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Abstract 

Environments impacted by pollution can often be characterized by numerous compounding 

stressors. These pollutants, and their interactions with environmental variables, present unique 

challenges for wildlife, often resulting in profound evolutionary changes. However, evolutionary 

mechanisms such as local adaptation to multiple anthropogenic and environmental selection 

pressures are still poorly understood. I conducted a laboratory experiment with Northern leopard 

frog (Rana pipiens) tadpoles from three populations to test if they are adapted to mining-

impacted environmental conditions. I also assessed the potential role of global warming on the 

evolutionary outcome of these different populations by using two different temperature regimes. 

Variability in survival was largely consistent with life-history trade-offs associated with local 

adaptation to environments impacted by metals. Specifically, tadpoles from the environment 

with high levels of toxic metals showed no difference in mortality, but had slower growth rates, 

when raised in environments with medium and low levels of toxic metals. By contrast, tadpoles 

from environments with medium and low levels of toxic metals displayed a higher risk of 

mortality but no changes in growth rate when raised in an environment with high levels of toxic 

metals. Unexpectedly, a warmer environment (25°C) led to higher survival for tadpoles from the 

high toxic metal environment when raised in medium and low toxic metal environments 

compared to tadpoles born in medium and low toxic metal environments. My study demonstrates 

the potential for amphibian populations to adapt to mining-impacted environments and provides 

evidence that such environmental conditions can influence life-history traits. This work also 

highlights that multiple stressors associated with pollution and climate change can produce a 

greater effect in isolation than in combination, which is an unlikely scenario according to current 

climate change research. 
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Chapter 1  

1 Introduction  

1.1  Environmental Pollution 

Environmental pollution is defined as “the contamination of the physical and biological 

components of the earth/atmosphere system to such an extent that normal environmental 

processes are adversely affected” (Muralikrishna & Manickam, 2017, p. 1). As a result of 

environmental pollution, 220 billion chemical pollutants are released into the environment each 

year, greatly impacting wildlife and plant species worldwide (Naidu et al., 2021). Chemical 

contaminants can, for example, disrupt metabolic processes, alter endocrine/neural signalling, 

and impair sensory and cognitive abilities in animals (Saaristo et al., 2018). These contaminants 

also present indirect effects, like changes in predator avoidance (McCallum et al., 2017) and 

reproduction (Clotfelter et al., 2004) in exposed species, which can adversely affect community 

interactions (Rohr et al., 2006). Anthropogenic activities which cause environmental pollution 

have also caused a rise in greenhouse gas emissions, resulting in global climate change (IPCC, 

2013). Since 2012, global average land and sea temperatures have increased and represent the 

greatest warming period in the northern hemisphere in the last 1400 years (IPCC, 2013; Noyes et 

al., 2015). Such temperature changes can profoundly affect wildlife and plants by altering 

rainfall indexes (Westra, 2013), altering prey and predator abundances, changing pathogen and 

host distributions (MacLeod et al., 2007; Patz et al., 2008), and affecting the uptake and fate of 

persistent organic pollutants (Ma et al., 2016). Further, increases and fluctuations in temperature 

can negatively affect the physiology of organisms by triggering immediate physiological stress, 

reducing reproduction, and causing death (Buckley & Huey, 2016).  
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1.2  Adaptations to Multiple Stressors in Polluted Environments 

The suite of chemical stressors present in polluted environments can have negative consequences 

for wildlife, which may become exacerbated by global warming (Nordstrom, 2009; Foulds et al., 

2014; Northey et al., 2017). For instance, a rise in temperature can influence the physiological 

and developmental impacts of some chemical pollutants (Relyea, 2012) or alter their biological 

uptake and disposition, resulting in generally higher toxicity among exposed taxa (Noyes et al., 

2009; Holmstrup et al., 2010). The effects of climate change may also affect organisms’ 

sensitivity to chemical pollutants, resulting in increased chemical bioactivity and physiological 

dysfunction (Hooper et al., 2013). Consequently, exposure to chemicals may induce 

physiological and developmental defects in the short term, in turn impairing the ability to cope 

physiologically or behaviourally with environmental change in the future (Noyes et al., 2015; 

Dutilleul et al., 2017). Accordingly, evaluating the interactions between chemical stressors and 

environmental stressors associated with climate change (e.g., temperature) is crucial for 

understanding the challenges wildlife and plant communities will face when affected by 

environmental pollution in the context of a variable climate (Northey et al., 2017). Although the 

impact of pollutants may negatively alter the sensitivity and susceptibility of organisms to stress 

(Fischer et al., 2013; Hooper et al., 2013; Boelee et al., 2019; Häder et al., 2020), adaptive 

processes may also mitigate these negative effects (Bell & Collins, 2008; Lavergne et al., 2010; 

Sih et al., 2011; Niinemets et al., 2017). In some cases, populations can adapt to their local 

environmental conditions through the emergence of specialized genotypes whose relative 

survival and/or fitness are higher in their local habitat than genotypes from other habitats (local 

adaptation; Kawecki & Ebert, 2004; Hereford, 2009). Additionally, genetic adaptation to one 

stressor may lead to an increase in tolerance to another (co-tolerance; Bubliy & Loeschcke, 
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2005), which is likely since genetic mechanisms underlying tolerance to stressors are usually 

conserved (Sikkink et al., 2015). However, acute chemical exposure can entail evolutionary 

trade-offs in which selection on developmental or metabolic pathways that make populations 

more tolerant to toxicants can also delay evolutionary responses to climatic changes (Noyes et 

al., 2015). Furthermore, the combined selective pressures could reduce population genetic 

diversity, in turn resulting in genetic bottlenecks, lack of adaptability and eventual local 

extinctions (Moe et al., 2013). Evolution of chemical tolerance may therefore be associated with 

fitness costs that reduce populations’ capacity to adapt to climate-related stress (Moe et al., 

2013). 

1.3  Response to Metals and High Temperature in Amphibians 

Metals are a major concern for amphibians because of their persistent nature and complex 

interactions which can negatively affect traits associated with survival and fitness (Noyes et al., 

2009; Holmstrup et al., 2010; Hooper et al., 2013). For example, exposure to metals in 

amphibians can reduce embryonic and larval survival (Sparling et al., 2010; Metts et al., 2012; 

Lance et al., 2013; Flynn et al., 2015) and cause malformations (Haywood et al., 2004; Peles, 

2013; Perez-Alvarez et al., 2018). In addition, amphibians can be at a greater risk as their high 

energy demands during metamorphosis can make them more sensitive to contaminants. This 

increased sensitivity can directly or indirectly impact metamorphosis, which can have 

detrimental effects on amphibian growth and development such as longer developmental periods 

during pre- and post-metamorphosis, lowered body mass/SVL and reduced metamorphic success 

(Egea‐Serrano et al., 2012; Hill et al., 2022).  

Temperature changes can also affect amphibian development and survival (Blaustein et al., 

2010). In amphibians, development rates are generally faster as temperatures rise, up to a 



4 

 

threshold which often varies by species and population (Blaustein et al., 2010). An increase in 

temperature may affect larval amphibians by reducing time to metamorphosis and decreasing 

size at metamorphosis (Li et al., 2013). Survival of amphibians is also influenced by 

temperature, however, the effects of temperature on survival is complex (Blaustein et al., 2010; 

Li et al., 2013). For example, shorter larval periods can increase chances of survival in adverse 

environments, by increasing the chance of successful emergence from said environment (Morand 

et al., 1997; Capellán & Nicieza, 2007; Dahl et al., 2012) and this shorter tadpole phase can be 

detrimental, as amphibians that metamorphose at larger size typically have higher fitness 

(Altwegg & Reyer, 2003; Allentoft & O’Brien, 2010) and survival (Cabrera-Guzmán et al., 

2013). They are less likely to be preyed upon, have a lower metabolic rate, and can maintain 

temperature and hydration more easily than smaller amphibians (Levy & Heald, 2015). 

Ultimately, it appears that there is likely a trade-off between survival and growth which may 

become exacerbated by climate change. 

1.4  Trade-offs Resulting from Adaptations to Stressors 

Stress, and its different forms, is considered a selection pressure to which organisms can adapt 

under appropriate circumstances (Sibly & Calow, 1989; Blanquart et al., 2013; Hawkins & 

Storey, 2020). However, adaptation can come at a cost, be it increased sensitivity to additional 

stressors (Wirgin & Waldman, 2004; Dutilleul et al., 2017; Flynn et al., 2021), or poorer 

performance when not in the presence of the stressor (Bergelson & Purrington, 1996; Klerks et 

al., 2011; Coninck et al., 2014). This trade-off, also known as the physiological cost theory, 

stems from the fact that defence or resistance to stressors is generally associated with metabolic 

or energetic costs (Sibly & Calow, 1989), particularly when there is a finite supply of energy and 

resources available for physiological processes. For example, a greater expenditure of metabolic 
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energy on defense may reduce mortality to some extent (Huot et al., 2014; Pancic & Kiorboe 

2018). However, energy used towards defence cannot be used for growth and thus there may be a 

trade-off between mortality and growth (Wright et al., 2010; Fitzgerald-Dehoog et al., 2012; Fan 

et al., 2022). Variations in fitness may thus be driven by environmental and genotypic factors. 

(Pfennig et al., 2010; Hu & Barrett, 2017). For example, adaptation to chemical stressors may 

occur as a result of the natural selection of genotypes that are more tolerant of those stressors 

(Medina et al., 2007; Sih et al., 2011; Niinemets et al., 2017). However, such adaptation can 

result in loss of genetic diversity with negative long-term consequences, including reduced 

ability to cope with additional stressors (Moe et al., 2013), decreased fitness after the stressor has 

been removed (Coutellec & Barata, 2011), and increased extinction risk (Bijlsma & Loeschcke, 

2012). 

1.5  Evidence of Local Adaptation and Effects of Temperature on its Outcomes 

Adaptation to pollutants, such as road salt (Bell & Gonzalez, 2011; Brady, 2012; Albecker & 

McCoy, 2017, 2019), pesticides (Hua et al., 2013, 2017; Uwizeyimana et al., 2017; Richmond et 

al., 2018), and metals (Roelofs et al., 2009; Lance et al., 2012, 2013; Nakamura et al., 2020; 

Petitjean et al., 2021) have often been examined in isolation and few studies have 

comprehensively investigated the ability of organisms to adapt to multiple stressors. In fact, 

focusing on the response induced by specific stressors may not accurately represent the 

complexity of stress faced in the wild (Cadmus et al., 2016; Girotto et al., 2020). In this study, I 

am investigating the evidence for local adaptation to metal-polluted environments in Northern 

leopard frogs (Rana pipiens) and evaluating the additional influence of high temperatures on 

trade-offs in life-history traits associated with local adaptation. A secondary question I would 

like to address is how high temperatures resulting from climate change affect the tadpoles' ability 
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to cope with changing environments. To this end, I performed a lab-based experiment at ambient 

and high temperatures on three populations of Northern leopard frogs originating from wetlands 

in Sudbury, Ontario, Canada with varying levels of toxic metal pollution. I characterized patterns 

of survival and growth in larvae from each population by recording mortality, length and weight 

measurements over 125 days. I expected populations to display trade-offs in survival and growth 

consistent with local adaptation when raised in environments with different levels of toxic metals 

(Fasola et al., 2015; Bachmann & Buskirk, 2021). Therefore, I predicted tadpoles from 

populations with low levels of toxic metals in their origin environment to exhibit a decrease in 

growth rate, a decrease in body mass and a higher risk of mortality when raised in foreign 

environments with higher levels of toxic metals, and vice versa. I also expected novel 

environments and increased temperatures to result in a compounding negative effect on tadpole 

survival, in comparison to the effect of the two stressors in isolation.  

 

2 Materials & Methods 

2.1  Study Species and Populations 

Northern leopard frogs (Rana pipiens) are widely distributed across North America where they 

are found in most provinces and states excluding the pacific coast (Green & Taylor, 2009). 

During breeding, male R. pipiens call to attract females and fertilization occurs externally in 

aquatic habitats (Green & Taylor, 2009). Females lay egg masses typically containing 3000–

7000 eggs which are fertilized by a single male. Eggs hatch after 9-12 days and tadpoles 

metamorphose approximately 6-12 weeks later (Green & Taylor, 2009). 
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The three populations of R. pipiens studied were sampled at separate wetlands. Coniston 

and Jerry are lacustrine wetlands, located 1.0 km from each other in an area with continuous 

mining activity for the last century (Lavoie et al., 2018). Long Lake is a riverine wetland with no 

recorded historical mining or smelting (Figure 1). Due to the proximity of the Coniston and Jerry 

wetlands, there is a possibility for gene flow between the populations at each wetland. Yet, 

notable gene flow between Coniston and Jerry is unlikely given the two breeding sites are 

separated by over one kilometre of elevated rocky/semi-barren terrain, with no suitable wetland 

or riparian corridors in between, in a landscape which has remained largely unchanged for 

decades (Winterhalder, 1995). Similarly, Long Lake is 20 km from Coniston and Jerry, making 

genetic connectivity between these populations very unlikely (Smith & Green, 2005). 

Furthermore, amphibians have high site fidelity, with most adults remaining within 200 meters 

of their breeding sites and juvenile dispersal limited to less than 1 km for most species (Dole, 

1968; Semlitsch, 2000).  

A surface water analysis was conducted to assess the water quality (pH, conductivity, 

dissolved oxygen) and concentration of trace elements at each wetland. The water chemistry at 

all wetlands showed exceedingly high specific conductance and low dissolved oxygen 

(Appendix A). Additionally, numerous toxic metals were found in the wetlands, which are 

metals and metal compounds that cause negative health effects for organisms (Ali et al., 2019). I 

performed a principal component analysis (PCA) in R (R Core Team, 2013) to provide a more 

comprehensive analysis involving water chemistry and metals among the three wetlands. Based 

on standard PCA procedures involving chemical analysis, data below the minimum detection 

limit (MDL) were considered by defining half of the MDL value (Hornung, 1990; Croghan & 

Egeghy, 2016; Fernández-Ayuso et al., 2023). In addition, only variables for which at least 2 out 
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of 3 wetlands had levels above the MDL were included. The PCA analysis revealed that the 

variance in the original dataset was sufficiently explained by PC1 and PC2 (93.4%). The water 

parameters with the highest loadings (i.e., the water parameters with the most influence on where 

the wetlands were placed on Figure 2) were copper, spc (specific conductance), iron, nickel, 

selenium, pH, barium, arsenic, and manganese, in sequential order (Figure 2, Appendix B). 

Considering the most toxic metals loaded heavily on PC1, I differentiated wetlands based on 

PC1 as Low (Long Lake), Medium (Coniston) and High (Jerry) (Figure 2, Appendix C). 

Hereafter, the 3 population will be referred to as a Low, Medium, and High.  

2.2  Experimental Design 

From each population, five recently laid R. pipiens egg clutches were sampled, and 24 eggs were 

carefully removed from each clutch and transported to Laurentian University in plastic 

containers filled with pond water and placed on ice. Four eggs from each clutch were randomly 

assigned to one of six groups following a 3 x 2 design, such that each group of eggs was raised in 

the water of each wetland (Low, Medium, and High at two temperatures [21°C and 25°C]). I 

chose 21 degrees as the ambient temperature based on Sudbury seasonal averages from May to 

September in 2018 and 2019. In order to replicate the 3-5 degree temperature increase expected 

due to climate change in the next century, the high temperature was set at 25 degrees (Huang et 

al., 2020). Each treatment was replicated five times at the clutch level, resulting in 20 eggs per 

treatment, 120 eggs per wetland and 360 eggs in total. All experimental procedures were 

approved by the Laurentian Animal Care Committee (AUP 2019-04-01).  

2.3  Animal Husbandry  

All tadpoles were housed in individual containers divided between two rooms based on 

temperature treatments; a thermostat, along with heating/cooling lamps were used to keep 
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temperatures constant. Tadpole containers were placed on a 91.5 x 35.6 x 138.4 cm 3-shelf 

storage rack with LED lights and timer to replicate a photoperiod of 14h:10h. The position of 

tadpole containers were haphazardly repositioned once a day during the experiment. Containers 

received a static water renewal (250 ml, 1/3 of the original 750 ml) of UV-treated water every 4 

days. The agitation of changing the water every 4 days could cause tadpoles to emit stress 

hormones such as ACTH and corticosterone (Santymire et al., 2018; Forsburg et al., 2019). 

However, according to a previous study, hormone release rates declined after 2 hours and peaked 

after 6 hours in agitation tests, indicating a relatively rapid recovery (Forsburg et al., 2019). 

Further, tadpoles reared individually did not omit any stress response compared to those reared 

in groups (Forsburg et al., 2019). Therefore, the water changes and resulting stress hormones are 

not likely to affect survival and growth in this experiment. A dissolved oxygen (DO) meter was 

used to monitor DO levels once a day to ensure the tadpoles environment had adequate oxygen 

levels (0.7–6.0 mg L−1; Mansano et al.,2019). Tadpoles were given 4 mg of standard dried 

tadpole food every 2 days; this amount was doubled every two weeks and capped at 16 mg as 

tadpoles were unable to finish the remaining food beyond this amount. 

2.4  Measurements  

Growth rate (mm/day), survival and mass at mortality (g) were calculated at the end of the 

experiment. Tadpoles were photographed every 4 days and individuals were measured to the 

nearest 0.1 mm using the open-source software package ImageJ (Radersma et al., 2018). Length 

measurements continued until day 125 of the experiment or when the tadpoles had developed 

into Gosner Stage (GS) 39 (Gosner, 1960). Tadpole weight was only recorded for tadpoles that 

survived until day 125. The final mass of tadpoles was measured by using the wet weight of 

individual tadpoles and subtracting mass at hatching from mass at mortality. Tadpoles presenting 



10 

 

signs of physical or behavioural deformations (n = 8) were euthanized and removed from the 

study. 

2.5  Survival Analysis  

The survival package in R (Therneau & Grambsch, 2000) was used to fit mixed-effects Cox's 

proportional hazard models and test variability of larval mortality amongst populations, 

environments, and temperatures. Larval mortality was modelled as a binary response (1 = died, 0 

= survived or reached GS Stage 39) using a binomial (logit-link) distribution. Population, rearing 

environment and their interaction were included as fixed effects while clutch number (1-5) was 

included as a random effect. Time to mortality was analyzed by plotting the Hazard Ratios (HR) 

and Confidence Intervals (CI) amongst the tadpole populations using ggstatsplot (Patil, 2021). 

The coefficients in a Cox regression relate to hazard with a positive coefficient indicating a 

higher risk of mortality and a negative coefficient indicating a lower risk of mortality. 

2.6  Growth Analysis 

Differences in tadpole growth rate and final mass among populations and environments were 

analyzed using linear mixed effects models with lme4 (Bates et al., 2015) in R. Significance of 

fixed effects was determined using linear model coefficients which were converted to F 

coefficients and tested with Wald F tests and Kenward Roger Degrees of Freedom, using car 

(Fox & Weisberg, 2019). Post-hoc analyses were conducted using Tukey pairwise comparisons 

with multcomp (Hothorn et al., 2008). Population, rearing environment and their interaction 

were included as fixed effects while clutch number (1-5) was included as a random effect. 

Hedge’s g was calculated as a measure of effect size based on the pooled mean differences and 

standard deviations for length growth rate (mm) and mass (grams) across all datasets. A g of 1 

indicates a difference of 1 standard deviation between the two groups and a g of 2 indicates a 
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difference of 2 standard deviations (Hedges, 1981). When interpreting hedges g, the following 

rule applies: small effect = 0.2, medium effect = 0.5, large effect = 0.8 (Hedges, 1981). 

Differences in effect size can mean different things in different fields of study, therefore caution 

should be taken when interpreting the terms “small” and “large” in consideration to effect size 

(Hedges, 1981; Durlak, 2009). The growth data associated with tadpoles at 25°C were not 

included in this study because of the high probability of type II errors due to the small sample 

size of surviving tadpoles at 25°C (0% survival at day 150/GS 39) relative to 21°C (18.6% 

survival at day 150/GS 39; Columb & Atkinson, 2016). Continuous response variables were 

plotted and visually analyzed to confirm normality of residuals with ggplot2 (Wilkinson, 2011). 

 

3 Results 

3.1  Mortality 

Tadpole mortality was significantly related to their rearing environment and temperature. At 

21°C, Medium tadpoles showed a 3 times greater risk of mortality when reared in High [HR 

4.06; 95% CI: 0.45 to 2.35; p = 0.004], compared to their original water. Medium tadpoles also 

had a 1.5 times greater risk of mortality when reared in Low [HR 2.5; 95% CI: 0.11 to 1.72; p = 

0.03], as compared to their original water (Table 1, Figure 3A). In comparison, tadpoles from 

High and Low populations did not show a difference in risk of mortality in foreign environments 

(Table 1, Figure 3A, C). When comparing environments, Medium and Low tadpoles presented a 

significantly higher risk of mortality when reared in High (Table 1, Figure 3A, B, C). Medium 

tadpoles had a 4.7 times higher risk of mortality [HR 5.59; 95% CI: 0.82 to 2.64; p < 0.001] and 

Low tadpoles had a 12 times higher risk of mortality [HR 12.7; 95% CI: 1.52 to 3.6; p < 0.001], 

compared to tadpoles from High (Figure 3B). By contrast, the mortality of tadpoles from High 
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was not different from Medium and Low tadpoles when raised in Medium and Low respectively 

(Table 1, Figure 3A, C). 

At 25°C, Medium tadpoles did not display differences in risk of mortality in foreign 

environments compared to their original water and Low tadpoles only displayed a significantly 

higher risk of mortality when reared in High, with a 61% reduction in risk of mortality [HR 0.39; 

95% CI: -1.62 to -0.25; p = 0.008] compared to their original water. Interestingly, tadpoles from 

High demonstrated a lower risk of mortality when reared in Medium, with a 91% reduction in 

risk of mortality [HR 0.09; 95% CI: -3.15 to -1.6; p < 0.001] compared to Medium tadpoles and 

a 20% reduction in risk of mortality when reared in Low [HR 0.20; 95% CI: -2.77 to -0.91; p < 

0.001] in comparison to Low tadpoles (Table 2, Figure 3E, F). Additionally, in the High 

environment, Medium tadpoles displayed a 6.5 times higher risk of mortality [HR 7.53; 95% CI: 

1.33 to 2.71; p < 0.001] and Low tadpoles displayed a 1.35 times higher risk of mortality [HR 

2.35; 95% CI: 0.19 to 1.52; p = 0.01], in comparison to tadpoles from High (Table 2, Figure 3D). 

3.2  Growth Rate 

The interaction of population and rearing environment had a significant effect on tadpole growth 

rate (F4,57 = 18.00, p = 0.002; Table 3, Figure 4). Tadpoles from High displayed a lower growth 

rate in Medium, compared to Medium tadpoles with a very large effect size (p < 0.001, g = 4.2; 

Table 5). Yet, this growth rate was higher than when they were raised in their original 

environment, with a large effect size (p = 0.02, g = 1; Table 5, Figure 4). Tadpoles from Medium 

displayed a higher growth rate in High, compared to Tadpoles from High with a large effect size 

(p = 0.03, g = 0.87; Table 5, Figure 4). There were no significant differences in growth rate 

among the other tadpole groups (Table 5, Figure 4). 
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3.3  Mass 

The interaction of population and rearing environment had a significant effect on tadpole mass 

(Table 4; Figure 5). Differences in mass were observed between tadpoles from High raised in 

Medium, compared to tadpoles from Medium and High raised in their origin environments 

(Table 6, Figure 5). Specifically, tadpoles from High had a lower mass when raised in Medium, 

compared to tadpoles from Medium and High raised in their origin environments, with very large 

effect sizes (p < 0.001, g = 2.38; p = 0.03, g = 1.5, respectively; Table 6, Figure 5). No 

significant difference in mass was observed within or among tadpole groups in any other 

comparison (Table 6, Figure 5). 

 

4 Discussion 

Overall, my results demonstrate life-history trade-offs consistent with local adaptation to 

environments contaminated with toxic metals. Tadpoles from the environment with the highest 

levels of toxic metals (High) displayed changes in growth rate and mass, but their survival was 

not altered when transplanted into environments with a medium level of toxic metals (Medium) 

or a low level of toxic metals (Low). By contrast, tadpoles from Medium and Low were more 

likely to experience mortality when raised in High but showed little change in growth rate or 

mass. Furthermore, I observed that Tadpoles from High’ survival was more affected by the 

rearing environment or the increased temperature alone than in combination. These results 

suggest that populations from High are adapted to stressful conditions which can allow them to 

deal with additional stressors, highlighting the importance of considering organisms' 

evolutionary background and the interactions among multiple stressors when investigating the 
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effects of pollution. In addition, my study corroborates previous research detailing the complex 

interactions between chemicals and climate on the life histories of organisms. 

4.1  Evolutionary Responses to Stressors 

Different evolutionary responses were observed across R. pipiens tadpoles raised in novel 

conditions. Survival and growth patterns differed between populations from High compared to 

Medium and Low. Tadpoles from Medium and Low had lower survival when transferred to 

High, a finding consistent across numerous taxa, where naïve organisms survive significantly 

less in contaminated environments compared to individuals that had prior exposure to 

contaminants (Xie & Klerks, 2004; Roelofs et al., 2009; Agra et al., 2011; Hangartner et al., 

2011; Hua et al., 2013; Coldsnow et al., 2017). Tolerance to contaminants can occur at the 

population level, resulting in local adaptation, where genotypes are better adapted to their native 

environments than those from other populations (Hereford, 2009; Blanquart et al., 2013). For 

example, in Moor frog (Rana arvalis) populations, phenotype-environment correlations revealed 

that embryonic acid tolerance and metamorphic size diverged most strongly with pH in breeding 

ponds (Hangartner et al., 2011). As a result, embryonic and larval acid tolerance was higher 

(higher survival/unaffected larval period), larval growth was higher, and larvae metamorphosed 

at a larger size in populations originating from acid ponds (Hangartner et al., 2011). Insecticides 

can also affect the genes of individuals previously exposed, compared to non-exposed 

individuals (Poupardin et al., 2012). For instance, Wood frog (Lithobates sylvaticus) populations 

exposed to sublethal concentrations of insecticides in early development exhibited higher 

survival rates after exposure to a sublethal dose of insecticides later in life, compared to 

populations without prior exposure (Hua et al., 2013). 
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In this study, tadpoles from High displayed a slower growth rate and lower mass when raised 

in Medium and Low, in line with previous research indicating that exposure to metals can result 

in the evolution of physiological tolerance that results in trade-offs in fitness in the absence of 

these metals (Wirgin & Waldman, 2004; Medina et al., 2009; Klerks et al., 2011; Coninck et al., 

2014; Oziolor et al., 2014; Flynn et al., 2021). These findings support the notion of the 

physiological cost theory (Sibly & Calow, 1989) suggesting that organisms coping with toxic 

stress have individual costs associated with altered physiological processes. Among these 

processes are detoxification mechanisms that can hinder growth or reproduction in unpolluted 

environments by diverting energy from other fitness traits, such as growth and/or reproduction, 

but improve survival under polluted conditions (Sibly & Calow, 1989; Lopes et al., 2005). For 

example, the higher respiration rates of copper-resistant Daphnia longispina clones were 

associated with increased metabolic demands due to detoxification processes (i.e., 

metallothionein synthesis; Agra et al., 2011). Similarly, the rapid evolution of salt tolerance in 

Daphnia pulex occurs with the tradeoff of suppressed circadian function which can affect species 

interactions, having profound consequences on individuals, populations, and aquatic food webs 

(Coldsnow et al., 2017). Here, tadpoles originating from High demonstrated small trade-offs in 

life-history traits when raised in a foreign environment. Rearing tadpoles from High in Medium 

and Low did not affect their survival but it did slow their growth. Therefore, it is likely that 

tolerance to metal environments could be associated with potentially costly delays in growth 

under non-polluted environments, which could reduce the viability of populations from mining-

impacted areas when there is a high degree of temporal/spatial variation in pollutant presence 

and concentrations. 
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4.2  Impacts of Global Warming on Adaptations to Metals  

In comparison to ambient temperatures (21°C), Medium and Low tadpoles showed fewer 

changes in survival at high temperatures (25°C) in High compared to their original environment. 

However, Medium, and Low tadpoles survived less in High, compared to their original 

environment. These results do not coincide with previous ecotoxicity experiments which have 

demonstrated that chemical toxicity generally increases with increasing temperature, negatively 

affecting organisms (e.g., Messiaen et al., 2013; Barbosa et al., 2015; Ali et al., 2019; Soliman & 

Moustafa, 2020). Interestingly, tadpoles from High showed lower mortality when raised at high 

temperatures (25°C) in Medium and Low suggesting that amphibian populations may respond 

differently to changes in temperature based on their history of exposure to toxic metals. This 

contrasting result was unexpected because most detoxification processes that might alter toxic 

effects, like substance uptake pathways and metabolic oxygen demand, are temperature 

dependent (Honkanen & Kukkonen, 2006). Tadpoles with a tolerance to one stressor may gain 

tolerance to other stressors via shared pathways (Fasola et al., 2015). This co-tolerance may 

explain why Tadpoles from High’ survival was less affected by increased temperatures, 

compared to Medium and Low tadpoles, as heavy metals, and high temperatures both act on the 

same biological pathway in response to cell stress (Heikkila, 2017; Steurer et al., 2018). Known 

as the heat shock response, this pathway stimulates the synthesis of heat shock proteins by 

activating transcriptomes such as HSF1 (Heat Shock Factor 1) (Heikkila, 2017; Steurer et al., 

2018). Under stressful conditions, heat shock proteins function as molecular chaperones that 

ensures normal protein function, such as folding, assembly, and translocation (Heikkila, 2017; 

Steurer et al., 2018). Furthermore, if both heavy metals and high temperatures produce a similar 

response to cell stress and act on the same biological pathway, it appears possible that the genetic 
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or physiological changes that occur to produce tolerance to one of these stressors could also 

produce tolerance to the other. Co-tolerance was previously observed in invertebrates (Lopes et 

al., 2005) and in amphibians (Marquis et al., 2009; Fasola et al., 2015) for pollutants with similar 

adverse effects. Alternatively, the vast range of possible interactions among stressors suggests 

that some stressor combinations may pose a greater threat than others (Heard et al., 2015; Piggott 

et al., 2015; Brady et al., 2019). For example, although Ranavirus causes large die-offs in 

amphibian populations exposed to this pathogen (Lesbarrères et al., 2012), previous studies have 

demonstrated antagonistic interactions between copper and Ranavirus (Leduc, 2013), whereby 

the growth and development of tadpoles exposed to both copper and Ranavirus were not 

different from tadpoles exposed to each stressor in isolation (Leduc, 2013). Likewise, predator-

cues have also been shown to act antagonistically with metals in larval amphibians (Rumrill et 

al., 2016).  

While this study underscores that mining-impacted R. pipiens populations can adapt to 

multiple stressors in polluted environments, the physiological processes that are involved in 

eliminating the pollutants or detoxifying them may require additional resources, reducing 

amphibians' ability to cope with additional environmental stressors (e.g., rising temperatures; 

Hooper et al., 2013; Alton & Franklin, 2017). Additionally, this study was conducted under 

controlled laboratory conditions in the absence of environmental factors typically present under 

natural conditions. Accordingly, I cannot report on the effect of mining-impacted environments 

broadly, but rather on the effects associated with the toxic and trace elements present in these 

environments. Future laboratory studies should attempt to analyze the effects of multiple toxic 

elements, as well as other environmental stressors associated with polluted environments and 

provide insight into the specific physiological mechanisms underlying their responses. 
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5 Conclusion 

Anthropogenic threats such as the chemical contamination of natural habitats, have increased in 

frequency and intensity throughout the world and are expected to continue to do so in the future 

(Tilman & Lehman, 2001; Bell & Collins, 2008). Simultaneously, rising temperatures from 

climate change continue to alter the earth's climate, causing spikes in global average land and sea 

temperatures (IPCC, 2013). Thus, understanding evolutionary responses to multiple stressors, 

specifically chemical and climate stressors, is crucial for the conservation of natural populations. 

Even though wetlands in areas with a century of continuous copper and nickel smelting can 

produce unique selective pressures on amphibians, my results demonstrate that local adaptation 

can alleviate some of the fitness costs typically incurred in these environments, thus supporting 

previous literature showing that tolerance to these chemical stressors can cause life-history trait 

variation and trade-off costs in the absence of these stressors (Hughes et al., 2007; Hereford, 

2009; Moe et al., 2013; Bono et al., 2017). In addition, I provide evidence that amphibians from 

mining environments can experience more adverse effects from stressors in isolation than in 

combination, potentially leading to less fitness costs when adapting to climate change, compared 

to amphibians from non-impacted environments. To this end, I recommend that future studies 

investigating evolutionary responses to multiple stressors continue to develop a framework using 

a life-history trait-based approach along with the integration of genomics, behavioural and 

population demographic analyses. 
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Table 1. Variation in larval mortality among populations and environments in Rana 

pipiens populations at 21°C determined using a multivariate Cox regression model. Column 1 

and 2 represents the population/environment identifier; the first 1-letter code is the origin pond 

the tadpoles came from and the second 1-letter code is the pond the tadpoles were raised in for 

the duration of the experiment: Low (L), Medium (M) and High (H). 

Origin Pond 

-                                                                                                                                                                                                                                                                                                                                                                     

Transfer 

Pond 

Origin Pond 

-                                                                                                                                                                                                                                                                                                                                                                 

Transfer 

Pond 

Coefficient 

(bi) 

HR 

[exp(bi)] 

95% CI p-value 

L - L L - M 0.46 1.58 (-0.25-1.16) 0.20 

L - L L - H 0.64 1.89 (-0.14-1.41) 0.11 

L - L M - L -0.18 0.84 (-0.89-0.54) 0.63 

L - L H - L -0.49 0.62 (-1.23-0.26) 0.20 

M - M M - H 1.4 4.06 (0.45-2.35) 0.004 

M - M M - L 0.92 2.5 (0.11-1.72) 0.03 

M - M H - M 0.44 1.55 (-0.42-1.29) 0.32 

M - M L - M 1.61 5 (0.73-2.49) < 0.001 

H - H H - M 0.16 1.17 (-0.63-0.95) 0.69 

H - H H - L 0.44 1.55 (-0.36-1.23) 0.28 

H - H M - H 1.72 5.59 (0.8-2.64) < 0.001 

H - H L - H 2.56 12.7 (1.52-3.6) < 0.001 
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Table 2. Variation in larval mortality among populations and environments in Rana 

pipiens populations at 25°C determined using a multivariate Cox regression model. Column 1 

and 2 represents the population/environment identifier; the first 1-letter code is the origin pond 

the tadpoles came from and the second 1-letter code is the pond the tadpoles were raised in for 

the duration of the experiment: Low (L), Medium (M) and High (H). 

Origin Pond 

-                                                                                                                                                                                                                                                                                                                                                                     

Transfer 

Pond 

Origin Pond 

-                                                                                                                                                                                                                                                                                                                                                                 

Transfer 

Pond 

Coefficient 

(bi) 

HR 

[exp(bi)] 

95% CI p-value 

L - L L - M -0.50 0.61 (-1.14-0.14) 0.13 

L - L L - H -0.93 0.39 (-1.62-(-0.25) 0.008 

L - L M - L -0.31 0.73 (-0.94-0.32) 0.33 

L - L H - L -1.59 0.20 (-2.27-0.91) <0.001 

M - M M - H 0.08 1.08 (-0.56-0.72) 0.81 

M - M M - L -0.29 0.75 (-0.92-0.33) 0.36 

M - M H - M -2.38 0.09 (-3.15-(-1.6) <0.001 

M - M L - M -0.51 0.60 (-1.17-0.15) 0.13 

H - H H - M -0.18 0.83 (-0.79-0.43) 0.56 

H - H H - L 0.38 1.46 (-0.25-1.01) 0.24 

H - H M - H 2.02 7.53 (1.33-2.71) <0.001 

H - H L - H 0.85 2.35 (0.19-1.52) 0.012 
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Table 3. Effect of origin and transfer ponds on mean growth rates (cm/day) for Rana pipiens 

tadpoles for two-way ANOVA. 

Predictor df df residuals F p-value 

Origin Pond 2 49 18 <0.001 

Transfer Pond 2 55 0.16 0.86 

Origin Pond × Transfer Pond 4 57 4.85 0.002 

 

Table 4. Effect of origin and transfer ponds on mass (grams) for Rana pipiens tadpoles for two-

way ANOVA. 

Predictor df df residuals F p-value 

Origin Pond 2 55 8.11 <0.001 

Transfer Pond 2 55 2.42 0.1 

Origin Pond × Transfer Pond 4 57 2.82 0.03 
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Table 5. Growth rates (mm/day) response amongst Rana pipiens populations and environments. 

Column 1 and 2 represents the population/environment identifier; the first 1-letter code is the 

origin pond the tadpoles came from and the second 1-letter code is the pond the tadpoles were 

raised in for the duration of the experiment: Low (L), Medium (M) and High (H). P-values are 

calculated using Tukey HSD Post-hoc Test for Multiple Comparisons of means. 

Origin 

Pond (T) 

-                                                                                                                                                                                                                                                                                                                                                                 

Transfer 

Pond (R) 

Origin 

Pond (T) 

-                                                                                                                                                                                                                                                                                                                                                                 

Transfer 

Pond (R) 

Mean 

Difference  

(R-T) 

Std.Error 95% CI  p-value Hedges’ 

g 

L - L L - M 0.01 –0.01 0.0007 (-0.002-0.0018) 0.99 0.08 

L - L L - H 0.01 – 0.01 0.0007 (-0.0006-0.003) 0.33 1.43 

L - L M - L 0.01 – 0.02 0.0008 (-0.002-0.0018) 0.99 0.49 

L - L H - L 0.01 – 0.01 0.0009 (-0.003-0.002) 0.93 0.44 

M - M M - H 0.01 – 0.01 0.0005 (-0.0008-0.002) 0.83 0.41 

M - M M - L 0.013- 0.01 0.0006 (-0.0003-0.003) 0.15 1.80 

M - M H - M 0.013 – 0.01 0.0005 (0.002-0.004) <0.001 4.15 

M - M L - M 0.013 – 0.01 0.0014 (-0.00005-0.003) 0.06 1.70 

H - H H - M 0.011 – 0.01 0.0005 (0.0002-0.003) 0.02 1.10 

H - H H - L 0.01 – 0.01 0.0007 (-0.003-0.0009) 0.61 0.53 

H - H M - H 0.01 – 0.01 0.0005 (-0.003-(-0.0001) 0.03 0.87 

H - H L - H 0.01 – 0.01 0.0005 (-0.0006-0.002) 0.50 0.50 
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Table 6. Mass (grams) response amongst Rana pipiens populations and environments. Column 1 

and 2 represents the population/environment identifier; the first 1-letter code is the origin pond 

the tadpoles came from and the second 1-letter code is the pond the tadpoles were raised in for 

the duration of the experiment: Low (L), Medium (M) and High (H). P-values are calculated 

using Tukey HSD Post-hoc Test for Multiple Comparisons of means. 

Origin 

Pond (T) 

-                                                                                                                                                                                                                                                                                                                                                                 

Transfer 

Pond (R) 

Origin 

Pond (T) 

-                                                                                                                                                                                                                                                                                                                                                                 

Transfer 

Pond (R) 

Mean Difference  

(R-T) 

Std.Error 95% CI  p-value Hedges’ 

g 

L - L L - M 1.8 - 1.34 0.24 (-0.17-0.99) 0.24 1.01 

L - L L - H 1.8 - 1.47 0.22 (-0.25-0.87) 0.50 1.14 

L - L M - L 1.8 - 1.48 0.25 (-0.36-0.87) 0.70 0.43 

L - L H - L 1.8 - 1.48 0.27 (-0.6-0.72) 1 0.35 

M - M M - H 1.64 - 1.53 0.16 (-0.28-0.49) 0.93 0.34 

M - M M - L 1.64 - 1.48 0.2 (-0.32-0.65) 0.87 0.34 

M - M H - M 1.64 - 0.85 0.15 (-0.39-1.15) <0.001 2.38 

M - M L - M 1.64 - 1.34 0.18 (-0.13-0.77) 0.27 0.78 

H - H H - M 1.34 - 0.85 0.16 (0.02-0.82) 0.03 1.46 

H - H H - L 1.34 - 1.66 0.23 (-0.09-0.19) 0.31 1.35 

H - H M - H 1.34 - 1.53 0.16 (-0.65-0.16) 0.41 0.92 

H - H L - H 1.34 - 1.47 0.16 (-0.56-0.24) 0.76 0.69 
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Figure 1. Locations of wetlands with different levels of toxic metals where tadpole populations 

were sampled, within the Greater Sudbury region. Tadpole populations are indicated with frog 

symbols: Long Lake (Low), Coniston (Medium) and Jerry (High). Smelter locations are 

indicated with factory symbols. 
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Figure 2. Plot of the first two PC-axes associated with metals and water parameters at the three 

wetlands. PC1 explains 51.2% and PC2 42.2% of the variance in trace element and water quality 

of the aquatic environments (93.4% total). The two rearing environments Low and Medium are 

primarily separated from the third rearing environment High along PC1, which was associated 

with copper, spc (specific conductance), iron, nickel, selenium, pH, barium, arsenic, and 

manganese, in sequential order. See Appendix D for PC eigenvalues, variance, and loading 

scores. 
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Figure 3. Risk of mortality for tadpoles with regards to their origin vs. transfer environment 

using multivariate cox regression models. The Standardized Regression Coefficient (β) and the 

95% CI relate to hazard, with a positive coefficient indicating a higher risk of mortality and a 

negative coefficient indicating a lower risk of mortality. The dotted line on each figure represents 

the reference group. The environment where tadpoles were transferred to and the origin 

populations are represented as Low, Medium, and High. The letter at the left corner of each 

individual figure represents the temperature of the transfer environment; A, B and C represent 

21°C, while D, E and F represent 25°C. 
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Figure 4. Tadpole length (SVL) mean growth rates (mm/day) and standard error between 

populations and transfer environments. The x-axis depicts the environment where tadpoles were 

transferred to Low, Medium and High. The three origin populations are represented as Low 

(circle), Medium (triangle) and High (square). Horizontal mean comparisons represent tadpoles 

from a single population transferred into the three different transfer environments. Vertical mean 

comparisons represent tadpoles from each of the three populations transferred into one of the 

transfer environments. 
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Figure 5. Tadpole mass (grams) means and standard error between populations and transfer 

environments. The x-axis depicts the environment where tadpoles were transferred to Low, 

Medium and High. The three origin populations are represented as Low (circle), Medium 

(triangle) and High (square). Horizontal mean comparisons represent tadpoles from a single 

population transferred into the three different transfer environments. Vertical mean comparisons 

represent tadpoles from each of the three populations transferred into one of the transfer 

environments. 
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Appendices 

Appendix A. Summary of water quality parameters at each wetland and major element 

concentration (ug/L – micrograms per litre). Specific Conductivity was measured in 

microsiemens per centimeter (uS/cm), temperature adjusted conductivity was measured in 

micrometres per centimeter (um/cm). Values for Coniston (Medium) and Jerry (High) are the 

average of 3 water samples, values for Long Lake (Low) are the average of 4 water samples.  

 Low Medium High 

pH 5.77 6.19 6.16 

Dissolved Oxygen (%) 81.7 84.8 91.4 

Salinity  0.1 0.11 0.16 

Conductivity (uS/cm) - Actual 124 139 194 

Conductivity (um/cm) - Adjusted for 

Temperature 

205 229 328 

Calcium (ug/L) 3333 3630 4837 

Magnesium (ug/L) 930 2497 1973 

Potassium (ug/L) 610 2467 1010 

Sodium (ug/L) 2020 5150 32167 
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Appendix B. Principal component loadings of water quality parameters and dissolved metals in 

environmental water samples taken at each wetland. Specific Conductance (spc) was measured 

in µS/cm and trace element concentrations as ug/L. 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

Al 0.1069  0.3436  -0.1544  -0.2332  0.3023  0.2386  0.1810  0.0015  -0.6260  0.0537  

As 0.2524  0.2440  -0.0257  0.0971  -0.2192  -0.2681  0.0962  -0.1659  0.0070  0.1367  

Ba 0.2529  0.2415  -0.0515  0.1993  -0.1021  -0.2313  -0.2587  -0.4256  -0.0652  -0.1274  

B 0.1344  -0.3086  -0.2736  -0.5196  -0.3886  -0.1285  -0.1104  0.0197  -0.1623  0.0718  

Co -0.1820  0.3016  -0.0448  -0.2870  -0.0064  0.1739  -0.8120  0.0885  0.1328  -0.1026  

Cu 0.3344  -0.0109  0.0208  0.1101  0.3242  0.1101  -0.1141  -0.0277  0.1350  0.1175  

Fe 0.3238  0.1030  0.0063  0.0751  0.2041  0.0064  -0.0822  0.4181  -0.1266  -0.1952  

Pb 0.1965  0.2932  -0.0982  -0.0214  -0.2063  0.6640  0.1786  -0.2805  0.3758  0.1252  

Mn -0.2510  0.2485  -0.0039  -0.0461  -0.1773  0.1347  0.0685  -0.0411  -0.4067  0.1053  

Ni 0.3171  0.1300  -0.0445  0.0597  0.0248  -0.0988  -0.0944  0.0153  -0.1467  -0.2270  

Rb 0.1198  -0.3395  -0.2727  -0.1810  0.0676  0.0219  -0.0652  -0.5217  -0.1274  -0.0097  

Se 0.2666  -0.0067  0.8084  -0.4730  -0.0898  0.0190  0.0719  -0.0728  -0.0080  -0.0481  

Sr 0.1414  0.3302  -0.1432  -0.0595  -0.3793  -0.2632  0.0698  0.3312  0.1037  0.4110  

S 0.2914  -0.1652  -0.3175  -0.1839  -0.0850  0.2197  0.1772  0.3326  0.1762  -0.3573  

Zn -0.1458  0.3047  -0.1848  -0.4706  0.4729  -0.3716  0.2427  -0.1231  0.3733  -0.0166  

pH 0.2603  -0.2335  -0.0057  -0.0077  0.3004  0.0567  -0.2183  0.0885  -0.0043  0.6948  

spc 0.3339  0.0595  -0.0227  0.0699  -0.0043  -0.1739  -0.0450  -0.0786  0.0030  -0.1854  
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Appendix C. Summary of trace element concentrations (ug/L) at each wetland: Low (L1, L2, L3 

and L4), Medium (M1, M2, M3) and High (H1, H2, H3). Minimum detection limits (MDL) are 

also indicated. 

  MDL L1 L2 L3 L4 M1 M2 M3 H1 H2 H3 

 Al 1 44 48 28 29 12 10 14 46 46 47 

 Sb 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 

 As 1 1 1 1 1 <1 <1 <1 2 2 2 

 Ba 1 8 8 8 8 5 5 6 14 13 14 

 Be 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 

 Bi 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 

 B 2 3 3 3 3 5 6 4 4 4 4 

 Cd 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 

 Ce 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 

 Cs 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 

 Cr 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 

 Co 0.1 0.4 0.4 0.3 0.3 0.1 <0.1 <0.1 0.2 0.1 0.2 

 Cu 1 6 6 4 5 13 11 15 24 24 24 

 Eu 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 

 Ga 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 

 Fe 20 220 244 140 160 296 200 330 888 903 932 

 La 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 

 Pb 0.1 0.2 0.2 0.1 0.2 <0.1 <0.1 <0.1 0.3 0.3 0.3 

 Li 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 

Mn 1 20 21 18 19 2 1 2 4 3 4 

 Hg 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 

 Mo 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 

 Ni 1 26 27 23 24 26 25 27 66 65 67 

 Nb 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 

 Rb 1 2 2 2 2 4 5 4 3 3 3 

 Sc 1 <1 <1 <1 <1 <1 <1 <1 1 1 1 

 Se 0.2 <0.2 <0.2 <0.2 <0.2 0.3 <0.2 <0.2 0.3 0.3 0.2 

 Si 600 1500 1600 1400 1400 2200 2300 2200 2700 2700 2700 

 Ag 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 

 Sr 1 21 21 20 20 13 14 12 24 24 25 

 S 800 1200 1200 930 1200 2100 2700 2000 2400 2600 2600 

 Te 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 

 TI 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 
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 Th 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 

 Sn 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 

 Ti 1 <1 <1 <1 <1 <1 <1 <1 2 2 2 

 W 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 

 U 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 

 V 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 

 Y 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 

 Zn 1 4 4 3 2 1 1 1 2 2 2 

 Zr 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 
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Appendix D. Eigenvalues, Variance and Cumulative Variance of principal component loadings 

of water quality parameters and dissolved metals in environmental water samples taken at each 

wetland.  

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

Eigenvalue 8.7041 7.1712  0.4591  0.3531  0.1889  0.0738  0.0411  0.0058  0.0028  <0.001 

Variance 0.5120  0.4218  0.0270  0.0208  0.0111  0.0043  0.0024  0.0003  0.0002  0.0000  

Cumulative  

Variance 
0.5120  0.9338  0.9609  0.9816  0.9927  0.9971  0.9995  0.9998  1.0000  1.0000  

 


