
Optimal Data Allocation Method Considering Privacy Enhancement using E-CARGO

by

Chengyu Peng

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science (MSc) in Computational Sciences

The Office of Graduate Studies

Laurentian University

Sudbury, Ontario, Canada

© Chengyu Peng, 2023

ii

THESIS DEFENCE COMMITTEE/COMITÉ DE SOUTENANCE DE THÈSE
Laurentian Université/Université Laurentienne

Office of Graduate Studies/Bureau des études supérieures

Title of Thesis
Titre de la thèse Optimal Data Allocation Method Considering Privacy Enhancement using E-CARGO

Name of Candidate
Nom du candidat Peng, Chengyu

Degree

Diplôme Master of Science

Department/Program Date of Defence
Département/Programme Computational Science Date de la soutenance April 19, 2023

APPROVED/APPROUVÉ

Thesis Examiners/Examinateurs de thèse:

Dr. Ratvinder Grewal
(Co-Supervisor/co-directeur(trice) de thèse)

Dr. Haibin Zhu
(Co-Supervisor/Co-directeur(trice) de thèse)

Dr. Dongning Zhu
(Committee member/Membre du comité)

 Approved for the Office of Graduate Studies
 Approuvé pour le Bureau des études supérieures

 Tammy Eger, PhD
 Vice-President Research (Office of Graduate Studies)
Dr. Wengeng Li Vice-rectrice à la recherche (Bureau des études supérieures)
(External Examiner/Examinateur externe) Laurentian University / Université Laurentienne

ACCESSIBILITY CLAUSE AND PERMISSION TO USE

I, Chengyu Peng, hereby grant to Laurentian University and/or its agents the non-exclusive license to archive and make accessible
my thesis, dissertation, or project report in whole or in part in all forms of media, now or for the duration of my copyright
ownership. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also reserve the right to
use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. I further agree that permission
for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors
who supervised my thesis work or, in their absence, by the Head of the Department in which my thesis work was done. It is
understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my
written permission. It is also understood that this copy is being made available in this form by the authority of the copyright owner
solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright
laws without written authority from the copyright owner.

iii

Abstract

With the rise in popularity of cloud computing, there is a growing trend toward the storage of

data in a cloud environment. However, there is a significant increase in the risk of privacy

information leakage, and users could face serious challenges as a result of data leakage. In this

paper, we propose an allocation scheme for the storage of data in a collaborative edge-cloud

environment, with a focus on enhanced data privacy. In addition, we explore an extended

application of the approach to sourcing. Specifically, we first evaluate the datasets and servers.

We then introduce several constraints and use the Environments-Classes, Agents, Roles, Groups,

and Objects (E-CARGO) model to formalize the problem. Based on the qualification value, we

can find the optimal allocation using the IBM ILOG CPLEX Optimization (CPLEX) Package. At

a given scale, the allocation scheme scores based on our method improve by about 50%

compared to the baseline method and the trust-based method. Moreover, we use a similar

approach to analyze procurement issues in the supply chain to help companies reduce the carbon

emissions. This shows that our proposed solution can store data in servers that better suit their

requirements and is adaptable to other problems.

Keywords

Allocation Strategy, Collaboration, E-CARGO, Group Role Assignment (GRA), Privacy, Green

Computing

iv

Acknowledgments

I would first like to thank Dr. Haibin Zhu, Nipissing University, Canada, whose expertise was

invaluable in formulating the research questions and methodology. Your insightful feedback

pushed me to sharpen my thinking and brought my work to a higher level.

I would also like to thank Dr. Ratvinder Grewal, Laurentian University, Canada, for his valuable

guidance throughout my studies. You provided me with the tools that I needed to choose the

right direction and successfully complete my dissertation.

Whenever I felt confused, my two supervisors always guided me and showed me the way. Their

rigorous academic attitude and profound knowledge deserve me to learn from all my life.

I would particularly like to acknowledge Dr. Linyuan Liu, Nanjing Audit University, China, for

all his help with my studies, without his guidance I would not have been able to complete my

research smoothly.

In addition, I would like to thank Dr. Kalpdrum Passi and Dr. Waldemar Koczkodaj, Laurentian

University, Canada, for their kind help and their support and understanding of my life.

Finally, I could not have completed this dissertation without the support of my parents and

friends, who provided wise counsel as well as happy distractions to rest my mind outside of my

research.

v

Table of Contents

Abstract .. iii

Acknowledgments.. iv

Table of Contents .. v

List of Tables ... viii

List of Figures .. ix

List of Appendices .. x

Chapter 1 ... 1

1 Introduction .. 1

1.1 Background ... 1

1.2 Thesis Outline ... 4

Chapter 2 ... 5

2 Literature Review ... 5

2.1 Cloud Storage.. 5

2.2 Data Sensitivity and Server Trust ... 6

2.3 Server Allocation Strategy .. 7

2.4 Supplier Selection ... 8

2.5 GRA Related Problems ... 9

2.6 Summary ... 10

Chapter 3 ... 11

3 Statement and Formalization of the Problem ... 11

3.1 Real-World Scenario ... 11

3.2 Data Storage in Edge-cloud Environment .. 13

3.3 Condensed/Extended E-CARGO Model .. 15

vi

3.4 Allocation Problem with Conflict and Budget.. 18

3.5 Experiment settings ... 20

3.6 Performance Experiments ... 21

3.7 Feasibility Experiments .. 23

3.8 Summary ... 23

Chapter 4 ... 25

4 Improvement of the Allocation Scheme .. 25

4.1 Genetic Algorithm .. 25

4.2 Greedy Algorithm ... 26

4.3 Generalizing Conflict Relationships ... 27

4.4 Conflict Constraints in Realistic Scenario .. 28

4.5 Comparison Experiments .. 31

4.6 Large Scale Data and Backups ... 32

4.7 Summary ... 35

Chapter 5 ... 36

5 Extended Application of the E-CARGO Model .. 36

5.1 Real-World Procurement Scenario ... 36

5.2 Procurement Strategy for Reducing Carbon Emissions.. 37

5.3 Formalization of the Procurement Problem with E-CARGO Model.................... 38

5.4 Summary ... 42

Chapter 6 ... 43

6 Simulation Experiments to Optimize Procurement Solution 43

6.1 Performance Experiments ... 43

6.2 Weighting Ratio Experiments ... 44

6.3 Comparison Experiments .. 46

vii

6.4 Summary ... 47

Chapter 7 ... 49

7 Conclusion ... 49

References ... 51

Appendix I ... 56

Appendix II .. 62

Curriculum Vitae .. 75

viii

List of Tables

Table 3.1: The Price of Each Server ... 11

Table 3.2: The Budgets for Data Fields .. 12

Table 3.3: The Conflict Relations Between Servers ... 12

Table 3.4: Qualifications of Servers for Data Fields .. 12

Table 3.5: Experiment Environment ... 21

Table 5.1: The qualification Values for Items from Different Suppliers 36

Table 5.2: The Number of Items Produced Per Hour ... 36

Table 5.3: The Matching Relationship Between Items ... 37

ix

List of Figures

Figure 3.1: Performance Experiments Result. .. 22

Figure 3.2: Feasibility Experiments Result. .. 23

Figure 4.1: Performance Experiments Result of the Improved Method. 28

Figure 4.2: Performance Experiments Result of the Method for the Realistic Scenario. 30

Figure 4.3: Comparison Experiments Result of Qualification Values. .. 31

Figure 4.4: Comparison Experiments Result of Cost. .. 31

Figure 4.5: Performance Experiments Result for Additional Data Backup.................................. 34

Figure 4.6: Feasibility Experiments Result for Additional Data Backup. 34

Figure 6.1: Performance Experiments Result. .. 44

Figure 6.2: Weighting Ratio Experiments Result. .. 45

Figure 6.3: Comparison Experiments Result. ... 46

Figure 6.4: Comparison Experiments Result. ... 47

x

 List of Appendices

Appendix I .. 56

Appendix II ... 62

1

Chapter 1

1 Introduction

1.1 Background

The application of various cloud computing technology is expanding as the technology develops.

The deployment of distributed storage and computing frameworks in the cloud is supported by a

large number of cloud service providers (CSPs), including Amazon, Microsoft, Google, and

other well-known CPS. However, there is a significant risk of privacy information leaking in this

situation of outsourcing data storage [45]. The cost of a data breach report [29] claims that the

average total cost of data breach has increased by about 10% yearly, the largest single year cost

increase in the last seven years and the hybrid cloud model had the lowest average total cost of a

data breach. If data is stored in the public cloud, an untrustworthy cloud service provider or

server attacker can directly snoop on some or even all of the data and further speculate on

individual privacy information, resulting in the leakage of users' privacy information [18].

Consequently, a crucial concern now is how to guarantee the privacy of data kept on the cloud

servers [31], [32], [49]. A considerable amount of work is focused on encrypting data to protect

data privacy, but these methods have the disadvantages of cumbersome data recovery and high

data transfer costs [10], [61].

Edge-cloud architecture [3] that disperses data partially in both edge servers and public

cloud servers is an effective strategy to enhance data privacy. It is well known that by relying on

public cloud servers, users inevitably give up a degree of control, while edge server users have

better control over their data, making edge servers more suitable for handling or storing sensitive

data that can easily infer private information, while relatively less important data can be stored in

cloud servers. Numerous studies have concentrated on this. Edge servers [13] can improve data

storage in terms of privacy, and edge servers can also be fully utilized. However, since the

quantity and capacity of edge servers are constrained in practice, we need practical ways to

divide the data so that one part of the data is stored in the edge servers and the other part is stored

in the public cloud servers.

2

We may solve this problem by evaluating the data sensitivity [8], [11], [58] and server trust

[4], [7], [40], [42], [53], so that we are able to classify the sensitive data and store them in edge

servers and others in public cloud servers, respectively. In addition, each server has a unique

trust level that can be used as a reference in order to store certain data in a more appropriate

server. Although privacy should be taken into account when selecting servers for data storage,

there are other considerations that should not be ignored as well, such as user requirements for

servers [50], [60] and storage costs [30], [33], [57], etc. Notably, selecting appropriate servers to

store the data while keeping a number of restrictions is a very complex problem.

Fortunately, the Environments-Classes, Agents, Roles, Groups, and Objects (E-CARGO)

model can assist us in successfully overcoming this difficulty. It is common to ask why we use

E-CARGO. E-CARGO has been verified as a significant tool for investigating challenging

problems in collaborative and complex systems. It has a set of clarified components for a system

or a problem and provides quite a few validated symbols to express the elements of a problem.

E-CARGO provides consistency in concepts, conciseness in structures, and expressiveness in

notations. The proposed problem is in fact a natural result of the E-CARGO research [22], [23],

[24], [25], [26]. In addition, the E-CARGO model has a wide range of applications and it can

give us insight into problems in many areas. We note that human activities have significantly

increased emissions of carbon dioxide and other greenhouse gases, posing a severe threat to our

living environment [48]. In response to this issue, the entire globe has endorsed reducing carbon

emissions, and businesses are no exception. They are under pressure to reduce carbon emissions

[14]. In a supply chain [1], procurement plays a crucial role [15]. By reducing carbon emissions

during the procurement process, upstream and downstream carbon emissions can be successfully

influenced [51]. As it happens, the method we propose is applicable to the optimization of

procurement solutions. The success or failure of the selected suppliers impacts every part of the

business. The decision is influenced by a number of variables [12], including the cost of the

purchase, the quality of an item, the timing of delivery, etc. According to the Scope 3 emissions

[41] of the international emissions accounting tool Greenhouse Gas (GHG) accounting system,

all indirect emissions that happen along the reporting company's value chain, including upstream

and downstream emissions, must be taken into account when calculating carbon emissions.

Companies must think about how to cut the carbon emissions produced in their supply chains as

much as feasible in light of the tendency to minimize carbon emissions. In addition, the

3

productivity of each supplier varies in the actual procurement situation, which makes it more

challenging to obtain an optimal procurement solution [55]. In terms of how to reduce carbon

emissions in the procurement process, a lot of efforts are focused on supplier selection, but it is

easy to fail to find the most reasonable procurement solution from a global perspective.

Therefore, we can apply our proposed allocation method to the development of a procurement

plan. Similar to the previous method, the E-CARGO model [25] can assist us in overcoming this

difficulty when dealing with many intricate influences. We can first determine the ratings of the

various items from the various suppliers we intend to purchase. This score can be made up of

different evaluation indicators, and depending on the requirements of the purchaser, the weights

of the different indicators can be calculated using the analytic hierarchy process (AHP) [16], [17].

Then, based on the suppliers’ production capacities, the hours they can provide, and the

procurement volume, we rate the hours of the providers as qualification values, then use the sum

of optimally assigned hours’ qualifications as the procurement solution. There are also several

practical constraints to take into account [44], such as purchasing budgets, carbon emission caps,

and the least requirement on product quality. The final solution for the allocation of working

hours that meets the requirements is the procurement solution.

In summary, this paper focuses on developing a storage method that takes into account

various requirements and can effectively enhance data privacy and extending the application of

the method to the development of procurement schemes. Specifically, the main contributions of

this paper are as follows:

(1) We propose a method to divide data into fields and distribute storage based on the

fitness of data field sensitivity and server trust in order to protect the privacy of decentralized

data storage.

(2) We use the E-CARGO model [22], [23], [24], [25], [26] to formalize and analyze the

server allocation problem for data storage and introduce constraints such as server performance,

user budgets and service provider into the model.

(3) We make a large number of simulations, and based on the outcomes, we analyze the

operational efficiency, feasibility, and advantages of the method.

4

(4) We further improve the proposed method to enhance its performance and compare the

improved method with other methods. We also propose solutions for scenarios dealing with large

scale data and backup.

(5) We apply the above method to other areas. Starting from three factors: procurement cost,

item quality and carbon emission involved in procurement, and using AHP to determine their

weights to help users develop procurement strategies. We use the E-CARGO model to formalize

and analyze the procurement problem for low carbon emissions and introduce constraints such as

procurement budget, carbon emission caps and least quality requirements of items into the model.

1.2 Thesis Outline

The thesis is organized as follows:

Chapter 2 presents the work related to the research topic.

Chapter 3 presents a real-world scenario related to the proposed problem and the problem

description of data storage.

The formalization of the problem using the E-CARGO model is presented in Chapter 4.

Chapter 5 conducts simulation experiments and analyzes the results based on our proposed

method.

Chapter 6 discusses the improvement and illustrates the methods for handling large scale

data and backup.

Chapter 7 presents an extended application of the mentioned method to the development of

a procurement plan and the formalization of the problem using the E-CARGO model.

Chapter 8 conducts simulation experiments and gives guidance to users for developing a

procurement plan.

The conclusion of this paper is in Chapter 9.

5

Chapter 2

2 Literature Review

2.1 Cloud Storage

Storing data in edge-cloud environment to ensure privacy is a very important and comprehensive

issue. It is a challenge to allocate server storage data appropriately, and many efforts are focused

on this.

Cloud storage: A lightweight hybrid distributed edge/cloud storage framework was

presented by Makris et al. [3] to enhance end-user Quality of Experience (QoE) by relocating

data close to them and thus minimizing network use and data transfer delays. Nitti et al. [40]

proposed an integrity verification framework to ensure Ternary Hash Tree (THT) and Replica

based Ternary Hash Tree (R-THT) based cloud storage. The proposed secure cloud auditing

framework is highly secure and efficient in terms of storage, communication and computational

cost. Zhuang et al. [28] suggested StoreSim multi-cloud storage system. They created the

effective storage plan generating method SPClustering for dispersing user data to various clouds

based on the information leakage detected by BFSMinHash. Zhang et al. [60] propose a service

curve-based QoS algorithm to support latency guarantee applications, IOPS guarantee

applications and best-effort applications at the same storage system, which not only provides a

QoS guarantee for applications, but also pursues better system utilization. Al Nuaimi et al. [35]

addressed both difficulties by improving the dual direction load balancing technique's

effectiveness through increased replication and by reducing the storage requirements of a smart

self-controlled technique (ssCloud) for deleting redundant data from each cloud server. Abhishek

et al. [19] presented a unique hybrid cloud storage approach that enables users to use their

computer clusters' quick primary storage as a caching tier in front of their slow secondary storage

tier. Patil Rashmi et al. [47] used deduplication technology for data storage. This study's

foundation is the homomorphic hash algorithm. The accuracy of the data that is saved on a cloud

server is determined by a third party auditor who verifies the user's data for accuracy. There is

less communication and computational overhead. When a malicious server launches a

replacement attack, their framework is efficient and safe. Although all of these approaches

6

mentioned above enhance certain aspects, most do not sufficiently integrate edge servers with

cloud servers and focus on the privacy of data.

2.2 Data Sensitivity and Server Trust

Data sensitivity: Lang et al. [9] provided an overview of data collecting parsimony, along with a

novel approach for quantifying the idea using empirical Bayes estimates. Finally, the metric is

evaluated using actual data. This method's advantages and disadvantages are explored from a

theoretical and empirical perspective. They concluded that this metric is in many ways superior

to others for model creation, but there are certain barriers to its adoption. Idar et al. [20] provided

a dynamic architecture to automatically determine data sensitivity without the Data Owner's

involvement. Sensitive data must be protected for as long as it is housed in the Hadoop cluster in

order to prevent access from unauthorized users. Data sensitivity changes over time based on

scenarios offered by their scalable framework. Park et al. [58] introduced their work toward fine-

grained data centric security, which semi-automatically determines the sensitivity of enterprise

data. In order to automatically find sensitive material in corporate data, they applied a range of

text analytics and classification algorithms. This tool suite also provides estimations for the

sensitivity of individual data. They created a proof-of-concept system that crawls every file on a

computer and calculates the sensitivity of each file as well as the computer's overall sensitivity

level. They ran a pilot test using laptops belonging to staff at a big IT organization. The method

provides inspiration and ideas for obtaining data sensitivity in the article.

Server trust: Zhang et al. [34] present a trust-based secure multi-cloud collaboration

framework for Cloud-Fog-Assisted IoT systems. They specifically created a role-based trust

evaluation mechanism to raise the credibility of MCSC and ensured the security of users. They

designed an effective user authentication scheme and a secure collaboration scheme to provide

collaborative user authentication and access control mechanisms for MCSC in order to maintain

the security of the services. Yang and Peng [59] present a novel scheduling technique based on

trust and address the scheduling problem for workflow applications with trust restrictions. The

suggested heuristic scheduling algorithm can more efficiently identify the most reliable

execution flow than the conventional technique for scheduling application workflows, according

to experimental results. Dang et al. [53] presented a trusted-based resource scheduling scheme.

For big data applications processing sensitive data, they suggested a trust aware framework that

7

enables CSPs to use highly trusted resources. And they developed a trust measure that allows a

CSP to request pertinent trust resources from other CSPs. The scheme they proposed benefits

CSPs and customers, enabling inexpensive data processing but achieving high gains in security.

Their proposed method provides ideas for determining server trust levels used in the article.

However, this approach still does not sufficiently consider the server and storage field fitness.

2.3 Server Allocation Strategy

Server allocation strategy: Halabian et al. [21] provided supplementary findings on delay-optimal

server placement in multi-queue multi-server (MQMS) systems with asymmetric connectivity.

They demonstrated that MWM minimizes a variety of cost functions of the queue lengths, such

as total queue occupancy, in the stochastic ordering sense for a system with Bernoulli arrivals

and connectivity (which implies minimization of average queueing delay). Through simulations,

they demonstrated that this strategy performs quite similarly to the ideal strategy in terms of the

average queueing delay. Sawa et al. [54] proposed an approach called Minimizing the Maximum

Delay (MMD) for the distributed server allocation problem, where the best result is attained

when all server-server delays have the same fixed value. They demonstrated that MMD achieves

an ideal result with polynomial time complexity. Zhang et al. [11] introduced tagged-MapReduce

that provides safe processing with mixed-sensitivity data on hybrid clouds. They provided a

general security framework that captures how dataflow can leak information via execution for

analyzing MapReduce computations in the hybrid cloud. Karim et al. [46] proposed a

mechanism to map the users' QoS requirements of cloud services to the right QoS specifications

of SaaS. They also proposed a set of rules to perform the mapping process and hierarchically

model the QoS specifications of cloud services using the Analytic Hierarchy Process (AHP)

method. The AHP based model helps to facilitate the mapping process across the cloud layers,

and to rank the candidate cloud services for end users. Vimercati et al. [49] defined a security

model based on abstract security features, and they suggested a method for allocating resources

to cloud services. The owner's encryption was taken into account when allocating resources to

services, as were any global criteria the owner might have set to minimize overhead and over-

segmentation of resources among different services. Although all the above approaches to data

allocation improve user experience or security to a greater or lesser extent, most of them do not

involve data privacy enhancement, and even if they do, they do not prevent critical information

8

from being inferred, and none of them consider constraints such as budget and cooperation

between server providers while allocating the most appropriate server for the data.

2.4 Supplier Selection

Reducing carbon emissions when developing procurement programs is a crucial and

comprehensive issue, and it is also a challenge to consider all aspects in an integrated manner.

Therefore, many works have made trials from this perspective.

Cui et al. [38] investigated a manufacturer's multi-period, multi-product supplier selection

and order allocation challenge. The manufacturer has two options: invest in current suppliers, or

find new ones. The development of a new mixed integer programming mathematical model takes

into account the diverse requirements of many suppliers. Carvalho Fagundes et al. [43] proposed

a computational method for supplier selection using the "Fuzzy Extended Analytic Hierarchy

Process (Fuzzy AHP)". The study's findings highlighted significant possibilities for enhancing

supplier selection while taking risks into account, including choice rationalization, adaptable

decision variable modeling, and automation of subjective assessments and evaluations by

decision-makers. The competitiveness of the supply chain may be enhanced by these advantages,

which may help reduce purchasing costs and enhance the overall assessment of supply risks. Xia

et al. [52] developed a set of electric power industry characteristics of a green supplier evaluation

index system against the backdrop of carbon green supplier evaluation value. It also looks at the

various applications of green evaluation criteria, which give the power industry a foundation for

comparison when choosing suppliers and are crucial for driving the green development of the

industrial chain. Lamba and Singh [36] proposed a model for supplier selection and order

allocation in a dynamic environment with multiple products, periods and suppliers. And the

carbon emissions due to purchasing, inventory, ordering and transportation are integrated into the

model. They map the parameters used in the proposed model to various dimensions of big data,

and analyze the model numerically and demonstrate its prospects using two randomly generated

datasets with big data characteristics. Singh et al. [5] proposed a big data cloud computing

framework for carbon minimization. And they show how slaughterhouses and processing plants

can use the captured carbon footprint information for eco-friendly supplier selection of beef

cattle, which can help agri-food industry players curb their emissions. At the same time, the

framework has universal properties that can be emulated and configured for any food supply

9

chain. Kumar et al. [2] proposed a generic and integrated approach for flexible supplier selection

considering both cost reduction and environmental efficiency objectives. The model has the new

ability to enforce emission standards and can be adapted to region-specific emission limits. They

studied the optimal supplier selection problem in a fashion apparel supply chain in the presence

of a carbon tax. Choi [56] proposed a two-stage optimal supplier selection scheme, in which the

first stage filters inferior suppliers and the second stage selects the best supplier among the set of

non-inferior suppliers through multi-stage stochastic dynamic programming. These studies have

proposed supplier selection options under certain specific scopes, but each of them still lacks

certain important impression factors that may be involved in real-life situations, such as quality

standards of items, working hours that suppliers can provide, matching relationships between

items, etc.

2.5 GRA Related Problems

GRA related problems: Zhu [22] formalized the group role assignment problem when faced with

the constraint of conflicting agents, proved that such a problem is a subproblem of the extended

integer linear programming (x-ILP) problem, proposed a practical approach to the solution, and

assured performance based on the results of experiments. Zhu [23] presented and formalized a

challenging role assignment problem with budget constraints (GRABC), provided a set of

practical solutions to different forms of this problem by using the IBM ILOG CPLEX

optimization package, established a set of necessary conditions for these problems to possess

feasible solutions to improve the CPLEX solutions and verified the practicability and efficiency

of the proposed solutions. Zhu et al. [26] clarified the group role assignment problem (GRAP),

described a general assignment problem (GAP), converted a GRAP to a GAP, proposed an

efficient algorithm based on the Kuhn-Munkres (K-M) algorithm, conducted numerical

experiments, and analyzed the solutions' performances. Zhu et al. [27] presented a challenging

problem called group role assignment with cooperation and conflict factors (GRACCFs). The

authors formalized the proposed problem, identified the problem’s complexity, and solved the

problem using the IBM ILOG CPLEX optimization package (ILOG). The authors verified the

benefits of solving the GRACCF problem through simulations. These works provide great

support and help formalize and model the problems in the article.

10

2.6 Summary

In this section, we present the work related to data storage in the cloud, assessing data sensitivity

and server trust, server allocation policies, supplier selection and problems related to GRA and

present their features and shortcomings.

11

Chapter 3

3 Statement and Formalization of the Problem

Chapter 3 first presents a real-world scenario, after which we introduce the general solution

strategy of the proposed method in this scenario, and then give a detailed description of the

method and the processing steps.

3.1 Real-World Scenario

Eddie, the Chief Information Officer (CIO) of X, a technological company, uses the cloud to

store the company’s data. However, a recent attack on the cloud server resulted in the disclosure

of some employees' personal data. Bob, the Chief Executive Officer (CEO) of company X asked

Eddie to find a data storage solution that would safeguard their private data to store the new data

generated by the company and set aside a budget of $30,000 per year for the storage solution.

Within this budget, the company also requested that different data fields need to be stored among

different service providers.

This is undoubtedly a challenge for Eddie. Eddie needs to consider the budget, privacy

protection, data access performance, trust of servers, and potential data sharing of servers

between service providers. Eddie tried a few existing methods and noticed that none of them

satisfied all his requirements.

Table 3.1: The Price of Each Server

Servers Price

Cloud Server 1 $3500

Cloud Server 2 $3200

Edge Server 1 $5500

Edge Server 2 $5800

Edge Server 3 $5000

Edge Server 4 $4500

Edge Server 5 $4900

Edge Server 6 $5000

Edge Server 7 $4500

Edge Server 8 $4800

12

Edge Server 9 $6200

Edge Server 10 $5800

Table 3.2: The Budgets for Data Fields

Data Fields Full Name Date of Birth Telephone Address

Budget Limits $6000 $5000 $9000 $10000

Table 3.3: The Conflict Relations Between Servers

Servers Conflicts

Edge Server 1 Edge Server 2

Edge Server 2 Edge Server 1

Edge Server 3 Edge Server 6 Edge Server 9

Edge Server 5 Edge Server 7

Edge Server 6 Edge Server 3 Edge Server 9

Edge Server 7 Edge Server 5

Edge Server 9 Edge Server 3 Edge Server 6

Table 3.4: Qualifications of Servers for Data Fields

Servers Data Fields

Full Name Date of Birth Telephone Address

Cloud Server 1 0.72 0.71 0.33 0.28

Cloud Server 2 0.64 0.70 0.24 0.31

Edge Server 1 0.56 0.55 0.55 0.61

Edge Server 2 0.61 0.59 0.58 0.66

Edge Server 3 0.32 0.44 0.72 0.75

Edge Server 4 0.25 0.45 0.85 0.72

Edge Server 5 0.43 0.35 0.67 0.87

Edge Server 6 0.53 0.46 0.76 0.76

Edge Server 7 0.43 0.37 0.88 0.75

Edge Server 8 0.22 0.29 0.59 0.86

Edge Server 9 0.24 0.26 0.63 0.65

Edge Server 10 0.38 0.44 0.71 0.73

We propose a new way to help him meet his requirements. We first separate the data to be

saved into four data fields. Assuming he can look up these fields from a system, we then

calculate the sensitivity of each data field using the evaluation strategy and find that the phone

number and address are sensitive fields, and the rest are non-sensitive fields. Then, based on the

servers' locations, we selected two public cloud servers and ten edge servers for data storage, and

calculated the price of each server as shown in Table 3.1. Additionally, we assess the trust and

13

performance rankings of all available servers to determine the trust score and performance score,

and then combine these with the data field sensitivity to calculate a server's qualification value

for storing the fields as shown in Table 3.4. Based on the sensitivity of the data fields, we

allocate the total budget to each field proportionally as shown in Table 3.2. The unit of data in

the table is $1000, and the listed conflicts between servers due to service providers are shown in

Table 3.3. We intend to store just one sensitive field per edge server to protect the privacy of

sensitive fields, although up to four non-sensitive fields can be stored on each cloud server.

Sensitive fields require an additional backup. Finally, we set a series of constraints and obtain the

optimized assignment. In this scenario, it is necessary to assign the fields with different

sensitivities to different types of servers while taking into account the capacity, performance,

price and conflicts of the servers, etc. The final optimal assignment result is shown in Table 3.4.

The total sum of assigned qualification values is 4.78.

3.2 Data Storage in Edge-cloud Environment

Based on the above scenario, we give the following data storage scheme in an edge-cloud

environment. Firstly, we partition the data into distinct data fields for storage, which prevents

others from obtaining the whole data and deducing all the information from the leaked data

compared to the method of splitting the data into multiple smaller datasets. In order to find an

optimal data storage solution, we need to introduce two parameters: the sensitivity of the data

fields and the trust of the server. The sensitive fields must be stored on servers with high server

trust levels, while the corresponding non-sensitive fields may be stored on servers with low

server trust levels. We believe that the edge servers have better performance in privacy

protection, due to their properties of self-controllability and less accessibility to the public.

It is possible to determine the sensitivity of data fields by referring to the method in [58].

First, the category of sensitive data and their relative sensitivities are determined by data

specialists in the corresponding fields. A set of text analysis and classification tools are then

applied to automatically find sensitive information in the data, estimate the sensitivity level of

each data field, and finally map the sensitivity level to a value between 0 and 1. Alternatively, a

more straightforward strategy is also an option. For instance, we can develop various data

sensitivity levels based on a sensitive data classification strategy and label each data field with a

sensitivity level in accordance with the rules. We can assess server trust using three factors by

14

referring to the calculation method in [53]: the ranking of cloud service providers for their own

resources, the ranking of cloud service providers among themselves, and the rating of cloud

service providers by third-party organizations.

Users can set a sensitivity threshold based on their needs after obtaining the sensitivity and

trust values. Data fields that are over this threshold are sensitive fields and need to be stored in

the edge servers. The privacy of the data can be better protected by storing it fully on edge

servers. However, in practice, this storage approach is too expensive and the scale of the edge

server may not meet the demand because we do not include unstable edge servers, such as some

mobile devices, in the storage function. Additionally, in order to maximize data privacy, we

assume that each edge server only stores one data field. This is because the more fields stored

together, the easier it is to infer privacy information based on these fields [39]. For data saved on

public cloud servers, the user can customize the number of data fields to be stored based on their

requirements or the performance of servers [50].

When assigning servers to store the data fields, we primarily examine establishing an

optimal assignment strategy so that each data field is saved on the most appropriate server,

namely, with the best degree of fitting in sensitivity and trust from the perspective of the whole

data to be stored. We can first map the server's trust value to the sensitivity value required by the

data field according to the sensitivity categorization in order to determine the fitness. The smaller

the difference between the two sensitivities, the better the fitness. We also consider the data's

performance requirements for the server while allocating resources. We aim to store the data in

the server that best satisfies its performance requirements, similar to sensitivity and trust. We

concentrate on the server's CPU, memory and bandwidth as the three critical components of

server performance. These three metrics are ranked across all discovered servers to get three sets

of scores, and the corresponding performance requirement scores are obtained based on the

performance requirement mapping of the data fields. A smaller final difference between the two

indicates that the server's performance meets the requirement.

In addition, we introduce several limitations that might be present in light of the realistic

scenario, including the physical location of the servers, the user's budget, and the server conflicts

with the same service provider. Users might exclude some cloud servers from their lists of

15

options based on their requirements because the frequency of network latency and attacks varies

depending on the server's location. Each server will have a varied price due to variations in

performance, geographic location, security, and other factors. As a typical consideration of

customers, a budget should also be regarded as a key limitation. Too many different fields stored

by servers belonging to the same service provider may raise issues regarding data privacy.

Suppose service provider A owns two servers, and if the two servers store different fields, then A

may obtain information about the data in both servers and infer more privacy details. Thus, this

situation is also necessary to avoid. It is also important to note that all available servers are

optional for users. And there is a cache-level storage workspace for end users to query data.

3.3 Condensed/Extended E-CARGO Model

The E-CARGO model can assist us in the study related to role assignment, through which a

system can be described as a nine-tuple . In the model,

denotes a set of classes, denotes a set of objects, denotes a set of agents, denotes a set of

messages, denotes a set of roles, denotes a set of environments, denotes a set of groups,

denotes the initial state of the system, and is a set of users. Our study will then concentrate on

 and , our servers and data fields.

In the discussed scenario, we take servers as agents, and data fields as roles. Then, the

number of servers that can be expressed by the non-negative integer , likewise,

 is the number of data fields that we can express, … are the indices of servers,

and … are the indices of data fields. The servers are divided into two categories: cloud

servers and edge servers. The number of edge servers is denoted by , and the number of cloud

servers is denoted by , therefore we can deduce that . Similarly, data fields are

separated into sensitive and non-sensitive groups. A threshold t for sensitivity score can be set by

the user. Sensitive fields are those with values greater than or equal to this threshold, and vice

versa are non-sensitive fields. The number of sensitive fields is denoted by , and the number of

non-sensitive fields is denoted by , thus .

Definition 3.1: The role range vector L [23], [24] is an n-vector that contains the lower

bounds of the ranges of roles in the environment of a group. In our scenario, it reflects the

number of backups made for the data fields, i.e., . If no backup is required,

, and if another backup is required, .

16

Definition 3.2: The agent ability vector [22], [23] is an m-vector where

indicates the maximum number of data fields that can be stored per server .

Definition 3.3: The data field sensitivity score is a n-vector, where

represents the sensitivity score of field .

Definition 3.4: The server trust score is an m-vector, where represents the

trust score of server . A function based on user needs

can convert a value to a data field's required sensitivity score for a subsequent fit score

calculation.

Definition 3.5: The fitness score matrix is an m n matrix, where

represents the degree of fit of the trust level of server and the sensitivity of data

field ,

. (3.1)

Definition 3.6: The performance score matrix is an m-vector, where

represents the matching of the performance of server to the requirement of dataset.

 consists of three primary parts, namely, CPU, memory and bandwidth. The performance

levels of all servers are sorted from low to high according to these components, and then mapped

into three scores between 0 and 1 according to different levels. The performance

requirements of the data fields for the server are also mapped into three scores

between 0 and 1, and then

 . (3.2)

Definition 3.7 [26]: The qualification matrix is an m n matrix, where

represents the qualification value of server for field .

, (3.3)

where is a coefficient indicating the weight of in the . Note that if the value

of is 0 or the value of is 0 then is also 0.

17

Definition 3.8: The storage size of the server is an -vector, , which is

measured in gigabytes.

Definition 3.9: The size of each data field is an -vector, , which is

measured in gigabytes.

Definition 3.10 [26]: The definition of the role assignment matrix is an m n matrix,

where indicates whether the server is assigned to the

field . If , it indicates “yes” and 0 indicates “no”.

Definition 3.11 [26]: The qualities of the allocated agents are added together to determine

the group performance of group g, which is

. (3.4)

Definition 3.12 [26]: If role has been given a sufficient number of agents, it is workable in

the group, i.e., .

Definition 3.13 [26]: If each role in is workable, i.e.,

then is workable. If is workable, then g is as well.

Definition 3.14: Using the definitions listed above, our data allocation problem can be

defined to determine a matrix to obtain

subject to (3.5)

 (3.6)

 (3.7)

 (3.8)

 (3.9)

Where constraint (3.5) indicates whether a server is assigned; (3.6) makes the group

workable; (3.7) indicates that each server is only assigned to a limited number of fields; (3.8)

18

indicates that cloud servers cannot be assigned to store sensitive data fields; (3.9) indicates that

the size of all data fields stored by the server cannot be larger than the server storage size. With

these constraints we can find an optimal allocation.

Note that, in the above definitions, we assume that the server set is ordered without the loss

of generality, i.e., all the cloud servers are indexed between 0 and , inclusively, and all

the edge servers are indexed between and -1, inclusively.

3.4 Allocation Problem with Conflict and Budget

In reality, the problem is not simple as that in Definition 3.14. We need to introduce two new

constraints, budget and conflict. For the budget constraint, taking into account that the

importance of data fields with different sensitivities may vary, users may assign higher budgets

to highly sensitive fields to enhance data privacy, and therefore assign different budgets for

fields with varying sensitivities. The price of the server used for storage cannot exceed the

budget for the corresponding field. The definitions are as follows.

Definition 3.15 [23]: The budget vector is an n-vector , where denotes the

maximum cost for storing each field .

Definition 3.16: The price vector is an m-vector , where denotes the cost per

server usage.

Definition 3.17: Service providers possess all cloud and edge servers for data storage,

each server must belong to an , and different servers may belong to the same . For instance,

 indicates that server belong to .

Definition 3.18: If two servers belong to the same , the two servers are not allowed to

store data fields that are different from those already stored, i.e., there is a conflict between the

servers.

Definition 3.19 [22]: The definition of the matrix of conflicting agents is an matrix

, where denotes that server

conflicts with server , and 0 denotes not.

Using the definitions listed above, we can redefine our data allocation problem to find a

workable to

19

subject to (3.5) - (3.9) and

 (3.10)

 (3.11)

Where constraint (3.10) indicates a field's budget cannot be exceeded by the cost of all

servers utilized to store that field; (3.11) indicates that if a server is present in the allocation

scheme, then another server that conflicts with it cannot be used to store other data fields.

The proposed problem is very similar to the knapsack and bin packing problems in that it is

also about finding an optimal value under constraints. This is reflected in finding the allocation

solution that maximizes the sum of the assigned qualification values in under certain budget

conditions. However, it is distinguished from the knapsack or bin packing problems in that we

can incorporate some of the constraints into the process of computing . For example, if the

is lower than the then is 0, then the corresponding value is also 0. If any of the server

performance indicators do not meet the demand then is 0, then the value is also 0. This can

reduce a large number of constraints on the judgment. In addition, there is a server conflict

constraint in our problem, which means that if a server exists in this allocation scheme, servers

that conflict with that server will be excluded.

According to the proof in [22], GRA with conflicting agents in a group (GRACAG)

problem is a subproblem of the x-ILP problem but may not be NP-complete. It informs that our

problem is likewise a subproblem of the x-ILP problem.

Constraints (3.5), (3.6) and (3.8) apply to our proposed problem and are consistent with the

constraints in GRACAG.

Constraint (3.7) adds a new condition check,

for from 0 to do

 if () return false;

return true;

20

For constraint (3.8), the algorithm is:

for from 0 to do

 for from to do

 if () return false;

return true;

For constraint (3.10), the algorithm is:

for from 0 to do

 if () return false;

return true;

Constraint (3.11) is the same as that of GRACAG.

It can be observed that our problem is based on a search space similar to that of the

GRACAG problem, and requires judgments on additional constraints. It advises that our problem

is more sophisticated than the GRACAG problem, making it a subproblem of the x-ILP problem.

3.5 Experiment settings

Based on the analysis of the complexity, we know that it is challenging to solve such a

complicated problem, and we need to discover a way that can do it in a reasonable amount of

time. The IBM ILOG CPLEX (CPLEX) platform is a tool that can be utilized to tackle x-ILP

problems. In order to resolve the issue, we employ the CPLEX package. First, we must list all

the components that make up the CPLEX package, where the variables of matrix have upper

and lower bounds of 1 and 0, respectively, and matrix represents the coefficients of the

objective function. Subsequently, we add the expressions of the objective and constraints and

find the optimal solution, where these expressions can be represented by some formulas. In this

section, we simulate different real-world scenarios and design two types of experiments to

analyze the effect of the solution. All experiments were conducted in the environment shown in

Table 3.5.

21

Table 3.5: Experiment Environment

Hardware

CPU
Intel(R) Core(TM) i5-7300HQ CPU @

2.50GHz 2.50 GHz

MM 12 GB

Software

OS Windows 10 64-bit

IDEA
Version: IntelliJ IDEA 2020.1.3 (Ultimate

Edition)

JDK Java 1.8.0_271

3.6 Performance Experiments

We simulated finding the optimal solution for various numbers of servers and field counts, then

we tracked the program's execution time to assess how well the solution performs in a real-world

scenario. The size of the simulated trials is assumed to expand 10 fields at a time beginning with

10 data fields until the runtime is unacceptable. Accordingly, 80% of these are public cloud

servers. =1 (), i.e., there are no further backups needed for any data fields.

 and edge servers can only store up to one field, which means that

. During the allocation process, if server 1 belonging to and server

2 belonging to are the most suited to store fields 1 and 2, respectively, but the two servers

belong to the same , i.e., there is a conflict between server 1 and server 2, then we must avoid

this allocation. Assuming that the sensitivity threshold , sensitive data fields are those

that have a sensitivity score of at least 0.5. The sensitivity and size of the data are randomly

generated, and the trust level of the server is determined by a set of random values that follow a

normal distribution. The capacity, pricing, and performance are established at random with

reference to the Microsoft Azure Cloud Server data, the probability of conflict between servers

was set to 10%.

22

Figure 3.1: Performance Experiments Result.

We conducted 100 sets of experiments with various fields and server sizes, counting the

minimum, average and maximum running times in each case. The results are displayed in Fig.

3.1. According to the results, when which means the number of data fields is 60, the

average running time is approximately 63.5 s and the maximum running time is 300 s. Although

the average runtime is low when is 10-50, the increasing trend of maximum and average

runtime is quite significant when increases to 60 fields, and it is projected that when

surpasses 100, the average running time will be measured in hours. As a result, in order to

increase efficiency, we need further improvements to the solution.

23

3.7 Feasibility Experiments

Figure 3.2: Feasibility Experiments Result.

In order to evaluate the feasibility of the solution, we conducted 100 experiments with

various server conflict rates and server sizes and counted the frequency of infeasible solutions,

and m is still three times n which means the number of servers is three times the number of data

fields. The experimental results are shown in Fig. 3.2, where the vertical coordinates represent

the number of infeasible solutions, and the horizontal coordinates represent the probability of

conflict between servers. The figure illustrates how the number of infeasible solutions rises

considerably when the conflict rate exceeds 10%. It also shows how this number rises as server

size increases. For example, when there are 120 servers and the conflict rate is 30%, 97 out of

100 solutions are infeasible. Therefore, in real-world applications, especially when m is large, we

should attempt to minimize the conflict rate between them below roughly 10%. High conflict

rates both indicate that the scenario does not make sense in reality or additional service providers

may need to be employed to complete the storage.

3.8 Summary

In Chapter 3 we present a real-world scenario and assume data and constraints, and introduce a

method to solve the scenario. We then further describe the problem and briefly explain the

24

solution. We model the problem using the E-CARGO model, introducing different notations to

describe the problem and giving definitions. For the calculation of the different metrics, we give

detailed formulas. In addition we formalize the constraints in the model and explain the

complexity of the problem. We use CPLEX to first conduct performance experiments, through

which we find that the runtime is relatively small at a certain scale, but unacceptable when the

number of data fields exceeds 100. We then test the feasibility of the method and find that the

conflict rate of the server is around 10% which is reasonable, a higher conflict rate will lead to a

large number of infeasible solutions and a high conflict rate is not meaningful in practice.

25

Chapter 4

4 Improvement of the Allocation Scheme

We can observe from the performance experiment results that the performance needs to be

improved. Through experiments, we discovered that overly complicated server conflict

constraints were the primary reason. In the same setting as the earlier performance experiments,

we eliminated the server conflict constraint and ran the experiments for various numbers of fields

independently. Detailed results are shown in the appendix. The runtime without adding conflict

constraints is significantly lower compared to the method with conflict constraints. Therefore, in

order to improve the performance, we need to focus on improving the conflict constraint while

reducing the overall operation size as much as possible. We made a series of initial trials to

improve the method, but none of them achieved a good result, see the appendix for details.

4.1 Genetic Algorithm

After trying some improvement methods without satisfactory results, we also tried to use genetic

algorithms [30] to explore whether performance improvements could be achieved.

In this method, the number of individuals is the size of the role assignment matrix , i.e.,

. Each generation uses all the allocation process constraints as screening requirements, and

the individual with the greatest is then chosen for future evolution after the screening process

is complete. In the initial experiments, we discovered that each initialized population could not

satisfy the constraints we set from the beginning due to the complexity of the constraints, and the

experiments could not be carried out. To solve this issue, we use CPLEX to first find a feasible

solution for the initial population so that we can further search for individuals with higher .

When the mutation probability and crossover probability are both equal to 0.7 after running

experiments with various parameter values, we can get better results; otherwise, the evolution

can rarely move forward. We conducted 100 experiments with m = 120 and n = 40 which means

the number of severs is 120 and the number of data fields is 40. The other settings remained the

same as those in the previous experiments. A population size of 1000, and an evolutionary

generation of 5000 were set. On average, the optimal individual appeared in the 4724th

generation, with an average maximum value of 20.11 and an average running time of 233.39 s.

The value of the optimal solution using the improved method under the same conditions was

32.37. From the results, we can see that it is possible to find the highest value only if the

26

population size and the number of genetic generations are large enough, and the performance of

excellent individuals evolved with this strategy is very low.

To further improve it, we attempt to set the number of individuals to the number of servers

in conflict, initialize the population with CPLEX as before, where each mutated individual

actually represents the available servers in conflict, combine each individual to other servers to

find a feasible solution using CPLEX, and select the largest value in the population. For the

following evolution, the individual with the highest value in the population is chosen. After

performing the same experiments on the modified genetic method, we found that while the

number of generations needed to produce better individuals did decrease significantly, the time

to find the best solution was still far from satisfactory. Each generation requires a large number

of computations, and if the population size is 100, then each evolutionary generation requires

100 computations using CPLEX, while the average run time per generation is about 1.7s.

Therefore, if we set hundreds of evolutionary generations, the final total time will be very long

and far from acceptable.

4.2 Greedy Algorithm

We also attempted to use the greedy algorithm [6], a common method for finding the optimal

solution, to tackle the problem. Following the principles of the greedy algorithm, we choose the

server with the highest value for each field, and we set all the constraints that must be met by

that server. If there is a server that conflicts with that server, then the conflicting server is flagged,

and the field is not allowed to be assigned to it. We conducted 100 experiments with 120 servers,

40 data fields. Detailed experimental results can be found in the appendix. According to the

statistics of the experimental results, the values obtained by the greedy algorithm were on

average 1.93% less than those obtained by CPLEX, and in addition, there were 8 cases of no

solution in 100 experiments. Subsequently, to further improve the results of the greedy algorithm,

we computed the edges from each field to all servers and selected the largest edges for

assignment. The experimental results show that the value obtained by the modified greedy

algorithm is 1.02% less than the value of the CPLEX result. Additionally, there are 15 instances

in 100 experiments when there is no solution. Although the difference between the result value

of the greedy algorithm and the result value calculated by CPLEX is not large, the greedy

algorithm generally has trouble finding the real optimal solution and there are many cases where

no solution can be found.

27

4.3 Generalizing Conflict Relationships

When analyzing the conflict constraints, we consider that the definition of server conflicts

actually comes from the service providers, i.e., s. The computation of conflict constraints can

be reduced by generalizing conflicts between servers to conflicts between servers and the entire

set of servers belonging to the .

Definition 4.1: is a list of all servers provided by s, e.g.]

indicates that provides two servers 1 and 2, provides servers 3 and 4. The number of

servers provided by each is . Constraint (3.11) needs to be changed to:

(3.11)

Where is the number of service providers. In the same setting as before, we conducted

100 experiments with various server and field sizes. We assume that each provides 3 servers,

i.e., =3, and the number of cloud servers is 80% of the number of all servers , i.e., =

m×80%, and the remaining servers are edge servers. Each cloud server and each edge server can

store up to 10 fields and 1 field, respectively, without a backup. According to the assumption that

there are conflicting relationships between the three servers provided by each . The runtime at

various sizes is shown in Fig. 4.1. In contrast to the results in Fig. 3.1, the running time of the

improved method is significantly lower compared to the original method, where the average

running time of the original method is about 63.5 s while the average running time of the

improved method is about 0.5 s when the number of data fields is 60, which is only 0.8% of the

results of the original method. And the final result value is the same as the original method is the

result value of the optimal solution.

28

Figure 4.1: Performance Experiments Result of the Improved Method.

4.4 Conflict Constraints in Realistic Scenario

According to the results of the above improvement, it can be seen that the efficiency of the

solution has been greatly improved, but there are also unreasonable aspects of the scenario. If we

need to store many data fields and restrict too many fields to be stored in the same 's servers,

then we need at least the same number of s as that of data fields, which is unrealistic. In

addition, in this scenario we believe that any two sensitive fields can infer critical privacy

information, but in practice the number of such fields is often very few. Therefore, we need to

further adapt the experimental scenario and modify the method to meet the realistic situation.

In order to satisfy practical needs, we further segment the field categories and divide

sensitive fields into highly sensitive fields and low sensitive fields. Highly sensitive fields refer

to the fields that are highly likely to be inferred from privacy information when combined with

other sensitive fields, and low sensitive fields are those having a certain probability of inferring

privacy information from them, and the previously mentioned non-sensitive fields are fields that

have very low probability or even will not be inferred from privacy information. The number of

highly sensitive fields is denoted by , and the number of low sensitive fields is denoted by ,

. Considering the fact that the number of highly sensitive fields is often very small

in practice, we can assume that the number of servers can meet the storage requirements in the

usual case. In addition, due to the specificity of highly sensitive fields, we only allow them to be

stored in the edge server, and since the edge server has a high level of security we can ignore

conflicts caused by service providers in the edge server. Thus, in this scenario we consider

29

removing the constraint (3.12). However, for low sensitive fields, we need to introduce a new

matrix to help us measure the impact on information privacy when multiple low sensitive fields

are stored on the cloud servers of the same .

Definition 4.2 [27]: The matrix is an matrix which is used to represent the

impact on data storage privacy, i.e., values, when a certain two low sensitive fields are stored

in the same 's server. Symbol denotes the number of impact factors, i.e.,

 and denote servers, and denote stored fields,

 denotes the degree of impact on privacy and .

For example, when server and server belong to the same and store the low sensitive

fields and with a privacy impact of -0.3, then

, then changes

to .

Now our problem is transformed into finding a to

 , and if both and are 1 and

, otherwise. Therefore, except for constraints (3.5) – (3.12) the problem also needs to

satisfy the following constraints:

 (4.1)

 (4.2)

To verify the feasibility of the method, we assume that ,

, , the number of is 10 and , and perform one hundred

simulations under that condition. The maximum run time in one hundred experiments is 64.05 s

and the average run time is 25.95 s. We also compared the results with the same conditions

without adding the impact factor constraint and found that the total qualification value of the

assignment without this constraint was reduced by 15.26% on average compared to our method.

Additionally, we conducted experiments with a larger number of data fields while keeping the

30

same number of servers, and the results are shown in Fig. 4.2. When the number of data fields is

400, the complete result is not obtained due to computer performance, so the maximum number

of fields that can be calculated in this environment is around 350 when the number of servers is

100. The experiment shows that our method modified for the real-world scenario can effectively

enhance the privacy of the data and is relatively acceptable in terms of operational efficiency and

can obtain the optimal solution.

Figure 4.2: Performance Experiments Result of the Method for the Realistic Scenario.

31

4.5 Comparison Experiments

Figure 4.3: Comparison Experiments Result of Qualification Values.

Figure 4.4: Comparison Experiments Result of Cost.

To test the effectiveness of our proposed method, we compare the improved method with the

trust-based method and the baseline method. In the comparison experiments, we contrast our

proposed method with the other two methods in terms of, respectively, qualification value and

32

cost. The fundamental idea of the trust-based strategy is to allocate the server with the highest

trust level to the data, and the baseline method is a randomly found feasible assignment scheme

that satisfies the conditions, and all approaches are executed in the same environment and under

the same constraints. As in the other experiments, we ran 100 experiments with varied server

sizes of 30, 60, 90, and 120, as well as data field sizes of one-third of the number of servers, and

we tallied the average qualification values and costs and compared them. The experimental

setting and conditions are similar to those of the earlier experiments. Fig. 4.3 demonstrates the

percentage increase in the sum of the assigned qualification values, and the percentage decrease

in the cost of our method compared to the other two methods is shown in Fig. 4.4. As can be

seen, the sum of the assigned qualification values of our proposed method is 57.15% higher than

the trust-based method and 52.75% higher than the baseline method, the costs of the trust-based

method and the baseline method are, respectively, 7.48% and 4.47% higher than the cost of our

method when the number of servers is 120. The results show that our proposed method

outperforms the other two methods, and the effects are more pronounced the larger the server

size. Overall, our approach allows for a better assignment of the most appropriate server to store

the fields, while focusing on data privacy and reducing expenses.

We have to clarify that we may not be able to compare ours with existing methods in the

related work (Chapter 2), because the defined data allocation problem is original, and no existing

work can be used directly to solve such a problem.

4.6 Large Scale Data and Backups

We can observe from the performance experiment results that the performance needs to be

improved. Through experiments, we discovered that overly complicated server conflict

constraints were the primary reason. In the same setting as the earlier performance experiments,

we eliminated the server conflict constraint and ran the experiments for various numbers of fields

independently. Detailed results are shown in the appendix. The runtime without adding conflict

constraints is significantly lower compared to the method with conflict constraints. Therefore, in

order to improve the performance, we need to focus on improving the conflict constraint while

reducing the overall operation size as much as possible. We made a series of initial trials to

improve the method, but none of them achieved a good result, see the appendix for details.

33

In real-world scenarios, it occasionally occurs to store massive amounts of data. There

could be thousands of different data fields in the dataset, and for non-sensitive or low sensitive

fields, the cloud servers usually have enough resources to handle large-scale data. But in the case

of highly sensitive fields, if the data contains a very large number of highly sensitive fields, then

finding sufficient service providers and edge servers while keeping high privacy can be a

challenge and we need to come up with some feasible solutions to solve this problem.

First, we can find all the duplicate data fields and remove them, and then determine if the

numbers of the server and s meet the requirement of the data fields. If it is still impossible to

guarantee that each edge server stores only one highly sensitive data field and different s store

different highly sensitive data field, then we must sacrifice some privacy and permissions and let

each edge server store multiple highly sensitive fields in order for the entire allocation scheme to

be feasible.

Therefore, we consider compressing the field size. For instance, users can set multiple

sensitivity ranges, and we can treat some data fields with similar sensitivity as a storage unit and

designate a server to store these storage units. This makes it possible for a large number of data

fields to be compressed into just a few hundred storage units. It is crucial to be aware that doing

so can result in the inference of some private information, since if data stored on a server is

compromised, others might well infer more private information based on these fields. Therefore,

we advise combining multiple data fields into a single storage unit with the help of strategies

based on correlations between the data fields or consulting experts in the area to which the data

relates, ensuring as much as possible that no private information can be inferred from these

consolidated fields. In addition, in order to ensure that the amount of data does not exceed the

server's capacity, we should also obtain as much information as we can about the server

configuration and evaluate the amount of data the servers can carry before assigning a server to

each storage unit. If the volume of the data unit exceeds the capacity, we can determine the load

range of the server and iterate the allocation process. The runtime after the field size reduction

can be referred to the experimental results in Fig. 4.1. In addition, due to the limited storage

capacity of the server, when data fields are compressed for storage, it may result in infeasible

solutions. In the feasibility test we keep both the number of servers and the number of storage

units at 100, and keep increasing the number of data fields to test the number of infeasible

solutions for the case of a lower field compression rate. When the data field is 50,000, i.e., the

34

compression rate is 0.2%, 8 infeasible solutions are obtained in 100 solves. More infeasible

solutions are generated when the compression rate is lower. Hence, it should be avoided that the

field compression rate is too low.

Moreover, when the data fields need to be backed up additionally, it is equivalent to

increasing the size of the data. To test the feasibility of our modified method, we use similar

conditions as those in the previous experiments , , which means that all

fields need an additional backup, and then we reduce the number of fields by 10 in turn to test

their feasibility at 100 servers.

Figure 4.5: Performance Experiments Result for Additional Data Backup.

Figure 4.6: Feasibility Experiments Result for Additional Data Backup.

35

From the experimental results shown in Figs. 4.5 and 4.6, we can see that when the number

of servers and data fields is 100, the maximum running time is nearly 10 s, the average running

time is less than 4 seconds and its running efficiency is relatively acceptable. The rate of

infeasible solutions is reduced from 38% to 18% by reducing the size of the fields while keeping

the budget and the number of servers constant. Therefore, in order to improve the feasibility of

the method with a certain server size, it is necessary to reduce the size of the fields, or it is

necessary to increase the number of servers and service providers. In addition, from the

experiment, when the number of fields is reduced to a certain number, it is difficult to continue

to reduce the rate of infeasible solutions, and then it is necessary to increase the budget. When

we double the budget, the number of fields is 50 and 60, and there are no infeasible cases. The

budget for using servers increases where additional backups are needed, and it is difficult to find

a feasible solution if the original budget is maintained. Hence, increasing the budget also

improves the feasibility of the method in this situation.

4.7 Summary

In this chapter, we improve the proposed method. Specifically, we first try to solve the allocation

problem using a genetic algorithm and a greedy algorithm, respectively, but the results of both

are not as satisfactory. We then delve into the conflict constraints in the allocation problem and

improve the constraints to improve the running speed significantly. We also compare the

improved method with the trust-based method and the baseline method, and arrive at the result

that the improved method is superior. Finally, we further adapt the method to scenarios with a

larger number of servers and data fields as well as where data needs to be backed up.

36

Chapter 5

5 Extended Application of the E-CARGO Model

Nowadays, in the context of low carbon emissions, the procurement chain affects the carbon

emissions in the supply chain. Inspired by the above approach, we realized the wide range of

applications that the E-CARGO model can be applied to help us develop strategies to optimize

the carbon footprint involved in procurement. Below is a sourcing scenario and a description of

the problem.

5.1 Real-World Procurement Scenario

Eddie works for a company as a procurement officer and is in charge of developing the

procurement program. In recent years, the company has established a series of emission

reduction targets in response to efforts from the government and the community to reduce its

carbon footprint while building a positive corporate image. Eddie is requested to develop a

procurement strategy that takes into account three factors: cost, carbon emission and item quality.

Eddie is instructed to consider all three factors as equally important, and is required to spend no

more than $100,000 on the purchase and no more than 200,000 kg on the carbon emission.

Procure 1,000 of each item. Under this condition, Eddie has to develop an optimal procurement

strategy to satisfy the requirements of the company.

Table 5.1: The qualification Values for Items from Different Suppliers

Suppliers Item 1 Item 2 Item 3 Item 4 Item 5

Supplier 1 0.72 0.71 0.53 0.78 0.58

Supplier 2 0.64 0.70 0.64 0.61 0.64

Supplier 3 0.52 0.74 0.72 0.75 0.57

Supplier 4 0.65 0.65 0.85 0.72 0.48

Supplier 5 0.43 0.45 0.67 0.87 0.63

Table 5.2: The Number of Items Produced Per Hour

Suppliers Item 1 Item 2 Item 3 Item 4 Item 5

Supplier 1 1 2 1 3 5

Supplier 2 1 1.5 2 2 4

37

Suppliers Item 1 Item 2 Item 3 Item 4 Item 5

Supplier 3 1 3 2 3 5

Supplier 4 0.5 2 1 2 4

Supplier 5 1 2 1.5 2 4

Table 5.3: The Matching Relationship Between Items

Item Matching Relationship

Supplier 1 Item 1 Supplier 2 Item 3 Supplier 3 Item 3

Supplier 2 Item 3 Supplier 1 Item 1 Supplier 3 Item 3

Supplier 3 Item 3 Supplier 1 Item 1 Supplier 2 Item 3

This is undoubtedly a challenge for Eddie. We propose a new way for him to develop an

optimal procurement solution. Prior to making any decisions, we need to evaluate the average

cost of purchasing each item, the average carbon emissions generated during the production and

transportation of each item, and the average quality of each item as shown in Table 5.1. The

carbon emission can be found using the life-cycle assessment (LCA) method and calculated

based on different carbon emission factors. Then, the three indicators are normalized to a value

between 0 and 1, and the quality of each item is converted to a value between 0 and 1, where a

smaller value means a better case, and vice versa. Next, based on these three types of indicators,

we calculate the overall evaluation value of each supplier for each type of item, and since these

three factors are equally important, they have the same weight of one-third in the overall

evaluation value. It is also necessary to calculate the number of working hours, the production

capacity as shown in Table 5.2 and the minimum purchasable quantity that the supplier can

provide for the different items. In addition, the fit between items produced by different suppliers

should be taken into account, as shown in Table 5.3, item A only fits items B and C. If item A is

purchased, it can only be chosen from C and D of the supplier. Finally, the constraints proposed

by the company are added to find a purchasing solution with the minimum evaluation value. The

final optimized allocation qualification value of 2500.

5.2 Procurement Strategy for Reducing Carbon Emissions

First, we need to collect all the costs involved in purchasing different types of items from

different suppliers and calculate the average cost of purchasing each item. Then we need to

evaluate the carbon footprint of each item purchased, and we may calculate all the direct and

38

indirect carbon emissions produced by the item based on different carbon emission factors.

Finally, we also need to assess the average product quality of each item. The three types of data

collected were aggregated and normalized to a value between 0 and 1. In addition, item quality

necessitates further the conversion of the order of the maximum and minimum values, and after

subtracting the item quality score from 1, smaller values indicate higher item quality scores. This

conversion is to facilitate the subsequent identification of the least cost and carbon emission

procurement options. After obtaining these three types of scores, we can finally calculate the

qualification value of different items from different suppliers, which can be obtained by

multiplying these three scores by their respective weights cumulatively. AHP can effectively

help us to derive their weights analytically [17].

Before solving, we also need to determine a set of conditions that may be involved in a

realistic scenario. Since the procurement strategy is modeled in terms of working hours in this

solution, we also need to account for the efficiency of each supplier to produce different items,

i.e., the production per hour. The product of the production efficiency and the working hours

assigned to the supplier by the purchaser cannot be less than the sourcing requirement. In

addition, it is doubtful that the supplier will produce only a small number of items at a time in a

practical situation, so we also need to consider the minimum purchasable quantity. Finally, other

constraints, such as procurement budget, carbon emission cap and product quality standard, are

taken into account to find the optimal working hours allocation solution, i.e., the optimal

procurement solution to meet the procurement demand.

5.3 Formalization of the Procurement Problem with E-CARGO

Model

In this section we still use the E-CARGO model to analyze the problem, and the following

notation and definitions are similar but not related to the previous section. In the new problem

refers to the suppliers and refers to the items to be purchased. The number of suppliers that can

be expressed by the non-negative integer , likewise, is the number of items

that we can express, … are the indices of suppliers, and … are the indices of

items.

Definition 5.1 [24]: The role range vector L is an n-vector that contains the lower bounds of

the ranges of roles in the environment of a group. It indicates the quantity of each item to be

39

purchased, i.e., . If the quantity to be purchased for item 1 is 10,000 then

.

Definition 5.2 [24]: The role limit matrix is an m n matrix where

represents the maximum number of working hours that a supplier can provide to produce an item.

It is also related to the production conditions of the supplier. For example, if item 1 and item 2

are produced using separate production lines, the working hours between them will not affect

each other.

Definition 5.3: The Production Line Relationship is an m n matrix that is used to

record the production line relationships used by different suppliers to produce different items.

 indicates that supplier 1 produces items 1,2,3, and 4 by the same production

line, therefore the working hours provided by supplier 1 are shared by these items.

Definition 5.4: The procurement spend matrix is an m n matrix, where

represents the cost of purchasing item from a single supplier .

Normalize procurement expenditures to get procurement cost score

Definition 5.5: The carbon emission matrix is an m n matrix, where

represents all the direct and indirect carbon emissions involved in purchasing item

from individual supplier . To ease formalization, we normalize carbon emissions

to create carbon emission scores

Definition 5.6: The quality score matrix is an m n matrix, where is

used to measure the average quality of item of supplier . For the

subsequent operation of finding the minimum solution, we use ,

 . Then the minimum value is used to represent

the best quality score.

Definition 5.7 [24]: The qualification matrix is an m n matrix, where

represents the qualification value of item of supplier .

, where are the weights of

the three indicators in the qualification value.

To determine the weight of each factor in the qualification value in a concise and systematic

way, we use AHP. First the three factors can be evaluated by experts to determine the more

appropriate scale between them two by two, and in the example we used the 1-9 scale method.

Then we calculate the feature vector value based on the scale, which is the weight value of each

40

factor, and also obtain the maximum feature root value and consistency index for the consistency

test later.

Definition 5.8: The work efficiency matrix is an m n matrix, where

 indicates the number of item that can be produced by

supplier per hour.

Definition 5.9: The minimum number of working hours available from the suppliers is

an m n matrix, where indicates the minimum number of working hours that the

purchaser can allocate to the supplier when purchasing item produced by supplier

. The minimum available working hours are introduced to match the actual

situation of the supplier and to avoid situations where the purchaser requests an excessively low

procurement requirement or an unavailable quantity.

Definition 5.10: The carbon emissions cap indicates the maximum carbon

emissions allowed by the procurement scheme.

Definition 5.11: The procurement budget indicates the maximum procurement

expenditure that the purchaser can accept.

Definition 5.12: The item quality level requirement is an n-vector where

represents the minimum quality standard that needs to be met for each type of item.

Definition 5.13: The item matching relationship matrix is an matrix,

where indicates whether there is a matching

relationship between item of supplier and item of supplier That

indicates there is an adaptation relationship between item 1 and item 3 of supplier 1. Hence, if

you choose to purchase item 1 of supplier 1 during procurement, you also need to choose item 3

of supplier 1.

Definition 5.14 [24]: The definition of the role assignment matrix is an m n matrix,

where indicates the purchaser's demand for

working hours to produce item at supplier . That indicates the purchaser requires

100 hours of production item from supplier .

Definition 5.15 [24]: The qualities of the allocated agents are added together to determine

the group performance of group g, which is It

indicates the final score of the procurement solution.

41

Definition 5.16 [24]: If role has been given a sufficient number of agents, it is workable in

the group, i.e., It means that the sum of the product of working

hours and work efficiency required by the purchaser for different suppliers needs to be greater

than or equal to the quantity purchased.

Definition 5.17 [24]: If each role in is workable, i.e.,

 then is workable. If is workable, then g is as

well.

Definition 5.18: Using the definitions listed above, our allocation problem can be defined to

determine a matrix to obtain

subject to (5.1)

 (5.2)

 (5.3)

 (5.4)

 (5.5)

 (5.6)

 (5.7)

 (5.8)

Where constraint (5.1) informs whether the purchaser has a demand for the supplier's item

in terms of working hours; (5.2) makes the group workable; (5.3) indicates that the purchaser's

demand for working hours cannot exceed the maximum number of working hours that the

supplier can provide under certain production conditions, tells the number of items

produced by different production lines of supplier ; (5.4) points out that all expenses for

procurement must not exceed the procurement budget; (5.5) constraints that the sum of all

carbon emissions involved in the procurement must not exceed the carbon emissions cap; (5.6)

42

specifies that the quality of each type of item cannot be lower than the item quality standard; (5.7)

shows that the required working hours in the procurement program must be greater than or equal

to the minimum productive working hours set by the supplier; (5.8) denotes that if there is a

matching relationship between two types of items, e.g., if there is a matching relationship

between item 1 and item 3, then if item 1 from that supplier is purchased, the purchase of item 3

must be selected from among the suppliers with which it has a matching relationship,

indicates the number of suppliers with which it has a matching relationship.

5.4 Summary

In this chapter, we extend the application of the allocation scheme to focus on the procurement

segment of the supply chain, focusing on reducing the carbon emissions involved in that segment.

First, we present a realistic scenario to describe the problem and outline how to achieve an

optimization of the sourcing solution. Finally, similar to the previous method, we model the

problem using the E-CARGO model and adapt and introduce definitions to fit the problem.

43

Chapter 6

6 Simulation Experiments to Optimize Procurement Solution

In this section, we simulate different real-world scenarios and design three types of experiments

to analyze the effect of the solution. All experiments were conducted in the environment shown

in Table 3.5.

Based on the modeling of the problem, we know that it is challenging to solve such a

complicated model, and we need to discover a way that can do it in a reasonable amount of time.

ILOG is the tool that can be utilized to tackle this complex problem. In order to resolve the issue,

we employ the IBM ILOG CPLEX (CPLEX) package. First, we must prepare all the components

to meet the requirement of the CPLEX package, where the variables of matrix have upper and

lower bounds of 0 and the maximum value of , respectively, and the matrix and

represent the coefficients of the objective function. Subsequently, we add the expressions of the

objective and constraints and find the optimal solution, where these expressions can be

represented by some formulas.

6.1 Performance Experiments

We simulate experiments in contexts with different numbers of suppliers and purchased items,

and then we track the execution time of the program to evaluate the performance of the solution

in real-world scenarios. The size of the simulated experiment is assumed to start with a number

of procurement items of 50 and increase by 50 procurement items each step until it approaches

300. Correspondingly, the number of suppliers is one-fifth of the number of item types.

The item quality standard we set to 0.8, which means that items with a quality score lower

than 0.8 will not be considered. The upper limit of the procurement budget and the upper limit of

the carbon emission are set to 80% of the maximum values of the procurement budget and

carbon emission. The production line relationships are randomly generated and the probability of

the existence of matching relationships between items is set to 10%.

44

Figure 6.1: Performance Experiments Result.

We conduct 100 sets of experiments with different numbers of suppliers and types of

purchased items, counting the minimum, average and maximum running times in each case. The

results are displayed in Fig. 6.1. According to the results, when there are 10 suppliers and 50

categories of items to be purchased, the minimum running time is 0.01 s, the average running

time is approximately 0.03 s and the maximum running time is 0.18 s. When there are 60

suppliers and 300 categories of items to be purchased, the minimum running time increase to

0.29 s, the average time increase to 0.43 s and the maximum time increase to 1.17 s. The results

of the performance experiments show that our proposed method runs efficiently at a certain scale

and the running time is relatively acceptable when the scale is larger. Also to further determine

the performance efficiency of the method, we modify different constraints in the method and test

them. The results show that the constraints of the item matching relationship require more

computation time, so we need to further improve the constraints if we want to further improve

the efficiency.

6.2 Weighting Ratio Experiments

In order to evaluate the impact of the weight of the carbon emission score on the total sum

qualification value, we assume different weights for the carbon emission score and conducted

100 experiments separately. According to AHP, we assume five importance levels among the

factors: very weak, weak, strong, very strong, and absolution with other factors, and their

45

measurement values are 1, 3, 5, 7, and 9, respectively. Subsequently, we calculate the cumulative

total scores of procurement expenditure, carbon emission and item quality based on the results of

the working hour allocation in the procurement solution and use the average of 100 experimental

results as the final reference value. The experiments are conducted at the scale of ,

, and the other conditions are similar to the previous experiments.

Figure 6.2: Weighting Ratio Experiments Result.

The result of the experiments are shown in Fig. 6.2, where different colors indicate different

weights, and the weights from 1 to 5 correspond to the weight of carbon emissions with other

factors from very weak to absolution, respectively. When the weight of carbon emissions is

absolution, the score of carbon emissions decreases by 28.75% compared to when the weight of

carbon emissions and other factors are equally strong, while the procurement expense increases

by 23.74%. It can be seen that as the weight of carbon emissions increases, the reduction in

carbon emissions becomes more pronounced, although there is also a significant increase in the

relative cost of procurement, while at the same time, the quality of the items does not change

significantly and is in a state of small fluctuations of increase and decrease. Therefore, in real-

world situations, especially when the purchaser is more concerned about carbon emissions, we

46

should not ignore the cost of procurement and try to adjust the weight of various factors to a

reasonable range.

6.3 Comparison Experiments

In the comparison experiments, we compare a baseline method with three methods - minimizing

procurement expense, minimizing carbon emissions, and maximizing item quality - to analyze

their strengths and weaknesses. The baseline method treats all three factors as equally important,

meaning they all have a weight of one-third in the calculation of eligibility values, and then uses

that weight to calculate the optimal procurement solution. Minimizing expenditure is to use only

the procurement expenditure as an optimization parameter and find the working hour allocation

scheme with the lowest expenditure. Minimizing carbon emissions and maximizing item

qualities are similar to minimizing expenditure, and finally a procurement scheme is found under

certain constraints. The assumptions of the experiment are similar to those of the previous

experiments. The results of the experiments are shown in Fig. 6.3 and Fig. 6.4.

Figure 6.3: Comparison Experiments Result.

47

Figure 6.4: Comparison Experiments Result.

Fig. 6.3 shows the differences between the three methods compared to the basic method in

terms of three factors: expenditure, carbon emissions and quality. The figure shows that the

method that focuses only on procurement spend performs best in terms of overhead but has the

highest carbon emission and the lowest average quality of items. The approach that focuses only

on carbon emissions significantly reduces carbon emissions compared to the other methods but

also increases costs. The method that only considers the quality of the items increases in all

aspects compared to the basic solution. Fig. 6.4 shows a more specific percentage increase or

decrease for the three methods compared to the baseline method.

6.4 Summary

In this chapter, we have conducted performance experiments, weight ratio experiments and

comparison experiments. Based on the experimental results, we suggest that companies need to

consider the impact of various factors in a more aggregate manner when purchasing items, and

that over-consideration of one factor may have a more serious impact on the results. When

developing a purchasing plan, we try to adjust the weights of different factors to find a relatively

balanced optimal purchasing plan, taking into account the results of previous experiments. We

must clarify that the constraints of work efficiency, working hours, and procurement

48

requirements in the experiments are hypothetical data, and further research may be needed to

confirm the generality of the experimental results for specific areas or situations.

49

Chapter 7

7 Conclusion

In this paper, we propose an optimal allocation solution for decentralized data storage in an edge-

cloud environment that focuses on enhancing data privacy. We propose a data partitioning scheme by

field to avoid as much as possible the inference of important information due to data leakage. We

introduce a degree of fit metric that enables data fields to be stored in the most appropriate servers.

We also introduce the E-CARGO model and other constraints to model the problem and use the

CPLEX optimization package to find the optimal allocation scheme. We refine the method to

improve its performance and reduce the running time to an acceptable range based on realistic

scenarios. According to the results of the simulation experiments, our proposed solution allows the

data to be stored in servers that better match their requirements compared with the trust-based and

baseline methods, making full use of the server resources while reducing the overhead to some extent.

We further optimize the method by proposing some strategies to adapt it to scenarios with a large

number of servers and data volume and data backup.

Furthermore, we extend the application of the approach to other areas, and we propose a

working hour allocation scheme for item procurement that focuses on optimizing carbon

emissions. In dealing with this proposed scheme, we facilitate the modeling and analysis of the

problem using the E-CARGO model. Following the E-CARGO model, we introduce a

comprehensive evaluation score to assess the advantages and disadvantages of the procurement

scheme in terms of procurement overhead, carbon emissions and quality of the items. We also

introduce other constraints to model the problem and use the CPLEX optimization package to

find the best allocation scheme. Based on the results of the simulation experiments, our proposed

solution enables the purchaser to develop a procurement solution that better meets their needs,

reducing the carbon emissions of the procurement process while reducing the overhead to a

certain extent while ensuring the quality of the purchased items.

Our next study will focus on further examining the partitioning of data fields for large-scale

scenarios, data field conflicts, and the introduction of other constraints; further improving the

50

performance of the method; adjusting the adaptability of the method to fit more scenarios and

constraints; and designing the system prototype.

51

References

[1] A. Acquaye, A. Genovese, J. Barrett, and S. C. Lenny Koh, ‘Benchmarking carbon

emissions performance in supply chains’, Supply Chain Management: An International

Journal, vol. 19, no. 3, pp. 306–321, May 2014, doi: 10.1108/SCM-11-2013-0419.

[2] A. Kumar, V. Jain, and S. Kumar, ‘A comprehensive environment friendly approach for

supplier selection’, Omega, vol. 42, no. 1, pp. 109–123, Jan. 2014, doi:

10.1016/j.omega.2013.04.003.

[3] A. Makris, E. Psomakelis, T. Theodoropoulos, and K. Tserpes, ‘Towards a Distributed

Storage Framework for Edge Computing Infrastructures’, in Proceedings of the 2nd

Workshop on Flexible Resource and Application Management on the Edge, Minneapolis

MN USA, Jul. 2022, pp. 9–14. doi: 10.1145/3526059.3533617.

[4] A. Sharma and H. Banati, ‘A Framework for Implementing Trust in Cloud Computing’, in

Proceedings of the International Conference on Internet of things and Cloud Computing,

Cambridge United Kingdom, Mar. 2016, pp. 1–7. doi: 10.1145/2896387.2896391.

[5] A. Singh, S. Kumari, H. Malekpoor, and N. Mishra, ‘Big data cloud computing framework

for low carbon supplier selection in the beef supply chain’, Journal of Cleaner Production,

vol. 202, pp. 139–149, Nov. 2018, doi: 10.1016/j.jclepro.2018.07.236.

[6] B. A. Julstrom, ‘Greedy, genetic, and greedy genetic algorithms for the quadratic knapsack

problem’, in Proceedings of the 2005 conference on Genetic and evolutionary computation -

GECCO ’05, Washington DC, USA, 2005, p. 607. doi: 10.1145/1068009.1068111.

[7] C. Jia, K. Lin, and J. Deng, ‘A Multi-property Method to Evaluate Trust of Edge Computing

Based on Data Driven Capsule Network’, in IEEE INFOCOM 2020 - IEEE Conference on

Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON, Canada, Jul.

2020, pp. 616–621. doi: 10.1109/INFOCOMWKSHPS50562.2020.9163069.

[8] C. Lang, C. Woo, and J. Sinclair, ‘Quantifying data sensitivity: precise demonstration of

care when building student prediction models’, in Proceedings of the Tenth International

Conference on Learning Analytics & Knowledge, Frankfurt Germany, Mar. 2020, pp. 655–

664. doi: 10.1145/3375462.3375506.

[9] C. Lang, C. Woo, and J. Sinclair. 2020. Quantifying data sensitivity: precise demonstration

of care when building student prediction models. In Proceedings of the Tenth International

Conference on Learning Analytics & Knowledge (LAK '20). Association for Computing

Machinery, New York, NY, USA, 655–664. https://doi.org/10.1145/3375462.3375506

[10] C. Niu, Z. Zheng, F. Wu, X. Gao, and G. Chen, ‘Achieving Data Truthfulness and Privacy

Preservation in Data Markets’, IEEE Trans. Knowl. Data Eng., vol. 31, no. 1, pp. 105–119,

Jan. 2019, doi: 10.1109/TKDE.2018.2822727.

[11] C. Zhang, E.-C. Chang, and R. H. C. Yap, ‘Tagged-MapReduce: A General Framework for

Secure Computing with Mixed-Sensitivity Data on Hybrid Clouds’, in 2014 14th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Chicago, IL,

USA, May 2014, pp. 31–40. doi: 10.1109/CCGrid.2014.96.

52

[12] C.-T. Chang, C.-L. Chin, and M.-F. Lin, ‘On the single item multi-supplier system with

variable lead-time, price-quantity discount, and resource constraints’, Applied Mathematics

and Computation, vol. 182, no. 1, pp. 89–97, Nov. 2006, doi: 10.1016/j.amc.2006.03.038.

[13] D.-I. Sirbu, C. Negru, F. Pop, and C. Esposito, ‘Storage service for edge computing’, in

Proceedings of the 36th Annual ACM Symposium on Applied Computing, Virtual Event

Republic of Korea, Mar. 2021, pp. 1165–1171. doi: 10.1145/3412841.3441991.

[14] E. D. Gemechu, I. Butnar, M. Llop, and F. Castells, ‘Environmental tax on products and

services based on their carbon footprint: A case study of the pulp and paper sector’, Energy

Policy, vol. 50, pp. 336–344, Nov. 2012, doi: 10.1016/j.enpol.2012.07.028.

[15] E. Pourjavad and R. V. Mayorga, ‘Optimization of a sustainable closed loop supply chain

network design under uncertainty using multi-objective evolutionary algorithms’, Adv

produc engineer manag, vol. 13, no. 2, pp. 216–228, Jun. 2018, doi:

10.14743/apem2018.2.286.

[16] F. T. S. Chan and H. K. Chan, ‘An AHP model for selection of suppliers in the fast changing

fashion market’, Int J Adv Manuf Technol, vol. 51, no. 9–12, pp. 1195–1207, Dec. 2010, doi:

10.1007/s00170-010-2683-6.

[17] F. T. S. Chan, N. Kumar, M. K. Tiwari, H. C. W. Lau, and K. L. Choy, ‘Global supplier

selection: a fuzzy-AHP approach’, International Journal of Production Research, vol. 46, no.

14, pp. 3825–3857, Jul. 2008, doi: 10.1080/00207540600787200.

[18] G. D. Samaraweera and J. M. Chang, ‘Security and Privacy Implications on Database

Systems in Big Data Era: A Survey’, IEEE Trans. Knowl. Data Eng., vol. 33, no. 1, pp. 239–

258, Jan. 2021, doi: 10.1109/TKDE.2019.2929794.

[19] Gupta A, Spillane R, Wang W, et al. Hybrid cloud storage: Bridging the gap between

compute clusters and cloud storage[J]. ACM SIGOPS Operating Systems Review, 2017,

51(1): 48-53.

[20] H. A. Idar, K. Aissaoui, H. Belhadaoui and R. F. Hilali, "Dynamic Data Sensitivity Access

Control in Hadoop Platform," 2018 IEEE 5th International Congress on Information Science

and Technology (CiSt), Marrakech, Morocco, 2018, pp. 105-109, doi:

10.1109/CIST.2018.8596381.

[21] H. Halabian, I. Lambadaris and Y. Viniotis, "Optimal server assignment in multi-server

queueing systems with random connectivities," in Journal of Communications and Networks,

vol. 21, no. 4, pp. 405-415, Aug. 2019, doi: 10.1109/JCN.2019.000023.

[22] H. Zhu, ‘Avoiding Conflicts by Group Role Assignment’, IEEE Trans. Syst. Man Cybern,

Syst., vol. 46, no. 4, pp. 535–547, Apr. 2016, doi: 10.1109/TSMC.2015.2438690.

[23] H. Zhu, ‘Maximizing Group Performance While Minimizing Budget’, IEEE Trans. Syst.

Man Cybern, Syst., vol. 50, no. 2, pp. 633–645, Feb. 2020, doi:

10.1109/TSMC.2017.2735300.

[24] H. Zhu, D. Liu, S. Zhang, S. Teng, and Y. Zhu, ‘Solving the Group Multirole Assignment

Problem by Improving the ILOG Approach’, IEEE Trans. Syst. Man Cybern, Syst., vol. 47,

no. 12, pp. 3418–3424, Dec. 2017, doi: 10.1109/TSMC.2016.2566680.

53

[25] H. Zhu, E-CARGO and role-based collaboration: modeling and solving problems in the

complex world, First edition. Hoboken, New Jersey: John Wiley & Sons, Inc, 2021.

[26] H. Zhu, M. Zhou, and R. Alkins, ‘Group Role Assignment via a Kuhn–Munkres Algorithm-

Based Solution’, IEEE Trans. Syst., Man, Cybern. A, vol. 42, no. 3, pp. 739–750, May 2012,

doi: 10.1109/TSMCA.2011.2170414.

[27] H. Zhu, Y. Sheng, X. Zhou and Y. Zhu, "Group Role Assignment With Cooperation and

Conflict Factors," in IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 48,

no. 6, pp. 851-863, June 2018, doi: 10.1109/TSMC.2016.2633244.

[28] H. Zhuang, R. Rahman, P. Hui, and K. Aberer, ‘Optimizing Information Leakage in

Multicloud Storage Services’, IEEE Trans. Cloud Comput., vol. 8, no. 4, pp. 975–988, Oct.

2020, doi: 10.1109/TCC.2018.2808275.

[29] IBM, ‘Cost of a Data Breach Report’, Computer Fraud & Security, vol. 2021, no. 8, pp. 4–4,

Jan. 2021, doi: 10.1016/S1361-3723(21)00082-8.

[30] J. E. Rowe, ‘Genetic algorithm theory’, in Proceedings of the fourteenth international

conference on Genetic and evolutionary computation conference companion - GECCO

Companion ’12, Philadelphia, Pennsylvania, USA, 2012, p. 917. doi:

10.1145/2330784.2330923.

[31] J. Hur, ‘Improving Security and Efficiency in Attribute-Based Data Sharing’, IEEE Trans.

Knowl. Data Eng., vol. 25, no. 10, pp. 2271–2282, Oct. 2013, doi: 10.1109/TKDE.2011.78.

[32] J. Koo, G. Kang, and Y.-G. Kim, ‘Security and Privacy in Big Data Life Cycle: A Survey

and Open Challenges’, Sustainability, vol. 12, no. 24, p. 10571, Dec. 2020, doi:

10.3390/su122410571.

[33] J. Yang, H. Zhu, and T. Liu, ‘Secure and economical multi-cloud storage policy with

NSGA-II-C’, Applied Soft Computing, vol. 83, p. 105649, Oct. 2019, doi:

10.1016/j.asoc.2019.105649.

[34] J. Zhang, T. Li, Z. Ying and J. Ma, "Trust-Based Secure Multi-Cloud Collaboration

Framework in Cloud-Fog-Assisted IoT," in IEEE Transactions on Cloud Computing, doi:

10.1109/TCC.2022.3147226.

[35] K. Al Nuaimi, N. Mohamed, M. Al Nuaimi and J. Al-Jaroodi, "ssCloud: A Smart Storage for

Distributed DaaS on the Cloud," 2015 IEEE 8th International Conference on Cloud

Computing, New York, NY, USA, 2015, pp. 1049-1052, doi: 10.1109/CLOUD.2015.149.

[36] K. Lamba and S. P. Singh, ‘Dynamic supplier selection and lot-sizing problem considering

carbon emissions in a big data environment’, Technological Forecasting and Social Change,

vol. 144, pp. 573–584, Jul. 2019, doi: 10.1016/j.techfore.2018.03.020.

[37] K. Shaw, R. Shankar, S. S. Yadav, and L. S. Thakur, ‘Supplier selection using fuzzy AHP

and fuzzy multi-objective linear programming for developing low carbon supply chain’,

Expert Systems with Applications, vol. 39, no. 9, pp. 8182–8192, Jul. 2012, doi:

10.1016/j.eswa.2012.01.149.

[38] L. X. Cui, L. Bai and Z. P. Cui, "Optimal multi-period multi-product supplier selection and

order allocation: Balancing supplier development and supplier switching," 2017 IEEE

54

International Conference on Industrial Engineering and Engineering Management (IEEM),

Singapore, 2017, pp. 1985-1989, doi: 10.1109/IEEM.2017.8290239.

[39] M. Gong, K. Pan, and Y. Xie, ‘Differential privacy preservation in regression analysis based

on relevance’, Knowledge-Based Systems, vol. 173, pp. 140–149, Jun. 2019, doi:

10.1016/j.knosys.2019.02.028.

[40] M. Nitti, R. Girau, and L. Atzori, ‘Trustworthiness Management in the Social Internet of

Things’, IEEE Trans. Knowl. Data Eng., vol. 26, no. 5, pp. 1253–1266, May 2014, doi:

10.1109/TKDE.2013.105.

[41] M. S. Asif, H. Lau, D. Nakandala, Y. Fan, and H. Hurriyet, ‘Case study research of green

life cycle model for the evaluation and reduction of scope 3 emissions in food supply chains’,

Corp Soc Responsibility Env, vol. 29, no. 4, pp. 1050–1066, Jul. 2022, doi:

10.1002/csr.2253.

[42] M. Thangavel and P. Varalakshmi, ‘Enabling Ternary Hash Tree Based Integrity

Verification for Secure Cloud Data Storage’, IEEE Trans. Knowl. Data Eng., vol. 32, no. 12,

pp. 2351–2362, Dec. 2020, doi: 10.1109/TKDE.2019.2922357.

[43] M. V. Carvalho Fagundes, Á. Cheles Keler, E. Oliveira Teles, S. A. B. Vieira de Melo and F.

G. Mendonça Freires, "Multicriteria Decision-Making System for Supplier Selection

Considering Risk: A Computational Fuzzy AHP-Based Approach," in IEEE Latin America

Transactions, vol. 19, no. 9, pp. 1564-1572, Sept. 2021, doi: 10.1109/TLA.2021.9468610.

[44] N. Absi, S. Dauzère-Pérès, S. Kedad-Sidhoum, B. Penz, and C. Rapine, ‘Lot sizing with

carbon emission constraints’, European Journal of Operational Research, vol. 227, no. 1, pp.

55–61, May 2013, doi: 10.1016/j.ejor.2012.11.044.

[45] P. K. Fong and J. H. Weber-Jahnke, ‘Privacy Preserving Decision Tree Learning Using

Unrealized Data Sets’, IEEE Trans. Knowl. Data Eng., vol. 24, no. 2, pp. 353–364, Feb.

2012, doi: 10.1109/TKDE.2010.226.

[46] R. Karim, C. Ding and A. Miri, "An End-to-End QoS Mapping Approach for Cloud Service

Selection," 2013 IEEE Ninth World Congress on Services, 2013, pp. 341-348, doi:

10.1109/SERVICES.2013.71.

[47] R. Patil Rashmi, Y. Gandhi, V. Sarmalkar, P. Pund and V. Khetani, "RDPC: Secure Cloud

Storage with Deduplication Technique," 2020 Fourth International Conference on I-SMAC

(IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 2020, pp. 1280-

1283, doi: 10.1109/I-SMAC49090.2020.9243442.

[48] S. Adams and A. O. Acheampong, ‘Reducing carbon emissions: The role of renewable

energy and democracy’, Journal of Cleaner Production, vol. 240, p. 118245, Dec. 2019, doi:

10.1016/j.jclepro.2019.118245.

[49] S. De Capitani di Vimercati, S. Foresti, G. Livraga, V. Piuri, and P. Samarati, ‘Security-

Aware Data Allocation in Multicloud Scenarios’, IEEE Trans. Dependable and Secure

Comput., pp. 1–1, 2021, doi: 10.1109/TDSC.2019.2953068.

[50] S. De Capitani Di Vimercati, S. Foresti, G. Livraga, V. Piuri, and P. Samarati, ‘Supporting

User Requirements and Preferences in Cloud Plan Selection’, IEEE Trans. Serv. Comput.,

pp. 1–1, 2019, doi: 10.1109/TSC.2017.2777977.

55

[51] S. Elhedhli and R. Merrick, ‘Green supply chain network design to reduce carbon emissions’,

Transportation Research Part D: Transport and Environment, vol. 17, no. 5, pp. 370–379, Jul.

2012, doi: 10.1016/j.trd.2012.02.002.

[52] S. Xia, Y. Zhang and F. Yang, "Green evaluation design and application research of power

grid suppliers under the carbon peaking and carbon neutrality goals," 2022 Asian

Conference on Frontiers of Power and Energy (ACFPE), Chengdu, China, 2022, pp. 308-

312, doi: 10.1109/ACFPE56003.2022.9952353.

[53] T. D. Dang, D. Hoang, and D. N. Nguyen, ‘Trust-Based Scheduling Framework for Big

Data Processing with MapReduce’, IEEE Trans. Serv. Comput., vol. 15, no. 1, pp. 279–293,

Jan. 2022, doi: 10.1109/TSC.2019.2938959.

[54] T. Sawa, F. He, A. Kawabata and E. Oki, "Polynomial-time Algorithm for Distributed

Server Allocation Problem," 2019 IEEE 8th International Conference on Cloud Networking

(CloudNet), Coimbra, Portugal, 2019, pp. 1-3, doi: 10.1109/CloudNet47604.2019.9064128.

[55] T. Zouadi, A. Yalaoui, M. Reghioui, and K. E. El Kadiri, ‘Hybrid

manufacturing/remanufacturing lot-sizing problem with returns supplier’s selection under,

carbon emissions constraint’, IFAC-PapersOnLine, vol. 49, no. 12, pp. 1773–1778, 2016,

doi: 10.1016/j.ifacol.2016.07.839.

[56] T.-M. Choi, ‘Optimal apparel supplier selection with forecast updates under carbon emission

taxation scheme’, Computers & Operations Research, vol. 40, no. 11, pp. 2646–2655, Nov.

2013, doi: 10.1016/j.cor.2013.04.017.

[57] V. Kantere, D. Dash, G. Francois, S. Kyriakopoulou, and A. Ailamaki, ‘Optimal Service

Pricing for a Cloud Cache’, IEEE Trans. Knowl. Data Eng., vol. 23, no. 9, pp. 1345–1358,

Sep. 2011, doi: 10.1109/TKDE.2011.35.

[58] Y. Park, S. C. Gates, W. Teiken, and P.-C. Cheng, ‘An experimental study on the

measurement of data sensitivity’, in Proceedings of the First Workshop on Building Analysis

Datasets and Gathering Experience Returns for Security - BADGERS ’11, Salzburg, Austria,

2011, pp. 70–77. doi: 10.1145/1978672.1978681.

[59] Y. Yang and X. Peng, "Trust-Based Scheduling Strategy for Workflow Applications in

Cloud Environment," 2013 Eighth International Conference on P2P, Parallel, Grid, Cloud

and Internet Computing, Compiegne, France, 2013, pp. 316-320, doi:

10.1109/3PGCIC.2013.53.

[60] Y. Zhang, Q. Wei, C. Chen, M. Xue, X. Yuan, and C. Wang, ‘Dynamic Scheduling with

Service Curve for QoS Guarantee of Large-Scale Cloud Storage’, IEEE Trans. Comput., vol.

67, no. 4, pp. 457–468, Apr. 2018, doi: 10.1109/TC.2017.2773511.

[61] Z. Liu, B. Li, Y. Huang, J. Li, Y. Xiang, and W. Pedrycz, ‘NewMCOS: Towards a Practical

Multi-Cloud Oblivious Storage Scheme’, IEEE Trans. Knowl. Data Eng., vol. 32, no. 4, pp.

714–727, Apr. 2020, doi: 10.1109/TKDE.2019.2891581.

56

Appendix I

In order to reduce the size of the computation for conflict constraints, we use a list of all

conflicting server combinations , which is a list with the size of the number of groups of all

conflicting servers, with each section of the list recording the index of each group of conflicting

servers. Then we use it as the parameter for the constraint calculation, which will reduce the size

of the operation moderately compared with setting constraints for the conflict matrix.

However, experiments reveal that this method only cuts the time by less than 100 ms, which is

far from satisfaction.

Then we tried to compress the number of conflicting servers by selecting one server from the

conflicting servers to represent all the conflicting servers, which is equivalent to removing all the

conflicting constraints. Initially, we counted the of all fields of the server, and if the server is a

cloud server, only the lowly sensitive fields are counted. Then, we selected a server with the

highest average as a representative of these servers to participate in the allocation process.

Despite significantly reducing the runtime, with a server count of 120, a field count of 40, and a

server conflict rate of 10%, there were still many conflicting servers. This also lead to a

significant reduction in the number of available servers, resulting in an extremely high number of

unresolved situations.

Another method is to find an optimal solution without setting conflicting constraints, and then

check whether this solution contains conflicting servers. If not, this solution is optimal; if it does,

add additional constraints and solve the problem again. But after carrying out 100 experiments

with a conflict rate of 10%, we found that the optimal solution without setting the conflict

constraint basically contains some conflicting servers, and only less than 5% of experiments have

a conflict-free solution. The results are equally unsatisfactory.

The method of reassigning conflicting servers is: 1) finding an optimal allocation scheme

without adding conflict constraints; 2) selecting all the servers in the scheme with conflicting

relationships and the fields assigned to them; 3) mixing those servers with other servers that are

not assigned data fields; 4) adding conflict constraints; and 5) solving once more to find a

solution for the selected fields that does not conflict the severs. The final solution is then

produced by combining the allocation strategy with the servers and fields that have previously

been assigned. Even though the gap between the acquired result and the value of the ideal

57

solution is not great, the percentage of situations with infeasible solution is too high, on average,

there are over 90 infeasible solutions for every 100 experiments.

Experiment Data

Figure 1: Performance Experiments Result without Conflict Constraints.

Fig. 1 shows the runtime of the original method when the number of data fields is incremented

sequentially from 10 to 60 and the number of servers is three times the number of fields, without

adding server conflicts.

Fig. 2 shows the runtime of the improved method using MIP start. We believe that if we can

offer a decent initial solution to the issue at the outset of the solution, we can significantly

minimize the computational work of the solution process and accelerate the resolution, and a

mixed integer programming (MIP) start of CPLEX can assist us in achieving this objective.

When we are solving an MIP problem, we can provide hints to help CPLEX find an initial

solution. These hints consist of pairs of variables and values and are called MIP starts. First, we

randomly find a feasible solution using CPLEX, after that, we utilize it as the starting point for a

MIP start to determine the best assignment. The running time remains essentially the same

compared with the original solution, and at some scales it even takes more time than the original

solution.

58

Figure 2: Performance Experiments Result Using MIP Start.

Figure 3 shows the results of the experiments using the greedy algorithm, which we performed

100 times with 120 servers and 40 data fields. The blue points in the figure represent the values

of the solutions found by the greedy algorithm, the red points represent the values of the optimal

solutions obtained by the CPLEX calculation, and the points with a limited value of 0 indicate

that no feasible solution was found.

59

Figure 3: Qualification Values Computed by Greedy Algorithm and CPLEX.

Figure 4 shows that in the experimental results of the modified greedy algorithm, the blue dots

represent the values of the solutions derived from the modified greedy algorithm and the red dots

represent the values of the optimal solutions obtained from the CPLEX solutions. As can be seen

from the figure, the difference between the red and blue dots is not significant, and the value

obtained by the modified greedy algorithm is 1.02% less than the value obtained by the CPLEX

result. In addition, there were 15 instances without a solution out of 100 experiments.

60

Figure 4: Qualification Values Computed by Modified Greedy Algorithm and CPLEX.

Fig. 5 shows the runtime required using the original method in the case of data requiring an

additional backup. We assume up to 300 available servers with an additional backup of all data,

starting with 100 storage units and decreasing by 10 storage units in sequence.

61

Figure 5: Performance Experiments Result for Additional Data Backup.

62

Appendix II

The implementation code of the improved method is as follows:

1) Determine the server trust score , data field sensitivity score , sensitivity threshold

server performance score and coefficient . Servers are sorted according to public cloud

servers first and then edge servers, fields are sorted in ascending order of sensitivity, the number

of non-sensitive fields below the threshold is and the number of sensitive fields above the

threshold is . Calculate the qualification value based on , , .

2) Determine other solution elements, number of backups , maximum number of server storage

fields , server price , budget , storage size of the server , size of each data field , a list of

all servers provided by s , matrix and assignment matrix , .

3) The matrices , and are expressed in a one-dimensional array form and all parameters are

passed into the ILOG package for solving.

4) Declare objects that requires optimization.

IloIntVar[] x = cplex.intVarArray(m * n, 0, 1)

IloIntVar[] y = cplex.intVarArray(nc, 0, 1);

Declare qualification values that have an impact on data privacy.

double[] QNC = new double[nc];

for (int k = 0; k < nc; k++) {

QNC[k] = CCF[k][4] * Q[(int) (CCF[k][0] * n + CCF[k][1])];

}

Then we need to add the optimization target, and we invoke the following method.

cplex.addMaximize(cplex.sum(cplex.scalProd(x, Q), cplex.scalProd(y, QNC)));

5) Add all constraints.

For constraint (6):

for (int j = 0; j < n; j++) {

IloLinearNumExpr constraint2 = cplex.linearNumExpr();

for (int i = 0; i < m; i++) {

63

constraint2.addTerm(1, x[i * n + j]);

}

cplex.addEq(constraint2, L[j]);

}

For constraint (7):

for (int i = 0; i < m; i++) {

IloLinearNumExpr constraint3 = cplex.linearNumExpr();

for (int j = 0; j < n; j++) {

constraint3.addTerm(1, x[i * n + j]);

}

cplex.addLe(constraint3, LA[i]);

}

For constraint (8):

for (int j = ns; j < n; j++) {

IloLinearNumExpr constraint4 = cplex.linearNumExpr();

for (int i = 0; i < mc; i++) {

constraint4.addTerm(1, x[i * n + j]);

}

cplex.addEq(constraint4, 0);

}

For constraint (9):

for (int i = 0; i < m; ++i) {

IloLinearNumExpr storeConstrain = cplex.linearNumExpr();

for (int j = 0; j < n; ++j) {

storeConstrain.addTerm(D[j], x[i * n + j]);

}

cplex.addLe(storeConstrain, S[i]);

}

For constraint (10):

for (int j = 0; j < n; j++) {

IloLinearNumExpr constraint5 = cplex.linearNumExpr();

for (int i = 0; i < m; i++) {

64

constraint5.addTerm(P[i], x[i * n + j]);

}

cplex.addLe(constraint5, B[j]);

}

For constraint (12):

for (int i = 0; i < serverProviders.size(); i++) {

List<Integer> servers = serverProviders.get(i);

for (int j = 0; j < servers.size(); j++) {

int server = servers.get(j);

for (int k = 0; k < servers.size(); k++) {

if (servers.get(k) != server && server >= m1 && servers.get(k) >= m1) {

IloLinearNumExpr server1 = cplex.linearNumExpr();

IloLinearNumExpr others = cplex.linearNumExpr();

for (int l = n1 + n2; l < n; l++) {

server1.addTerm(1, x[server * n + l]);

others.addTerm(1, x[servers.get(k) * n + l]);

}

cplex.add(cplex.ifThen(cplex.ge(server1, 1), cplex.eq(others, 0)));

}

}

}

}

For constraint (13):

for (int k = 0; k < nc; k++){

IloLinearNumExpr exprTConstraint = cplex.linearNumExpr();

exprTConstraint.addTerm(1, x[(int) CCE[k][0] * n + (int) CCE[k][1]]);

exprTConstraint.addTerm(1, x[(int) CCE[k][2] * n + (int) CCE[k][3]]);

exprTConstraint.addTerm(-1, y[k]);

cplex.addLe(exprTConstraint, 1);

}

for (int k = 0; k < nc; k++) {

IloLinearNumExpr exprTConstraint1 = cplex.linearNumExpr();

65

exprTConstraint1.addTerm(1, x[(int) CCE[k][0] * n + (int) CCE[k][1]]);

exprTConstraint1.addTerm(1, x[(int) CCE[k][2] * n + (int) CCE[k][3]]);

exprTConstraint1.addTerm(-2, y[k]);

cplex.addGe(exprTConstraint1, 0);

}

6) Finally, the cplex.solve() method is used to determine whether there is an optimal solution and

to derive a specific solution.

Code for solving in the case of large-scale data and backups:

IloCplex cplex = new IloCplex();

IloIntVar[] x = cplex.intVarArray(m * n, 0, 1);

 IloIntVar[] y = cplex.intVarArray(nc, 0, 1);

double[] QNC = new double[nc];

 for (int k = 0; k < nc; k++) {

QNC[k] = CCE[k][4] * Q[(int) (CCE[k][0] * n + CCE[k][1])];

}

cplex.addMaximize(cplex.sum(cplex.scalProd(x, Q), cplex.scalProd(y, QNC)));

cplex.setOut(null);

for (int j = n1 + n2; j < n; j++) {

IloLinearNumExpr sensitivityConstrain2 = cplex.linearNumExpr();

for (int i = 0; i < m1; i++) {

sensitivityConstrain2.addTerm(1, x[i * n + j]);

}

cplex.addEq(sensitivityConstrain2, 0);

}

for (int j = 0; j < n; j++) {

IloLinearNumExpr exprReqConstrain = cplex.linearNumExpr();

for (int i = 0; i < m; i++) {

exprReqConstrain.addTerm(1, x[i * n + j]);

}

cplex.addEq(exprReqConstrain, L[j]);

}

for (int i = 0; i < m; i++) {

66

IloLinearNumExpr AgentAbilityConstraint = cplex.linearNumExpr();

for (int j = 0; j < n; j++) {

AgentAbilityConstraint.addTerm(1, x[i * n + j]);

}

cplex.addLe(AgentAbilityConstraint, LA[i]);

}

for (int j = 0; j < n; j++) {

IloLinearNumExpr budgetConstrain = cplex.linearNumExpr();

for (int i = 0; i < m; i++) {

budgetConstrain.addTerm(P[i], x[i * n + j]);

}

cplex.addLe(budgetConstrain, B[j]);

}

for (int i = 0; i < m; ++i) {

IloLinearNumExpr storeConstrain = cplex.linearNumExpr();

for (int j = 0; j < n; ++j) {

storeConstrain.addTerm(DQ[j], x[i * n + j]);

}

cplex.addLe(storeConstrain, SC[i]);

}

for (int i = 0; i < serverProviders.size(); i++) {

List<Integer> servers = serverProviders.get(i);

for (int j = 0; j < servers.size(); j++) {

int server = servers.get(j);

for (int k = 0; k < servers.size(); k++) {

if (servers.get(k) != server && server >= m1 && servers.get(k) >=

m1) {

IloLinearNumExpr server1 = cplex.linearNumExpr();

IloLinearNumExpr others = cplex.linearNumExpr();

for (int l = n1 + n2; l < n; l++) {

server1.addTerm(1, x[server * n + l]);

 others.addTerm(1, x[servers.get(k) * n + l]);

67

}

cplex.add(cplex.ifThen(cplex.ge(server1, 1),cplex.eq(others,

0)));

}

}

}

}

for (int k = 0; k < nc; k++) {

IloLinearNumExpr exprTConstraint = cplex.linearNumExpr();

exprTConstraint.addTerm(1, x[(int) CCE[k][0] * n + (int) CCE[k][1]]);

exprTConstraint.addTerm(1, x[(int) CCE[k][2] * n + (int) CCE[k][3]]);

exprTConstraint.addTerm(-1, y[k]);

cplex.addLe(exprTConstraint, 1);

}

for (int k = 0; k < nc; k++) {

IloLinearNumExpr exprTConstraint1 = cplex.linearNumExpr();

exprTConstraint1.addTerm(1, x[(int) CCE[k][0] * n + (int) CCE[k][1]]);

exprTConstraint1.addTerm(1, x[(int) CCE[k][2] * n + (int) CCE[k][3]]);

exprTConstraint1.addTerm(-2, y[k]);

cplex.addGe(exprTConstraint1, 0);

}

if (cplex.solve()) {

bILOG_result = true;

optimized_result = cplex.getObjValue();

double[] val = cplex.getValues(x); for (int j = 0; j < val.length; j++) {

A[j / n][j % n] = (int) (val[j] + 0.000001);

TR[j / n][j % n] = A[j / n][j % n];

}

cplex.end();

}

Genetic Algorithm:

void initGroup() {

68

int[] o = new int[LL];

for (int i = 0; i < m; i++) {

for (int j = 0; j < n; j++) {

if (firstT[i][j] == 1) {

o[i] = 1;

break;

}

}

}

for (int i = 0; i < LL; i++) {

oldPopulation[0][i] = o[i];

}

}

public double evaluate(int[] chromosome) {

int[][] A = new int[m][n];

try {

IloCplex cplex = new IloCplex();

IloIntVar[] x = cplex.intVarArray(m * n, 0, 1);

for (int j = 0; j < n; j++) {

IloLinearNumExpr sensitivityConstrain1 = cplex.linearNumExpr();

for (int i = 0; i < m; i++) {

if (chromosome[i] == 0) {

sensitivityConstrain1.addTerm(1, x[i * n + j]);

}

}

cplex.addEq(sensitivityConstrain1, 0);

}

for (int j = 0; j < n1; j++) {

IloLinearNumExpr sensitivityConstrain1 = cplex.linearNumExpr();

for (int i = m1; i < m; i++) {

sensitivityConstrain1.addTerm(1, x[i * n + j]);

}

69

cplex.addEq(sensitivityConstrain1, 0);

}

for (int j = n1; j < n; j++) {

IloLinearNumExpr sensitivityConstrain2 = cplex.linearNumExpr();

for (int i = 0; i < m1; i++) {

sensitivityConstrain2.addTerm(1, x[i * n + j]);

}

cplex.addEq(sensitivityConstrain2, 0);

}

for (int j = 0; j < n; j++) {

IloLinearNumExpr exprReqConstrain = cplex.linearNumExpr();

for (int i = 0; i < m; i++) {

exprReqConstrain.addTerm(1, x[i * n + j]);

}

cplex.addEq(exprReqConstrain, L[j]);

}

for (int i = 0; i < m; i++) {

IloLinearNumExpr AgentAbilityConstraint = cplex.linearNumExpr()

for (int j = 0; j < n; j++) {

AgentAbilityConstraint.addTerm(1, x[i * n + j]);

}

cplex.addLe(AgentAbilityConstraint, LA[i]);

}

for (int i = 0; i < m; ++i) {

IloLinearNumExpr storeConstrain = cplex.linearNumExpr();

for (int j = 0; j < n; ++j) {

storeConstrain.addTerm(DQ[j], x[i * n + j]);

}

cplex.addLe(storeConstrain, SC[i]);

}

for (int j = 0; j < n; j++) {

IloLinearNumExpr budgetConstrain = cplex.linearNumExpr();

70

for (int i = 0; i < m; i++) {

budgetConstrain.addTerm(price[i], x[i * n + j]);

}

cplex.addLe(budgetConstrain, budget[j]);

}

for (int i = 0; i < conList.size(); i++) {

List<Integer> servers1 = serverProviders.get(conList.get(i).get(0));

List<Integer> servers2 = serverProviders.get(conList.get(i).get(1));

IloLinearNumExpr conflict1 = cplex.linearNumExpr();

IloLinearNumExpr conflict2 = cplex.linearNumExpr();

for (int j = 0; j < servers1.size(); j++) {

for (int k = 0; k < n; k++) {

conflict1.addTerm(1, x[servers1.get(j) * n + k]);

}

}

for (int j = 0; j < servers2.size(); j++) {

for (int k = 0; k < n; k++) {

conflict2.addTerm(1, x[servers2.get(j) * n + k]);

}

}

cplex.add(cplex.ifThen(cplex.ge(conflict1, 1), cplex.eq(conflict2, 0)));

}

}

}

void countRate() {

int k;

double sumFitness = 0;

double[] tempf = new double[scale];

for (k = 0; k < scale; k++) {

tempf[k] = fitness[k];

sumFitness += tempf[k];

}

71

Pi[0] = (float) (tempf[0] / sumFitness);

for (k = 1; k < scale; k++) {

Pi[k] = (float) (tempf[k] / sumFitness + Pi[k - 1]);

}

}

public void selectBestGh() {

int k, i, maxid;

 double maxevaluation;

maxid = 0;

maxevaluation = fitness[0];

for (k = 1; k < scale; k++) {

if (maxevaluation < fitness[k]) {

maxevaluation = fitness[k];

maxid = k;

}

}

if (bestLength < maxevaluation) {

bestLength = maxevaluation;

bestT = t;

for (i = 0; i < LL; i++) {

bestTour[i] = oldPopulation[maxid][i];

}

}

copyGh(0, maxid);

}

public void copyGh(int k, int kk) {

int i;

for (i = 0; i < LL; i++) {

newPopulation[k][i] = oldPopulation[kk][i];

}

}

public void select() {

72

int k, i, selectId;

float ran1;

for (k = 1; k < scale; k++) {

ran1 = (float) (random.nextInt(65535) % 1000 / 1000.0);

for (i = 0; i < scale; i++) {

if (ran1 <= Pi[i]) {

break;

}

}

selectId = i;

copyGh(k, selectId);

}

}

public void evolution() {

int k;

selectBestGh();

select();

float r;

for (k = 0; k < scale; k = k + 2) {

r = random.nextFloat();

if (r < Pc) {

OXCross(k, k + 1);

}

else {

r = random.nextFloat();

if (r < Pm) {

OnCVariation(k);

}

r = random.nextFloat();

if (r < Pm) {

OnCVariation(k + 1);

}

73

}

}

}

void OXCross(int k1, int k2) {

int i, j, flag;

int ran1, ran2, temp = 0;

ran1 = random.nextInt(65535) % LL;

ran2 = random.nextInt(65535) % LL;

while (ran1 == ran2) {

ran2 = random.nextInt(65535) % LL;

}

if (ran1 > ran2) {

temp = ran1;

ran1 = ran2;

ran2 = temp;

}

flag = ran2 - ran1 + 1;

for (i = 0, j = ran1; i < flag; i++, j++) {

temp = newPopulation[k1][j];

newPopulation[k1][j] = newPopulation[k2][j];

newPopulation[k2][j] = temp;

}

}

public void OnCVariation(int k) {

int ran1, ran2, temp;

int count;

count = random.nextInt(65535) % LL;

for (int i = 0; i < count; i++) {

ran1 = random.nextInt(65535) % LL;

ran2 = random.nextInt(65535) % LL;

while (ran1 == ran2) {

ran2 = random.nextInt(65535) % LL;

74

}

temp = newPopulation[k][ran1];

newPopulation[k][ran1] = newPopulation[k][ran2];

newPopulation[k][ran2] = temp;

}

}

public void solve() {

initGroup();

fitness[0] = firstR;

countRate();

for (t = 0; t < MAX_GEN; t++) {

evolution();

for (int k = 0; k < scale; k++) {

for (int i = 0; i < LL; i++) {

oldPopulation[k][i] = newPopulation[k][i];

}

}

for (int k = 0; k < scale; k++) {

fitness[k] = evaluate(oldPopulation[k]);

}

countRate();

}

}

75

Curriculum Vitae

Name: Chengyu Peng

Post-secondary Jiangxi University of Finance and Economics

Education and Nanchang, Jiangxi, China

Degrees: 2016-2020 B.E.

Laurentian University

Sudbury, Ontario, Canada

2021-2023 M.Sc.

Related Work Teaching Assistant

Experience Laurentian University

2021-2023

Publications:

C. Peng, H. Zhu, L. Liu and R. Grewal, "Optimal Data Allocation in the Environment of Edge

and Cloud Servers," 2022 IEEE International Conference on Networking, Sensing and Control

(ICNSC), Shanghai, China, 2022, pp. 1-6, doi: 10.1109/ICNSC55942.2022.10004065.

C. Peng, H. Zhu, L. Liu and R. Grewal, "Optimal Data Allocation in Edge-cloud Environment

Considering Privacy Enhancement," in IEEE Transactions on Knowledge and Data Engineering,

Under Review.

C. Peng, H. Zhu, L. Liu and R. Grewal, "Optimal Procurement in Consideration of Carbon

Emissions," 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC),

Maui, Hawaii, 2023, Under Review.

