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Abstract

Nanoscale energy transport is a topic of considerable interest as heat transport at

these scales can no longer be accurately predicted by diffusion theory. An alternative

approach is to use the Boltzmann transport equation, but this equation is challenging

to solve in the case of phonon transport, and its exact resolution is currently one of

the open research subjects in mathematics.

A program has been developed to study nanoscale heat transport by solving the

Boltzmann transport equation using two variations of a phonon Monte-Carlo method.

The first variation is primarily derived from the works of Mazumber and Majumber

(2001). The second variation follows the process of Peraud and Hadjiconstantinou

(2012). While both variations follow methodology from existing works, the imple-

mentation details are unique. The simulation procedures differ from existing methods

by incorporating a ‘system evolution’ algorithm that allows temperatures throughout

the system to be periodically updated while simulating phonons one-by-one.

The resulting software can rapidly simulate heat transport in relatively complex ge-

ometries. The Monte Carlo portion of the software is implemented using parallelized

C++ code. Simulating phonons one-by-one makes the parallelization scheme natural

and straightforward, although more sophisticated parallelization schemes may result

in further computational speedup. The user input is a self-documenting JSON file

generated via a Python script.
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The software is used to study thermal transport through various silicon and ger-

manium nanostructures. Benchmark simulation testing shows that the temperature

profiles produced by the simulations largely agree with analytical results and results

from the literature, as does the predicted thermal conductivity. However, the thermal

conductivity is quite sensitive to the relaxation rates that are used.

While both variations of the phonon Monte Carlo method presented in this study

strike a good balance between accuracy and efficiency and retain an intuitive connec-

tion to the problem physics, a noticeable difference in computational efficiency and

precision is observed. With the exceptions of low-temperature ranges and possibly

systems with extreme temperature differences, the second variation should be pre-

ferred when considering computational performance and precision.

iii



Acknowledgements

To Dr. R. Meyer. I consider this project the culmination of much that you have taught

me over the past five years. From my first lines of C++ to parallel programming and

techniques de méthodes numériques, I’ve used it all here in some form or another.

It’s been an honour to have been your student and to have you as an advisor.

iv



Table of Contents

Abstract ii

Acknowledgements iv

Table of Contents v

List of Tables viii

List of Figures ix

1 Introduction 1

2 Modeling Heat Transport 5

2.1 General Heat Conduction . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Fourier’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Lattice Vibrations and Phonons . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Dispersion Relations . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Phonon Distribution . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Relaxation Times . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 The Boltzmann Transport Equation . . . . . . . . . . . . . . . . . . . 27

3 The Phonon Monte Carlo Method 30

3.1 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 The Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . . . . 32

v



3.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Full Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Phonon Creation . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.2 Energy-Based Formulation . . . . . . . . . . . . . . . . . . . . 41

3.4.3 Phonon Initialization . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.4 Surface Interactions . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.5 Phonon Origination . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.6 Drifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.7 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.8 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.9 Temperature Calculations . . . . . . . . . . . . . . . . . . . . 58

3.5 Deviational Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5.1 Equilibrium Temperature and Deviational Particles . . . . . . 60

3.5.2 Linearized Boltzmann Equation . . . . . . . . . . . . . . . . . 62

3.5.3 Phonon Origination . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.4 Temperature and Flux Calculations . . . . . . . . . . . . . . . 65

3.6 System Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.7 Advantages of the Energy-Based Formulation . . . . . . . . . . . . . 68

3.8 Time-Step Shortcomings . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Results 72

4.1 Nanowires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.1 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . 73

4.1.2 Ballistic Regime . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1.3 Diffusive Regime . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Kinked Nanowires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Thin Wafers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

vi



4.4 Simulation Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Summary 98

5.1 The Phonon Monte Carlo Method . . . . . . . . . . . . . . . . . . . . 98

5.2 Software Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Possible Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Bibliography 103

Appendix A Simulation Code 109

Appendix B Sample JSON Input File 116

vii



List of Tables

Table 2.1 Data used to produce silicon and germanium dispersion curves. . 15

Table 2.2 Relaxation time parameters for silicon and germanium. . . . . . 25

Table 3.1 Combined CDF and probability table for silicon at 300 K. . . . 45

Table 3.2 Combined group velocity weighted CDF and probability table for

silicon at 300 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Table 3.3 Combined relaxation time-weighted CDF and probability table

for silicon at 300 K. . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 4.1 Common simulation settings for the thermal conductivity bench-

marks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Table 4.2 Common simulation settings for the ballistic regime benchmarks. 78

Table 4.3 Emitting surface temperatures for the profile in Figure 4.7. . . . 80

Table 4.4 Common settings for the kinked wire simulations. . . . . . . . . 85

Table 4.5 Common settings for the wafer simulations. . . . . . . . . . . . . 94

viii



List of Figures

Figure 1.1 CPU clock rates and power consumption. . . . . . . . . . . . . 2

Figure 2.1 Conduction demonstrated by heating a metal bar over a fire. . 6

Figure 2.2 Temperature profile across a solid material. . . . . . . . . . . 7

Figure 2.3 Heat conduction through a metal bar. . . . . . . . . . . . . . 9

Figure 2.4 Crystal structure of a diamond. . . . . . . . . . . . . . . . . . 10

Figure 2.5 Diffuse and ballistic transport. . . . . . . . . . . . . . . . . . . 11

Figure 2.6 Phonon vibration modes. . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.7 Phonon dispersion curves for silicon and germanium. . . . . . 14

Figure 2.8 Group velocities of silicon and germanium. . . . . . . . . . . . 16

Figure 2.9 Silicon and germanium densities of states. . . . . . . . . . . . 18

Figure 2.10 Phonon-phonon scattering relaxation times . . . . . . . . . . . 25

Figure 2.11 Relaxation times for silicon and germanium at 300 K. . . . . . 26

Figure 2.12 Relaxation times for silicon and germanium at 50 K. . . . . . 27

Figure 3.1 A linear geometric system subdivided into seven cells with two

emitting surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.2 Flowchart of the core steps in each iteration of the phonon

Monte Carlo method. . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 3.3 Phonons per frequency bin for silicon and germanium. . . . . 40

Figure 3.4 Arbitrary fixed number of phonons per packet. . . . . . . . . . 40

Figure 3.5 Simulated phonon packets with equivalent energy. . . . . . . . 41

ix



Figure 3.6 Energy per frequency bin for silicon and germanium. . . . . . 43

Figure 3.7 Cumulative energy distribution functions for silicon and germa-

nium at various temperatures. . . . . . . . . . . . . . . . . . . 44

Figure 3.8 Random selection of a phonon from the cumulative energy dis-

tribution function. The first random number, R1, identifies the

frequency of bin N . A second random number, R2, determines

the frequency on this interval. . . . . . . . . . . . . . . . . . . 45

Figure 3.9 Cumulative group velocity weighted energy distribution func-

tions for silicon and germanium at various temperatures. . . . 48

Figure 3.10 Cumulative relaxation time-weighted energy distribution func-

tions for silicon and germanium at various temperatures. . . . 56

Figure 3.11 Linear system used to test the system evolution algorithm. . . 67

Figure 3.12 System evolution using a 1000 nm silicon wire. . . . . . . . . . 67

Figure 3.13 Steady-state convergence of the system in Figure 3.12. . . . . 68

Figure 3.14 Steady-state convergence with an errant initial equilibrium tem-

perature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 3.15 time-step impact on scattering probabilities at 300K. . . . . . 70

Figure 3.16 time-step impact on steady-state flux. . . . . . . . . . . . . . 71

Figure 4.1 Nanowire specifications. . . . . . . . . . . . . . . . . . . . . . 74

Figure 4.2 Thermal conductivity as a function of wire length in silicon at

300K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 4.3 Thermal conductivity as a function of wire length in silicon at

400K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 4.4 Thermal conductivity as a function of wire length in germanium

at 300K and 400K. . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 4.5 Ballistic results for silicon with TH = 20 K and TC = 10 K. . . 79

x



Figure 4.6 Ballistic results for silicon with TH = 40 K and TC = 30 K. . . 79

Figure 4.7 Diffusive regime results for a 5000 nm silicon wire with varying

temperature differentials. . . . . . . . . . . . . . . . . . . . . . 81

Figure 4.8 Diffusive regime results for a 5000 nm silicon wire across a 250

K temperature differential. . . . . . . . . . . . . . . . . . . . . 81

Figure 4.9 Deviational and full simulation results compared with the heat

diffusion equation across a 250 K temperature differential. . . 82

Figure 4.10 Deviational and full simulation results compared with the heat

diffusion equation across a 4 K temperature differential. . . . . 83

Figure 4.11 Kinked nanowire schematic. . . . . . . . . . . . . . . . . . . . 85

Figure 4.12 Temperature and flux profiles of a silicon wire with a 30-degree

kink using 15 sensors. . . . . . . . . . . . . . . . . . . . . . . 87

Figure 4.13 Temperature and flux profiles of a silicon wire with a 30-degree

kink using 3108 sensors. . . . . . . . . . . . . . . . . . . . . . 88

Figure 4.14 Temperature and flux profiles of a silicon wire with a 45-degree

kink produced using a deviational simulation. . . . . . . . . . 89

Figure 4.15 Temperature and flux profiles of a silicon wire with a 45-degree

kink produced using a full simulation. . . . . . . . . . . . . . . 90

Figure 4.16 Temperature and flux profiles of a silicon wire with a 60-degree

kink produced using a deviational simulation. . . . . . . . . . 91

Figure 4.17 Temperature and flux profiles of a silicon wire with a 60-degree

kink produced using a full simulation. . . . . . . . . . . . . . . 92

Figure 4.18 Flux through a kinked silicon wire as a function of the kink angle. 93

Figure 4.19 Temperature and flux profiles of a thin silicon wafer. . . . . . 95

Figure 4.20 Temperature and flux profiles of a thin germanium wafer. . . . 95

xi



Chapter 1

Introduction

Nanoscale energy transport is a topic of considerable interest [1–4] as heat transport

at these scales can no longer be accurately predicted by diffusion theory [5, 6]. Ad-

ditionally, materials structured at these length scales have demonstrated properties

not exhibited at larger scales [7, 8]. These properties have applications in many areas,

from computer chips to solar photovoltaics and batteries, among others.

Device miniaturization presents us with many new opportunities, but some chal-

lenges arise. More devices per unit area result in increasingly significant amounts of

heat generated per unit volume [9]. For example, the construction of transistors now

occurs on the nanometer scale. The amount of heat generated in such a small space

causes heat management to become a severe problem, as self-heating may lead to a

substantial increase in the effective operating temperature of the device, which de-

grades the device’s electrical performance and reliability. A study on self-heating 7

nm field-effect transistors shows that heat confinement increases by as much as 57%

in the germanium channel resulting in a 100 K change in the channel temperature

[10]. This sizable temperature increase will impair device performance and reliability

without efficient heat removal methods. It has also been shown that peak efficiency

decreases as power density increases [11]. This trend is well known in CPUs, and

Figure 1.1 shows the increase in power usage of CPUs over the past forty years as

1



CHAPTER 1. INTRODUCTION

their clock rates have increased.

Figure 1.1: CPU clock rates and power consumption. As CPU clock rates increase,
their power consumption rises dramatically. Post-2005, the emphasis has been on
increasing CPU power efficiency and using multi-core systems.

Despite many advances, much remains unknown concerning the precise mecha-

nisms by which the heat carriers in thermoelectric materials are affected by nanostruc-

tures. This lack of understanding is problematic because heat transport phenomena

cannot be accurately modelled at these small scales using diffusion approximations

[1]. Analyses of heat-transfer processes have shown that the thermal conductivity of

nanostructures depends on the shape and size of the sample, properties of its surface,

and direction of the heat flow rather than being an intrinsic property of the material

as predicted by diffusion theory [12, 13]. Research has shown that the thermal con-

ductivity of silicon nanowires acts in a very unexpected manner when their diameters

become extremely small [14]. Other strange effects also appear, such as reduced ma-

terial thermal conductivity and discontinuities in the temperature distribution near

the system boundaries [15]. These findings have led to radically new approaches to

2



CHAPTER 1. INTRODUCTION

determining the thermal conductivity of solids on the nanometer and micrometer

scales [16].

Engineering devices not overly prone to self-heating at the nanoscale requires more

advanced knowledge of the fundamental mechanisms to which heat carriers adhere.

Non-metallic systems like semiconductors pose additional challenges since electrons

are no longer the primary heat carrier. However, we still base much of our fundamental

understanding on simple models that Holland and Callaway developed over 50 years

ago [17, 18].

This thesis explores these challenges and outlines the development of computer

software capable of simulating heat transport in semiconductor nanostructures. The

simulation software uses a Monte Carlo method, which proves to be exceptionally

powerful in this situation. The final software can simulate various nanoscale structures

ranging from simple linear wires to wafers, kinked wires, and potentially mesoporous

materials. It is hoped that this tool will provide insights into heat transport at the

nanoscale leading to more efficient device design and the economic and environmental

benefits that follow.

Thesis Outline

In Chapter 2, the manner in which nanoscale heat transport deviates from diffusion

theory is discussed. This reveals beneficial information about the underlying heat car-

riers. The frequency-dependent phonon Boltzmann transport equation is introduced

to address issues that occur when applying Fourier’s Law at the nanoscale.

Chapter 3 details how a Monte Carlo method can solve the phonon Boltzmann

transport equation using the relaxation time approximation. Two different versions

of this numerical approach have been implemented. The resulting computer program

calculates the energy (temperature) distribution and heat flux in silicon and germa-

nium nanostructures subjected to any number of heat sources or sinks.

3



CHAPTER 1. INTRODUCTION

Chapter 4 discusses various results produced by the method described in Chapter

3. Most notably, the thermal conductivity of silicon and germanium nanowires pre-

dicted by the simulation are compared with known bulk values and existing simulation

results.

Finally, Chapter 5 concludes the thesis and offers possibilities for future improve-

ments to the simulation.

4



Chapter 2

Modeling Heat Transport

The study of heat transport constitutes a vast field of research. At the macroscopic

scale, equations governing heat transport are well established. However, the analyt-

ical resolution of these equations is only possible in some instances, and while these

equations generally do an excellent job of describing the steady-state of a system,

they often fail to describe how a system transitions to this steady-state.

Beyond the mathematical difficulty of analytically solving these equations, there

is the question of the domain on which they can be applied. This chapter presents

the limits of these macroscopic equations and why it is necessary, when dealing with

nanostructures, to correct them, improve them, or even establish new ones.

The first section of this chapter summarizes some intuitive ideas about general

heat conduction. This summary leads into a formal depiction of heat conduction

known as Fourier’s Law. Next, we take a more in-depth look at the underlying mech-

anisms of heat transport, which helps explain why Fourier’s Law is not an appropriate

model to use at the nanoscale. Finally, the frequency-dependent phonon Boltzmann

transport equation is introduced to address issues when applying Fourier’s Law at

the nanoscale.

5



2.1. GENERAL CONDUCTION CHAPTER 2. HEAT TRANSPORT

2.1 General Heat Conduction

Heat transfer is generally considered to occur via three different mechanisms: conduc-

tion, convection and radiation. Of these, conduction is likely the mechanism through

which we develop our intuitive notions about heat transfer and is the mechanism on

which this study will focus.

Heat or thermal conduction occurs within a material or between two materials in

contact without the involvement of mass flow and mixing. Figure 2.1 demonstrates

conduction within a material in the context of a rectangular metal bar being placed

over a fire1.

Figure 2.1: Conduction demonstrated by heating a metal bar over a fire. The flow of
heat from the hot end of the rod to the cool end is an example of conduction within
a material.

Intuitively, our experience tells us that the heat from the hot end of the rod will

travel through the rod to the cooler end. If we do not want to burn our hands, we

may be interested in the factors that affect the speed or rate of heat flow through the

rod. For example, we can surmise that a more powerful heat source will increase the

1In Figure 2.1, the transfer of heat from the fire to the rod does not occur via conduction.
However, we are less concerned about how the rod is heated and more interested in how the heat is
transmitted through the rod.

6
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likelihood of sustaining an injury when grabbing the rod to pull it out of the fire. It

also seems probable that all other things being equal, grabbing the end of a shorter

rod will reinforce our intuitions about heat conduction.

Perhaps more interestingly, there is a factor specific to the material itself, which is

not seen in the figure above. Given a piece of wood and a piece of metal of equivalent

dimensions, we can conjecture that the rate of heat flow will be greater through the

metal rod than through the piece of wood.

We also want to know how the temperature changes along the length of the rod.

A reasonable starting point would be that the temperatures along the length should

be, at most, the temperature closest to the fire and should be at least the cool end

of the rod. Assuming the temperatures along the length follow a linear path from the

hot end to the cool end, we end up with Figure 2.2.

Figure 2.2: Temperature profile across a solid material.

7



2.2. FOURIER’S LAW CHAPTER 2. HEAT TRANSPORT

In Figure 2.2, we see a linear temperature profile where dT
dx

is the temperature

gradient.

While these intuitive notions about the nature of heat conduction may seem evi-

dent to us, mathematically expressing them is a challenging task.

Luckily, “the giants before us” have already undertaken this challenge.

2.2 Fourier’s Law

In 1822, Fourier experimentally determined the law which bears his name [19]. Fourier’s

law formalizes the concept of a material’s ability to transmit heat and can be expressed

as:

F = −κA
∂T

∂x
(2.1)

The variables are defined as follows:

• F is the energy flowing through the system per unit time (W ).

• κ is the thermal conductivity of the material (W · m−1 · K−1).

• A is the cross-sectional area through which the heat flows (m−2).

• ∂T
∂x

is the temperature gradient (K · m−1).

Fourier’s law captures all the intuitive notions from the previous section. The

amount of heat transmitted through a material will increase as the temperature gra-

dient increases, which occurs by increasing the temperature difference across the ma-

terial or reducing the length of the material. A greater cross-sectional area will lead

to more significant heat flow through the material.

Fourier’s law also describes the idea of a material’s intrinsic capacity to transmit

heat through the concept of thermal conductivity. In Section 2.3, we take a more

8
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detailed look at what this term represents. The above relationships are depicted in

Figure 2.3 where the temperature gradient is TH−TL

d
.

Figure 2.3: Heat conduction through a metal bar. The rate at which heat flows through
the material is contingent on the temperature differential across the structure and the
material thickness, length, and thermal conductivity.

Equations based on Fourier’s law are robust, predictive, and not overly complex.

These reasons are why equations based on Fourier’s law are the bedrock of engineering

analysis at the macroscopic scale.

However, these equations assume that heat transport is a diffusive process. Unfor-

tunately, this assumption is no longer valid at nanometer length scales, and Fourier’s

law fails due to classical and quantum size effects [20–22]. To see why this is the case,

we will dig deeper into the physics of the underlying heat transport mechanisms.

2.3 Lattice Vibrations and Phonons

Matter is generally found in solid, liquid or gas form. We can also differentiate solid

materials according to their atomic organization. If a structure’s constituent atoms

or ions are organized in a periodic pattern, they are considered crystals [23].

9
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The elements will crystallize according to a particular pattern depending on the

pressure and temperature conditions and the number of covalent bonds. Silicon and

germanium crystallize according to a mesh or lattice-like the one depicted in Figure

2.4.

Figure 2.4: Crystal structure of a diamond.

This mesh or crystal lattice can be visualized as a complex three-dimensional ar-

ray of masses representing individual atoms and springs representing atomic bonds.

As atoms deviate from their equilibrium positions within this lattice, they create

vibrational waves, which propagate through the crystal and carry energy. Lattice

vibrational waves dominate heat conduction in dielectric materials and most semi-

conductors.

These lattice vibrations are quantized, and each quanta is called a phonon. A

phonon is the basic energy quantum of a lattice vibration analogous to a photon, the

basic energy quantum of an electromagnetic wave. Similar to photons, phonons have

10
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both wave-like and particle-like properties. Size effects appear if the characteristic sys-

tem dimension is comparable to or smaller than the phonon mean free path, denoted

Λ. The mean free path is the average distance phonons travel between successive

collisions. What exactly constitutes a collision is the topic of Section 2.3.3.

The mean free path is often estimated from kinetic theory and is used in thermal

conductivity calculations of a material/structure of interest. The thermal conductivity

is typically calculated as follows [24]:

κ = 1
3CV vP Λ (2.2)

In Eq. (2.2) CV is the volumetric specific heat capacity of the material and vP . For

example, the phonon mean free path in silicon is on the order of ~300 nm at room

temperature in bulk materials [25].

When the characteristic dimension of the system, L, is much greater than the

phonon mean free path, phonons will overwhelmingly undergo collisions before trav-

elling the distance L. These collisions cause frequency and direction changes. This is

typically the case of thermal conduction in macroscopic materials, and Fourier’s law

is predicated on diffuse transport being the predominant heat transport mechanism.

Conversely, the transport is said to be ballistic when L is smaller than Λ. The

phonons can and often do traverse the distance L without collision. Fourier’s law

cannot accurately model systems in which ballistic transport dominates.

Figure 2.5: Diffuse and ballistic transport.

11
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2.3.1 Dispersion Relations

The atoms in the crystal lattice are not fixed in place. They vibrate around an equi-

librium position, generating waves that propagate throughout the structure. These vi-

brations can be characterized by modelling them as chains of elastically-linked atoms

[23], and the equation that relates the frequency of these vibrations to their wave

vector is known as a dispersion relation.

Using the characterization of elastically linked atoms, it is possible to obtain

solutions for two different polarization modes [23]. When atoms vibrate along the

axis of their bond parallel to the wave’s motion, the polarization is referred to as

longitudinal (L). When they vibrate in a perpendicular plane, the motion usually

associated with waves, the polarization is referred to as transverse (T). Transverse

waves typically have a lower frequency than their longitudinal counterparts.

In addition to longitudinal and transverse modes, another distinction can be made

in certain materials between acoustic (A) and optical (O) modes. All materials have

longitudinal acoustic and transverse acoustic phonon modes whose frequency ap-

proaches zero as the wavelength goes to zero. These phonons are called acoustic since

they correspond to acoustic waves. Depending on its lattice structure, a material can

also have longitudinal optical and transverse optical modes. The frequencies of these

modes are generally higher than those of acoustic modes and do not approach zero as

the wavelength goes to zero. The optical terminology comes from the dipole moment

these vibrations generate in the ionic crystals. The presence of this dipole moment

allows these vibrations to interact with photons, hence why they are referred to as

being in the optical mode. Optical phonons occur at higher temperatures and with

higher energy, whereas acoustic phonons occur at lower temperatures and energy [23].

Therefore we have four types of polarization modes. The four modes are referred

to as TA, LA, TO, and LO using the above notation. It is possible to determine the

12
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number of branches per polarization mode, but this number depends on the crystal

lattice’s properties. Let p be the number of atoms in the basis, then there are 3p

modes of vibration, of which 3(p − 1) are optical [23]. So there are at most three

acoustic modes in a given crystalline direction. Silicon and germanium, the materials

of interest in this study, each have two atoms per unit cell [23]. From this, the following

six polarization branches can be deduced:

• 1 LA branch

• 2 TA branches

• 1 LO branch

• 2 LA branches

Figure 2.6: Phonon vibration modes. In-phase vibrations (acoustic) and out-of-phase
vibrations (optical) are shown for the transverse polarization branch.

Research in the 1960s using diffusion of X-rays and neutron scattering experimen-

tally uncovered the dispersion relations discussed here [26]. The curves produced in

the study highlight an aspect of the crystals which has thus far not been mentioned.

13



2.3. LATTICE VIBRATIONS CHAPTER 2. HEAT TRANSPORT

Crystals are anisotropic, meaning the dispersion relations will vary depending on the

phonon’s direction of propagation through the crystal.

However, in this work, the lattice arrangement is assumed to be isotropic. Isotropy

is a common assumption in most previous works on the subject. Using the isotropy

assumption, the dispersion relations are independent of propagation direction, and

this assumption leads to the dispersion relations seen in Figure 2.7. These relations

are used in the Monte Carlo simulation for silicon and germanium transverse and

longitudinal polarization branches.

Figure 2.7: Phonon dispersion curves for silicon and germanium. Kmax si = 1.1326 ×
1010 m−1 and Kmax ge = 1.1105 × 1010 m−1 [3] using Jean [27] parameterization data
from Table 2.1.

These curves are produced by using the Jean parameterizations [27] from Table

2.1 and the following parabolic [28] fit for both silicon and germanium:

14
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ω = cαK2 + vαK (2.3)

Additionally, the dispersion relations allow us to solve Eq. (2.9) and provide the

phonon group velocity at a particular frequency using Eq. (2.4). It should be noted

that the transverse branch is doubly degenerate (gT A = 2), whereas the longitudinal

branch is non-degenerate (gLA = 1).

This study does not take optical phonons into account. See Section 5.3 for a brief

discussion on this topic.

Table 2.1: Data used to produce silicon and germanium dispersion curves.

Jean [27] Holland [18] Wong [15] Pop [28]
Units Si Ge Si Si Si

cT A ×10−7 (m2s−1) -2.28 -1.14 -2.01 -2.234 -2.26
vT A ×103 (m s−1) 5.24 2.60 5.23 5.24 5.23
cLA ×10−7 (m2s−1) -2.22 -1.50 -2.26 -2.278 -2.00
vLA ×103 (m s−1) 9.26 5.63 9.01 9.28 9.01
ω1/2 ×1013 (rad s−2) 2.42 1.23 2.417 2.417 -

Using the dispersion relations, it is possible to ascertain two characteristic speeds

for each polarization branch. The group velocity corresponds to the statistical average

speed at which phonons travel in the medium [23]. In other words, the dispersion

relation’s slope represents a phonon’s propagation speed which also corresponds to

the speed of sound within the lattice.

vg(ω, p) = ∂ω

∂K
(2.4)

At low values of K, the dispersion relation is nearly linear, and the speed of the sound

becomes independent of the phonon frequencies. The phase velocity is the speed at
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which the phase of a plane wave with a unique frequency, and wavelength, propagates

through the medium.

vϕ(ω, p) = ω

K
(2.5)

The phase velocity is not required for the Monte Carlo simulation and is mentioned

here only for completeness.

Figure 2.8: Group velocity as a function of frequency for silicon and germanium.

2.3.2 Phonon Distribution

For a system in thermodynamic equilibrium, the notion of temperature is well-defined.

At a given temperature, the average number of phonons occupying a particular vi-

brational state can be described by the equilibrium phonon occupation number, 〈n〉.
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Since phonons are bosons, this quantity can be calculated using the Bose-Einstein

distribution2 [23]:

〈nK,p〉 = 1
exp

[
~ωK,p

kBT

]
− 1

(2.6)

where ω is the angular frequency of the phonon and kb = 1.38 × 10−23 J/K is the

Boltzmann constant. Hence, 〈nK,p〉 represents the local thermodynamic phonon pop-

ulation with polarization p and wave vector K. The total vibrational energy of the

crystal can be written as [23]:

E =
∑

p

∑
K

(
〈nK,p〉 + 1

2

)
~ωK,p (2.7)

where E is the total vibrational energy. If we assume that the phonon wave vectors

are sufficiently dense over K, which is typically the case [1], then the summation in

Eq. (2.7) can be replaced by an integral. Moreover, using Dp(ω), the phonon state

density, we can integrate over the frequency space rather than over wave-vector space,

yielding:

E =
∑

p

∫
ω

(
〈nω,p〉 + 1

2

)
~ωD(ω, p)gpdω (2.8)

Dp(ω)dω represents the number of vibrational modes in the frequency range [ω, ω +

dω] for polarization p and where gp is the degeneracy of the polarization branch under

consideration. In the case of an isotropic three-dimensional crystal, we have [23]:

2The Bose-Einstein distribution comes from the theory of statistical mechanics, which describes
the motion of large numbers of atoms and molecules. In brief, the theory posits that if we know the
probability distribution (in this case, the Bose-Einstein distribution) describing the likelihood that
particles will behave in specific ways, then we can perform calculations and make predictions about
the behaviour of large particle ensembles without knowing the precise position and velocity of each
particle in the ensemble.

17



2.3. LATTICE VIBRATIONS CHAPTER 2. HEAT TRANSPORT

D(ω, p)dω = dK
(2π/L)3 = V K2dK

2π2 (2.9)

Using the definition of group velocity from Eq. (2.4) we can write Eq. (2.9) as:

D(ω, p) = V K2

2π2vg(ω, p) (2.10)

Figure 2.9: Silicon and germanium densities of states per unit volume. Calculated
from Eq. (2.10) using the acoustic branches.

which allows us to obtain the following form of Eq. 2.7:

E = V
∑

p

∫
ω

 ~ω

exp
(

~ω
kBT

)
− 1

 K2

2π2vg(ω, p)gpdω (2.11)

Eq. (2.11) is typically used to estimate the temperature of a material using a numerical

inversion. In Section 3.5, another technique to accomplish this task is presented using

the following definition of heat capacity:
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C(T ) = ∂E

∂T

∣∣∣∣∣
V

=
∑

p

∫
ω
~ω

∂

∂T

 1
exp

(
~ω

kBT

)
− 1

 K2

2π2vg(ω, p)gpdω

=
∑

p

∫
ω

de(ω)
dT

Dp(ω)gpdω (2.12)

where

e(ω) = ~ω

exp
[

~ω
kBT

]
− 1

(2.13)

Hence de(ω)
dT

is the derivative, with respect to temperature, of a modified Bose-Einstein

distribution and Dp(ω) is defined in Eq. (2.9). We can also calculate the number of

phonons in a given volume V as:

N = V
∑

p

∫
ω

 1
exp

(
~ω

kBT

)
− 1

 K2

2π2vg(ω, p)gpdω (2.14)

Once the number of phonons in a given volume is known, the phonon heat flux, in

units of W/m2, through that same volume can be calculated as:

φ = 1
V

N∑
n=1

~ωnvg(ωn) · k (2.15)

In the Monte Carlo simulation, phonons enter and exit the system via emitting

surfaces. These surface types are discussed in Section 3.4.4. To determine the energy

that a surface element will emit per unit time, we can use the following equation,

which allows us to express the equilibrium phonon intensity Iω,p [29]:

Iω,p = 1
4π

vg(ω, p)〈nω,p〉~ωD(ω, p) (2.16)
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This intensity3 refers to the phonon energy emitted per unit time per unit area per

unit solid angle per unit frequency and can be used to derive an expression for the

phonon energy emitted per unit time from a surface with area A at temperature T :

Q = A
∫

2π

(∑
p

Iω,pdω

)
cos θgpdΩ

= A

4
∑

p

∫
ω

vg(ω, p)〈nω,p〉~ωD(ω, p)gpdω (2.17)

The corresponding number of phonons emitted by the same surface can be calculated

using:

Nface = A

4
∑

p

∫
ω

vg(ω, p)〈nω,p〉D(ω, p)gpdω (2.18)

2.3.3 Relaxation Times

While propagating through materials, phonons are subject to collisions which may

alter their properties. These alterations come in the form of changes to energy/fre-

quency, polarization and wave vector. The average time interval between these col-

lisions or scattering events is known as the relaxation time, τ . The mean distance

between two collisions is Λ = τ × v, where v is the phonon velocity within that ma-

terial. This is the mean free path introduced in Section 2.3. In a large-scale crystal,

the following scattering processes are present:

• Phonon-phonon scattering events

• Boundary collisions

3The intensity in Eq. (2.16) includes the factor of 1
4π which is absent from the definition in

Majumdar [1].
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• Impurity scattering due to defects in the crystal structure

Phonon-phonon scattering events

Interatomic forces are not purely harmonic, which results in collisional processes in-

volving three or more phonons [23]. Collisions of this type will alter the characteristics

of the involved phonons. In these types of scattering events, a phonon can combine

with another phonon into a third. Conversely, a phonon can be broken down into two

other phonons. There are two types of ternary processes, and they are referred to as

Normal or N-processes and Umklapp or U-processes.

N-processes are scattering events that lead to the dissociation or recombination of

phonons where momentum and energy are conserved. As the temperature of a system

increases, the likelihood of scattering more processes involving several phonons also

increases. Recall that Eq. (2.14) gives the number of states at high temperatures. Its

evolution with temperature is given by the Bose-Einstein function, which, for large

values of T , is proportional to T , as seen in the following approximation:

1
exp

[
~ω

kBT

]
− 1

≈ kBT

~ω
(2.19)

Since a phonon has a better chance of being scattered by another phonon as their

numbers increase, the occurrence of anharmonic processes increases with temperature.

These N-processes conserve both frequency and momentum, which can be written as:

K1 + K2 = K3

ω1 + ω2 = ω3
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In this case, the norm of the vector K3 must be less than the value of 2Kmax. If this

is not the case, the process is referred to as an Umklapp or U-process. Because Nor-

mal processes retain momentum, they do not contribute to the limitation of thermal

conductivity, which is a resistive phenomenon.

Umklapp processes are resistive and are the primary dictator of thermal conduc-

tivity at high temperatures. This is because U-processes conserve frequency, but they

do not conserve momentum. This relationship can be written as:

K1 + K2 = K3 + G

ω1 + ω2 = ω3

where G is the reciprocal lattice vector not equal to zero. Thus, not all phonons can

undergo an Umklapp process since the associated wave vector must be sufficiently

large. At low temperatures, phonons are predominately low in energy; hence, the low

wave vectors are the most densely populated. As the temperature rises, higher energy

phonons become more common and since phonon frequency is an increasing function

with respect to the wave vector, the probability of an Umklapp process occurring

increases. This phenomenon coincides with the observation of thermal conductivity

decreasing as the temperature of a system increases.

Boundary collisions

On the macroscale, the volume of a given material is large enough that the collisions

between phonons and boundaries are a relatively rare event. This phenomenon is

no longer negligible when we are interested in structures at the nanoscale. More

specifically, when we are interested in modelling structures where the characteristic
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dimension L is less than or of the same order of magnitude as the mean free path

(L ≤ Λ).

Unlike a photon, a phonon is confined to the crystalline medium in which it propa-

gates. A phonon cannot escape from a solid environment. Upon impact with a bound-

ary, a phonon will reflect away from the border. This complex interaction depends on

many properties, including the surface condition and the phonon wavelength. In this

study, the standard approach of allowing the user the specify the degree of surface

specularity is taken. Reflections involving this surface will be either specular or diffuse

based on the degree of specularity. A specular reflection is perfectly reflective like a

mirror, whereas, in a diffuse reflection, the phonon is sent in a random direction in

the crystalline space. The exact process is detailed in Section 3.4.7.

Reflections on boundaries are considered elastic, with energy being conserved.

In other words, the phonon frequency is unchanged with ω = ω′. In addition, the

phonon polarization is assumed to be unchanged. Only the direction of the phonon

wave vector is affected.

When the system dimensions are tiny, thermal conductivity is no longer an intrin-

sic property of the material but becomes an explicit function of the system dimensions

due to these boundary collisions [30].

Impurity scattering

A crystal is theoretically an infinite periodic medium. In reality, most crystals contain

irregularities. Atoms may be missing in the pattern, or foreign atoms may have taken

the place of atoms which would normally constitute the lattice formation. These

punctual irregularities induce variations in the lattice structure and are responsible

for impurity scattering events.
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This scattering process is elastic, like boundary collisions, and polarization is also

preserved. Only the direction of phonon propagation is affected. The relaxation time

associated with impurity scattering events can be calculated as follows:

τ−1
I = BIω4 (2.20)

where BI is an adjustable parameter which depends on the impurity concentration of

the material [31, 32]. As we will see at the end of this Section, impurity scattering is

the dominant form of scattering at low temperatures.

Relaxation time expressions

The calculation of relaxation times can be theoretically complex [33, 34]. Depending

on the materials studied and the methods used, different expressions can be considered

[4, 35–37]. For this study, the following formalism of relaxation times established by

Holland [18] is used:

τ−1
NLA

= BLω2T 3

τ−1
ULA

= BLω2T 3

τ−1
NT A

=


BT NωT 4 if ω < ω1/2

0 otherwise
(2.21)

τ−1
UT A

=


0 if ω < ω1/2

BT U
ω2

sinh( ~ω
kBT

) otherwise

Here, ω1/2 is the frequency of the TA branch such that K = Kmax/2. Figure 2.10 can

be reproduced using Eq. 2.21 and the data in the Jean column from Table 2.2. Many

variations of this formalism can be found in [24].
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Table 2.2: Relaxation time parameters for silicon and germanium.

Jean [27] Holland [18] Wong [15]
Units Si Ge Si Si

BT N ×10−13 (s K−3) 9.0 30.0 9.3 9.3
BT U ×10−18 (s) 1.9 1.5 5.5 1.7
BL ×10−24 (K−4) 1.3 2.3 2.0 2.0
BI ×10−45 (s−3) 1.2 24.0 0 0

Figure 2.10 shows that the increase in temperature induces a decrease in the time

between phonon-phonon scattering events.

Figure 2.10: Phonon-phonon scattering relaxation times in silicon at temperatures
between 10 K and 1000 K.

If the scattering processes are considered to be independent, the total relaxation

time can be established using Matthiessen’s rule [38]:

τ(ω, T, p)−1 = τI(ω)−1 + τN(ω, T, p)−1 + τU(ω, T, p)−1 (2.22)

Figure 2.11 shows that at higher temperatures, the total relaxation time is gov-

erned by phonon-phonon scattering processes. In Figure 2.12, it is evident that impu-
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rity scattering will dominate the total relaxation time since phonon-phonon scattering

events are infrequent at lower temperature ranges. In the context of this work, higher

temperatures imply 250 K and above, whereas low temperatures are considered 50 K

and below.

The jump in the TA branch results from the shift of Normal scattering processes

to Umklapp scattering processes, as can be seen from Eq. (2.21). The model for the

relaxation times only allows Umklapp scattering for phonons with ω ≥ ω1/2 and

Normal scattering when ω < ω1/2. This formalism is frequently used in the litera-

ture [3, 15, 27]. The underlying argument for this cut-off is that low-frequency TA

phonons rarely undergo Umklapp scattering, and collisions involving high-frequency

TA phonons rarely conserve momentum [18].

The concepts and equations in this Section form the basis for the phonon Monte

Carlo method presented in Chapter 3.

Figure 2.11: Relaxation times for silicon and germanium at 300 K. The total relaxation
time is largely dictated by the transverse branch until w = w1/2 and then the total
relaxation time follows the longitudinal branch.
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Figure 2.12: Relaxation times for silicon and germanium at 50 K. The rate of impurity
scattering primarily drives the total relaxation time.

2.4 The Boltzmann Transport Equation

As discussed in Section 2.3, Fourier’s law cannot accurately model nanoscale systems

because it is based on the idea that heat travels diffusely through matter. At the

nanoscale, this assumption does not hold. Instead, we use the Boltzmann transport

equation established from the kinetic theory of gas. The Boltzmann equation describes

the physical behaviours of systems in which particles are in motion and interact via

collisions, taking into account both diffuse and ballistic transport. These two limiting

cases are involved in the transport of phonons. At low temperatures, collision processes

are almost non-existent, and ballistic transport dominates. At higher temperatures,

the trend is reversed. In all other cases, the two phenomena are present.

Using the Boltzmann Equation, we can formalize the temporal evolution of phonon

transport, which propagates ballistically and diffusively within a structure.

∂f

∂t
+ ∇Kω · ∇rf + F · ∇jf = ∂f

∂t

∣∣∣∣∣
collision

(2.23)
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The term F · ∇jf represents the action of external forces on the particles resulting

from a field outside. In this study, external forces are not accounted for, and since

phonons have a zero charge state, the Boltzmann transport equation can be written

as:

∂f

∂t
+ ∇Kω · ∇rf = ∂f

∂t

∣∣∣∣∣
collision

(2.24)

This equation is related to the variation of the distribution function f(t, r, K) which

depends on time t, location r, and wave vector K. Hence

• ∂f
∂t

describes the temporal evolution of the distribution function f

• ∇Kω ·∇rf describes the movement of phonons through the system. The phonon

group velocity is ∇Kω = vg.

The second term, known as the ‘collision term,’ makes it possible to account for

the diffuse/collision processes. For phonons, the exact form of the collision term is

challenging to express [39, 40]. One of the most common approximation methods

used to simplify the collision term in the Boltzmann transport equation can be found

within the framework of the relaxation time approximation [41].

The relaxation time approximation is equivalent to expressing the collision term

as a deviation of the distribution function from its equilibrium during an average time

which corresponds to the overall relaxation time of the system. Accomplishing this

consists of performing a first-order Taylor expansion on the collision term. Thus, if

the distribution function of phonon f is only slightly different from the equilibrium

distribution function and if the relaxation time is short enough, the collision term can

be expressed as:

∂f

∂t

∣∣∣∣∣
collision

' f − f0

τ(ω, p, T ) (2.25)

28



2.4. THE BTE CHAPTER 2. HEAT TRANSPORT

Here, f0 is the equilibrium distribution function, τ is the overall scattering time

with ω being the phonon radial frequency, p the phonon polarization and T is the

temperature. This approximation essentially linearizes the collision/scattering term

of the Boltzmann transport equation. It implies that whenever a system is not in

equilibrium, the collision term will restore to equilibrium following an exponential

decay law:

f − f0 = e−t/τ (2.26)

The phonon Boltzmann transport equation now has the following final form:

∂f

∂t
+ vg · ∇rf = f − f0

τ(ω, p, T ) (2.27)

However, even with the relaxation time approximation, this equation remains

challenging to solve in the case of phonon transport, and the exact resolution of

the Boltzmann transport equation is currently one of the open research subjects

in mathematics [42]. In Chapter 3, a Monte Carlo solution method for the phonon

Boltzmann transport equation is presented.
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Chapter 3

The Phonon Monte Carlo Method

This chapter presents a Monte Carlo method as a solution to the Boltzmann transport

equation. Using silicon and germanium nanostructures, the solution is then validated

based on conductivity calculations and temperature profile comparisons. A step-by-

step description details the modifications made to existing Monte Carlo methods.

The first section of this chapter summarizes previous works on this topic and

describes the incremental improvements made over the years. The following section

provides a general description of the Monte Carlo method and some advantages of

using a Monte Carlo method as a numerical solution in the context of the phonon

Boltzmann transport equation. Sections 3.4 and 3.5 provide an in-depth account of

implementing the phonon Monte Carlo method using two different strategies. Sec-

tion 3.6 describes a ‘system evolution’ algorithm which synergizes with the approach

described in Section 3.5. The remaining sections justify using specific techniques in-

troduced in the previous sections.

3.1 Previous Works

In the 1980s and 90s, there was tremendous advancement in the development of

numerical solution techniques for the Boltzmann transport equation for charge carriers

like electrons [43–47]. However, phonon transport was largely neglected. Majumdar et
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al. [22], Chen and Tien [48], Goodson [49], and Chen [50] presented solution strategies

for both the diffusion and the ballistic limit using several simplifying assumptions.

• Dispersion effects were not considered.

• A single-polarization branch was used rather than accounting for the dual-

polarization of phonon propagation.

Even with these simplifications, the developed strategies were limited to elementary

geometries. This restriction is because it is challenging to solve the Boltzmann trans-

port equation for phonons using a deterministic approach if there are no restrictions

on the geometry. The number of independent variables is vast and would render any

discretization scheme too complex to be practical. Additionally, accounting for the

nonlinear scattering events without an overall relaxation time approximation would

be exceedingly challenging as individual scattering events cannot be treated in iso-

lation. An alternative is to solve the Boltzmann transport equation using stochastic

or Monte Carlo techniques. Monte Carlo techniques have been used with success for

electron transport simulations, and they have also been used for phonon transport by

Peterson [51]. Peterson’s work in 1994 assumes the linear Debye theory and the same

simplifying assumptions mentioned above.

In 2001, Mazumder and Majumdar [1] managed to account for the complete dis-

persion relations in the acoustic branches. Lacroix, Joulain and Lemonnier further

generalized the model by incorporating the Normal and Umklapp scattering pro-

cesses and accounted for the scattering rates when re-sampling phonons during the

energy conservation step [3].

Since then, many improvements have been made, especially concerning taking

the collision time into account [52]. In 2004, Narumanchi [33] proposed a resolution

using a finite volume method and considered both the acoustic and optical modes

using a zero group velocity for the latter. Wang [53] proposed a model free from this
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constraint in 2007. In 2009, Terris [54] studied the influence of dispersion relations

on thermal conductivity, then in 2011, Minnich [55] proposed an elegant method to

approximate interface interactions between differing materials.

Peraud and Hadjiconstantinou [4], also in 2011, developed an energy-based variance-

reduced formulation that samples phonons based on energy considerations. This tech-

nique has the significant benefit of avoiding the ad-hoc energy conservation scheme

required in earlier models. In addition, the introduction of an equilibrium temperature

significantly decreases simulation time while simultaneously reducing the variance of

the results.

3.2 The Monte Carlo Method

Fundamentally, a Monte Carlo method is a numerical solution approach that uses

extensive random sampling; however, the term Monte Carlo is widely used to refer to

a comprehensive class of computational methods, and Monte Carlo methods can take

many forms and are used in all areas of science and engineering. Their simplicity and

tendency to preserve an intuitive connection to the underlying physics of the problem

are probable reasons for their widespread use [56]. Monte Carlo methods also naturally

lend themselves to solutions by simulation rather than numerical discretization, which

can be taken advantage of in the modern age of computing. Although traditionally

associated with and usually presented in the context of integration, Monte Carlo

methods are also used in other fields, such as atomistic modelling, solving partial

differential equations, optimization problems, and finance [56]. Another particularly

relevant field where Monte Carlo methods are used is statistical physics. Typically,

problems in this domain exhibit high dimensionality, making approaches based on

discretization inefficient and intractable in many cases. An example is the Metropolis

algorithm [57] and its variants [58], which can be used for simulating the various

statistical mechanical ensembles.
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This study uses a Monte Carlo method to solve the Boltzmann transport equation.

Among the available analytical and numerical solutions, Monte Carlo simulations are

among the most flexible and accurate [15]. Typically, researchers favour the Monte

Carlo approach over other techniques because it is well suited for simulating compli-

cated geometries and adequately accounting for the phonon dispersion relation and

different polarization branches [1, 3, 59]. Random numbers determine nearly all the

state variables in the system. These random numbers must be independent, or the

method may not be reliable [60]. The precision of the results is, up to a point, depen-

dent on the number of simulated phonons. There is a trade-off between accuracy and

speed, as simulating higher quantities of phonons takes more computational time.

However, with modern CPUs working in parallel and algorithmic improvements, no-

tably the idea of a reference temperature [15] or an equilibrium temperature [4], the

Monte Carlo solution can be exceptionally fast and accurate with virtually no memory

footprint even when simulating reasonably complex nanostructures. For example, the

code used in this study can produce low variance results on a 1 µm kinked nanowire

in under 10 seconds.

Monte Carlo methods are well suited for simulating any geometry, including

nanofilms [3], nanowires, [61], porous structures [62], or electron-phonon couplings

in solid silicon [63]. Sampling of phonons is mainly done via in frequency [3] or in

energy [4, 27] but can also be done via wave vector [64] or in mean free path [65].

Some alternate approaches to the Monte Carlo method include ab initio [66, 67]

and molecular dynamics [68, 69] methods. Ab initio methods constitute a fundamen-

tal approach to describing atomic nuclei from the bottom up by solving the non-

relativistic Schrodinger equation for all the forces and constituent nucleons between

them. Molecular dynamics approaches seek to analyze the physical movements of

atoms and molecules in a system for a fixed time. These techniques do not require

prior knowledge of the relaxation or dispersion relations; in some cases, these prop-
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erties can be determined from these methods. However, a disadvantage is that these

methods do not allow us to model structures with large dimensions and remain con-

fined to a few atomic layers for the ab-initio methods and a few million atoms for

molecular dynamics simulations.

Convergence Speed

The time taken to perform a Monte Carlo method is contingent on how many random

numbers need to be generated. This number is related to the precision sought on the

variables that will be modelled. If a particular quantity is associated with a significant

standard deviation, it will necessitate drawing a large pool of random numbers to

produce an accurate representation.

For the phonon Monte Carlo simulation, the precision of the temperature (or

energy) parameter will be greater than that of the heat flux calculation, given an

equal amount of random number draws.

All random numbers are taken from a uniform distribution over [0, 1]. The vari-

ables represented by random numbers in the context of resolving the Boltzmann

transport equation are as follows:

• The initial position of the phonons requires three random numbers, although it

is possible only to require two random numbers if some constraints are imposed

on the system, as is done in this work. See Chapter 4 and Section 5.3.

• The propagation direction of the phonons requires two random numbers.

• Determination of phonon frequency requires a single random number, although

using two random numbers allows for a more continuous frequency distribution.

• Determination of phonon polarization requires a single random number.

• The scattering mechanism requires a single random number to determine which

scattering process occurs.
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• Certain boundary conditions may require a random number depending on the

specifications of the simulation geometry.

3.3 Overview

This section provides a general overview of the Monte Carlo method as traditionally

described by Mazumber and Majumber [1], Lacroix, Joulain and Lemonnier [3], and

others [9, 27, 15]. The method in this study deviates from this approach in several

areas described later in the chapter.

Solving the Boltzmann transport equation using the Monte Carlo method involves

an initialization phase followed by a series of iterations. Before the algorithm begins,

the user must supply the system’s geometric specifications. These specifications are

the only input required for the simulation code and are given via a JSON file, an

example of which can be seen in Appendix B.

The specifications include subdividing the system into smaller cells for measure-

ment purposes and providing the dispersion and relaxation data for the cell mate-

rial. The number of spatial divisions, or cells, is fixed at the start of the simulation.

This mesh is necessary to produce useful measurements of the temperature and flux

throughout the system but does not intrinsically affect the simulation mechanics. A

system may be specified as a single spatial region, and the simulation will proceed

without issue; however, the resulting temperature and flux measurements will be av-

eraged over the entire system, which is unlikely to be helpful. Section 4.2 provides

an example of how the meshing affects the simulation outcome, and Section 3.4.8

describes the measurement process and the role of the sensors in more detail. Section

3.4.8 also describes the use of sensor objects to link cells into a single measurement

area to decouple the geometric and measurement aspects of the system.

In addition, the user must specify the location of the emitting or isothermal sur-

faces (see Section 3.4.4). Emitting surfaces represent sections of the system that are
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kept at a constant temperature through which phonons enter and exit the system.

The adiabatic/boundary and transition surfaces, described in Section 3.4.4, are au-

tomatically detected by the simulation code and do not require the user to specify

their location explicitly.

Figure 3.1 below illustrates many of these details. A linear system has been subdi-

vided into seven cells using six transition surfaces. An emitting surface is established

on each end of the system, and the left-hand side surface is set to a higher tem-

perature than the surface on the right-hand side. In this system, each cell has four

boundary surfaces that separate the cell from the outside world. This system contains

six transition surfaces that act as computational boundaries and divide the system

into cells. The simulation code takes a JSON file as input to create these systems, an

example of which can be seen in Appendix B. Note the JSON file only requires the

user to specify the location of emitting surfaces.

Figure 3.1: A linear geometric system subdivided into seven cells with two emitting
surfaces.

Traditionally, the user will also provide total simulation time, and a ‘time-step’

subdivides the system into smaller time components, each representing an iteration
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phase. The total number of iterations equals the total simulation time divided by the

time-step.

The simulation starts with an initialization phase which consists of populating

each cell with the appropriate number of phonons. This number is determined from

(3.2), which is discussed in the following section. Then a series of iterations begin,

and each iteration involves the following steps.

1. The phonons originating from the emitting surfaces are placed randomly on the

emitting surface and are given a frequency, polarization, velocity and direction

propagation based on the surface material, the temperature of the surface and

the surface’s spatial orientation.

2. All the phonons move through the structure, where they can undergo the fol-

lowing interactions.

• Leave the domain by interacting with an emitting surface.

• Interact with the system borders.

• Undergo a scattering or collision process.

3. At the end of each time step, the temperature and flux are calculated in each

spatial division. This process is what constitutes taking a measurement.

The iterations end when the simulation time is exceeded. The above steps are depicted

in the following flowchart.

3.4 Full Simulation

This work presents two variations of the phonon Monte Carlo method. The first re-

sembles the approach described in Section 3.3 with some distinctions outlined in this

section. This form of the simulation is referred to as the full simulation approach
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Figure 3.2: Flowchart of the core steps in each iteration of the phonon Monte Carlo
method.

for reasons that will become apparent later in this chapter. In contrast, the devia-

tional simulation closely resembles the work of Peraud and Hadjiconstantinou [70]

but, again, with some distinctions.

The rationale behind having a single piece of software that can run two variations

of the same method is that the deviational simulation technique is much faster and

has much less variance than the full simulation approach. However, the full simulation

technique provides more reasonable results when the temperature differences increase

or for low-temperature simulations. See Section 4.1.3.

The type of simulation that is run depends on the value of the equilibrium temper-

ature1. The user provides this value, and if the user enters an equilibrium temperature

of 0, then a full simulation is run. Otherwise, the corresponding equilibrium temper-

ature is used for a deviational simulation.

1The notion of an equilibrium temperature is defined in Section 3.5. The equilibrium temperature
is the value t_eq that can be seen in Appendix B.
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3.4.1 Phonon Creation

The first step of the algorithm is to determine how many phonons should be in each

spatial component of the system. From Eq. (2.14), repeated here for convenience, the

number of phonons in a volume V is:

N = V
∑

p

∫
ω

 1
exp

(
~ω

kBT

)
− 1

 K2

2π2vgb,p

gpdω

The theoretically accessible frequencies are continuous over [0, ωmax] where ωmax

is the maximum frequency present in the material. However, this spectrum must be

discretized, and nearly all studies, including this one, use a uniform discretization

of Nb = 1000 spectral or frequency bins. The bin frequency should not start at 0.

Instead, the width of each frequency bin is calculated as follows:

∆ω = ωmax

Nb

(3.1)

The range of the discretization is then [∆ω, ωmax − ∆ω] and this interval is com-

prised of Nb evenly spaced bins of width ∆ω. Now, the number of phonons in the

volume V can be calculated as:

N = V
∑

p

Nb∑
b=1

 1
exp

(
~ωb,p

kBT

)
− 1

 K2

2π2vgb,p

gp∆ω (3.2)

From Eq. (3.2), the following histograms can be made showing the number of

phonons per unit volume in each silicon and germanium frequency bin at 300 K.

These histograms indicate that the number of phonons in a given volume may

be substantial. For example, N ∼ 5.5 × 1029 phonons/m3 in silicon at 300 K. Since

it is not currently feasible to simulate such a large number of phonons, we either

limit ourselves to exceedingly small volumes or a weighting factor is applied to reduce

the number of phonons that must be simulated [51]. The idea is that we can group
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Figure 3.3: Phonons per frequency bin for silicon and germanium at 300 K. The y-axis
is intentionally truncated, so the bars of the larger bin numbers are visible.

phonons of equal frequency into phonon packets, and rather than simulate phonons

individually, we can simulate a lesser number of these phonon packets. The concept

of a phonon packet can be seen in Figure 3.4.

Figure 3.4: Arbitrary fixed number of phonons per packet. Here N1 = N2 = 4 implying
E1 6= E2 since ω1 6= ω2.

Typically, this weighting factor is specified by the user, and the effective number

of phonons that must be simulated is then calculated as follows:

Neff = N

Npacket
(3.3)
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where Npacket is the user-specified weighting factor. Simulating phonon packets in this

manner leads to issues with energy conservation when simulating scattering events.

An ad-hoc phonon addition/deletion scheme is employed to rectify the lack of energy

conservation, leading to several potential pitfalls. These issues are discussed in Section

3.7. These pitfalls are part of the reason why this work uses the energy-based formal-

ism introduced by Peraud and Hadjiconstantinou [4] for both the full and deviational

simulation techniques.

3.4.2 Energy-Based Formulation

The energy-based formalism described here was first introduced by Peraud and Had-

jiconstantinou in 2011 [4]. The energy-formalism follows similar steps as outlined in

the previous section, except the packets contain phonons with the same frequencies

and polarizations so that all the phonons packets have the same energy. This consis-

tency implies the number of phonons per packet changes rather than the energy per

packet, as depicted in Figure 3.5.

Figure 3.5: Simulated phonon packets with equivalent energy. Here E1 = E2 implying
ω1 = 1.25ω2. The number of phonons in each phonon packet is adjusted to ensure
each packet has equivalent energy.

The energy of a given packet can be calculated as Epacket = nphonons(ω)~ω, where

nphonons(ω) is the number of phonons in packets containing phonons of frequency ω.

This number must vary with frequency to ensure Epacket is always the same.
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A packet represents a group of several phonons, but from this point onwards,

the distinction between packets and phonons will no longer be made, and the terms

phonon(s) and packet(s) will be used interchangeably. The following relation gives

the number of simulated packets:

Ntot = E

Epacket
(3.4)

where E is given by:

E = V
∑

p

Nb∑
b=1

 ~ωb,p

exp
(
~ωb,p

kBT

)
− 1

 K2

2π2vgb,p

gp∆ω (3.5)

In this formalism, rather than the user fixing the weighting factor Npacket the

user fixes the total number of phonon packets Ntot that will be simulated2. If the

user chooses Ntot = N , this would be equivalent to choosing Npacket = 1 in Eq. (3.3).

Hence, the number of packets Ntot greatly impacts the energy distribution’s precision.

As the number of simulated phonon packets increases, the energy per packet decreases

and the simulation becomes more precise but takes longer to execute.

3.4.3 Phonon Initialization

Each phonon must be assigned a frequency ω, a polarization p, and a propagation

direction r = (x, y, z). The group velocity vgb,p is given by the dispersion relations.

Frequency Determination

To assign frequencies to the phonons, it is necessary to first determine the amount of

energy in each frequency bin, similar to Figure 3.3. The energy in each frequency bin

can be calculated using Eq. (3.5) to produce the following histograms:

2This is num_phonons from Appendix B.
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Figure 3.6: Energy per frequency bin for silicon and germanium. The energy distri-
bution is markedly different than the phonon distribution in Figure 3.3.

Next, from the work of Mazumder and Majumdar [1], a cumulative distribution

function is constructed by doing the cumulative summations of the energy per unit

volume in the ith spectral bin over the energy calculated from Eq. (3.5):

Fi(T ) =

i∑
j=1

Ej(T )
Nb∑
j=1

Ej(T )
(3.6)

Using Eq. (3.6), the cumulative energy distribution function can be plotted as

shown in Figure 3.7.

To determine the frequency interval associated with a phonon, the first random

number3 R1 is drawn and knowing that Fi−1 ≤ R1 ≤ Fi, the corresponding value

Fi can be found using a bisection algorithm, which gives the frequency bin ωN . To

allow for a more continuous distribution, a second random number R2 can be used to

choose a point on the interval associated with ωN using the following equation:

ωi = ωN + (2R2 − 1) ∗ ∆ω/2 (3.7)

3All random numbers are taken from a uniform distribution over [0, 1].
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Figure 3.7: Cumulative energy distribution functions for silicon and germanium at
various temperatures.

This process is illustrated in Figure 3.8.

Polarization Determination

Once the frequency is known, the polarization of the phonon can be determined in ac-

cordance with the material’s dispersion curves at a given temperature. By calculating

the number of accessible states for each polarization at frequency ωi, weighted by its

energy ~ωi, it is possible to deduce a phonon’s probability of a specific polarization.

The likelihood for a phonon to have LA polarization, PLA(ωi, T ), can be calculated

as follows:

PLA(ωi, T ) = ELA(ωi, T )
ELA(ωi, T ) + ET A(ωi, T ) (3.8)

If a random number, R3, is less than PLA, then the polarization is LA; other-

wise, the phonon will have TA polarization. This equation only accounts for acoustic

phonons. Accounting for optical phonons requires incorporating their energy contri-

butions into the denominator.
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Figure 3.8: Random selection of a phonon from the cumulative energy distribution
function. The first random number, R1, identifies the frequency of bin N . A second
random number, R2, determines the frequency on this interval.

The code used in this work combines the cumulative distribution function (CDF)

and polarization probabilities into a single table or array. Table 3.1 is an excerpt of

this array for silicon at 300 K.

Table 3.1: Combined CDF and probability table for silicon at 300 K.

Bin # CDF
Probability

of LA phonon

1 1.9565 × 10−9 0.0830
2 1.9590 × 10−8 0.0829

. . . . . . . . .

394 0.7772 0.0014
395 0.7773 1.0
. . . . . . . . .

999 0.9991 1.0
1000 1.0 1.0

Velocity and Propagation Direction

At this stage, the phonon is completely characterized. From the frequency and polar-

ization, it is possible to determine the group velocity of the phonon packet based on
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the dispersion relation. Inverting the dispersion relations, the group velocity vi for a

phonon of frequency ωi can be obtained.

ωi = aK2
i + bKi (3.9)

It is straightforward to solve for Ki by using the quadratic formula. The group

velocity is then:

vi = ∂ω

∂K
= 2aKi + b (3.10)

From the isotropy assumption, a phonon is equally likely to travel in any direction

regardless of location within the material. The direction component of the velocity

vector can thus be determined using two random numbers R4 and R5.


dx = 2R4 − 1

dy =
√

1 − (dx)2 · cos(2πR5)
(3.11)

Only two direction vectors are used in this work since assumptions make it un-

necessary to account for the third dimension explicitly. The third (z) dimension is

assumed to be arbitrary or infinite in size, allowing us to ignore phonon movement

and surface interactions pertaining to that dimension throughout the simulation. The

three assumptions that allow for this are as follows.

• All geometric cells, and the system as a whole, are assumed to have the same

measurement specification in the z-dimension.

• No emitting surfaces can be located on the z-dimension surfaces.

• The z-dimension surfaces are perfectly specular.

See Section 5.3 for further discussion on this topic.
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3.4.4 Surface Interactions

A phonon can interact with three types of surfaces throughout the simulation. The

surfaces include physical borders (boundary and emitting surfaces) and computational

boundaries (transition surfaces). Transition surfaces represent imaginary boundaries

between the different cells comprising the system.

Emitting Surfaces

Emitting surfaces4 are boundaries assumed to be at a fixed temperature Te, and

phonons enter and exit the system via these surfaces. When phonons collide with an

emitting surface, they are removed from the simulation.

It is assumed that the phonons entering the system from these surfaces come from

the equilibrium distribution. Thus, using Eq. (2.17) can be used to ascertain that the

total energy emitted by an emitting surface of area A over a period of time ∆t is:

E ′ = A∆t
∫

2π

(∑
p

Iω,pdω

)
cos θgpdΩ (3.12)

= A∆t

4
∑

p

Nb∑
b=1

vgb,p

 ~ωb,p

exp
(
~ωb,p

kBTe

)
− 1

D(ωb,p, p)gp∆ω (3.13)

Hence, the total number of phonons originating from an emitting surface over time

∆t is:

N ′ = E ′

Epacket
(3.14)

The portion of Eq. (3.13) within the summations is the same as the original

energy calculation from Eq. (3.5) except it is weighted by the group velocity for each

4Several studies refer to these surfaces as isothermal boundaries.

47



3.4. FULL SIMULATION CHAPTER 3. PHONON MONTE CARLO

frequency bin and polarization. When phonons originate from an emitting surface,

they should be drawn from the velocity-weighted distribution and not the original

distribution given by Eq. (3.5). The CDFs for emitted phonons can be seen in Figure

3.9.

Figure 3.9: Cumulative group velocity weighted energy distribution functions for sil-
icon and germanium at various temperatures.

Table 3.2: Combined group velocity weighted CDF and probability table for silicon
at 300 K.

Bin # CDF
Probability

of LA phonon

1 4.4381 × 10−9 0.1380
2 4.4388 × 10−8 0.1378

. . . . . . . . .

394 0.4947 0.0491
395 0.4956 1.0
. . . . . . . . .

999 0.9985 1.0
1000 1.0 1.0
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Additionally, phonons originating from emitting surfaces have biased direction

vectors based on the surface’s normal vector. The biased direction vectors can be

deduced from the integrand in Eq. (3.12) as:


dx = nx

√
R6 − ny

√
1 − R6 cos(2πR7)

dy = ny

√
R6 + nx

√
1 − R6 cos(2πR7)

(3.15)

where nx and ny are the components of the surface normal vector.

Lacroix, Joulain and Lemonnier [3] introduced an alternative where emitting sur-

faces are simulated by augmenting the system with sufficiently large boundary cells

in which all particles are reinitialized at the beginning of every time-step [3]. This

approach has the advantage of being simple to implement for linear systems, but

it requires time discretization and would be highly challenging to implement in a

structure with complex geometrical aspects. In addition, this approach increases the

number of particles in the simulation, which decreases performance.

Boundary Surfaces

Boundary surfaces represent the division of the material from the outside world and

are impassable to phonons. Each boundary surface is given a degree of specularity in

the range [0, 1]. A surface with a specularity of 1 is considered perfectly reflective.

In specular reflection, a phonon collides with a wall, and the phonon’s post-collision

direction vector is related to the initial direction vector by:


dxf = nx(−dyinx − dyiny) − ny(−dxiny + dyinx)

dyf = ny(−dyinx − dyiny) + nx(−dxiny + dyinx)
(3.16)

A diffuse reflection randomizes the direction of the phonon isotropically on the

unit sphere, and the resulting direction of propagation is given by Eq. (3.15).
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The degree of specularity is defined by the user in the input specifications; see

Appendix B. Each geometric cell can be given its own specularity value. If the sur-

face specularity is less than 1, a random number R8 is drawn and compared to the

specularity of the surface. If R8 is less than this value, the phonon is reflected accord-

ing to Eq. (3.16). Otherwise, the phonon undergoes a diffuse reflection according to

Eq. (3.15).

Some studies [71, 72] have proposed a method to assign surface specularity as a

function of the phonon wave vector.

Transmission Surfaces

For simulations involving a single material, the transmission surfaces act as compu-

tational boundaries to distinguish geometric cells within the system. When a phonon

reaches a transmission surface, it will now be associated with a new cell and con-

tributes to the temperature and flux in that part of the system. Additionally, the

scattering probabilities will change since the new cell will most likely be at a different

temperature.

Each cell typically has its own temperature, flux recordings, and scattering rates.

In Section 3.4.8, the notions of measurement areas and the decoupling of the geometric

cell from the measurement area are introduced. The idea is to link many geometric

cells to the same measurement area, which would allow for the construction of detailed

configurations involving many small triangles without imposing severe performance

penalties.

Transmission surfaces between two different materials are another matter. In this

work, all the results are from systems comprised of a single material, but the sim-

ulation code allows the user to easily specify systems containing different materials.

However, the interfaces between these materials will act as a transmission surface

defined above, with one exception. If the frequency of a phonon passing from one
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material to another is incompatible with the new material, the phonon will diffusely

reflect into the original material.

The details of phonon behaviour at such an interface are not well understood and

are the subject of ongoing research [73–75].

3.4.5 Phonon Origination

In this study, spatial discretization is done through the use of triangles. Using trian-

gular cells as the building block of the simulation geometry allows for great flexibility

in the types of geometries that can be simulated. To randomly place a phonon within

a two-dimensional triangle defined by the points p1, p2, and p3, two random numbers

are required [76]5:


xi = (1 −

√
R9) · p1x +

√
R9(1 − R10) · p2x +

√
R9R10 · p3x

yi = (1 −
√

R9) · p1y +
√

R9(1 − R10) · p2y +
√

R9R10 · p3y

(3.17)

The position, energy and velocity of each phonon can now be determined, and the

boundary conditions of the simulation are specified. The next step is determining

the total amount of energy within the system for the simulation duration. This is

accomplished by summing the energy contributions of each emitting surface using

Eq. (3.13) and the energy that is initially in the system using Eq. (3.5). Once the

total energy in the system is known, Epacket can be determined by dividing the total

system energy by the number of phonons the user has specified in the simulation

input.

5This approach may seem computationally intensive, but
√

R9 only needs to be evaluated once. A
better-performing algorithm exists but requires a conditional statement, making it harder to express
here. Ultimately, the performance of this algorithm is not of great concern as it is typically called
much less than once per phonon and perhaps never in this case of deviational simulations.
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Phonons originating in cells are given a random position within the triangular cell

using Eq. (3.17), and the direction of propagation is given by Eq. (3.11). The phonon

should also be given a time to expiry equal to the simulation time specified by the

user. This expiry value will be used in the drifting phase described in Section 3.4.6.

Phonons originating from emitting surfaces are given a random position on the

surface. Eq. (3.15) gives the direction of propagation. The time to expiry of these

phonons should be a uniform random number on the interval [0, tfinal], where tfinal is

the simulation time specified by the user. This reflects the idea that phonons from

emitting surfaces continuously enter the system throughout the simulation.

Whether a phonon originates in a cell or on the surface, it will follow the same

life cycle described in the following sections.

3.4.6 Drifting

Phonons undergo the process of drifting, scattering and contributing their energy

until the simulation time is exceeded, or the phonon leaves the system by colliding

with an emitting surface.

Before describing the drifting algorithm, two important timings must be intro-

duced. The first is the time until the next scattering event, which can be calculated

as follows:

∆ts = −τ(ω, p, T ) ln(R11) (3.18)

If a phonon originates on a surface, the relaxation rate calculation should use

the temperature of the cell or measurement area in which that surface resides, not

the surface temperature. The distinction between a measurement area and a cell is

explained in Section 3.4.8. Typically, there is no distinction, and the geometric aspects

of a cell are coupled with the physics governing scattering rates and temperature/flux

calculations
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The other timing event is when the subsequent measurement occurs. A measure-

ment event is when the phonon contributes energy and flux to the spatial region it

occupies. As input, the user provides the total simulation time and the number of

measurements that should occur throughout the simulation. From here, it is straight-

forward to deduce the time interval on which measurement events should take place.

If we let ∆tm be the time until the next measurement event takes place, then the

algorithm for drifting a phonon between t = tbegin and t = tfinal is as follows:

1. Set the minimum time ∆tmin to the smaller of ∆ts and ∆tm.

2. Determine if the phonon will undergo a surface collision over the time interval

∆tmin based on the phonon speed and direction of propagation.

3. If there is a surface collision, it can be one of three possibilities.

• Boundary surface: Update the phonon position to be the point where

the collision occurs. Alter the phonons direction of propagation based on

the interaction with the surface using Eq. (3.15) or Eq. (3.16). Adjust

∆tmin by subtracting the amount of time taken for the phonon to impact

the surface. Go back to step 2.

• Emitting surface: Flag that the phonon has left the system and end the

algorithm for the current phonon.

• Transmission surface: There are two possibilities, and in either case,

the transmission surface interaction should update the phonon to reflect

that the phonon has transitioned to a new geometric cell.

– If the collision occurs with a transition surface between two cells within

the same measurement area, place the phonon at the point of collision

and adjust ∆tmin subtracting the amount of time taken for the phonon

to reach the transition surface. Go back to step 2.
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– If the transmission surface is between two cells in different measure-

ment areas, a new scattering time must be calculated. Place the phonon

at the point of collision and adjust ∆tm by subtracting the time taken

for the phonon to reach the transition surface. Calculate a new scat-

tering time, ∆ts, based on the temperature of the new measurement

area using Eq. (3.18). Go back to step 1.

4. If no surface collision occurs within the time interval ∆tmin, adjust the phonons

position based on its velocity and direction of propagation for the period ∆tmin.

Update ∆ts and ∆tm accordingly. One of these values will be 0, indicating that

either a measurement or scattering event occurs at the phonons’ new position.

• Scattering event: Undergo the scattering procedure described in Section

3.4.7. Find a new ∆ts using Eq. (3.18). Go back to step 1.

• Measurement event: Undergo a measurement event as described in Sec-

tion 3.4.8. Find the time until the next measurement event and set it

to ∆tm. If the phonon has reached the end of the simulation, that is, if

∆tm = ∆tfinal, terminate the algorithm for the existing phonon. Otherwise,

go back to step 1.

It is vital to recall that while tbegin = 0 for all phonons originating in cells, this number

can vary for phonons which originate via emitting surfaces which complicates finding

the initial value of ∆tm. For phonons originating via emitting surfaces, tbegin should be

set to a random number from a uniform distribution over [0, tfinal] which is equivalent

to R12 ∗ tfinal.

The three functions primarily responsible for this algorithm can be found in Ap-

pendix A (A.1, A.2, A.3).
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3.4.7 Scattering

There are three possible scattering mechanisms a phonon may undergo. In both N

and U-processes, the phonon frequency, polarization and group velocity must be re-

sampled. For U-process and impurity scattering, a new propagation direction must

be chosen using Eq. (3.11).

The original cumulative distribution function, Eq. (3.6), is not used when re-

sampling the phonon properties. Re-sampling scattered phonons from the original

distribution will cause the phonon distribution in the system to drift away from the

original distribution. This drifting is because the probability of a phonon scattering

is proportional to τ−1, which means phonons of specific frequencies and polarizations

are more apt to be scattered. If we draw the re-sampled from the original distribution,

these phonons will be disproportionately removed from the system. To account for

this, the CDF is scaled by the factor τ−1 [3]. The new cumulative distribution function

can be calculated as follows:

F +
i (T ) =

i∑
j=1

E+
j (T )

Nb∑
j=1

E+
j (T )

(3.19)

where

E+ = V
∑

p

Nb∑
b=1

τ(ωb,p, p, T )−1

 ~ωb,p

exp
(
~ωb,p

kBT

)
− 1

D(ωb,p, p)gp∆ω (3.20)

The weighted cumulative distribution function for silicon at 300 K can be seen in

Figure 3.10.

To determine which scattering mechanism occurs, a random number, R12 is drawn,

and if:
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Figure 3.10: Cumulative relaxation time-weighted energy distribution functions for
silicon and germanium at various temperatures.

R12 <= τN(ω, p, T )−1 + τU(ω, p, T )−1

τ(ω, p, T )−1 (3.21)

then either an N-process or a U-process has occurred. The phonon frequency, velocity

and polarization are re-sampled via the same process described in Section 3.4.3 using

the CDF in Figure 3.10. If Eq. (3.21) is true, then the following condition is evaluated:

R12 >
τN(ω, p, T )−1

τ(ω, p, T )−1 (3.22)

If Eq. (3.22) is true, then an Umklapp scattering event has occurred, and the

phonon propagation direction is updated using Eq. (3.11). Finally, if Eq. (3.21) is

false and both the following conditions are true:


R12 > τN (ω,p,T )−1+τU (ω,p,T )−1

τ(ω,p,T )−1

τI(ω, p, T )−1 > 0
(3.23)

This means an impurity scattering event has occurred, and the phonon direction

propagation is re-sampled using Eq. (3.11), but the properties are not re-sampled.

Implementation code can be found in Appendix A.4.
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Table 3.3: Combined relaxation time-weighted CDF and probability table for silicon
at 300 K.

Bin # CDF
Probability

of LA phonon

1 5.9755 × 10−12 3.3294 × 10−5

2 1.6758 × 10−10 9.9701 × 10−5

. . . . . . . . .

394 0.2842 0.0414
395 0.2843 1.0
. . . . . . . . .

999 0.9958 1.0
1000 1.0 1.0

3.4.8 Measurements

Before discussing how phonon contributions are measured, the distinction between a

cell and a measurement area will first be addressed. When creating the simulation

geometry, the user must assign each geometric cell a sensor ID. Cells can only be

attached to a single sensor, but a sensor can be associated with many cells. All the

cells associated with a single sensor represent a measurement area. The cells control

the geometric aspects, but the sensor handles the physics related to temperature/flux

calculations and relaxation rates for each attached cell.

The distinction between cells and sensors/measurement areas is made because

triangles are used as the fundamental building blocks of the simulation models. This

decoupling allows the user to create intricate designs using many small triangles. If

each of these triangles required its own scattering table, see Table 3.3, to handle

relaxation times, this could eventually lead to performance issues. This is especially
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true for transient6 simulations which require each cell to have its own scattering table

for each measurement step. For the kinked wire simulations in Section 4.2, this would

mean approximately 3000 × 5000 × 2000 doubles requiring storage throughout the

simulation, and 3000 × 5000 tables would need to be updated at the end of each

iteration.

The process for taking a measurement is straightforward. When a cell reaches this

point in the algorithm from Section 3.4.6, the phonon contributes an energy unit to the

measurement area/sensor attached to the geometric cell where the phonon currently

resides. The current lifetime of the phonon must be taken into consideration here. At

this stage, it is unnecessary to store the value of Epacket; simply increment an integer

counting variable to record the phonon’s energy contribution.

To record the phonon’s flux contribution, the phonon’s velocity vx and vy are

calculated and accumulated using:

vx = vgb,p · dx (3.24)

vy = vgb,p · dy (3.25)

Implementation code can be found in Appendix A.5.

3.4.9 Temperature Calculations

Once all the phonons have been simulated, each measurement area will contain an in-

teger value representing the number of energy packets the phonons have contributed.

Let Nj be the number of energy packets inside measurement area j. To obtain the

amount of energy in the measurement area at each measurement step in the simula-

6The software can simulate transient heat effects as described by Peraudand Hadjiconstantinou
in [70], but this thesis does not go into the topic.
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tion, the following calculation is used:

Ej = EpacketNj (3.26)

Once Ej is known, the corresponding temperature Tj is calculated by numerically

inverting the following expression:

Ej = V
∑

p

Nb∑
b=1

 ~ωb,p

exp
(
~ωb,p

kBTj

)
− 1

D(ωb,p, p)gp∆ω (3.27)

At this point, the temperature of each measurement area is known at times equiv-

alent to when each measurement in the system was taken.

To find the flux in measurement area j, let Vxj and Vyj be the sum of the phonon

velocity contributions from Eq. (3.24) and Eq. (3.25) respectively. The flux in each

measurement area is then:

φx = Vx · Epacket

V

φy = Vy · Epacket

V

where Vj is the combined volume of all the cells making up the measurement area.

Implementation code can be found in Appendix A.6.

3.5 Deviational Simulation

This section is comprised of two key components. The deviational formalism intro-

duced by Peraud and Hadjiconstantinou [4] and the linearization approach by the

same authors [70].

The deviational simulation presented here is similar to the full simulation method

described in Section 3.4, but the deviational simulation incorporates the concept of an

equilibrium temperature and the linearization of the collision operator in the Boltz-
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mann transport equation. However, unlike the paper [70] in which this linearization

approach is introduced, local temperatures are still maintained and updated rather

than using the equilibrium temperature for all scattering and temperature calcula-

tions. This, in addition to the evolution algorithm from Section 3.6, are the primary

distinctions between the deviational simulation used in this work and that described

by Peraud and Hadjiconstantinou in [70].

It should be noted that the deviational formalism presented by Peraud and Hadji-

constantinou [4] and the linearization approach by the same authors [70] are indepen-

dent approaches. In this work, the deviational simulations use both the deviational

formalism in conjunction with the linearization of the Boltzmann transport equation,

whereas full simulations use neither.

The user specifies which type of simulation to run by their choice of equilibrium

temperature for the simulation input. A full simulation is run if the user enters an

equilibrium temperature of 0. Otherwise, a deviational simulation is used with the

requested equilibrium temperature. The notion of an equilibrium temperature is ex-

plained in Section 3.5.1.

3.5.1 Equilibrium Temperature and Deviational Particles

The theoretical and statistical details behind the deviational formulation can be found

in [4]. The four significant changes this paper introduces, compared to the full simu-

lation technique discussed previously, are:

1. An equilibrium state at temperature Teq from which deviations will be simu-

lated.

2. Newly defined computational particles are referred to as deviational particles.

3. An adjusted distribution function that incorporates Teq.
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4. Requiring a second numerical inversion that involves frequency and polarization-

dependent scattering rates.

This section describes the adjustments required to incorporate the equilibrium tem-

perature and the deviational particles. The adjusted distribution function and second

numerical inversion7 are not used because the linearization process described in Sec-

tion 3.5.2, introduces alternatives.

Equilibrium Temperature

The introduction of an equilibrium temperature Teq into the simulation stems from

a more general class of control-variate variance reduction methods for solving kinetic

equations, which provides significant computational savings and variance reduction

[4]. The reduction in statistical noise allows us to simulate systems with tiny tem-

perature differences more accurately, see Section 4.1.3. The methodology behind the

deviational formalism is to only solve for the deviation from an equilibrium distri-

bution while the contribution of the equilibrium is added deterministically to the

properties of interest [77]. The equilibrium temperature specifies the temperature of

this equilibrium distribution.

Minimal changes are required to incorporate an equilibrium temperature into the

existing simulation framework; the user must specify an equilibrium temperature

greater than 0 in the simulation input file. The initial value of the equilibrium tem-

perature can be challenging to ascertain, especially in systems with complex geome-

tries and several emitting surfaces. However, the algorithm described in Section 3.6

7Requiring this second numerical inversion significantly complicates the process of taking energy
measurements since it is no longer possible to accumulate energy packets with a single integer vari-
able. The second numerical inversion requires frequency and polarization-dependent scattering rates.
Thus each energy packet must be associated with the frequency and polarization of the contributing
phonons. There is also the performance impact of required two numerical inversions, but this is
generally not an issue unless a system has a significant number of measurement areas.
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ensures that as long as the initial input for Teq is reasonable8, the system will evolve

to a stable equilibrium temperature.

Deviational Particles

The difference between a deviational phonon and the phonons previously described is

that deviational phonons have a sign, either +1 or −1, associated with them. Phonons

with a negative sign have a cooling effect and will reduce the energy in a measurement

area, whereas those with a positive sign will act the same way as they did in the full

simulation. The implementation of this measurement process is unchanged from that

described in the full simulation technique and can be seen in Appendix A.5.

The determination of a phonon’s sign is straightforward. Using the initial tem-

perature Tinit of each cell, then if a phonon originates in a cell where Tinit > Teq or

on a surface where Te > Teq, then the phonon is a given a sign of +1. Otherwise, the

phonon is given a sign of −1. Note that for full simulations, all phonons are given a

sign of +1 since, by definition, Teq = 0 for full simulations. This is why the measure-

ment process described in Section 3.4.8 is unchanged if a sign variable is incorporated

in the full simulation method.

3.5.2 Linearized Boltzmann Equation

The governing Boltzmann transport equation may be linearized for the minor devia-

tions from equilibrium encountered, incurring only a small, second-order error. This

linearization may lead to a simpler and more efficient simulation method that intro-

duces no approximation [77]. The derivation of the linearized Boltzmann equation

can be found in [70] and for a more thorough discussion in [77]. As it pertains to this

8Reasonable means the input value for Teq is within the interval [TC , TH ] where TH is the warmest
emitting surface in the system, and TC is the coolest emitting surface in the system.

62



3.5. DEVIATIONAL CHAPTER 3. PHONON MONTE CARLO

study, the primary benefit of this process is avoiding the double inversion required to

calculate the temperature and pseudo temperature.

Another benefit to the linearization is that, under certain circumstances, the equi-

librium temperature can be used throughout the simulation domain to calculate scat-

tering rates and temperature calculations as described in Section 3.5.4. While this

theoretically means spatial discretization is no longer required, some spatial discretiza-

tion is still necessary to make meaningful measurements through the simulation. This

study maintains local temperatures within these measurement areas.

Analysis using a global equilibrium temperature suggests that the error resulting

from linearizing the Boltzmann equation is still acceptable (< 3%) up to tempera-

ture differences of 30 K when compared to results where the Boltzmann equation is

not linearized, and cells maintain their local temperatures [77]. In Section 4.1.3, it is

shown that maintaining local temperatures allows deviational simulations using the

linearized Boltzmann equation to produce nearly identical results to the full simula-

tion at a temperature difference of 60 K. However, a global equilibrium temperature

would greatly simplify and expedite transient simulations with small temperature

differentials.

To derive the linearized Boltzmann equation under the energy-method formalism,

it is assumed the quantity T −Teq is small such that the collision operator is linearized

as follows [70]:

e − eeq

τ(ω, p, T ) ≈ T − Teq

τ(ω, p, T )
deeq

dT
(3.28)

where T denotes the local temperature. In practice, accounting for this linearization

is relatively straightforward. After some simplifications, the modified Bose-Einstein

distribution function that was introduced in the energy-based formalism is replaced

by its derivative:
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de(ω)
dT

= (~ω)2

kbT 2

exp
(

~ω
kbT

)
(
exp

(
~ω
kbT

)
− 1

)2 (3.29)

In every case where the modified Bose-Einstein distribution ~ω

exp
(

~ω
kBT

)
−1

is used,

its derivative de(ω)
dT

should be used instead. The other required minor adjustments are

discussed in the following subsections.

3.5.3 Phonon Origination

When calculating the total system energy, described in Section 3.4.5, some adjust-

ments are made to incorporate the equilibrium temperature. The amount of energy

contained in each cell is now calculated as follows:

∆E = |Tinit − Teq| · V
∑

p

Nb∑
b=1

de(ωb,p)
dTinit

D(ωb,p, p)gp∆ω (3.30)

where Tinit refers to the initial temperature of the cells and is supplied by the user9.

Similarly, the amount of energy from each emitting surface can be calculated as

follows:

∆E ′ = |Te − Teq| · A∆t

4
∑

p

Nb∑
b=1

vgb,p
de(ωb,p)

dTe

D(ωb,p, p)gp∆ω (3.31)

This implies that emitting surfaces with Te = Teq will emit no phonons, and

geometric cells attached to sensors with Tinit = Teq will have no phonons originate

within them.

9This is the ‘t_init’ value associated with each sensor in the sample input file from Appendix B
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3.5.4 Temperature and Flux Calculations

The energy Ej in each measurement area is calculated similarly to that described in

Section 3.4.9 by Eq. (3.26), but calculating temperatures is no longer done with a

numerical inversion but rather by using the equation:

Tj = Ej

C · V
+ Teq (3.32)

where V is the volume of all the cells in the measurement area, and C is the heat

capacity of the measurement area material, which is calculated as:

C =
∑

p

Nb∑
b=1

de(ωb,p)
dTinit

D(ωb,p, p)gp∆ω (3.33)

Tinit will likely be different from the temperature Tj in Eq. (3.32) when this calculation

occurs unless the initial temperature of the measurement area is the same as the

steady-state temperature.

Eq. (3.33) is a high-speed calculation compared to the typical numerical inver-

sion approach because the quantity C has already been evaluated when creating the

cumulative distribution tables since the derivative of the modified Bose-Einstein dis-

tribution is used to generate these tables.

A modification described in the following section ensures the initial temperatures

are sensible while processing phonons independently, as described in Section 3.4.

3.6 System Evolution

At the beginning of a simulation, the user supplies the initial temperature of each

measurement area/sensor. This temperature is used throughout the simulation when

determining scattering rates and calculating the heat capacity of cells associated

with that sensor using Eq. (3.33). In the case of extreme temperature differences,
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the sensor temperature will vary significantly throughout the simulation. Because

phonons drift through the system one at a time, there is no straightforward way to

update the sensor temperature during the simulation. The inability to update the

sensor temperatures means the scattering rates inside each measurement area will

not reflect potentially substantial changes to this initial temperature throughout the

simulation. Multiple iterations of the simulation are run to account for this, and at

the end of each iteration, the initial temperature of the sensors for the next run is

updated with the temperature it reached at the end of the previous simulation.

The idea is that the system will eventually converge toward a steady-state where

the temperatures of the measurement areas are stable within some degree of statistical

uncertainty. By iteratively running the simulation and updating the initial tempera-

ture each time, then on the final iteration, the sensor temperatures, scattering rates

and heat capacities will be accurate throughout the simulation. The last iteration is

equivalent to a simulation where the user a priori knows the steady-state temperature

of the system and uses that knowledge for the initial inputs.

For deviational simulations, this technique is also employed on the equilibrium

temperature. A volume-weighted average system temperature is calculated at the

end of each iteration, and the equilibrium temperature is updated to this new value.

A linear system of silicon 1000 nm in the direction of interest is used to illustrate this

approach. The general layout of the system can be seen in Figure 3.11. The leftmost

Y-Z plane is an emitting surface with TH = 310 K, and the rightmost Y-Z plane is an

emitting surface with TC = 290 K. The equilibrium temperature is 300 K. To magnify

the effect of the system evolution, each sensor is somewhat arbitrarily assigned an

initial temperature of 15 K to exaggerate the effects of the system evolution.

As seen in Figure 3.12, this causes a bizarre result on iteration one as each cell’s

scattering rates and heat capacities are calculated at 15 K and used throughout the

simulation.
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Figure 3.11: Linear system used to test the system evolution algorithm. Lz is an
arbitrary measurement, see Section 5.3. Each geometric cell comprises two triangles
linked to a single sensor to form one measurement area with an initial temperature
of 15 K.

.

Figure 3.12: System evolution using a 1000 nm silicon wire. The initial cell tempera-
tures are set to 15 K with TH = 310 K and TC = 290 K. The equilibrium temperature
is initially set to 300 K.

The profiles converge rapidly, even when the starting temperatures deviate sub-

stantially from their steady-state temperatures. By the fourth iteration, the system

has stabilized, see Figure 3.13. Stability is defined as 90% of the sensors’ temperatures
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being within 0.5% of their temperature on the previous iteration and, if applicable,

the equilibrium temperature being within 0.5% of its value on the previous iteration.

Figure 3.13: Steady-state convergence of the system in Figure 3.12. Iteration 3 and
the final iteration are largely overlapping.

In Figure 3.14, the structural layout is the same as before, but the equilibrium

temperature is chosen to be 290 K, and each cell is given an initial temperature of

300 K.

Despite the errant initial input for the equilibrium temperature, the convergence

occurs rapidly. Convergence is generally expeditious unless the equilibrium tempera-

ture is initially set to an unreasonable value that is much greater than the warmest

emitting surface in the system or much cooler than the coolest emitting surface.

3.7 Advantages of the Energy-Based Formulation

In addition to perfect energy conservation, the energy-based formulation eliminates

the time discretization requirement as it pertains to scattering events. The simulation

must still be interrupted periodically for the sensors to record energy and flux mea-
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Figure 3.14: Steady-state convergence with an errant initial equilibrium temperature.

surements, but specifying a time-step to check scattering probabilities is unnecessary.

Instead, Eq. (3.18) is used to calculate the time until the next scattering event occurs

rather than simulating a prescribed amount of time and then calculating the proba-

bility that the phonon undergoes a scattering event during that time frame using the

equation:

P (ω, p, T ) = 1 − exp
(

∆t

τ(ω, p, T )

)
(3.34)

This is advantageous as choosing an appropriate time-step is not necessarily

straightforward. Section 3.8 discusses this in greater detail.

The absence of this requirement and taking advantage of Eq. (3.18) also allows

each phonon energy packet to be processed independently from start to finish. This

algorithm leads to much more natural software parallelization opportunities. In ad-

dition, it drastically reduces the memory footprint of the simulation compared to

previous approaches, as memory storage is required only for a single phonon rather

than all the phonons in the system.
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3.8 Time-Step Shortcomings

When using Eq. (3.34) to calculate the probability of scattering over a period of time,

it is crucial to use an appropriate scattering substep or simulation time-step. For

example, if the chosen time step is much larger than the combined relaxation time

of the medium, then the scattering probability will always be 1, which is unrealistic.

A scattering probability of 1 implies that the phonon is likely to undergo more than

one scattering event over the given period of time, and we will end up undercount-

ing scattering events throughout the simulation, which will undoubtedly lead to an

artificial increase in the system flux.

For example, Figure 3.15 shows that with a time-step of 5×10−12 s, the probability

that a phonon in silicon with a frequency of 2.4 × 1013 rad s−1 and TA polarization

will scatter over this period is ∼ 60% which is quite high despite the seemingly small

time-step. Figure 3.16 indicates that this time-step will undercount scattering events

throughout the simulation leading to higher than expected flux measurements.

Figure 3.15: time-step impact on scattering probabilities at 300K.
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In addition, it has also been suggested by Wong et al. [15], among others, that

the ballistic distance of the fastest phonon ensemble should not exceed the size of

the smallest spatial division in any given time-step. These factors are addressed by

choosing a minimal time-step, but this can have an unintended effect.

The problem with having too small of a time-step stems from the energy conserva-

tion strategy used in many of the Monte Carlo methods in the literature [1, 3, 15]. The

energy conservation mechanism involves an ad-hoc phonon addition/deletion scheme.

Typically, this addition/deletion scheme is run in intervals equal to the time-step

used to calculate scattering probabilities. A major inconvenience with this approach

is that if the time-step is too small, the phonon addition/deletion scheme can inadver-

tently destroy a disproportionate number of phonons with biased direction vectors,

those that have originated from the emitting/isothermal surfaces. The effect is an

unintended decrease in the flux through the system, which can be seen in Figure

3.16.

It is also evident from Figure 3.16 that if the time-step is too large, scattering

events will occur less frequently than they otherwise would, leading to an unintended

increase in flux, as mentioned above.

Figure 3.16: time-step impact on steady-state flux.
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Chapter 4

Results

The following results are intended to verify the simulation code and display the po-

tential of the Monte Carlo method described in Chapter 3 as a solution technique for

the Boltzmann transport equation. In all cases, results are taken from systems that

have evolved to a steady-state, meaning the energy and flux within each measurement

area is unchanging in time within a margin of numerical uncertainty.

The first set of results in this compare the phonon Monte Carlo predicted thermal

conductivity of silicon to the known result in the diffusive regime. Multiple sets of

relaxation time parameters are used to test the methods’ sensitivity to these inputs.

Next, phonon Monte Carlo predicted temperature profiles from the diffusive and bal-

listic regime are compared to analytical results obtained using the Stefan Boltzmann

and heat diffusion equations. In addition, results from both the full and deviational

simulation approaches are displayed so the differences between these approaches can

be discussed. In the following sections, results from more complex geometries are pre-

sented to showcase the utility and speed of the phonon Monte Carlo method. Again,

the full simulation approach is compared to the deviational approach. Finally, the

chapter finishes with a summary that compares the full simulation approach to the

deviational approach.

As discussed in Section 3.4.3, but repeated here for convenience, the third (z)

dimension is assumed to be of arbitrary or infinite size for all the systems presented
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in this chapter. This means phonon movement and surface interactions pertaining to

that dimension are ignored throughout the simulation. The three assumptions that

allow for this are as follows.

• All geometric cells, and the system as a whole, are assumed to have the same

measurement specification in the z-dimension.

• No emitting surfaces can be located on the z-dimension surfaces.

• The z-dimension surfaces are perfectly specular.

All results have been produced using the deviational technique with the dispersion

and relaxation time parameterizations by Jean [27] and without impurity scattering

unless otherwise stated. In most cases, the number of phonons and simulation time

far exceeds what is necessary to produce low-variance solutions.

4.1 Nanowires

The systems in this section all take the general form of rectangular segments. This

type of structure is commonly used in the literature [1, 3, 15] as a proxy for nanowires

for benchmark testing of the phonon Monte Carlo method.

The general geometry of the wires used in each section is depicted in Figure 4.1,

which is similar to the system described by Figure 3.11 if the prior assumptions are

in place. Additional details can be found in the appropriate subsections and tables.

4.1.1 Thermal Conductivity

The results in this section look at the phonon Monte Carlo predicted thermal conduc-

tivity of silicon and germanium nanowires as a function of wire length. The thermal

conductivity of these materials is well studied at the macro-scale under non-extreme

temperatures, and the bulk conductivities can be approximated using Eq. (4.1) and

Eq. (4.2) for silicon and germanium, respectively [3].
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Figure 4.1: A 100 nm long and 50 nm wide silicon nanowire. This wire is split into ten
measurement areas, each with dimensions Lx = 10 nm and Ly = 50 nm. The emitting
surface at x = 0 is set to TH = 310 K, and the emitting surface at x = 100 is set to
TC = 290 K. The initial temperature of each measurement area is (TH + TC)/2.

κSi(T ) = e12.570

T 1.326 (4.1)

κGe(T ) = e10.659

T 1.150 (4.2)

The phonon Monte Carlo predictions are expected to align with these equations’

results as we approach the macro-scale. The thermal conductivity is no longer an

intrinsic property of the material at the nanoscale and cannot be well-approximated

by these equations. The validity of the predicted results for the shorter wires will be

compared to those obtained by Wong et al. [15].

The general geometry for all the systems can be seen in Figure 4.1. Table 4.1 shows

the common simulation settings for all systems. Lx and Ly refer to the dimensions

of the measurement areas. For example, a 1000 nm wire consists of 100 rectangular
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measurement areas of Lx = 10 nm and Ly = 50 nm. Each measurement area is

comprised of 2 triangular cells.

Table 4.1: Common simulation settings for the thermal conductivity benchmarks.

Simulation Number of Number of
Lx (nm) Ly (nm)

Surface
time (ns) Phonons Measurements Specularity

50 50,000,000 5000 10 50 1

The wires are elongated by adding more cells. The thermal conductivity is cal-

culated by taking the average of the final 500 (10% of total measurements) flux

measurements in the x-direction from each measurement area. Each of these values is

nearly identical, as expected. The average of these values is used as the system flux,

qx, in the x-direction. The thermal conductivity κ is then calculated as:

κ = qxL

∆T
(4.3)

where L is the system length in the x-direction and ∆T is the temperature differen-

tial across the system. The temperature differential is 20 K for each system in this

subsection.

Four different sets of relaxation time parameters are used. The κjean relaxation

rates are taken from [27], κwong from [15] and κholland from [18]. The different sets of

relaxation time parameters are meant to test the method’s sensitivity to these inputs.

Results for varying lengths of silicon and germanium nanowires can be seen in the

figures below.
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Figure 4.2: Thermal conductivity as a function of wire length in silicon at 300K.
TH = 310 K and TC = 290 K. Error bars are present but not easily visible at this
scale. This is also the case for the figures that follow.

Figure 4.3: Thermal conductivity as a function of wire length in silicon at 400K.
TH = 410 K and TC = 390 K.
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Figure 4.4: Thermal conductivity as a function of wire length in germanium at 300K
and 400K. TH = 310K and TC = 290K for the 300 results and TH = 410K and
TC = 390K for the 400 results.

The results from Figure 4.2 and Figure 4.3 using the Jean and Wong parame-

ters closely match the results of similar testing by Wong et al. [15]. There is good

agreement with the known conductivity as we approach the diffusive regime, and

tuning the relaxation time parameters or the surface specularity will allow near-exact

reproduction of the known bulk conductivity.

Lacroix, Joulain and Lemonnier [3] reported good accuracy for silicon thermal

conductivity using the Holland rates, which is not seen here. Two potential factors

may explain this.

1. The study used a rather large time step which may have artificially increased

the flux by the mechanism described in Section 3.8.

2. An adjustment is made in the paper such that half of the colliding phonons keep

their momentum and are not directionally resampled during collisions. Allowing
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phonons to maintain their momentum after collisions will significantly increase

the flux through the system and hence the thermal conductivity.

The germanium results from Figure 4.4 are similar to the silicon results. Again,

it is clear that the bulk values can be matched precisely in the diffusive regime with

appropriate adjustments to the relaxation time parameters and surface specularity.

4.1.2 Ballistic Regime

This section compares the full and deviational techniques at low temperatures. In

this ballistic regime, where the phonon mean free path is greater than the structure

length, the temperature in the steady-state can be approximated using the following

constant value that follows the Stefan-Boltzmann law [3, 15]:

Tballistic =
(

T 4
H + T 4

C

2

) 1
4

(4.4)

It is expected that the steady-state temperature predicted by the phonon Monte

Carlo method will be comparable to the result from Eq. (4.4). The temperature in

each measurement area along the length of the wire is calculated by taking the average

of the final 500 (10% of total measurements) temperature measurements.

Some scattering may still occur even at these low temperatures, so we should not

necessarily anticipate an exact match.

Common simulation settings for benchmarks presented in Figure 4.5 and Figure

4.6 can be found in Table 4.2.

Table 4.2: Common simulation settings for the ballistic regime benchmarks.

Simulation Number of Number of
Lx (nm) Ly (nm)

Surface
time (ns) Phonons Measurements Specularity

50 50,000,000 5000 10 50 1
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Figure 4.5: Ballistic results for 100 nm silicon with TH = 20 K and TC = 10 K. The
standard error in the measurements is represented by the shaded areas but is not
easily visible for the temperature results at this scale.

Figure 4.6: Ballistic results for 100 nm silicon with TH = 40 K and TC = 30 K.
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Excellent agreement is found with the results from the full simulation technique

and the predicted result from Eq. (4.4). The deviational simulation proves less ac-

curate, compared with the Eq. (4.4), in the low-temperature range, where a 10 K

temperature differential is relatively large. The full simulation results also agree with

Wong et al. [15].

4.1.3 Diffusive Regime

This section compares the full and deviational techniques at higher temperatures

where the mean free phonon path is much less than the system length, and heat

transport is largely diffusive. For short wires, the system is in the ballistic regime

where we expect a constant temperature profile like that given by Eq. (4.4). By

increasing the wire length, we move from the ballistic regime to the diffusive regime,

where Fourier’s law has predictive power.

A 5000 nm silicon wire is used for the figures below. The values for TH and TC used

in Figure 4.7 are specified in Table 4.3. The ordering of the temperature specifications

in Table 4.3 matches the ordering of the temperature profiles in Figure 4.7. For

example, the profile intersecting the y-axis at approximately 330 K has TH = 330

and TC = 270.

Table 4.3: Emitting surface temperatures for the profile in Figure 4.7.

TH (K) TC (K) ∆T (K)

330 270 60
315 285 30
310 290 20
302 298 4
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Figure 4.7: Diffusive regime results for a 5000 nm silicon wire with varying tempera-
ture differentials.

Figure 4.8: Diffusive regime results for a 5000 nm silicon wire across a 250 K temper-
ature differential. TH = 500 K and TC = 250 K.

In Figure 4.7, the temperature differentials are relatively small, and we see a min-

imal difference between the deviational and full simulation approaches. Temperature
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profiles are mainly linear, and the mean (center) temperature is approximately 300

K, as expected in the diffusive regime.

However, the temperature profiles exhibit a very slight bowing effect near the

hot and cool ends of the wire. The curvature of the profiles also increases as the

temperature differential across the wire increases. This curvature is more pronounced

in the deviational simulation result, particularly when TH = 330K and TC = 270K.

These bowing and curvature effects are noticeable in the Wong et al. results. [15].

The system in Figure 4.8 has a relatively large temperature differential across the

wire, 250 K. The deviational and full simulation results diverge even further, with

the deviational results exhibiting a sizable bowing effect. The flux measurements, in

the direction of interest, have also diverged. In Figure 4.9, the predicted temperature

profile using the heat diffusion equation is included.

Figure 4.9: Deviational and full simulation results compared with the heat diffusion
equation across a 250 K temperature differential.

Figure 4.9 is a closer look at the temperature profiles in Figure 4.8 and includes

a result produced by the heat diffusion equation where the thermal conductivity is

temperature dependent. This temperature dependence results in the non-linear profile

in Figure 4.9.
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Based on Figure 4.9, the result from the full simulation better matches that pre-

dicted by the heat diffusion equation. Further study is required to determine whether

this difference is from the introduction of the equilibrium temperature and the devia-

tional particles or if the linearization of the Boltzmann equation causes the difference.

It is also plausible that all these factors may play a role.

In addition to reasonably approximating the result from the heat equation, the

full simulation result in Figure 4.9 also closely matches the result from Wong et al.

[15].

Finally, in Figure 4.10, the 4 K temperature differential result is displayed on a

different scale than previously shown in Figure 4.7.

Figure 4.10: Deviational and full simulation results compared with the heat diffusion
equation across a 4 K temperature differential.

At this scale, the difference in the standard error between the deviational and

full simulation methods is quite apparent. More interestingly, the temperature profile
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for the full simulation, while still directionally accurate, shows some significant aber-

rations, while the deviational simulation still produces a clean result, even across a

system with a tiny temperature differential.

The results from this section show that the full and deviational approaches produce

similar steady-state temperature profiles and flux approximations as we approach the

diffuse regime and the temperature differential across the system is 30 K or less.

However, the deviational approach has much less variance and should be preferred.

As the temperature differential across the system grows, the results from the two

approaches start to diverge. Based on Figure 4.9, the full simulation results more

closely match the result predicted by the heat diffusion equation, which should be a

reasonable estimate at these length scales and temperature ranges. In all cases, the

deviational simulation produces far less variance than the full simulation, about an

order of magnitude lower when comparing the flux estimations.

4.2 Kinked Nanowires

This section compares the full and deviational techniques for kinked silicon wires and

the relationship between flux and the kink angle of the wire. The effect of adding

more measurement areas to a relatively complex geometrical system is also explored.

The generalized geometry of the wires can be seen in Figure 4.11. This figure is a

schematic for half the system, but the other half of the system is symmetric, as can

be seen in the full-page figures that follow. The kink angle is represented by α in the

schematic.

The motivation for simulating these kinked wires is to compare the phonon Monte

Carlo results with comparable results produced by molecular dynamics simulations.

Such a comparison is interesting since the molecular dynamics simulations can account

for isotropy in the crystal lattice but are much more computationally demanding.

However, the results of this comparison are not included in this thesis to maintain
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the focus on the development of the phonon Monte Carlo simulation program, and the

kinked wire results are included to showcase the utility and speed of the phonon Monte

Carlo method. Each of the following simulations was executed in less than 10 minutes,

orders of magnitude faster than a comparable molecular dynamics simulation.

Common simulation settings used to produce the results for all the figures in this

subsection can be found in Table 4.4.

Figure 4.11: Kinked nanowire schematic.

Table 4.4: Common settings for the kinked wire simulations.

Simulation Number of Number of
L (nm) R (nm)

Surface
time (ns) Phonons Measurements Specularity

20 10,000,000 2000 120 L/3 1
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There are six figures on the following pages. In Figure 4.12, a silicon wire with a

30-degree kink is simulated using 15 measurement areas/sensors. Figure 4.13 displays

the same system, except it has been created with 3018 sensors. These figures are

intended to show how certain thermal effects can be missed if the energy and flux

measurements are averaged over too large of an area.

In Figure 4.14 and Figure 4.15, a silicon wire with a 45-degree kinked is simulated

using the deviational approach, Figure 4.14, and the full simulation approach, Figure

4.15. The figures primarily showcase the differences between the two methods when

simulating a relatively complex system.

Figure 4.16 and Figure 4.17 are similar, except the kink angle has been increased to

60 degrees. These figures again showcase the differences between the two simulation

approaches but are primarily intended to briefly explore how the heat conduction

properties are affected by the wire’s kink angle.
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Some interesting patterns emerge as the number of sensors increases. Notably, we

can see that the flux in the x-direction is not uniform through the bends and is not

uniform through the angled sections.

The full simulations have too much noise to be of much use, at least with the

current simulation settings. It is possible that adjusting the flux scale and running

through additional phonons will reduce the noise and allow a better analysis of these

results.

The system flux through the wire noticeably decreases as the kink angle increases.

Figure 4.18 explores the effect of the kink angle on the flux and the effect of decreasing

the phonon mean free path by increasing the rate of scattering in the system. The

scattering rate is adjusted by dividing the time to scatter obtained by Eq. (3.18) by

the factor in the legend.

Figure 4.18: Flux through a kinked wire as a function of the kink angle. Errors bars
are present but not visible at this scale.

The system flux decreases, as expected, until 55 degrees, at which point it starts

climbing again. There are two possible explanations for this.
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1. At high kink angles, the bends on the top kinked section of the wire start to

become extremely thick, and at extreme angles, > 60, the top section of the

wire starts to merge into a single fused section.

2. There may be some ballistic effects that occur with higher kink angles which

allow the phonons to pass through the system with fewer redirections from

surface collisions.

Increasing the scattering rate not only drastically lowers the flux, as expected, but

also mitigates any effects due to the kinking. The slight upward trend at the higher

angles is likely due to the first factor described above.

4.3 Thin Wafers

Silicon and germanium wafers are tested using the deviational and full simulation

approaches. These wafers tests use the same temperature, and geometrical specifica-

tions described by Mazumder and Majumdar [1]. The wafers are squares of dimension

400 nm, and the left wall was set to 600 K, the top wall to 500 K, the right wall to

400 K and the bottom wall to 300 K.

Common simulation settings used to produce the results for all the figures in this

subsection can be found in Table 4.5.

Table 4.5: Common settings for the wafer simulations.

Simulation Number of Number of
Lx (nm) Ly (nm)

Surface
time (ns) Phonons Measurements Specularity

20 60,000,000 5000 10 10 1

Figure 4.19 and Figure 4.20 are the silicon and germanium wafer results, respec-

tively.
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Figure 4.19: Temperature and flux profiles of a thin silicon wafer.

Figure 4.20: Temperature and flux profiles of a thin germanium wafer.
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A direct comparison with the results from Mazumder and Majumdar [1] is difficult,

but there are definite similarities in the temperature profiles. The germanium wafer

exhibits less overall flux than the silicon wafer, which is expected based on the material

properties. Despite the significant temperature differential across the system, there is

little difference between the full and deviational simulation results.

4.4 Simulation Comparison

The full and deviational simulation types produce similar results except at low-

temperature ranges and for extreme temperature differences. However, the energy

and flux variance is significantly lower in the deviational simulation. For minimal

temperature differences, the deviational simulation still produces coherent results,

whereas those from the full simulation are unreliable due to noise effects.

In addition, the deviational simulation is generally more expedient even if an

equal number of phonons are simulated. For example, the time taken to simulate the

silicon wafer in Section 4.3 using the deviational approach was 239.652 seconds. The

full simulation approach took 610.017 seconds. The following two factors primarily

account for this difference.

• The full simulation undergoes a numerical inversion to determine the temper-

ature in each measurement area at the end of the simulation. This numerical

inversion is not required in the deviational simulation. For systems with many

measurement areas, like the wafers from Section 4.3, the deviational simulation

may see a significant speedup relative to the full simulation by forgoing these

numerical inversions.

• The second point is more nuanced. Generally speaking, most phonons will orig-

inate via emitting surfaces for deviational simulations. For full simulations, the

majority of phonons will originate in the cells. The specifics of phonon origi-
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nation vary depending on the system specifications, but generally, this will be

the case. Consider the linear systems from Section 4.1.3 as an example. On the

first iteration, all the measurement areas are given Tinit = Teq = (TH + TC)/2.

This equivalence means that, for deviational simulations, all the phonons origi-

nate from the emitting surfaces, whereas the full simulation will still have many

phonons originating in the cells. This difference in phonon origination results in

a massive speedup because phonons that originate from cells, on average, drift

for twice as long as those that originate from emitting surfaces, as discussed in

Section 3.4.6.

However, the primary performance advantage of the deviational simulation comes

from the ability to produce low variance results using far fewer phonons than are

required for full simulations. While no quantitative testing is done here, based on

qualitative observations, the deviational simulation can generally operate with 10x

fewer phonons than the full simulation leading to a direct ∼10x speedup without

relative loss of precision.
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Chapter 5

Summary

5.1 The Phonon Monte Carlo Method

This thesis details the development of computer software capable of rapidly simulating

heat transport in semiconductor nanostructures. The simulation software consists of

two variations of the phonon Monte Carlo method that have been implemented and

tested. The first variation, referred to in this work as the full simulation approach,

closely resembles the work of Lacroix, Joulain and Lemonnier [3], which is derived

mainly from the work of Mazumder and Majumdar [1]. The second variation, the

deviational approach, is based on the work of Peraud and Hadjiconstantinou [70].

In Chapter 4, results were shown from three types of simulations. The first simu-

lation sets used straight germanium and silicon nanowires as benchmarks to validate

the phonon Monte Carlo method’s predictive capabilities concerning thermal conduc-

tivity and steady-state temperature profiles. The second set of simulations involved

kinked silicon nanowires and is meant to showcase the phonon Monte Carlo method’s

ability to simulate systems with some degree of geometric complexity. Finally, the

results from simulations using square silicon and germanium wafers are compared

to results from previous works. In addition, there is a brief on the computational

efficiency of the two variations.
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The benchmarks simulation results show that the simulated temperature profiles

largely agree with theoretical results and results from the literature, as does the

predicted thermal conductivity. However, the thermal conductivity is quite sensitive to

the relaxation rates that are used. The phonon Monte Carlo method definitely shows

promise as a tool to simulate geometrically complex nano-scaled devices, provided

the relaxation times are adjusted accordingly.

In general, the phonon Monte Carlo method presented in this study is computa-

tionally efficient, retains an intuitive connection to the problem physics and strikes a

good balance between accuracy and efficiency. The deviational simulation approach

should be preferred over the full simulation approach except for low-temperature

ranges and possibly for systems with extreme temperature differences.

5.2 Software Details

The current software theoretically allows for unrestricted 2D geometrical configura-

tions. Any 2D geometry with multiple heat sources and heat sinks is feasible, including

porous structures and rounded edges. However, it can be difficult to specify these ge-

ometries, depending on their complexity. This specification can be done in a few lines

of code for simple structures. A library of pre-built configurations was produced for

all systems described in Section 4. The linear pre-built code can be found in Appendix

A.7. Appendix A.8 displays the use of this pre-built configuration. In Appendix A.7,

it can be seen that the material behaviour can be modified by altering the following

three properties.

• The dispersion relations. The phonon Monte Carlo method requires this infor-

mation apriori. No testing was done on how changing these values affects the

model results.
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• The relaxation rates. Changing the relaxation rates affects the number and ratio

of scattering processes during the simulation. Results from Section 4.1.1 show

that this input can significantly affect the model output.

• The degree of specular reflection at boundary/adiabatic surfaces. All surfaces

will have the same degree of specularity for the linear pre-built system, but it

is possible to customize this on a cell-by-cell basis.

The phonon Monte Carlo portion of the software is written in C++ and can

perform the simulations quite rapidly. All the individual results from Section 4 were

simulated in less than ten minutes, and the smaller linear systems only took a few

seconds to simulate. The following four factors primarily influence the runtime of the

simulation.

1. The number of phonons that are simulated. Increasing the number of phonons

will increase the program runtime and reduce the variance in the results up to

a point.

2. The simulation duration. Increasing the simulation duration will generally in-

crease the program runtime. It is important to ensure that the simulation time

is long enough for the system to reach a steady state.

3. The number of measurements. The more often we allow a phonon to contribute

its energy and flux to a measurement area, the slower the program’s runtime.

The code is optimized to only record measurements in the last 10% of the

measurement steps, so the negative effects of this factor are minimized.

4. The number of measurement areas/sensors. Increasing the number of measure-

ment areas in a system will increase the program runtime. This is primarily a

factor for full simulations because more measurement areas mean more numer-

ical inversions to obtain the measurement area’s temperature.
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The full and deviational simulations will have similar runtimes given equal inputs

unless the number of measurement areas is extreme. The primary benefit of the de-

viational method, in terms of performance, is that it can achieve the same variance

as the full simulation using far fewer phonons. Based on qualitative observations, the

deviational simulation will have the same amount of noise using 10x fewer phonons

than the corresponding full simulation.

No formal study was done on the convergence speed and the effects of the above

factors. However, due to the speed of the software, it was possible to use huge numbers

to guarantee results with minimal variance that are easily reproducible. A more in-

depth look at these factors would be helpful.

5.3 Possible Improvements

Geometrical Limitations

Allowing for unrestricted 3D geometries would considerably improve the existing

model. A relatively simple intermediate step would allow the user to specify a single

measurement that represents the z-axis dimension for the entire system. This would

let the user set emitting surfaces and alter surface specularity in that plane. Unre-

stricted 3D geometries would necessitate changing the fundamental building block of

the models from triangles to tetrahedrons and changing the geometric mathematics

from lines intersecting lines to planes intersection planes and lines intersecting planes.

Additionally, visualizing the resulting 3D structures would not be trivial.

Material Interfaces

It is straightforward to create models that are composed of various types of materi-

als. However, the current model code does not handle interface interaction between

different materials. At the time of writing, when a phonon passes from one material

to another, it will backscatter if the incoming phonon is incompatible with the new
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material, but no other interactions are considered. These interface interactions are

complex, but some promising techniques can be found in [55] and [78].

Optical Phonons

The current model does not consider the optical phonon branches. The low group

velocity of optical phonons prohibits them from a significant role in thermal con-

ductivity. However, they decay into acoustic phonons, affecting relaxation times and

capacitive properties of the material [33].

Computational Performance

The simulations in Chapter 4 were run with an excessive number of phonons to ensure

the results have minimal variance and are easily reproducible. Generally, this excessive

number of phonons led to few iterations/evolutions being needed before the system

stabilized. It may be worth exploring what happens if a smaller number of phonons

and a high number of iterations are used instead. It seems probable that there is an

optimal combination which minimizes variance and maximizes performance. However,

this will most likely vary significantly depending on the simulated system’s geometric

details.

Steady-State Detection

The software currently requires the user to specify the simulation duration. A better

approach would be to implement a steady-state detection mechanism that stops the

program once the mechanism detects that the system has reached the steady state.

This adjustment should be relatively easy to implement by stopping the simulation

when the flux across each cell is constant within some margin of error for a certain

amount of time.
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Appendix A

Simulation Code

Code Listing A.1: simulatePhonon
void ModelSimulator::simulatePhonon(Phonon&& p, std::size_t measurement_steps) const {

bool phonon_alive = true;
double phonon_age = p.getLifetime();
auto step = static_cast<std::size_t>(phonon_age / step_time_);
p.setLifeStep(step); // For transient simulations
Phonon::RelaxRates relax_rates{};
double time_to_scatter = 0.;
double time_to_measurement = 0.;

auto get_scatter_info = [&step](const Phonon& p) {
const auto relax_rates = p.getRelaxRates(step);
return std::make_pair(relax_rates,

SCALING_FACTOR * -log(Utils::urand()) /
std::accumulate(std::cbegin(relax_rates),

std::cend(relax_rates), 0.));
};

while (phonon_alive) {
// If the phonon has scattered on the previous iteration recalculate new scattering

rates and
// find the time to the next scattering event
if (time_to_scatter <= 0.) {

std::tie(relax_rates, time_to_scatter) = get_scatter_info(p);
}
// If a measurement event occurred -> find the time to the next measurement event
if (time_to_measurement <= 0.) {

time_to_measurement = step_times_[step] - phonon_age;
}
auto drift_time = std::min(time_to_scatter, time_to_measurement); // Drift time until

next non-impact event
const auto sensor_id = p.getCellSensorID();

109



APPENDIX A. SIMULATION CODE

// drifted_time is how long the phonon drifts before an impact event
// Will be equal to drift_time if there is no impact
// Will be false/null if the phonon impacts an emitting surface - signals it should be

removed from system
const std::optional<double> drifted_time = handleImpacts(p, drift_time, sensor_id);

if (drifted_time) { // If the phonon had a transition/boundary surface collision
// If the phonon has transitioned to a new sensor area (impact with transition

surface)
// Adjust drift_time to reflect there may be additional impacts but, first we need

to find
// a new scattering time before continuing
if (p.getCellSensorID() != sensor_id) {

// reduce drift_time to the amount of time the phonon has drifted, so we can
start

// the process over with a fresh scattering time as we have entered a different
sensor area

// i.e. old time_to_scatter is no longer valid
drift_time = *drifted_time;

}
p.drift(drift_time-*drifted_time);
phonon_age += drift_time;
time_to_measurement -= drift_time;
time_to_scatter -= drift_time;
if (time_to_measurement == 0.) { // Take a measurement

if (++step < measurement_steps) { // Simulation time has not been exceeded
p.setLifeStep(step);
if (step >= step_adjustment_) {

p.updateCellHeatParams(step - step_adjustment_);
}

} else { // Exceeds simulation time
phonon_alive = false;

}
} else if (!phasor_sim_ && time_to_scatter == 0.) {

scatter(p, relax_rates);
} else { // This is the condition when the phonon transitions to a new sensor area

time_to_scatter = 0.; // Reset scattering time based on new sensor area
properties

}
} else { // Phonon made impact with an emitting surface (left system)

phonon_alive = false;
}

}
}

Code Listing A.2: handleImpacts
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// returning 0 means the calling function will drift the phonon for drift_time (it does not
drift here)

// returning a number will reduce the amount of time the calling function drifts the phonon
by that amount

// The next impact method places the phonon on the poi of the impacted surface effectively
drifting it for impact_time

// The higher drifted time is here, the less amount of time the calling function drifts the
phonon

// returning std::nullopt will kill the phonon
std::optional<double> ModelSimulator::handleImpacts(Phonon& p, double drift_time, std::size_t

sensor_id) const {
auto impact_time = nextImpact(p, drift_time);
double drifted_time = 0.;
std::size_t collision_counter = 0;
// Impact with an emitting surface will set the phonon cell to nullptr
while (impact_time) {

if (p.outsideCell()) { return std::nullopt; }
drifted_time += *impact_time;
// If phonon is stuck, move it to a random location in the cell - primarily used to

handle FP issues
if (++collision_counter > MAX_COLLISIONS) {

p.setRandPoint(Utils::urand(), Utils::urand());
return std::make_optional<double>(drift_time); // calling function will not further

drift the phonon
}
// If the phonon has changed sensor areas - return immediately as scatter time must be

reset
const auto cur_sensor_id = p.getCellSensorID();
if (sensor_id != cur_sensor_id ) {

return std::make_optional<double>(drifted_time);
}
impact_time = nextImpact(p, drift_time - drifted_time);

}
return (p.outsideCell()) ? std::nullopt : std::make_optional<double>(drifted_time);

}

Code Listing A.3: nextImpact
std::optional<double> ModelSimulator::nextImpact(Phonon& p, double time) const noexcept {

// Get some necessary information
const auto& [px, py] = p.getPosition();
const auto& [vx, vy] = p.getVelVector();
const Point start_point{px, py};
const Point end_point{px+time*vx, py+time*vy};
const auto boundaryLines = p.getCellBoundaryLines();
if (start_point == end_point) {

return std::nullopt;
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}
const Line phonon_path{start_point, end_point};

auto getTime = [](double start_coord, double end_coord, double velocity, double max_time) {
return (velocity > VELOCITY_EPS || velocity < -VELOCITY_EPS) ? (end_coord -

start_coord) / velocity : max_time;
};

// Find the nearest impact time and corresponding impact point
std::optional<Point> impact_point = std::nullopt;
for (const auto& line : boundaryLines) {

// If there is a point of intersection that is not the start point
if (const auto poi = line.getIntersection(phonon_path); poi && (*poi != start_point)) {

// If the time taken to hit this POI is <= previous shortest time -> store POI and
time

const auto impact_time_x = getTime(start_point.x, (*poi).x, vx, time);
const auto impact_time_y = getTime(start_point.y, (*poi).y, vy, time);
const auto impact_time = (impact_time_x <= impact_time_y) ? impact_time_x :

impact_time_y;
if (impact_time <= time) {

time = impact_time;
impact_point = poi;

}
}

}
if (impact_point) {

p.setPosition((*impact_point).x, (*impact_point).y);
p.handleSurfaceCollision(*impact_point, step_time_);
return std::make_optional(time);

}
return std::nullopt;

}

Code Listing A.4: scatter
void ModelSimulator::scatter(Phonon& p, const Phonon::RelaxRates& relax_rates) noexcept {

const auto [tau_N_inv, tau_U_inv, tau_I_inv] = relax_rates;
const double tau_inv = std::accumulate(std::cbegin(relax_rates), std::cend(relax_rates),

0.);
const double rand = Utils::urand();
if (rand <= (tau_N_inv + tau_U_inv) / tau_inv) { // Not an impurity scatter

// Resample the new phonon (freq, vel & polarization)
p.scatterUpdate();
if (rand > tau_N_inv / tau_inv) { // Umklapp scatter -> change direction vector

p.setRandDirection(Utils::urand(), Utils::urand());
}

} else if (tau_I_inv > 0.) { // Impurity scatter
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p.setRandDirection(Utils::urand(), Utils::urand());
}

}

Code Listing A.5: updateHeatParams
void Sensor::updateHeatParams(const Phonon& p, std::size_t step) noexcept {

const auto sign = p.getSign();
const auto& [vx, vy] = p.getVelVector();
std::scoped_lock lg(*updateMutex_);
inc_energy_[step] += sign;
// Track net velocities in each cell for flux calculations
auto& v = inc_flux_[step];
v[0] += vx * sign;
v[1] += vy * sign;

}

Code Listing A.6: findTemperature
std::vector<double> SensorInterpreter::findTemperature(const Sensor& sensor, std::size_t

start_step) const noexcept {
const auto& energies = sensor.getEnergies();
auto start = std::cbegin(energies)+start_step; auto end = std::cend(energies);
std::vector<double> temps(std::distance(start, end));
const auto& material = sensor.getMaterial();
const auto area = sensor.getArea();

auto inversion = [&](double current_energy, bool pseudo=false) {
double temp = 0., de, ub = ub_, lb = lb_;
std::size_t iter = 0;
while ( (ub - lb >= EPS) && (++iter != MAX_ITERS) ) {

temp = (ub + lb) / 2.;
de = (material.theoreticalEnergy(temp, pseudo) * area) - current_energy;
(de < 0.) ? lb = temp : ub = temp;

}
return temp;

};

std::transform(std::execution::seq, start, end, std::begin(temps), [&, index=0](const
auto& energy_units) mutable {
// Multiply the number of energy units by the phonon effective energy to get the total

energy at each measurement step
const double energy = eff_energy_ * energy_units;
if (t_eq_ != 0.) { // Do approximation to find the temperature

// If it is a steady-state simulation, the index will be disregarded when finding
the heat capacity

return energy / (area * sensor.getHeatCapacity(index++)) + t_eq_;
}
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else { // Do numerical inversion
return inversion(energy);

}
});
return temps;

}

Code Listing A.7: pre_builts.py
from .builder_tools import ModelBuilder
from .builder_tools import DispersionData
from .builder_tools import RelaxationData
from .builder_tools import Material

# Data from Jean2014 AIP Appendix
# Silicon data - B_i = 1.2e-45
sd_data = DispersionData((-2.22e-7, 9.26e3, 0.), 7.63916048e13,

(-2.28e-7, 5.24e3, 0.), 3.0100793072e13)
sr_data = RelaxationData(1.3e-24, 9.0e-13, 1.9e-18, 0., 2.42e13)
silicon = Material("Silicon", sd_data, sr_data)

def simple_linear(num_cells: int, t_high: float, t_low: float, t_init: float, t_eq: float,
x_base: float, y_base: float, spec: int=1, sim_type: int=0,
step_interval: int=0) -> ModelBuilder:

b = ModelBuilder()
# Specify general model settings
b.setSimType(sim_type)
b.step_interval = step_interval
b.t_eq = t_eq
# The model will be comprised of a single material
b.addMaterial(silicon)

avg_temp = (t_high + t_low) / 2
# Create the cell component
for i in range(num_cells):

# Sensor must be added first
s_id = b.addSensor(silicon.name, avg_temp)
lower_left_point = (i*x_base, 0.)
top_right_point = ((i+1)*x_base, y_base)
# The cell must be attached to a sensor
b.addRectangularCell(lower_left_point, top_right_point, s_id, spec)

# Add left side surface
b.addSurface((0., 0.), (0., y_base), t_high)
# Add right side surface
b.addSurface((num_cells*x_base, 0.), (num_cells*x_base, y_base), t_low)

return b
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Code Listing A.8: linear_demo.py
from psim import pre_builts

# Simple linear prebuilt construction
num_cells = 40
t_high = 310
t_low = 290
t_init = 300
t_eq = 300 # 0 here indicates a ’full’ simulation
cell_x_len = 50
cell_y_len = 50

b = pre_builts.simple_linear(num_cells, t_high, t_low, t_init, t_eq, cell_x_len, cell_y_len)
b.setMeasurements(1000)
b.setSimTime(20)
b.setNumPhonons(1000000)

filename = ’linear_demo.json’
b.export(filename)
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Sample JSON Input File

The following code produces a 100 nm × 50 nm nanowire. A 50 nm high, 310 K
emitting surface is placed at x = 0, and a 50 nm high, 290 K emitting surface is
placed at the x = 100. The length of the z-dimension is arbitrary. See Section 5.3 for
more details. All surfaces are perfectly specular. There are four triangular cells linked
to two sensors making each measurement area a square. The ‘length’ characteristic
for the emitting surfaces is used to sort the surface. The actual length is the square
root of the displayed value.

The system is comprised of silicon, and the dispersion relation data is given by the
‘d_data’ dictionary, with the LA and TA branches being the ‘la_data’ and ‘ta_data’
arrays, respectively. The relaxation rates are given in the ‘r_data’ dictionary. See
Table 2.1 for more details.

The ‘sim_type,’ ‘step_interval,’ and ‘phasor_sim’ fields are not relevant to the work
described in this thesis. This is also the case for the ‘duration’ and ‘start_time’ fields
in the ‘emit_surfaces’ dictionary. For the simulation types described in this work, the
‘duration’ field will always be the same as the ‘sim_time’ field. All the other fields
mentioned in this paragraph should be set to 0 or false in the case of the ‘phasor_sim’
field.

No formal work has been done on the optimal inputs for the ‘num_measurements,’
‘sim_time,’ and ‘num_phonons’ fields. Due to the speed of the simulations, the pa-
rameters were often set to be much larger than necessary based on results from pre-
vious simulations. A potential upper limit for the number of phonons would be that
number calculated from Eq. (2.14). A starting point for the simulation time could be
the time it takes for the slowest moving phonon to traverse the characteristic dimen-
sion of the system. For more complex geometries, it may be necessary to use trial and
error here or improve the algorithm so the simulation detects when it has reached the
steady state. The number of measurements is complete guesswork at this point. In
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most cases, the numbers used in this work are generally much higher than necessary
to produce results with minimal variance.

This configuration is for demonstration purposes. It should be subdivided to contain
several more cells and sensors to obtain useful measurements. A Python program
generates these files.

{
"settings": {

"num_measurements": 1000,
"sim_time": 2,
"num_phonons": 100000,
"t_eq": 300,
"sim_type": 0,
"step_interval": 0,
"phasor_sim": false

},
"materials": [

{
"name": "Silicon",
"d_data": {

"la_data": [
-2.22e-07,
9260.0,
0.0

],
"max_freq_la": 76391604800000.0,
"ta_data": [

-2.28e-07,
5240.0,
0.0

],
"max_freq_ta": 30100793072000.0

},
"r_data": {

"b_l": 1.3e-24,
"b_tn": 9e-13,
"b_tu": 1.9e-18,
"b_i": 0.0,
"w": 24200000000000.0

}
}

],
"sensors": [
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{
"id": 0,
"material": "Silicon",
"t_init": 300.0

},
{

"id": 1,
"material": "Silicon",
"t_init": 300.0

}
],
"cells": [

{
"triangle": {

"p1": {
"x": 0,
"y": 0.0

},
"p2": {

"x": 0,
"y": 50

},
"p3": {

"x": 50,
"y": 0.0

}
},
"sensorID": 0,
"specularity": 1

},
{

"triangle": {
"p1": {

"x": 50,
"y": 50

},
"p2": {

"x": 50,
"y": 0.0

},
"p3": {

"x": 0,
"y": 50

}
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},
"sensorID": 0,
"specularity": 1

},
{

"triangle": {
"p1": {

"x": 50,
"y": 0.0

},
"p2": {

"x": 50,
"y": 50

},
"p3": {

"x": 100,
"y": 0.0

}
},
"sensorID": 1,
"specularity": 1

},
{

"triangle": {
"p1": {

"x": 100,
"y": 50

},
"p2": {

"x": 100,
"y": 0.0

},
"p3": {

"x": 50,
"y": 50

}
},
"sensorID": 1,
"specularity": 1

}
],
"emit_surfaces": [

{
"p1": {
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"x": 0.0,
"y": 0.0

},
"p2": {

"x": 0.0,
"y": 50

},
"temp": 310,
"duration": 2,
"start_time": 0.0,
"length": 2500.0

},
{

"p1": {
"x": 100,
"y": 0.0

},
"p2": {

"x": 100,
"y": 50

},
"temp": 290,
"duration": 2,
"start_time": 0.0,
"length": 2500.0

}
]

}
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