None, None,192)

0

Activation_39
(None, None, None,768)

0

Concatenate
(None, None, None,160)

0

Conv2D_44
(None, None, None,160)

122880

BatchNormalization_44
(None, None, None,160)

480

Activation_44
(None, None, None,160)

0

65

Conv2D_45
(None, None, None,160)

179200

BatchNormalization_45
(None, None, None,160)

480

Activation_45
(None, None, None,160)

0

Conv2D_41
(None, None, None,160)

122880

Conv2D_46
(None, None, None,160)

179200

BatchNormalization_41
(None, None, None,160)

480

BatchNormalization_46
(None, None, None,160)

480

Activation_41
(None, None, None,160)

0

Activation_46
(None, None, None,160)

0

Conv2D_42
(None, None, None,160)

179200

Conv2D_47
(None, None, None,160)

179200

BatchNormalization_42
(None, None, None,160)

480

BatchNormalization_47
(None, None, None,160)

480

Activation_42
(None, None, None,768)

0

Activation_47
(None, None, None,192)

0

AveragePooling_4
(None, None, None,192)

0

Conv2D_40
(None, None, None,192)

147456

Conv2D_43
(None, None, None,192)

215040

Conv2D_48
(None, None, None,192)

215040

Conv2D_49
(None, None, None,192)

147456

BatchNormalization_40
(None, None, None,192)

576

BatchNormalization_43
(None, None, None,192)

576

BatchNormalization_48
(None, None, None,192)

576

66

BatchNormalization_49
(None, None, None,192)

576

Activation_40
(None, None, None,192)

0

Activation_43
(None, None, None,768)

0

Activation_48
(None, None, None,160)

0

Activation_49
(None, None, None,160)

0

Concatenate
(None, None, None,160)

0

Conv2D_54
(None, None, None,160)

122880

BatchNormalization_54
(None, None, None,160)

480

Activation_54
(None, None, None,160)

0

Conv2D_55
(None, None, None,160)

179200

BatchNormalization_55
(None, None, None,160)

480

Activation_55
(None, None, None,160)

0

Conv2D_51
(None, None, None,160)

122880

Conv2D_56
(None, None, None,160)

179200

BatchNormalization_51
(None, None, None,160)

480

BatchNormalization_56
(None, None, None,160)

480

Activation_51
(None, None, None,160)

0

Activation_56
(None, None, None,160)

0

Conv2D_52
(None, None, None,160)

179200

Conv2D_57
(None, None, None,160)

179200

BatchNormalization_52
(None, None, None,786)

480

BatchNormalization_57
(None, None, None,192)

480

Activation_52
(None, None, None,192)

0

67

Activation_57
(None, None, None,192)

0

AveragePooling_5
(None, None, None,192)

0

Conv2D_50
(None, None, None,192)

147456

Conv2D_53
(None, None, None,192)

215040

Conv2D_58
(None, None, None,192)

215040

Conv2D_59
(None, None, None,192)

147456

BatchNormalization_50
(None, None, None,192)

576

BatchNormalization_53
(None, None, None,192)

576

BatchNormalization_58
(None, None, None,768)

576

BatchNormalization_59
(None, None, None,192)

576

Activation_50
(None, None, None,192)

0

Activation_53
(None, None, None,192)

0

Activation_58
(None, None, None,192)

0

Activation_59
(None, None, None,192)

0

Concatenate
(None, None, None,192)

0

Conv2D_64
(None, None, None,192)

147456

BatchNormalization_64
(None, None, None,192)

576

Activation_64
(None, None, None,192)

0

Conv2D_65
(None, None, None,192)

258048

BatchNormalization_65
(None, None, None,192)

576

Activation_65
(None, None, None,192)

0

Conv2D_61
(None, None, None,192)

147456

Conv2D_66
(None, None, None,192)

258048

68

BatchNormalization_61
(None, None, None,192)

576

BatchNormalization_66
(None, None, None,192)

576

Activation_61
(None, None, None,192)

0

Activation_66
(None, None, None,768)

0

Conv2D_62
(None, None, None,192)

258048

Conv2D_67
(None, None, None,192)

258048

BatchNormalization_62
(None, None, None,192)

576

BatchNormalization_67
(None, None, None,192)

576

Activation_62
(None, None, None,192)

0

Activation_67
(None, None, None,192)

0

AveragePooling_6
(None, None, None,192)

0

Conv2D_60
(None, None, None,192)

147456

Conv2D_63
(None, None, None,192)

258048

Conv2D_68
(None, None, None,192)

258048

Conv2D_69
(None, None, None,192)

147456

BatchNormalization_60
(None, None, None,768)

576

BatchNormalization_63
(None, None, None,192)

576

BatchNormalization_68
(None, None, None,192)

576

BatchNormalization_69
(None, None, None,192)

576

Activation_60
(None, None, None,192)

0

Activation_63
(None, None, None,192)

0

Activation_68
(None, None, None,192)

0

Activation_69
(None, None, None,192)

0

69

Concatenate
(None, None, None,192)

0

Conv2D_72
(None, None, None,192)

147456

BatchNormalization_72
(None, None, None,192)

576

Activation_72
(None, None, None,192)

0

Conv2D_73
(None, None, None,320)

258048

BatchNormalization_73
(None, None, None,192)

576

Activation_73
(None, None, None,320)

0

Conv2D_70
(None, None, None,192)

147456

Conv2D_74
(None, None, None,320)

2580487

BatchNormalization_70
(None, None, None,192)

576

BatchNormalization_74
(None, None, None,768)

576

Activation_70
(None, None, None,1280)

0

Activation_74
(None, None, None,448)

0

Conv2D_71
(None, None, None,448)

552960

Conv2D_75
(None, None, None,448)

331776

BatchNormalization_71
(None, None, None,384)

960

BatchNormalization_75
(None, None, None,384)

576

Activation_71
(None, None, None,384)

0

Activation_75
(None, None, None,384)

0

MaxPooling2D_3
(None, None, None,384)

0

Concatenate
(None, None, None,384)

0

Conv2D_80
(None, None, None,384)

573440

BatchNormalization_80
(None, None, None,384)

1344

70

Activation_80
(None, None, None,384)

0

Conv2D_77
(None, None, None,1280)

491520

Conv2D_81
(None, None, None,320)

1548288

BatchNormalization_77
(None, None, None,384)

1152

BatchNormalization_81
(None, None, None,384)

1152

Activation_77
(None, None, None,384)

0

Activation_81
(None, None, None,384)

0

Conv2D_78
(None, None, None,192)

442368

Conv2D_79
(None, None, None,320)

442368

Conv2D_82
(None, None, None,384)

442368

Conv2D_83
(None, None, None,384)

442368

AveragePooling_7
(None, None, None,384)

0

Conv2D_76
(None, None, None,384)

409600

BatchNormalization_78
(None, None, None,192)

1152

BatchNormalization_79
(None, None, None,320)

1152

BatchNormalization_82
(None, None, None,768)

1152

BatchNormalization_83
(None, None, None,768)

1152

Conv2D_84
(None, None, None,192)

245760

BatchNormalization_76
(None, None, None,2048)

960

Activation_78
(None, None, None,448)

0

Activation_79
(None, None, None,448)

0

Activation_82
(None, None, None,448)

0

Activation_83
(None, None, None,384)

0

71

BatchNormalization_84
(None, None, None,384)

576

Activation_76
(None, None, None,384)

0

Concatenate
(None, None, None,384)

0

Concatenate
(None, None, None,384)

0

Activation_84
(None, None, None,384)

0

Concatenate
(None, None, None,384)

0

Conv2D_89
(None, None, None,384)

917504

BatchNormalization_89
(None, None, None,384)

1344

Activation_89
(None, None, None,2048)

0

Conv2D_86
(None, None, None,320)

786432

Conv2D_90
(None, None, None,384)

1548288

BatchNormalization_86
(None, None, None,384)

1152

BatchNormalization_90
(None, None, None,384)

1152

Activation_86
(None, None, None,384)

0

Activation_90
(None, None, None,192)

0

Conv2D_87
(None, None, None,320)

442368

Conv2D_88
(None, None, None,384)

442368

Conv2D_91
(None, None, None,384)

442368

Conv2D_92
(None, None, None,384)

442368

AveragePooling_8
(None, None, None,384)

0

Conv2D_85
(None, None, None,192)

655360

BatchNormalization_87
(None, None, None,320)

1152

BatchNormalization_88
(None, None, None,384)

1152

72

BatchNormalization_91
(None, None, None,384)

1152

BatchNormalization_92
(None, None, None,384)

1152

Conv2D_93
(None, None, None,384)

393216

BatchNormalization_85
(None, None, None,192)

960

Activation_87
(None, None, None,320)

0

Activation_88
(None, None, None,384)

0

Activation_91
(None, None, None,384)

0

Activation_92
(None, None, None,384)

0

BatchNormalization_93
(None, None, None,192)

576

Activation_85
(None, None, None,320)

0

Concatenate
(None, None, None,768)

0

Concatenate
(None, None, None,768)

0

Activation_93
(None, None, None,192)

0

Concatenate
(None, None, None,2048)

0

GlobalaveragePooling
(None, 2048)

0

Dense
(None,1024)

2098176

Dense_1
(None, 38)

38950

Total param: 23,939,910

Trainable params: 13,252,006

Non trainable params: 10,687,904

This code creates a transfer learning model using the InceptionV3 architecture that has been pre-

trained on the ImageNet dataset. The pre-trained model is loaded with the weights specified by the

'weights' parameter and the top layer of the model is excluded by setting 'include_top' to False. A

73

global average pooling layer is then added to the model to reduce the spatial dimensions of the

output from the convolutional layers. A fully connected layer with 1024 units and ReLU activation

is added, followed by a softmax layer with 38 units (for classification into 38 classes). The layers

of the pre-trained model are set to non-trainable to avoid modifying their weights during training.

We used transfer learning to train the InceptionV3 model. The model was trained using the SGD

optimizer with a learning rate of 0.005 for 30 epochs.

4.6 Model assessment

The PlantVillage dataset was split into training and test sets using different ratios to identify the

optimal deep learning architecture among AlexNet, GoogLeNet, ResNet50, and InceptionV3. By

using various train-test ratios, the models' ability to generalize and perform well on unseen data.

The goal was to find the best performing architecture that can accurately classify the crop diseases.

1. 90:10 where 90% data is used for training the model and 10% data is used for testing.

2. 80:20 where 80% data is used for training the model and 20% data is used for testing.

3. 70:30 where 70% data is used for training the model and 30% data is used for testing.

4. 60:40 where 60% data is used for training the model and 40% data is used for testing.

74

Chapter 5

Results

5.1 Experiment Description

This chapter discusses the results from implementation of deep learning architectures discussed in

chapter 4. The study’s aim is to predict crop_disease pairs using deep learning. There are two

learning approaches used to train the models which are training from scratch and transfer learning.

The results suggest that AlexNet, GoogLeNet, ResNet50 and InceptionV3 did well in the task. The

deep learning models were evaluated based on Accuracy and F1-score.

5.2 Evaluation Metrics

Evaluation metrics such as Accuracy, and F1 Score are used to measure the performance of the

deep learning models. We will discuss the evaluation metrics which are used for image

classification problem.

Accuracy: it is one of the metric which is used for evaluation of classification models. Accuracy

is a measure of how well a classification model can predict the correct class label for each instance

in the dataset. It is calculated by dividing the number of correctly classified instances by the total

number of instances in the dataset. The resulting value is usually reported as a percentage or a

decimal value between 0 and 1.

75

F1 Score: The F1 score is useful when we want to balance the tradeoff between precision and

recall, especially when the classes are imbalanced. A high F1 score means that the model has both

high precision and high recall, indicating that it is making accurate predictions while also capturing

most of the positive instances in the dataset.

The formula for calculating the F1 score is:

F1 score = 2 * (precision * recall) / (precision + recall)

This formula calculates the harmonic mean of precision and recall, which is then scaled to a range

of 0 to 1. The F1 score is a commonly used evaluation metric in machine learning, and it is

especially useful when the classes are imbalanced or when we want to balance precision and recall.

Validation Accuracy: Validation accuracy is a performance metric that measures the accuracy of

a machine learning model on a validation dataset. In machine learning, we typically split the

available data into two sets: the training set and the validation set. We use the training set to train

the model and the validation set to evaluate the model's performance.

Validation accuracy is the percentage of correctly classified instances in the validation set. It is a

measure of how well the model can generalize to new data that it has not seen before. A higher

validation accuracy indicates that the model is performing well on the validation dataset.

Validation Loss: Validation loss is a performance metric that measures the difference between the

predicted and actual values of the model on a validation dataset. Validation loss measures the

difference between the predicted and actual values in the validation set. It is calculated as the

76

average of the losses of each instance in the validation set. The loss is typically a measure of how

well the model is fitting the data, and a lower validation loss indicates that the model is performing

well on the validation dataset.

5.3 Ratio Comparison

For the plantvillage dataset, we compared the performance of deep learning architectures AlexNet,

GoogLeNet, ResNet50, and InceptionV3 with different train-test ratios. Specifically, we used

train-test ratios of 60:40, 70:30, 80:20, and 90:10 to train and test each architecture. In the

PlantVillage dataset, different batch sizes were used for the train, test, and validation sets. Table

5.1 displays number of samples in the training, validation and test datasets for different training-

test ratios. We split the testing set into a testing and validation subset with a 50:50 ratio.

Table 5.1 Comparison of DL Training-Test Ratios and Total Instances in Training, Validation, and Testing Sets

Train-Test Ratio

Total

instances in

training set

Total

instances in

testing set

Total instances

in validation set

90 - 10 48,880 2,740 2,700

80 - 20 43,440 5,420 5,460

70 – 30 38,020 8,160 8,140

60 - 40 32,600 10,860 10,880

5.4 Summary of Results

5.4.1 AlexNet-Training from scratch

AlexNet was trained from scratch in this experiment without using pre-trained model. Table 5.2

shows the results for accuracy, loss and F1 score.

77

Table 5.2 Results from AlexNet Architecture

Dataset Train-Test 90:10 80:20 70:30 60:40

Color

F1 Score 1.000 1.000 0.988 0.969

Accuracy 0.998 0.991 0.989 0.982

Loss 0.015 0.030 0.039 0.073

Validation Accuracy 0.992 0.988 0.989 0.979

Grayscale

F1 Score 0.988 0.988 0.988 0.955

Accuracy 0.983 0.983 0.980 0.926

Loss 0.067 0.067 0.059 0.288

Validation Accuracy 0.983 0.983 0.969 0.930

Segmented Leaf

F1 Score 1.000 0.988 0.977 0.966

Accuracy 0.986 0.985 0.975 0.970

Loss 0.053 0.067 0.093 0.121

Validation Accuracy 0.988 0.986 0.987 0.970

The evaluation of the AlexNet model on three different datasets, Color, Grayscale, and Segmented

Leaf, demonstrated its effectiveness for crop disease detection. The model achieved high F1 score

in Color and Segmented Leaf datasets with train-test split of 90:10. As the size of the training set

decreased, the model's performance slightly decreased, but it still achieved good results on smaller

training sets. The model's validation accuracy was consistently high across all datasets, indicating

its ability to generalize well to unseen data. Overall, the AlexNet model proved to be a powerful

tool, demonstrating its effectiveness on different types of image datasets.

5.4.2 GoogLeNet- Training from scratch

GoogleNet was trained from scratch in this experiment without using pre-trained model. Table

5.3 shows the results for accuracy, loss and F1 score.

78

Table 5.3 Results from GoogLeNet Architecture

Dataset Train-Test 90:10 80:20 70:30 60:40

Color

F1 Score 1.000 1.000 1.000 0.966

Accuracy 0.999 0.997 0.996 0.975

Loss 0.016 0.057 0.050 0.314

Validation Accuracy 0.998 0.997 0.995 0.973

Grayscale

F1 Score 0.999 0.977 0.977 0.966

Accuracy 0.989 0.977 0.977 0.975

Loss 0.019 0.248 0.213 0.314

Validation Accuracy 0.988 0.975 0.977 0.973

Segmented Leaf

F1 Score 1.000 1.000 0.999 0.988

Accuracy 0.996 0.994 0.990 0.988

Loss 0.042 0.067 0.094 0.158

Validation Accuracy 0.998 0.995 0.995 0.990

The evaluation results of the GoogLeNet architecture on three different datasets, Color, Grayscale,

and Segmented Leaf, indicate its strong performance on crop disease detection. The model

achieved perfect F1 score and high accuracy on the Color dataset for all train-test splits. For the

Grayscale dataset, the model performed well on the 90:10 train-test split, but its performance

decreased as the size of the training set reduced. For the Segmented Leaf dataset, the model

achieved perfect F1 score and high accuracy on the 90:10 and 80:20 train-test splits. However, as

the size of the training set decreased, its performance slightly decreased, but it still achieved good

results on the 60:40 train-test split. The model's validation accuracy was consistently high across

all datasets, indicating its generalization ability to new data. Overall, the results of GoogLeNet

architecture demonstrate that it is effective in image classification tasks on different types of

datasets.

79

5.4.3 ResNet50- Training from scratch

ResNet50 was trained from scratch in this experiment without using pre-trained model. Table 5.4

shows the results for accuracy, loss and F1 score.

Table 5.4 Results from ResNet50 Architecture

Dataset Train-Test 90:10 80:20 70:30 60:40

Color

F1 Score 1.000 1.000 0.966 0.966

Accuracy 0.980 0.994 0.981 0.988

Loss 0.057 0.023 0.065 0.045

Validation Accuracy 0.985 0.993 0.978 0.988

Grayscale

F1 Score 0.977 0.966 0.933 0.900

Accuracy 0.958 0.941 0.912 0.894

Loss 0.179 0.177 0.266 0.328

Validation Accuracy 0.963 0.940 0.901 0.884

Segmented Leaf

F1 Score 1.000 1.000 0.977 0.966

Accuracy 0.993 0.985 0.988 0.960

Loss 0.061 0.048 0.027 0.124

Validation Accuracy 0.995 0.987 0.988 0.960

The evaluation of the ResNet50 architecture on three different datasets, Color, Grayscale, and

Segmented Leaf, while doing learning from scratch, shows its effectiveness in leaf disease

detection. The model achieved high F1 score on the Color and Segmented Leaf datasets with 90:10

and 80:20 train-test splits. For the Grayscale dataset, the model's performance decreased as the

size of the training set decreased, but it still achieved reasonable results on smaller training sets.

Overall, the results demonstrate that the model is effective in crop disease detection tasks on

different types of datasets, especially on larger training sets.

5.4.4 ResNet50- Transfer learning

ResNet50 was trained using transfer learning in this experiment. Table 5.5 shows the results for

accuracy, loss and F1 score.

80

Table 5.5 Results from ResNet50 Architecture (Pre-trained)

Dataset Train-Test 90:10 80:20 70:30 60:40

Color

F1 Score 0.999 0.988 0.977 0.977

Accuracy 0.994 0.992 0.990 0.989

Loss 0.026 0.039 0.033 0.040

Validation Accuracy 0.996 0.992 0.990 0.989

Grayscale

F1 Score 0.988 0.977 0.977 0.977

Accuracy 0.988 0.982 0.988 0.975

Loss 0.054 0.072 0.085 0.089

Validation Accuracy 0.987 0.981 0.983 0.973

Segmented Leaf

F1 Score 0.988 0.988 0.988 0.988

Accuracy 0.985 0.983 0.979 0.978

Loss 0.066 0.071 0.077 0.080

Validation Accuracy 0.983 0.984 0.989 0.978

The ResNet50 model was pre-trained on ‘ImageNet’ dataset, and transfer learning was used to

train and test three different datasets: color, grayscale, and segmented leaf. The performance of the

model was evaluated using F1 score, accuracy, loss, and validation accuracy metrics. The results

showed that the ResNet50 model achieved good accuracy and F1 score on all three datasets, with

the highest performance seen in the color dataset. The model also exhibited relatively low loss

values, indicating efficient training.

The pre-trained model outperforms the non-pretrained model across all datasets in terms of

accuracy and F1 score. The validation accuracy is also consistently higher for the pre-trained

model.

5.4.5 InceptionV3- Training from scratch

InceptionV3 was trained from scratch in this experiment without using pre-trained model. Table

5.6 shows the results for accuracy, loss and F1 score.

81

Table 5.6 Results from InceptionV3 Architecture

Dataset Train-Test 90:10 80:20 70:30 60:40

Color

F1 Score 1.000 1.000 1.000 1.000

Accuracy 0.997 0.995 0.989 0.985

Loss 0.011 0.015 0.013 0.050

Validation Accuracy 0.996 0.994 0.993 0.986

Grayscale

F1 Score 0.999 0.988 0.955 0.944

Accuracy 0.994 0.980 0.978 0.961

Loss 0.046 0.065 0.084 0.118

Validation Accuracy 0.988 0.983 0.978 0.960

Segmented Leaf

F1 Score 1.000 1.000 0.977 0.966

Accuracy 0.996 0.994 0.993 0.981

Loss 0.022 0.025 0.037 0.060

Validation Accuracy 0.995 0.990 0.988 0.982

The results of training the InceptionV3 model from scratch on the three datasets - color, grayscale,

and segmented leaf - showed that the model achieved high accuracy and F1 scores on the color

and segmented leaf datasets, with perfect F1 score achieved on the color dataset. However, the

performance on the grayscale dataset was comparatively lower, with a decrease in F1 score and

accuracy as the proportion of training data decreased. The model exhibited relatively low loss

values and high validation accuracy, suggesting good generalization performance. These results

demonstrate the potential of the InceptionV3 model, especially in scenarios with high levels of

complexity and variability in image characteristics, and highlight the importance of selecting

appropriate datasets and proportions for training and testing.

5.4.6 InceptionV3- Transfer learning

InceptionV was trained using transfer learning in this experiment with pre-trained model on

ImageNet dataset. Table 5.7 shows the results for accuracy, loss and F1 score.

82

Table 5.7 Results from InceptionV3 Architecture(Pre-trained)

Dataset Train-Test 90:10 80:20 70:30 60:40

Color

F1 Score 0.977 0.966 0.955 0.933

Accuracy 0.955 0.957 0.937 0.901

Loss 0.196 0.238 0.498 0.602

Validation Accuracy 0.964 0.957 0.924 0.906

Grayscale

F1 Score 0.966 0.944 0.911 0.922

Accuracy 0.958 0.924 0.912 0.905

Loss 0.213 0.328 0.369 0.455

Validation Accuracy 0.977 0.969 0.909 0.897

Segmented Leaf

F1 Score 1.000 0.966 0.944 0.877

Accuracy 0.987 0.943 0.921 0.893

Loss 0.125 0.341 0.496 0.662

Validation Accuracy 0.966 0.942 0.927 0.896

The table shows the performance metrics for the InceptionV3 model with transfer learning on three

different datasets: Color, Grayscale, and Segmented Leaf. Generally, the model performs well on

all datasets, achieving good Accuracy and F1 score. For Segmented Leaf dataset the model

achieved highest F1 Score with 90:10 train-test split. The validation accuracy is also provided,

which indicates how well the model performs on unseen data.

The results of non-pretrained InceptionV3 architecture show higher F1 score and accuracy

compared to the pretrained InceptionV3 architecture, which shows lower scores for the pre-trained

InceptionV3 architecture. Additionally, the validation accuracy is consistently higher for non-

pretrained InceptionV3 architecture compared to the pretrained InceptionV3 architecture.

83

5.6 Comparison of deep learning architecture

Figure 5.1 shows the bar graph for the F1 score of all the models trained from scratch on the

three datasets of color, grayscale and segmented leaf for all the training-testing ratios.

a)

b)

c)

Figure 5.1 F1 score from all non-pretrained models. a) F1 score - Learning from scratch (Color), b) F1 score -

Learning from scratch (GrayScale), c) F1 score - Learning from scratch (Segmented_Leaf).

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

90:10 80:20 70:30 60:40

F1 score - Learning from scratch
(Color)

AlexNet GoogLeNet ResNet50 InceptionV3

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

90:10 80:20 70:30 60:40

F1 score - Learning from scratch
(Grayscale)

AlexNet GoogLeNet ResNet50 InceptionV3

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

90:10 80:20 70:30 60:40

F1 score - Learning from scratch
(Segmented_Leaf)

AlexNet GoogLeNet ResNet50 InceptionV3

84

Overall, the models performed well on the color dataset, achieving F1 score of 96.9% to 100%.

The grayscale dataset also yielded high F1 score, with models achieving between 90% and 99.9%.

The segmented_leaf dataset produced lower accuracy rates, with models achieving between 90%

and 99.9%.

The InceptionV3 model achieved the highest accuracy rates in most cases, followed by GoogLeNet

and ResNet50. The results suggest that the choice of dataset and model architecture has a

significant impact on the accuracy of image classification tasks, highlighting the importance of

proper dataset selection and model optimization for achieving high-performance image

classification.

Figure 5.2 shows the bar graph for the F1 score of all the models pre-trained on ImageNet dataset

and transfer learning applied to the three datasets of color, grayscale and segmented leaf for all the

training-testing ratios.

85

a)

b)

c)

Figure 5.2 F1 score from all pretrained models. a) F1 score – Transfer Learning (Color), b) F1 score - Transfer

Learning (GrayScale), c) F1 score – Transfer Learning (Segmented_Leaf).

Overall, the transfer learning models performed well on all three datasets, with ResNet50 and

InceptionV3 achieving high F1 score of up to 99.9% on the color and grayscale datasets. However,

the F1 score were lower for the segmented_leaf dataset, with models achieving between 87.7%

and 98.8%.

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

90:10 80:20 70:30 60:40

F1 score - Transfer Learning (Color)

ResNet50 InceptionV3

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

90:10 80:20 70:30 60:40

F1 score - Transfer Learning
(Grayscale)

ResNet50 InceptionV3

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

90:10 80:20 70:30 60:40

F1 score - Transfer Learning
(Segmented_Leaf)

ResNet50 InceptionV3

86

The results indicate that transfer learning can significantly improve the accuracy of image

classification tasks, especially for datasets with limited training samples. The ResNet50 and

InceptionV3 models performed similarly well in most cases, highlighting their suitability for a

wide range of image classification tasks.

Figure 5.3 shows the bar graph for the F1 score of all the models trained from scratch and pre-

trained models on the three datasets of color, grayscale and segmented leaf for 90:10 training-

testing ratio.

Figure 5.3 F1 score (Train-Test ratio – 90:10)

Overall, the models achieved high F1 score, with most models achieving perfect score of 1.0 on

the color and segmented_leaf datasets. The pre-trained ResNet50 and InceptionV3 models

performed well on the grayscale dataset, achieving F1 scores of 0.988 and 0.966, respectively.

The results suggest that these models are highly effective in accurately classifying images across

various image datasets, highlighting their suitability for a wide range of image classification tasks.

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Color Grayscale Segmented_Leaf

F1 score (Train-Test ratio- 90:10)

AlexNet GoogLeNet

ResNet50 ResNet50 (Pre-trained)

InceptionV3 InceptionV3 (Pre-trained)

87

Pre-trained models can offer significant advantages in scenarios with limited training data,

resulting in improved classification performance.

Figure 5.4 Loss (Train-Test ratio – 90:10)

Figure 5.4 shows the loss results for six different convolutional neural network models (AlexNet,

GoogLeNet, ResNet50, ResNet50 pre-trained, InceptionV3, and InceptionV3 pre-trained) on three

image datasets (color, grayscale, and segmented_leaf) at a train-test ratio of 90:10.

Overall, the models achieved low loss values, indicating good performance in image classification

tasks. The pre-trained InceptionV3 model achieved the lowest loss values on all three datasets,

while the pre-trained ResNet50 and AlexNet models achieved relatively lower loss values on the

color and grayscale datasets, respectively. The results suggest that these models are effective in

accurately classifying images across various image datasets, with pre-trained models achieving

superior performance due to the transfer of knowledge from large image datasets. The low loss

values achieved by the models indicate good generalization ability and suggest their suitability for

use in practical applications.

0

0.05

0.1

0.15

0.2

0.25

Color Grayscale Segmented_Leaf

Loss (Train-Test ratio- 90:10)

AlexNet GoogLeNet

ResNet50 ResNet50 (Pre-trained)

InceptionV3 InceptionV3 (Pre-trained)

88

Table 5.8 Performance Comparison of Different CNN Models on Various Train-Test Splits

AlexNet GoogLeNet ResNet50 InceptionV3

Learning

from scratch

Learning

from scratch

Learning

from scratch

Transfer

Learning

Learning

from scratch

Transfer

Learning

Train-

Test

Split

F
1

 S
co

re

A
ccu

ra
cy

F
1

 S
co

re

A
ccu

ra
cy

F
1

 S
co

re

A
ccu

ra
cy

F
1

 S
co

re

A
ccu

ra
cy

F
1

 S
co

re

A
ccu

ra
cy

F
1

 S
co

re

A
ccu

ra
cy

90%-

10%

Color 1 0.998 1 0.999 1 0.980 0.999 0.994 1 0.997 0.977 0.955

Grayscale 0.988 0.983 0.999 0.989 0.977 0.958 0.988 0.988 0.999 0.994 0.966 0.958

segmented 1 0.986 1 0.996 1 0.993 0.988 0.985 1 0.996 1 0.987

80%-

20%

Color 1 0.991 1 0.997 1 0.994 0.988 0.992 1 0.995 0.966 0.957

Grayscale 0.988 0.983 0.977 0.977 0.966 0.941 0.977 0.982 0.988 0.980 0.944 0.924

segmented 0.988 0.985 1 0.994 1 0.985 0.988 0.983 1 0.994 0.966 0.943

70%-

30%

Color 0.988 0.989 1 0.996 0.966 0.981 0.977 0.990 1 0.989 0.955 0.937

Grayscale 0.988 0.98 0.977 0.977 0.933 0.912 0.977 0.988 0.955 0.978 0.911 0.912

segmented 0.977 0.975 0.999 0.990 0.977 0.988 0.988 0.979 0.977 0.993 0.944 0.921

60%-

40%

Color 0.969 0.982 0.966 0.975 0.966 0.988 0.977 0.989 1 0.985 0.933 0.901

Grayscale 0.955 0.926 0.966 0.975 0.900 0.894 0.977 0.975 0.944 0.961 0.922 0.905

segmented 0.966 0.970 0.988 0.988 0.966 0.960 0.988 0.978 0.966 0.981 0.877 0.893

Table 5.8 compares the performance of four different Convolutional Neural Network (CNN)

models, namely AlexNet, GoogLeNet, ResNet50, and InceptionV3, on various train-test splits and

different types of images (color, grayscale, and segmented). The evaluation metrics used are F1

Score and Accuracy. GoogLeNet architecture achieved the highest accuracy of 0.999 for color

images and 0.996 for segmented images. For greyscale InceptionV3 trained from scratch gave the

highest accuracy of 0.994. However, AlexNet, GoogleNet, ReNet50 trained from scratch and

InceptionV3 gave the highest F1 score of 1.0. The best results were achieved with training:testing

ratio of 90:10.

89

Table 5.9 Performance Comparison of AlexNet (Learning from scratch) and GoogLeNet (Learning from scratch)

Models on Various Train-Test Splits [17]

Learning from scratch
AlexNet GoogLeNet

Based on [17]

Research paper

Based on our

implementation

Based on [17]

Research paper

Based on our

implementation

Train-Test

Split
 F1 Score F1 Score F1 Score F1 Score

80%-20%

Color 0.9782 1.0000 0.9836 1.0000

Grayscale 0.9449 0.9888 0.9621 0.9777

segmented 0.9722 0.9888 0.9824 1.0000

60%-40%

Color 0.9724 0.9699 0.9824 0.9666

Grayscale 0.9388 0.9555 0.9547 0.9666

segmented 0.9595 0.9666 0.9740 0.9888

50%-50%

Color 0.9644 0.9666 0.9772 1.0000

Grayscale 0.9312 0.9111 0.9507 0.9444

segmented 0.9551 0.9666 0.9720 0.9777

40%-60%

Color 0.9555 0.9000 0.9729 0.9888

Grayscale 0.9088 0.9444 0.9361 0.9555

segmented 0.9404 0.9666 0.9643 0.9666

20%-80%

Color 0.9118 0.8888 0.9430 0.9555

Grayscale 0.8524 0.8666 0.8828 0.8666

segmented 0.8945 0.8666 0.9377 0.9777

Table 5.9 compares the performance of two different Convolutional Neural Network (CNN)

models, namely AlexNet, GoogLeNet, on various train-test splits and different types of images

(color, grayscale, and segmented) in the paper by S. P. Mohanty et al. [17]. In their GoogLeNet

architecture, they achieved the highest accuracy of 0.9934 for color images and 0.9925 for

segmented images. In comparison to the results obtained in [17], our findings demonstrate a

significant improvement. Specifically, we achieved a F1 score of 1 when utilizing an 80% - 20%

train-test split, surpassing the performance of both AlexNet and GoogLeNet models.

90

Chapter 6

Conclusion

6.1 Conclusions

Agriculture is stated as an important sector, which can be helpful in the development of the

economy and in reducing the issues associated with food scarcity. Many countries need to improve

agriculture practices and utilize the advanced technologies that can be helpful in the reduction of

various issues. In the present time, disease in the crops is a big issue that is affecting the

productivity of the agricultural lands. The utilization of artificial intelligence and computer vision

can be helpful in the detection of various diseases. Therefore, the objectives of this research work

were to analyze the Image-based crop disease detection. The other objectives of the work were to

analyze the types of crop diseases and relevant areas used during crop disease detection along with

the identification of the challenges that occur during crop disease detection and recommending

advanced image detection techniques for improving crop disease detection.

In comparison to other research studies, our work offers several notable contributions. Firstly, we

trained and evaluated four distinct deep learning (DL) models using both learning from scratch

and transfer learning approaches. By fine-tuning our trained models on different datasets, we can

leverage the knowledge gained from our initial training and adapt it to new domains or specific

tasks. This capability opens up possibilities for improving accuracy, robustness, and

generalizability across various applications.

91

Using the deep convolutional neural network architectures (AlexNet, GoogLeNet, ResNet50, and

InceptionV3) we trained the models on images of plant leaves to predict crop-disease pair. Within

the PlantVillage dataset of 54,306 images containing 38 classes of 14 crop species and 26 diseases,

this goal has been achieved as demonstrate by the top F1 score of 1.0. In learning from scratch we

found that all deep convolutional neural network architectures (AlexNet, GoogLeNet, ResNet50,

and InceptionV3) performed well while GoogleNet was the best. In transfer learning ResNet50

performed well compared to InceptionV3. The deep learning architectures used in this study

achieved high accuracy and F1 score, indicating their potential for crop disease detection using

crop images.

6.2 Limitations

The research encountered certain limitations stemming from constraints in hardware resources and

data availability, as well as the need for more advanced deep learning (DL) models. Firstly, the

limited hardware resources posed a challenge in terms of computational power and processing

capabilities. The absence of high-performance computing infrastructure restricted the complexity

and scale of the DL models that could be implemented. Consequently, the potential for exploring

larger and more intricate models was constrained. Secondly, the availability and quality of the

dataset proved to be a limiting factor. The research relied on a specific dataset, which might have

had limitations in terms of size, diversity, or representativeness. The restricted dataset might have

constrained the overall performance and generalizability of the DL models employed.

Additionally, the rapid advancements in DL techniques and architectures necessitated further

exploration of more advanced models. Understanding these limitations helps in interpreting the

findings appropriately and provides valuable insights for future research endeavors.

92

6.3 Directions for future work

For future research, it is recommended to use larger datasets with more images to further evaluate

the performance of CNN models. Additionally, more computationally powerful deep learning

architectures could be explored to potentially improve classification accuracy. These

improvements can contribute to the development of more accurate and efficient crop disease

detection. As technology continues to advance, it is possible that in the future, image data collected

from smartphones for image classification tasks could be supplemented with location and time

information. By incorporating this additional information, it may be possible to further enhance

the accuracy and reliability for crop disease detection. Based on the findings of such research, a

smartphone-assisted crop disease diagnosis system could be developed. Such a system has the

potential to significantly benefit the agricultural industry by providing a cost-effective and easily

accessible solution for crop disease detection and prevention.

It is also recommended that the farmers and various stakeholders should be trained according to

the need for modern technology so that various issues can be reduced. It is suggested that the

information, which is taken for the experimental setup, can be improved and large data sets can be

analyzed for the improvement of the result accuracy.

93

References

[1] V. Panchal, S. C. Patel, K. Bagyalakshmi, P. Kumar, I. R. Khan, and M. Soni, “Image-based

Plant Diseases Detection using Deep Learning,” Materials Today: Proceedings, Aug. 2021,

doi: 10.1016/j.matpr.2021.07.281.

[2] J. Chen, J. Chen, D. Zhang, Y. Sun, and Y. A. Nanehkaran, “Using deep transfer learning

for image-based plant disease identification,” Computers and Electronics in Agriculture,

vol. 173, p. 105393, Jun. 2020, doi: 10.1016/j.compag.2020.105393.

[3] Jain, S. Sarsaiya, Q. Wu, Y. Lu, and J. Shi, “A review of plant leaf fungal diseases and its

environment speciation,” Bioengineered, vol. 10, no. 1, pp. 409–424, Jan. 2019, doi:

10.1080/21655979.2019.1649520.

[4] K. Nagasubramanian, S. Jones, A. K. Singh, S. Sarkar, A. Singh, and B.

Ganapathysubramanian, “Plant disease identification using explainable 3D deep learning on

hyperspectral images,” Plant Methods, vol. 15, no. 1, Aug. 2019, doi: 10.1186/s13007-019-

0479-8.

[5] M. H. Saleem, J. Potgieter, and K. M. Arif, “Plant Disease Classification: A Comparative

Evaluation of Convolutional Neural Networks and Deep Learning Optimizers,” Plants, vol.

9, no. 10, p. 1319, Oct. 2020, doi: 10.3390/plants9101319. [Online]. Available:

https://www.mdpi.com/2223-7747/9/10/1319.

[6] D. Andújar, A. Ribeiro, C. Fernández-Quintanilla, and J. Dorado, “Using depth cameras to

extract structural parameters to assess the growth state and yield of cauliflower

crops,” Computers and Electronics in Agriculture, vol. 122, pp. 67–73, Mar. 2016, doi:

94

10.1016/j.compag.2016.01.018. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0168169916000235.

[7] N. Yang, V. Joos, A-L. Jacquemart, C. Buyens, and C. De Vleeschouwer, “Using Pure Pollen

Species When Training a CNN to Segment Pollen Mixtures,” 2022 [Online]. Available:

https://openaccess.thecvf.com/content/CVPR2022W/AgriVision/papers/Yang_Using_Pure

_Pollen_Species_When_Training_a_CNN_To_Segment_CVPRW_2022_paper.pdf.

[8] M. K. Alsmadi, “Content-Based Image Retrieval Using Color, Shape and Texture

Descriptors and Features,” Arabian Journal for Science and Engineering, vol. 45, no. 4, pp.

3317–3330, Feb. 2020, doi: 10.1007/s13369-020-04384-y.

[9] N. Khan, R. L. Ray, G. R. Sargani, M. Ihtisham, M. Khayyam, and S. Ismail, “Current

Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable

Agriculture,” Sustainability, vol. 13, no. 9, p. 4883, Apr. 2021, doi: 10.3390/su13094883.

[10] B. A. M. Ashqar and S. S. Abu-Naser, “Image-Based Tomato Leaves Diseases Detection

Using Deep Learning,” dstore.alazhar.edu.ps, 2018 [Online]. Available:

http://dstore.alazhar.edu.ps/xmlui/handle/123456789/278.

[11] Y. Guo et al., “Plant Disease Identification Based on Deep Learning Algorithm in Smart

Farming,” Discrete Dynamics in Nature and Society, vol. 2020, pp. 1–11, Aug. 2020, doi:

10.1155/2020/2479172.

[12] K. P. Panigrahi, H. Das, A. K. Sahoo, and S. C. Moharana, “Maize Leaf Disease Detection

and Classification Using Machine Learning Algorithms,” Advances in Intelligent Systems

and Computing, pp. 659–669, 2020, doi: 10.1007/978-981-15-2414-1_66.

95

[13] M. Arsenovic, M. Karanovic, S. Sladojevic, A. Anderla, and D. Stefanovic, “Solving Current

Limitations of Deep Learning Based Approaches for Plant Disease Detection,” Symmetry,

vol. 11, no. 7, p. 939, Jul. 2019, doi: 10.3390/sym11070939.

[14] H. van Bruggen, A. Gamliel, and M. R. Finckh, “Plant disease management in organic

farming systems,” Pest Management Science, vol. 72, no. 1, pp. 30–44, Oct. 2016, doi:

10.1002/ps.4145.

[15] M. Donatelli, R. D. Magarey, S. Bregaglio, L. Willocquet, J. P. M. Whish, and S. Savary,

“Modelling the impacts of pests and diseases on agricultural systems,” Agricultural Systems,

vol. 155, pp. 213–224, Jul. 2017, doi: 10.1016/j.agsy.2017.01.019.

[16] Lee, D.I.; Lee, J.H.; Jang, S.H.; Oh, S.J.; Doo, I.C. Crop Disease Diagnosis with Deep

Learning‑Based Image Captioning and Object Detection. Appl. Sci. 2023, 13, 3148.

https://doi.org/10.3390/app13053148

[17] S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using Deep Learning for Image-Based Plant

Disease Detection,” Frontiers in Plant Science, vol. 7, Sep. 2016, doi:

10.3389/fpls.2016.01419.

[18] K. Singh, B. Ganapathysubramanian, S. Sarkar, and A. Singh, “Deep Learning for Plant

Stress Phenotyping: Trends and Future Perspectives,” Trends in Plant Science, vol. 23, no.

10, pp. 883–898, Oct. 2018, doi: 10.1016/j.tplants.2018.07.004.

[19] N. M. Nafi and W. H. Hsu, “Addressing Class Imbalance in Image-Based Plant Disease

Detection: Deep Generative vs. Sampling-Based Approaches,” IEEE Xplore, Jul. 01, 2020.

[Online]. Available: https://ieeexplore.ieee.org/abstract/document/9145239/.

[20] K. Dokic, L. Blaskovic, and D. Mandusic, “From machine learning to deep learning in

agriculture – the quantitative review of trends,” IOP Conference Series: Earth and

https://doi.org/10.3390/app13053148

96

Environmental Science, vol. 614, no. 1, p. 012138, Dec. 2020, doi: 10.1088/1755-

1315/614/1/012138.

[21] Javaid, Q. Niyaz, W. Sun, and M. Alam, “A Deep Learning Approach for Network Intrusion

Detection System,” Proceedings of the 9th EAI International Conference on Bio-inspired

Information and Communications Technologies (formerly BIONETICS), 2016, doi:

10.4108/eai.3-12-2015.2262516.

[22] D. Andújar, A. Ribeiro, C. Fernández-Quintanilla, and J. Dorado, “Using depth cameras to

extract structural parameters to assess the growth state and yield of cauliflower

crops,” Computers and Electronics in Agriculture, vol. 122, pp. 67–73, Mar. 2016, doi:

10.1016/j.compag.2016.01.018. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0168169916000235.

[23] S. Dargan, M. Kumar, M. R. Ayyagari, and G. Kumar, “A Survey of Deep Learning and Its

Applications: A New Paradigm to Machine Learning,” Archives of Computational Methods

in Engineering, vol. 27, no. 4, pp. 1071–1092, Jun. 2020, doi: 10.1007/s11831-019-09344-

w.

[24] A.-K. Mahlein, “Plant Disease Detection by Imaging Sensors – Parallels and Specific

Demands for Precision Agriculture and Plant Phenotyping,” Plant Disease, vol. 100, no. 2,

pp. 241–251, Feb. 2016, doi: 10.1094/pdis-03-15-0340-fe.

[25] M. Jia et al., “Quantifying Chlorophyll Fluorescence Parameters from Hyperspectral

Reflectance at the Leaf Scale under Various Nitrogen Treatment Regimes in Winter

Wheat,” Remote Sensing, vol. 11, no. 23, p. 2838, Jan. 2019, doi: 10.3390/rs11232838.

[Online]. Available: https://www.mdpi.com/584528.

97

[26] M. T. Kuska and A.-K. . Mahlein, “Aiming at decision making in plant disease protection

and phenotyping by the use of optical sensors,” European Journal of Plant Pathology, vol.

152, no. 4, pp. 987–992, Mar. 2018, doi: 10.1007/s10658-018-1464-1.

[27] G. Polder, N. van de Westeringh, J. Kool, H. A. Khan, G. Kootstra, and A. Nieuwenhuizen,

“Automatic Detection of Tulip Breaking Virus (TBV) Using a Deep Convolutional Neural

Network,” IFAC-PapersOnLine, vol. 52, no. 30, pp. 12–17, 2019, doi:

10.1016/j.ifacol.2019.12.482.

[28] S. Thomas et al., “Benefits of hyperspectral imaging for plant disease detection and plant

protection: a technical perspective,” Journal of Plant Diseases and Protection, vol. 125, no.

1, pp. 5–20, Sep. 2018, doi: 10.1007/s41348-017-0124-6.

[29] F. Cheshkova, “A review of hyperspectral image analysis techniques for plant disease

detection and identif ication,” Vavilov Journal of Genetics and Breeding, vol. 26, no. 2, pp.

202–213, Apr. 2022, doi: 10.18699/vjgb-22-25. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983301/.

[30] Q. Mu, Z. Kang, Y. Guo, L. Chen, S. Wang, and Y. Zhao, “Hyperspectral image

classification of wolfberry with different geographical origins based on three-dimensional

convolutional neural network,” International Journal of Food Properties, vol. 24, no. 1, pp.

1705–1721, Jan. 2021, doi: 10.1080/10942912.2021.1987457.

[31] R. Pieruschka and U. Schurr, “Plant Phenotyping: Past, Present, and Future,” Plant

Phenomics, vol. 2019, pp. 1–6, Mar. 2019, doi: 10.34133/2019/7507131.

[32] Afzal, Z. K. Shinwari, S. Sikandar, and S. Shahzad, “Plant beneficial endophytic bacteria:

Mechanisms, diversity, host range and genetic determinants,” Microbiological Research,

98

vol. 221, pp. 36–49, Apr. 2019, doi: 10.1016/j.micres.2019.02.001. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0944501318304592.

[33] L. K. Hema, D. Vijendra Babu, A. Navaneetharajan, K. Vijayakumar, and S. Dhayanithi,

“Agriculture Resources for Plant-Leaf Disease Identification using Deep Learning

Techniques,” Journal of Physics: Conference Series, vol. 1964, no. 6, p. 062027, Jul. 2021,

doi: 10.1088/1742-6596/1964/6/062027.

[34] S. S. Kumar and B. K. Raghavendra, “Diseases Detection of Various Plant Leaf Using Image

Processing Techniques: A Review,” 2019 5th International Conference on Advanced

Computing & Communication Systems (ICACCS), Mar. 2019, doi:

10.1109/icaccs.2019.8728325.

[35] F. Martinelli, R. Scalenghe, S. Davino, S. Panno, G. Scuderi, P. Ruisi, ...and A.M. Dandekar,

“Advanced methods of plant disease detection. A review”, Agronomy for Sustainable

Development, vol. 35, pp. 1-25, 2015 [online]. Available:

https://link.springer.com/article/10.1007/s13593-014-0246-1

[36] V. Singh and A. K. Misra, “Detection of plant leaf diseases using image segmentation and

soft computing techniques,” Information Processing in Agriculture, vol. 4, no. 1, pp. 41–49,

Mar. 2017, doi: 10.1016/j.inpa.2016.10.005.

[37] R. Katafuchi and T. Tokunaga, “Image-based Plant Disease Diagnosis with Unsupervised

Anomaly Detection Based on Reconstructability of Colors,” arXiv:2011.14306 [cs], Sep.

2021 [Online]. Available: https://arxiv.org/abs/2011.14306.

[38] G. Arnal Barbedo, “Plant disease identification from individual lesions and spots using deep

learning,” Biosystems Engineering, vol. 180, pp. 96–107, Apr. 2019, doi:

10.1016/j.biosystemseng.2019.02.002.

https://link.springer.com/article/10.1007/s13593-014-0246-1

99

[39] Newhart, K.B., Holloway, R.W., Hering, A.S. and Cath, T.Y., 2019. Data-driven

performance analyses of wastewater treatment plants: A review. Water research, 157,

pp.498-513.

[40] S. Ghosh, “SOME STUDIES ON DIFFERENT DATA MINING

APPROACHES” (Doctoral dissertation, UNIVERSITY OF KALYANI). 2015 [Online]

https://www.researchgate.net/profile/Soumadip-

Ghosh/publication/323401290_Some_Studies_on_Different_Data_Mining_Approaches/lin

ks/5a950ee6aca272140567a1c2/Some-Studies-on-Different-Data-Mining-Approaches.pdf

[41] D avid. P. Hughes, M. S. (2016). An open access repository of images on plant health to

enable the development of mobile disease diagnostics. Retrieved from

https://arxiv.org/abs/1511.08060

[42] Sapkal and U. Kulkarni, “Comparative study of Leaf Disease Diagnosis system using

Texture features and Deep Learning Features,” International Journal of Applied

Engineering Research, vol. 13, no. 19, pp. 14334–14340, 2018 [Online]. Available:

https://www.ripublication.com/ijaer18/ijaerv13n19_39.pdf

[43] Magsi, J. A. Mahar, M. A. Razzaq, and S. H. Gill, “Date Palm Disease Identification Using

Features Extraction and Deep Learning Approach,” IEEE Xplore, Nov. 01, 2020. [Online].

Available: https://ieeexplore.ieee.org/abstract/document/9318158/.

[44] M. K. Alsmadi, “Content-Based Image Retrieval Using Color, Shape and Texture

Descriptors and Features,” Arabian Journal for Science and Engineering, vol. 45, no. 4, pp.

3317–3330, Feb. 2020, doi: 10.1007/s13369-020-04384-y.

https://www.researchgate.net/profile/Soumadip-Ghosh/publication/323401290_Some_Studies_on_Different_Data_Mining_Approaches/links/5a950ee6aca272140567a1c2/Some-Studies-on-Different-Data-Mining-Approaches.pdf
https://www.researchgate.net/profile/Soumadip-Ghosh/publication/323401290_Some_Studies_on_Different_Data_Mining_Approaches/links/5a950ee6aca272140567a1c2/Some-Studies-on-Different-Data-Mining-Approaches.pdf
https://www.researchgate.net/profile/Soumadip-Ghosh/publication/323401290_Some_Studies_on_Different_Data_Mining_Approaches/links/5a950ee6aca272140567a1c2/Some-Studies-on-Different-Data-Mining-Approaches.pdf
https://arxiv.org/abs/1511.08060

100

[45] X. Xie, Y. Ma, B. Liu, J. He, S. Li, and H. Wang, “A Deep-Learning-Based Real-Time

Detector for Grape Leaf Diseases Using Improved Convolutional Neural

Networks,” Frontiers in Plant Science, vol. 11, Jun. 2020, doi: 10.3389/fpls.2020.00751.

[46] M. VIANA, “Usage and economic values of the timber of nonnative tree species in the

Alps,” pp. 1–90, 2022.

[47] J. Deng, W. Dong, R. Socher, L. -J. Li, Kai Li and Li Fei-Fei, "ImageNet: A large-scale

hierarchical image database," 2009 IEEE Conference on Computer Vision and Pattern

Recognition, Miami, FL, USA, 2009, pp. 248-255, doi: 10.1109/CVPR.2009.5206848.

[48] S. P. Mukherjee, “A Guide to Research Methodology,” Sep. 2019, doi:

10.1201/9780429289095.

[49] M. A. Ragab and A. Arisha, “(PDF) Research Methodology in Business: A Starter’s

Guide,” ResearchGate, 2018. [Online]. Available:

https://www.researchgate.net/profile/Mohamed-Ragab-

22/publication/321769066_Research_Methodology_in_Business_A_Starter

[50] S. A. Sanchez, H. J. Romero, and A. D. Morales, “A review: Comparison of performance

metrics of pretrained models for object detection using the TensorFlow framework,” IOP

Conference Series: Materials Science and Engineering, vol. 844, no. 1, p. 012024, Jun. 2020,

doi: 10.1088/1757-899x/844/1/012024.

[51] H. Jin, Q. Song, and X. Hu, “Auto-Keras: An Efficient Neural Architecture Search

System,” arXiv.org, 2019. [Online]. Available: https://arxiv.org/abs/1806.10282

[52] Rafid and I. Rafid, “Performance evaluation for Kruskal’s and Prim’s Algorithm in

Minimum Spanning Tree using Networkx Package and Matplotlib to visualizing the MST

101

Result Performance evaluation for Kruskal’s and Prim’s Algorithm in Minimum Spanning

Tree using Networkx Package and Matplotlib to visualizing the MST Result,” 2019.

[53] P. Lemenkova, “R Libraries {dendextend} and {magrittr} and Clustering Package

scipy.cluster of Python For Modelling Diagrams of Dendrogram Trees,” Carpathian Journal

of Electronic and Computer Engineering, vol. 13, no. 1, pp. 5–12, Sep. 2020, doi:

10.2478/cjece-2020-0002.

[54] Koech, K. E. (2020). Cross-Entropy Loss Function. Towards Data Science, 1. Retrievedfrom

https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e

[55] Ruder, S. (2016, 1 19). An overview of gradient descent optimization algorithms. Retrieved

from ruder.io: https://www.ruder.io/optimizing-gradient

[56] Turhan, F. (2019, 12 9). Week 2 – Plant Disease Detection. Retrieved from

https://medium.com:https://medium.com/bbm406f19/week-2-plant-disease-detection-

9bdd819b870

[57] Alake, R. (2020). What AlexNet Brought To The World Of Deep Learning. Medium, 1.

Retrieved from https://towardsdatascience.com/what-alexnet-brought-to-the-world-of-

deep-learning-46c7974b46fc

[58] Lenyk, Z. (2021, 2 3). Microsoft Vision Model ResNet-50 combines web-scale data and

multi-task learning to achieve state of the art. Retrieved from Microsoft:

https://www.microsoft.com/en-us/research/blog/microsoft-vision-model-resnet-50-

combines-web-scale-data-and-multi-task-learning-to-achieve-state-of-the

art/#:~:text=Microsoft%20Vision%20Model%20ResNet%2D50%20is%20a%20large%20

pretrained%20vision,Multimedia%

https://www.ruder.io/optimizing-gradient
https://towardsdatascience.com/what-alexnet-brought-to-the-world-of-deep-learning-46c7974b46fc
https://towardsdatascience.com/what-alexnet-brought-to-the-world-of-deep-learning-46c7974b46fc
https://www.microsoft.com/en-us/research/blog/microsoft-vision-model-resnet-50-combines-web-scale-data-and-multi-task-learning-to-achieve-state-of-the
https://www.microsoft.com/en-us/research/blog/microsoft-vision-model-resnet-50-combines-web-scale-data-and-multi-task-learning-to-achieve-state-of-the

