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Abstract 

With the rise in popularity of cloud computing, there is a growing trend toward the storage of 

data in a cloud environment. However, there is a significant increase in the risk of privacy 

information leakage, and users could face serious challenges as a result of data leakage. In this 

paper, we propose an allocation scheme for the storage of data in a collaborative edge-cloud 

environment, with a focus on enhanced data privacy. In addition, we explore an extended 

application of the approach to sourcing. Specifically, we first evaluate the datasets and servers. 

We then introduce several constraints and use the Environments-Classes, Agents, Roles, Groups, 

and Objects (E-CARGO) model to formalize the problem. Based on the qualification value, we 

can find the optimal allocation using the IBM ILOG CPLEX Optimization (CPLEX) Package. At 

a given scale, the allocation scheme scores based on our method improve by about 50% 

compared to the baseline method and the trust-based method. Moreover, we use a similar 

approach to analyze procurement issues in the supply chain to help companies reduce the carbon 

emissions. This shows that our proposed solution can store data in servers that better suit their 

requirements and is adaptable to other problems. 
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Chapter 1  

1 Introduction 

1.1 Background 

The application of various cloud computing technology is expanding as the technology develops. 

The deployment of distributed storage and computing frameworks in the cloud is supported by a 

large number of cloud service providers (CSPs), including Amazon, Microsoft, Google, and 

other well-known CPS. However, there is a significant risk of privacy information leaking in this 

situation of outsourcing data storage [45]. The cost of a data breach report [29] claims that the 

average total cost of data breach has increased by about 10% yearly, the largest single year cost 

increase in the last seven years and the hybrid cloud model had the lowest average total cost of a 

data breach. If data is stored in the public cloud, an untrustworthy cloud service provider or 

server attacker can directly snoop on some or even all of the data and further speculate on 

individual privacy information, resulting in the leakage of users' privacy information [18]. 

Consequently, a crucial concern now is how to guarantee the privacy of data kept on the cloud 

servers [31], [32], [49]. A considerable amount of work is focused on encrypting data to protect 

data privacy, but these methods have the disadvantages of cumbersome data recovery and high 

data transfer costs [10], [61]. 

Edge-cloud architecture [3] that disperses data partially in both edge servers and public 

cloud servers is an effective strategy to enhance data privacy. It is well known that by relying on 

public cloud servers, users inevitably give up a degree of control, while edge server users have 

better control over their data, making edge servers more suitable for handling or storing sensitive 

data that can easily infer private information, while relatively less important data can be stored in 

cloud servers. Numerous studies have concentrated on this. Edge servers [13] can improve data 

storage in terms of privacy, and edge servers can also be fully utilized. However, since the 

quantity and capacity of edge servers are constrained in practice, we need practical ways to 

divide the data so that one part of the data is stored in the edge servers and the other part is stored 

in the public cloud servers. 
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We may solve this problem by evaluating the data sensitivity [8], [11], [58] and server trust 

[4], [7], [40], [42], [53], so that we are able to classify the sensitive data and store them in edge 

servers and others in public cloud servers, respectively. In addition, each server has a unique 

trust level that can be used as a reference in order to store certain data in a more appropriate 

server. Although privacy should be taken into account when selecting servers for data storage, 

there are other considerations that should not be ignored as well, such as user requirements for 

servers [50], [60] and storage costs [30], [33], [57], etc. Notably, selecting appropriate servers to 

store the data while keeping a number of restrictions is a very complex problem. 

Fortunately, the Environments-Classes, Agents, Roles, Groups, and Objects (E-CARGO) 

model can assist us in successfully overcoming this difficulty. It is common to ask why we use 

E-CARGO. E-CARGO has been verified as a significant tool for investigating challenging 

problems in collaborative and complex systems. It has a set of clarified components for a system 

or a problem and provides quite a few validated symbols to express the elements of a problem. 

E-CARGO provides consistency in concepts, conciseness in structures, and expressiveness in 

notations. The proposed problem is in fact a natural result of the E-CARGO research [22], [23], 

[24], [25], [26]. In addition, the E-CARGO model has a wide range of applications and it can 

give us insight into problems in many areas. We note that human activities have significantly 

increased emissions of carbon dioxide and other greenhouse gases, posing a severe threat to our 

living environment [48]. In response to this issue, the entire globe has endorsed reducing carbon 

emissions, and businesses are no exception. They are under pressure to reduce carbon emissions 

[14]. In a supply chain [1], procurement plays a crucial role [15]. By reducing carbon emissions 

during the procurement process, upstream and downstream carbon emissions can be successfully 

influenced [51]. As it happens, the method we propose is applicable to the optimization of 

procurement solutions. The success or failure of the selected suppliers impacts every part of the 

business. The decision is influenced by a number of variables [12], including the cost of the 

purchase, the quality of an item, the timing of delivery, etc. According to the Scope 3 emissions 

[41] of the international emissions accounting tool Greenhouse Gas (GHG) accounting system,  

all indirect emissions that happen along the reporting company's value chain, including upstream 

and downstream emissions, must be taken into account when calculating carbon emissions. 

Companies must think about how to cut the carbon emissions produced in their supply chains as 

much as feasible in light of the tendency to minimize carbon emissions. In addition, the 
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productivity of each supplier varies in the actual procurement situation, which makes it more 

challenging to obtain an optimal procurement solution [55]. In terms of how to reduce carbon 

emissions in the procurement process, a lot of efforts are focused on supplier selection, but it is 

easy to fail to find the most reasonable procurement solution from a global perspective. 

Therefore, we can apply our proposed allocation method to the development of a procurement 

plan. Similar to the previous method, the E-CARGO model [25] can assist us in overcoming this 

difficulty when dealing with many intricate influences. We can first determine the ratings of the 

various items from the various suppliers we intend to purchase. This score can be made up of 

different evaluation indicators, and depending on the requirements of the purchaser, the weights 

of the different indicators can be calculated using the analytic hierarchy process (AHP) [16], [17]. 

Then, based on the suppliers’ production capacities, the hours they can provide, and the 

procurement volume, we rate the hours of the providers as qualification values, then use the sum 

of optimally assigned hours’ qualifications as the procurement solution. There are also several 

practical constraints to take into account [44], such as purchasing budgets, carbon emission caps, 

and the least requirement on product quality. The final solution for the allocation of working 

hours that meets the requirements is the procurement solution. 

In summary, this paper focuses on developing a storage method that takes into account 

various requirements and can effectively enhance data privacy and extending the application of 

the method to the development of procurement schemes. Specifically, the main contributions of 

this paper are as follows: 

(1) We propose a method to divide data into fields and distribute storage based on the 

fitness of data field sensitivity and server trust in order to protect the privacy of decentralized 

data storage.  

(2) We use the E-CARGO model [22], [23], [24], [25], [26] to formalize and analyze the 

server allocation problem for data storage and introduce constraints such as server performance, 

user budgets and service provider into the model.  

(3) We make a large number of simulations, and based on the outcomes, we analyze the 

operational efficiency, feasibility, and advantages of the method.  
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(4) We further improve the proposed method to enhance its performance and compare the 

improved method with other methods. We also propose solutions for scenarios dealing with large 

scale data and backup. 

(5) We apply the above method to other areas. Starting from three factors: procurement cost, 

item quality and carbon emission involved in procurement, and using AHP to determine their 

weights to help users develop procurement strategies. We use the E-CARGO model to formalize 

and analyze the procurement problem for low carbon emissions and introduce constraints such as 

procurement budget, carbon emission caps and least quality requirements of items into the model. 

1.2 Thesis Outline 

The thesis is organized as follows: 

Chapter 2 presents the work related to the research topic. 

Chapter 3 presents a real-world scenario related to the proposed problem and the problem 

description of data storage.  

The formalization of the problem using the E-CARGO model is presented in Chapter 4.  

Chapter 5 conducts simulation experiments and analyzes the results based on our proposed 

method.  

Chapter 6 discusses the improvement and illustrates the methods for handling large scale 

data and backup.  

Chapter 7 presents an extended application of the mentioned method to the development of 

a procurement plan and the formalization of the problem using the E-CARGO model.  

Chapter 8 conducts simulation experiments and gives guidance to users for developing a 

procurement plan.  

The conclusion of this paper is in Chapter 9. 
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Chapter 2  

2 Literature Review 

2.1 Cloud Storage 

Storing data in edge-cloud environment to ensure privacy is a very important and comprehensive 

issue. It is a challenge to allocate server storage data appropriately, and many efforts are focused 

on this. 

Cloud storage: A lightweight hybrid distributed edge/cloud storage framework was 

presented by Makris et al. [3] to enhance end-user Quality of Experience (QoE) by relocating 

data close to them and thus minimizing network use and data transfer delays. Nitti et al. [40] 

proposed an integrity verification framework to ensure Ternary Hash Tree (THT) and Replica 

based Ternary Hash Tree (R-THT) based cloud storage. The proposed secure cloud auditing 

framework is highly secure and efficient in terms of storage, communication and computational 

cost. Zhuang et al. [28] suggested StoreSim multi-cloud storage system. They created the 

effective storage plan generating method SPClustering for dispersing user data to various clouds 

based on the information leakage detected by BFSMinHash. Zhang et al. [60] propose a service 

curve-based QoS algorithm to support latency guarantee applications, IOPS guarantee 

applications and best-effort applications at the same storage system, which not only provides a 

QoS guarantee for applications, but also pursues better system utilization. Al Nuaimi et al. [35] 

addressed both difficulties by improving the dual direction load balancing technique's 

effectiveness through increased replication and by reducing the storage requirements of a smart 

self-controlled technique (ssCloud) for deleting redundant data from each cloud server. Abhishek 

et al. [19] presented a unique hybrid cloud storage approach that enables users to use their 

computer clusters' quick primary storage as a caching tier in front of their slow secondary storage 

tier. Patil Rashmi et al. [47] used deduplication technology for data storage. This study's 

foundation is the homomorphic hash algorithm. The accuracy of the data that is saved on a cloud 

server is determined by a third party auditor who verifies the user's data for accuracy. There is 

less communication and computational overhead. When a malicious server launches a 

replacement attack, their framework is efficient and safe. Although all of these approaches 
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mentioned above enhance certain aspects, most do not sufficiently integrate edge servers with 

cloud servers and focus on the privacy of data. 

2.2 Data Sensitivity and Server Trust 

Data sensitivity: Lang et al. [9] provided an overview of data collecting parsimony, along with a 

novel approach for quantifying the idea using empirical Bayes estimates. Finally, the metric is 

evaluated using actual data. This method's advantages and disadvantages are explored from a 

theoretical and empirical perspective. They concluded that this metric is in many ways superior 

to others for model creation, but there are certain barriers to its adoption. Idar et al. [20] provided 

a dynamic architecture to automatically determine data sensitivity without the Data Owner's 

involvement. Sensitive data must be protected for as long as it is housed in the Hadoop cluster in 

order to prevent access from unauthorized users. Data sensitivity changes over time based on 

scenarios offered by their scalable framework. Park et al. [58] introduced their work toward fine-

grained data centric security, which semi-automatically determines the sensitivity of enterprise 

data. In order to automatically find sensitive material in corporate data, they applied a range of 

text analytics and classification algorithms. This tool suite also provides estimations for the 

sensitivity of individual data. They created a proof-of-concept system that crawls every file on a 

computer and calculates the sensitivity of each file as well as the computer's overall sensitivity 

level. They ran a pilot test using laptops belonging to staff at a big IT organization. The method 

provides inspiration and ideas for obtaining data sensitivity in the article. 

Server trust: Zhang et al. [34] present a trust-based secure multi-cloud collaboration 

framework for Cloud-Fog-Assisted IoT systems. They specifically created a role-based trust 

evaluation mechanism to raise the credibility of MCSC and ensured the security of users. They 

designed an effective user authentication scheme and a secure collaboration scheme to provide 

collaborative user authentication and access control mechanisms for MCSC in order to maintain 

the security of the services. Yang and Peng [59] present a novel scheduling technique based on 

trust and address the scheduling problem for workflow applications with trust restrictions. The 

suggested heuristic scheduling algorithm can more efficiently identify the most reliable 

execution flow than the conventional technique for scheduling application workflows, according 

to experimental results. Dang et al. [53] presented a trusted-based resource scheduling scheme. 

For big data applications processing sensitive data, they suggested a trust aware framework that 
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enables CSPs to use highly trusted resources. And they developed a trust measure that allows a 

CSP to request pertinent trust resources from other CSPs. The scheme they proposed benefits 

CSPs and customers, enabling inexpensive data processing but achieving high gains in security. 

Their proposed method provides ideas for determining server trust levels used in the article. 

However, this approach still does not sufficiently consider the server and storage field fitness. 

2.3 Server Allocation Strategy 

Server allocation strategy: Halabian et al. [21] provided supplementary findings on delay-optimal 

server placement in multi-queue multi-server (MQMS) systems with asymmetric connectivity. 

They demonstrated that MWM minimizes a variety of cost functions of the queue lengths, such 

as total queue occupancy, in the stochastic ordering sense for a system with Bernoulli arrivals 

and connectivity (which implies minimization of average queueing delay). Through simulations, 

they demonstrated that this strategy performs quite similarly to the ideal strategy in terms of the 

average queueing delay. Sawa et al. [54] proposed an approach called Minimizing the Maximum 

Delay (MMD) for the distributed server allocation problem, where the best result is attained 

when all server-server delays have the same fixed value. They demonstrated that MMD achieves 

an ideal result with polynomial time complexity. Zhang et al. [11] introduced tagged-MapReduce 

that provides safe processing with mixed-sensitivity data on hybrid clouds. They provided a 

general security framework that captures how dataflow can leak information via execution for 

analyzing MapReduce computations in the hybrid cloud. Karim et al. [46] proposed a 

mechanism to map the users' QoS requirements of cloud services to the right QoS specifications 

of SaaS. They also proposed a set of rules to perform the mapping process and hierarchically 

model the QoS specifications of cloud services using the Analytic Hierarchy Process (AHP) 

method. The AHP based model helps to facilitate the mapping process across the cloud layers, 

and to rank the candidate cloud services for end users. Vimercati et al. [49] defined a security 

model based on abstract security features, and they suggested a method for allocating resources 

to cloud services. The owner's encryption was taken into account when allocating resources to 

services, as were any global criteria the owner might have set to minimize overhead and over-

segmentation of resources among different services. Although all the above approaches to data 

allocation improve user experience or security to a greater or lesser extent, most of them do not 

involve data privacy enhancement, and even if they do, they do not prevent critical information 
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from being inferred, and none of them consider constraints such as budget and cooperation 

between server providers while allocating the most appropriate server for the data. 

2.4 Supplier Selection 

Reducing carbon emissions when developing procurement programs is a crucial and 

comprehensive issue, and it is also a challenge to consider all aspects in an integrated manner. 

Therefore, many works have made trials from this perspective. 

Cui et al. [38] investigated a manufacturer's multi-period, multi-product supplier selection 

and order allocation challenge. The manufacturer has two options: invest in current suppliers, or 

find new ones. The development of a new mixed integer programming mathematical model takes 

into account the diverse requirements of many suppliers. Carvalho Fagundes et al. [43] proposed 

a computational method for supplier selection using the "Fuzzy Extended Analytic Hierarchy 

Process (Fuzzy AHP)". The study's findings highlighted significant possibilities for enhancing 

supplier selection while taking risks into account, including choice rationalization, adaptable 

decision variable modeling, and automation of subjective assessments and evaluations by 

decision-makers. The competitiveness of the supply chain may be enhanced by these advantages, 

which may help reduce purchasing costs and enhance the overall assessment of supply risks. Xia 

et al. [52] developed a set of electric power industry characteristics of a green supplier evaluation 

index system against the backdrop of carbon green supplier evaluation value. It also looks at the 

various applications of green evaluation criteria, which give the power industry a foundation for 

comparison when choosing suppliers and are crucial for driving the green development of the 

industrial chain. Lamba and Singh [36] proposed a model for supplier selection and order 

allocation in a dynamic environment with multiple products, periods and suppliers. And the 

carbon emissions due to purchasing, inventory, ordering and transportation are integrated into the 

model. They map the parameters used in the proposed model to various dimensions of big data, 

and analyze the model numerically and demonstrate its prospects using two randomly generated 

datasets with big data characteristics. Singh et al. [5] proposed a big data cloud computing 

framework for carbon minimization. And they show how slaughterhouses and processing plants 

can use the captured carbon footprint information for eco-friendly supplier selection of beef 

cattle, which can help agri-food industry players curb their emissions. At the same time, the 

framework has universal properties that can be emulated and configured for any food supply 
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chain. Kumar et al. [2] proposed a generic and integrated approach for flexible supplier selection 

considering both cost reduction and environmental efficiency objectives. The model has the new 

ability to enforce emission standards and can be adapted to region-specific emission limits. They 

studied the optimal supplier selection problem in a fashion apparel supply chain in the presence 

of a carbon tax. Choi [56] proposed a two-stage optimal supplier selection scheme, in which the 

first stage filters inferior suppliers and the second stage selects the best supplier among the set of 

non-inferior suppliers through multi-stage stochastic dynamic programming. These studies have 

proposed supplier selection options under certain specific scopes, but each of them still lacks 

certain important impression factors that may be involved in real-life situations, such as quality 

standards of items, working hours that suppliers can provide, matching relationships between 

items, etc. 

2.5 GRA Related Problems 

GRA related problems: Zhu [22] formalized the group role assignment problem when faced with 

the constraint of conflicting agents, proved that such a problem is a subproblem of the extended 

integer linear programming (x-ILP) problem, proposed a practical approach to the solution, and 

assured performance based on the results of experiments. Zhu [23] presented and formalized a 

challenging role assignment problem with budget constraints (GRABC), provided a set of 

practical solutions to different forms of this problem by using the IBM ILOG CPLEX 

optimization package, established a set of necessary conditions for these problems to possess 

feasible solutions to improve the CPLEX solutions and verified the practicability and efficiency 

of the proposed solutions. Zhu et al. [26] clarified the group role assignment problem (GRAP), 

described a general assignment problem (GAP), converted a GRAP to a GAP, proposed an 

efficient algorithm based on the Kuhn-Munkres (K-M) algorithm, conducted numerical 

experiments, and analyzed the solutions' performances. Zhu et al. [27] presented a challenging 

problem called group role assignment with cooperation and conflict factors (GRACCFs). The 

authors formalized the proposed problem, identified the problem’s complexity, and solved the 

problem using the IBM ILOG CPLEX optimization package (ILOG). The authors verified the 

benefits of solving the GRACCF problem through simulations. These works provide great 

support and help formalize and model the problems in the article. 
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2.6 Summary 

In this section, we present the work related to data storage in the cloud, assessing data sensitivity 

and server trust, server allocation policies, supplier selection and problems related to GRA and 

present their features and shortcomings. 
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Chapter 3  

3 Statement and Formalization of the Problem 

Chapter 3 first presents a real-world scenario, after which we introduce the general solution 

strategy of the proposed method in this scenario, and then give a detailed description of the 

method and the processing steps. 

3.1 Real-World Scenario 

Eddie, the Chief Information Officer (CIO) of X, a technological company, uses the cloud to 

store the company’s data. However, a recent attack on the cloud server resulted in the disclosure 

of some employees' personal data. Bob, the Chief Executive Officer (CEO) of company X asked 

Eddie to find a data storage solution that would safeguard their private data to store the new data 

generated by the company and set aside a budget of $30,000 per year for the storage solution. 

Within this budget, the company also requested that different data fields need to be stored among 

different service providers. 

This is undoubtedly a challenge for Eddie. Eddie needs to consider the budget, privacy 

protection, data access performance, trust of servers, and potential data sharing of servers 

between service providers. Eddie tried a few existing methods and noticed that none of them 

satisfied all his requirements.  

Table 3.1: The Price of Each Server 

Servers Price 

Cloud Server 1 $3500 

Cloud Server 2 $3200 

Edge Server 1 $5500 

Edge Server 2 $5800 

Edge Server 3 $5000 

Edge Server 4 $4500 

Edge Server 5 $4900 

Edge Server 6 $5000 

Edge Server 7 $4500 

Edge Server 8 $4800 
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Edge Server 9 $6200 

Edge Server 10 $5800 

Table 3.2: The Budgets for Data Fields 

Data Fields Full Name Date of Birth Telephone Address 

Budget Limits $6000 $5000 $9000 $10000 

Table 3.3: The Conflict Relations Between Servers 

Servers Conflicts 

Edge Server 1 Edge Server 2  

Edge Server 2 Edge Server 1  

Edge Server 3 Edge Server 6 Edge Server 9 

Edge Server 5 Edge Server 7  

Edge Server 6 Edge Server 3 Edge Server 9 

Edge Server 7 Edge Server 5  

Edge Server 9 Edge Server 3 Edge Server 6 

Table 3.4: Qualifications of Servers for Data Fields 

Servers Data Fields 

Full Name Date of Birth Telephone Address 

Cloud Server 1 0.72 0.71 0.33 0.28 

Cloud Server 2 0.64 0.70 0.24 0.31 

Edge Server 1 0.56 0.55 0.55 0.61 

Edge Server 2 0.61 0.59 0.58 0.66 

Edge Server 3 0.32 0.44 0.72 0.75 

Edge Server 4 0.25 0.45 0.85 0.72 

Edge Server 5 0.43 0.35 0.67 0.87 

Edge Server 6 0.53 0.46 0.76 0.76 

Edge Server 7 0.43 0.37 0.88 0.75 

Edge Server 8 0.22 0.29 0.59 0.86 

Edge Server 9 0.24 0.26 0.63 0.65 

Edge Server 10 0.38 0.44 0.71 0.73 

We propose a new way to help him meet his requirements. We first separate the data to be 

saved into four data fields. Assuming he can look up these fields from a system, we then 

calculate the sensitivity of each data field using the evaluation strategy and find that the phone 

number and address are sensitive fields, and the rest are non-sensitive fields. Then, based on the 

servers' locations, we selected two public cloud servers and ten edge servers for data storage, and 

calculated the price of each server as shown in Table 3.1. Additionally, we assess the trust and 
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performance rankings of all available servers to determine the trust score and performance score, 

and then combine these with the data field sensitivity to calculate a server's qualification value 

for storing the fields as shown in Table 3.4. Based on the sensitivity of the data fields, we 

allocate the total budget to each field proportionally as shown in Table 3.2. The unit of data in 

the table is $1000, and the listed conflicts between servers due to service providers are shown in 

Table 3.3. We intend to store just one sensitive field per edge server to protect the privacy of 

sensitive fields, although up to four non-sensitive fields can be stored on each cloud server. 

Sensitive fields require an additional backup. Finally, we set a series of constraints and obtain the 

optimized assignment. In this scenario, it is necessary to assign the fields with different 

sensitivities to different types of servers while taking into account the capacity, performance, 

price and conflicts of the servers, etc. The final optimal assignment result is shown in Table 3.4. 

The total sum of assigned qualification values is 4.78. 

3.2 Data Storage in Edge-cloud Environment 

Based on the above scenario, we give the following data storage scheme in an edge-cloud 

environment. Firstly, we partition the data into distinct data fields for storage, which prevents 

others from obtaining the whole data and deducing all the information from the leaked data 

compared to the method of splitting the data into multiple smaller datasets. In order to find an 

optimal data storage solution, we need to introduce two parameters: the sensitivity of the data 

fields and the trust of the server. The sensitive fields must be stored on servers with high server 

trust levels, while the corresponding non-sensitive fields may be stored on servers with low 

server trust levels. We believe that the edge servers have better performance in privacy 

protection, due to their properties of self-controllability and less accessibility to the public. 

It is possible to determine the sensitivity of data fields by referring to the method in [58]. 

First, the category of sensitive data and their relative sensitivities are determined by data 

specialists in the corresponding fields. A set of text analysis and classification tools are then 

applied to automatically find sensitive information in the data, estimate the sensitivity level of 

each data field, and finally map the sensitivity level to a value between 0 and 1. Alternatively, a 

more straightforward strategy is also an option. For instance, we can develop various data 

sensitivity levels based on a sensitive data classification strategy and label each data field with a 

sensitivity level in accordance with the rules. We can assess server trust using three factors by 
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referring to the calculation method in [53]: the ranking of cloud service providers for their own 

resources, the ranking of cloud service providers among themselves, and the rating of cloud 

service providers by third-party organizations. 

Users can set a sensitivity threshold based on their needs after obtaining the sensitivity and 

trust values. Data fields that are over this threshold are sensitive fields and need to be stored in 

the edge servers. The privacy of the data can be better protected by storing it fully on edge 

servers. However, in practice, this storage approach is too expensive and the scale of the edge 

server may not meet the demand because we do not include unstable edge servers, such as some 

mobile devices, in the storage function. Additionally, in order to maximize data privacy, we 

assume that each edge server only stores one data field. This is because the more fields stored 

together, the easier it is to infer privacy information based on these fields [39]. For data saved on 

public cloud servers, the user can customize the number of data fields to be stored based on their 

requirements or the performance of servers [50]. 

When assigning servers to store the data fields, we primarily examine establishing an 

optimal assignment strategy so that each data field is saved on the most appropriate server, 

namely, with the best degree of fitting in sensitivity and trust from the perspective of the whole 

data to be stored. We can first map the server's trust value to the sensitivity value required by the 

data field according to the sensitivity categorization in order to determine the fitness. The smaller 

the difference between the two sensitivities, the better the fitness. We also consider the data's 

performance requirements for the server while allocating resources. We aim to store the data in 

the server that best satisfies its performance requirements, similar to sensitivity and trust. We 

concentrate on the server's CPU, memory and bandwidth as the three critical components of 

server performance. These three metrics are ranked across all discovered servers to get three sets 

of scores, and the corresponding performance requirement scores are obtained based on the 

performance requirement mapping of the data fields. A smaller final difference between the two 

indicates that the server's performance meets the requirement. 

In addition, we introduce several limitations that might be present in light of the realistic 

scenario, including the physical location of the servers, the user's budget, and the server conflicts 

with the same service provider. Users might exclude some cloud servers from their lists of 
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options based on their requirements because the frequency of network latency and attacks varies 

depending on the server's location. Each server will have a varied price due to variations in 

performance, geographic location, security, and other factors. As a typical consideration of 

customers, a budget should also be regarded as a key limitation. Too many different fields stored 

by servers belonging to the same service provider may raise issues regarding data privacy. 

Suppose service provider A owns two servers, and if the two servers store different fields, then A 

may obtain information about the data in both servers and infer more privacy details. Thus, this 

situation is also necessary to avoid. It is also important to note that all available servers are 

optional for users. And there is a cache-level storage workspace for end users to query data. 

3.3 Condensed/Extended E-CARGO Model 

The E-CARGO model can assist us in the study related to role assignment, through which a 

system  can be described as a nine-tuple . In the model,  

denotes a set of classes,  denotes a set of objects,  denotes a set of agents,  denotes a set of 

messages,  denotes a set of roles,  denotes a set of environments,  denotes a set of groups,  

denotes the initial state of the system, and  is a set of users. Our study will then concentrate on 

 and , our servers and data fields.  

In the discussed scenario, we take servers as agents, and data fields as roles. Then, the 

number of servers that can be expressed by the non-negative integer , likewise, 

 is the number of data fields that we can express,  … are the indices of servers, 

and  … are the indices of data fields. The servers are divided into two categories: cloud 

servers and edge servers. The number of edge servers is denoted by , and the number of cloud 

servers is denoted by , therefore we can deduce that . Similarly, data fields are 

separated into sensitive and non-sensitive groups. A threshold t for sensitivity score can be set by 

the user. Sensitive fields are those with values greater than or equal to this threshold, and vice 

versa are non-sensitive fields. The number of sensitive fields is denoted by , and the number of 

non-sensitive fields is denoted by , thus . 

Definition 3.1: The role range vector L [23], [24] is an n-vector that contains the lower 

bounds of the ranges of roles in the environment of a group. In our scenario, it reflects the 

number of backups made for the data fields, i.e., . If no backup is required, 

, and if another backup is required, . 
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Definition 3.2: The agent ability vector [22], [23] is an m-vector  where  

indicates the maximum number of data fields that can be stored per server . 

Definition 3.3: The data field sensitivity score  is a n-vector, where  

represents the sensitivity score of field . 

Definition 3.4: The server trust score  is an m-vector, where  represents the 

trust score of server . A function  based on user needs 

can convert a  value to a data field's required sensitivity score  for a subsequent fit score 

calculation. 

Definition 3.5: The fitness score matrix  is an m  n matrix, where  

represents the degree of fit of the trust level of server   and the sensitivity of data 

field ,  

.                                                                                       (3.1) 

Definition 3.6: The performance score matrix  is an m-vector, where  

represents the matching of the performance of server  to the requirement of dataset. 

 consists of three primary parts, namely, CPU, memory and bandwidth. The performance 

levels of all servers are sorted from low to high according to these components, and then mapped 

into three scores  between 0 and 1 according to different levels. The performance 

requirements of the data fields for the server are also mapped into three scores  

between 0 and 1, and then 

  .    (3.2) 

Definition 3.7 [26]: The qualification matrix  is an m  n matrix, where  

represents the qualification value of server  for field . 

,      (3.3)  

where  is a coefficient indicating the weight of  in the . Note that if the value 

of  is 0 or the value of  is 0 then  is also 0. 
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Definition 3.8: The storage size of the server  is an -vector, , which is 

measured in gigabytes. 

Definition 3.9: The size of each data field  is an -vector, , which is 

measured in gigabytes. 

Definition 3.10 [26]: The definition of the role assignment matrix  is an m  n matrix, 

where  indicates whether the server  is assigned to the 

field . If , it indicates “yes” and 0 indicates “no”. 

Definition 3.11 [26]: The qualities of the allocated agents are added together to determine 

the group performance  of group g, which is  

.       (3.4) 

Definition 3.12 [26]: If role  has been given a sufficient number of agents, it is workable in 

the group, i.e., . 

Definition 3.13 [26]: If each role in  is workable, i.e.,  

then  is workable. If  is workable, then g is as well. 

Definition 3.14: Using the definitions listed above, our data allocation problem can be 

defined to determine a matrix  to obtain 

 

subject to  (3.5) 

 (3.6) 

 (3.7) 

 (3.8) 

 (3.9) 

Where constraint (3.5) indicates whether a server is assigned; (3.6) makes the group 

workable; (3.7) indicates that each server is only assigned to a limited number of fields; (3.8) 
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indicates that cloud servers cannot be assigned to store sensitive data fields; (3.9) indicates that 

the size of all data fields stored by the server cannot be larger than the server storage size. With 

these constraints we can find an optimal allocation. 

Note that, in the above definitions, we assume that the server set is ordered without the loss 

of generality, i.e., all the cloud servers are indexed between 0 and , inclusively, and all 

the edge servers are indexed between  and -1, inclusively. 

3.4 Allocation Problem with Conflict and Budget 

In reality, the problem is not simple as that in Definition 3.14. We need to introduce two new 

constraints, budget and conflict. For the budget constraint, taking into account that the 

importance of data fields with different sensitivities may vary, users may assign higher budgets 

to highly sensitive fields to enhance data privacy, and therefore assign different budgets for 

fields with varying sensitivities. The price of the server used for storage cannot exceed the 

budget for the corresponding field. The definitions are as follows. 

Definition 3.15 [23]: The budget vector is an n-vector , where  denotes the 

maximum cost for storing each field .  

Definition 3.16: The price vector is an m-vector , where  denotes the cost per 

server  usage. 

Definition 3.17: Service providers  possess all cloud and edge servers for data storage, 

each server must belong to an , and different servers may belong to the same . For instance, 

 indicates that server  belong to . 

Definition 3.18: If two servers belong to the same , the two servers are not allowed to 

store data fields that are different from those already stored, i.e., there is a conflict between the 

servers. 

Definition 3.19 [22]: The definition of the matrix of conflicting agents is an  matrix 

, where denotes that server  

conflicts with server , and 0 denotes not. 

Using the definitions listed above, we can redefine our data allocation problem to find a 

workable  to  
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subject to (3.5) - (3.9) and 

 (3.10) 

 (3.11) 

Where constraint (3.10) indicates a field's budget cannot be exceeded by the cost of all 

servers utilized to store that field; (3.11) indicates that if a server is present in the allocation 

scheme, then another server that conflicts with it cannot be used to store other data fields. 

The proposed problem is very similar to the knapsack and bin packing problems in that it is 

also about finding an optimal value under constraints. This is reflected in finding the allocation 

solution that maximizes the sum of the assigned qualification values in  under certain budget 

conditions. However, it is distinguished from the knapsack or bin packing problems in that we 

can incorporate some of the constraints into the process of computing . For example, if the  

is lower than the  then  is 0, then the corresponding  value is also 0. If any of the server 

performance indicators do not meet the demand then  is 0, then the  value is also 0. This can 

reduce a large number of constraints on the judgment. In addition, there is a server conflict 

constraint in our problem, which means that if a server exists in this allocation scheme, servers 

that conflict with that server will be excluded. 

According to the proof in [22], GRA with conflicting agents in a group (GRACAG) 

problem is a subproblem of the x-ILP problem but may not be NP-complete. It informs that our 

problem is likewise a subproblem of the x-ILP problem. 

Constraints (3.5), (3.6) and (3.8) apply to our proposed problem and are consistent with the 

constraints in GRACAG. 

Constraint (3.7) adds a new condition check,  

for  from 0 to  do 

  if ( ) return false; 

return true; 
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For constraint (3.8), the algorithm is: 

for  from 0 to  do 

 for  from  to  do 

  if ( ) return false; 

return true; 

For constraint (3.10), the algorithm is: 

for  from 0 to  do 

  if ( ) return false; 

return true; 

Constraint (3.11) is the same as that of GRACAG. 

It can be observed that our problem is based on a search space similar to that of the 

GRACAG problem, and requires judgments on additional constraints. It advises that our problem 

is more sophisticated than the GRACAG problem, making it a subproblem of the x-ILP problem. 

3.5 Experiment settings 

Based on the analysis of the complexity, we know that it is challenging to solve such a 

complicated problem, and we need to discover a way that can do it in a reasonable amount of 

time. The IBM ILOG CPLEX (CPLEX) platform is a tool that can be utilized to tackle x-ILP 

problems. In order to resolve the issue, we employ the CPLEX package. First, we must list all 

the components that make up the CPLEX package, where the variables of matrix  have upper 

and lower bounds of 1 and 0, respectively, and matrix  represents the coefficients of the 

objective function. Subsequently, we add the expressions of the objective and constraints and 

find the optimal solution, where these expressions can be represented by some formulas. In this 

section, we simulate different real-world scenarios and design two types of experiments to 

analyze the effect of the solution. All experiments were conducted in the environment shown in 

Table 3.5. 
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Table 3.5: Experiment Environment 

Hardware 

CPU 
Intel(R) Core(TM) i5-7300HQ CPU @ 

2.50GHz   2.50 GHz 

MM 12 GB 

Software 

OS Windows 10 64-bit 

IDEA 
Version: IntelliJ IDEA 2020.1.3 (Ultimate 

Edition) 

JDK Java 1.8.0_271 

3.6 Performance Experiments 

We simulated finding the optimal solution for various numbers of servers and field counts, then 

we tracked the program's execution time to assess how well the solution performs in a real-world 

scenario. The size of the simulated trials is assumed to expand 10 fields at a time beginning with 

10 data fields until the runtime is unacceptable. Accordingly, 80% of these are public cloud 

servers.  =1 ( ), i.e., there are no further backups needed for any data fields. 

 and edge servers can only store up to one field, which means that 

. During the allocation process, if server 1 belonging to  and server 

2 belonging to  are the most suited to store fields 1 and 2, respectively, but the two servers 

belong to the same , i.e., there is a conflict between server 1 and server 2, then we must avoid 

this allocation. Assuming that the sensitivity threshold , sensitive data fields are those 

that have a sensitivity score of at least 0.5. The sensitivity and size of the data are randomly 

generated, and the trust level of the server is determined by a set of random values that follow a 

normal distribution. The capacity, pricing, and performance are established at random with 

reference to the Microsoft Azure Cloud Server data, the probability of conflict between servers 

was set to 10%.  
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Figure 3.1: Performance Experiments Result. 

We conducted 100 sets of experiments with various fields and server sizes, counting the 

minimum, average and maximum running times in each case. The results are displayed in Fig. 

3.1. According to the results, when  which means the number of data fields is 60, the 

average running time is approximately 63.5 s and the maximum running time is 300 s. Although 

the average runtime is low when  is 10-50, the increasing trend of maximum and average 

runtime is quite significant when  increases to 60 fields, and it is projected that when  

surpasses 100, the average running time will be measured in hours. As a result, in order to 

increase efficiency, we need further improvements to the solution. 
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3.7 Feasibility Experiments 

 

Figure 3.2: Feasibility Experiments Result. 

In order to evaluate the feasibility of the solution, we conducted 100 experiments with 

various server conflict rates and server sizes and counted the frequency of infeasible solutions, 

and m is still three times n which means the number of servers is three times the number of data 

fields. The experimental results are shown in Fig. 3.2, where the vertical coordinates represent 

the number of infeasible solutions, and the horizontal coordinates represent the probability of 

conflict between servers. The figure illustrates how the number of infeasible solutions rises 

considerably when the conflict rate exceeds 10%. It also shows how this number rises as server 

size increases. For example, when there are 120 servers and the conflict rate is 30%, 97 out of 

100 solutions are infeasible. Therefore, in real-world applications, especially when m is large, we 

should attempt to minimize the conflict rate between them below roughly 10%. High conflict 

rates both indicate that the scenario does not make sense in reality or additional service providers 

may need to be employed to complete the storage. 

3.8 Summary 

In Chapter 3 we present a real-world scenario and assume data and constraints, and introduce a 

method to solve the scenario. We then further describe the problem and briefly explain the 
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solution. We model the problem using the E-CARGO model, introducing different notations to 

describe the problem and giving definitions. For the calculation of the different metrics, we give 

detailed formulas. In addition we formalize the constraints in the model and explain the 

complexity of the problem. We use CPLEX to first conduct performance experiments, through 

which we find that the runtime is relatively small at a certain scale, but unacceptable when the 

number of data fields exceeds 100. We then test the feasibility of the method and find that the 

conflict rate of the server is around 10% which is reasonable, a higher conflict rate will lead to a 

large number of infeasible solutions and a high conflict rate is not meaningful in practice. 
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Chapter 4  

4 Improvement of the Allocation Scheme 

We can observe from the performance experiment results that the performance needs to be 

improved. Through experiments, we discovered that overly complicated server conflict 

constraints were the primary reason. In the same setting as the earlier performance experiments, 

we eliminated the server conflict constraint and ran the experiments for various numbers of fields 

independently. Detailed results are shown in the appendix. The runtime without adding conflict 

constraints is significantly lower compared to the method with conflict constraints. Therefore, in 

order to improve the performance, we need to focus on improving the conflict constraint while 

reducing the overall operation size as much as possible. We made a series of initial trials to 

improve the method, but none of them achieved a good result, see the appendix for details. 

4.1 Genetic Algorithm 

After trying some improvement methods without satisfactory results, we also tried to use genetic 

algorithms [30] to explore whether performance improvements could be achieved. 

In this method, the number of individuals is the size of the role assignment matrix , i.e., 

. Each generation uses all the allocation process constraints as screening requirements, and 

the individual with the greatest  is then chosen for future evolution after the screening process 

is complete. In the initial experiments, we discovered that each initialized population could not 

satisfy the constraints we set from the beginning due to the complexity of the constraints, and the 

experiments could not be carried out. To solve this issue, we use CPLEX to first find a feasible 

solution for the initial population so that we can further search for individuals with higher . 

When the mutation probability and crossover probability are both equal to 0.7 after running 

experiments with various parameter values, we can get better results; otherwise, the evolution 

can rarely move forward. We conducted 100 experiments with m = 120 and n = 40 which means 

the number of severs is 120 and the number of data fields is 40. The other settings remained the 

same as those in the previous experiments. A population size of 1000, and an evolutionary 

generation of 5000 were set. On average, the optimal individual appeared in the 4724th 

generation, with an average maximum value of 20.11 and an average running time of 233.39 s. 

The value of the optimal solution using the improved method under the same conditions was 

32.37. From the results, we can see that it is possible to find the highest value only if the 
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population size and the number of genetic generations are large enough, and the performance of 

excellent individuals evolved with this strategy is very low. 

To further improve it, we attempt to set the number of individuals to the number of servers 

in conflict, initialize the population with CPLEX as before, where each mutated individual 

actually represents the available servers in conflict, combine each individual to other servers to 

find a feasible solution using CPLEX, and select the largest value in the population. For the 

following evolution, the individual with the highest value in the population is chosen. After 

performing the same experiments on the modified genetic method, we found that while the 

number of generations needed to produce better individuals did decrease significantly, the time 

to find the best solution was still far from satisfactory. Each generation requires a large number 

of computations, and if the population size is 100, then each evolutionary generation requires 

100 computations using CPLEX, while the average run time per generation is about 1.7s. 

Therefore, if we set hundreds of evolutionary generations, the final total time will be very long 

and far from acceptable. 

4.2 Greedy Algorithm 

We also attempted to use the greedy algorithm [6], a common method for finding the optimal 

solution, to tackle the problem. Following the principles of the greedy algorithm, we choose the 

server with the highest  value for each field, and we set all the constraints that must be met by 

that server. If there is a server that conflicts with that server, then the conflicting server is flagged, 

and the field is not allowed to be assigned to it. We conducted 100 experiments with 120 servers, 

40 data fields. Detailed experimental results can be found in the appendix. According to the 

statistics of the experimental results, the values obtained by the greedy algorithm were on 

average 1.93% less than those obtained by CPLEX, and in addition, there were 8 cases of no 

solution in 100 experiments. Subsequently, to further improve the results of the greedy algorithm, 

we computed the edges from each field to all servers and selected the largest edges for 

assignment. The experimental results show that the value obtained by the modified greedy 

algorithm is 1.02% less than the value of the CPLEX result. Additionally, there are 15 instances 

in 100 experiments when there is no solution. Although the difference between the result value 

of the greedy algorithm and the result value calculated by CPLEX is not large, the greedy 

algorithm generally has trouble finding the real optimal solution and there are many cases where 

no solution can be found. 
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4.3 Generalizing Conflict Relationships 

When analyzing the conflict constraints, we consider that the definition of server conflicts 

actually comes from the service providers, i.e., s. The computation of conflict constraints can 

be reduced by generalizing conflicts between servers to conflicts between servers and the entire 

set of servers belonging to the . 

Definition 4.1:  is a list of all servers provided by s, e.g. ] 

indicates that  provides two servers 1 and 2,  provides servers 3 and 4. The number of 

servers provided by each  is . Constraint (3.11) needs to be changed to: 

(3.11) 

Where  is the number of service providers. In the same setting as before, we conducted 

100 experiments with various server and field sizes. We assume that each  provides 3 servers, 

i.e., =3, and the number of cloud servers is 80% of the number of all servers , i.e., = 

m×80%, and the remaining servers are edge servers. Each cloud server and each edge server can 

store up to 10 fields and 1 field, respectively, without a backup. According to the assumption that 

there are conflicting relationships between the three servers provided by each . The runtime at 

various sizes is shown in Fig. 4.1. In contrast to the results in Fig. 3.1, the running time of the 

improved method is significantly lower compared to the original method, where the average 

running time of the original method is about 63.5 s while the average running time of the 

improved method is about 0.5 s when the number of data fields is 60, which is only 0.8% of the 

results of the original method. And the final result value is the same as the original method is the 

result value of the optimal solution. 



28 

 

 

Figure 4.1: Performance Experiments Result of the Improved Method. 

4.4 Conflict Constraints in Realistic Scenario 

According to the results of the above improvement, it can be seen that the efficiency of the 

solution has been greatly improved, but there are also unreasonable aspects of the scenario. If we 

need to store many data fields and restrict too many fields to be stored in the same 's servers, 

then we need at least the same number of s as that of data fields, which is unrealistic. In 

addition, in this scenario we believe that any two sensitive fields can infer critical privacy 

information, but in practice the number of such fields is often very few. Therefore, we need to 

further adapt the experimental scenario and modify the method to meet the realistic situation. 

In order to satisfy practical needs, we further segment the field categories and divide 

sensitive fields into highly sensitive fields and low sensitive fields. Highly sensitive fields refer 

to the fields that are highly likely to be inferred from privacy information when combined with 

other sensitive fields, and low sensitive fields are those having a certain probability of inferring 

privacy information from them, and the previously mentioned non-sensitive fields are fields that 

have very low probability or even will not be inferred from privacy information. The number of 

highly sensitive fields is denoted by , and the number of low sensitive fields is denoted by , 

. Considering the fact that the number of highly sensitive fields is often very small 

in practice, we can assume that the number of servers can meet the storage requirements in the 

usual case. In addition, due to the specificity of highly sensitive fields, we only allow them to be 

stored in the edge server, and since the edge server has a high level of security we can ignore 

conflicts caused by service providers in the edge server. Thus, in this scenario we consider 
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removing the constraint (3.12). However, for low sensitive fields, we need to introduce a new 

matrix to help us measure the impact on information privacy when multiple low sensitive fields 

are stored on the cloud servers of the same . 

Definition 4.2 [27]: The matrix  is an  matrix which is used to represent the 

impact on data storage privacy, i.e.,   values, when a certain two low sensitive fields are stored 

in the same 's server. Symbol  denotes the number of impact factors, i.e., 

 and denote servers, and  denote stored fields, 

 denotes the degree of impact on privacy and .  

For example, when server  and server  belong to the same  and store the low sensitive 

fields  and  with a privacy impact of -0.3, then 

, then  changes 

to . 

Now our problem is transformed into finding a  to 

 

 , and   if both  and  are 1 and 

, otherwise. Therefore, except for constraints (3.5) – (3.12) the problem also needs to 

satisfy the following constraints: 

 (4.1) 

 (4.2) 

To verify the feasibility of the method, we assume that , 

, , the number of  is 10 and , and perform one hundred 

simulations under that condition. The maximum run time in one hundred experiments is 64.05 s 

and the average run time is 25.95 s. We also compared the results with the same conditions 

without adding the impact factor constraint and found that the total qualification value of the 

assignment without this constraint was reduced by 15.26% on average compared to our method. 

Additionally, we conducted experiments with a larger number of data fields while keeping the 
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same number of servers, and the results are shown in Fig. 4.2. When the number of data fields is 

400, the complete result is not obtained due to computer performance, so the maximum number 

of fields that can be calculated in this environment is around 350 when the number of servers is 

100. The experiment shows that our method modified for the real-world scenario can effectively 

enhance the privacy of the data and is relatively acceptable in terms of operational efficiency and 

can obtain the optimal solution. 

 

Figure 4.2: Performance Experiments Result of the Method for the Realistic Scenario. 
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4.5 Comparison Experiments 

 

Figure 4.3: Comparison Experiments Result of Qualification Values. 

 

Figure 4.4: Comparison Experiments Result of Cost. 

To test the effectiveness of our proposed method, we compare the improved method with the 

trust-based method and the baseline method. In the comparison experiments, we contrast our 

proposed method with the other two methods in terms of, respectively, qualification value  and 
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cost. The fundamental idea of the trust-based strategy is to allocate the server with the highest 

trust level to the data, and the baseline method is a randomly found feasible assignment scheme 

that satisfies the conditions, and all approaches are executed in the same environment and under 

the same constraints. As in the other experiments, we ran 100 experiments with varied server 

sizes of 30, 60, 90, and 120, as well as data field sizes of one-third of the number of servers, and 

we tallied the average qualification values and costs and compared them. The experimental 

setting and conditions are similar to those of the earlier experiments. Fig. 4.3 demonstrates the 

percentage increase in the sum of the assigned qualification values, and the percentage decrease 

in the cost of our method compared to the other two methods is shown in Fig. 4.4. As can be 

seen, the sum of the assigned qualification values of our proposed method is 57.15% higher than 

the trust-based method and 52.75% higher than the baseline method, the costs of the trust-based 

method and the baseline method are, respectively, 7.48% and 4.47% higher than the cost of our 

method when the number of servers is 120. The results show that our proposed method 

outperforms the other two methods, and the effects are more pronounced the larger the server 

size. Overall, our approach allows for a better assignment of the most appropriate server to store 

the fields, while focusing on data privacy and reducing expenses. 

We have to clarify that we may not be able to compare ours with existing methods in the 

related work (Chapter 2), because the defined data allocation problem is original, and no existing 

work can be used directly to solve such a problem. 

4.6 Large Scale Data and Backups 

We can observe from the performance experiment results that the performance needs to be 

improved. Through experiments, we discovered that overly complicated server conflict 

constraints were the primary reason. In the same setting as the earlier performance experiments, 

we eliminated the server conflict constraint and ran the experiments for various numbers of fields 

independently. Detailed results are shown in the appendix. The runtime without adding conflict 

constraints is significantly lower compared to the method with conflict constraints. Therefore, in 

order to improve the performance, we need to focus on improving the conflict constraint while 

reducing the overall operation size as much as possible. We made a series of initial trials to 

improve the method, but none of them achieved a good result, see the appendix for details. 
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In real-world scenarios, it occasionally occurs to store massive amounts of data. There 

could be thousands of different data fields in the dataset, and for non-sensitive or low sensitive 

fields, the cloud servers usually have enough resources to handle large-scale data. But in the case 

of highly sensitive fields, if the data contains a very large number of highly sensitive fields, then 

finding sufficient service providers and edge servers while keeping high privacy can be a 

challenge and we need to come up with some feasible solutions to solve this problem. 

First, we can find all the duplicate data fields and remove them, and then determine if the 

numbers of the server and s meet the requirement of the data fields. If it is still impossible to 

guarantee that each edge server stores only one highly sensitive data field and different s store 

different highly sensitive data field, then we must sacrifice some privacy and permissions and let 

each edge server store multiple highly sensitive fields in order for the entire allocation scheme to 

be feasible. 

Therefore, we consider compressing the field size. For instance, users can set multiple 

sensitivity ranges, and we can treat some data fields with similar sensitivity as a storage unit and 

designate a server to store these storage units. This makes it possible for a large number of data 

fields to be compressed into just a few hundred storage units. It is crucial to be aware that doing 

so can result in the inference of some private information, since if data stored on a server is 

compromised, others might well infer more private information based on these fields. Therefore, 

we advise combining multiple data fields into a single storage unit with the help of strategies 

based on correlations between the data fields or consulting experts in the area to which the data 

relates, ensuring as much as possible that no private information can be inferred from these 

consolidated fields. In addition, in order to ensure that the amount of data does not exceed the 

server's capacity, we should also obtain as much information as we can about the server 

configuration and evaluate the amount of data the servers can carry before assigning a server to 

each storage unit. If the volume of the data unit exceeds the capacity, we can determine the load 

range of the server and iterate the allocation process. The runtime after the field size reduction 

can be referred to the experimental results in Fig. 4.1. In addition, due to the limited storage 

capacity of the server, when data fields are compressed for storage, it may result in infeasible 

solutions. In the feasibility test we keep both the number of servers and the number of storage 

units at 100, and keep increasing the number of data fields to test the number of infeasible 

solutions for the case of a lower field compression rate. When the data field is 50,000, i.e., the 
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compression rate is 0.2%, 8 infeasible solutions are obtained in 100 solves. More infeasible 

solutions are generated when the compression rate is lower. Hence, it should be avoided that the 

field compression rate is too low. 

Moreover, when the data fields need to be backed up additionally, it is equivalent to 

increasing the size of the data. To test the feasibility of our modified method, we use similar 

conditions as those in the previous experiments , , which means that all 

fields need an additional backup, and then we reduce the number of fields by 10 in turn to test 

their feasibility at 100 servers. 

 

Figure 4.5: Performance Experiments Result for Additional Data Backup. 

 

Figure 4.6: Feasibility Experiments Result for Additional Data Backup. 
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From the experimental results shown in Figs. 4.5 and 4.6, we can see that when the number 

of servers and data fields is 100, the maximum running time is nearly 10 s, the average running 

time is less than 4 seconds and its running efficiency is relatively acceptable. The rate of 

infeasible solutions is reduced from 38% to 18% by reducing the size of the fields while keeping 

the budget and the number of servers constant. Therefore, in order to improve the feasibility of 

the method with a certain server size, it is necessary to reduce the size of the fields, or it is 

necessary to increase the number of servers and service providers. In addition, from the 

experiment, when the number of fields is reduced to a certain number, it is difficult to continue 

to reduce the rate of infeasible solutions, and then it is necessary to increase the budget. When 

we double the budget, the number of fields is 50 and 60, and there are no infeasible cases. The 

budget for using servers increases where additional backups are needed, and it is difficult to find 

a feasible solution if the original budget is maintained. Hence, increasing the budget also 

improves the feasibility of the method in this situation. 

4.7 Summary 

In this chapter, we improve the proposed method. Specifically, we first try to solve the allocation 

problem using a genetic algorithm and a greedy algorithm, respectively, but the results of both 

are not as satisfactory. We then delve into the conflict constraints in the allocation problem and 

improve the constraints to improve the running speed significantly. We also compare the 

improved method with the trust-based method and the baseline method, and arrive at the result 

that the improved method is superior. Finally, we further adapt the method to scenarios with a 

larger number of servers and data fields as well as where data needs to be backed up. 
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Chapter 5  

5 Extended Application of the E-CARGO Model 

Nowadays, in the context of low carbon emissions, the procurement chain affects the carbon 

emissions in the supply chain. Inspired by the above approach, we realized the wide range of 

applications that the E-CARGO model can be applied to help us develop strategies to optimize 

the carbon footprint involved in procurement. Below is a sourcing scenario and a description of 

the problem. 

5.1 Real-World Procurement Scenario 

Eddie works for a company as a procurement officer and is in charge of developing the 

procurement program. In recent years, the company has established a series of emission 

reduction targets in response to efforts from the government and the community to reduce its 

carbon footprint while building a positive corporate image. Eddie is requested to develop a 

procurement strategy that takes into account three factors: cost, carbon emission and item quality. 

Eddie is instructed to consider all three factors as equally important, and is required to spend no 

more than $100,000 on the purchase and no more than 200,000 kg on the carbon emission. 

Procure 1,000 of each item. Under this condition, Eddie has to develop an optimal procurement 

strategy to satisfy the requirements of the company. 

Table 5.1: The qualification Values for Items from Different Suppliers 

Suppliers Item 1 Item 2 Item 3 Item 4 Item 5 

Supplier 1 0.72 0.71 0.53 0.78 0.58 

Supplier 2 0.64 0.70 0.64 0.61 0.64 

Supplier 3 0.52 0.74 0.72 0.75 0.57 

Supplier 4 0.65 0.65 0.85 0.72 0.48 

Supplier 5 0.43 0.45 0.67 0.87 0.63 

Table 5.2: The Number of Items Produced Per Hour 

Suppliers Item 1 Item 2 Item 3 Item 4 Item 5 

Supplier 1 1 2 1 3 5 

Supplier 2 1 1.5 2 2 4 
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Suppliers Item 1 Item 2 Item 3 Item 4 Item 5 

Supplier 3 1 3 2 3 5 

Supplier 4 0.5 2 1 2 4 

Supplier 5 1 2 1.5 2 4 

Table 5.3: The Matching Relationship Between Items 

Item Matching Relationship 

Supplier 1 Item 1 Supplier 2 Item 3 Supplier 3 Item 3 

Supplier 2 Item 3 Supplier 1 Item 1 Supplier 3 Item 3 

Supplier 3 Item 3 Supplier 1 Item 1 Supplier 2 Item 3 

This is undoubtedly a challenge for Eddie. We propose a new way for him to develop an 

optimal procurement solution. Prior to making any decisions, we need to evaluate the average 

cost of purchasing each item, the average carbon emissions generated during the production and 

transportation of each item, and the average quality of each item as shown in Table 5.1. The 

carbon emission can be found using the life-cycle assessment (LCA) method and calculated 

based on different carbon emission factors. Then, the three indicators are normalized to a value 

between 0 and 1, and the quality of each item is converted to a value between 0 and 1, where a 

smaller value means a better case, and vice versa. Next, based on these three types of indicators, 

we calculate the overall evaluation value of each supplier for each type of item, and since these 

three factors are equally important, they have the same weight of one-third in the overall 

evaluation value. It is also necessary to calculate the number of working hours, the production 

capacity as shown in Table 5.2 and the minimum purchasable quantity that the supplier can 

provide for the different items. In addition, the fit between items produced by different suppliers 

should be taken into account, as shown in Table 5.3, item A only fits items B and C. If item A is 

purchased, it can only be chosen from C and D of the supplier. Finally, the constraints proposed 

by the company are added to find a purchasing solution with the minimum evaluation value. The 

final optimized allocation qualification value of 2500. 

5.2 Procurement Strategy for Reducing Carbon Emissions 

First, we need to collect all the costs involved in purchasing different types of items from 

different suppliers and calculate the average cost of purchasing each item. Then we need to 

evaluate the carbon footprint of each item purchased, and we may calculate all the direct and 
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indirect carbon emissions produced by the item based on different carbon emission factors. 

Finally, we also need to assess the average product quality of each item. The three types of data 

collected were aggregated and normalized to a value between 0 and 1. In addition, item quality 

necessitates further the conversion of the order of the maximum and minimum values, and after 

subtracting the item quality score from 1, smaller values indicate higher item quality scores. This 

conversion is to facilitate the subsequent identification of the least cost and carbon emission 

procurement options. After obtaining these three types of scores, we can finally calculate the 

qualification value of different items from different suppliers, which can be obtained by 

multiplying these three scores by their respective weights cumulatively. AHP can effectively 

help us to derive their weights analytically [17]. 

Before solving, we also need to determine a set of conditions that may be involved in a 

realistic scenario. Since the procurement strategy is modeled in terms of working hours in this 

solution, we also need to account for the efficiency of each supplier to produce different items, 

i.e., the production per hour. The product of the production efficiency and the working hours 

assigned to the supplier by the purchaser cannot be less than the sourcing requirement. In 

addition, it is doubtful that the supplier will produce only a small number of items at a time in a 

practical situation, so we also need to consider the minimum purchasable quantity. Finally, other 

constraints, such as procurement budget, carbon emission cap and product quality standard, are 

taken into account to find the optimal working hours allocation solution, i.e., the optimal 

procurement solution to meet the procurement demand. 

5.3 Formalization of the Procurement Problem with E-CARGO 

Model 

In this section we still use the E-CARGO model to analyze the problem, and the following 

notation and definitions are similar but not related to the previous section. In the new problem  

refers to the suppliers and  refers to the items to be purchased. The number of suppliers that can 

be expressed by the non-negative integer , likewise,  is the number of items 

that we can express,  … are the indices of suppliers, and  … are the indices of 

items. 

Definition 5.1 [24]: The role range vector L is an n-vector that contains the lower bounds of 

the ranges of roles in the environment of a group. It indicates the quantity of each item to be 
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purchased, i.e., . If the quantity to be purchased for item 1 is 10,000 then 

. 

Definition 5.2 [24]: The role limit matrix  is an m  n matrix where  

represents the maximum number of working hours that a supplier can provide to produce an item. 

It is also related to the production conditions of the supplier. For example, if item 1 and item 2 

are produced using separate production lines, the working hours between them will not affect 

each other. 

Definition 5.3: The Production Line Relationship  is an m  n  matrix that is used to 

record the production line relationships used by different suppliers to produce different items. 

 indicates that supplier 1 produces items 1,2,3, and 4 by the same production 

line, therefore the working hours provided by supplier 1 are shared by  these items. 

Definition 5.4: The procurement spend matrix  is an m  n matrix, where  

represents the cost of purchasing item  from a single supplier . 

Normalize procurement expenditures to get procurement cost score  

Definition 5.5: The carbon emission matrix  is an m  n matrix, where  

represents all the direct and indirect carbon emissions involved in purchasing item  

from individual supplier . To ease formalization, we normalize carbon emissions 

to create  carbon emission scores  

Definition 5.6: The quality score matrix  is an m  n matrix, where  is 

used to measure the average quality of item  of supplier . For the 

subsequent operation of finding the minimum solution, we use , 

 . Then the minimum value is used to represent 

the best quality score. 

Definition 5.7 [24]: The qualification matrix  is an m  n matrix, where  

represents the qualification value of item  of supplier . 

, where  are the weights of 

the three indicators in the qualification value.  

To determine the weight of each factor in the qualification value in a concise and systematic 

way, we use AHP. First the three factors can be evaluated by experts to determine the more 

appropriate scale between them two by two, and in the example we used the 1-9 scale method. 

Then we calculate the feature vector value based on the scale, which is the weight value of each 
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factor, and also obtain the maximum feature root value and consistency index for the consistency 

test later. 

Definition 5.8: The work efficiency matrix  is an m  n matrix, where 

 indicates the number of item  that can be produced by 

supplier  per hour. 

Definition 5.9: The minimum number of working hours available from the suppliers  is 

an m  n matrix, where  indicates the minimum number of working hours that the 

purchaser can allocate to the supplier when purchasing item  produced by supplier 

. The minimum available working hours are introduced to match the actual 

situation of the supplier and to avoid situations where the purchaser requests an excessively low 

procurement requirement or an unavailable quantity. 

Definition 5.10: The carbon emissions cap  indicates the maximum carbon 

emissions allowed by the procurement scheme. 

Definition 5.11: The procurement budget  indicates the maximum procurement 

expenditure that the purchaser can accept. 

Definition 5.12: The item quality level requirement  is an n-vector where  

represents the minimum quality standard that needs to be met for each type of item. 

Definition 5.13: The item matching relationship matrix  is an  matrix, 

where  indicates whether there is a matching 

relationship between item  of supplier  and item  of supplier  That  

indicates there is an adaptation relationship between item 1 and item 3 of supplier 1. Hence, if 

you choose to purchase item 1 of supplier 1 during procurement, you also need to choose item 3 

of supplier 1. 

Definition 5.14 [24]: The definition of the role assignment matrix  is an m  n matrix, 

where  indicates the purchaser's demand for  

working hours to produce item  at supplier . That  indicates the purchaser requires 

100 hours of production item  from supplier . 

Definition 5.15 [24]: The qualities of the allocated agents are added together to determine 

the group performance  of group g, which is  It 

indicates the final score of the procurement solution. 
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Definition 5.16 [24]: If role  has been given a sufficient number of agents, it is workable in 

the group, i.e.,  It means that the sum of the product of working 

hours and work efficiency required by the purchaser for different suppliers needs to be greater 

than or equal to the quantity purchased. 

Definition 5.17 [24]: If each role in  is workable, i.e., 

 then  is workable. If  is workable, then g is as 

well. 

Definition 5.18: Using the definitions listed above, our allocation problem can be defined to 

determine a matrix  to obtain 

 

subject to  (5.1) 

 (5.2) 

 (5.3)  

 (5.4) 

 (5.5) 

 (5.6) 

  (5.7) 

 (5.8) 

Where constraint (5.1) informs whether the purchaser has a demand for the supplier's item 

in terms of working hours; (5.2) makes the group workable; (5.3) indicates that the purchaser's 

demand for working hours cannot exceed the maximum number of working hours that the 

supplier can provide under certain production conditions,  tells the number of items 

produced by different production lines of supplier ; (5.4) points out that all expenses for 

procurement must not exceed the procurement budget; (5.5) constraints that the sum of all 

carbon emissions involved in the procurement must not exceed the carbon emissions cap; (5.6) 
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specifies that the quality of each type of item cannot be lower than the item quality standard; (5.7) 

shows that the required working hours in the procurement program must be greater than or equal 

to the minimum productive working hours set by the supplier; (5.8) denotes that if there is a 

matching relationship between two types of items, e.g., if there is a matching relationship 

between item 1 and item 3, then if item 1 from that supplier is purchased, the purchase of item 3 

must be selected from among the suppliers with which it has a matching relationship,  

indicates the number of suppliers with which it has a matching relationship. 

5.4 Summary 

In this chapter, we extend the application of the allocation scheme to focus on the procurement 

segment of the supply chain, focusing on reducing the carbon emissions involved in that segment. 

First, we present a realistic scenario to describe the problem and outline how to achieve an 

optimization of the sourcing solution. Finally, similar to the previous method, we model the 

problem using the E-CARGO model and adapt and introduce definitions to fit the problem. 
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Chapter 6  

6 Simulation Experiments to Optimize Procurement Solution 

In this section, we simulate different real-world scenarios and design three types of experiments 

to analyze the effect of the solution. All experiments were conducted in the environment shown 

in Table 3.5.  

Based on the modeling of the problem, we know that it is challenging to solve such a 

complicated model, and we need to discover a way that can do it in a reasonable amount of time. 

ILOG is the tool that can be utilized to tackle this complex problem. In order to resolve the issue, 

we employ the IBM ILOG CPLEX (CPLEX) package. First, we must prepare all the components 

to meet the requirement of the CPLEX package, where the variables of matrix  have upper and 

lower bounds of 0 and the maximum value of , respectively, and the matrix  and  

represent the coefficients of the objective function. Subsequently, we add the expressions of the 

objective and constraints and find the optimal solution, where these expressions can be 

represented by some formulas. 

6.1 Performance Experiments 

We simulate experiments in contexts with different numbers of suppliers and purchased items, 

and then we track the execution time of the program to evaluate the performance of the solution 

in real-world scenarios. The size of the simulated experiment is assumed to start with a number 

of procurement items of 50 and increase by 50 procurement items each step until it approaches 

300. Correspondingly, the number of suppliers is one-fifth of the number of item types. 

The item quality standard we set to 0.8, which means that items with a quality score lower 

than 0.8 will not be considered. The upper limit of the procurement budget and the upper limit of 

the carbon emission are set to 80% of the maximum values of the procurement budget and 

carbon emission. The production line relationships are randomly generated and the probability of 

the existence of matching relationships between items is set to 10%. 
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Figure 6.1: Performance Experiments Result. 

We conduct 100 sets of experiments with different numbers of suppliers and types of 

purchased items, counting the minimum, average and maximum running times in each case. The 

results are displayed in Fig. 6.1. According to the results, when there are 10 suppliers and 50 

categories of items to be purchased, the minimum running time is 0.01 s, the average running 

time is approximately 0.03 s and the maximum running time is 0.18 s. When there are 60 

suppliers and 300 categories of items to be purchased, the minimum running time increase to 

0.29 s, the average time increase to 0.43 s and the maximum time increase to 1.17 s. The results 

of the performance experiments show that our proposed method runs efficiently at a certain scale 

and the running time is relatively acceptable when the scale is larger. Also to further determine 

the performance efficiency of the method, we modify different constraints in the method and test 

them. The results show that the constraints of the item matching relationship require more 

computation time, so we need to further improve the constraints if we want to further improve 

the efficiency. 

6.2 Weighting Ratio Experiments 

In order to evaluate the impact of the weight of the carbon emission score on the total sum 

qualification value, we assume different weights for the carbon emission score and conducted 

100 experiments separately. According to AHP, we assume five importance levels among the 

factors: very weak, weak, strong, very strong, and absolution with other factors, and their 



45 

 

measurement values are 1, 3, 5, 7, and 9, respectively. Subsequently, we calculate the cumulative 

total scores of procurement expenditure, carbon emission and item quality based on the results of 

the working hour allocation in the procurement solution and use the average of 100 experimental 

results as the final reference value. The experiments are conducted at the scale of , 

, and the other conditions are similar to the previous experiments. 

 

Figure 6.2: Weighting Ratio Experiments Result. 

The result of the experiments are shown in Fig. 6.2, where different colors indicate different 

weights, and the weights from 1 to 5 correspond to the weight of carbon emissions with other 

factors from very weak to absolution, respectively. When the weight of carbon emissions is 

absolution, the score of carbon emissions decreases by 28.75% compared to when the weight of 

carbon emissions and other factors are equally strong, while the procurement expense increases 

by 23.74%. It can be seen that as the weight of carbon emissions increases, the reduction in 

carbon emissions becomes more pronounced, although there is also a significant increase in the 

relative cost of procurement, while at the same time, the quality of the items does not change 

significantly and is in a state of small fluctuations of increase and decrease. Therefore, in real-

world situations, especially when the purchaser is more concerned about carbon emissions, we 
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should not ignore the cost of procurement and try to adjust the weight of various factors to a 

reasonable range. 

6.3 Comparison Experiments 

In the comparison experiments, we compare a baseline method with three methods - minimizing 

procurement expense, minimizing carbon emissions, and maximizing item quality - to analyze 

their strengths and weaknesses. The baseline method treats all three factors as equally important, 

meaning they all have a weight of one-third in the calculation of eligibility values, and then uses 

that weight to calculate the optimal procurement solution. Minimizing expenditure is to use only 

the procurement expenditure as an optimization parameter and find the working hour allocation 

scheme with the lowest expenditure. Minimizing carbon emissions and maximizing item 

qualities are similar to minimizing expenditure, and finally a procurement scheme is found under 

certain constraints. The assumptions of the experiment are similar to those of the previous 

experiments. The results of the experiments are shown in Fig. 6.3 and Fig. 6.4. 

 

Figure 6.3: Comparison Experiments Result. 
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Figure 6.4: Comparison Experiments Result. 

Fig. 6.3 shows the differences between the three methods compared to the basic method in 

terms of three factors: expenditure, carbon emissions and quality. The figure shows that the 

method that focuses only on procurement spend performs best in terms of overhead but has the 

highest carbon emission and the lowest average quality of items. The approach that focuses only 

on carbon emissions significantly reduces carbon emissions compared to the other methods but 

also increases costs. The method that only considers the quality of the items increases in all 

aspects compared to the basic solution. Fig. 6.4 shows a more specific percentage increase or 

decrease for the three methods compared to the baseline method. 

6.4 Summary 

In this chapter, we have conducted performance experiments, weight ratio experiments and 

comparison experiments. Based on the experimental results, we suggest that companies need to 

consider the impact of various factors in a more aggregate manner when purchasing items, and 

that over-consideration of one factor may have a more serious impact on the results. When 

developing a purchasing plan, we try to adjust the weights of different factors to find a relatively 

balanced optimal purchasing plan, taking into account the results of previous experiments. We 

must clarify that the constraints of work efficiency, working hours, and procurement 
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requirements in the experiments are hypothetical data, and further research may be needed to 

confirm the generality of the experimental results for specific areas or situations. 
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Chapter 7  

7 Conclusion 

In this paper, we propose an optimal allocation solution for decentralized data storage in an edge-

cloud environment that focuses on enhancing data privacy. We propose a data partitioning scheme by 

field to avoid as much as possible the inference of important information due to data leakage. We 

introduce a degree of fit metric that enables data fields to be stored in the most appropriate servers. 

We also introduce the E-CARGO model and other constraints to model the problem and use the 

CPLEX optimization package to find the optimal allocation scheme. We refine the method to 

improve its performance and reduce the running time to an acceptable range based on realistic 

scenarios. According to the results of the simulation experiments, our proposed solution allows the 

data to be stored in servers that better match their requirements compared with the trust-based and 

baseline methods, making full use of the server resources while reducing the overhead to some extent. 

We further optimize the method by proposing some strategies to adapt it to scenarios with a large 

number of servers and data volume and data backup.  

Furthermore, we extend the application of the approach to other areas, and we propose a 

working hour allocation scheme for item procurement that focuses on optimizing carbon 

emissions. In dealing with this proposed scheme, we facilitate the modeling and analysis of the 

problem using the E-CARGO model. Following the E-CARGO model, we introduce a 

comprehensive evaluation score to assess the advantages and disadvantages of the procurement 

scheme in terms of procurement overhead, carbon emissions and quality of the items. We also 

introduce other constraints to model the problem and use the CPLEX optimization package to 

find the best allocation scheme. Based on the results of the simulation experiments, our proposed 

solution enables the purchaser to develop a procurement solution that better meets their needs, 

reducing the carbon emissions of the procurement process while reducing the overhead to a 

certain extent while ensuring the quality of the purchased items. 

Our next study will focus on further examining the partitioning of data fields for large-scale 

scenarios, data field conflicts, and the introduction of other constraints; further improving the 
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performance of the method; adjusting the adaptability of the method to fit more scenarios and 

constraints; and designing the system prototype. 
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Appendix I 

In order to reduce the size of the computation for conflict constraints, we use a list of all 

conflicting server combinations , which is a list with the size of the number of groups of all 

conflicting servers, with each section of the list recording the index of each group of conflicting 

servers. Then we use it as the parameter for the constraint calculation, which will reduce the size 

of the operation moderately compared with setting constraints for the  conflict matrix. 

However, experiments reveal that this method only cuts the time by less than 100 ms, which is 

far from satisfaction. 

Then we tried to compress the number of conflicting servers by selecting one server from the 

conflicting servers to represent all the conflicting servers, which is equivalent to removing all the 

conflicting constraints. Initially, we counted the  of all fields of the server, and if the server is a 

cloud server, only the lowly sensitive fields are counted. Then, we selected a server with the 

highest average  as a representative of these servers to participate in the allocation process. 

Despite significantly reducing the runtime, with a server count of 120, a field count of 40, and a 

server conflict rate of 10%, there were still many conflicting servers. This also lead to a 

significant reduction in the number of available servers, resulting in an extremely high number of 

unresolved situations. 

Another method is to find an optimal solution without setting conflicting constraints, and then 

check whether this solution contains conflicting servers. If not, this solution is optimal; if it does, 

add additional constraints and solve the problem again. But after carrying out 100 experiments 

with a conflict rate of 10%, we found that the optimal solution without setting the conflict 

constraint basically contains some conflicting servers, and only less than 5% of experiments have 

a conflict-free solution. The results are equally unsatisfactory. 

The method of reassigning conflicting servers is: 1) finding an optimal allocation scheme 

without adding conflict constraints; 2) selecting all the servers in the scheme with conflicting 

relationships and the fields assigned to them; 3) mixing those servers with other servers that are 

not assigned data fields; 4) adding conflict constraints; and 5) solving once more to find a 

solution for the selected fields that does not conflict the severs. The final solution is then 

produced by combining the allocation strategy with the servers and fields that have previously 

been assigned. Even though the gap between the acquired result and the value of the ideal 
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solution is not great, the percentage of situations with infeasible solution is too high, on average, 

there are over 90 infeasible solutions for every 100 experiments. 

Experiment Data 

 

Figure 1: Performance Experiments Result without Conflict Constraints. 

Fig. 1 shows the runtime of the original method when the number of data fields is incremented 

sequentially from 10 to 60 and the number of servers is three times the number of fields, without 

adding server conflicts. 

Fig. 2 shows the runtime of the improved method using MIP start. We believe that if we can 

offer a decent initial solution to the issue at the outset of the solution, we can significantly 

minimize the computational work of the solution process and accelerate the resolution, and a 

mixed integer programming (MIP) start of CPLEX can assist us in achieving this objective. 

When we are solving an MIP problem, we can provide hints to help CPLEX find an initial 

solution. These hints consist of pairs of variables and values and are called MIP starts. First, we 

randomly find a feasible solution using CPLEX, after that, we utilize it as the starting point for a 

MIP start to determine the best assignment. The running time remains essentially the same 

compared with the original solution, and at some scales it even takes more time than the original 

solution. 
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Figure 2: Performance Experiments Result Using MIP Start. 

Figure 3 shows the results of the experiments using the greedy algorithm, which we performed 

100 times with 120 servers and 40 data fields. The blue points in the figure represent the values 

of the solutions found by the greedy algorithm, the red points represent the values of the optimal 

solutions obtained by the CPLEX calculation, and the points with a limited value of 0 indicate 

that no feasible solution was found. 
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Figure 3: Qualification Values Computed by Greedy Algorithm and CPLEX. 

Figure 4 shows that in the experimental results of the modified greedy algorithm, the blue dots 

represent the values of the solutions derived from the modified greedy algorithm and the red dots 

represent the values of the optimal solutions obtained from the CPLEX solutions. As can be seen 

from the figure, the difference between the red and blue dots is not significant, and the value 

obtained by the modified greedy algorithm is 1.02% less than the value obtained by the CPLEX 

result. In addition, there were 15 instances without a solution out of 100 experiments. 



60 

 

 

Figure 4: Qualification Values Computed by Modified Greedy Algorithm and CPLEX. 

Fig. 5 shows the runtime required using the original method in the case of data requiring an 

additional backup. We assume up to 300 available servers with an additional backup of all data, 

starting with 100 storage units and decreasing by 10 storage units in sequence. 
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Figure 5: Performance Experiments Result for Additional Data Backup. 
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Appendix II 

The implementation code of the improved method is as follows: 

1) Determine the server trust score ,  data field sensitivity score , sensitivity threshold 

server performance score  and coefficient . Servers are sorted according to public cloud 

servers first and then edge servers, fields are sorted in ascending order of sensitivity, the number 

of non-sensitive fields below the threshold is  and the number of sensitive fields above the 

threshold is . Calculate the qualification value   based on , , . 

2) Determine other solution elements, number of backups , maximum number of server storage 

fields , server price , budget , storage size of the server , size of each data field , a list of 

all servers provided by s , matrix  and assignment matrix , . 

3) The matrices ,  and  are expressed in a one-dimensional array form and all parameters are 

passed into the ILOG package for solving. 

4) Declare objects that requires optimization. 

IloIntVar[] x = cplex.intVarArray(m * n, 0, 1) 

IloIntVar[] y = cplex.intVarArray(nc, 0, 1); 

Declare qualification values that have an impact on data privacy. 

double[] QNC = new double[nc]; 

for (int k = 0; k < nc; k++) { 

QNC[k] = CCF[k][4] * Q[(int) (CCF[k][0] * n + CCF[k][1])]; 

} 

Then we need to add the optimization target, and we invoke the following method. 

cplex.addMaximize(cplex.sum(cplex.scalProd(x, Q), cplex.scalProd(y, QNC))); 

5) Add all constraints. 

For constraint (6): 

for (int j = 0; j < n; j++) { 

IloLinearNumExpr constraint2 = cplex.linearNumExpr(); 

for (int i = 0; i < m; i++) { 
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constraint2.addTerm(1, x[i * n + j]); 

} 

cplex.addEq(constraint2, L[j]); 

} 

For constraint (7): 

for (int i = 0; i < m; i++) { 

IloLinearNumExpr constraint3 = cplex.linearNumExpr(); 

for (int j = 0; j < n; j++) { 

constraint3.addTerm(1, x[i * n + j]); 

} 

cplex.addLe(constraint3, LA[i]); 

} 

For constraint (8): 

for (int j = ns; j < n; j++) { 

IloLinearNumExpr constraint4 = cplex.linearNumExpr(); 

for (int i = 0; i < mc; i++) { 

constraint4.addTerm(1, x[i * n + j]); 

} 

cplex.addEq(constraint4, 0); 

} 

For constraint (9): 

for (int i = 0; i < m; ++i) { 

IloLinearNumExpr storeConstrain = cplex.linearNumExpr(); 

for (int j = 0; j < n; ++j) { 

storeConstrain.addTerm(D[j], x[i * n + j]); 

} 

cplex.addLe(storeConstrain, S[i]); 

} 

For constraint (10): 

for (int j = 0; j < n; j++) { 

IloLinearNumExpr constraint5 = cplex.linearNumExpr(); 

for (int i = 0; i < m; i++) { 



64 

 

constraint5.addTerm(P[i], x[i * n + j]); 

} 

cplex.addLe(constraint5, B[j]); 

} 

For constraint (12): 

for (int i = 0; i < serverProviders.size(); i++) { 

List<Integer> servers = serverProviders.get(i); 

for (int j = 0; j < servers.size(); j++) { 

int server = servers.get(j); 

for (int k = 0; k < servers.size(); k++) { 

if (servers.get(k) != server && server >= m1 && servers.get(k) >= m1) { 

IloLinearNumExpr server1 = cplex.linearNumExpr(); 

IloLinearNumExpr others = cplex.linearNumExpr(); 

for (int l = n1 + n2; l < n; l++) { 

server1.addTerm(1, x[server * n + l]); 

others.addTerm(1, x[servers.get(k) * n + l]); 

} 

cplex.add(cplex.ifThen(cplex.ge(server1, 1), cplex.eq(others, 0))); 

} 

} 

} 

} 

For constraint (13): 

for (int k = 0; k < nc; k++){ 

IloLinearNumExpr exprTConstraint = cplex.linearNumExpr(); 

exprTConstraint.addTerm(1, x[(int) CCE[k][0] * n + (int) CCE[k][1]]); 

exprTConstraint.addTerm(1, x[(int) CCE[k][2] * n + (int) CCE[k][3]]); 

exprTConstraint.addTerm(-1, y[k]); 

cplex.addLe(exprTConstraint, 1); 

} 

for (int k = 0; k < nc; k++) { 

IloLinearNumExpr exprTConstraint1 = cplex.linearNumExpr(); 
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exprTConstraint1.addTerm(1, x[(int) CCE[k][0] * n + (int) CCE[k][1]]); 

exprTConstraint1.addTerm(1, x[(int) CCE[k][2] * n + (int) CCE[k][3]]); 

exprTConstraint1.addTerm(-2, y[k]); 

cplex.addGe(exprTConstraint1, 0); 

} 

6) Finally, the cplex.solve() method is used to determine whether there is an optimal solution and 

to derive a specific solution. 

Code for solving in the case of large-scale data and backups: 

IloCplex cplex = new IloCplex(); 

IloIntVar[] x = cplex.intVarArray(m * n, 0, 1); 

 IloIntVar[] y = cplex.intVarArray(nc, 0, 1); 

double[] QNC = new double[nc]; 

 for (int k = 0; k < nc; k++) { 

QNC[k] = CCE[k][4] * Q[(int) (CCE[k][0] * n + CCE[k][1])]; 

} 

cplex.addMaximize(cplex.sum(cplex.scalProd(x, Q), cplex.scalProd(y, QNC))); 

cplex.setOut(null); 

for (int j = n1 + n2; j < n; j++) { 

IloLinearNumExpr sensitivityConstrain2 = cplex.linearNumExpr(); 

for (int i = 0; i < m1; i++) { 

sensitivityConstrain2.addTerm(1, x[i * n + j]); 

} 

cplex.addEq(sensitivityConstrain2, 0); 

} 

for (int j = 0; j < n; j++) { 

IloLinearNumExpr exprReqConstrain = cplex.linearNumExpr(); 

for (int i = 0; i < m; i++) { 

exprReqConstrain.addTerm(1, x[i * n + j]); 

} 

cplex.addEq(exprReqConstrain, L[j]); 

} 

for (int i = 0; i < m; i++) { 
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IloLinearNumExpr AgentAbilityConstraint = cplex.linearNumExpr(); 

for (int j = 0; j < n; j++) { 

AgentAbilityConstraint.addTerm(1, x[i * n + j]); 

} 

cplex.addLe(AgentAbilityConstraint, LA[i]); 

} 

for (int j = 0; j < n; j++) { 

IloLinearNumExpr budgetConstrain = cplex.linearNumExpr(); 

for (int i = 0; i < m; i++) { 

budgetConstrain.addTerm(P[i], x[i * n + j]); 

} 

cplex.addLe(budgetConstrain, B[j]); 

} 

for (int i = 0; i < m; ++i) { 

IloLinearNumExpr storeConstrain = cplex.linearNumExpr(); 

for (int j = 0; j < n; ++j) { 

storeConstrain.addTerm(DQ[j], x[i * n + j]); 

} 

cplex.addLe(storeConstrain, SC[i]); 

} 

for (int i = 0; i < serverProviders.size(); i++) { 

List<Integer> servers = serverProviders.get(i); 

for (int j = 0; j < servers.size(); j++) { 

int server = servers.get(j); 

for (int k = 0; k < servers.size(); k++) { 

if (servers.get(k) != server && server >= m1 && servers.get(k) >= 

m1) { 

IloLinearNumExpr server1 = cplex.linearNumExpr(); 

IloLinearNumExpr others = cplex.linearNumExpr(); 

for (int l = n1 + n2; l < n; l++) { 

server1.addTerm(1, x[server * n + l]); 

 others.addTerm(1, x[servers.get(k) * n + l]); 
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} 

cplex.add(cplex.ifThen(cplex.ge(server1, 1),cplex.eq(others, 

0))); 

} 

} 

} 

} 

for (int k = 0; k < nc; k++) { 

IloLinearNumExpr exprTConstraint = cplex.linearNumExpr(); 

exprTConstraint.addTerm(1, x[(int) CCE[k][0] * n + (int) CCE[k][1]]); 

exprTConstraint.addTerm(1, x[(int) CCE[k][2] * n + (int) CCE[k][3]]); 

exprTConstraint.addTerm(-1, y[k]); 

cplex.addLe(exprTConstraint, 1); 

} 

for (int k = 0; k < nc; k++) { 

IloLinearNumExpr exprTConstraint1 = cplex.linearNumExpr(); 

exprTConstraint1.addTerm(1, x[(int) CCE[k][0] * n + (int) CCE[k][1]]); 

exprTConstraint1.addTerm(1, x[(int) CCE[k][2] * n + (int) CCE[k][3]]); 

exprTConstraint1.addTerm(-2, y[k]); 

cplex.addGe(exprTConstraint1, 0); 

} 

if (cplex.solve()) { 

bILOG_result = true; 

optimized_result = cplex.getObjValue(); 

double[] val = cplex.getValues(x);                for (int j = 0; j < val.length; j++) { 

A[j / n][j % n] = (int) (val[j] + 0.000001); 

TR[j / n][j % n] = A[j / n][j % n]; 

} 

cplex.end(); 

} 

Genetic Algorithm: 

void initGroup() { 
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int[] o = new int[LL]; 

for (int i = 0; i < m; i++) { 

for (int j = 0; j < n; j++) { 

if (firstT[i][j] == 1) { 

o[i] = 1; 

break; 

} 

} 

} 

for (int i = 0; i < LL; i++) { 

oldPopulation[0][i] = o[i]; 

} 

} 

public double evaluate(int[] chromosome) { 

int[][] A = new int[m][n]; 

try { 

IloCplex cplex = new IloCplex(); 

IloIntVar[] x = cplex.intVarArray(m * n, 0, 1); 

for (int j = 0; j < n; j++) { 

IloLinearNumExpr sensitivityConstrain1 = cplex.linearNumExpr(); 

for (int i = 0; i < m; i++) { 

if (chromosome[i] == 0) { 

sensitivityConstrain1.addTerm(1, x[i * n + j]); 

} 

} 

cplex.addEq(sensitivityConstrain1, 0); 

} 

for (int j = 0; j < n1; j++) { 

IloLinearNumExpr sensitivityConstrain1 = cplex.linearNumExpr(); 

for (int i = m1; i < m; i++) { 

sensitivityConstrain1.addTerm(1, x[i * n + j]); 

} 
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cplex.addEq(sensitivityConstrain1, 0); 

} 

for (int j = n1; j < n; j++) { 

IloLinearNumExpr sensitivityConstrain2 = cplex.linearNumExpr(); 

for (int i = 0; i < m1; i++) { 

sensitivityConstrain2.addTerm(1, x[i * n + j]); 

} 

cplex.addEq(sensitivityConstrain2, 0); 

} 

for (int j = 0; j < n; j++) { 

IloLinearNumExpr exprReqConstrain = cplex.linearNumExpr(); 

for (int i = 0; i < m; i++) { 

exprReqConstrain.addTerm(1, x[i * n + j]); 

} 

cplex.addEq(exprReqConstrain, L[j]); 

} 

for (int i = 0; i < m; i++) { 

IloLinearNumExpr AgentAbilityConstraint = cplex.linearNumExpr() 

for (int j = 0; j < n; j++) { 

AgentAbilityConstraint.addTerm(1, x[i * n + j]); 

} 

cplex.addLe(AgentAbilityConstraint, LA[i]); 

} 

for (int i = 0; i < m; ++i) { 

IloLinearNumExpr storeConstrain = cplex.linearNumExpr(); 

for (int j = 0; j < n; ++j) { 

storeConstrain.addTerm(DQ[j], x[i * n + j]); 

} 

cplex.addLe(storeConstrain, SC[i]); 

} 

for (int j = 0; j < n; j++) { 

IloLinearNumExpr budgetConstrain = cplex.linearNumExpr(); 
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for (int i = 0; i < m; i++) { 

budgetConstrain.addTerm(price[i], x[i * n + j]); 

} 

cplex.addLe(budgetConstrain, budget[j]); 

} 

for (int i = 0; i < conList.size(); i++) { 

List<Integer> servers1 = serverProviders.get(conList.get(i).get(0));  

List<Integer> servers2 = serverProviders.get(conList.get(i).get(1)); 

IloLinearNumExpr conflict1 = cplex.linearNumExpr(); 

IloLinearNumExpr conflict2 = cplex.linearNumExpr(); 

for (int j = 0; j < servers1.size(); j++) { 

for (int k = 0; k < n; k++) { 

conflict1.addTerm(1, x[servers1.get(j) * n + k]); 

} 

} 

for (int j = 0; j < servers2.size(); j++) { 

for (int k = 0; k < n; k++) { 

conflict2.addTerm(1, x[servers2.get(j) * n + k]); 

} 

} 

cplex.add(cplex.ifThen(cplex.ge(conflict1, 1), cplex.eq(conflict2, 0))); 

} 

} 

} 

void countRate() { 

int k; 

double sumFitness = 0; 

double[] tempf = new double[scale]; 

for (k = 0; k < scale; k++) { 

tempf[k] = fitness[k]; 

sumFitness += tempf[k]; 

} 



71 

 

Pi[0] = (float) (tempf[0] / sumFitness); 

for (k = 1; k < scale; k++) { 

Pi[k] = (float) (tempf[k] / sumFitness + Pi[k - 1]); 

} 

} 

public void selectBestGh() { 

int k, i, maxid; 

  double maxevaluation; 

maxid = 0; 

maxevaluation = fitness[0]; 

for (k = 1; k < scale; k++) { 

if (maxevaluation < fitness[k]) { 

maxevaluation = fitness[k]; 

maxid = k; 

} 

} 

if (bestLength < maxevaluation) { 

bestLength = maxevaluation; 

bestT = t; 

for (i = 0; i < LL; i++) { 

bestTour[i] = oldPopulation[maxid][i]; 

} 

} 

copyGh(0, maxid); 

} 

public void copyGh(int k, int kk) { 

int i; 

for (i = 0; i < LL; i++) { 

newPopulation[k][i] = oldPopulation[kk][i]; 

} 

} 

public void select() { 
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int k, i, selectId; 

float ran1; 

for (k = 1; k < scale; k++) { 

ran1 = (float) (random.nextInt(65535) % 1000 / 1000.0); 

for (i = 0; i < scale; i++) { 

if (ran1 <= Pi[i]) { 

break; 

} 

} 

selectId = i; 

copyGh(k, selectId); 

} 

} 

public void evolution() { 

int k; 

selectBestGh(); 

select(); 

float r; 

for (k = 0; k < scale; k = k + 2) { 

r = random.nextFloat(); 

if (r < Pc) { 

OXCross(k, k + 1); 

} 

else { 

r = random.nextFloat(); 

if (r < Pm) { 

OnCVariation(k); 

} 

r = random.nextFloat(); 

if (r < Pm) { 

OnCVariation(k + 1); 

} 
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} 

} 

} 

void OXCross(int k1, int k2) { 

int i, j, flag; 

int ran1, ran2, temp = 0; 

ran1 = random.nextInt(65535) % LL; 

ran2 = random.nextInt(65535) % LL; 

while (ran1 == ran2) { 

ran2 = random.nextInt(65535) % LL; 

} 

if (ran1 > ran2) { 

temp = ran1; 

ran1 = ran2; 

ran2 = temp; 

} 

flag = ran2 - ran1 + 1; 

for (i = 0, j = ran1; i < flag; i++, j++) { 

temp = newPopulation[k1][j]; 

newPopulation[k1][j] = newPopulation[k2][j]; 

newPopulation[k2][j] = temp; 

} 

} 

public void OnCVariation(int k) { 

int ran1, ran2, temp; 

int count; 

count = random.nextInt(65535) % LL; 

for (int i = 0; i < count; i++) { 

ran1 = random.nextInt(65535) % LL; 

ran2 = random.nextInt(65535) % LL; 

while (ran1 == ran2) { 

ran2 = random.nextInt(65535) % LL; 
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} 

temp = newPopulation[k][ran1]; 

newPopulation[k][ran1] = newPopulation[k][ran2]; 

newPopulation[k][ran2] = temp; 

} 

} 

public void solve() { 

initGroup(); 

fitness[0] = firstR; 

countRate(); 

for (t = 0; t < MAX_GEN; t++) { 

evolution(); 

for (int k = 0; k < scale; k++) { 

for (int i = 0; i < LL; i++) { 

oldPopulation[k][i] = newPopulation[k][i]; 

} 

} 

for (int k = 0; k < scale; k++) { 

fitness[k] = evaluate(oldPopulation[k]); 

} 

countRate(); 

} 

} 
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