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Abstract

We introduce two highly effective stacking approaches, 2.5D multifocusing (MF) and

3D generalized spherical multifocusing (GSMF) algorithms, to improve stacked seismic

sections. The proposed methods can be applied to crooked-line or 3D seismic data

with arbitrary recording geometry from areas with complex near-surface/subsurface to

generate either a 2D crooked stacked section or a 3D stacked volume. Both methods

simultaneously correct for 3D normal moveout and 3D azimuth-dependent dip move-

out, and transform multi-coverage prestack seismic data into a stacked section that is

equivalent to a synthesized zero-offset wavefield. In addition, the 3D GSMF approach

accounts for the elevation and spatial coordinate of all source and receiver positions,

so can be applied for seismic data collected in areas with irregular topography. The

2.5D MF moveout operator is accurate for quasi-hyperbolic reflections, whereas, the

3D GSMF traveltime surface is a more general higher-order moveout operator with a

closed-form implicit formulation that can account for non-hyperbolic moveout. The pro-

posed methods efficiently extract valuable 3D structural information when applied to

crooked-line/3D seismic surveys. The introduced methods are data-driven algorithms

and can perform automatically with a coherence-based global optimization search. We

also deployed an efficient processing sequence for applying the developed methods, which

mainly consists of building super common-midpoint bins, wavefield attributes analysis,

multifocusing moveout correction, data enhancement/stacking, and prestack/poststack

dip-independent RMS velocity analysis and migration. Our wavefield analysis uses a

multidimensional differential evolution algorithm to simultaneously determine optimal

wavefield parameters, which improves the efficiency and accuracy of the estimation. The

performance of the proposed methods is tested using 3D synthetic data with both 3D and

crooked-line surveys over various curvatures ranging from low (gently curved interface or
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planar layer with curvature of zero) to high (spherical reflector or point diffractor). The

numerical tests demonstrate that the new approximations extract dips from seismic data

accurately and are accurate for gently to highly curved interfaces beneath low (multi-

ple homogeneous layers) to relatively high heterogeneous overburden (vertical/horizontal

background velocity with a gradient of 1/s for the 2.5D MF method and vertical back-

ground velocity with a gradient of 2/s for the 3D GSMF method). Applying the 2.5D MF

approach to the Larder Lake crooked-line transect with subsurface complexity, as well as

a real data set collected in a thrust-belt area, focused the steeply dipping reflections more

coherently and mapped new reflections that are not visible in the conventional results.

Application of the 3D GSMF method on a 3D low-fold real seismic dataset, acquired over

a complex thrust-belt area with rugged terrain, yielded high-resolution and an accurate

stacked seismic volume with a high signal-to-noise ratio, compared to the conventional

3D stacking.

Keywords

High-resolution seismic imaging, 2.5D multifocusing, 3D generalized spherical multifo-

cusing, Synthesized zero-offset wavefield, Azimuth-dependent dip-moveout, Global opti-

mization, Wavefront analysis, Arbitrary recording geometry, Crooked-line survey, Three-

dimensional survey, Irregular topography, Complex near-surface, Complex subsurface,

Hard-rock environment
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Smith. The authors reviewed the manuscript, provided comments on some figures, edited

the draft, and modified the terminologies. Dr. Yilmaz performed signal processing and

statics corrections of the 3D real seismic data example and produced the stacking velocity

field and the conventional 3D stacked volume of the real data example.

The candidate created the synthetic models, performed the numerical simulations, per-

formed the experiments, and the analytic calculations. The programming, implemen-

tation, and testing of the code packages were executed by the candidate. All authors

reviewed the results and approved the final version of the manuscripts to be published

or submitted. In this thesis, for the standalone manuscripts (chapters 2 – 4), I used the

v



term “we”, but for chapters 1 and 5, I used the term “I”, as they are related to the

thesis.

vi



Acknowledgements

I would like to express my deepest appreciation to my supervisors, Dr. Richard Smith,
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Chapter 1

Introduction to the thesis

1.1 Introduction

Imaging complex subsurface geological structures is a challenging task when using geo-

physical prospecting methods. The seismic reflection method provides the highest lateral

and vertical resolution among deep probing geophysical remote-sensing methods and this

method can maintain high precision to depths of several kilometers. Seismic studies aim

to collect, process, and invert seismic wavefields to generate an interpretable image of the

subsurface. A controlled pulse of energy creates a disturbance, typically on the surface

of the earth, that propagates into the subsurface, and reflections from geological bound-

aries propagate to receivers also usually on the surface of the earth. The response of

the seismic wavefield is recorded by an array of receivers, stored, processed for signal-to-

noise ratio (S/N) enhancement, and finally used to produce an image of the subsurface

via some type of inversion method(s). The specific choice of seismic data processing

or inversion methods that are used plays an important role in constructing an accurate



2

subsurface image from reflection seismic surveys. The final image is used as a starting

point for geophysical interpretation toward the understanding of geological structures

and prospecting for resources.

Depending on budget, time restrictions, and the nature of the subsurface geology of the

study area, geophysicists can employ one of two fundamental types of imaging algorithms,

defined by the domain in which they are applied: time migration and depth migration.

The latter, depth imaging (also called prestack depth migration, PSDM) is the process

that reconstructs an image of the subsurface by relocating the seismic events from the

location that they were recorded at the surface into the positions in the subsurface where

they were reflected. The wave equation, which describes the propagation of seismic

waves, is used to move (or migrate) the seismic events. Depth migration is applied to

seismic data in depth coordinates (depth domain), while time migration is applied to

seismic data in time coordinates (time domain). The time migration approach requires

an average apparent velocity and repositions the recorded seismic wavefield to originated

specific location in the subsurface under the assumption of the straight seismic raypath.

However, depth migration requires knowing the exact interval velocity, and seismic rays

are allowed to bend in the model (Yilmaz, 2001).

The conventional time-domain stacking method uses hyperbolic moveout formula as a

function of offset, which is only exact for a planar dipping reflector beneath a homo-

geneous overburden. Deviating from this assumption results in the moveout becoming

nonhyperbolic with higher-order terms (Schwarz and Gajewski, 2017). In regions with

significant geologic complexity and lateral velocity variations, such as hard-rock geolog-

ical settings, seismic depth imaging methods are often preferred, whereas time imaging

methods can only resolve low to moderate complexities. This is because depth imaging

accounts for traveltime non-hyperbolic moveout and accurately approximates compli-
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cated raypaths to image steeply dipping reflectors and near-vertical faults. However,

the depth-domain algorithms are computationally expensive and very sensitive to the

velocity-depth model that has been estimated. Hence, depth-domain imaging methods

require a very detailed and hopefully accurate interval velocity-depth model. Lack of

knowledge of an accurate velocity model causes depth imaging methods to lose their

convergence properties or produce wrong results. In addition, irregular distribution of

sources and receivers has a further negative effect on prestack migration methods, and

therefore seismic data reconstruction methods are required to regularize the locations of

data before its application (Biondi, 2006). An alternative approach to the depth-domain

imaging method is using the time-domain imaging methods. The stacking step plays a

key role in time imaging techniques and to produce accurate zero-offset wavefield stacked

sections requires accurate and generalized moveout operators instead (Hubral, 1999).

The depth- and time-imaging methods are two fundamentally different approaches and

do not supersede each other (Vestrum et al., 2011); their characteristics make them com-

plementary to each other. The processing methods in the time-domain can potentially

produce more coherent and clear structural stacked sections and images, detailed stack-

ing and root-mean-square (RMS) velocity fields, and enhanced seismic gathers. They can

also provide interpreted horizons for building an accurate velocity model as a function of

depth. Therefore, improving the quality of time-domain stacked sections and developing

accurate and generalized moveout operators is the focus of this research.

Macro-model independent time-domain methods are alternatives to the depth processing

flow. They can be employed to estimate stacking velocity fields and generate stacked

sections, without any prior knowledge of the subsurface model. These stacking methods

can be categorized into two groups, including the methods based on common-midpoint

(CMP) profiling and non-CMP-based methods. These two groups are based upon dif-

ferent approaches to transform prestack data into a stacked section.
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The CMP-based stacking method is a standard flow used for processing 2D seismic data

conventionally. This method includes sorting the data into CMP gathers (symmetrically

located sources and receivers that collect traces from a point on the surface halfway be-

tween the sources and receivers called the common midpoint), correcting source-receiver

offset (NMO correction), dip effects (DMO correction), and then stacking. The stacked

section, commonly known as a simulated zero-offset wavefield, approximates seismic

traces that could have been recorded by a coincident source and receiver at a location,

but with an improved S/N (Yilmaz, 2001). If the interfaces dip, then the zero-offset

section will need migration, which aims to move the seismic reflections to their correct

subsurface locations.

The Metal Earth project acquired a total of 921 km regional-scale deep seismic reflection

transects and 184 km of high-resolution seismic reflection profiles in the Superior Craton

of Canada in 2017. The seismic traverses primarily aim to enhance the knowledge and

to better understand the subsurface geology of the Abitibi Greenstone Belt within the

Canadian Shield. High-quality seismic images can play an essential role in targeting

mineral fluid pathways throughout the crust, and of identifying structures at deposit

scales. Due to the inaccessibility of rugged terrains, logistical and environmental restric-

tions, the seismic surveys are conducted along existing roads, which are not straight,

an acquisition geometry termed crooked-line geometry. Most of the seismic field records

are collected over settings with crystalline rock and have complicated near-surface con-

ditions, heterogeneous overburden, and irregular topography. The subsurface geology

includes gently to steeply dipping and curved interfaces with low impedance contrasts,

complex subsurface structures, and the common presence of diffractions and out-of-plane

reflections, all of which can adversely affect the S/N of the data. Technically, irregular

distribution of sources and receivers along the crooked survey line disperses the midpoint

locations from the traverse line and leads to a variable fold coverage and uneven offset
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distribution which can result in poorly images areas. In addition, the crooked-line ge-

ometry results in considerable time- and offset-variant delay of reflections, which could

defocus and deform reflections particularly from reflectors with a crossdip component

(dipping perpendicular to the average trend of the traverse, or more precisely, dipping

along the crossline direction). Also, the cross-profile spread of midpoints violates the

assumption of a straight-line survey that is made when deriving the equations used in

two-dimensional imaging methods. The intrinsic characters of the subsurface in addition

to survey configuration and technical issues can give rise to potential pitfalls and arti-

facts, thus, resulting in difficulties in imaging and estimating the velocity-depth model.

The midpoint dispersion resulting from the crookedness of the survey geometry and

the crossdip effect are linked together, and they are inseparable problems. Figure 1.1

compares the effect of survey geometry (solid yellow line) and different dip components

on the reflection point dispersion (black dots) on the reflector interface and the spreading

of midpoint locations (red dots) on the recording surface for a common-midpoint gather.

Figures 1.1a-d show interfaces with varying dips with a crooked-line survey and Figures

1.1e-h depict the same models for each column but with a straight-line survey. The

first column models have both inline and crossline dip components. The models shown

in the second and third columns have only inline dip and crossline dip components,

respectively, and the reflectors in the last column are horizontal. In each panel, one

reflection raypath is shown using black lines generated by a source (red asterisk) and

recorded by a receiver (blue triangle) along the surveys. This reflection point for this

source/receiver pair is shown with the black dot at the vertex of the raypath triangle.

The other black dots are for sources and receiver pairs, which their midpoints are located

within the common bin on the surface. The transparent white planes are shown along

the orthogonal to the traverse line across the imaging point (commonly, it is the center

of the bin) and perpendicular to the reflector interface. Comparing the dispersion of the
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reflection points and midpoints demonstrates that the crooked-line survey results in a

significant midpoint and reflection point dispersion, particularly for the reflector with a

crossdip component.

Figure 1.2 shows corresponding common-midpoint gathers for each model shown in Fig-

ure 1.1. The comparison indicates that the crooked profiles could generate arrival times

of seismic waves with considerable time- and offset-variant delays among reflections, par-

ticularly reflectors with the crossdip component. Also, it leads to an uneven distribution

of offsets. The gap in arrival for the crooked line row (a to d) is due to the fact that

the crookedness of the acquisition line dispersed the midpoints of the source-receiver

pairs with the small offset, such that they are located outside of the common bin. The

crookedness of the survey line does not have any effect on reflections from a horizon-

tal interface, except the uneven distribution of data, which can be solved by correctly

assigning geometry.

Figure 1.1: The effect of survey geometry (a-d: crooked-line survey, e-h: straight-line
survey) and different dip components (a and e: both inline and crossline dips, b and f:
inline dip, c and g: crossline dip, d and h: horizontal) on the reflection point dispersion
and the spreading of midpoint locations for a selected common-midpoint data.
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Here, I compare the model of a dipping interface along inline and crossline dip directions

with straight and crooked survey lines (Figures 1.1a and 1.1e) and their corresponding

CMP gathers (Figures 1.2a and 1.2e). The traveltime of reflections collected by the

straight-line survey has the expected hyperbolic trajectory and does not have any un-

usual time delays among reflections. Since the reflection points are not dispersed broadly

and midpoints almost coincide with the center of the bin. The crooked nature of the

seismic line disperses the midpoint locations and reflection points broadly, which results

in considerable time- and offset–variant delays among the reflections. Figure 1.3 com-

pares the distribution of crossline shift versus offset for the straight-line survey (red) and

the crooked-line survey (black). The crossline shift is the absolute value of the distance

between the imaging point and the midpoints along the normal to the traverse line.

A comparison of this plot with Figure 1.2a shows that the large crossline-shift values

correspond to large time delays or divergence from the hyperbolic trajectory.

The CMP profiling method assumes straight-line geometry, a flat datum, and simple

subsurface geological structures. Therefore, the crookedness, in addition to irregular to-

Figure 1.2: The common-midpoint data generated for the selected bin from a reflector
with both inline and crossline dips (a and e), inline dip (b and f), crossline dip (c and
g), and a horizontal interface (d and h) using the crooked-line survey (a-d) and the
straight-line survey (e-h).
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pography and complex subsurface geology hampers the application of conventional meth-

ods and limits their ability to enhance the signal-to-noise ratio. Recently, for crooked-

line seismic data processing, several different crossdip analysis and correction methods

have been proposed by various researchers (e.g. Nedimović and West, 2003a; Mancuso

and Naghizadeh, 2021). Nedimović and West (2003a) introduced the crossdip moveout

(CDMO) correction that can be carried out after removing normal-moveout and inline

dip-moveout effects. Mancuso and Naghizadeh (2021) proposed the generalized croos-

dip moveout (GCDMO) analysis that can simultaneously correct the NMO plus CDMO

effects. Hence, in conventional processing of crooked-line seismic data, a sequence of

processing steps, including normal-moveout, dip-moveout, and crossdip-moveout correc-

tions, is required to account for offset and azimuth-dependent dip effects. However,

applying these steps sequentially tends to result in significant errors, especially for large

offsets, and may not be successful in correcting non-hyperbolic reflections, which could

lead to poor alignment and a low-resolution image. In addition, the NMO correction

causes a frequency distortion, particularly for shallow events at large offsets, which is

called NMO stretching (Yilmaz, 2001). Also, the accuracy of crossdip analysis is limited

to a maximum of about 40◦. Importantly, the imaging and preservation of diffractions

are also crucial to produce a true zero-offset wavefield and for the interpretation of small-

Figure 1.3: The crossline shift versus offset for the crooked-line survey (black) shown in
Figures 1.1a-d and the straight-line survey (red) shown in Figures 1.1e-h.
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scale structural elements and diffractor edges, especially in hard-rock imaging, mineral

exploration, and fracture analysis. The conventional processing sequence could not re-

trieve diffractions that have non-hyperbolic traveltime moveout.

Crooked-line seismic data acquisition is a pseudo-3D (or 2.5D) survey that provides

useful 3D structural information (Wu, 1996; Schmelzbach et al., 2007). One can also

use a 3D processing and binning method to produce an image from 2D data collected

with a crooked-line geometry; for example, Cheraghi et al. (2020) utilized 2D and 3D

prestack time migration and swath 3D processing methods. Application of 3D processing

techniques on 2D crooked-line seismic data might often lead to low-resolution images

due to the lack of an accurate and dip-independent velocity model. Also, the low- and

variable-fold coverage combined with noisy data can adversely affect the 3D processing

methods (Nedimović and West, 2003a).

Recently, some attempts have been made to improve stacking procedures by utilizing

non-CMP-based methods to obtain accurate zero-offset stack sections. Two-dimensional

non-CMP-based multi-parameter moveout corrections and stacking strategies could also

address the issues associated with CMP dispersal problems along a straight survey with

arbitrary geometry (Gelchinsky et al., 1999a). However, crooked-line geometry vio-

lates the assumption of a straight survey line assumed in the 2D methods, and three-

dimensional extensions are required for accurate seismic imaging purposes.

There are two major types of non-CMP-based multiparameter moveout corrections and

stacking strategies. These include the multifocusing (MF) and common reflection surface

(CRS) method that were originally developed by Gelchinsky et al. (1999a,b) and Müller

(1999), respectively. The MF method can be more accurate than the CRS method, but

it is more difficult to adapt it to 3D cases (Fomel and Kazinnik, 2013; Landa et al.,
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2009). This can be explained by the fact that the MF moveout operator is a double

square-root expression, whereas the CRS moveout operator is essentially a quadratic

expression, which is derived by a hyperbolic Taylor expansion (a series that can be used

for approximating functions with high accuracy that can be difficult to compute). The

CRS traveltime moveout is approximated using second-order Taylor series expansions of

the squared traveltime and the higher-order terms are neglected. This approximation

can be degraded if the traveltime surface is not smooth and has considerable higher-order

terms, particularly for far-offsets and large midpoint separations.

During the last two decades, different MF stacking techniques based on the theory of

homeomorphic imaging (Gelchinsky, 1992; Gelchinsky and Keydar, 1999) have been pro-

posed. These include the 2D MF (Gelchinsky et al., 1999a,b), 2D irregular surface MF

(IS-MF) (Gurevich et al., 2002), 2D MF with controlled reflection-point dispersal (Gure-

vich and Landa, 2002), common-offset MF (COMF) (Berkovitch et al., 2011, 2012b),

2D spherical MF (SMF) (Landa et al., 2009), and 2D irregular surface spherical MF

(IS-SMF) (Chang et al., 2019b) methods. Also, the application of 2D multifocusing for

improved time imaging is widely established in the published literature (Landa et al.,

1999; Berkovitch et al., 2004; Belfer et al., 2008b; Berkovitch et al., 2008, 2009, 2012a;

Curia et al., 2012; Buzlukov and Landa, 2013; Landa et al., 2013; Elhaj et al., 2014;

Schoepp et al., 2014; Borghi et al., 2017; Curia et al., 2017; Chang et al., 2019a).

The MF-based methods provide simulated zero-offset wavefield sections with higher S/N

by transforming multi-coverage prestack seismic data comprised traces within the limits

of a certain span in the vicinity of the central point (using a much larger number of

traces than in conventional CMP stacking). The MF formulation is accurate for a broad

range of curvatures and heterogeneities, even for strongly curved reflectors and moderate

lateral velocity variations. Also, this method accurately describes traveltime behavior for
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a wider class of subsurface models and does not require any knowledge of the subsurface

model. Further, it can determine a dip-independent stacking velocity field and structural

detail such as interface curvature and the slope of the interfaces (Landa et al., 2009).

The MF methods can be considered as a method for wavefield analysis, which reliably

estimates wavefront parameters of each seismic event at each observation point (Landa

et al., 1999). Wavefront parameters, also called kinematic wavefield attributes, are a set

of parameters that describe the propagating seismic wavefront and include the emergence

angle, normal wave curvature, and normal incident point curvature (See the next section

for more details). These attributes have broad applications in seismic data processing

and imaging. The MF methods are time-shifted approaches and derived based on the

assumption of optical imaging (auxiliary) medium for taking into account overburden

heterogeneity (De Bazelaire, 1988; Gurevich and Landa, 2002; Schwarz and Gajewski,

2017). This assumption leads to a non-stretching moveout correction without distortion

of the amplitude and phase, which can lead to a stacked section with higher vertical

resolution.

Currently, the available MF operators do not consider the elevation and spatial coordi-

nates of the source and receiver, the midpoint dispersion, and the azimuth-dependent

dip effects for crooked-line or 3D configurations. Particularly, these MF operators do not

account for the cross-offset and cross-dip components for the crooked-line configuration

which is necessary for the Metal Earth data processing. The existing implementations of

the MF method are technically challenging, computationally expensive, comprise several

isolated steps, and lack an efficient optimization component.

In this thesis, I introduce two non-CMP-based stacking methods for crooked-line and

3D seismic data to address the problems mentioned above. First, I develop a new MF

method that accounts for the cross-offset and cross-dip effects for the crooked-line config-
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uration, which is called the 2.5D MF method. I derive the formulation for the 2.5D MF

algorithm and examine the performance of the proposed method on different synthetic

and real seismic data sets. Also, the computational efficiency and accuracy of the pro-

posed method are evaluated. Second, I present the application of the 2.5D MF technique

on the Metal Earth seismic data collected in the Larder Lake area with a crooked-line

survey. I describe the 2.5D MF imaging workflow and how the differential evolution

global optimization algorithm has been adapted to optimally search for the wavefield

attributes. I compare the results of the 2.5D MF method with the 2D prestack time

migration, 2D time migration of DMO stack, and swath 3D imaging. Then, I expand

a 3D generalized spherical multifocusing stacking method for a crooked-line/3D seismic

data set acquired over an area with irregular topography. I derive the traveltime formula

and test the performance of the proposed method on synthetic and real data sets.

1.2 Research problem and thesis objectives

The main challenge regarding the application of seismic imaging methods in hard-rock

geologic settings is the low quality of seismic field data due to the intrinsic characters of

the subsurface. Low impedance contrasts, dispersion and scattering of seismic waves, and

noisy environment all degrade the signal-to-noise ratio (S/N). In addition, crooked-line

survey geometry (2D seismic surveys acquired on non-straight survey lines) is a technical

issue, which exacerbates these effects and leads to coherent artifacts in resulting images.

Standard seismic processing methods, such as 2D common midpoint stacking, assume

a straight-line geometry and simple subsurface geological structures, so a poor S/N in

addition to the crookedness of survey, irregular topography, and complex subsurface

geology hampers the application of conventional methods and limits their ability to
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recover signals. The main goal of the current research is to improve the velocity field

and to generate high-resolution images of the crooked-line seismic data from areas with

complex subsurface geological structures for comprehensive geological interpretation.

The weak reflectivity, complex scattering, and noisy data are prominent characteristics of

most of the Metal Earth seismic lines. High-resolution imaging of such low-quality seismic

data requires an algorithm that is suited to accurately models diffractions, approximate

weak reflections, distinguish out-of-plane reflections, and improve the S/N. The data

condition motivates us to employ MF-type methods, which are effectively capable of

generating high-resolution stack sections in noisy environments and are better suited

to model the moveout of non-hyperbolic reflections and diffracted waves. Applying the

MF-type methods on Metal Earth data faced two major obstacles. First, practically,

there is no open-source or commercial software available for academic use. There is just

one seismic processing company in the world that can provide commercial MF imaging

services using their own in-house software, and this software is not available for academic

or commercial use. Second, the crooked-line survey geometry is a theoretical issue that

hampers utilizing MF methods. All extensions of MF methods do not consider the

crossdip effects and crossline variation of source and receiver coordinates (or azimuth of

each source-receiver pair) in 3D space. Therefore, those approaches cannot be applied

for crooked-line seismic geometry. I extent MF-type stacking methods to adapt their

applications for crooked-line seismic data. Using this theory, I build a software package

that allows us to utilize the new methods for the processing of crooked-line seismic survey

data.

The general objective of the research project can be broken down into the following

parts:
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• deriving the theoretical and mathematical concepts of novel 2.5D multifocusing

(2.5D MF) and 3D generalized spherical multifocusing (3D GSMF) methods,

• incorporating numerical algorithms for wavefield analysis by adapting global opti-

mization algorithms to improve the accuracy and resolution of generated results,

• designing an optimal sequence of signal filtering and seismic processing flows for

applying the newly developed methods effectively,

• building software packages for efficient implementation of the introduced approaches,

• simulating seismic wavefields for different scenarios using the finite difference and

ray-tracing methods,

• testing the performance of the methods by applying them on different synthetic

and real data sets using the developed software.

1.3 Theory of the multifocusing method

A recently introduced multifocusing (MF) method is a non-CMP-based macro-velocity

independent stacking algorithm that offers a more realistic simulation of the zero-offset

wavefield and can considerably improve the quality of stacked sections in complex geo-

logic areas with poor S/N. This approach proposed by Gelchinsky et al. (1999a,b) is a

sophisticated alternative method for conventional stacking (normal moveout [NMO] and

dip moveout [DMO]) that provides very detailed and high-resolution images based on

a transformation of multi-coverage prestack data into a stacked section (Landa et al.,

1999). The MF method can produce an accurate zero-offset section for seismic data with

arbitrary source-receiver distribution using a new local double-square-root moveout cor-

rection formula (Berkovitch et al., 1998). In particular, the MF transformation involves
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stacking a larger number of source-receiver pairs with nearby common midpoints, which

is called a super gather of seismic traces. Stacking large super gathers is made possible

by the use of a generalized moveout correction. This moveout correction is a nonlinear

multi-dimensional optimization problem and the main challenge is the determination

of the MF kinematic attributes from the prestack super gather through an automatic

search process. The objective function is based on a coherency measure of reflection

amplitudes that is being maximized. Conventional velocity analysis aims to find and

optimize a single parameter, velocity, by lining up reflection events and correcting for

the offset effect. However, the MF correction involves finding more than one unknown

parameter, which are termed MF kinematic attributes, and these can be determined

using optimization algorithms. Thus, a manual procedure for MF is impractical and an

automatic mode is necessary. This task previously is carried out by a computationally

expensive iterative parameter-search algorithm. In this thesis, this problem is solved

using a nonlinear global optimization method to converge to a more accurate estimation

(Jodeiri Akbari Fam and Naghizadeh, 2019). In other words, the MF analysis consists

of automatically calculating a panel of correlation (coherency) measures as a function of

unknown parameters and finding the maximum of the panel.

Figure 1.4 summarizes the basic principle of the MF stacking method and its differences

from the conventional methods. An anticline reflector is shown at the base of the panel

(a). The segment R shown in red on the reflector is considered as an imaging target.

The result of stacking is allocated to the zero-offset sample, here X0 as an imaging

point. The blue curve on panel (a) represents the common-midpoint reflection traveltime,

collected at point X0 for the subsurface point P . The common-offset traveltime curves

are displayed in gray as a function of the midpoint for a range of constant half-offsets (half

of the distance between the source and receiver). In this schematic figure, the traveltime

curves are plotted for half of the offsets, since it is symmetric with respect to the offset
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of zero. The MF stacking surface is shown in red, which is accurately tangent to the

reflection traveltimes. Note that the events are plotted here with time plotted increasing

upwards. The common-midpoint stacking operator (blue) collects the reflection event

(gray) only at a specific midpoint, X0, whereas the MF stacking operator sums the data

along the red surface that coincides locally with the common-offset time response of the

reflector, and assigns the result to the point X0. Figure 1.4b shows a single CMP gather

on the left side of the panel (b) for the midpoint at -250 and its reflection raypaths at

the right. The blue curve is the simulated common-midpoint traveltime curve. Here,

this single slice of CMP gather is associated with the point X0, which is indicated by a

bold black dot at the right side. A super CMP gather which comprises 11 nearby slices

of CMP gathers and its reflection raypaths are shown in Figure 1.4c. The red surface on

the left side of the panel (c) is the fitted MF reflection surface. In this figure, each slice

of CMP gathers corresponds to each nearby black dot in a certain span in the vicinity

of the central point X0. Overall, during the multifocusing processing sequence, we take

advantage of seismic data that were acquired but are not included in the stacking step by

conventional processing. In this approach, each zero-offset trace is constructed by staking

traces, which does not need to belong to the same CMP gather, but their midpoints

are close to X0 (or reflection points are located in segment R). This would allow for

maximally resolved data-driven reconstructions of the complex subsurface structure.

Traveltime moveout correction is one of the critical steps in the stacking procedure. An

accurate moveout correction equation is required to be valid for arbitrary media and

observation geometry. This implies that a correction operator needs to be independent

of the subsurface geometry model and applicable for any geometric distribution of source-

receiver pairs. The assumption of arbitrary acquisition geometry is violated in the normal

moveout formulation since it belongs to the CMP-based method, which can be applied

only when sources and receivers are located symmetrically with respect to an imaging



17

point, X0 in Figure 1.4. However, the MF approach is model-independent and valid for

arbitrary acquisition geometry, because it can be applied to all reflection data that are

reflected from a finite subsurface segment of arbitrary geometry, segment R in Figure

1.4, whose sources and receivers are in a certain vicinity of the imaging point (not a

single reflection point about which the sources and receivers are located symmetrically).

Therefore, both criteria can be satisfied by the MF method (Landa, 2007).

In the following subsections, I will review previously proposed MF methods. The review

shows the process of extending MF-type methods for different situations and helps us

to understand the advantages and weaknesses of different methods that will help us to

develop new methods that aim to solve the seismic imaging problems arising with Metal

Earth data.

Figure 1.4: The basic principle of the multifocusing stacking method; a) The MF stacking
surface for the anticlinal model (adapted from Müller, 1999; Abakumov, 2016); b) A
single CMP gather for the midpoint located at X0 and its reflection raypaths; c) A super
CMP gather which comprises 11 nearby slices of CMP gathers and its reflection raypaths.
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1.3.1 Standard MF method

The moveout formulation of the standard MF method is a double square-root operator.

This method is also called planar MF by Landa et al. (2009), and zero-offset MF by

Berkovitch et al. (2011). Figure 1.5a shows a normal ray starting at point X0 with an

angle β to the vertical line, reflects at normal-incidence-point (NIP ), and returns to

X0, which is referred to as the central ray. The point X0 represents the central point or

as the image point where the stacked trace will be assigned after stacking. A paraxial

ray from a randomly located source S intersects the central ray at point F , arriving

back to the surface at receiver point R after reflecting off the point P . The paraxial

ray refers to rays in the vicinity of the central ray, and their wavefield can be evaluated

approximately from quantities determined along the central ray (Červenỳ et al., 1984;

Schleicher et al., 2007). The point F in Figure 1.5a can be considered as a fictitious

source of two fictitious waves with the wavefront rays
∑+ (emitting from F upward to

the surface) and
∑− (emitting from the point F downward, reflected at the reflector

and emerging again at the point X0). For a given source-receiver pair, in a 2D case,

the MF moveout correction depends on three parameters: the emergence angle of the

normal ray (β) and the curvature radii of the two fundamental wavefronts corresponding

to the normal wave (RN) and the normal incidence point wave (RNIP )) (Hubral, 1983;

Gelchinsky et al., 1999a). Figure 1.5b shows wavefront
∑

NIP of the NIP wave and Figure

1.5c shows the wavefront
∑

N of the normal wave produced by a curved reflector under a

homogeneous overburden with a near-surface velocity of V0, respectively. In this context,

the term overburden is all material above the reflector. The NIP wavefront (
∑

NIP ) is

formed by a point source located where the zero-offset ray emitted from the central

point hits the reflector. The second wavefront (
∑

N) is formed by normal rays emitted

by all points on the reflector (as in an exploding reflector scenario). The MF moveout
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equation is based on the spherical representation of wavefronts (Berkovitch et al., 1994)

and expressed by

t(β,RN , RNIP ) = t0 +4tS +4tG, (1.1)

4tS =

√
4X2

S +R2
S + 2.RS.4XS.sin(β)−RS

V0

,

4tG =

√
4X2

G +R2
G + 2.RG.4XG.sin(β)−RG

V0

,

σ =
4XS −4XG

4XS +4XG + 2.4XS .4XG.sin(β)
RNIP

,

RS =
1 + σ

1
RN

+ σ
RNIP

, RG =
1− σ

1
RN
− σ

RNIP

,

where σ is the focusing parameter, t0 is the traveltime of a central ray, V0 is the near-

surface velocity, and4tS and4tG are two moveout corrections at the source and receiver

points of a paraxial ray. The variables 4XS and 4XG represent the source and the re-

ceiver offset for the given paraxial ray with respect to the central point X0, respectively.

Three parameters measured at the central point include β, RNIP , and RN . For each

super-gather and each zero-offset time t0, these parameters are obtained through a co-

herency analysis of the moveout-corrected super-gather (Berkovitch et al., 2008).

Figure 1.5: a) Ray scheme of the MF method for an arbitrary media, b) Wavefront∑
NIP of the NIP wave and, c) Wavefront

∑
N of the normal wave produced by a curved

reflector under a homogeneous overburden with a near-surface velocity of V0 (Gelchinsky
et al., 1999a; Jodeiri Akbari Fam and Naghizadeh, 2019).
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1.3.2 Extensions of MF methods

Several researchers have extended MF imaging methods based on various scenarios and

geometries. Here, I summarise some of the main developments in this area.

1.3.2.1 2D Irregular surface MF (IS-MF) method

Elevation statics correction is one of the processing steps, applied to seismic data to

correct the difference between the source and receiver elevations. If seismic data are

collected over a rugged topography, the standard elevation statics corrections might be

inaccurate, since the assumption of vertical raypaths will no longer be valid. Gurevich

et al. (2002) extended the standard MF method by taking into account the varying

elevations of sources and receivers on an irregular surface (IS), so they termed this

method the IS-MF method. They introduced this approach to apply directly to seismic

data without prior elevation statics correction. This method corrects the elevation static,

normal moveout, and dip moveout simultaneously. The application of the IS-MF to

strongly non-hyperbolic synthetic CMP gathers that are generated over a highly variable

topography indicates that, unlike, the conventional static correction and NMO that leads

to residual moveouts, the IS-MF corrects the event by taking into account the rugged

observation surface. This method does align the reflection event without distortions and

noise and results in a better alignment of reflection events.

1.3.2.2 Common-offset MF (COMF) method

One of the main limitations of the zero-offset 2D MF method is a quasi-hyperbolic ap-

proximation for actual traveltime surfaces that limits the efficiency of its application.
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The MF operator, in this case, is constructed around a zero-offset ray and, in principle,

is valid for short offsets. In complex subsurface geology, strong lateral velocity variations

and/or the presence of anisotropy may cause the traveltimes of seismic events to become

nonhyperbolic, and the zero-offset 2D MF operator approximation starts to be inaccu-

rate, especially for large offsets. Berkovitch et al. (2011) presented the COMF algorithm

by accounting for the nonhyperbolicity of the traveltime surfaces that is a generaliza-

tion of the zero-offset MF correction for the arbitrary offset case (without the spherical

approach for the wavefield). The CMOF is a local MF time correction, which will accu-

rately approximate the traveltime surface in the vicinity of an arbitrary non-zero-offset

trace. The COMF operator is remarkably accurate even for strongly curved reflectors.

Implementation of the COMF method requires determining five moveout parameters

rather than defining three parameters as in zero-offset MF. To overcome the assump-

tion of hyperbolic or quasi-hyperbolic approximation for traveltime curves/surfaces, this

approach is applied on narrower offset ranges and does not require the full offset data

in a super gather. Products of the COMF method are partially stacked common-offset

images and sections of the wavefront parameters. The results can be used to generate

enhanced prestack seismic records and it provides an accurate velocity model for depth

imaging (Berkovitch et al., 2011, 2012b).

1.3.2.3 2D spherical MF (SMF) method

Landa et al. (2009) proposed the spherical multifocusing (SMF) method that significantly

improved the accuracy of the MF method over curved reflectors. Unlike the zero-offset

MF methods (MF and IS-MF) that express traveltime based on the kinematics of a cen-

tral ray and the moveout correction for a paraxial reflection ray traveling in the vicinity

of the central ray (Dörrie, 2013; Neumann, 1998). They derived the SMF operator based
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on finding the reflection traveltime for a source-receiver pair (as foci points of an el-

lipse) from a curved interface which is approximated by locally fitting a circle. In two

dimensions, SMF needs the same triplet of parameters as the planar 2D MF method:

β,RN , RNIP . They compared the application of the 2D planar and spherical MF with

the CRS moveout expression for several synthetic models. The results indicated that the

planar MF can be more accurate than the CRS method by increasing the curvature of

the reflectors. This can be attributed to the fact that the CRS formula is based on a

Taylor-series expansion, whereas the MF formulae are double-square root formulae. As

a result, planar and spherical MF methods are better suited to model the moveout of

diffracted waves. Landa et al. (2009) showed that SMF is more accurate than CRS and

standard MF for highly curved reflectors (Fomel and Kazinnik, 2013).

1.3.2.4 2D irregular surface spherical MF (IS-SMF) method

Chang et al. (2019b) modified the SMF method (Landa et al., 2009) to apply to data

acquired from irregular topography by considering non-zero elevations of sources and

receivers. The new operator (IS-SMF) can correct the moveout of curved reflection

directly without prior elevation static corrections and is more robust over a wide range

of source and receiver elevations. Also, it performs better on strongly curved interfaces

compared to the conventional method, resulting in an increased resolution in the stack

and time-migration sections. Chang et al. (2019b) showed that the results obtained

by the new operator also have better lateral continuity and a more focused performance

compared with the results from an IS-MF operator, particularly for small-scale structural

elements and curved reflection events with strong dips.
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1.3.3 Limitations of the MF methods

Three-dimensional arbitrary survey geometry such as a crooked-line configuration is the

theoretical issue that hampers our use of 2D MF methods. The complexity of the algebra

involved in MF theory has prevented developing them into three dimensions and made

it more difficult (Fomel and Kazinnik, 2013; Landa et al., 2009). Elhaj et al. (2014) pro-

posed an application of the 3D MF method for imaging and regularization of an irregular

3D seismic data set. However, they have not further expanded on the corresponding for-

mulations of the 3D MF method. Landa et al. (2009) proposed the spherical MF method

in three dimensions by adding one more parameter to the two-dimensional spherical MF

formula. Nevertheless, the 3D SMF method did not consider the variation of source and

receiver elevations, and the recording surface is assumed to be flat and the formulation

of 3D spherical multifocusing that can account for irregular acquisition surfaces has not

yet been described in the geophysical literature. Hence, elevation statics corrections are

required to compensate for the near-surface effects and to reference prestack data into a

flat datum. Raypaths are typically assumed to be vertical in the conventional elevation

statics correction methods. This assumption is mostly invalid and might lead to inaccu-

rate static shifts for seismic data acquired in areas with severe irregular topography and

complicated near-surface structures (Gurevich et al., 2002), particularly for high-velocity

consolidated heterogeneous media in hard-rock geologic settings. Therefore, in order to

use the MF methods for Metal Earth data, it is necessary to develop algorithms that

take into account the azimuth-dependent dip effects, source-receiver azimuth, and coor-

dinates variation in 3D space. To meet this need, I have developed new and generalized

versions of the multifocusing moveout corrections with new strategies for crooked seismic

lines and 3D surveys in an area with flat/irregular topography.

Furthermore, currently, the implementation of MF methods is technically challenging,
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computationally expensive, and has not been well documented. Applying the MF ap-

proaches comprises several isolated steps and lacks an efficient optimization component.

This problem can be addressed by adopting a multi-dimensional nonlinear global opti-

mization algorithm with high accuracy. Also, some global optimization strategies are

required to speed up the convergence when searching for optimal parameters.

1.4 Research methodology

The current Ph.D. thesis is mainly focused on developing novel seismic imaging methods,

as part of the Metal Earth initiative, to image complex subsurface geological structures of

the Superior Province, Canada. Since September 2018 when I started my Ph.D. program,

I began to form the framework of the thesis. I have used my mathematical background

and skills to learn the fundamentals of the multifocusing method from original articles by

Berkovitch et al. (1994); Gelchinsky et al. (1999a,b); Landa et al. (2009). I conducted an

extensive literature review for the basics of MF from the scientific literature, which has

been summarized in previous sections. The major part of my preliminary research was

focused on programming of the 2D MF stacking package in Matlab, adapting nonlinear

global optimization algorithms to implement the MF methods, and testing the scripted

2D MF code on complex synthetic data sets. In the absence of any software and code

packages for academic and commercial use, I used my extensive programming skills

to code the basic application of the 2D MF method on seismic data to reproduce the

original implementation of this method. Next, I incorporated the global optimization

algorithms into the multifocusing approach to optimize the estimation of MF parameters.

I investigated the potential of using the very fast simulated annealing (VFSA) (Jodeiri

Akbari Fam and Naghizadeh, 2019) and the differential evolution (DE) algorithms to
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optimize the estimation of MF parameters (see Appendix 1-A). Then, I examined the

performance of the original 2D MF method on different complex synthetic models and

real data. I successfully applied it to the well-known Marmousi synthetic complex data

(Versteeg, 1994; Martin et al., 2006), which is a benchmark for testing the capability

of imaging algorithms in the seismic industry. The Marmousi model involves severely

curved and folded interfaces, horizontally layered horizons, and a series of nearly vertical

normal faults with strong horizontal and vertical heterogeneity. The MF stacking method

is a complicated algorithm, but I could reproduce the original implementation of the 2D

MF method and add new optimization steps into its flow.

Then, I developed the 2.5D MF and 3D generalized spherical multifocusing (GSMF)

methods to address the aforementioned seismic processing challenges and tested them

by programming in Matlab. I also designed an efficient signal processing sequence for ef-

ficiently applying the proposed methods. I resolved how to generate 3D synthetic models

and synthetic seismic data with a crooked line survey using the finite difference method

and I used these synthetic data to test the newly developed algorithms. I investigated

the accuracy of the new formulations by testing on synthetic data sets using the Matlab

codes. Finally, I packaged production codes for efficient implementation of the newly

developed 2.5D MF and 3D GSMF methods for crooked seismic lines and 3D surveys.

These algorithms are developed in high-level but efficient languages such as C, C++,

and shell scripts while using the framework of the Seismic Unix software package.

The developed software and codes have been used to image some of the seismic data

acquired by the Metal Earth project, which for the most part are acquired in hard-rock

environments with complex geological structures. Also, they were tested on other real

seismic data sets. Further tests of the proposed algorithms in other applications and

on real data examples are underway. In this thesis, my plan is to investigate both new
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algorithms independently to understand which approach is better suited for different

situations.

1.5 Structure of the thesis

The current dissertation contains five chapters, including this introductory chapter (Chap-

ter 1), and three journal manuscripts each in their own chapter (Chapters 2 – 4), and a

concluding chapter (Chapter 5). Since chapter 2 is already published and chapters 3 – 4

are intended to be published as individual standalone manuscripts, some information is

repeated in these chapters. A summary of each chapter is outlined below:

Chapter 1 (current chapter) presents background information on the project, research

problems and objectives, theoretical and technical challenges associated with the crooked-

line seismic surveys conducted for the Metal Earth project, and the methodologies ap-

plied to address the research problems. The chapter also includes a review of the theory

behind the multifocusing algorithm, a summary of the main developments and their

limitations are provided. The performance of the VFSA and DE global optimization

algorithms in determining the wavefield attributes is also discussed in the Appendix

1-A.

Chapter 2, entitled “2.5D multifocusing imaging of crooked-line seismic surveys”, intro-

duces the 2.5D MF method to generate 2D zero-offset wavefields along crooked seismic

surveys or a 3D zero-offset-wavefield volume for seismic data collected over an area with

a flat datum and low to moderate overburden heterogeneity. The traveltime moveout

formula is tailored for data collected along a crooked seismic line and it accounts for

the cross-dip attributes and also the irregular distribution of sources and receivers along
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the acquisition line. The algorithm can be considered as a 3D extension for the planar

multifocusing approach, which can explicitly correct 3D normal and azimuth-dependent

dip moveouts simultaneously without any prior inline and crossline dip corrections. The

method also accounts for midpoint scattering. In this chapter, the formulation for the

2.5D MF algorithm is first derived. Next, the performance of the proposed method on

different synthetic and real seismic data sets is examined. Finally, the computational

efficiency and accuracy of the proposed method are investigated. The 2.5D approach

can approximate the 3D model of the wavefront, however, it assumes a locally spherical

wavefront around the zero-offset central ray, which makes it accurate for quasi-hyperbolic

reflections. This means that dipping plane reflectors can be mapped more accurately than

strongly-curved interfaces. However, its capability is limited in resolving non-hyperbolic

diffractions and reflections with higher-order traveltime moveout resulting from com-

plex subsurface geology with strong lateral velocity variations and/or the presence of

anisotropy. Also, the recording surface is assumed to be flat and its application is

limited to seismic data acquired with a flat surface assumption. Hence, elevation statics

corrections are required as a preprocessing step to compensate for the near-surface effects

and to reference prestack data onto a flat datum. These weaknesses can be theoretically

addressed by deriving another algorithm in three dimensions without the aforementioned

assumptions, which is derived in Chapter 4.

Chapter 3, entitled “High-resolution 2.5D multifocusing imaging of a crooked seismic

profile in a crystalline rock environment: results from the Larder Lake area, Ontario”, is

focused on the application of the novel 2.5D multifocusing method to the Metal Earth

hard-rock seismic data collected in Larder Lake to exhibit its robustness compared to the

conventional and other advanced processing methods. First, the technical and theoret-

ical challenges associated with crooked-line surveys in hard-rock geological settings are

discussed. Next, the theory behind the 2.5D MF algorithm is briefly reviewed, as well
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as its advantages and disadvantages. Afterward, the geological settings of the Larder

Lake area and the specifications of the seismic data acquisition are described. Then, the

workflow and results of conventional and advanced methods (2D prestack time migration,

2D time migration of DMO stack, and swath 3D imaging) are presented. The process-

ing steps employed in the 2.5D MF imaging workflow were discussed in detail. I also

developed an efficient processing workflow for applying the 2.5D MF method and utiliz-

ing its output for further imaging steps including prestack/poststack migration. Also,

I describe the manner that the differential evolution global optimization algorithm has

been adapted to optimally search for the wavefield attributes. To evaluate the accuracy

and performance of the proposed method on a seismic data set with a real crooked-line

survey geometry, I tested the 2.5D MF method on synthetic data generated using the

survey configuration used in the Larder Lake area. Next, the application of the 2.5D MF

technique on the Larder Lake reflection seismic data set is compared with the results

of the 2D and 3D conventional standard and advanced methods, that were previously

presented. Finally, a brief interpretation and discussion are provided. The 3D swath

processing result clarified the necessity of processing cooked-line seismic data using a 3D

approach, which included an algorithm that can generate a high-resolution true repre-

sentation of the zero-offset wavefield. Assuming azimuthally isotropic constant radii of

curvatures for each subsurface point allows the wavefield attributes to be estimated even

with a limited number of distinct azimuth data. These capabilities enable us to produce

a volumetric stack from a crooked-line survey using the 2.5D MF method. The main

limitation is the assumption of a locally spherical wavefront that limits its application

to the planar and gently curved reflector with mild to moderate heterogeneities. This

limitation and the flat datum assumption are addressed in the next chapter.

Chapter 4, entitled “3D generalized spherical multifocusing seismic imaging”, proposes

a non-hyperbolic higher-order moveout operator that is required to improve a stacked
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volume constructed from seismic data acquired over an area with rugged topography and

strong heterogeneous overburden. A three-dimensional generalized spherical multifocus-

ing seismic stacking method is expanded for a crooked-line/3D seismic data set acquired

with an arbitrary recording geometry. The algorithm is based on a 3D extension of the

spherical multifocusing method into a more general form. The extended method simulta-

neously corrects for elevation statics and azimuth-dependent dip-moveout effects, which

results in a 3D stacked volume that is equivalent to a synthesized 3D zero-offset wave-

field. In this chapter, first, the relevant background is reviewed. Then, the traveltime

formula for the 3D GSMF algorithm is derived. Next, the performance of the proposed

method is examined on synthetic and real data sets. Finally, the efficiency and accuracy

of the method are evaluated and the results are discussed. Although, the 3D GSMF

method can be more accurate than the 2.5D MF method for simulating higher-order

reflections and diffractions. However, the 3D GSMF method has a high computational

cost. Therefore, the size and nature of the study area, the goal of the project, and budget

limitations will determine which methods would be more suited.

Chapter 5 summarizes the thesis and presents the overall conclusions of the project. Also,

this chapter suggests possible future work. Additionally, this chapter outlines some of

the further developments that are underway.
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Appendix 1-A: Comparing the performance of the

VFSA and DE algorithms

I applied the 2D MF method on the Marmousi synthetic data to reproduce the original

implementation of the multifocusing, and test the performance of the VFSA and DE

global optimization algorithms. Figure 1-A.1 compares the effectiveness and efficiency

of the DE and VFSA algorithms in searching for the optimal solution of the 2D MF

attributes. Figures 1-A.1a and 1-A.1b show the convergence graph of 10 random single

execution for the VFSA and DE algorithms, respectively. I examined convergence be-

havior for the same common-midpoint and zero-offset time sample (CMP = 200; time

= 1.788 s). The VFSA and DE algorithms reached the global maximum after approxi-

mately 400 and 550 evaluations of the objective function, respectively. Comparing these

graphs demonstrates that the VFSA method is computationally cost-effective, however,

the DE algorithm is more accurate and precise than the VFSA algorithm. The VFSA

method can reach the global maximum faster than DE, but it is accompanied by un-

certainty. In Figure 1-A.1c, we compare the computational cost of these two methods.

The CPU load of the VFSA method is referenced as 100 percent, the DE algorithm has

about 15% more costs than the VFSA method. In terms of computational costs, the DE

algorithm spends more CPU time than VFSA, since the DE method requires a greater

number of objective function evaluations to converge to the global maximum. Also, the

DE algorithm itself involves several arithmetic operations for each iteration. To reduce

the running time of the DE algorithm, the optimization and controlling parameters of DE

algorithms can be fine-tuned. Overall, both methods are suitable for wavefield analysis

and stacking, which can be chosen based on the desired accuracy or efficiency.
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Figure 1-A.1: Convergence graphs of the global simultaneous searches of the three at-
tributes for the 2D MF stacking operator using the a) VFSA algorithm and b) DE
algorithm for 10 random single runs. c) Computational costs of the DE and VFSA
methods.
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2.1 Abstract

Two-dimensional seismic surveys often are conducted along crooked line traverses due

to the inaccessibility of rugged terrains, logistical and environmental restrictions, and

budget limitations. The crookedness of line traverses, irregular topography, and com-

plex subsurface geology with steeply dipping and curved interfaces could adversely affect

the signal-to-noise ratio of the data. The crooked-line geometry violates the assump-

tion of a straight-line survey that is a basic principle behind the 2D multifocusing (MF)

method and leads to crossline spread of midpoints. Additionally, the crooked-line geom-

etry can give rise to potential pitfalls and artifacts, thus, leads to difficulties in imag-

ing and velocity-depth model estimation. We develop a novel multifocusing algorithm

for crooked-line seismic data and revise the traveltime equation accordingly to achieve

better signal alignment before stacking. Specifically, we present a 2.5D multifocusing

reflection traveltime equation, which explicitly takes into account the midpoint disper-

sion and cross-dip effects. The new formulation corrects for normal, inline, and crossline

dip moveouts simultaneously, which is significantly more accurate than removing these

effects sequentially. Applying NMO, DMO, and CDMO separately tends to result in sig-

nificant errors, especially for large offsets. The 2.5D multifocusing method can perform

automatically with a coherence-based global optimization search on data. We investi-

gated the accuracy of the new formulation by testing it on different synthetic models

and a real seismic data set. Applying the proposed approach to the real data led to a

high-resolution seismic image with a significant quality improvement compared to the

conventional method. Numerical tests show that the new formula can accurately focus

the primary reflections at their correct location, remove anomalous dip-dependent veloc-

ities, and extract true dips from seismic data for structural interpretation. The proposed

method efficiently projects and extracts valuable 3D structural information when applied
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to crooked-line seismic surveys.

2.2 Introduction

The ultimate goal of seismic time imaging is to generate a high-resolution seismic section

with an improved signal-to-noise ratio (S/N). A seismic survey with crooked line geom-

etry collects data with variable fold and uneven offset distribution, which, in turn, leads

to seismic transparent zones (Wu, 1996). Irregular distribution of sources and receivers

along a crooked profile disperses the midpoint locations from the intended straight-line

traverse. The crooked nature of seismic lines could defocus and deform reflections partic-

ularly associated with reflectors with a cross-dip component. Also, the raypaths between

source and receivers take shortcuts passing around the survey line (behind or in front of

the desired imaging plane).

In a crooked-line seismic survey, the cross-dip not only causes defocused and smeared

reflections but also results in considerable time shifts as a function of the cross-offset

distribution. These time shifts can distort and duplicate out-of-plane reflections after

applying cross-dip moveout (CDMO) correction using the slant stack approach. For rela-

tively uniform cross-offset distributions, seismic events could appear twice in the stacked

section: (1) at the origin zero-offset time and (2) at the shifted time corresponding to

the preponderant cross-offset (Beckel and Juhlin, 2019). This problem is called reflection

duplication.

Several different cross-dip analysis and correction methods have been proposed by various

researchers to address the aforementioned potential pitfalls (Larner et al., 1979; Du Bois

et al., 1990; Kim et al., 1992; Wu et al., 1995; Nedimović and West, 2003a; Malehmir
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et al., 2009; Singh et al., 2010; Kim et al., 2014). Applying a constant shift to the whole

trace is the easiest and most common method for cross-dip correction (Larner et al., 1979;

Wu et al., 1995; Rodriguez-Tablante et al., 2007; Lundberg and Juhlin, 2011; Ahmadi

et al., 2015). However, this method generally reduces the resolution of the final image.

Nedimović and West (2003a) introduce a more general form of the CDMO that can be

carried out through a slant-stack transformation (Yilmaz, 2001) after removing normal

moveout and inline dip effects. This approach can be done automatically by maximizing

the product of semblance and a local average of the amplitudes using a grid search

strategy. Kim et al. (1992) and Kim et al. (2014) use the same approach but determine

the cross-dip parameter interactively. This method can partially correct cross-dip effects

and generate improved images; however, it could duplicate out-of-plane reflections in the

stack section. In this case, the reflection might be imaged twice in the stack section when

a CDP gather has a dominant cross-offset value. Besides, using a slant-stack approach

prevents to apply any further processing after the cross-dip correction because the cross-

dip correction is applied for the estimated cross-dip while stacking with the slant-stack

technique (see Nedimović and West, 2003a; Beckel and Juhlin, 2019). Another drawback

is that the DMO operator may interpret time shift and moveout arising from cross-

dip effects as an inline dip time anomaly (after NMO correction and before CDMO

correction). Therefore, the estimated moveout and structural details will not be correct.

Beckel and Juhlin (2019) use a shift and stack method to overcome these problems. They

assume that the reflector has no dip component along the inline direction and carried

out an iterative processing procedure for the implementation of the moveout corrections.

They repeated the flow of NMO correction, CDMO correction, velocity analysis, DMO

correction until a high-quality stacked section was obtained. Mancuso and Naghizadeh

(2021) introduce the generalized CDMO (GCDMO) method that can be applied to any

CMP binning geometry. This approach simultaneously corrects the NMO plus CDMO
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effects and can suppress the reflection duplication. The optimal attributes are manually

estimated using repetitive grid search across a window, and its accuracy is limited to a

maximum of 40◦.

One can also use a 3D processing and binning method to produce an image from crooked-

line geometry data. Crooked-line seismic data could be considered as pseudo-3D data set

as the source-receiver midpoints span a surface rather than a line (Wu, 1996; Nedimović

and West, 2003b). Panea and Bugheanu (2017) process crooked-line survey seismic

data like a pseudo-3D survey. Cheraghi et al. (2020) use 2D and 3D prestack time

migration and swath 3D processing methods. Application of 3D processing technique

on 2D crooked-line seismic data often could lead to low-resolution images and could

not image many reflections that are observed in 2D results. All these advanced imaging

algorithms require an accurate velocity model, which needs to be dip-independent, except

for macro-model-independent approaches. Besides, low fold and noisy data hamper

utilizing such an advanced 3D processing method. Also, in a complex subsurface area,

due to variable and low-fold coverage, crooked-line configuration with CMP binning does

not provide enough information. Also, the collected data have uneven spatial distribution

and are limited to a narrower azimuth and a small aperture in the cross-profile direction

(Nedimović and West, 2003a).

The non-CMP-based multi-parameter moveout corrections and stacking strategies, such

as multifocusing (MF) method, could also address the issues related to CMP dispersal

problems (Gelchinsky et al., 1999a,b). There are two major types of non-CMP-based

multiparameter moveout corrections and stacking strategies. These include the multifo-

cusing (MF) and common reflection surface (CRS) method that were originally devel-

oped by Gelchinsky et al. (1999a,b) and Müller (1999), respectively. The MF method

can be more accurate than the CRS method, but it is more difficult to extend it to 3D



37

cases (Fomel and Kazinnik, 2013; Landa et al., 2009). Höcht (2002) and Müller (2003)

present the theory and implementation of the 3D zero-offset CRS stack, which can be

applied on crooked-line seismic data. During the last two decades, different MF stacking

techniques based on the patented theory of homeomorphic imaging (Gelchinsky, 1992;

Gelchinsky and Keydar, 1999) have been proposed. These include the 2D MF (Gelchin-

sky et al., 1999a,b), 2D irregular surface MF (IS-MF) (Gurevich et al., 2002), 2D MF

with controlled reflection-point dispersal (Gurevich and Landa, 2002), common-offset

MF (COMF) (Berkovitch et al., 2011, 2012b), 2D spherical MF (SMF) (Landa et al.,

2009), and 2D irregular surface spherical MF (IS-SMF) (Chang et al., 2019b) methods.

Also, the application of 2D multifocusing for improved time imaging is widely published

(Landa et al., 1999; Berkovitch et al., 2004; Belfer et al., 2008b; Berkovitch et al., 2008,

2009, 2012a; Curia et al., 2012; Buzlukov and Landa, 2013; Landa et al., 2013; Elhaj

et al., 2014; Schoepp et al., 2014; Borghi et al., 2017; Curia et al., 2017; Chang et al.,

2019a).

The MF-based methods provide higher S/N and vertical resolution and do not require

any knowledge of the subsurface model. Also, it can determine dip-independent veloc-

ities and structural detail such as interface curvature and slope of the events (Landa

et al., 2009). The MF methods are time-shifted approaches and derived based on the

assumption of optical imaging (auxiliary) medium for taking into account overburden

heterogeneity (De Bazelaire, 1988; Gurevich and Landa, 2002; Schwarz and Gajewski,

2017). This assumption leads to a non-stretching moveout correction without distortion

of the amplitude and phase, which can be one of the MF operators’ key advantages.

However, currently, the available MF operators do not consider the cross-offset and

cross-dip components for the crooked-line configuration. In this paper, we develop a

non-CMP-based stacking method for crooked-line seismic data imaging to address the

above issues.
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In the following sections, we first derive the formulation for the 2.5D MF algorithm.

Next, we examine the performance of the proposed method on appropriate synthetic

and real seismic data sets. Finally, the computational efficiency and accuracy of the

proposed method are investigated.

2.3 Theory

We develop an MF traveltime correction formula tailored for data collected along a

crooked seismic line (Jodeiri Akbari Fam and Naghizadeh, 2020). The formula includes

an ability to take into account the cross-dip attributes and also the irregular distribution

of sources and receivers along the acquisition line. The main advantage of the new

formulation is its ability to correct the moveout of 3D dipping events directly without

any prior inline and crossline dip corrections. The case of a dipping plane reflector can be

imaged more accurately than spherical bodies using this method. Our proposed method

can be considered a 3D planar multifocusing approach; however, we will use the term

2.5D multifocusing in this article for convenience. The new 2.5D moveout formula is

exact for 3D plane-dipping reflectors of arbitrary inline and crossline dips in a constant

velocity model, and also limiting cases such as point scatterers. However, the method

does not account for variable topography.

After signal processing and elevation statics corrections, first, we bin the seismic data

on a slalom/straight processing line that best fits the distribution of midpoints. The

optimal size of bins is calculated using the Fresnel zone analysis (Hubral, 1983; Gurevich

et al., 2002; Berkovitch et al., 2009). We build CMP super gathers by comprising several

nearby common midpoint gathers in order to achieve a high fold reflection gather. This

will result in a high S/N stack section by constructively stacking the reflection data.
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Next, we remove the normal, inline, and crossline dip moveouts using dynamic (time-

and offset-variant) time shifts. Such time shifts are especially important for correcting

the far-offset data. In this regard, we extended 2D multifocusing to 2.5D by modifying

the emergence angle and the curvature radius of the normal-incident-point wave (RNIP ).

The proposed formulation also includes an extra term that corrects for the zero-offset

time shift in order to avoid the reflection distortion and duplication problems (see Beckel

and Juhlin, 2019).

Snell’s law states that the incident and reflected rays from a reflection point should reside

in the same plane with the reflector normal. Therefore, we can treat each source-receiver

pair as a 2D seismic survey acquired in a specific direction. By taking into account the

azimuthal variation of each source and receiver pair, we derive functions that connect

the emergence angle and RNIP to the apparent dip. Finally, we will decompose the

derived apparent dips to inline and crossline dip components. Also, spherical bodies can

accurately approximate locally 3D curved reflectors (Landa et al., 2009). Therefore, It

can be assumed that we can recognize curved events and model their geometry (shape or

form) with only one curvature. Here, for simplicity, we consider a dipping locally planar

reflector embedded in a constant velocity (V0) half-space (Figure 2.1).

Figure 2.1 shows the ray geometry for a crooked-line survey configuration above a 3D

dipping reflector with inline dip θx and crossline dip θy components. Here, the inline

and crossline directions are assumed to be along the x− and y−axes, respectively. The

black solid and dashed lines are the survey and processing lines, respectively. In or-

der to mitigate the effect of spreading source-receiver over the cross profile, the slalom

processing line (black dashed line) has been chosen that is best fitted to the midpoints.

Projecting the midpoint locations onto a slalom line by applying a crooked-line binning

method suppresses acquisition geometry artifacts and optimally regularizes the trace fold
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amongst bins (Du Bois et al., 1990; Rodriguez-Tablante et al., 2007; Juhlin and Lund,

2011). An optimal processing line can be created using two approaches, including (1)

low-order polynomial regression and (2) smoothing the receiver line. The first method

fits a low-order polynomial curve to the midpoints by minimizing the orthogonal dis-

tance between the imaging point and midpoints. In the second approach, a smoothed

curve can be generated by repeatedly applying a mean filter to the receiver line until its

vertices approach the centers of the maximum accumulation of midpoints. To calculate

imaging point coordinates, the arc length of the processing line can be approximated

by linear segmentation. Then, we divide it up into equal-length space. The center of

each interval is the imaging point. M0 = [XM0 , YM0 ] is an arbitrarily chosen imaging

point on the processing line, and M ′
0 is the intersection between the orthogonal to the

processing line and a line that connects the source and receiver (S − R). The distance

between M0 and M ′
0 is defined as a crossline shift. In this configuration, instead of a

normal ray used in the 2D multifocusing (Berkovitch et al., 2008) method, we consider

a normal plane, which is indicated by the transparent gray-colour plane. This plane has

an inclination of β with respect to the vertical axis along the true dip direction, which

is called the central plane. The central plane contains the orthogonal (normal) to the

processing line (M0M
′
0), and its direction has the angle of φ′′ with respect to the inline

direction. A normal ray starts at M0, hits the reflector at point Mc, and returns back

to M0—referred to as the central ray for the imaging point. Also, another normal ray

starts at M ′
0 and is reflected back from point M ′

c. These two normal rays M0Mc and

M ′
0M

′
c are coplanar, and the central plane includes them both. A paraxial reflection ray

(solid blue ray) is generated by a randomly located source S = [XS, YS] on the crooked

profile that intersects the central plane at point F , reflects off the dipping reflector at

point O, arriving back to the surface, and is recorded by the receiver R = [XG, YG]. The

source and receiver S − R surface line (connected with a blue dashed line) makes an
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angle φ′ with respect to the inline direction. The reflector has the apparent dip of β′ and

β′′ along the source and receiver S − R line and the orthogonal to the processing line

M0M
′
0, respectively.

In this case, the differences in zero-offset time, caused by the difference between RNIP and

R′NIP shown in Figure 2.1, could lead to vertical shifts, distortion, and event duplication

after stacking. Employing a slalom processing line (curved crooked-line binning) sup-

presses artifacts of the cross-dip component and prevents reflection duplication partly

but cannot completely mitigate them (Mancuso and Naghizadeh, 2021). In order to

overcome these issues, we add an extra term that corrects for the zero-offset time shift.

Table 2.1 summarizes the description of the parameters used in our paper. The 2.5D

multifocusing traveltime (t) is derived in Appendix 2-A and expressed as follows:

t(θx, θy, RN , RNIP ) = t0 +
2 D sin(δ)

V0

+4tS +4tG, (2.1)

where

4tS =

√
4X2

S +R2
S + 2 RS 4XS sin(β′)−RS

V0

, 4XS =
√

(XS −XM ′
0
)2 + (YS − YM ′

0
)2,

4tG =

√
4X2

G +R2
G + 2 RG 4XG sin(β′)−RG

V0

, 4XG =
√

(XG −XM ′
0
)2 + (YG − YM ′

0
)2,

σ =
4XS −4XG

4XS +4XG + 2 4XS 4XG sin(β′)
R′

NIP

, RS =
1 + σ

1
RN

+ σ
R′

NIP

, RG =
1− σ

1
RN
− σ

R′
NIP

,

tan(β′) = tan(θx) cos(φ′) + tan(θy) sin(φ′), sin(δ) = tan(β′′) cos(β),

tan(β′′) = tan(θx) cos(φ′′) + tan(θy) sin(φ′′), tan(β) =
√

tan2(θx) + tan2(θy),

R′NIP = RNIP + (D sin(δ)),

and t depends on four unknown parameters (θx, θy, RN , RNIP ). The second term (2 D sin(δ)
V0

)

avoids reflection duplication by taking into account the zero-offset time shift along the



42

normal incident ray from the point M ′
0 to the reflector. In fact, this term shifts back

reflections’ arrival time to their origin time by projecting them into the imaging plane.

The analysis is performed for a homogeneous overburden; however, this can be extended

to the inhomogeneous case using the theory of an auxiliary medium (Gurevich and

Landa, 2002; Schwarz and Gajewski, 2017). The auxiliary medium can be defined as a

homogeneous medium with the velocity equal to the near-surface velocity (V0), where

both the central and paraxial rays are represented with combinations of straight-line

segments (Perroud et al., 1999). Therefore, for a heterogeneous overburden, the proposed

derivation corresponds to the moveout approximation in the auxiliary medium.

The application of the 2.5D MF method to generate the zero-offset wavefield reduces

to the conventional transformations NMO+DMO+CDMO+stack for the case of a super

gather with only one CMP. We tested the 2.5D MF method on a CMP gather, and the

results indicate that the MF method and conventional transformation have almost the

same results, but MF corrected gather is stretch-free and has a better alignment for the

case of a curved reflector with low to moderate overburden heterogeneity. This can be

Figure 2.1: 3D Ray scheme of the 2.5D multifocusing method for a dipping plane reflector
with constant velocity for a 2D crooked-line survey.



43

Table 2.1: Nomenclature

Parameters Parameter description Parameters Parameter description

t0 Zero-offset time V0 Near surface velocity
(m/s)

θx Inline dip θy Crossline dip
φ′ Angle between Inline and

SR
φ′′ Angle between Inline and

M0M
′
0

RNIP NIP wave radius at M0 R′NIP NIP wave radius at M ′
0

RN Normal wave radius at M0 β Emergence angle of the
central ray M0Mc with re-
spect to the vertical axis
along with the true dip

σ Focusing ratio D Crossline shift
β′ Apparent dip along SR (or

emitting angle of M ′
0M

′
c

with respect to the pro-
jected vertical axis in the
plane contains S-O-R)

β′′ Apparent dip along M0M
′
0

δ β′′ projection on the cen-
tral plane

4tS Moveout at source 4tG Moveout at receiver
4XS Offset between source and

M ′
0

4XG Offset between receiver
and M ′

0

RS Radius of fictitious wave-
front (F to S)

RG Radius of fictitious wave-
front (F-O-R)

[XS, YS] Source coordinate [XG, YG] Receiver coordinate
[XM0 , YM0 ] Image point coordinate [XM ′

0
, YM ′

0
] Coordinate of the inter-

sects between an orthogo-
nal line to the processing
line and a line that con-
nects S −R
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attributed to the fact that the MF formulae are double-square root formulae, and it is

not based on Taylor expansion.

By substituting crossline shift with zero (D = 0), the proposed MF equation exactly is

simplified into standard 2D MF. Therefore, the straight-line 2D MF formula is a special

case of the crooked-line 2.5D MF equations. In this case, the number of unknown param-

eters drops from four to three. Also, the practical implementation of diffraction stacking

is a special case of multifocusing implementation (Berkovitch et al., 2009). The 2.5D

MF operator is equally valid for two limiting cases: the planar reflector RN = ∞ and

the point diffractor RN = RNIP (Landa et al., 2009; Fomel and Kazinnik, 2013). There-

fore, by using (RN = RNIP ) assumption and converting apparent dips to the emergence

angles in 2.5D MF formulation, we could generate a diffraction stack. Such sections

contain important information for identifying local heterogeneities and discontinuities in

the subsurface. The specular and diffraction stack can be summed up to generate a true

zero-offset wavefield.

2.4 Model experiments

We examined the performance of the proposed 2.5D MF operator on different numeri-

cally modeled synthetic data sets. The optimization step for determining the unknown

parameters of the method was carried out with nonlinear global optimization algorithms

such as differential evolution (DE) or very fast simulated annealing (VFSA) (Jodeiri Ak-

bari Fam and Naghizadeh, 2019). These algorithms can perform automatically using a

data-driven global optimization approach based on a coherency objective function. Here,

performing automatically means a non-interactive process, which requires only quality

control of the convergence behavior. For example, velocity picking is a time-consuming
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interactive task that is labor-intensive in order to build an accurate velocity model.

However, in the global optimization method, we just need to adjust the parameters of

the optimization algorithm. The coherency function is defined using the correlation of

reflection amplitudes.

2.4.1 Single planar reflectors

Figure 2.2a depicts a super gather acquired above a single dipping layer that has both

inline and crossline dip components. The model (VP1,2 = 1000, 2000 m/s and θx,y =

15, 10◦), acquisition, and processing lines are shown in Figure 2.1. This super gather,

located in the middle of the survey, comprises five nearby CMP gathers; as such, the fold

is increased by a factor of five. Figure 2.2a shows that the reflection includes considerable

time shifts and breaks. These are the result of the crooked-line acquisition and the

presence of a cross-dip component in the data. Figure 2.2b shows the super gather after

applying the 2.5D MF moveout correction. The reflection has almost perfectly aligned

across all of the near- and far-offsets. This shows that the proposed 2.5D MF method is

accurate in a large range of offsets and midpoints. The 2.5D moveout correction yields

flattening of the reflection event on the super gather. Combined with the high fold of the

super gather, the resulting stacked section is equivalent to a zero-offset wavefield with

high S/N.

Figure 2.3 shows three simple models (top row) and their typical super gathers before

(middle row) and after (bottom row) applying the 2.5D MF moveout correction. The

VP1 and VP2 are 1000 and 2000 m/s, respectively. The super gather location, survey

layout, and processing line are the same as in the previous example shown in Figure

2.2. Figure 2.3a shows an inline dipping interface model (θx = 15◦). This reflection
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contains normal moveout, dip moveout, and midpoint dispersion effects. In Figure 2.3b,

the cross-dipping model (θy = 10◦), time anomalies are the result of normal moveout,

cross-dip moveout, and cross-offset variation. Figure 2.3c shows the application of the

proposed method on a horizontal interface. Overall, the cross-dip component contributes

more than other factors to an uneven distribution of data with considerable time shifts

on the reflection events. The proposed 2.5D MF method was able to correct all of

the moveout effects in different models. Therefore, this method can be an alternative

method for cascaded application of normal, inline dip, and cross-dip moveout correction

in crooked-line surveys. Also, it can handle situations with irregularly distributed sources

and receivers across the acquisition lines.

2.4.2 Curved and multiple reflectors

We also generated several 3D curved and multi-layer synthetic models to investigate

the accuracy of the proposed 2.5D MF method and to compare its results with other

algorithms, such as the GCDMO and 2D MF methods. The synthetic seismic data for

these models were generated using the finite-difference method (Bohlen, 2002). Figure 2.4

Figure 2.2: A super gather synthetized in the middle of the survey and model shown in
Figure 2.1 a) before and b) after applying the proposed 2.5D MF method.
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shows six different synthetic velocity models, including a single strongly curved sphere re-

flector with a constant curvature (Figure 2.4a), a single gently curved layer with positive

curvatures and vertical heterogeneity (Figure 2.4b), a single gently curved anti/synform

layer with positive and negative curvatures and lateral heterogeneity (Figure 2.4c), con-

flicting dip planar reflectors (see Yilmaz, 2001) (Figure 2.4d), multiple planar dipping

reflectors (Figure 2.4e), and multiple gently curved reflectors (Figure 2.4f). Figure 2.5a

shows the crooked-line seismic survey geometry that we used to generate the synthetic

data sets for the aforementioned models. In this Figure, red and blue dots are the source

and receivers, respectively, and the solid black line is the processing line. The processing

line is a slalom line and has been generated based on the midpoint locations. This line

was fit to midpoints by applying a mean filter to the receiver line. We then divided the

processing line into equal-length intervals with constant radius (prism-like bins). The

midpoints were binned every 10 m along this line at a maximum radius of 500 m. We

selected four different imaging point locations (#100, #200, #300, and #400) as repre-

Figure 2.3: 3D toy models and their super gathers before and after applying the proposed
2.5D MF method. Dipping interface along a) inline and b) crossline directions. c)
Horizontal interface.
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sentative of the entire data to illustrate the results. These are shown with black squares

that are labeled with their common midpoint location number in gray.

Figure 2.5b depicts crooked-line seismic binning (with constant CMP intervals) for build-

ing super gathers. In this figure, the processing line is coloured with fold numbers, which

indicate the number of traces that belong to a super gather in the MF method. Here,

midpoint locations are shown with gray map coloured dots that are distributed around

the acquisition line. The green dots show seismic traces (midpoint locations) that be-

long to each of the selected super gathers (#100, #200, #300, and #400). These super

gathers comprise nine nearby CMP gathers that increase the fold by a factor of nine.

Figure 2.4: 3D synthetic velocity models that include a) single sphere reflector, b) single
curved reflector with inhomogeneous background velocity (vertical velocity variation), c)
single curved antiform-synform reflector with heterogeneous overburden (lateral velocity
variation), d) multi conflicting reflectors, e) multi flat reflectors, and d) multi curved
reflectors.
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The intensity of the crossline shift effect on the reflection seismic data can be demon-

strated with the distribution of these green dots along the direction perpendicular to

the processing line. For instance, super gather #300 has the largest crossline shift effect

among these four super gathers since the midpoint of this super gather distributed far-

ther from the processing line compared to the others. The main goal is to collapse all

of the recorded energies in a specific super gather (green dots located in a specific super

bin) to the corresponding imaging point on the processing line (black squares).

Figures 2.6 and 2.7 compare the results of applying the 2.5D MF operator on the syn-

thetic super gathers for the single sphere reflector (Figure 2.4a) and single curved reflector

(Figure 2.4b) with NMO and GCDMO corrections, respectively. Figures 2.8 and 2.9 de-

Figure 2.5: Survey geometry, crooked-line seismic bins, common midpoint distribution
(coloured by offset), and the processing line (coloured by fold) for the multifocusing
method.
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pict the results of correcting synthetic super gathers for the single anti/synform curved

reflector (Figure 2.4c) and multiple conflicting flat reflectors (Figure 2.4d), respectively,

using 2D and 2.5D MF approaches. We incorporated the DE global optimization algo-

rithm into the GCDMO and 2D MF methods to estimate optimal parameters. Also, this

optimization algorithm is used to estimate the four 2.5D MF unknown attributes. For

NMO correction, we used the NMO velocity calculated from the exact synthetic velocity

model. Each row in the figures from top to bottom corresponds to common midpoint

locations of #100, #200, #300, and #400, respectively. The first column shows the orig-

inal super gathers that were sorted based on the trace number with visible undulations

along reflection caused by the crooked nature of the acquisition line. The remaining four

columns are the X-corrected super gathers, stack after X correction, 2.5D MF-corrected

gathers, and stack after 2.5D MF correction, respectively. Here, X is NMO and GCDMO

for Figures 2.6 and 2.7, and 2D MF for Figures 2.8 and 2.9, respectively. The amplitudes

of stack trace in columns (c and e of Figures 2.6-2.9) are preserved and are comparable

in each row. The main goal of showing NMO-corrected gathers in Figure 2.6 is revealing

the intensity of nonhyperbolicity of reflections imposed by different factors, such as the

reflector curvature. The 2.5D MF correction performs superior to other operators in all

four models and selected four imaging mid-points, even in the presence of overburden

heterogeneity. The final stacks after 2.5D MF correction (column [e] in Figures 2.6-2.9)

show higher S/N and sharper wavelet compared to the final stacks after other operators

correction (column [c] in Figures 2.6-2.9).

Figures 2.10 and 2.11 show the 2D and 2.5D MF stack images for the synthetic data

with multiple dipping planar (Figure 2.4e) and multiple curved (Figure 2.4f) reflectors,

respectively. The reflectors and interval velocity models are transformed from migrated

depth domain into the stacked time domain to utilize them as reference images. The

columns (a-d of Figures 2.10 and 2.11) show the projected layer interfaces, 2D MF and
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Figure 2.6: Results of applying NMO and 2.5D MF on the synthetic data with the single
sphere reflector (Figure 2.4a). Each row corresponds to different image point locations
on the processing line (First, second, third, and fourth rows are for common midpoint
locations of #100, #200, #300, and #400, respectively.). a) Super gathers, b) NMO
corrected gathers, c) Stacked traces of NMO corrected gathers, d) 2.5D MF corrected
gathers, and e) Stacked traces of 2.5D MF corrected gathers.

Figure 2.7: Results of applying GCDMO and 2.5D MF on the synthetic data with the
single curved reflector (Figure 2.4b). Each row corresponds to different image point
locations on the processing line (First, second, third, and fourth rows are for common
midpoint locations of #100, #200, #300, and #400, respectively.). a) Super gathers,
b) GCDMO corrected gathers, c) Stacked traces of GCDMO corrected gathers, d) 2.5D
MF corrected gathers, and e) Stacked traces of 2.5D MF corrected gathers.
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2.5D MF stack sections, and the projected exact interval velocity model overlayed with

2.5D MF stack image, respectively. Comparing 2D MF stack images (Figures 2.10b

and 2.11b) with reference images of reflectors (Figures 2.10a and 2.11a) disclose that

the 2D MF method could not correct cross-dip effects, and imaged reflections contain

considerable undulations and time shifts. The mismatches between the 2D MF stack

and reference images are indicated with red arrows. These arrows show that the 2D MF

approach was not able to focus reflection at the correct location. Figures 2.10d and 2.11d

confirm that the 2.5D MF method imaged reflections accurately, which are well-matched

with projected interval velocities.

Overall the results in Figures 2.6-2.11 reveal that the proposed 2.5D MF method accu-

rately corrected all of the normal, inline dip, and crossline dip moveout effects simul-

taneously (not sequentially) in different models, even in the presence of heterogeneity.

Figure 2.8: Results of applying 2D MF and 2.5D MF on the synthetic data with the
single curved antiform-synform reflector (Figure 2.4c). Each row corresponds to different
image point locations on the processing line (First, second, third, and fourth rows are for
common midpoint locations of #100, #200, #300, and #400, respectively.). a) Super
gathers, b) 2D MF corrected gathers, c) Stacked traces of 2D MF corrected gathers, d)
2.5D MF corrected gathers, and e) Stacked traces of 2.5D MF corrected gathers.
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Meanwhile, the 2D MF correction is unable to correct the crossline dip moveout effect,

and it requires to follow by applying CDMO correction. Also, the 2.5D MF method pre-

vents the stretching problem allowing to use of full-offset data, leading to an increased

vertical resolution in stacked sections. However, the NMO and GCDMO corrections

cause wavelet stretching for shallow and long-offset reflections that cannot be mitigated

by any of the subsequent corrections and need to be muted. The stacked traces of 2.5D

MF corrected gathers show that the 2.5D MF method accurately places the reflection

event at the correct location and produces stacked reflection data with higher vertical

resolution and S/N than the other methods.

Figure 2.9: Results of applying 2D MF and 2.5D MF on the synthetic data with multi
conflicting reflectors (Figure 2.4d). Each row corresponds to different image point lo-
cations on the processing line (First, second, third, and fourth rows are for common
midpoint locations of #100, #200, #300, and #400, respectively.). a) Super gathers, b)
2D MF corrected gathers, c) Stacked traces of 2D MF corrected gathers, d) 2.5D MF
corrected gathers, and e) Stacked traces of 2.5D MF corrected gathers.
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The corrected super gathers with 2.5D MF method for sphere model in Figure 2.6d show

minor oscillations and misalignments. This is due to the fact that 2.5D MF assumes a

locally planar reflector. Therefore, the proposed approach is well-suited for planar and

gently curved reflectors. Proper implementation of the MF method on strongly curved

reflectors requires a 3D MF algorithm without any assumption about the subsurface re-

flector model. In Figures 2.7 and 2.8, the effects of heterogeneity and different curvatures

Figure 2.10: Results of applying 2D MF and 2.5D MF on the synthetic data with multiple
dipping planar reflectors (Figure 2.4e). a) Projection of reflectors’ interfaces into the time
stack domain, b) 2D MF stack section, c) 2.5D MF stack section, d) Projected exact
interval velocity model into the time stack domain overlayed with 2.5D MF stack image.

Figure 2.11: Results of applying 2D MF and 2.5D MF on the synthetic data with multiple
curved reflectors (Figure 2.4f). a) Projection of reflectors’ interfaces into the time stack
domain, b) 2D MF stack section – the labeled features are discussed in the text, c) 2.5D
MF stack section, d) Projected exact interval velocity model into the time stack domain
overlayed with 2.5D MF stack image.
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have been investigated. The 2.5D MF method is derived based on an auxiliary medium

with constant velocity, and the effects of heterogeneity are accounted for by shifting the

reference time. The effect of vertical heterogeneity was resolved (Figure 2.7d) by precisely

determining the near-surface constant velocity. However, the presence of strong lateral

velocity variation causes misalignments (second row in Figure 2.8d) that can be solved

by transforming the 2.5D MF formulation from the optical domain into the velocity-

shifted effective medium (Schwarz and Gajewski, 2017). Note that the velocity-shifted

moveouts may suffer from wavelet stretching. The GCDMO method is formulated for

planer reflectors in the velocity-shifted domain (Mancuso and Naghizadeh, 2021), and it

was able to correct the heterogeneity effects; however, it could not address the effect of

reflectors’ curvature, which causes minor misalignments (Figure 2.7b).

2.4.3 Computational and Convergence Analyses

Figure 2.12 shows the application of the 2D MF and 2.5D MF methods on the single

sphere reflector model (Figure 2.4a) at midpoint location of #100. Figure 2.12a shows

the exact traveltime reflection surface generated by a ray-tracing algorithm. The 2D

MF and 2.5D MF moveout surfaces are shown in Figure 2.12b and 2.12c, respectively.

The moveout error—the difference between the moveout surface and the exact traveltime

reflection surface—for 2D MF and 2.5D MF methods are shown in Figures 2.12d and

2.12e, respectively. The root-mean-square error for the 2D MF and 2.5D MF methods

are 5.37 and 1.97 ms, respectively. This shows that the 2.5D MF method can generate

more accurate results than the 2D MF method when applied to crooked seismic surveys.

The irregular surface mesh in Figure 2.12 indicates that the data were acquired with

a crooked-line survey, and midpoint locations were distributed irregularly around the

processing line.
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We examined the convergence behavior of the 2.5D MF method for the single strongly

curved sphere reflection synthetic data set at the common midpoint location of #100.

Figure 2.13 displays the convergence graph for ten single independent runs of the DE

algorithm to find the optimal values of 2.5D MF unknown parameters. The DE op-

timization algorithm maximizes the coherency function that is defined using the 2.5D

MF traveltime operator. The maximum coherence value achieved by the DE algorithm

was 6.15× 104 after approximately 1000 evaluations of the objective function. We have

carried out similar convergence and computational cost analyses for all of the simulated

data over the other models shown in Figure 2.4. Overall, in all of our synthetic exam-

ples, the 2.5D MF method performed computationally efficient and estimated wavefield

Figure 2.12: Comparing of applying 2D MF and 2.5D MF methods on the single sphere
reflector model (Figure 2.4a) at midpoint location of #100. a) Reflection surface (Ray
Tracing), b) 2D MF moveout surface, c) 2.5D MF moveout surface, d) 2D MF moveout
error (differences between b and a), and e) 2.5D MF moveout error (difference between
c and a).
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parameters accurately.

2.5 Real data example

We applied conventional NMO, GCDMO, and 2.5D MF stacking methods to a real land

crooked-line data set collected in a thrust-belt area with subsurface complexity. The

length of the profile is approximately 10 km with a line traverse in the N-NE direction.

Figure 2.14 shows the map view of the line traverse that was rotated and transformed

to the origin. The crossline spread of the shot and receiver locations varies between

-220 m and 210 m with respect to the intended line traverse indicated by the black

line representing the receiver locations in Figure 2.14. Shot and receiver intervals are

both 20 m, and their elevations vary between 697 m and 1355 m. The seismic source is

explosive with a charge depth of 15 m at shot locations inaccessible for vibroseis vehicles

Figure 2.13: Convergence graph of the simultaneous global searches of the wavefront
attributes for the 2.5D MF stacking operator using the DE algorithm for ten single
random runs.
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Table 2.2: The processing sequence of the real seismic data set

Process Parameter

Trace balancing
Shot-Receiver Tomostatics Corrections
Refraction Residual Statics Corrections
Geometric Spreading Correction
Time-Variant Spectral Whitening signal passband of 4-48 Hz
Binning
Partial Stacking 50 m offset
Window CMP from 375 to 775
Window time 0.3 to 1.3 s
Stacking Velocity Analysis/Attributes Search
NMO/GCDMO/2.5D MF Correction
Stacking
Bandpass Filter 4-48 Hz
Automatic Gain Control 250 sample window

and vibroseis with a sweep band of 8-72 Hz. The data were acquired by split-spread

recording geometry with 501 channels and a maximum offset of 6,010 m. The fold is

variable along the line traverse, as shown in Figure 2.14. The recoverable signal band in

the shot gathers is 4-42 Hz. Table 2.2 summarises the processing sequence applied to the

field data. Figure 2.15 shows an example of a field record before and after single-channel

signal processing. After the application of signal processing, the recovered reflections are

highly segmented and mostly confined to large offsets (indicated with yellow circles).

Figure 2.14: Survey geometry and super bin fold map
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We used the same preprocessed data to all of the examined methods in order to generate

comparable results. The preprocessed data were binned every 10 m along the processing

line at a maximum radius of 220 m. We built the super gathers by comprising five

nearby CMP gathers. We tested proposed methods on data with the CMP number

range from 375 to 775 (shown with a white dashed box in Figure 2.14) and time window

0.3 to 1.3 s. The CMP and super gathers are used in NMO/GCDMO and 2.5D MF

approaches, respectively. The signal processing and conventional NMO stacking were

performed in GeoThrust. We developed the 2.5D MF algorithm package code in C

using the Seismic Unix framework (Stockwell Jr, 1999). For efficient implementation

of the proposed algorithm, the produced C code package was parallelized using a serial

farming technique with Shell scripting. We estimated the GCDMO’s three unknown

parameters and the 2.5D MF’s four wavefield attributes using DE global optimization

Figure 2.15: Field record before (a) and after (b) single-channel signal processing, in-
cluding shot-receiver and residual statics corrections, geometric spreading correction,
and time-variant spectral whitening
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Table 2.3: The DE optimization algorithm input parameters and lower and upper bound
constrain for the GCDMO and 2.5D MF methods.

Parameter 2.5D MF GCDMO

Window Length of Coherence
Function

50 samples 50 samples

Maximum Number of Generations 30 30
Population Size 50 30
Crossing Over Factor 0.5 0.5
Weighting Factor 0.5 0.5
θx −45◦ < θx < 45◦ −45◦ < θx < 45◦

θy −25◦ < θy < 25◦ −25◦ < θy < 25◦

Vmin,max 1500-6500 m/s 1500-6500 m/s
V0 2500 m/s
RN −1000km < RN < 1000km
RNIP V 2

min(t/2V0)cos2(max(|β|)) <
RNIP < V 2

max(t/2V0)

algorithm. Unnormalized cross-correlation summation is used as the coherence function.

The optimization algorithm input parameters, lower and upper bound constrain for the

GCDMO and 2.5D MF methods are outlined in Table 2.3. Figures 2.16a-2.16c show

the conventional NMO, GCDMO, and 2.5D MF stack sections, respectively. Comparing

the result of the 2.5D MF method with the stack sections obtained using other methods

reveal that the 2.5D MF improved the quality of the stack image and was able to focus

the reflections, which conventional flow could not. The 2.5D MF enhanced the vertical

resolution and S/N of the stack section compared to the GCDMO image. The lateral

continuity of reflections in stack images obtained by GCDMO and 2.5D MF methods

can be improved by imposing smoothness constraints across nearby CMP super gathers.
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2.6 Discussion

The zero-offset 2.5D MF methods express traveltime based on the kinematics of a central

ray (as a function of apparent inline and crossline dip angles of the reflector) and the

moveout correction for a paraxial trace in the vicinity of the central point. The main

limitation of the zero-offset 2.5D MF method is its construction around a zero-offset

central ray (M0Mc in Figure 2.1) and the spherical wavefront assumption. In other

words, similar to the 2D case, the 2.5D MF expression approximates moveouts for a

constant near-surface velocity V0 and locally spherical wavefronts around the zero-offset

central ray. The planar interface (RN = ∞) is only assumed to derive the focusing

parameter σ and relation between RS and RG (Landa et al., 2009). However, equation 1

can also be used for curved reflectors (RN <∞). The 2.5D MF approach is exact for a

Figure 2.16: Comparing stack sections obtained by the a) conventional NMO, b)
GCDMO, and c) 2.5D MF methods.
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dipping planar interface with constant overburden and approximate for all other cases, for

instance, an arbitrary velocity model with curved reflectors. The results from synthetic

data sets showed it could also handle strongly curved reflectors with reasonable accuracy.

In complex subsurface geology, strong lateral velocity variations and/or the presence of

anisotropy can violate the zero-offset ray approximation and reduce the accuracy of this

method for large offsets (Berkovitch et al., 2011). In order to overcome this issue, this

approach can be applied on a finite offset around the central ray and does not require

full offset data in a super gather (Gelchinsky et al., 1999a; Landa et al., 2009). Also, the

extended MF and CRS stacking methods, including spherical MF (Landa et al., 2009),

implicit CRS (Schwarz et al., 2014b), and non-hyperbolic CRS (Fomel and Kazinnik,

2013), are expected to achieve better results in the scenarios mentioned above. However,

these approaches still need to be generalized to crooked seismic line scenarios. This

issue can be theoretically addressed by developing a 3D MF/CRS algorithm without

any assumptions. However, such an algorithm will depend on more unknown wavefield

parameters (eight parameters compared to four parameters of the 2.5D MF method),

consequently increasing the computational cost.

The proposed 2.5D MF method does not require a slant-stack step for removing cross-dip

effects allowing more flexibility for applying other data processing steps before stacking.

By correcting all moveouts (NMO, DMO, and CDMO) simultaneously, we also avoid the

issues of residual moveout effects associated with each individual correction. Also, this

method can be employed to process 3D seismic data. The 3D seismic image volume and

structural information can be extracted from 2D crooked-line seismic data. However, the

lack of an accurate dip-independent velocity model, variable and low-fold coverage, and

noisy data put constraints on the application of conventional 3D processing techniques,

which often leads to low-resolution images on 2D crooked-line seismic data. These issues

can be addressed by the proposed method using a 3D super binning instead of a 2.5D
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Table 2.4: Comparing estimated inline and crossline dips for the multi flat layers model
(Figure 2.4e) at midpoint location of #200.

Exact Values GCDMO 2.5D MF

Parameters θx(
◦) θy(

◦) θx(
◦) θy(

◦) θx(
◦) θy(

◦)
Reflector #1 0.000 0.000 -0.750 -0.582 -0.420 -0.663
Reflector #2 15.000 10.000 12.600 8.119 14.394 10.976
Reflector #3 30.000 15.000 24.634 13.135 30.957 16.560
Reflector #4 45.000 20.000 36.238 16.895 40.449 19.139

super binning along a slalom processing line. This means the super gather traces will

be located inside a 2D polygon (rectangular, square, or hexagonal bins), which can be

significantly larger than the bin sizes in conventional 3D processing leading to a very high

fold gather. Nevertheless, the proposed 2.5D MF method could still focus the energy

from all midpoints to the imaging point without any change in the formula. Note that a

conventional 3D processing approach assumes that the distance between imaging point

and midpoint locations within the bin are insignificant. However, our proposed method

takes into account these distances as they can be significant for a large bin size.

Table 2.4 summarizes the exact and estimated inline and crossline dips using the GCDMO

and 2.5D MF methods for the multi flat layers model (Figure 2.4e) at the midpoint

location of #200. Comparing exact and estimated values demonstrates that the 2.5D

MF method can extract structural information with good accuracy even for layers with

dips over 40◦.

2.7 Conclusions

We proposed a theoretical framework for generating 2D seismic images by collapsing 3D

seismic volumes into a 2.5D plane. We developed a new kinematic expression for the mul-
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tifocusing stacking surface, which depends on four unknown parameters. The derived

2.5D MF formula explicitly takes into account the midpoint dispersion and cross-dip

effects and corrects normal, inline, and crossline dip moveouts simultaneously. This al-

gorithm can perform automatically using a nonlinear global optimization method based

on a coherency objective function. We examined the performance of the new formula on

different synthetic models with various 3D dipping and curved interfaces and heteroge-

neous overburdens. The results indicate that the 2.5D MF method is computationally

efficient and accurate for 3D dipping planar or gently curved reflectors with low to moder-

ate overburden heterogeneity. The 2.5D MF can accurately simulate reflection traveltime

even for strongly curved 3D models with high reflector curvatures in the presence of mod-

erate inhomogeneities of the overburden. The new MF traveltime formula yields more

accurate time shifts and better-flatten reflection events. The proposed method avoids

the duplication of reflections and leads to a more reliable image with a high S/N. The

introduced approach could lead to high-resolution seismic images by extracting 3D struc-

tural information from 2D crooked-line seismic surveys. Applying the proposed method

to real data improved the quality of the stack image significantly, focused steeply dipping

reflections at their correct locations, and imaged them with high clarity compared to the

conventional method. Also, this algorithm brought new reflections to focus that did not

appear in the conventional result.
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Appendix 2-A: Derivation of the 2.5D multifocusing

traveltime

The derivation of the 2.5D multifocusing operator is given below. Based on Snell’s law,

the incident and reflected rays reside in the same plane with the reflector normal. The

source S and the receiver R are coplanar with the reflection point O in a plane (the

transparent blue plane in Figure 2-A.1) with an inclination angle of γ with respect to

the vertical axis (i.e., γ is an apparent dip of the reflector along φ′ + 90◦ direction.).

Therefore, to derive a 2D multifocusing formulation for a crooked-line survey, we can

treat each pair of source and receiver as 2D seismic data acquired in a specific direction.

Overall, the structural parameters, such as dip, define the shape of reflectors in a 3D

space and they are directly related to the wavefront parameters, such as the emergence

angle. Therefore, the problem reduces to connecting the wavefront parameters in 2D

multifocusing to the 3D structural parameters by taking into account the effect of cross-

dip. In a 3D space, a dipping layer can be defined using its true dip and strike or two

apparent dips and the angle between their directions. In this study, we chose the latter

configuration.
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For each pair of source and receiver in a specific direction (Figure 2-A.1), we rewrite

the 2D MF traveltime with the modified emergence angle β′ and the modified radius of

curvature of normal incident point wave R′NIP as follows

t(β′, RN , R
′
NIP ) = t0 +

√
4X2

S +R2
S + 2 RS 4XS sin(β′)−RS

V0

+

√
4X2

G +R2
G + 2 RG 4XG sin(β′)−RG

V0

, (2-A.1)

σ =
4XS −4XG

4XS +4XG + 2 4XS 4XG sin(β′)
R′

NIP

,

RS =
1 + σ

1
RN

+ σ
R′

NIP

, RG =
1− σ

1
RN
− σ

R′
NIP

.

To derive the 2.5D MF formulation, we do not need to modify (alter) the RN because

Figure 2-A.1: 3D Schematic diagram of the modified 2D multifocusing method along the
transparent blue plane that contains the reflection ray S−O−R and normal ray M ′

0M
′
c.
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the radius of the curvature for a curved subsurface structure can be accurately estimated

by locally fitting a sphere (with constant radius) at the reflection point (Landa et al.,

2009). Also, the RN is constant for different incident angles at a specific reflection

segment. Meanwhile, this parameter is ∞ for flat layers. However, parameters β′ and

R′NIP vary for each source-receiver pair. Thus, we need to find functions that connect

these parameters to the inline θx and crossline θy dips. First, we derive a function of the

apparent dip along the source-receiver direction based on the inline θx and crossline θy

dips. This allows us to take into account the distribution of the source and receiver across

the profile (direction variations for each pair of source-receiver) and the cross-dip effect.

Figure 2-A.2 shows the relationship between an apparent dip in a specific direction with

the inline and crossline dips. According to the Figure 2-A.2, the inline θx and crossline

θy dips can be expressed by

tanθx =
h1

x
=

h1

l cosφ′
−→ tanθx cosφ′ =

h1

l
, (2-A.2)

tanθy =
h2 − h1

y
=
h2 − h1

l sinφ′
−→ tanθy sinφ′ =

h2 − h1

l
, (2-A.3)

where φ′ is the angle between the inline and the line that connects source and receiver,

and l is the distance between source and receiver. By summing both sides, we have

(Marfurt and Kirlin, 2000; Gao and Di, 2015)

tanθx cosφ′ + tanθy sinφ′ =
h2

l
= tanβ′, (2-A.4)

where β′ is the apparent dip along SR direction. In the same way, the apparent dip β′′

along the orthogonal to the processing line can be given by

tanβ′′ = tanθx cosφ′′ + tanθy sinφ′′, (2-A.5)
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where φ′′ is the angle between the inline and the orthogonal direction to the processing

line.

In the 2D multifocusing method, the derived stacked image is assigned to the imaging

point known as the central point. For the modified 2D multifocusing algorithm along the

source-receiver pair SR in Figure 2-A.1, the final stacked trace has been assigned to the

central point M ′
0. The distance D between the main imaging point M0 and the central

point M ′
0 leads to a considerable time shift. Figure 2-A.2 shows how we can project

apparent dip β′′ along the central plane to calculate the time shift. By considering the

tetrahedron PMcM
′
cQ in Figure 2-A.2, the time shift for each source-receiver pair can

be expressed as

∆t =
2 ∆RNIP

V0

, (2-A.6)

where ∆RNIP = R′NIP −RNIP , and

∆RNIP = D sinδ. (2-A.7)

Figure 2-A.2: 3D Geometric sketch of a dipping interface and the central plane for the
2.5D multifocusing method.
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Hence, the modified R′NIP can be written as

R′NIP = RNIP +D sinδ. (2-A.8)

Also, we can determine δ based on the previously defined parameters. In Figure 2-A.2,

for the tetrahedron PMcM
′
cQ, we have

∆RNIP

sinδ
=

PQ

tanβ′′
, (2-A.9)

and

cosβ′ =
∆RNIP

PQ
. (2-A.10)

which lead to

sinδ = tanβ′′ cosβ, (2-A.11)

where β′′ and β are function of (θx, θy). β is the inclination of the central plane to

the vertical axis, measured along the true dip direction, and is equal to the true dip θ.

For determining the direction of true dip φ based on two apparent dips (θx, θy) with the

angle of ψ ( = 90◦) between them, we use (Fossen, 2016)

tanφ =
1

sinψ
[
tanθy
tanθx

− cosψ] =
tanθy
tanθx

. (2-A.12)

The strike ϕ = φ ± 90◦ is determined with respect to the inline direction. Finally, for

finding the true dip, we use tanθx = tanθ cosφ, then by substituting φ in this equation

and using cos(atan(x)) =
1√

x2 + 1
, the true dip θ can be determined as

tanθ =
√

tan2θx + tan2θy. (2-A.13)
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Therefore, we can calculate sinδ by substituting equations 2-A.5 and 2-A.13 into 2-A.11.

Finally, ∆t and R′NIP are defined based on θx and θy. By adding the time shift term

(equation 2-A.6) to the 2D MF traveltime (equation 2-A.1) and replacing the modified

emergence angle β′ with equation 2-A.4 and the modified radius of curvature of normal

incident point wave R′NIP with equation 2-A.8, the equation 2.1 can be derived as follows:

t(θx, θy, RN , RNIP ) = t0 +
2 D sin(δ)

V0

+4tS +4tG, (2-A.14)

where

4tS =

√
4X2

S +R2
S + 2 RS 4XS sin(β′)−RS

V0

, 4XS =
√

(XS −XM ′
0
)2 + (YS − YM ′

0
)2,

4tG =

√
4X2

G +R2
G + 2 RG 4XG sin(β′)−RG

V0

, 4XG =
√

(XG −XM ′
0
)2 + (YG − YM ′

0
)2,

σ =
4XS −4XG

4XS +4XG + 2 4XS 4XG sin(β′)
R′

NIP

, RS =
1 + σ

1
RN

+ σ
R′

NIP

, RG =
1− σ

1
RN
− σ

R′
NIP

,

tan(β′) = tan(θx) cos(φ′) + tan(θy) sin(φ′), sin(δ) = tan(β′′) cos(β),

tan(β′′) = tan(θx) cos(φ′′) + tan(θy) sin(φ′′), tan(β) =
√

tan2(θx) + tan2(θy),

R′NIP = RNIP + (D sin(δ)).

The direction cosines of the central ray (M0Mc) are commonly used for determining

wavefront parameters (Figure 2-A.3). These are the cosines of the angles between the

normal to the interface and the three coordinate axes (here, we assumed x,y, and z coor-

dinate axes are along the inline, crossline, and depth [vertical] directions, respectively.)

and can be found as

cosβz = cosθ, (2-A.15)
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cosβy = cosβz tanθy, (2-A.16)

cosβx = cosβz tanθx. (2-A.17)

Figure 2-A.3: 3D Geometric diagram of a dipping interface and a normal ray (as the
central ray) for the 2.5D multifocusing method.
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3.1 Abstract

A high-resolution seismic reflection transect was acquired over a hard-rock geological

setting along an existing roadway in the Larder Lake area of the Superior Craton of

Canada for the Metal Earth project in 2017. This profile, as well as other Metal earth

transects, primarily aims to enhance the knowledge and to better understand the subsur-

face geology of the Abitibi Greenstone Belt within the Canadian Shield. Low impedance

contrast and signal-to-noise ratio (S/N) and the presence of steeply dipping interfaces

and out-of-plane reflections make the imaging and estimation of the velocity-depth model

a challenging task. The irregular distribution of sources and receivers along the crooked

survey line disperses the midpoint locations from the traverse line, leads to variable fold

coverage, and degrades the ability to image in a zone of very low reflectivity. In addition,

the crooked-line geometry results in considerable time- and offset-variant delay among

reflections, which could defocus and deform reflections particularly from reflectors with

a cross-dip component. Also, the crossline spread of midpoints violates the assumption

of a straight-line survey inherent in the derivation of two-dimensional imaging methods.

A recently introduced 2.5D multifocusing (MF) time imaging method is one potential

solution for addressing these long-standing imaging challenges. The 2.5D MF approach

offers more realistic modeling of the zero-offset wavefield by explicitly accounting for the

midpoint dispersion and cross-dip effects. The main practical problem of the 2.5D MF

implementation is the simultaneous determination of the optimal wavefield parameters

for each image point and time location. We address this optimization problem using

a multidimensional constrained differential evolution global optimization algorithm, as

this improves the efficiency and accuracy of the estimation. We have also designed an

efficient processing sequence for MF seismic imaging. The performance of the 2.5D MF

procedure has been examined on a synthetic model, generated using the same real acqui-
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sition geometry. Numerical tests demonstrate that the 2.5D MF technique can produce

a more focused stack with the primary reflections appearing at their poststack correct

locations and the procedure can also provide reliable estimates of interface dips. Due

to the importance and difficulty of imaging the data, several conventional and advanced

processing strategies have been attempted on the transect, specifically: 2D phase-shift

time-migration of a dip moveout corrected stack; 2D prestack Kirchhoff time migration;

swath 3D poststack migration; and our 2.5D MF imaging algorithm. We found that ap-

plying the 2.5D MF stacking algorithm followed by a poststack time migration approach

improved the resolution of the image significantly compared to all the conventional and

advanced methods and identified new reflections. The 2.5D MF method also focused

the steeply dipping reflections more coherently, which resolved ambiguities in geological

architecture by understanding the location and continuity of structures. The method

also accurately extracts 3D structural information and results in an improved S/N.

3.2 Introduction

The Metal Earth project is focused on understanding the processes that control the

differential metal concentration in Archean greenstone provinces at a full crust-mantle

scale (Naghizadeh et al., 2019). A total of 921 km regional-scale deep seismic reflec-

tion transects and 184 km of high-resolution seismic reflection profiles were acquired in

the Superior province of Canada in 2017. The surveys include fifteen regional (termed

R1) and fourteen high-resolution (R2) surveys. The Larder Lake high-resolution survey

was used to evaluate the imaging capability of the surveys with crooked geometry, a

prominent attribute of most of the Metal Earth seismic lines.

The seismic reflection method is considered to be the most accurate and intuitive geo-
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physical prospecting method to image subsurface architecture. It can provide the highest

lateral and vertical resolution (Mooney, 2021) among deep probing geophysical remote-

sensing methods and can maintain high precision to depths of several kilometers. How-

ever, the application of seismic methods in hard-rock settings encounters difficulties due

to the complex geologic structures, complicated near-surface conditions, low and vari-

able fold coverage, noisy environment, and the presence of steeply dipping interfaces and

strong heterogeneities (faults, fracture zones, etc). In addition, interfaces can have low

impedance contrasts, sharp discontinuities can result in numerous diffractions and there

can be interfering out-of-plane reflections. All these factors make the imaging of crooked-

line seismic data from hard-rock settings challenging compared to data from sedimentary

basins (Milkereit et al., 2000; Malehmir et al., 2012). Application of standard 2D pro-

cessing methods often results in poor images in these circumstances (see Nedimović and

West, 2003a; Jodeiri Akbari Fam et al., 2021a) since they are unable to approximate

wavefields accurately and use relatively low-fold data and simplified velocity fields that

limit the S/N improvement (for example Bécel et al., 2015).

In regions with significant geologic complexity and lateral velocity variations, such as

hard-rock geological environments, seismic depth imaging methods are often preferred

to time imaging methods (Yilmaz, 2001; Bräunig et al., 2020; Hloušek et al., 2021).

However, the depth-domain algorithms are computationally expensive and very sensitive

to velocity-depth models. Lack of knowledge of a detailed and accurate velocity model

causes depth imaging methods to lose their convergence properties or produce incorrect

results. An alternative approach to the depth-domain imaging methods is to improve the

time-domain imaging methods. The stacking step plays a key role in the time imaging

techniques, which required a generalized moveout operator that can accurately account

for the source-receiver geometry and correct azimuth-dependent dip-moveouts (Landa

et al., 2009; Schwarz et al., 2014b). Therefore, improving the quality of stack sections
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is an essential research topic that can be achieved by revising the moveout formulation

(Taner and Koehler, 1969; May and Straley, 1979; De Bazelaire, 1988; Castle, 1994;

Alkhalifah and Tsvankin, 1995; Causse et al., 2001; Causse, 2002; Taner et al., 2007;

Schwarz and Gajewski, 2017). These operators, which include normal/dip/cross-dip

moveout (NMO/DMO/CDMO) (Mayne, 1962; Hale, 1984; Nedimović and West, 2003a),

multifocusing (MF) (Gelchinsky et al., 1999a,b), and common reflection surface (CRS)

(Müller, 1999), are based upon a transformation of multicoverage prestack data into a

simulated zero-offset stack section that provides an alternative to the depth-processing

sequence.

The crooked geometry predominately images structures dipping in the plane of the stack-

ing line; the structures dipping off the plane of the stacking line generate reflections that

stack out of phase (Wu et al., 1995; Lundberg and Juhlin, 2011; Hedin et al., 2016). An

irregular spatial geometry of sources and receivers along the survey line with variable

crookedness results in subsurface reflection points dispersal and an uneven fold coverage,

and distributions of offset and azimuth. Problems arising from the variable crookedness

of the survey line are often addressed with patch by patch analysis in the conventional

processing method. In this case, the processor divides the survey line into straight line

segments and then processes each segment independently. Finally, the obtained results

for each segment are integrated to produce the final results. Applying the 2D standard

common-midpoint processing even to a small patch of straight traverse lines could not

resolve the issues associated with the midpoint dispersion along with the crooked sur-

vey. In addition, this strategy might lead to misfits between patches and add numerous

processing and imaging artifacts.

Also, the crooked geometry of seismic lines can result in considerable undulation ar-

tifacts of the imaged reflections, particularly reflectors that are cross-dipped. Various
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cross-dip analysis and correction methods have been proposed for crooked-line seismic

data processing – including a constant shift (Larner et al., 1979), cross-dip moveout

(Nedimović and West, 2003a), iterative cross-dip analysis in the absence of an inline-

dip component (Beckel and Juhlin, 2019), and generalized cross-dip moveout (GCDMO)

(Mancuso and Naghizadeh, 2021). Applying a constant shift trace by trace has been

a commonly used method (Larner et al., 1979) that generally reduces the resolution of

the resulting images. The CDMO method (Nedimović and West, 2003a) can be applied

through a slant-stack transformation after correcting normal and inline dip moveouts.

The cross-dip parameter can be determined using a grid search strategy interactively

(Kim et al., 2014) or automatically. Even though, applying the CDMO method can

partially correct cross-dip effects and improve the stacked sections; the main drawback

is imaging out-of-plane reflections twice in the stack section, called the duplication prob-

lem. The sequential application of the NMO, DMO, and CDMO corrections might cause

interfering of those effects, which results in inaccurate estimates of seismic attributes

and the stacking-velocity field. For instance, the DMO operator may interpret move-

out arising from cross-dip effects as an inline-dip time anomaly, and using these inline-

and crossline-dips would lead to an incorrect velocity field. Furthermore, the slant-stack

transformation prevents applying any further processing after the cross-dip correction

and before stacking (see Nedimović and West, 2003a; Beckel and Juhlin, 2019). An iter-

ative approach (Beckel and Juhlin, 2019) is used to overcome these problems; however, it

has been assumed by Beckel and Juhlin (2019) that the reflector has no inline-dip compo-

nent. In this method, the repetitive flow consists of NMO correction, CDMO correction,

velocity analysis, and DMO correction. This sequence is applied until a high-quality

stack section was achieved. The GCDMO approach can be used for any binning geome-

try and simultaneously corrects the NMO and CDMO effects. The optimal parameters –

including dip-independent velocity, inline dip, and crossline dip – are interactively esti-
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mated using a repetitive grid search within a defined window. This method can suppress

the reflection duplication, however, its accuracy is limited to a maximum of 40◦ and the

interactive aspect makes the method laborious.

The quasi-3D nature of crooked seismic lines enabels us to image 3D complex structures

when the line track is severely deviated. 3D binning and processing methods can be

used to produce a volumetric image from 2D crooked-line seismic data. Application of

the 3D conventional swath processing sequence on 2D crooked seismic data typically

focuses prominent features with more accuracy but usually leads to low-resolution im-

ages. Cheraghi et al. (2020) utilized 2D and 3D prestack time migration and swath 3D

processing methods for imaging another Metal Earths transect. Uneven spatial distri-

bution of midpoints along the survey line, a narrow azimuth source-receiver geometry

with a small aperture in the cross-profile direction are the main obstacles to achieving

a high-quality image cube from a crooked-line seismic traverse (Cheraghi et al., 2020).

Malehmir and Bellefleur (2016) applied 3D swath processing for a 2D crooked-line and

3D seismic data for deep mineral exploration. They showed that 3D data would lead

to better subsurface images than 2D data. Also, they showed that diffractions can be

collapsed at their correct locations with clearer signatures in 3D data.

The weak reflectivities, complex scattering, and noisy data are the main characteristics

of the Larder Lake seismic data (Naghizadeh et al., 2021). The MF methods are capable

of generating high-resolution stack sections in this type of noisy environment and are

better suited to model the moveout of diffracted waves. However, a crooked-line survey

geometry can hamper utilizing MF methods (Jodeiri Akbari Fam et al., 2021a). The

early implementations of MF methods did not consider cross dip effects and horizontal

variation of source and receiver coordinates (or variations in the azimuth of each source-

receiver pair) in 3D space. Therefore, those early approaches cannot be applied for
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crooked-line seismic geometry (Landa et al., 1999; Gurevich et al., 2002; Berkovitch

et al., 2008). For this reason, we developed an algorithm that takes into account the

cross-dip effects, source-receiver azimuth, and coordinates variation in 3D space, called

2.5D MF (Jodeiri Akbari Fam et al., 2021a).

The main purpose of this paper is to apply the novel 2.5D multifocusing method to the

Metal Earth hard-rock seismic data collected in Larder Lake to investigate its robustness

and to compare its results to the conventional and advanced processing methods. We first

discuss the technical and theoretical challenges associated with crooked-line surveying.

The paper will review the theory behind the 2.5D MF algorithm, as well as its advantages

and disadvantages; give a brief explanation of the geological settings over the Larder Lake

area and the acquisition of the seismic data; present the workflow and results of the 2D

prestack time migration, 2D time migration of DMO stack, and swath 3D imaging;

describe the 2.5D MF imaging workflow and how the Differential Evolution (DE) global

optimization algorithm has been adapted to optimally search the wavefield attributes.

The latter step required evaluating the performance of the proposed method on synthetic

data. Finally, a brief interpretation and discussion will be provided.

3.2.1 Technical and theoretical challenges associated with crooked-

line surveying

In this section, we review the theoretical and technical challenges imposed by crooked-

line survey geometries. Crooked lines following existing roads are often employed in

2D seismic surveys to reduce environmental impacts and cost (Malehmir and Bellefleur,

2016). The crooked-line seismic data acquisition can be considered as a pseudo-3D or

2.5D survey that provides useful 3D structural information (Wu, 1996; Schmelzbach
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et al., 2007). However, crooked-line geometry violates the fundamental assumption of

2D imaging algorithms – a straight-line survey with uniform fold coverage and even off-

set distribution. Irregular distribution of sources and receivers along a crooked profile

disperses the reflection point locations from directly below the traverse line and results

in considerable time and offset variant delay among reflections. Variable fold and uneven

offset distribution in crooked-line geometry hamper utilizing 2D conventional common

midpoint and advanced imaging techniques (Wu, 1996). Application of the 2D imag-

ing approaches without an accurate cross-dip analysis not only fails to provide correct

3D structural information but also could lead to unreliable seismic images displaying

transparent zones and defocused reflections, particularly from reflectors with a cross-dip

component. Despite all challenges and pitfalls caused by the crookedness of the survey

line, unlike the straight-line survey, crooked-line profiling can provide crossdip informa-

tion, which plays a key role in structural interpretation (Wu et al., 1995). Therefore,

useful information about 3D geological structures can be extracted from 2D crooked

seismic data. However, it should be considered that the crooked-line survey cannot be a

replacement for a properly designed 3D seismic survey (Malehmir and Bellefleur, 2016).

The 3D schematic diagrams shown in Figure 3.1 illustrate the problems posed by a

crooked-line survey. Figure 3.1a and 3.1c show a crooked-line and a straight-line seismic

surveys. Figure 3.1b shows the correct migrated image for the crooked-line seismic data

along the black slalom traverse line (which is a smooth line fit to the crooked survey

line). The survey lines are shown in blue. The green and magenta dots represent mid-

point locations and reflection points for the entire survey, respectively. The transparent

white plane is the desired imaging plane in the conventional processing method, which is

a vertical plane extending along a straight traverse fit to the survey line. The black ray-

paths are shown for specific common-midpoint bins and their common-midpoint gathers

are displayed in Figure 3.1d. The black points on the surface are the corresponding
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midpoint locations that belong to the selected common-midpoint bin. The reflections

recorded in the common-midpoint gather by the crooked-line survey (Figure 3.1a) are

shown with red wiggles. For comparison purposes, the black reflections collected by the

straight survey line (Figure 3.1c) are superimposed in Figure 3.1d for the same imaging

point location. Comparing the red and black reflections demonstrates how the crooked

line geometry can affect recorded data by adding considerable time and offset variation

among reflections. In this case, the red reflection arrivals are similar to the black at ei-

ther side of the plot, as the location of the source-receiver pairs with far-offsets along the

crooked-line survey are close to their locations in the straight survey line. For interme-

diate offsets, the red arrivals are earlier than the black, because, the path is shorter due

to reflecting from part of the dipping reflector with smaller depth. In the center of the

gather, there are no red reflections because the crookedness of the acquisition line shifted

the midpoints off the selected common bin for the source-receiver pairs with near-offsets.

Rather than imaging a single reflection point all the red reflections contribute to image

the small part of the reflector marked with a dashed yellow circle in Figure 3.1a. A

traveltime moveout operator is required that is able to correct the effects of offset, inline

dip, and crossline dip accurately to focus all the reflections at the correct location with

the least deformation. Comparing the crooked- (Figure 3.1a) and straight-line (Figure

3.1c) surveys shows how crooked geometry can spread the midpoint locations (green)

and reflection points (magenta), which are passing around – behind or in front of the

desired 2D vertical imaging plane. Moreover, the comparison of the reflection raypaths

shown for the same location along the survey lines indicates that the crooked configura-

tion significantly causes out-of-plane reflections. The midpoints for the selected example

bin are shown in black, which spread out in the cross-dip direction in Figure 3.1a, while

they are inherently centered in Figure 3.1c. Collapsing seismic energies associated with

spread midpoints can be challenging for the crooked-line surveys, and it requires an
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imaging method that considers the displacement among the midpoints and the imaging

point located on the traverse line.

Figure 3.1: 3D schematic diagram of a) a crooked-line and c) a straight-line seismic
survey. b) The correct migrated image for the crooked-line seismic data along the black
traverse line. d) The examples of reflections recorded in the common-midpoint gathers
by the crooked-line survey (red reflections) shown in (a) and the straight-line survey
(black reflections) shown in (c). The survey lines are shown in blue. The green and
magenta dots represent midpoint locations and reflection points for the entire crooked-
line survey, respectively. The transparent white plane is the desired imaging plane in
the conventional processing method. The black raypaths are shown for the common-
midpoint gathers displayed in (d).
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3.3 Review of multifocusing method

The MF approach is originally proposed by Gelchinsky et al. (1999a) based on the

homeomorphic imaging theory and classified as a non-CMP-based stacking strategy. The

MF algorithm is a highly-effective stacking method that simulates the zero-offset stack

section by transferring multicoverage prestack seismic data into poststack domain. This

method is a macro-model independent technique and does not require any knowledge of

the subsurface model except the near-surface velocity.

The MF moveout operator is a multiparameter double-square-root approximation of

wavefield traveltime, which depends on wavefield kinematic parameters. The MF formu-

lation offers a more realistic simulation of reflections and diffractions traveltimes com-

pared to the hyperbolic approximations, and MF can improve the resolution of seismic

images and provide higher S/N. Also, this method accurately describes traveltime be-

havior for a wider class of subsurface models, even for strongly curved reflectors and

moderate velocity variations. Shifting in time is the mechanism used in MF methods to

account for overburden heterogeneity in an optical imaging auxiliary medium (De Baze-

laire, 1988; Gurevich and Landa, 2002; Schwarz and Gajewski, 2017). This mechanism

makes MF moveout non-stretching, which helps to avoid distortion or deformation of the

amplitude and phase, particularly important for shallow events at large offsets.

Also, MF can be considered as a method for wavefield analysis, which reliably estimates

wavefront parameters of each seismic event at each imaging point (Landa et al., 1999).

Wavefront parameters, also called kinematic wavefield attributes, are a set of parameters

that describe the propagating seismic wavefront and include emergence angle, radii of

the normal-wave and normal-incident-point curvatures (Hubral, 1983). These unknown

parameters can be estimated automatically using global optimization algorithms. These
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attributes have broad applications in seismic imaging and interpretation. Importantly,

they can be used to determine dip-independent velocities and structural detail such as in-

terface curvature and slope of the events (Landa et al., 2009). In addition, distinguishing

diffractions and multiples are the other notable applications of MF methods.

During the last two decades, different extensions of the MF method have been intro-

duced and employed in a wide range of applications, but mainly utilized to generate

very detailed and high-resolution images in geologically complex areas (Landa et al.,

1999; Gurevich et al., 2002; Berkovitch et al., 2004; Belfer et al., 2008b; Berkovitch

et al., 2008, 2011, 2012b; Borghi et al., 2017; Curia et al., 2017; Chang et al., 2019b).

In addition, other applications include mapping fracture corridors (Landa et al., 2013;

Schoepp et al., 2015), multiple attenuations (Berkovitch et al., 2012a; Chang et al.,

2019a), prestack seismic data enhancement and regularization (Buzlukov and Landa,

2013; Elhaj et al., 2014), diffraction imaging (Berkovitch et al., 2009), etc. The imaging

and preservation of diffractions are crucial for the interpretation of small-scale structural

elements, particularly in hard-rock imaging.

High-fold seismic data set is required to achieve an interpretable image in a hard-rock

setting. Logistic and budget limitations restrict the number of sources and receivers

used in 2D crooked lined profiling. The super bin data gathering can compensate for

the effect of low fold geometry on the quality of the resulting images (Malehmir and

Bellefleur, 2016). In fact, the MF approach constructs a zero-offset stack trace computed

not only from the prestack traces belonging to the selected common-midpoint bin but

also the prestack traces which are arbitrarily located around the imaging position within

neighbouring bins. The accuracy of MF traveltime formulation in simulating far-offset

data makes this strategy possible, which will enhance the S/N of stacked sections through

stacking a much larger number of traces than in conventional CMP stacking.
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The 2D MF methods can be applied for seismic data collected by surveys with arbitrary

source and receiver distributions along the straight profile. However, the early MF

operators did not consider the cross-offset and cross-dip components for crooked-line

configurations, which is necessary for processing seismic data acquired by the Metal

Earth project. Hence the motivation is for testing our new method (Jodeiri Akbari Fam

et al., 2021a), which preserves the azimuth and accounts for the spatial distribution of

the sources and receivers to address CMP dispersal problems.

The 2.5D MF method corrects normal, inline, and crossline dip moveouts simultaneously,

which leads to more accurate time shifts and alignment of reflections. Its formulation

depends on four unknown parameters including the inline dip (θx), crossline dip (θy), ra-

dius of curvature of normal wave (RN), and radius of curvature of normal-incident-point

wave (RNIP ). The proposed method avoids the duplication of reflections, an artifact

produced by the CDMO operator when applied in crossdip analysis, and results in a

more reliable stack section. Removing offset, inline, and crossline dip moveout effects

sequentially will result in interference of these effects and lead to a cumulative error in

the estimation of inline and crossline dips. Consequently, this will lead to inaccurate

velocity fields. For instance, the CDMO operator interprets the residual moveout effects

of normal and inline dip moveouts as a crossline dip moveout or vice versa. However,

the 2.5D MF operator avoids the issues of residual moveout effects by correcting them

simultaneously. As a result, the proposed method can extract true dips from seismic

data, which can be used for structural interpretation and generating dip-independent

stacking velocity fields.

The 2.5D MF method can be applied for 2D, 3D, and crooked-line seismic data with a

flat datum. Therefore, the application of this method on a dataset collected over rough

terrains requires prior source and receiver elevation statics corrections. The diffraction
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volume can be generated by substituting RN = RNIP and converting apparent dips to

the emergence angles in 2.5D MF formulation. Similar to the 2D MF, the 2.5D MF

expression is derived for a constant near-surface velocity by assuming locally spherical

wavefronts. The spherical wavefront assumption limits its accuracy for far offset data

from strongly curved reflectors. Aside from this limitation, the 2.5D MF method can

be considered as a comprehensive solution for stacking crooked-line seismic data, which

can generate high-resolution sections of complex geologic structures in hard-rock settings

and estimate structural attributes (see Jodeiri Akbari Fam et al., 2021a).

3.4 Geological setting of the Larder Lake area, Abitibi

Greenstone Belt

The Larder Lake area, located within the southern Abitibi greenstone belt of the Superior

Province (Figure 3.2), is a greenschist facies metavolcanic belt composed of six major

volcanic successions that range in age from 2750 to 2696 Ma (Ayer et al., 2005). A series

of calc-alkaline to alkaline composite stocks intruded these volcanic successions, coeval

with the deposition of two sedimentary basins: the coarse clastic Timiskaming-type

basin (2679–2669 Ma) (Ayer et al., 2005) and the fine turbidite dominated Porcupine-

type basin (2690–2685 Ma). On a regional scale, these basins are spatially associated

with major crustal-scale structures such as the Cadillac-Larder-Lake deformation zone

(CLLDZ) (Figure 3.3) and the Porcupine-Destor deformation zone (PDDZ) (Frieman

et al., 2017). In the Larder Lake area, the regional R1 seismic survey (Figure 3.3) strikes

N-S for 42 km (49 km on roads) and at its northern end transects the Ben Nevis volcanic

complex, part of the Blake River Group (2701 ± 3 –2698.5 ± 2 Ma) (Peloquin et al.,

2008). These rocks are unconformably overlain by conglomerates, arkosic sandstones,
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and trachytic volcanics of the Timiskaming assemblage, (2679 – 2669 Ma) (Ayer et al.,

2005). A sequence of mafic-ultramafic volcanic rocks of the Larder Lake group (circa

2705 Ma; 2710–2704 Ma) (Ayer et al., 2005) lies within the Timiskaming assemblage

and the contact is associated locally with the CLLDZ. This major crustal-scale structure

strikes E-W for approximately 250 km and steepens to near-vertical in the Larder Lake

area (Figure 3.3) (Poulsen, 2017). The high-resolution seismic survey transects 11 km of

a complexly folded, sedimentary basin composed of volcanic and sedimentary rocks and

a series of felsic intrusions, which is fault-bounded in the north by the CLLDZ and in

the south by the Lincoln Nipissing shear zone (LNSZ) (Figure 3.3).

Previous regional mapping in the area of the high-resolution survey (Figure 3.3) has

defined volcanic rocks of felsic, mafic and ultramafic composition, assigned to the Larder

Lake group, that are unconformably overlain by younger clastic sedimentary successions

of the Hearst or possibly Timiskaming assemblage (Thomson, 1943, 1946; Hewitt, 1949,

1951, 1963; Jackson et al., 1991, 1994). The Hearst assemblage (circa 2700 Ma) (Ayer

et al., 2002) comprises greywackes, arenites and local conglomerates, that are considered

part of the Porcupine assemblage (Ayer et al., 2005). Intruded into all these units are

mafic diorite, gabbro and a suite of felsic intrusive rocks, which range from syenite to

granodiorite in composition (Figure 3.3).

3.5 Seismic data acquisition of the Larder Lake R2

records

In the Larder Lake transect area, the R2 seismic profile is located primarily in the south-

ern half (Figure 3.3). The surveys are designed to cross complex geological structures
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mapped in the Larder Lake study area (Figure 3.3). The regional R1 survey of Larder

Lake extends further to the north (and south) along the same traverse line (Figure 3.3).

Figure 3.4 summarizes the geometry of the survey.

Table 3.1 summarizes the acquisition geometry of the Larder Lake R2 seismic line. The

survey was acquired along a crooked line geometry due to logistical reasons and environ-

mental restrictions, which led to the midpoints distribution in both inline and crossline

directions of the survey (Figure 3.4). The profile length is about 12.5 km and the nominal

Figure 3.2: Location of the Larder Lake study area on the geological map of the Abitibi
subprovince (Ayer et al. 2002). Inset shows the location of the Abitibi subprovince on a
Canada map; rectangle marks the area of Figure 3. CLLDZ is the Cadillac–Larder Lake
deformation zone. M, N, S, T locate the Matagami, Noranda, Selbaie, and Timmins
mining centers, respectively.
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Figure 3.3: Geological map of the Larder Lake area. The route of the regional seismic
survey (R1) is shown in blue, and overlaying this in red is the location of the high-
resolution survey (R2). The location of the study area is shown in the inset.
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maximum offset for processing is 10 km. The sources and receivers are placed with the

split spread geometry along the crooked survey line (the solid thick black line in Figure

3.4) with intervals of 6.25 and 12.5 m, respectively. The vibroseis trucks were employed

to generate four 28-second sweeps with the frequency bands of 2 to 120 Hz and for shot

spacing of 25 m. An array of wireless single-vertical-component geophones were used to

record seismic data for 12 s with a sampling rate of 2 ms. However, since the R2 survey

focused on the upper crust, only 4 s of data was utiused in the processing.

Figure 3.4: Distribution of midpoints (coloured by the offset in meters) along the R2
survey acquired in the Larder Lake area, used for the a) conventional and b) 2.5D MF
processing flows. In figure (a), the midpoints are shown for the sources deployed along
the R2 line and receivers activated on R1+R2 surveys. The solid blue straight (labeled
A) and dashed yellow slalom (labeled B) lines are the traverse lines used for the 2D
conventional seismic imaging and 2D prestack Kirchhoff time migration, respectively.
Some CMP bins are numbered on the straight CMP line. The dashed rectangle marks
the area considered for the swath 3D processing. The inline 1045 and crossline 1065 and
1230 from the 3D processing cube are explained in the text. In figure (b), the midpoints
are shown for the sources and receivers planted only along the R2 line. The solid blue
slalom line is the traverse line used for 2.5D MF processing flow.
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Table 3.1: The survey geometry of the Larder Lake R2 seismic line.

Parameter Specifications

R2 profile length 12.5 km
Spread type Split spread
Recording instrument Geospace GSX Node
Geophone type 5 Hz, single vertical component
Source type Vibroseis
Number of sources in an array 3
Sweep length 28 s
Number of sweeps 1, For shot spacing of 25 m,

four sweeps are acquired.
Source starting/ending frequency 2 / 120 Hz
Field low/high cut recording filter 2 / 207 Hz
Recording length 12 s
Sampling rate 2 ms
Source interval 6.25 m
Receiver interval 12.5 m
Nominal maximum offset for pro-
cessing

10 km

Figure 3.4 shows the distribution of midpoints (coloured by the offset in meters) along

the survey acquired in the Larder Lake area and the fitted traverse lines (also called CMP

lines), used for the conventional (a) and 2.5D MF (b) processing flows. In Figure 3.4a,

the midpoints are shown for the sources deployed along the R2 line and the receivers

that were activated (these were identical for the R1+R2 surveys). The blue straight line

(labeled A) was used for the 2D DMO processing, with some CMP bin numbers being

labeled. The dashed yellow slalom line (labeled B) was generated by repeatedly applying

a mean filter to the R2 receiver line. This line was used for the 2D DMO processing and

2D prestack Kirchhoff time migration. The dashed rectangle marks the area considered

for the swath 3D processing. In Figure 3.4b, the midpoints are shown for the sources

and receivers planted along the R2 line only. The solid blue slalom line represents the

processing line used for 2.5D MF processing flow. This traverse line was generated based

on the midpoint locations using a low-order polynomial regression approach, which can
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reduce the midpoint dispersion effects and imaging artifacts by minimizing cross-shifts

(see Table 1 provided by Jodeiri Akbari Fam et al. (2021a)) optimally for most of the

midpoints.

3.6 Imaging of the Larder Lake R2 seismic survey

The Larder Lake area has been one of the main interests of the Metal Earth project. Due

to the importance and difficulty of the study area, various conventional and advanced

processing strategies have been employed by different processors to image the Larder

Lake transect with high resolution. In this section, we will present the results.

3.6.1 2D conventional seismic imaging

The seismic processing sequences used in the 2D conventional and 2.5D MF imaging

flows are outlined in Table 3.2. Prior to setting up the geometry, the field records were

first converted from SEGD to SEGY format, and then the recording quality was checked.

In most field records, first arrivals are clearly visible in far-offsets, which demonstrates

solid coupling of geophones to the ground and sufficient source strength to propagate

waves to distant locations. A complicated basin over a complex subsurface hard-rock

setting with low-impedance contrasts led to field-shot records that showed only a limited

number of reflections, with poor S/N. The reflections are from subhorizontal and steeply

dipping interfaces with both inline and crossline dip components. Also, numerous out-

of-plane reflections were believed to have been recorded by the survey. Figure 3.5 depicts

an example of the field record before and after signal processing and static corrections.

This figure demonstrates how challenging it can be to extract signals from this field
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data with weak reflectivity and low S/N. In some of the shot gathers, reflections were

captured and can be observed in processed data, for instance, see the retrieved reflection

indicated with black arrows in Figure 3.5b. In this example, a high level of random and

coherent noises would not allow the recorded reflection to be seen coherently in the data

prior to signal processing (Figure 3.5). Spectral analysis was also performed and showed

that the raw field data contain information within the expected frequency range from 5

to 130 Hz.

After inspection and editing the traces manually, we picked the first arrivals with offset

up to 10 km using an automatic algorithm followed by a manual modification. Next,

we performed refraction static analysis to calculate time delays necessary to correct the

Figure 3.5: An example of the field record before (a) and after (b) signal processing and
static corrections.
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effect of low velocity overburden in wave propagation (Juhlin, 1995). The initial near-

surface velocity model consisted of a layer with a velocity of 1000 m/s and a replacement

velocity of 5200 m/s. The time delays were calculated with a maximum offset of 3000

m, and then the elevation and refraction statics corrections were applied. In order to

recover signal amplitudes attenuated with depth, a spherical divergence was used. Next,

we designed a median velocity filter to attenuate some seismic events with velocities of

1400, 2500, and 3000 m/s. Also, by considering the frequency content of the raw data

(i.e., 5-130 Hz), a band-pass filter was used to preserve wave energy within a range of 35-

120 Hz. This frequencies range would allow imaging potential reflections and attenuate

low-frequency random and coherent noise such as ground roll (Yilmaz, 2001). A median

filter was also applied to attenuate ground roll and shear waves. Then, a notch filter

was used to remove 60 Hz data associated with noise with constant frequency. The low-

frequency and low-velocity coherent noise, possibly surface waves, which were remained

and had not been attenuated, were muted. We used the same signal processing and static

corrections mentioned above for the 2.5D MF imaging. We applied a surface consistent

deconvolution filter (length of 100 ms and gap of 17 ms) to increase vertical resolution

by reducing the effect of the source wavelet. Trace balancing and automatic gain control

were applied to recover the amplitude of attenuated signals. Then, the first arrivals were

muted using a cosine-taper.

To image crooked-line seismic data, determining a proper traverse line (CMP line) is a

crucial step prior to binning and stacking, particularly for a survey with a broad spread

of midpoints in the crossline direction. A CMP line needs to be fitted to midpoint

distribution such that it minimizes the cross-offset effects and partly address the problems

of and uneven distribution of offsets and fold coverage. Based on the capability of each

imaging methods, we examined both straight and slalom traverse lines. For applying

2D conventional stacking, we selected a straight traverse line (CMP line A) with a
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Table 3.2: The processing sequences applied in the conventinal and multifocusing flows.

2D/3D conventinal flows 2.5D multifocusing flow

Reading data in SEGD format and converting them to SEGY format
Setup geometry
Trace editing (manual)
First arrival picking (near and far offsets)
Elevation and refraction static corrections a

Spherical divergence compensation (V 2t)
Median velocity filter (1400, 2500, and 3000 m/s)
Band pass filter (20-35-100-125 Hz)
1D median filter to remove the ground roll and shear waves (Airwave filter)
Notch filter to remove 60 Hz frequency
1D linear filtering to remove remaining low-velocity noise
Surface-consistent r deconvolution
Trace balancing Trace balancing
Automatic gain control (window of 150 ms) Down sampling to 4 ms
Top-muting to remove first arrivals Top-muting to remove first arrivals
Common-midpoint bining b Super common-midpoint bining c

Velocity analysis Wavefield attributes analysis
Smoothing velocity field Smoothing attributes along reflections
NMO+DMO corrections 2.5D MF correction
Residual static correction Residual static correction
Top-muting to remove first arrivals
Stacking Stacking
Coherency filter (F-X deconvolution, filter
length of 19 traces)
Trace balancing Trace balancing
Phase shift time migration (5000 m/s) Kirchhoff time migration

a Replacement velocity: 5200 m/s, floating datum level: 340 m, V0: 1000 m/s
b CMP spacing for 2D bining: 6.5 m, cell size for 3D bining: 50 m by 50 m
c Compromises of 5 nearby CMP gathers and CMP spacing of 10 m
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CMP interval of 6.2 m, which is along the longest axis of the midpoint cloud (Figures

3.4a). After binning data along the straight CMP line, we performed velocity analysis to

generate a velocity field for DMO corrections. We then calculated and applied residual

static corrections to enhance the coherency of the reflections by reducing the effects of

the short-wavelength near-surface velocity variations.

In the conventional processing sequence, dip moveout analysis is required to estimate dip

independent velocity, particularly for imaging shallow/deep steeply-dipping reflections

(Schmelzbach et al., 2007). For 2D conventional imaging of the Larder Lake data, the

sequence of DMO stacking followed by phase-shift time migration was used, the same

as the processing steps proposed by Schmelzbach et al. (2007). The DMO velocity

analysis consists of three steps including 1) generating DMO stack panels for a range of

constant velocities to construct a stacked volume, 2) picking velocity functions from the

semblance spectra that generate more coherent reflections, and 3) constructing a stacking

velocity field by interpolation and then smoothing of the velocity functions. The resulting

velocity field ranges from 5500 to 6500 m/s. We did not have access to petrophysical

measurements from the Larder Lake area to use as constraints in velocity field building.

Overall, the estimated velocities are typical for crystalline environments (Salisbury et al.,

2003). The crossdip events significantly affected velocity analysis and the performance

of the DMO correction. Therefore, the crossline illumination components needed to be

considered in the moveout correction. Crossdip moveout analysis was then applied, but

could not enhance the quality of the section due to the complexity of the subsurface.

After stacking, a coherency filter (F-X deconvolution) was also applied to enhance the

quality of the stack section. We tested various algorithms to perform poststack migration

including Stolt, finite difference, and phase-shift migration methods (see Yilmaz, 2001

for detailed information about the methods). We observed that the phase-shift migration

with constant velocity resulted in the most coherent images with fewer migration artifacts
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compared.

The final DMO stacked and the migrated seismic sections along the Larder Lake R2

line are shown in Figure 3.6 (see Figures 3.3 and 3.4a for the location). A time to depth

conversion using the estimated velocity field gives a maximum depth of approximately 12

km. The northern end of the R2 survey (Figure 3.3) is located at the LLCDZ (Larder-

Cadillac deformation zone), but structures directly associated with the local LLCDZ

were apparently not imaged due to its assumed near-vertical structure. The R2 survey

terminates at its southern end approximately 1 km north of the LNSZ (the Lincoln-

Nipissing shear zone, Figure 3.3). This structure, which is poorly understood, dips

steeply to the north and, depending on the geometry of this structure at depth, may

project onto and be expressed on the seismic survey despite the apparent distance away

from this structure on surface (Figure 3.3). The sharp, vertical truncation of prominent

reflections at 0.6 s and CMP 200 (most evident on the migrated section) suggests a

near-vertical fault splay perhaps related to the LNSZ.

The structural basin through which the Larder Lake R2 survey traverses is poorly under-

stood due to the structural complexity of this basin and the lack of detailed structural

analysis. This is owing to a lack of accessibility into the area, limited surface exposure

of the rocks, and no available borehole data. The migrated seismic section of the Larder

Lake R2 line imaged a package of shallowly north-dipping reflections at times of 1.8-2.5

s over ∼ 5 km of the section at CMPs 100-900 (see Figure 3.6). These reflections may

mark the base of the metavolcanic and successor basin rocks of the Hearst assemblage.

A series of tight antiforms, apparently stacked vertically along the northern limit of the

seismic section (at times of 0.1-0.6 s and CMP 1400-2000 on the migrated section), may

represent deformation associated with the nearby LLCDZ.



98

Figure 3.6: a) DMO stack and b) migrated stack time sections along the CMP line A in
which one prominent package of subhorizontal reflections is observed at 2 s. See text for
its interpretation. Rock types mapped or inferred at the surface of the survey path are
shown at the top of each section with no dips of contacts implied.
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3.6.2 2D prestack Kirchhoff time migration

The crossdip analysis (Nedimović and West, 2003a) failed to enhance the resulting images

in the Larder Lake area with complex subsurface geology. In such scenarios, applying

the 3D prestack time migration (PSTM) method for processing crooked surveys can be

considered as a suitable solution (Nedimović and West, 2003b). However, the 3D PSTM

method is computationally expensive and requires an accurate dip-independent RMS

velocity field. Also, for applying the 3D PSTM method, an additional step, seismic data

reconstruction, is required to regularize the midpoint locations of data for reducing the

negative effects posed by the midpoint dispersion problem (Biondi, 2006). Compared to

the 3D PSTM method, the 2D PSTM method is computationally less expensive but still

suffers from the midpoint dispersion problem. In this section, we will test the application

of the 2D prestack Kirchhoff time migration method for the Larder Lake survey.

Table 3.3 listed the processing flow used for applying the 2D PSTM method, which was

developed and executed commercially by a seismic processing company. This processing

flow was designed to have a final shot point spacing of 25 m and a receiver spacing

of 12.5 m. Therefore, every four field records were stacked such that a nominal shot

point interval of 25 m was achieved before the final geometry assignment and start of

the processing flow. Note that only shot stations were stacked, receiver stations were

recorded at their desired intervals.

The quality of field records was controlled, reversed traces were edited manually, and

bad records were discarded. The first breaks were then interactively picked and used for

analyzing the geometry errors using a geometry predictor. After correcting the geom-

etry, the data was sorted and binned along the traverse line (the dashed yellow line in

Figure 3.4a). The CMP line was generated by applying a smoothing filter to the receiver
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line, such that did not deviate much from the survey path and followed the midpoints

distribution aisle. This proved to be one of the challenging steps and required several

iterations to achieve an effective plausible solution described above. A minimum phase

filter was created and applied using the recorded sweep trace to remove the effect of the

sweep and to convert the vibroseis data to the minimum phase before deconvolution.

Then, an ensemble balance (a single scalar for each input of ensembles) was applied to

minimize the variation in amplitudes between shot records within a given dataset. A

time-frequency domain random- and linear-noise suppression technique was employed to

attenuate high amplitude noise presents in the field records. Time and offset variant

gain functions were applied to recover the amplitude and compensate for the amplitude

attenuation due to wavefront spreading and attenuation. A spectral analysis was per-

formed on the raw field data to identify harmonic noise. In this region, the main source

of harmonic interference was considered possibly to be due to high voltage power trans-

mission lines. A strong 60 Hz noise train was present throughout the data, which was

rejected using a notch filter.

After some initial testing, a surface consistent deconvolution filter with an operator

length of 160 ms and pre-whitening of 0.1 percent was designed within windows where

noise (such as ground roll, air blast, and first break reverberations) had been excluded.

As such, the design gate was optimized by interactively picking and reviewing the win-

dow along the line. An anomalous frequency suppression was applied in the frequency

domain. Also, a single-window trace by trace amplitude balancing function was applied

for trace equalization. The first break picks were used to build an initial near-surface

velocity field, and then tomography was executed to calculate the near-surface veloc-

ity field. A replacement velocity of 5600 m/s and a flat datum of 500 m were used

in the final static calculations. After statics corrections, a sequence of velociy analysis

and surface consistent residual static calculation were performed iteratively on super
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common-midpoint gathers (a specified number of nearby CMPs) (see Table 3.3 for more

details). For comparison with the results of other processing flows, the NMO correction

and stacking was applied to produce a stack section along the traverse line. The stack-

ing operator excluded 10% of the highest and lowest sample values contributing to each

CMP. The resulting stack section is shown in Figure 3.7a.

After signal processing and long/short wavelength statics corrections, prestack velocity

analysis was carried out with incremental velocity changes of 2%. The migrated stack

panels and gathers (70-130 every 2%), were created and used for prestack migration

velocity analysis. Such precision in prestack velocity analysis (only 2% incremental ve-

locity changes compared to coarse changes in velocity analysis for stacking and poststack

migration) often result in an accurate RMS velocity field, which is crucial in prestack

migration. Afterward, the prestack time migration was applied with a migration angle

of 65 degrees and a maximum aperture of 10 km. The PSTM operator migrates each

trace to the corresponding output CMP bin center by accounting exactly for its spa-

tial coordinates of source and receivers and for any variations in elevation. The severe

crookedness of the survey line dispersed the midpoints and resulted in very large CMP-

CDP distances, particularly for reflectors with the crossdip component. These large

distances would prevent the cancellation of off-line energy during the prestack migration

process leading to a less than optimal result. Therefore, the PSTM method was applied

for traces with a CMP-CDP distance of up to 500 m. After CDP stacking, a limited

aperture τ − p transform was applied to the final sections to enhance the coherent seis-

mic events. A zero phase, bandpass filter of 6-12-25-40 Hz was determined most suitable

for the final displays. In addition, to achieve a well-balanced section, a trace-by-trace

multi-gate scalar was used with a rolling gate of 1000 ms and a 500 ms overlap. The final

PSTM image is shown in Figure 3.7b. The poststack Kirchhoff time migration was also

applied on the stack section (Figure 3.7a). The result was almost similar to the PSTM
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Table 3.3: The processing sequence used for applying the 2D prestack Kirchhoff time
migration, designed by a commercial seismic-processing company.

Process Parameter/Explanation

Field data reformat
Stacking of shot stations
Geometry (crooked line binning)
Trace kills and reversals
Minimum phase conversion to convert the vibroseis data to minimum phase
Ensemble balance to minimize the variation in amplitudes between

shot records
Linear and erratic noise suppression
Amplitude recovery time and offset variant gain functions + gain cor-

rection (g(t) = t1.5)
Harmonic noise suppression 60 Hz
Surface consistent deconvolution an operator length of 160 ms and pre-whitening

of 0.1 percent
Anomalous frequency suppression output band of 5-100 Hz
Trace equalization trace by trace amplitude balancing function
Refraction analysis a replacement velocity of 5600 m/s and floating da-

tum level of 500 m
Velocity analysis b

Surface consistent residual statics correlation window 2000-9000 ms, static shift
+/− 68 ms, correlations per trace 15, number of
iterations 3

Velocity analysis b

Surface consistent residual statics correlation window 1000-9000 ms, static shift
+/− 48 ms, correlations per trace 15, number of
iterations 3

Velocity analysis b

Normal moveout and mute
CMP stack
Prestack velocity analysis
Prestack time migration (PSTM) a migration angle of 65 degrees and a maximum

aperture of 10 km, Limit the CMP-CDP distance
to 500 m for the prestack time migration

CDP stack
Noise attenuation a limited aperture τ − p transformation
Filter/trace equalization c a zero phase, band pass filter of 6-12-25-40 Hz

a Offsets up to 5 km were used to generate the refraction model and statics. Offsets up
to 15 km were used to obtain an initial near surface model and then tomography was
run to calculate the near-surface velocity field.
b performed on super common-midpoint gathers.
c a trace-by-trace multi-gate scalar with rolling gate of 1000 ms and a 500 ms overlap
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section shown in 3.7b, which indicates that the PSTM method was unable to improve

the resolution of the crooked-line seismic data. Two factors prevented us benefitting

from the potential of the 2D prestack time migration to produce a high-quality image.

The first reason was the 3D nature of crooked-line seismic data, and the second was that

the dip-independency requirement of the RMS velocity field was not fulfilled.
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Figure 3.7: a) NMO stack and b) prestack time migrated sections (commercially pro-
cessed seismic imaging results) along the CMP line B in which one prominent package
of subhorizontal reflections is observed at 2 s in the southeast. Rock types mapped or
inferred at the surface of the survey path are shown at the top of each section with no
dips of contacts implied.
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3.6.3 Swath 3D seismic imaging

A significant number of trace midpoints are placed off the fitted traverse line, prominently

in the crossline direction (see Figure 3.4). Therefore, accounting for the cross-offset and

cross-dip effects are required to accurately image reflectors dipping in the crossline direc-

tion. One can consider the effect of off-line midpoints using 3D binning and processing

flow, which allows generally resolved data-driven reconstructions of the subsurface (Ned-

imović and West, 2003a,b; Malehmir et al., 2012; Malehmir and Bellefleur, 2016). Note

that the 3D wave sampling criteria cannot be completely fulfilled by swath 3D surveys,

which leads to imaging with less capability than by conventional 3D surveys (Vermeer,

1998).

We utilized the processing workflow provided by Hedin et al. (2016) and Malehmir et al.

(2011) to apply the swath 3D imaging algorithm in the Larder Lake R2 survey. The 2D

preprocessed field records were input into the proposed flow. Then, the midpoints were

sorted into regular common bins. We conducted bin size analysis with sizes ranging from

20 to 50 m to investigate which can result in a 3D stack volume with high quality. The

dashed black rectangle in Figure 3.4a shows the surface projection of the selected 3D

processing area. The best result was achieved with square bins with a size of 50 m by 50

m. Next, we iteratively performed velocity analysis to build a reliable 3D velocity field.

Finally, the phase-shift migration was applied in both inline and crossline directions of

swath 3D surveys to generate a volumetric image from crooked-line seismic data. A

coherency filter (F-X deconvolution) was also applied in both directions to enhance the

quality of the images. After each step of inline and crossline migrations, the bins without

midpoints are muted. This would help to reduce the artifacts generated by the migration

process and the coherency filter, which could smear noise to empty bins.
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The 2D section from the Larder Lake area showed one package of reflections at times

of 1.8-2.5 s. Two 3D views along inline 1045 are shown in Figures 3.8 and 3.9. Inline

1045 (shown with the dashed black line on Figure 3.4a) roughly coincides with the

straight and slalom 2D processing lines shown in Figure 3.4a. Figures 3.8 and 3.9 imaged

subhorizontal reflections at times of 0.5-1 s and also at the time of∼ 2.5 s in the south and

north of the area. Both sets of subhorizontal reflections in the south continue towards

the north and east along inline 1045 and crossline 1065, respectively (Figure 3.8). The

prominent reflections along the 2D section of the Larder Lake area shown in Figure 3.6

are also imaged in 3D as a package of subhorizontal reflections at the time of ∼ 2.5 s.

The swath 3D processing imaged some reflections in the area close to the LNSZ and LL-

CDZ (Figures 3.8 and 3.9), which are a poorly understood structure and can be confirmed

using the coincident regional line (Naghizadeh et al., 2019). The reflections observed in

the southern part (Figure 3.8) can be correlated tentatively as part of the LNSZ (Figure

3.3) and most likely represent its expression along a possible linked detachment fault at

depth. The reflections at the northern part of the area (Figure 3.9) continue in the south

and east directions near the location where inline 1045 and crossline 1230 intersect (see

Figure 3.4a for the location). This set of reflections could be related to tight folding in

the vicinity of the LLCDZ (Figure 3.3).

3.7 2.5D multifocusing method

3.7.1 Processing workflow

Figure 3.10 summarizes the processing workflow designed for applying the 2.5D MF

algorithm to produce high-resolution stack and prestack/poststack time migrated images.
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After signal processing, the near-surface velocity-depth model is estimated, and source-

receiver tomo-statics corrections are calculated and applied. Next, the data is sorted

into common-midpoint bins. The conventional velocity analysis is performed to build

an initial stacking velocity field. This stacking velocity field will be used to determine

constraints on the search range for RNIP in the wavefront attributes estimation. Next,

the Fresnel zone is analyzed to define an optimal aperture for building super common-

midpoint bins (see next section for details). Practically, one can try several candidates

for the midpoint aperture until good results are achieved, similar to the estimation

of the offset aperture. Then, the processed field records are sorted into multi-coverage

super common-midpoint gathers. The next step involved adjusting the parameters of the

global optimization algorithm and determining the constraints for unknown parameters,

which controls the search operator. The adjustment can be performed based on prior

geological knowledge and legacy data. The globally optimal wavefield attributes are

estimated (see section 6.1.2 for details) using global optimization algorithms such as the

Figure 3.8: Three-dimensional perspective view of Larder Lake survey using Inline 1045,
crossline 1065, and time slice 2500 ms. See text for interpretation.
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Figure 3.9: Three-dimensional perspective view of Larder Lake survey along Inline 1045,
crossline 1230 and time slice 2500 ms. See text for interpretation.

differential evolution method (see Appendix 3-A) or the very-fast simulated annealing

method (Jodeiri Akbari Fam and Naghizadeh, 2019). This step requires several iterations

to adjust the constraints and fine-tune searching parameters to achieve accurate solutions

effectively. Next, the 2.5D MF moveout correction is applied using estimated optimal

attributes. The alignment of reflections can be improved by residual static corrections.

Partial stacking also can enhance the S/N and would yield more coherent reflections.

The enhanced 2.5D MF corrected super gathers are stacked to produce an accurate

representation of the zero-offset wavefield. Finally, migration velocity analysis can be

performed to build dip-independent velocity fields for prestack/poststack migration using

standard methods.
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3.7.1.1 Fresnel zone analysis and super common-midpoint

binning

Determining the optimum aperture in the super common-midpoint binning procedure,

(a) optimizes the computational cost, (b) improves the S/N, and (c) produces sharper

and high-resolution stack sections (Schleicher et al., 1997). Due to the limited bandwidth

of seismic waves, reflections do not have an infinitesimally small common reflection point

but also reflect from adjacent points on the reflector located within a finite area around

the reflection point which is called a Fresnel zone (Heilmann, 2007; Mann, 2002). In other

words, the Fresnel zone is a measure of lateral resolution which indicates the smallest

horizontal size of a subsurface segment that can be imaged (Hubral et al., 1993).

In the MF methods, each zero-offset trace is constructed by stacking traces that belong

Figure 3.10: The processing workflow designed for the 2.5D MF algorithm.
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to a super gather. Each super gather comprises several nearby CMP gathers within the

limits of a certain span in the vicinity of the central (imaging) point on the recording sur-

face. The MF moveout correction is based on the spherical approximation of wavefronts

and the correction is exact for a single dipping planar reflector under a homogeneous

overburden. Also, the MF correction is accurate for any curved reflector that can be ad-

equately approximated by an arc of constant curvature at the reflection points (Gurevich

and Landa, 2002). However, if these conditions are violated, the spherical approximation

of wavefronts is no longer valid (such as the presence of a fault and sharp changes in the

overburden). Therefore, MF stacking may smear any sharp reflection discontinuities.

For maintaining a good spatial resolution of generated sections and true-amplitude imag-

ing, there are two criteria that have to be taken into account to control the size of the

super binning aperture: 1) the size of the Fresnel zone and 2) the size of the parax-

ial vicinity. The first criterion defines the maximum aperture which contains rays with

wavefronts that interfere constructively at the receiver and can be used for imaging with-

out loss of lateral resolution (Heilmann, 2007; Mann, 2002). The size of the Fresnel zone

depends on the frequency content of the data, which, in turn, controls the maximum

achievable resolution. In principle, defining these apertures in a data-driven way can be

estimated using Fresnel zone analysis. But in practice, it is not easy to estimate the size

for arbitrary inhomogeneous media with curved interfaces (if at all possible) (Berkovitch

et al., 2012b). The second criterion defines the aperture for which a maximum S/N can

be achieved by constructive stacking while the MF traveltime approximation is suffi-

ciently valid. The latest criterion implicitly depends on the complexity of the unknown

subsurface structure and is difficult to evaluate. The aperture can be estimated in two

ways: 1) estimating the size of the projected first Fresnel zone, which addresses the

first criterion (Berkovitch et al., 2009; Heilmann, 2007; Mann, 2002) and 2) subsurface

aperture analysis, which can account for both criteria (Gurevich and Landa, 2002).
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In the first method, the aperture area is determined by the size of the first projected

Fresnel zone (Berkovitch et al., 2008). Hubral et al. (1993) demonstrated how the pro-

jected Fresnel zone for zero-offset rays can be estimated from properties of the central

ray. Later, Schleicher et al. (1997) published a generalized form for arbitrary acquisition

geometries. The first interface Fresnel zone is the intersection of the first Fresnel volume

with a reflector in the depth domain, which defines the maximum achievable resolution

in terms of reflector properties. This parameter corresponds to the projected first Fresnel

zone in the time domain. The size of the time-variant aperture around the central point

[X0, Y0] for reflected waves is defined by (Hubral, 1983; Berkovitch et al., 2009)

W = |d0 − dm|=
2

cosβ

√
V0T

2| 1
RN
− 1

RNIP
|
, (3.1)

where |d0 − dm| is the absolute value of midpoint displacement along the azimuth of

the true dip, β is the true dip (tanβ =
√
tan2θx + tan2θy), and T is the period of the

signal (T = 1/f , with f the dominant frequency). The midpoint displacement can be

decomposed along the inline and crossline direction. At an early stage in the algorithm,

the MF parameters are not yet available and initial attribute search requires user-defined

apertures. We solve this issue using approximate time-invariant apertures which can be

estimated using the following expression (Mann, 2002)

W = min[Wf,max,
V0 + (Vmax − V0) t0

tmax

2

√
2Tt0 +Wf,min], (3.2)

where Wf,min and Wf,max are user-given constant minimum and maximum widths, V0

is the near-surface velocity at zero-offset traveltime (t0), and Vmax = VRMS(t0 = tmax).

Afterward, we could improve the attribute estimation using the obtained initial attributes

and updated searching aperture with equation 3.1. But for the stacking process, it is

always possible to use the attributes to limit the stacking aperture. However, the search
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and stacking apertures should not differ significantly. Otherwise it cannot be guaranteed

that the determined attributes define the best-fitting stacking operator.

The second approach aims to control the extent of the area of reflection points on a given

reflector (subsurface aperture or reflection point dispersal d) rather than limiting the

range of nearby CMPs (surface aperture). This approach requires a relation between the

MF attributes and the range of validity of the associated MF traveltime approximation

for mapping a specific subsurface segment with high S/N. This condition can be evaluated

through maximizing the coherence criterion computed over the super gather. To restrict

the reflection point dispersal by a user-defined threshold value d, for a specific sample

and a given combination of moveout parameters, coherence calculations should only use

the traces that satisfy this condition (Gurevich and Landa, 2002):

|
∆dG + ∆dS + 2∆dG∆dS

RNIP
sinβ

2RNIP + (∆dS + ∆dG)sinβ
|RNIP < d. (3.3)

Here, d is the subsurface aperture, and the left expression represents the normal pro-

jection of reflection point dispersal δ (distance between the reflection point and normal

incident point) onto the surface along the azimuth of the true dip. The parameter ∆dS

(or ∆dG) is the projected offset between source (or receiver) and M ′
0 along the azimuth

of the true dip. The point M ′
0 = [XM ′

0
, YM ′

0
] is the intersection between an orthogonal

line to the traverse line at the image point [X0, Y0] and a line that connects the source

and receiver (see Appendix 2-A).

In the coherence analysis of a super gather, only those traces will be considered that are

reflected from a certain distance delta in the vicinity of the normal incident point. The

parameter d can be chosen within the interval 0 ≤ d ≤ n4 x; where 4x is the interval

between adjacent CMPs and n is the number of CMP gathers that form a super gather.
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The optimal subsurface aperture depends on the spatial resolution of the seismic data,

which can be defined using the size of the Fresnel zone and the S/N in the data. To

increase the stacking power despite reducing the resolution, if the noise level in prestack

data is high, one can use a wider subsurface aperture, up to d = n4 x. On the other

hand, if the S/N is sufficiently high, smaller values of d that is close to the size of

the Fresnel zone can be used to achieve the highest resolution (Gurevich and Landa,

2002). The subsurface aperture analysis has two potential advantages in controlling

the reflection-point dispersal. First, if d is set to be appropriately small, the effect of

reflector curvature can be neglected and the MF moveout correction can be accurately

approximated by taking the normal-wave radius to be infinite, i.e., RN =∞. Secondly,

the subsurface aperture analysis prevents unwanted smearing of the reflection events on

the stacked section (Gurevich and Landa, 2002).

3.7.1.2 Wavefront parameter analysis

The practical implementation of the 2.5D MF method requires the simultaneous deter-

mination of wavefield parameters (θx, θy, RNIP , and RN) at each (t0, [X0, Y0]). Searching

unknown wavefield attributes for each (t0, [X0, Y0]) coordinates, is a global optimization

problem, which is technically challenging and computationally expensive. This technical

problem can be addressed by adopting a global optimization approach, which determines

the wavefield parameters automatically – rather than using an interactive procedure for

parameter estimation like conventional velocity analysis. The main challenge is the si-

multaneous determination of the parameters optimally and efficiently.

Determining globally optimal parameters is a crucial step of 2.5D MF stacking, especially

for complex structures and low-fold data. All subsequent processes rely on the estimated
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wavefield attributes. Poor data quality in hard-rock settings compromises the accuracy

of determination of wavefield parameters and might make the optimization process un-

stable (Ahmed et al., 2015). Therefore, determining search range and fine-tuning search

parameters are more critical for hard-rock seismic data. Additionally, hard-rock seismic

data is mainly dominated by diffractions and out-of-plane reflections, which makes it

necessary to apply conflicting dip analysis during wavefield parameter estimation (Xie

and Gajewski, 2018).

In this research, we optimize the estimation of MF parameters using the multidimen-

sional constrained differential evolution (DE) global optimization algorithm (Garabito

and Cruz, 2019; Jodeiri Akbari Fam et al., 2021b). This algorithm is a data-driven global

optimization approach. The objective function that is maximized is coherence, which

measures the local similarity of signals in a defined time window. Searching over all data

provides kinematic wavefield attributes and a coherence section. The stacking velocity

field derived from conventional velocity analysis is used to determine the lower and upper

bound constraints of the search range for the radius of curvature of normal-incidence-

point wave (RNIP ). This strategy improves the convergence behavior and estimation

accuracy of the wavefield attributes.

The coherence section can be considered as a valuable by-product, which provides an

attribute for interpreters (Ahmed et al., 2015). The coherence indicates which reflections

are mapped more coherently and can be interpreted with high confidence. Or in other

words, this helps us to determine the part of the derived stack section that is more

reliable than others. Also, the coherence values can be used for weighting the stack

section – multiplying the coherence with the stacked amplitudes for each (t0, [X0, Y0])

– to further improves the S/N leading to more reliable interpretations. A coherence-

weighted stack section is a helpful tool for hard-rock structural interpretation that can
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be used in addition to the other commonly-used seismic sections.

3.7.2 Synthetic model experiment

We examined the accuracy of the proposed 2.5D MF stacking operator on a synthetic

data set generated using the finite-difference method (Bohlen, 2002) with the same sur-

vey geometry utilized in the Larder Lake R2 seismic profile. Figure 3.11a shows the

synthetic velocity model, which includes three planar interfaces with different inline and

crossline dip components outlined in Table 3.4. The velocity range was assigned based

on prior geological knowledge and legacy data from the Larder Lake area. Differential

Evolution (DE) optimization algorithm was employed to automatically determine the

unknown parameters of the method. This algorithm uses a data-driven global optimiza-

tion approach based on maximizing a coherency objective function. In Figure 3.11, the

acquisition and the slalom processing lines are shown on the datum surface using the

solid red and black lines, respectively. Figure 3.11b shows the result of applying the 2.5D

MF method on the synthetic seismic data to produce a stack section along the traverse

line.

The interval velocity model along the traverse line is transformed from the migrated

depth domain into the stacked time domain, which can be considered as the reference

section. Figure 3.11c depicts the reference section overlaid on the 2.5D MF stack. This

figure confirms that the 2.5D MF method images reflections accurately, which are well-

matched with the projected interval velocity section. The result in Figure 3.11c reveals

that the 2.5D MF method was able to accurately correct all of the normal, inline dip,

and crossline dip moveout effects simultaneously. Also, the proposed method accurately

focused the reflections at the correct location and produced stacked reflection data with
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Table 3.4: Comparing the estimated inline and crossline dips for the synthetic model

Exact Values 2.5D MF

Parameters θx(
◦) θy(

◦) θx(
◦) θy(

◦)
Reflector #1 0.000 -15.000 -0.312 -14.785
Reflector #2 -10.000 0.000 -9.906 -1.392
Reflector #3 -15.000 -10.000 -14.257 -10.052

a high vertical resolution.

The exact and estimated inline and crossline dips for the synthetic model (Figure 3.11a)

are summarized in Table 3.4. Comparing the exact and estimated values demonstrates

that the 2.5D MF method can extract the structural information with good accuracy

using the DE global optimization algorithm.

Figure 3.11: a) 3D synthetic velocity model and the acquisition line (solid red), b) 2.5D
MF stack section along the solid black slalom processing line, and c) projected interval
velocity model (reference section) from the migrated depth domain into the time stack
domain overlaid with the 2.5D MF stack section shown in (b).
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3.7.3 Application of the 2.5D multifocusing method on Larder

Lake R2 data

The processing sequence used in the 2.5D MF imaging is summarized in Table 3.2. The

signal processing and statics corrections were applied in a manner comparable to the

flow used in conventional processing, which was discussed in the previous section. For

applying the proposed method, we only used the seismic data recorded by receivers placed

for the R2 survey and excluded the traces genrated by R2 sources and captured by active

R1 receivers that are beyond the R2 line (see Figure 3.4b). This was done to exclude

traces with far offsets where the reflections become nonhyperbolic. This also reduces

the fold coverage and the data volume, which challenge the proposed method to retrieve

signals from a dataset with a lower fold than the fold coverage of data used in the other

processing flows. After trace balancing, the preprocessed data were downsampled from

2 ms to 4 ms to reduce the computational cost of the optimal MF parameters search.

Then, the midpoints were binned with constant CMP intervals (every 10 m) along the

solid blue slalom line (Figure 3.4b) at a maximum radius of 750 m. Then, the data was

sorted into CMP gathers. Based on Fresnel zone analysis, five nearby CMP gathers were

combined to contribute to a super CMP gather to achieve a high fold coverage. Super

binning increased the fold, the number of traces belonging to each super CMP gather,

by a factor of 5. This should significantly improve the S/N of the resulting stack section

if the moveout of reflections is optimally approximated.

Next, wavefield analysis was carried out to estimate the wavefield attributes. We devel-

oped the 2.5D MF algorithm package code in C using the Seismic Unix software package

(Stockwell Jr, 1999). For efficient implementation of the proposed algorithm, the paral-

lel processing of the packaged C code was achieved using a serial farming technique by



118

Table 3.5: The adjustments of the DE optimization algorithm and the constraints used
for wavefield parameter searching.

Parameter Adjustments/Constraints

Window Length of Coherence Function 15 samples
Maximum Number of Generations (G) 30
Population Size (NP ) 50
Crossing Over Factor (CR) 0.5
Scale Factor (F ) 0.5
Problem Size (D) 4
θx −85◦ < θx < 85◦

θy −55◦ < θy < 55◦

Vmin,max 4500 - 7500 m/s
V0 5500 m/s
RN Constant (1000 km)
RNIP 0 < θy < 15 km a

a V 2
min(t/2V0)cos2(max(|β|)) < RNIP < V 2

max(t/2V0)

Shell scripting. Building a software package allows us to utilize the proposed method

as a comprehensive solution for the imaging of crooked-line seismic records and max-

imizing the data-driven extraction of structural information. Several runs of the DE

search were conducted to adjust the constraints and fine-tune the searching parameters

to achieve an accurate solution effectively. Based on prior geological information and

conventional images, we adjusted the near-surface velocity to 5500 m/s and the normal

wavefront curvature to zero. This strategy decreased the number of unknowns from four

to three resulting in faster convergence to the global maxima. The parameters of the

DE optimization algorithm and the constraints used for wavefield parameter searching

are summarized in Table 3.5. After optimizing the required parameters, we applied an

event-consistent smoothing filter (Mann and Duveneck, 2004) on the estimated attributes

along the reflections.

Figure 3.12 shows the 2.5D MF parameters and coherence function (in colour) estimated

using the differential evolution global optimization algorithm. All the sections are su-
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perimposed on the 2.5D MF stack section shown in black and white. Figure 3.12a is

the inline dip (θx), the apparent dip along the north-south direction, on which red and

blue colours correspond to positive and negative dips towards the south and north, re-

spectively. Figure 3.12b is the crossline dip (θy), the apparent dip along the east-west

direction, where red and blue colours correspond to positive and negative dips towards

east and west, respectively. The prominent reflection package at about 2.5 s has a 15

degrees dip to the north and about 10 degrees to the east. Using these two apparent dips,

true dip and strike can be estimated, which are valuable information for the structural

interpretation of the geological units. Figure 3.12c displays the radius of the normal-

incident-point wave curvature RNIP , which generally increases with depth and is not

reliable on the edges of the section. The coherency function in Figure 3.12d shows that

the prominent reflection package at ∼ 2.5 s and the near-surface futures were imaged

reliably and can be interpreted with more confidence compared to other events. The

attribute images have been smoothed using a moving average filter along the reflections.

We utilized these optimal attributes to apply 2.5D MF correction to the traces in each

super CMP gather. The residual static correction was then calculated and applied to

address the effects of any short-wavelength near-surface velocity variations. Next, the

corrected super CMP gathers were stacked and plotted along the slalom traverse line.

The balanced 2.5D stack section is shown in Figure 3.13a. To migrate the 2.5D MF

stacked section, we estimated a velocity field by applying poststack migration velocity

analysis on the 2.5D MF corrected data. Finally, we applied the poststack Kirchhoff

time migration using the smoothed dip-independent velocity field. Zero padding was

used to reduce the migration artifacts on the final image. Figure 3.13b shows the final

migrated image of the 2.5D MF stack section (Figure 3.13a). The Larder Lake transect

exhibits several subsurface conflicting dip layers (see L5-L6 and L7-L8 in Figure 3.13b).

In comparison to the conventional image, the proposed 2.5D MF method made noticeable
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improvements (see L5 in Figure 3.13b) to the quality of seismic imaging and alignment

of reflection events (indicated by the red arrows in Figure 3.13a). The results also show

that the 2.5D MF method mapped new reflections, including dipping and sub-horizontal

features at the time gate of 1.5-4 seconds labeled by L6, L7, and L8 (Figure 3.13b). Also,

several new near-surface reflections were imaged by the 2.5D MF method at top 0.75

s and CMPs 1-250 and 0.25-1 s and CMPs 250-750, which are not visible in the other

Figure 3.12: The estimated 2.5D MF parameters and coherence function using a non-
linear global optimization algorithm. a) The apparent dip along the north-south direc-
tion, b) The apparent dip along the east-west direction, c) The radius of normal-incident-
point wave curvature, and d) The coherence section. All sections are shown in colour
superimposed on the 2.5D MF stack section (black and white).



121

processed 2D seismic sections. Overall, the 2.5D MF method provided more clear and

coherent sections with a higher S/N and vertical resolution than the 2D conventional

and PSTM methods.
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Figure 3.13: a) 2.5D MF stack and b) poststack Kirchhoff migrated stack sections. See
text for its interpretation. Rock types mapped or inferred at the surface of the survey
path are shown at the top of each section with no dips of contacts implied.
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3.8 Discussion and interpretations

Figures 3.4a and 3.4b shows the data points used in the different processing methods.

The field recordings used in the 2.5D MF method were limited to the traces recorded by

only the R2 survey, while in the 2D prestack time migration and 2D postack migration of

DMO stack, we used traces generated by the sources shot along the R2 line and receivers

activated on R1+R2 surveys. Using the traces recorded in R1 receivers provided more

far-offset seismic data for both 2D methods. Also, in the processing flow of the 2D

prestack time migration, every four field records were stacked such that a nominal shot

point spacing of 25 m was achieved before final geometry and processing commenced.

The sections shown in Figures 3.14 and 3.16 are plotted with the same Northing coordi-

nate for comparison purposes. Figures 3.14a and 3.14b are the conventional NMO stack

and the prestack Kirchhoff time migration along the CMP line B, respectively. The con-

ventional NMO+DMO stack and its poststack phase-shift time migration along the CMP

line A are shown in Figures 3.14c and 3.14d, respectively. Figures 3.14e and 3.14f display

the 2.5D MF stack and its poststack Kirchhoff time migration image, respectively.

The main reflector package includes a group of steeply dipping interfaces located at about

1.5-3 s, which are indicated by a black dashed ellipse (L5) in the migrated images shown

in Figures 3.14b, 3.14d, and 3.14f. Comparing L5s shows that the migrated section of the

2.5D MF stack imaged this zone more coherently and continuously over a larger area. The

near-surface in the northwest of the section was imaged in the migrated 2D DMO stack

(weakly) and 2.5D MF stack (more coherently), while the prestack migration resulted in

a gap zone that was indicated by a question mark. The near-surface in the southeast was

imaged in the migrated 2.5D MF stack, while it was not evident in the other two. The

near-surface in the middle of the survey was imaged only in the migrated 2D DMO stack
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(labeled L0). The 2.5D MF method mapped some subhorizontal reflectors at about 3.5

s and some dipping interfaces at 2 and 3 s in the NW (labeled L6 and L8) were imaged

in the migrated 2.5D MF stack. The evidence of the presence of subhorizontal reflectors

can be also seen in the prestack migration result at 3.5 s on Figure 3.14b, label L7. A

package of subhorizontal reflectors was imaged in the migrated 2.5D MF stack, in the

middle of the profile at about 0.75 s (labeled L2) that can be interpreted as the base of

the Larder Lake basin.

In the shallow basin above ∼ 2 s, there are few coherent reflectors. With some imagina-

tion, the NMO stack (Figure 3.14a) shows a shallow dip to the NW that flattens at the

NW end of the section. The conventional DMO stack shows some short isolated reflec-

tions scattered throughout the top 2 s of the section, with a few more coherent reflections

on the top 0.2 s to the NW (Figure 3.14c). The 2.5D MF stack section also shows the

short flat reflections in the top 2 s. The migrated sections show little improvement in

the part of the section below 2 s, except the 2.5D MF section, where the short flat-lying

reflections are stronger in features that dip to the SE (labeled L6, L7, and L8). Little

confidence might be placed in these, except that the seismic attribute maps show similar

trends and θx on Figure 3.12a also suggest that the interfaces are dipping to the SE.

South-dipping interfaces are also evident on the 3D swath processing (Figure 3.16a), but

only at the extreme north of the section (labeled L3 and L8 in Figure 3.16a). The 2.5D

MF processing, therefore, provides new and useful regional-scale information about the

structural basin between the LNDZ and the CLLDZ. The lack of coherence in this basin

might be due to tight folding on scales comparable to the Fresnel zone.
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Figure 3.14: Comparing the stack sections and migrated images obtained by different
flows including a) conventional NMO stack and b) prestack Kirchhoff time migration
along the CMP line B, c) conventional NMO+DMO stack and d) poststack phase-shift
time migration of the stack section along the CMP line A, e) 2.5D MF stack and f)
poststack Kirchhoff time migration of 2.5D MF stack section. All sections are plotted
within the same Northing coordinate.
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Overall, the poor result obtained by the 2D prestack time migration and the migrated

2D DMO stack can be attributed to the fact that they do not account for midpoint

dispersion and crossdip effects. A significant number of trace midpoints are placed off the

fitted traverse line, prominently in the crossline direction (see Figure 3.4a). Therefore,

accounting for the cross-offset and cross-dip effects are required to accurately image

reflectors dipping in the crossline direction.

Figure 3.15 compares the prominent package of steeply dipping reflections (marked with

a black dashed rectangle at ∼ 2.5 s in corresponding sections in Figures 3.14a, 3.14c, and

3.14e) mapped on stack sections obtained by the NMO stack (Figure 3.15a), NMO+DMO

stack (Figure 3.15b), and 2.5D MF stacking (Figure 3.15c) methods. This figure clearly

depicts the robustness of the 2.5D MF method in improving the resolution of the stack

section. The 2.5D MF approach generated a more clear and coherent stack with a

higher S/N than the conventional methods, which can be considered as a more accurate

representation of the zero-offset wavefield. The proposed method was able to resolve the

ambiguity involved in geological structure by understanding the location and continuity

of reflections.

Seismic surveys acquired along severely crooked transects can image complex 3D struc-

tures in the subsurface if a proper 3D imaging algorithm is deployed (Wu, 1996; Malehmir

and Bellefleur, 2016). Comparing Figures 3.16a and 3.16b shows that the 3D swath pro-

cessing of our 2D data did not image steeply-dipping reflectors properly (compare L5s

on both sections) but it delineated the extension of some of the subhorizontal reflectors

with low resolution. The 3D processing was able to image the reflectors in the Larder

Lake structural basin which are connected with complex folded structures to the extreme

south and north of the area (labeled L1 and L3 in Figure 3.16a). The 2.5D MF workflow

imaged the steeply-dipping reflector (L5 in Figure 3.16b) coherently and focused new re-
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flectors (L4 and L6 in Figure 3.16b) with low S/N, while could not delineate the reflector

L0 (Figure 3.16a). Also, the 2.5D MF approach partly mapped the folded structures in

the shallower part (L1 and L3). Overall, the 2.5D MF workflow generated an image with

higher resolution than the swath 3D method, but its application along a 2D traverse line

could not fully resolve the complexity associated with the folded structures in the basin

Figure 3.15: Comparing the prominent package of steeply dipping reflections mapped
on stack sections obtained by the a) conventional (NMO stack), b) conventional
(NMO+DMO stack), and c) 2.5D MF methods.
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to the extreme south and north of the area.

This study clarified the necessity of processing cooked-line seismic data using a 3D ap-

proach but with an algorithm that can generate a high-resolution true representation

of zero-offset wavefield and/or image volume. Swath 3D imaging result convinced us to

test the 2.5D MF approach to produce a volumetric stack in future research. Assuming

azimuthally isotropic constant radii of curvatures for each subsurface point allows the

wavefield attributes to be estimated even with a limited number of distinct azimuth data.

These capabilities enable us to produce a volumetric stack from a crooked-line survey

using the 2.5D MF method.

The main limitation is the assumption of the locally spherical wavefront that limits its ap-

plication to the planar and gently curved reflector with mild to moderate heterogeneities.

To address this limitation, the spherical multifocusing method can be extended to three

dimensions.

Figure 3.16: Comparing the swath 3D migration result along the inline 1045 (a) with
the poststack Kirchhoff time migration of 2.5D MF stack section (b).
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3.9 Conclusion

We have presented the application of four different seismic imaging algorithms on the

Larder Lake crooked seismic reflection transect, which was acquired over a crystalline

geological environment in the Superior Craton of Canada. Particularly, we examined

the performance of the 2.5D multifocusing stacking method and compared its Kirchhoff

time migrated image with the 2D phase-shift time migration of dip moveout corrected

stack, 2D prestack Kirchhoff time migration, and the swath 3D poststack migration.

On a synthetic model, generated using the same real acquisition geometry used in the

Larder Lake area, the 2.5D MF approach produces a true zero-offset wavefield by cor-

recting the azimuthal-dependant normal and dip moveouts simultaneously. Additionally,

the proposed method focused primary reflections at their correct poststack locations and

estimated the inline and crossline dips from seismic data accurately, which can be used

for structural interpretation.

On the field data, the 3D swath processing could not image steeply dipping reflections

correctly, however, it delineated the extension of some of the subhorizontal reflections,

particularly in the northern part of the Larder Lake structural basin (< 2 s). In com-

parison to the other results, the 2.5D MF method considerably improved the quality of

the seismic section and yield a high-resolution section with a high S/N. The 2.5D MF

method mapped the prominent steeply dipping reflection packages more coherently. In

addition to the main feature at 2.5 s on the SE end, the 2.5D MF method focused new

reflections at times less than 2 s with a high S/N, which were not constructed by the 2D

DMO stack and 2D prestack migration workflows. Furthermore, the proposed method

accurately extracted 3D structural information including inline and crossline dips. In

the shallow zone less than 2 s, the inline dips were estimated to be to the south in the
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same trend directions as some clusters of short but strong flat-lying reflections, then

these trends could be interpreted with greater confidence. This study clarified that the

2.5D multicasting method can be an effective alternative to the 2D conventional stack-

ing (NMO+DMO+CDMO) and 2D prestack migration methods in processing crooked

surveys.
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Appendix 3-A: Differential evolution

The differential evolution (DE) algorithm introduced by Storn and Price (1997), is a

robust and reliable derivative-free global optimization method. The method is an evolu-

tionary algorithm and optimizes a problem by improving a candidate solution iteratively.

Differential evolution can solve multi-dimensional, non-linear, and non-differentiable con-

tinuous functions.

In the multifocusing wavefront analysis, the analytical form of the objective function is

not determined as it depends on reflection amplitudes on the super common-midpoint

gather. Therefore, the derivation of the objective function can not be computed to

find the global maximum. Additionally, the cost function in the MF method is a multi-

dimensional and non-linear function. Therefore, the DE method can be a smart choice to

efficiently solve the MF searching problem for determining the MF unknown parameters.

The DE algorithm involves updating a population of candidate solutions iteratively using

three steps: mutation, crossover, and selection (see Algorithm 1). First, an initial ran-

dom population consists of NP vectors ~mi, ∀i = 1, 2, .., NP , is generated with uniform

distribution between the lower and upper boundaries (mL
j ,m

U
j ) using the expression

mi,j,G = mL
j + randj.(m

U
j −mL

j ), (3-A.1)

where randj denotes a uniformly distributed value between [0, 1], G = 0, and mi,G is a

vector of MF unknown parameters with size ofD. At each iteration, called a generation, a

mutation operator generates new vectors by the combination of vectors randomly chosen
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from the current population by the following expresiom

vi,j,G+1 = mr1,j,G + F (mr2,j,G −mr3,j,G), r1 6= r2 6= r3 6= i (3-A.2)

where F ∈ [0, 2] is the scale factor of the mutation that controls the amplification of

differential variation. The indexes r1, r2, r3 ∈ {1, ..., NP} are chosen randomly and are

different from index i. Next, for enhancing the diversity of the mutated parameter

vectors, the crossover operator produces the trial vector by mixing the mutated vector

and a predetermined target vector that can be obtained by

ui,j,G+1 =


vi,j,G+1, rand(j) ≤ CR or j = randn(i),

mi,j,G, otherwise,

(3-A.3)

where j = 1, 2, ..., D; CR ∈ [0, 1] is the crossover rate. rand(j) ∈ [0, 1] is the jth

evaluation of a uniform random generator number and randn(i) ∈ {1, 2, ..., D} is a

randomly chosen index which ensures that ui,G+1 gets at least one element from vi,G+1;

otherwise no new parent vector would be generated and the population would not update.

Finally, in the selection step, the trial vector is accepted for the next generation which

increase the value of the objective function; otherwise, the old value is retained. The

selection operator is as follows

mi,G+1 =


ui,G+1, f(ui,G+1) ≥ f(mi,G),

mi,G, otherwise.

(3-A.4)
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Algorithm 1 Pseudo code for differential evolution (adapted after Storn and Price,
1997)

1: Determination of population size NP , mutation scale factor F , and crossover rate
CR;

2: Determination of the constraint range and the coherence function;
3: function DE(NP, CR, F, Range, Coherence Function)
4: Set generation index;

(G← 0)
5: PG ← random initialization of population for NP individuals in the defined range;

(PG = {m1,G,m2,G, ...,mNP ,G});
6: fx ← fitness of each individual mi,G, i = {1, 2, ..., NP};
7: while stopping criteria is not reached do
8: for i = 1 until NP do
9: choose 3 random different individuals mr1 ,mr2 ,mr3 ;
10: for j = 1 until D do
11: vi,j,G+1 ← mr1,j,G + F (mr2,j,G −mr3,j,G); . Mutation
12: if ri ∈ [0, 1] ≤ CR then . Crossover
13: ui,j,G+1 ← vi,j,G+1;
14: else
15: ui,j,G+1 ← mi,j,G;
16: end if
17: end for
18: fu ← fitness of each individual ui,G, i = {1, 2, ..., NP};
19: if f(ui,G+1) ≥ f(mi,G) then . Selection
20: mi,G+1 ← ui,G+1;
21: else
22: mi,G+1 ← mi,G;
23: end if
24: end for
25: Set generation index;

(G← G+ 1)
26: end while
27: end function
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4.1 Abstract

We introduce a three-dimensional generalized spherical multifocusing (GSMF) algorithm

to generate 3D stacked volume that is equivalent to a synthesized 3D zero-offset wavefield

for crooked-line/3D seismic data with arbitrary recording geometry from areas with irreg-

ular topography, complex near-surface, and complex subsurface. The algorithm is based

on a 3D extension of the spherical multifocusing method into the most general form.

We develop a 3D operator for generalized spherical multifocusing with a closed-form im-

plicit formulation that can be applied to seismic data with arbitrary spatial coordinates

of sources and receivers. The extended method simultaneously corrects for elevation

statics, non-hyperbolic moveout associated with reflections beneath complex overburden

structures, and azimuth-dependent dip-moveout effects. The resulting GSMF stacked

volume can then be time- or depth-migrated using a 3D zero-offset migration algorithm

to obtain the 3D subsurface image. In addition, we parameterize the formulation dually

generalized for both the optical domain and the effective medium. The optical domain

and effective medium are auxiliary media with straight-ray geometry and constant ve-

locity, which can approximate the actual subsurface model to account for heterogeneity

either by shifting the reference time to project the problem into the optical image space

or by adjusting the velocity of an effective overburden, respectively. The performance of

the proposed method with the optical parameterization is tested using 3D synthetic data

with both 3D and crooked-line surveys. The numerical tests have shown that the new

approximation is significantly accurate for gently to highly curved interfaces beneath low

to relatively high heterogeneous overburden with rugged topography, even at large offsets

and at large midpoint separations. Additionally, the method is rigorously tested using

a 3D real seismic data set acquired over a complex thrust-belt area with rugged terrain.

Compared to the conventional 3D stacking, the new formulations yield high-resolution
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and accurate seismic stacked volume from land seismic data collected with arbitrary 3D

geometries.

4.2 Introduction

Three-dimensional (3D) seismic surveys have proven to be highly effective for imaging

the subsurface since their introduction in the mid-1970s (Nestvold, 1996). In optimal

circumstances, the 3D seismic method can provide a complete and accurate volumetric

image of the subsurface (Eaton et al., 1997; Yilmaz, 2001; Biondi, 2006). Also, the greater

information provided by 3D seismic reduces uncertainty in creating geological models

(Yilmaz, 2001). Three-dimensional seismology has drastically improved our ability to

detect and recover hydrocarbons. Meanwhile, this technology opened new horizons in

other exploration disciplines such as minerals prospecting (Davies et al., 2004). One of

the greatest advantages of a 3D seismic survey is a high-spatial resolution with accurate

positioning of features in the image volumes (Yilmaz, 2001). These surveys can be used

to estimate the 3D velocity field and can significantly improve the imaging quality and

spatial frequency of data (Davies et al., 2004). Focusing seismic energy at the correct

location and reducing spatial aliasing are other advantages of 3D surveys. In 3D seismic

studies, the wavefield propagation direction can be determined accurately and out-of-

plane reflections can be focused at the correct locations (Biondi, 2006). In addition, the

3D nature of diffractions could be correctly collapsed by 3D imaging methods (Biondi,

2006). Therefore, areas with complex 3D structures, such as geological settings with

compressional tectonic fold systems and fault networks, can be potentially mapped with

more detail (Freeman et al., 1990).

Three-dimensional prestack migration is needed to correctly image geological structures
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with 3D features. The complex subsurface geologic settings with significant lateral veloc-

ity heterogeneity are better resolved with prestack depth migration methods, compared

with prestack/poststack time migration (Yilmaz, 2001). This is because depth imaging

locates reflectors more accurately and resolves complicated raypaths to map steeply dip-

ping layers and near-vertical faults. However, the high computational cost and the lack

of an accurate velocity-depth model hamper utilizing this method. Irregular distribution

of sources and receivers has a further negative effect on 3D prestack migration methods

and therefore seismic data reconstruction methods are used to regularize the locations of

data before its application (Biondi, 2006). Building an accurate velocity-depth model for

migrating seismic data in the depth domain is a difficult process, especially in complex

geology and noisy environments and it needs to be tied to geology (Vestrum et al., 2011).

An alternative approach to the depth-domain imaging method is using the time-domain

stacking and poststack migration methods. Overall, depth-imaging methods do not su-

persede time-imaging methods (Vestrum et al., 2011) because they require an accurate

velocity-depth model and time enhanced gather for its input. In fact, these are two

fundamentally different approaches and their characteristics make them complementary

to each other. The processing methods in the time-domain can potentially produce more

coherent and clear structural stacked sections and images, detailed stacking and root-

mean-square (RMS) velocity fields, and enhanced seismic gathers. They also can provide

interpreted horizons for building an accurate velocity model as a function of depth. How-

ever, they require accurate and generalized moveout operators. Hence, improving the

quality of time-domain stacked sections and developing accurate and generalized moveout

operators is the focus of this research.

Dense coverage will not necessarily result in accurate subsurface imaging unless static

corrections are applied appropriately and velocity analysis is performed correctly. There-

fore, we need an operator that can precisely approximate reflection and diffraction trav-



138

eltimes within a common-cell gather by considering variable offset, azimuth, topography,

and near-surface changes. The two main categories of high-resolution stacking algo-

rithms are the common reflection surface (CRS) methods (Müller, 1999; Jäger et al.,

2001) and multifocusing (MF) methods (Gelchinsky et al., 1999a,b). The CRS theory

offers a relatively simple framework (algebra), which allows the method to be extended

to three dimensions easily (Fomel and Kazinnik, 2009; Landa et al., 2009). The exten-

sion of the CRS method to three dimensions is straightforward (Fomel and Kazinnik,

2009) and has been published (Bergler et al., 2002; Müller, 2003). However, extending

the multifocusing method to three dimensions is more difficult because the mathematics

involved are more complex (Fomel and Kazinnik, 2009; Schwarz and Gajewski, 2017).

Landa et al. (2009) proposed the spherical MF method in three dimensions by adding

one more parameter to the two-dimensional spherical MF formula. The spherical multi-

focusing was derived for a circular reflector with the assumption of straight rays (Landa

et al., 2009). The 3D SMF method did not consider the variation of source and receiver

elevations, and the recording surface is assumed to be flat. In all respects, the spherical

MF method is robust, and its traveltime expression does not have any singularities as

there are in the planar MF formulation. Also, the central ray can be either a normal

ray or a paraxial ray (rays in the vicinity of a central ray) with finite offset. Therefore,

this method can be directly applied to zero- and finite-offset data without any modi-

fication. Zero- and common-offset stack sections can be produced without additional

cost. This method requires solving a quartic equation for each iteration in estimating

wavefield parameters, which increases the computational cost. Later, Jodeiri Akbari Fam

et al. (2021a) developed the 2.5D MF method to generate 2D zero-offset wavefields along

crooked seismic surveys or 3D zero-offset wavefields volume. This method can be con-

sidered as a 3D extension for the planar multifocusing approach, which can explicitly

correct 3D normal and azimuth-dependent dip moveouts simultaneously and accounts
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for midpoint scattering. However, it is accurate for quasi-hyperbolic reflections and

its capability is limited in resolving non-hyperbolic diffractions and reflections. Hence,

a non-hyperbolic higher-order moveout operator is required that could potentially im-

prove stacked volume constructed from seismic data acquired over an area with rugged

topography and strong heterogeneous overburden.

The formulation of 3D spherical multifocusing that can account for irregular acquisition

surfaces has not yet been described in the geophysical literature. In this research, we

expand a three-dimensional generalized spherical multifocusing seismic stacking method

for a crooked-line/3D seismic data set acquired over an area with irregular topography.

We use 3D GSMF as an abbreviation of the proposed method for convenience. In the

following sections, we first review the relevant background. Then, we derive the trav-

eltime formula for the 3D GSMF algorithm. Next, the performance of the proposed

method is examined on synthetic and real data sets. Finally, we evaluate the efficiency

and accuracy of the method and discuss the results.

4.3 Processing and imaging challenges of 3D seismic

surveys

The quality of 3D seismic imaging algorithms can be deteriorated by 1) inherent natural

geological factors such as near-surface heterogeneity, the ruggedness of topography, and

complexity of subsurface geology, and 2) factors associated with survey geometry and

acquisition design such as the midpoint distributions, fold coverage, and source-receiver

azimuthal variations. Acquisition footprint refers to the distortion of the amplitude

and phase of reflections encountered during processing resulting from the acquisition
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geometry and adversely impacts the results after steps such as 3D DMO correction

(Yilmaz, 2001). Therefore, the applicability of each processing step can be directly tied

to the survey acquisition parameters. A proper understanding and addressing of these

issues are crucial for building an accurate and efficient seismic processing flow. Below,

we discuss in detail a few of the potential seismic survey pitfalls that can adversely affect

the imaging methods.

4.3.1 Irregular data coverage

The image quality might be degraded when spatial sampling is not acquired uniformly.

Several potential pitfalls arising from the irregular 3D seismic acquisition have been

identified (Biondi, 2006; Vestrum et al., 2011), which can be addressed by the novel

generalized multifocuisng method proposed in this paper. For instance, irregular spatial

sampling can distort seismic amplitudes and lead to coherent artifacts in the image

(Biondi, 2006). Full 3D seismic data coverage is required to correctly collapse out-of-

plane energies, accurately map the details of the subsurface features, and detect three-

dimensional structures (Biondi, 2006; Vestrum et al., 2011). In order to fully sample

3D seismic waves, wide azimuth data with an even contribution of both near and far

offsets are required to accurately image 3D subsurface structures (Cheraghi et al., 2012).

However, acquiring 3D land seismic data with full coverage might be expensive and a

low grid density in at least one dimension is often chosen in a 3D design, particularly in

rugged topography. Besides, environmental and logistical restrictions prevent collecting

high-density data, resulting in an irregular survey with inadequate coverage (Vestrum

et al., 2011). Coarse and irregular spatial sampling results in an uneven distribution

of source-receiver offsets and azimuths, which adversely affects the S/N of the recorded

seismic data and might reduce the quality of the resulting image. For instance, velocity
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analysis and multiple-attenuation processing might fail if the data do not include far

offsets (Yilmaz, 2001). Also, uneven fold coverage over an area leads to variations in

the stacked amplitudes and increases the uncertainty of velocity analysis (Yilmaz, 2001).

Overall, uneven fold, azimuth, and offset coverages violate the 3D wave sampling theorem

(Vermeer, 1998). One can use larger cells to collect midpoints with broader azimuth and

offset ranges. However, in areas with complex subsurface geology, this strategy would

result in non-hyperbolic reflections, particularly for far-offset data. The conventional 3D

processing flow (NMO+DMO) cannot accurately correct the non-hyperbolic moveout.

An irregular survey geometry also leads to significant midpoint scattering. In this case,

the reflection traveltimes in a common-cell gather associated with a dipping interface

with both inline and crossline dip components will deviate from a single hyperbolic

moveout curve (Yilmaz, 2001). On the other hand, in a regular swath survey, the vast

range of the source-receiver azimuths might lead to significant traveltime deviations from

an ideal hyperbolic moveout trajectory even without midpoint scattering (Yilmaz, 2001).

The effect of the broad azimuth range can be similar or greater than midpoint scatter-

ing impacts. The conventional stacking procedure using an operator with a hyperbolic

behavior (NMO+DMO+Stack) only partially corrects these effects and causes ampli-

tude smearing. Hence, we need a traveltime formula that is able to accurately describe

the non-hyperbolic behavior and take into account the midpoint scattering and azimuth

variation.

4.3.2 Elevation statics correction

Complex near-surface geology with rapid vertical variation and high lateral heterogeneity

beneath rugged topography degrade the quality of collected data (Liner, 2016). Rugged
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terrain with significant variation in elevation of the topography causes considerable time

shifts among traces (Chang et al., 2019b). Statics corrections play an important role

in improving the quality of derived images. Elevation statics corrections is a standard

processing step that is often applied to seismic data collected over irregular topography

to correct the difference between the source and receiver elevations and transfer them

to a flat/floating datum. Conventional source and receiver elevation statics corrections

are carried out by performing traveltime tomography for near-surface velocity-depth

modeling (Zhang and Toksöz, 1998). The tomography is a robust method that can

address the statics problem – ranging from medium- to long-wavelengths – when near-

surface complexity is present. This method requires picking first-break arrival times,

which is a very time-consuming and expensive task. The performance of this algorithm

depends on the accuracy of first-break picking and is not capable of resolving velocity

reversals (Yilmaz et al., 2022).

For statics corrections, it is assumed that the raypaths are close to vertical incidence

within the near-surface. This assumption is not always valid in areas with compli-

cated near-surface structures, particularly for high-velocity consolidated heterogeneous

medium. This might result in significant errors and could lead to an inaccurate elevation

static correction, particularly for far-offset seismic data (Gurevich and Landa, 2002). In

such a scenario, the time shifts resulting from the source-receiver elevation would be time

variant for each trace (not static) and will depend on the emergence angle of reflection

raypaths (Gurevich and Landa, 2002). Inaccurate statics also cause cumulative errors

and an unstable velocity inversion process.

Land 3D seismic data acquisition within an area without restrictions, usually provide

wide-azimuth data volume with low to moderate fold. Low fold or an inadequate near-

surface coverage reduces the resolution of shallow sections leading to misties to the surface
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geology. In such cases, the refraction-static method cannot resolve the near-surface model

due to low fold coverage. Improper refraction static correction leaves weathering effects

poorly corrected, which results in cumulative errors, misfocusing, and mispositioning of

reflections. Also, this prevents the correct application of the subsequent processes. For

instance, subsequent velocity analysis introduces errors in reflection static corrections,

which in turn could lead to low-resolution imaging results (Vestrum et al., 2011). Several

mitigations can be deployed to increase the resolution of subsurface imaging. Tying 2D

seismic lines across a 3D survey can be used as complementary data to provide high-

resolution 2D coverage, particularly for the shallower depths (Vestrum et al., 2011).

However, 2D seismic lines are confined to limited vertical planes and are not always

available. Therefore, correcting the near-surface weathering effects requires a method

that relies on reflection statics (Vestrum et al., 2011).

Dai and Cheadle (1995) extended the standard NMO method to correct the effect of

source-receiver elevations. However, due to the unavailability of the emergence angle

information in the conventional NMO process, this procedure requires an extra step to

estimate the emergence angle. Several alternative advanced methods have been proposed,

such as prestack depth migration of non-planar data (e.g. Wiggins, 1984; Al-Saleh et al.,

2009) and the wave-equation datuming approach (e.g. Berryhill, 1984; Liu et al., 2011).

However, those methods are computationally expensive and require a detailed velocity

model in the depth domain. Acoustic and elastic full-wave inversions (FWI) (Liu and

Zhang, 2014; Warner and Guasch, 2016; Liu and Zhang, 2017) are other alternatives

for near-surface modeling, which can model lateral velocity variations with wavelengths

shorter than those that can be resolved by traveltime tomography (Yilmaz et al., 2022).

The FWI methods require extensive computation and are highly dependent on signal

amplitudes and inversion parameters (Yilmaz, 2021; Yilmaz et al., 2022).
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The determination of the emergence angle is an integral part of the multifocusing ap-

proach. Therefore, developing the spherical multifocusing to account for non-vertical

raypaths for correcting source-receiver elevation effects in 3D cases is straightforward and

has no additional cost (Gurevich and Landa, 2002; Landa et al., 2009). This method im-

plicitly relies on reflection statics, and does not require first brack picking and a detailed

near-surface velocity-depth model. Nevertheless, very short-wavelength near-surface ve-

locity variations, which are within the range of residual statics, can not be modeled by

any of the above methods. Applying residual statics corrections to land seismic data is

an essential step and cannot be omitted (Yilmaz, 2021).

4.3.3 3D normal-moveout (NMO) and dip-moveout (DMO) cor-

rections

The conventional 3D stacking method includes 3D normal- and dip-moveout corrections

followed by the stacking process (NMO+DMO+Stacking), which transforms prestack

seismic data into an equivalent zero-offset section (Biondi, 2006). In a 3D seismic survey

over a dipping layer with both inline and crossline dip components, the midpoint scat-

tering plus source-receiver azimuthal variation significantly deviates reflection traveltime

from an ideal hyperboloid (a traveltime surface generated using the 3D NMO equation

with a single velocity). Therefore, the conventional stacking using the 3D NMO oper-

ator could not approximate the moveout and will result in misalignments, which will

attenuate high-frequency content and would result in a low-resolution stack section. In

this case, the application of 3D DMO method for correcting the shot-receiver azimuth

moveout (AMO) before stacking is necessary.

The 3D DMO corrects for the dip effect on stacking velocities and implicitly considers



145

the effect of source-receiver azimuth on moveout velocities (Yilmaz, 2001). For 2D seis-

mic surveys, all source-receiver pairs are along a 2D traverse and have the same azimuth.

Therefore, all traces in a common-depth-point (CDP) gather – recorded for a dipping

layer – can be dip moveout corrected using one stacking velocity. In other words, we just

need to estimate the apparent dip of the layer along the profile for all traces. However,

in a 3D case, each trace in a common-cell gather has a source-receiver azimuth. The

stacking velocity of reflections from a dipping layer along each azimuth depends on the

apparent dip along that azimuth. So, each trace in a common-cell gather needs to be

corrected using different stacking velocities. In fact, the 3D DMO process corrects appar-

ent dip effects (which contains effects of the true dip and the source-receiver azimuth)

on moveout velocity along each source-receiver azimuth. Thus, the stacking velocity

field estimated from the 3D DMO-corrected gathers is azimuth and dip independent.

Accurate implementation of 3D DMO correction removes the reflection point dispersal

and inline smearing caused by the azimuth variation (Yilmaz, 2001). In conventional

processing of crooked-line seismic data, rather than applying 3D NMO and 3D DMO

corrections, the 2D NMO plus 2D DMO corrections are usually followed by crossdip

moveout (CDMO) analysis. The 2D DMO and CDMO methods corrects for the effect of

dipping interfaces along the inline and the croosline directions, respectively. In this case,

applying squintingly two dip moveout corrections along two distinct azimuths implicitly

accounts for source-receiver azimuths.

Levin (1971) introduced the azimuth-dependent velocity analysis using a three-parameter

traveltime equation for a dipping interface. In this method, traces are required to be

subgrouped into three distinct azimuths. The velocity analysis can be performed along

those azimuths independently. However, this might face challenges and lead to an unre-

liable stacking velocity field, since the land 3D data are often low fold, partitioning data

into three subgroups with distinct azimuths limits the number of traces and offset range
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contributing to velocity analysis, which yields inaccurate estimates of stacking velocity

field (Yilmaz, 2001).

In the conventional seismic processing methods, the 3D DMO correction increases the

resolution of the stacked volume, however, this operator might impose amplitude and

phase artifacts (Vermeer, 2002). Sequentially applying moveout corrections in the con-

ventional processing flow generates a cumulative error (Biondi, 2006). In addition, the

signal stretch effect (Yilmaz, 2001) resulting from the conventional moveout corrections

has a considerable impact on the resolution of the stack section (Vermeer, 2002). The

performance of 3D DMO is dramatically affected by survey geometry, for instance, apply-

ing 3D DMO for wide towed marine streamer data causes striped appearance as it does

not address the midpoint scattering problem (Galbraith, 2001; Yilmaz, 2001). Hence,

developing a non-hyperbolic higher-order 3D multifocusing approach could potentially

improve zero-offset wavefield volume by simultaneously correcting for, in addition to el-

evation statics, normal moveout, azimuth-dependent dip moveout, and non-hyperbolic

moveout associated with reflections beneath complex overburden structures.

4.4 Multifocusing methods

Over the past two decades, multifocusing and common reflection surface methods have

been proposed to produce a high-resolution zero-offset simulation from multi-coverage

seismic data. Recently, the multifocusing method has received wide attention due to

its high accuracy in modeling diffractions and reflections from highly curved reflectors

(Schwarz et al., 2014b). The multifocusing method is a sophisticated multi-parameter

non-CMP-based stacking algorithm, which is derived based on the kinematics of wave

propagation (Landa et al., 2009). The multifocusing stacking technology can significantly
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enhance the quality of seismic sections in complex geologic settings with a poor signal-

to-noise ratio. Its formulation simulates reflection traveltime surface over the offset-

midpoint domain and is categorized as a macro-model independent stacking approach

(Gurevich and Landa, 2002; Belfer et al., 2008a; Schwarz et al., 2014b). In contrast

to prestack depth migration methods, the multifocusing algorithm does not require any

knowledge about the subsurface velocity-depth model, except for near-surface velocities

(Gelchinsky et al., 1999a,b; Landa et al., 2009).

Several extensions of multifocusing method have been developed based on various sce-

narios and geometries, including planar and spherical. The planar multifocusing refers

to the multifocusing moveouts depending on the focusing ratio constructed for the case

of a planar dipping interface with constant-velocity overburden (Landa et al., 2009). The

planar multifocusing methods, including 2D MF (Gelchinsky et al., 1999a), 2D IS-MF

(Gurevich and Landa, 2002), and 2.5D MF (Jodeiri Akbari Fam et al., 2021a), were

derived based on the spherical approximation (Gelchinsky and Keydar, 1999) of wave-

fronts and were constructed around a zero-offset ray and, in principle, are valid for short

offsets. A quasi-hyperbolic approximation (Berkovitch et al., 2011) to actual traveltime

curves/surfaces is one of the main limitations of the zero-offset 2D/2.5D MF methods,

which reduces their accuracy (Landa et al., 2009; Jodeiri Akbari Fam et al., 2021a).

They express reflection traveltime based on the kinematics of the central ray/plane and

the moveout for a paraxial trace in the vicinity of the central point at source and re-

ceiver positions. In complex subsurface geology, strong lateral velocity variations and/or

the presence of anisotropy can violate the spherical approximation of wavefronts and

might cause the traveltimes of seismic events to become nonhyperbolic, and the zero-

offset 2D MF operator approximation starts to be inaccurate, especially for large offsets

(Berkovitch et al., 2011). Also, this might cause smearing of sharp discontinuities in the

stack section (Gurevich and Landa, 2002).
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Landa et al. (2009) proposed a non-hyperbolic higher-order traveltime for reflections from

a circular/spherical reflector, called the spherical multifocusing method (2D/3D SMF),

that significantly improved the accuracy of the MF method over curved events that were

beneath layers with variable seismic velocity, which we term heterogeneous overburden.

The spherical multifocusing theory was developed by Landa et al. (2009) to transfer the

problem of the reflection traveltime for a spherical reflector into the problem of finding

the tangency of an ellipse and a circle. Chang et al. (2019b) modified the SMF method to

apply to 2D data acquired from irregular topography by considering non-zero elevations

of sources and receivers. The new operator (IS-SMF) can correct moveout of curved

reflection directly without prior elevation static corrections and is more robust over a

wide range of source and receiver elevations. Also, it performs better on strongly curved

interfaces compared to the conventional method, resulting in an increased resolution in

the stack and time-migration sections.

4.4.1 Limitations of the 3D multifocusing methods

Elhaj et al. (2014) proposed an application of the 3D MF method for imaging and regu-

larization of an irregular 3D seismic data set. However, they have not further expanded

on the corresponding formulations of the 3D MF method. Jodeiri Akbari Fam et al.

(2021a) developed the 2.5D MF method for processing crooked seismic lines which can

be considered as a 3D extension for the planar multifocusing approach. This method

explicitly corrects 3D normal, dip, and azimuth moveouts simultaneously and accounts

for midpoint scattering. The 2.5D approach can approximate the 3D model of the wave-

front, however, it assumes locally spherical wavefronts around the zero-offset central

ray. Hence, developing a non-hyperbolic higher-order 3D MF approach could poten-

tially improve stacked volume for highly curved reflectors beneath strong heterogeneous
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overburden.

In the 3D SMF method, the recording surface was assumed to be flat and its application

is limited to seismic data acquired with a flat surface assumption. Hence, elevation

statics corrections are required to compensate for the near-surface effects and to reference

prestack data into a flat datum. Raypaths are typically assumed to be vertical in the

conventional elevation statics correction methods. This assumption is mostly invalid and

might lead to inaccurate static shifts for seismic data acquired over a severe irregular

topography (Gurevich and Landa, 2002).

These issues can be addressed by extending the SMF method to a 3D generalized spher-

ical multifocusing (3D GSMF) method. In order to develop this 3D GSMF method,

we explicitly account for 3D spatial coordinates of the source and receiver including

horizontal (x, y) coordinates and elevation. Table 4.1 summarises the advantages and

shortcomings of the MF extensions. This table shows how the previous developments

are inadequate to resolve important 3D processing challenges and thus it is necessary to

develop a new methodology.

Table 4.1: The advantages and shortcomings of different MF-type methods.
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4.5 3D generalized spherical multifocusing method

In this section, we extend the 2D spherical multifocusing approach to deal with 3D

seismic data by generalizing the multifocusing moveout correction with a new strategy

for a spherical reflector below a crooked or 3D seismic survey and also account for

irregular topography. In order to consider nonzero elevations and arbitrary horizontal

spatial coordinates of sources and receivers, we employed transformation and projection

operators to modify the SMF operator. This strategy allows us to develop the generalized

version of the SMF to the most arbitrary 3D survey geometry.

The concept of deriving a traveltime formula by assuming a particular reflector geom-

etry (Fomel and Kazinnik, 2009) was first introduced by Landa et al. (2009). They

proposed a new multifocusing formulation for reflection traveltime assuming that the

particular reflector geometry was spherical. This assumption, combined with assuming

straight raypaths helps to derive a more accurate multi-parameter traveltime moveout

expression without increasing the number of unknown wavefield parameters (Schwarz

et al., 2014a). Here, we assumed a spherical reflector specified by one constant finite

curvature parameter, applicable in all directions. Assuming such a reflector reduces the

approximation parameter set from 8 to 4 in the 3D case (Landa et al., 2009). The ge-

ometry of most curved reflectors can be reasonably well approximated by a sphere. This

assumption not only lets us exactly calculate the traveltime of reflections from strongly

curved spherical reflectors and diffractions from scattering objects with very high cur-

vatures but also helps to accurately estimate the traveltime of reflections from gently to

highly curved non-spherical layers that can be approximately described with one curva-

ture value (Landa et al., 2009). Various curvatures over a curved reflector, like folded

structures with a combination of several anticlines and synclines, can be simulated by

allowing the fitted curvature value to vary spatially. In fact, the new method decom-
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poses and approximates a prestack seismic data cube from a complicated general curved

interface into responses from a set of spheres at each common cell and time location,

each with a different curvature value.

In order to achieve a uniform fold of coverage and even offset and azimuth distribution,

one can adjust the size of each cell separately, which is called flexible binning (Yilmaz,

2001). The proposed method makes it possible to derive a reliable stacked section from

flexible binned data. However, the flexible binning with larger dimensions causes another

problem. Generally, the allocated midpoints into a cell may not coincide with the center

of the cell. The distance between the midpoints and the center of the cell introduces

an error in the moveout correction and leads to misfocusing of reflections and distortion

of the stacked amplitudes. This effect has not been considered in the conventional

moveout correction. One solution can be assigning the stacked trace to the center of

the relevant midpoints rather than to the cell center. But this results in an unequal

spacing of the stacked traces, especially in the crossline direction (Yilmaz, 2001). Taking

into account the distance between the midpoints and the cell center when deriving the

stacking operator is the most appropriate solution if the midpoints depart considerably

from the cell center. Accounting for changes in the moveout with the azimuth is another

issue arising from the processing of 3D seismic surveys. The azimuth-dependent moveout

within a common-cell gather is critical when processing 3D land seismic data (Yilmaz,

2001), so will be incorporated here.

In order to account for the effect of heterogeneity on the traveltime moveout, an auxil-

iary medium with straight-ray geometry and constant velocity is considered (see Perroud

et al., 1999). The auxiliary medium can synthesize (approximate) the actual subsurface

model to account for heterogeneity either by shifting the reference time to project the

problem into the optical domain or by adjusting the velocity of an effective overburden
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(De Bazelaire, 1988; Höcht et al., 1999). Multi-parameter stacking methods can be cate-

gorized into two groups based on how they account for heterogeneity. One group assumes

an effective auxiliary medium, like CRS and NMO, which approximates the inhomoge-

neous subsurface model with a medium of a constant effective velocity. The effective

velocity is the adapted (shifted) velocity assigned to the effective auxiliary medium and

replaced the actual velocity model. The other group, like MF and shifted NMO, uses con-

cepts of geometrical optics, which accounts for heterogeneity by projecting the reflection

traveltime problem into the optical domain (see Höcht et al., 1999). Based on assump-

tions of geometrical optics, the traveltime resulting from the bent reflection raypath

traveling through a heterogeneous overburden can be approximated with a straight-ray

geometry in a constant near-surface velocity, but with a different reflection point. In this

approach, the replaced medium is achieved by changing the center of coordinates and

described with shifted time and constant near-surface velocity. In other words, in the

optical and effective-medium mechanisms, the heterogeneity effects are accounted for by

shifting reference time and velocity, respectively (see Schwarz and Gajewski, 2017).

The accuracy of the effective medium operators is less affected by heterogeneity compared

to the optical approaches. Whereas optical operators are stretch-free and are most

suitable to describe reflection and diffraction traveltimes, particularly from highly curved

reflectors (Schwarz et al., 2014a). The effective-medium-based stacking operators become

inaccurate with increased curvature (Landa et al., 2009) and cause signal stretching after

moveout correction because they vary as a function of the zero-offset time (Schwarz

et al., 2015). But, this dependency allows determining the true reference traveltime

(Schwarz and Gajewski, 2017). Landa et al. (2009) found that the spherical multifocusing

might lose effectiveness when the overburden consists of a strong heterogeneity (Schwarz

et al., 2014b). We follow Schwarz and Gajewski (2017) and transform the proposed

operator from the optical (time-shifted domain) to the effective medium (velocity-shifted
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domain) or vice versa. Depending on the inherent character of the subsurface, one can

employ one of those parameterizations. Shifting the reference time should accurately

characterize diffractions and highly curved reflectors while shifting the constant velocity

will accurately account for background velocity heterogeneities.

First, the original signal processing steps to attenuate the coherent/random noise and

partially recover the amplitudes are applied. To have a correct representation of the

zero-offset wavefield volume, recovering the diffraction response is important, which is

likely to suffer from extensive filtering. Next, the midpoints are collected into 3D super

common-cell gathers, which are gathers that comprise traces belonging to the nearby

common-cell gathers within the limits of a certain span in the vicinity of the central

(imaging) point. The optimal size of the 3D super cell can be estimated using Fresnel

zone analysis (Hubral et al., 1993; Gurevich and Landa, 2002; Berkovitch et al., 2009).

The next step is velocity or wavefield-attribute analysis using a 3D stacking operator.

The optimal 3D super cell gathering can mostly solve the data coverage problem and can

provide gathers with even fold, offset, and azimuth distributions. However, the super

gathers might be comprised of reflections with broad midpoint scatter and reflection point

dispersal. Also, the reflections might contain non-hyperbolic moveout, particularly far-

offsets data. A robust operator that can account for normal, dip, and azimuth moveout

effects simultaneously and account for nonhyperbolicity so as to fully resolve the moveout

of near- to far-offsets data and estimate dip- and azimuth-independent stacking velocity

field with high accuracy. In order to solve the problem associated with assuming vertical

raypaths that is implicit in the conventional elevation statics corrections, we incorporated

a reflection-based elevation statics corrections in the moveout operator by considering

the nonzero elevations of source, receiver, and imaging point. Overall, we aim to derive

such an operator that can address all the above-mentioned issues.
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Figure 4.1a shows the ray geometry for a 3D survey setup over a 3D curved reflector with

a general undulating structure. Here, we consider a locally spherical interface embedded

in a constant velocity (ˆ̂v) medium with irregular topography. A reflection ray (dashed

blue ray) is generated by an arbitrarily located source (red asterisk), reflecting off the

reflector interface, arriving back to the recording surface, and is captured by the receiver

(blue triangle). In this figure, it is assumed that the inline, crossline, and depth directions

correspond to the x−, y−, and z−axes, respectively. The imaging point [X0, Y0, Z0] is

chosen arbitrarily (magenta square) on the irregular measurement surface, where the

final stack trace will be assigned there. Note that the imaging point can be arbitrary

and it is not essential to be aligned with the source and receiver. A sphere is fitted to

the tangent to the reflector at the normal incident point (NIP, a point that the zero-

offset normal ray emitting from the imaging point hits the reflector) to approximate

the subsurface structure locally. The curvature and origin of the sphere are adjusted

such that the sphere surface can produce the same reflection traveltime response as the

measured trace (just one or all traces in the super gather) at that location.

The reflection ray can be simulated with a rotated spheroid (ellipsoid with two axes

of equal length), where the source and receiver are the focal points of the spheroid.

Hence, the problem of the reflection traveltime for spherical reflectors is turned into the

problem of finding the tangency of the ellipsoid and the sphere. There are two methods

that we can solve this problem, which allow generalizing application to three-dimensional

subsurface geometries with rugged topography. One is directly deriving a closed-form

solution for finding the tangency point of a rotated spheroid with a sphere. Another

method is converting the 3D case into a 2D problem, then finding the tangency point of

an ellipse and a circle using the derived solutions for Alhazens problem, finally converting

back the solutions into the 3D space. The first approach leads to a very complicated and

computationally expensive formula. The second approach is a straightforward strategy,
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which enables us to expand the spherical multifocusing method into the most general

form. This strategy consists of two transformations and a projection of the coordinate

system to convert the 3D to a 2D problem. The 3D GSMF method can be applied step

by step as follows.

First, the origin of the global frame coordinate system (O) (Figure 4.1a) is transformed

to the imaging point (Figure 4.1b). All coordinates in the new system (x, y, z) are deter-

mined with X, Y , and Z and the corresponding variable subscript. S, G, R, and NIP

indicate the source, receiver, reflection point, and normal incident point, respectively.

XS = XSource −X0, YS = YSource − Y0, ZS = ZSource − Z0,

XG = XReceiver −X0, YG = YReceiver − Y0, ZG = ZReceiver − Z0,

XM =
XG +XS

2
, YM =

YG + YS
2

, ZM =
ZG + ZS

2
,

HX =
XG −XS

2
, HY =

YG − YS
2

, HZ =
ZG − ZS

2
,

H =
√
H2
X +H2

Y +H2
Z ,

where M and H represent the midpoint and half-offset between the source and receiver

pair.

Then, the center of the sphere (C) is retrieved from the spherical coordinates and ex-

pressed using wavefield attributes. In this case, the moveout operator depends on four

wavefield attributes including the emergence angle ˆ̂β, the azimuthal angle ˆ̂φ, radii of

curvature of the normal ˆ̂RN , and normal-incidence-point ˆ̂RNIP waves. The NIP wave

represents a wave that emerges from a point source at a reflector. The normal wave

(N) is a parallel wave emitted by different points at the reflector (as in the exploding

reflector concept). The central ray (the green ray in Figure 4.1b) makes the angle of ˆ̂β

with respect to the vertical axis along the azimuthal angle of ˆ̂φ. ˆ̂φ is the azimuthal angle



156

of the horizontal projection of the central ray measured from the inline (x-axis). The

four wavefield parameters involved in the 3D GSMF are estimated at the surface and

provide distinct physical properties of the reflector with clear interpretation – the spatial

position and the local curvature of the reflector. The emergence angle determines the

reflector dip. The radius of curvature of the NIP wave is the propagation distance from

the point source to the acquisition surface and describes the depth of the reflector. The

radius of curvature of the N wave reflects the curvature of the reflector (Landa et al.,

2009). ˆ̂� symbol is used to indicate the parameters that are required to be substituted

according to chosen auxiliary medium. Therefore, the substitutions in the time-shift and

velocity-shift mechanisms are

[ˆ̂v, ˆ̂t0,
ˆ̂β, ˆ̂φ, ˆ̂RNIP ,

ˆ̂RN ] = [v0, tshift, β, φ,RNIP , RN ] and

[ˆ̂v, ˆ̂t0,
ˆ̂β, ˆ̂φ, ˆ̂RNIP ,

ˆ̂RN ] = [vshift, t0, β
eff , φeff , Reff

NIP , R
eff
N ],

respectively. The variable ρ = RNIP/RN is a certain combination of the wavefield pa-

rameters that remain unchanged regardless of which auxiliary medium is employed. This

allows us to replace RN with its alternative RNIP/ρ to reduce the number of parameters

that are required to estimate when we exchange between the auxiliary medium mech-

anisms. In the optical domain, the mechanism that accounts for heterogeneity shifts

the actual traveltime of the NIP wave (actual reference time t0). In this mechanism,

the geometry of the actual NIP wavefront recorded at the surface can be described ac-

curately and the surface-based NIP wave attributes are actual (β, φ,RNIP ). However,

the straight-ray assumption would fail at determining the actual traveltime of the NIP

wave. In the velocity-shift mechanism, the constant overburden velocity ˆ̂v is adjusted

(vshift) to adapt with the actual recorded zero-offset reference traveltime t0. The velocity

change perturbs the NIP wave attributes measured at the surface, including the actual
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curvature radius RNIP , the emergence angle β, and the azimuthal angle φ. They repre-

sent effective properties (βeff , φeff , Reff
NIP ) and no longer correspond to the actual surface

measurements, due to the straight-ray assumption (Schwarz and Gajewski, 2017).

XC =
ˆ̂RNIP

ρ
sin( ˆ̂β) cos( ˆ̂φ), YC =

ˆ̂RNIP

ρ
sin( ˆ̂β) sin( ˆ̂φ), ZC =

ˆ̂RNIP

ρ
cos( ˆ̂β),

RC =
(1− ρ) ˆ̂RNIP

ρ
.

Second, all points are transformed into the new coordinate system (x′, y′, z′) with the

origin at the midpoint M of the source and receiver pair (Figure 4.1c). All coordinates in

this system are determined with X ′, Y ′, and Z ′ and the corresponding variable subscript

with a prime symbol.

X ′C′ = XC −XM , Y ′C′ = YC − YM , Z ′C′ = ZC − ZM .

Third, a rotated spheroid is fitted to the pair of the source and receiver with the center at

the origin M ′ and the focal points at the source and receiver coordinates (Figure 4.1d).

Fourth, a plane passing through the source (S ′), the receiver(G′), the reflection point

(R′), the center of the sphere (C ′), and the spheroid (M ′) is fitted, which is shown

in transparent light red in Figure 4.1e. Based on Snell’s law, for a constant velocity

model, the incident and reflected rays from a reflection point and the normal vector to

the reflector are coplanar and reside in one plane. The intersections of the plane with

the spheroid and sphere will be an ellipse and circle, respectively, which are shown with

dashed pink lines.

This plane will have a hinge that is the line that connects the source and the receiver (the



158

main axis of the spheroid in this figure). The plane rotates around the hinge changing its

inclination until it passes through the center of the sphere. The spheroid is a 360-degrees

rotation of a 2D ellipse along the axis that connects the source and the receiver. The

radii of the semi-axes, perpendicular to the main axis, are equal (This is why we used

the term ”spheroid” instead of ”ellipsoid”). Therefore, the intersections of the plane and

the spheroid along at any inclination will be the same, and we do not need to estimate

the inclination of the plane for each pair of source and receiver.

Fifth, all coordinates are projected from the 3D coordinate system into the 2D coordinate

system of the inclined plane that intersects the center of the sphere (x′′ − z′′) shown in

Figure 4.1f. The axis x′′ is along the vector that connects the source to the receiver

(S ′G′). The axis z′′ is orthogonal to the x′′ within the plane. All coordinates in this

system are determined with X ′′ and Z ′′ and corresponding variable subscript. A double

prime symbol is added to all variables and the subscript n is used for normalized variable

with respect to the radius of the circle R′′C (R′′C = R′C = RC). In order to find the vector

z′′ within the plane encompassing (S ′, R′, G′, M ′, and C ′), we find the cross product of

the vectors
−−−→
M ′G′ and

−−−→
M ′C ′. The resulted vector y′′ will be normal to the plane and all

vectors that are situated in the plane. Then, the vector z′′ will be cross product of the
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x′′ and y′′.

−−−→
M ′G′ = [HX , HY , HZ ],

−−−→
M ′C ′ = [X ′C′ , Y ′C′ , Z ′C′ ],

X̂ ′′unit =

−−−→
M ′G′

||(
−−−→
M ′G′||2

, Ŷ ′′unit =
X̂ ′′unit ×

−−−→
M ′C ′

||(
−−−→
M ′C ′||2

, Ẑ ′′unit = X̂ ′′unit × Ŷ ′′unit,

X ′′C′′ = X̂ ′′unit •
−−−→
M ′C ′, Y ′′C′′ = Ŷ ′′unit •

−−−→
M ′C ′, Z ′′C′′ = Ẑ ′′unit •

−−−→
M ′C ′,

ˆ̂vn =
ˆ̂v

R′′C
, hn =

H

R′′C
,

ifH 6= 0→ X ′′C′′n =
X ′′C′′

R′′C
, Z ′′C′′n =

Z ′′C′′

R′′C
,

ifH = 0→ X ′′C′′n =
X ′C′

R′′C
, Z ′′C′′n =

Z ′C′

R′′C
.

This step converts the 3D reflection modeling problem with irregular topography into a

2D case with a flat surface. Within this plane (Figure 4.1f), applying the 2D spherical

moveout formula (see Appendix 4-A for more detail) provides the reflection moveout

(∆t) as follow:

∆t = t− ˆ̂t0 =
2

ˆ̂vn

√
h2
n R

′′
X′′n (Z ′′C′′n −R′′Z′′n)

Z ′′C′′n R
′′
X′′n −X ′′C′′n R

′′
Z′′n

−
2 R′′NIPn

ˆ̂vn
,

or geometrically can be expressed by

∆t = t− ˆ̂t0 =

√
(−hn −R′′X′′n)2 +R′′Z′′n

2

ˆ̂vn
+

√
(hn −R′′X′′n)2 +R′′Z′′n

2

ˆ̂vn
−

2 R′′NIPn

ˆ̂vn
,

where h is the half-offset, [R′′X′′n, R
′′
Z′′n] = [X ′′C′′n+cos(θ), Z ′′C′′n+sin(θ)] is the coordinate

of the reflection point (R′′), and R′′NIPn
=

√
X ′′C′′n

2 + Z ′′C′′n
2 − 1. θ = 2 atan(u) and u
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can be determined by solving the quartic equation expressed as:

b4 u
4 + b3 u

3 + b2 u
2 + b1 u

1 + b0 = 0,

where

b0 = Z ′′C′′n (X ′′C′′n + 1),

b1 = 2 h2
n − 2 X ′′C′′n

2
+ 2 Z ′′C′′n

2 − 2 X ′′C′′n,

b2 = −6 X ′′C′′n Z
′′
C′′n,

b3 = −2 h2
n + 2 X ′′C′′n

2 − 2 Z ′′C′′n
2 − 2 X ′′C′′n,

b4 = Z ′′C′′n (X ′′C′′n − 1),

where bi(i = 0− 4) are the coefficient of the quartic equation. The quartic equation has

four complex-valued solutions in general. Analytical and numeral solutions can be used

to find the solutions (see, e.g. Burnside and Panton, 1892). The convex and concave

spherical reflectors are the two most common cases, where there is a single real-valued

solution in both cases. To satisfy Fermat’s principle, we select the minimum value for

the reflection traveltime.

Sixth, the coordinate of the reflection point (R′′) is transformed back into the global

frame in 3D space, called RP , using the unit vectors of x′−, y′−, and z′−axis and

reverse of the transformation operators used in the first and second steps.

RPX = RC (X̂ ′unit •
−→
R′′n) +XM +X0,

RPY = RC (Ŷ ′unit •
−→
R′′n) + YM + Y0,

RPZ = RC (Ẑ ′unit •
−→
R′′n) + ZM + Z0,
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where
−→
R′′n = [R′′X′′n, 0, R

′′
Z′′n] and

X̂ ′unit =
[̂i • X̂ ′′unit, î • Ŷ

′′
unit, î • Ẑ

′′
unit]

||[̂i • X̂ ′′unit, î • Ŷ ′′unit, î • Ẑ ′′unit]||2
,

Ŷ ′unit =
[ĵ • X̂ ′′unit, ĵ • Ŷ

′′
unit, ĵ • Ẑ

′′
unit]

||[ĵ • X̂ ′′unit, ĵ • Ŷ ′′unit, ĵ • Ẑ ′′unit]||2
,

Ẑ ′unit =
[k̂ • X̂ ′′unit, k̂ • Ŷ

′′
unit, k̂ • Ẑ

′′
unit]

||[k̂ • X̂ ′′unit, k̂ • Ŷ ′′unit, k̂ • Ẑ ′′unit]||2
.

The derived formula enables us to calculate not only the reflection traveltime (t) but

also the spatial coordinate of the reflection point (RP ). Therefore, we can estimate the

multifocusing parameters and focusing function (σ), as by-products. The formulation is

derived for a homogeneous overburden, but it can be developed to the inhomogeneous

model using the auxiliary medium theory mentioned above (Perroud et al., 1999; Jäger

et al., 2001). We expressed the moveout formula for a general auxiliary medium of con-

stant velocity ˆ̂v with its respective reference time ˆ̂t0. The proposed generalized moveout

can account for heterogeneity using two different mechanisms including shifting time or

shifting velocity, and it depends on the choice of (ˆ̂t0, ˆ̂v). One can switch between two dif-

ferent representations, the operator in the optical projection or in the effective domain,

by exchanging (t0, vshift)↔ (tshift, v0). In the wavefield attribute analysis using a global

optimization algorithm, the (t0, vshift) substitutions used in the velocity-shift mecha-

nism lead to effective wavefield parameters [ ˆ̂β, ˆ̂φ, ˆ̂RNIP ] = [βeff , φeff , Reff
NIP ]. While the

(tshift, v0) substitutions used in the time-shift mechanism lead to actual wavefield pa-

rameters [ ˆ̂β, ˆ̂φ, ˆ̂RNIP ] = [β, φ,RNIP ]. ρ remain unchanged regardless of which auxiliary

medium is employed.
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Figure 4.1: Ray scheme of the 3D generalized spherical multifocusing method. a) the
ray (dashed blue line) geometry of a reflection from a curved interface, generated by
a arbitrarily located pair of source and receiver sitting on an irregular topography. A
sphere is fitted to the reflector to approximate the subsurface structure locally at the
normal incident point. b) The wavefield attributes (β, φ,RN , andRNIP ) in the coordinate
system transformed from the origin of the global frame (O) (Figure 4.1a) to an arbitrarily
chosen imaging point (magenta square in Figure 4.1a). c) The normal-incident-point ray
(dashed magenta line) geometry in the coordinate system transformed into the origin at
the midpoint of the source and receiver pair. d) The rotated spheroid fitted to the pair
of the source and receiver with the center of origin and the focal points of the source and
receiver pair. e) The plane passed through the source, receiver, reflection point, center of
the sphere, and center of the spheroid. The intersections of the plane with spheroid and
sphere are an ellipse and circle, respectively, which are shown with dashed pink lines. f)
The ray scheme of the 3D generalized spherical multifocusing projected onto the fitted
plane used for the 2D spherical multifocusing.
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Modeling the traveltime of a reflection from a planar reflector and a diffraction from

a point diffractor can be considered as special cases of the proposed method and can

be achieved by substituting RN = ∞ and RN = RNIP , respectively. The proposed

approach is exact for plane dipping interfaces, spherical reflectors, and point diffractors

with a homogeneous velocity background (Fomel and Kazinnik, 2009; Landa et al., 2009).

Also, this method can accurately approximate reflection traveltime for a vast range of

curvature and heterogeneity including gently to highly curved interfaces (flat reflector to

point diffractor) beneath mild to relatively high heterogeneous overburden (Landa et al.,

2009).

The 2D spherical MF method for flat and irregular surfaces are special cases of the

proposed approach. In two-dimensional cases, the moveout operator depends on three

wavefield attributes including the emergence angle β, radii of curvature of the normal

RN , and normal-incidence-point RNIP waves (Landa et al., 2009). In three-dimensional

surveys, the corresponding formulation depends on only an additional parameter (four

attributes in total), the azimuthal angle φ between the inline and the vertical plane

containing the central ray.

The proposed formulation is a dual moveout expression that can account for heterogene-

ity by two different mechanisms. A processor can select the auxiliary medium – either

optical projected or effective replacement medium – by supplying the corresponding sub-

stitutions. The time-shifted 3D GSMF is better suited for mapping gently to strongly

curved geometries with low to moderate overburden heterogeneity from prestack data

into a zero-offset wavefield stacked section. While the velocity-shifted version of the

3D GSMF is suggested to use for mapping of subsurface with gently curved layers and

moderate to relatively high heterogeneity. Note that depth domain imaging methods

are superior in solving for the effect of strong lateral velocity changes, compared to time
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imaging approaches. We will test the performance of the proposed method only using

the optical form of the 3D GSMF operator in the example sections.

4.6 Implementation

Here, we introduce a time processing sequence, which can significantly improve the ac-

curacy of the stacking velocity field and subsurface stacked volume. The 3D seismic

prestack data used as input to the 3D GSMF are defined in a 7D space including the

recording time (t), the three-dimensional spatial coordinate of the source (XS, YS, ZS),

and the three dimensional spatial coordinate of the receiver (GS, GS, GS). In order to

perform 3D binning, first, a regular grid is superimposed on the midpoints distribution.

This grid includes cells with half the size of the receiver group interval in the inline direc-

tion and the receiver line spacing in the crossline direction. The seismic traces are then

sorted into common-cell gathers. The imaging points are the center of the common-cells.

The multi-coverage stacking method, like multifcosuing, attempts to fully extract the

information recorded in the prestack data. To that end, rather than applying the stacking

step over single common-cell gathers, the proposed method can be applied over several

nearby common-cell gathers. A super-cell consist of neighboring m inlines by n crosslines

cells. The traces at the midpoint locations that fall within each super-cell constitute a

super common-cell gather, which increases fold by a factor of m × n. In other words,

to build a super common-cell gather (super gather), a set of traces from neighboring

cells are collected whose midpoints are in the vicinity of the imaging point and contain

information about the same subsurface segments. The size of the super cell can be

determined using Fresnel zone analysis.
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The 3D super binning of traces makes fold coverage even, maintains adequate offset

distribution with distinct azimuths, and allows the contribution of more traces in gener-

ating the stacked section, which in turn enables a more meaningful and reliable wavefield

analysis and leads to more coherent focused reflection at the right location. Also, 3D

super binning increases the statistical diversity of the information contributed in recon-

structing the stacked trace assigned to the center of each cell (the imaging point or the

central point). This assists to increase S/N significantly as super gathers compromise

more traces.

Implementation of the 3D GSMF is technically challenging and requires determining four

unknown parameters ( ˆ̂β, ˆ̂φ, ˆ̂RNIP , and ρ) simultaneously. This is a data-driven method

and does not require any knowledge of the subsurface model. A non-linear global opti-

mization algorithm can be employed to determine the unknown 3D wavefield parameters

through coherence analysis (Belfer et al., 2008a). In fact, the global optimization search-

ing algorithm attempts to find a traveltime surface that optimally approximates the

moveout of reflection recorded in a super gather by maximizing the coherence function

(Yilmaz, 2001).

Estimating wavefield attributes using non-linear global optimization is the most compu-

tationally demanding part of multifocusing approaches. Also, the quality of the resulting

stack volume highly depends on the accuracy of the estimated wavefront attributes (Xie

and Gajewski, 2018). Therefore, selecting an efficient optimization method is a key fac-

tor. Here, we attempted to present a strategy that produces accurate zero-offset wavefield

volumes while still being cost-effective. We examined the performance of several global

optimization methods in terms of the accuracy of the determined wavefront parameters

and the computational expenses. Among the evaluated optimization approaches, dif-

ferential evolution (DE) (Storn and Price, 1997) outperformed and provided smoother
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attribute volumes and high-quality stacking sections. Discussing the performance of the

tested global optimization algorithms is beyond the scope of this article. Overall, the DE

method is a robust global optimization technique and has low sensitivity to the control

parameters (Garabito and Cruz, 2019). Also, this method can be optimally adjusted

to efficiently estimate parameters with high accuracy. Besides, the proposed processing

workflow can be beneficial to the conflicting dip processing and maintain more features –

especially diffractions – that would finally increase the image quality (Xie and Gajewski,

2018).

The attribute volumes are considered as by-products of multifocusing stacking process,

which can be used for further processing steps, calculating a detailed dip- and azimuth-

independent stacking velocity field, enhancing and regularizing prestack gathers, struc-

tural interpretation, wavefield separation, and NIP-wave tomography. These products

are crucial inputs in prestack/poststack time/depth migrations (Xie, 2016).

The stacked and attributes volumes are required to be referenced to a datum surface,

which defines the elevation of the surface that the final stack volume will be assigned and

can be a flat (Z0 = constant), floating (Z0 = f(X0, Y0)), or actual topography surface.

One can use the (x, y, z) coordinates of sources and receivers to build the topographic

surface. Applying a smoothing filter on the topographic surface can smooth out rapid

changes to generate the floating datum surface.

For an efficient implementation of the newly introduced 3D GSMF stacking method,

we developed a package using the basic programming languages including C, C++,

and Shell through the Seismic Unix platform (Stockwell Jr, 1999). We utilized the

serial farming method to run the code in parallel on multiple processors. The Pagmo

library (Biscani and Izzo, 2020) was incorporated into the package to estimate wavefield
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attributes accurately using various parallel optimization algorithms such as DE.

4.7 Synthetic Data Example

We generated synthetic numerical models to test the performance of the proposed method.

The synthetic models include folded structures with a range of curvatures from low to

high. Figure 4.2 shows the geometry of surveys planned for the synthetic data. We

tested the proposed method on synthetic data generated for both 3D (Figure 4.2a) and

crooked-line (Figure 4.2b) surveys. The red and blue dots are sources and receivers, and

black squares (A, B, and C in both Figures 4.2a and 4.2b) are the location of selected

super gathers. In the 3D survey, the transparent gray squares show the selected super

cells each of which consists of three by three nearby cells. In the crooked-line configura-

tion, the midpoints are darker for increasing offset and shown for the location of selected

super cells each consisting of five nearby common cells. Here, the solid slalom black line

is the processing line that is generated by fitting a low-order polynomial to the midpoints

using a regression method.

Figure 4.3 shows three different synthetic velocity models beneath a topography surface

with elevations ranging from -200 to 250 m. The models include a single sphere reflector

with a constant curvature (Figure 4.3a), a single antiform-synform reflector with positive

and negative curvatures (Figure 4.3b), and a model of multiple gently curved reflectors

with various curvatures (Figure 4.3c). Also, a vertically strong heterogeneity (1500 - 4500

m/s) has been incorporated into the antiform-synform model (Figure 4.3b) to investigate

the accuracy of the method in dealing with the inhomogeneous subsurface. We utilized

the SOFI3D software (Bohlen, 2002) to numerically simulate seismic synthetic data.
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For each model, we examined the applicability and accuracy of the proposed method

for both 3D (Figure 4.2a) and crooked-line (Figure 4.2b) surveys. We quantitatively

analyzed the accuracy of the new formula regarding traveltime approximations and com-

pared its results with the reference models. Figure 4.4 and 4.5 depict the estimated

3D GSMF traveltime of reflection surfaces versus offset and common-midpoint number.

Figure 4.2: The geometry of surveys for synthetic data examination includes a) a 3D
survey and b) a crooked-line survey. Sources and receivers are shown with the red and
blue dots. The selected super gathers are shown with black squares. In figure (a), the
transparent gray squares show the selected super cells each of which consists of three
by three nearby cells. In figure (b), the solid slalom black line is the processing line,
and midpoints (darker for greater offset) are shown for the selected super cells. In the
crooked-line survey, each super cell consists of five nearby common cells.

Figure 4.3: 3D synthetic velocity models beneath a topography surface with elevations
ranging from -200 to 250 m, a) single sphere reflector, b) single antiform-synform reflector
with vertical gradient background velocity, and c) multiple curved reflectors with various
curvatures.



169

They are coloured by their differences with respect to the exact traveltime simulated us-

ing the finite-difference algorithm. Figures 4.4a and 4.4b show the results for the single

sphere reflector (Figure 4.3a) with the 3D and crooked-line surveys at the two locations

labeled A on Figures 4.2a and 4.2b respectively. Figures 4.4c and 4.4d depict the results

for the single antiform-synform reflector (Figure 4.3b) with the 3D and crooked-line sur-

veys at the two locations labeled B in 4.2. Figure 4.5 shows the results for each reflector

of the multiple curved-layers model (Figure 4.3c). In this figure, each row from top to

bottom corresponds to each reflector in order. The graphs in the first column (Figures

4.5a, 4.5c, 4.5e, and 4.5g) are the results for the data acquired using the 3D survey (Fig-

ure 4.2a) and the graphs in the second column (Figures 4.5b, 4.5d, 4.5f, and 4.5h) are

the results for the data collected using the crooked-line survey (Figure 4.2b) at the two

locations labeled C in 4.2. The reflections from each reflector are identified by analyzing

the dip-independent stacking velocity spectrum. The unknown 3D GSMF wavefield pa-

rameters were estimated using the differential evolution global optimization algorithm,

not least-square fitting methods, while the latter approach can reduce RMSE consider-

ably. Overall, the values of the root-mean-square error (RMSE) demonstrate that the

proposed method was able to approximate traveltime with high accuracy for reflectors

with various curvatures and media with various heterogeneity, even in the presence of

topography and regardless of the survey geometry.
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Figure 4.4: The traveltime of reflection surfaces estimated using the 3D GSMF method
and coloured by its differences with respect to the exact traveltime simulated using the
finite-difference algorithm. a) and b) show the results for the single sphere reflector
(Figure 4.3a) with the 3D and crooked-line surveys at location A, respectively. c) and
d) depicts the results for the single antiform-synform reflector (Figure 4.3b) with the 3D
and crooked-line surveys at location B, respectively.
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Figure 4.5: The traveltime of reflection surfaces estimated using the 3D GSMF method
and coloured by its differences with respect to the exact traveltime simulated using the
finite-difference algorithm for the model of multiple curved layers (Figure 4.3c). a), c),
e), and g) show the results for the first, second, third, and fourth reflectors acquired with
the 3D survey (Figure 4.2a) at location C, respectively. Figures b), d), f), and h) are
for the first, second, third, and fourth reflectors collected using the crooked-line survey
(Figure 4.2b) at location C, respectively.
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We also used the 3D SEG C3WA benchmark synthetic velocity model (Aminzadeh et al.,

1997) to test the performance of the introduced method. The velocity model is shown

in Figure 4.6, which consists of an irregular-shaped salt body with several scattering

objects and diffracting edges beneath a sedimentary overburden. This model includes

several features that can generate higher-order traveltime moveouts. Also, the presence

of a high-velocity salt body with a rough body caused a significant velocity heterogeneity,

which made the reflections from the reflectors beneath it strongly non-hyperbolic. We

added a topography surface with elevations ranging up to 400 m. Then, numerically

simulate seismic synthetic seismograms using the finite difference method. Note that,

we simulated the reflection wavefield to add time shifts associated with variation of the

source and receiver elevations. We did not add them as static bulk shifts for all samples

of each trace, which might impose errors resulting from the violation of the assumption

of nearly vertical raypaths within the near-surface. After initial signal processing, the

data was sorted into common-cell gathers. Next, three nearby common-cell gathers

along the inline and crossline directions have been composed to build super common-cell

gathers. To illustrate the results, we selected a super-cell with the center located at

[x = 4020, y = 5000] m, above the diffracting edges of the salt body with inhomogeneous

overburden.

Figures 4.7 compares the results of applying the conventional and the 3D GSMF correc-

tions on the synthetic super gather generated for the 3D SEG C3WA benchmark model.

In this paper, the conventional processing sequence includes source-receiver elevation

statics, normal, and dip moveout corrections. Here, for NMO correction, we used the

stacking velocity field calculated from the exact synthetic velocity model. Figures 4.7a

shows the original super gather that was sorted based on the trace number and shown for

only positive offsets. Visible undulations along reflections are caused by the acquisition

pattern and topography. Figures 4.7b and 4.7d are the conventionally processed and the
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3D GSMF corrected gathers, respectively. Figures 4.7c and 4.7e are the stack traces of

the conventionally- and the 3D GSMF-corrected gathers. The amplitudes of stack traces

are preserved and are comparable. Figure 4.7f is the cropped 3D SEG C3WA velocity

model with inline and crossline located at y = 5000 m and x = 4020 m. R1 indicates

the reflection from a localy flat reflector with RN → ∞ and D1 indicates the diffration

from the edge of the salt body where RN → RNIP .

Figure 4.6: The 3D SEG C3WA benchmark synthetic velocity model with a topography
surface. The elevation of topography is ranging up to 400 m (from -200 to 200 m).
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Figure 4.7: Results of applying b) the conventional corrections (source-receiver elevation
statics + normal moveout + dip moveout corrections) and d) the 3D GSMF method
on the synthetic super gather (a) located at [x = 4020, y = 5000] m for the 3D SEG
C3WA benchmark synthetic velocity model (Figure 4.4). c) and e) are the stack traces of
the conventionally processed and the 3D GSMF corrected gathers. f) Cropped 3D SEG
C3WA velocity model with inline and crossline located at y = 5000 m and x = 4020 m;
the selected super-cell gather (a) recorded above the diffracting edges of the salt body
with inhomogeneous overburden. A quarter of the topography surface was not plotted to
see the subsurface model easily and point out some features. R1 indicates the reflection
from a localy flat reflector with RN →∞ and D1 indicates the diffration from the edge
of the salt body where RN → RNIP . Reflectors from beneath the salt body produced
non-hyperbolic reflections.
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Overall this result reveals that the proposed method accurately corrected all of the

source-receiver elevation statics, normal, and dip moveout effects simultaneously (not

sequentially), even in the presence of strong heterogeneity and variations of source and

receiver elevations. The reflections have aligned across all of the near and far offsets

and midpoint separations. This demonstrates that the 3D GSMF method is accurate

in a large range of offsets and midpoints. The flatness and temporal location of events

in the corrected gather (Figure 4.7d) gives us enough confidence about the accuracy

of the proposed operator. The deviations along the reflection traveltimes in the super

common-cell gather after conventional corrections are mostly the results of the time

shifts associated with the source-receiver azimuth dependency of stacking velocities and

nonhyperbolicity of higher-order events.

Also, the 3D GSMF method prevents the stretching problem (compare the signals marked

with dashed yellow circles in Figures 4.7b and 4.7d) allowing to use of full-offset data

(see the data marked with dashed yellow ellipses in Figures 4.7b and 4.7d), leading to an

increased vertical resolution in stacked sections. However, the NMO correction caused

wavelet stretching for shallow and long-offset reflections that cannot be mitigated by any

of the subsequent corrections and need to be muted (see the muted part indicated with a

question mark in Figure 4.7b). Comparing the stacked traces demonstrates that the 3D

GSMF stacking method produces reflection data (Figure 4.7e) with sharper and a less

deformed wavelet, higher vertical resolution, and a greater S/N than the conventional

stacking method (Figure 4.7c).

Analysis of the velocity spectrum and wavefield attributes (by comparing the radius of

normal (RN) and normal-incident-point wave curvatures (RNIP )) allowed us to distin-

guish one of the diffraction events, which is shown by the yellow arrow (D1). Comparing

this event (in Figures 4.7a, 4.7b, 4.7d) indicates the non-hyperbolic and higher-order
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behavior of the diffraction traveltimes. The 3D GSMF method enabled us to recognize

and accurately simulate these events. Reflectors from beneath the salt body produced

non-hyperbolic reflections. The 3D GSMF was also able to correct the non-hyperbolic

moveout associated with reflections beneath the complex salt body.

4.8 Real Data Example

We examined the proposed approach on an extremely noisy 3D seismic dataset acquired

over a thrust belt setting with irregular topography and complex overburden. In this

area, the near-surface includes both lateral velocity variations and vertical velocity gra-

dients. In addition, overthrust tectonism has led to imbricate structures, which makes

seismic imaging a challenging task (Yilmaz, 2021). The survey spanned an area of ap-

proximately 200 km2 at 12.4× 16.2 km in size. A diagonal recording geometry was used

to collect data, where source lines in the northerly direction are diagonal to the receiver

lines (inline) in the northwest-southeast direction. The survey has been conducted using

9,108 seismic dynamite shots at an interval of 60 m with charge depths ranging from 4

to 10 m. In each shot, 10 receiver lines at 250-m separation, each includes 216 receiver

groups at an interval of 40 m, record seismic signals. Source-receiver elevations vary

between 105 and 249 m (Figure 4.10a).

The processing sequence is listed in Table 4.2. As a first step, we assigned survey geom-

etry, transformed, and rotated the survey orientation such that the inline and crossline

directions aligned along with E-W and N-S, respectively. Figure 4.8 shows the trans-

formed and rotated survey geometry. Then, we estimate a 3D grid-based near-surface

velocity-depth model using 3D nonlinear traveltime tomography. This step can plausi-

bly resolve long- and relatively short-wavelengths lateral and vertical velocity variations
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within the near-surface. Next, shot-receiver tomostatics corrections are calculated (Fig-

ure 4.9a) and applied. Figure 4.9a shows how considerable and essential source-receiver

elevation static shifts are in this dataset (ranging from -70 to +20 ms). The tomostatics

corrections shift the sources and receivers vertically from the real topography down to

the intermediate datum surface using the near-surface velocities and then vertically shift

up to the floating datum surface using the replacement velocity (Yilmaz, 2021). The

floating datum surface (Figure 4.10c) is generated from the topographic surface (Fig-

ure 4.10b) – built from coordinates of sources and receivers (Figure 4.10a) and then

smoothed to remove rapid changes. The processes marked with an asterisk are neces-

sary steps in the conventional processing sequence. In conventional processing, we shall

continue subsequent data analysis and processing steps, including velocity analysis and

stacking processes, on the seismic data referenced to the floating datum. While the 3D

GSMF stacking method can be applied to the data with/without prior source-receiver

elevation static corrections.

Signal processing is the next step, which includes geometric spreading correction, time-

variant spectral whitening. After geometric spreading correction and time-variant spec-

tral whitening, bottom tapering of amplitudes were applied to avoid undesirable effects.

A bandpass filter has been used to attenuate any processing-induced noise outside the

recoverable signal bandwidth. Then, field records have been time-windowed to 0-1.5 s,

which includes the main reflections. Also, in order to challenge the performance of the

proposed method, we reduced the fold coverage by limiting the offset range up to 1200

m. Figure 4.8a, an example shot is shown using a black plus sign, and its active receivers

after limiting offset are shown in cyan. Figure 4.11 shows a field record before and after

the application of the signal processing sequence.

The processed seismic shot gathers are then sorted into common-cell gathers. The di-
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Table 4.2: The processing sequence of the real seismic data set

Process Parameter

Assigning the Geometry
Transformation-Rotation the Geometry
* 3D Near-Surface Modeling
* Shot-Receiver Tomostatics Corrections replacement velocity of 2400 m/s
Signal Processing

- Geometric Spreading Correction scaling function t1.4

- Time-Variant Spectral Whitening signal bandwidth of 8-84 Hz
- Bandpass Filter 8-12-72-84 Hz

Time Windowing 0-1.5 s
Offset Limiting [-1.2 +1.2] km
Binning
Area Bounding x=[2.5 9.5] and y=[7.0 14.0] km
Velocity Analysis/Attributes Search
NMO+DMO/3D GSMF Correction
Residual Statics Corrections
Stacking
Shifting Bandwidth to Lower Frequencies 4,8-72,84 Hz
Automatic Gain Control 250 sample window
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mension of each cell is 20 m × 20 m in the inline and crossline directions, respectively.

The fold map for the common-cell gathers is shown in Figure 4.8b. Common-cell gath-

ers have been used to apply subsequent conventional processing steps. The dataset was

bounded to an area with a size of 7 km×7 km, covering the main and challenging geolog-

ical features. This area is shown using a solid black square in Figure 4.8b and 4.8c. We

estimated the 3D stacking velocity field by performing stacking velocity analysis using an

image-based workflow. Then, we applied NMO corrections to the common-cell gathers

using the 3D stacking velocity field. The estimated stacking velocity field (Vstk) is shown

in Figure 4.12f.

Super common-cell gathers, consisting of nearby seven inlines by seven crosslines cells,

have been used to increase the fold and improve the S/N in the multifocusing stacking

method. Figure 4.8c shows the fold map for the super common-cell gathers. Comparing

Figure 4.8: a) Survey geometry, sources and receivers are shown with red and blue dots,
respectively. An example shot is shown using a black plus sign, and its active receivers
(after limiting offset) are shown in cyan. b) The fold map used in conventional processing,
and c) the super cell fold map used in the multifocusing processing. In figures (b) and
(c), solid black square shows the selected area for the experiment, and dashed lines show
the selected inline and crossline at y=10.1 km and x=6.0 km, respectively.
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the fold maps for the 3D binned seismic data used in the conventional (Figure 4.8b)

and the 3D GSMF methods (Figure 4.8c) demonstrates that performing the 3D super

binning increases the fold by a factor of 36 and makes the fold coverage even. Also, the

3D super binning can maintain adequate offset distribution with distinct azimuths.

We estimated the 3D GSMF unknown parameters using the nonlinear differential evolu-

tion global optimization algorithm by maximizing the semblance function. Figure 4.12a-d

display the volumes of the estimated wavefield attributes including RNIP , RN , β, and

φ, respectively. Figure 4.12e shows the coherence cube – the values of the semblance

function maximized in the global optimization searching of the 3D GSMF parameters.

The derived 3D stacking velocity field in conventional processing (Figure 4.12f) was used

as a constraint in the attributes estimation process to define a searching corridor. In

Figure 4.12, the cubes are sliced at the time of 1300 ms and along the inline and crossline

located at y=10.1 km and x=6.0 km, respectively. The selected inline and crossline are

also shown in Figures 4.8b and 4.8c using dashed black lines. The attribute volumes

can be used for calculating a detailed dip- and azimuth-independent stacking velocity

field. Also, the geological significance can be drawn from the attributes panel. The

inline attribute sections clearly show an anticline structure. The diffraction can also be

identified using the criterion of RN = RNIP .

We applied 3D GSMF corrections to the super common-cell gathers using the estimated

3D wavefield attributes. This step requires a floating datum surface to reference stacked

traces to the imaging points (X0, Y0, Z0) chosen on the datum. We used the same float-

ing datum (Figure 4.10c) used in the tomography and conventional stacking. Short-

wavelength reflection traveltime deviations might be still left in the corrected gathers

after moveout corrections. Residual statics corrections are required to account for these

fluctuations (kinks). We estimated and applied 3D surface-consistent residual statics
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shifts using the 3D stack-power optimization method. Figure 4.9b shows the residual

statics shifts for the conventional processing. Eventually, the corrected traces are stacked

and post-processed using a bandpass filter and automatic gain control.

We derived two stack volumes including the 3D conventional (Tomostatics + NMO +

DMO) and 3D GSMF stack volumes. Also, we tested both strategies including the appli-

cation of the 3D GSMF stacking method on the super common-cell gathers with/without

prior source-receiver elevation static corrections. The results of both strategies were al-

most the same in this case, where the offset and midpoint apertures allowed sufficiently

Figure 4.9: The source-receiver a) elevation and b) residual statics

Figure 4.10: a) 3D survey geometry for showing source-receiver elevation distribution,
b) the topography surface generated by fitting a surface to the source and receiver dis-
tribution, c) the floating datum generated by smoothing the topography surface
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enough fold coverage. Trace spacings in the inline and crossline directions are both 20

m. Improvements achieved by the 3D GSMF approach compared to the conventional 3D

processing method are well illustrated in Figures 4.13 and 4.14. Figure 4.13 displays the

stack sections along the selected inline and crossline located at y=10.1 km and x=6.0

km from the 3D stacked volumes, respectively. Figures 4.13a and 4.13c shows the con-

ventional and the 3D GSMF stacks along the selected inline and crossline and Figures

4.13b and 4.13d shows them along the selected crossline, respectively. The time slices at

600, 800, and 1300 ms from the 3D stacked volumes are shown in Figure 4.14 in columns

Figure 4.11: An example of the field record before (a) and after (b) signal processing
and static corrections.
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from left to right. In this figure, the first row is for conventional processing and the

second row is for the 3D GSMF method. The results of applying the 3D GSMF method

indicate that the proposed method was able to map the complex imbricate structure

and the thrust faults. Comparing the results demonstrate that the 3D GSMF method

significantly improved the quality of stacked sections, increased the vertical and hori-

Figure 4.12: The cubes of wavefield attributes including RNIP (a), RN (b), β (c), and
φ (d), which are estimated using the differential evolution algorithm for the 3D GSMF
method. e) The coherence cube as the values of the semblance maximized in the global
optimization process for searching the 3D GSMF parameters. f) The stacking velocity
field used in conventional stacking, which was estimated using conventional velocity
analysis. The cubes are sliced at the time of 1300 ms and along the inline and crossline
located at y=10.1 km and x=6.0 km, respectively.
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zontal resolutions, and increased the S/N. Also, the proposed method provided valuable

wavefield attributes, which introduces great improvements for structural interpretations

and many other applications.

4.9 Discussion

The 3D GSMF approach is well suited for stacking 3D seismic data to produce a true

zero-offset wavefield by mapping both reflections and diffractions with high accuracy

from prestack to poststack domain. We presented a closed-form solution for a spheri-

cal interface, which is valid for reflector curvatures, ranging from the diffraction limit

Figure 4.13: a-b) The conventional stack sections along the inline and crossline located
at y=10.1 km and x=6.0 km, respectively. c-d) The 3D GSMF stack sections along the
inline and crossline located at y=10.1 km and x=6.0 km, respectively.
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(RN → RNIP ) to the planar interface (RN →∞), for low to relatively high heterogeneous

velocities in the subsurface with smooth to rugged topography. We parameterized the

formulation using two auxiliary medium mechanisms, which allows considering hetero-

geneity either by shifting the constant velocity of an effective overburden or by shifting

the reference time in the vicinity of the reference ray in an optical domain. Shifting the

reference time should accurately characterize diffractions and highly curved reflectors,

while shifting the constant velocity will accurately account for background velocity het-

erogeneities. The proposed method can be applied directly for 3D seismic data collected

over an irregular surface – where the vertical and horizontal coordinates of the sources,

receivers, and imaging points can be different – without the need for prior elevation static

corrections. Practically, due to fewer unknown wavefield attributes (only four) compared

Figure 4.14: a-c) The time slices of the conventional stack cube at the times of 600, 800,
and 1300 ms, respectively. d-f) The time slices of the 3D GSMF stack cube at the times
of 600, 800, and 1300 ms, respectively.
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to other 3D multiparameter stacking operators with eight parameters, the application

of the global optimization algorithm in searching the attributes can be more stable and

computationally less demanding.

Most of the 3D seismic imaging methods assume regular and adequate sampling (Biondi,

2006). However, the proposed approach can resolve the issues arising from irregular and

inadequate spatial sampling of the data. Also, the application of the 3D GSMF on ver-

tical seismic profiling (VSP) data is straightforward. 3D diffraction imaging is another

useful application of the proposed method. One can produce a diffractivity volume by

substituting RN = RNIP , which can be used for the identification of geologic discon-

tinuities, detecting local heterogeneities, and a reliable interpretation of non-smoothed

subsurface features. The estimated wavefield attribute volumes have several valuable ap-

plications. One of the main potential applications is deriving detailed dip- and azimuth-

independent stacking velocity field. Also, attribute cubes could be used for prestack

data enhancement and regularization. In addition to reflection traveltime and wavefield

attributes, the spatial coordinates of the reflection point can be determined directly from

the solutions. The reflection point coordinates and wavefield attributes provide useful

information and could be a great help in structural interpretation.

Comparing the 2.5D MF with the 3D GSMF methods can help to determine which

method would be suitable to use according to their accuracy, capability, and computa-

tional cost. The 2.5D multifocusing method (Jodeiri Akbari Fam and Naghizadeh, 2020;

Jodeiri Akbari Fam et al., 2021a) offers 3D planar multifocusing moveout correction

and 3D modeling of the wavefront. This approach assumes locally spherical wavefronts

around the zero-offset central ray, which are valid for quasi-hyperbolic approximation

and short to mid offsets. Hence, developing a non-hyperbolic higher-order 3D MF ap-

proach was considered. We derived a 3D multi-parameter moveout formula based on
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the higher-order assumption of locally circular wavefronts and by assuming an analytical

reflector geometry and a constant velocity overburden. Assuming an analytical reflector

geometry allows deriving moveout approximations without increasing the number of de-

grees of freedom (Schwarz and Gajewski, 2017). The 3D GSMF utilizes the same set of

kinematic attributes used in the 2.5D multifocusing but in a different formulation, which

allows more accurate moveout modeling in a large range of offsets and midpoints. The

derivation was performed for a homogeneous overburden with constant velocity but can

be applied to the inhomogeneous case using the concept of an auxiliary medium (Gure-

vich and Landa, 2002). The 3D GSMF method can achieve better results than the 2.5D

MF method for highly curved reflectors beneath strong heterogeneous overburden, but it

has a high computational cost. While both methods depend on four wavefield attributes,

the 3D GSMF method requires solving a quartic equation. Also, irregular topographies

are considered in the 3D method which makes it a more sophisticated method, while the

2.5D method can only be applied to seismic data with a flat datum.

The version more general algorithm would be to assume an elliptical reflector with arbi-

trary orientation and three distinct curvatures along the semi-axes. However, a sphere

with a finite constant curvature can locally simulate the shape of a vast range of ge-

ometry and model their structures with relatively high accuracy in 3D space. Also, a

planar reflector and a point diffractor are special cases of the sphere, and most subsurface

reflectors have attributes somewhere between these two extreme cases. These are our

reasons behind choosing the sphere as the subsurface reflector geometry. The 3D GSMF

method can exactly determine the reflection traveltime moveout from a single-curvature

curved reflector — as well as a dipping layer — under a homogeneous overburden. Also,

the proposed method can accurately simulate the reflection traveltime moveout for any

curved reflector that can be approximated using a single curvature.
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One of the disadvantages of the closed-form implicit solution for the reflection traveltime

from a circular reflector is solving a quartic equation, which makes this algorithm com-

putationally expensive. However, it can be more accurate in the case of strongly curved

layers and point diffractions compared to classic standard multifocusing methods. Ap-

proximating subsurface reflector geometry with only one curvature is the other limitation

of the proposed method (only one curvature is allowed to model the subsurface reflector

locally). Also, large velocity variations can deviate reflection propagation paths (the

blue ray in Figure 4.1) from the plane that contains the source, receiver, and reflection

point (the transparent red plane in Figure 4.1e). Then, the reflection propagation paths

are no longer lied on a plane and lie on more complicated surfaces (Biondi, 2006). We

assumed that the source, receiver, reflection point, and center of the sphere are copla-

nar. Therefore, large velocity variations might impose an error in the traveltime and

the wavefield attributes estimations. In practice, this does not seem to be a problem, as

illustrated by our synthetic and real examples.

Spherical multifocusing theory provides the fundamental basis for developing a moveout

expression for different geometrical shapes, such as general three-dimensional ellipsoids

(Landa et al., 2009). Deriving a multifocusing traveltime expression for an ellipsoid

with three radii of curvature and arbitrary orientation can offer a more realistic and

accurate moveout operator for a full range of three-dimensional reflector curvatures but

increases the number of wavefield parameters. Computationally, the determination of

the 3D GSMF parameter is more efficient than estimating more unknown parameters for

general ellipsoids. Deriving a formulation of an elliptical multifocusing is underway and

will be published in the near future. The elliptical multifocusing method aims to find

the tangency point between two ellipsoids including an ellipsoid fitted to the source-and-

receiver pair and a local ellipsoid with arbitrary orientation, size, and location fitted to

the reflector.
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The optical representation of the proposed method was tested on synthetic data with

various curvatures ranging from low (gently curved interfaces) to high (spherical reflector

or point diffractors) (see Figures 4.3 and 4.6). Also, different heterogeneities were incor-

porated to models. A strong vertical gradient velocity (1500-4500 m/s) was assigned to

the synthetic model shown in Figure 4.3b. The presence of a high-velocity salt body with

a rough body in the 3D SEG C3WA benchmark synthetic data (Figure 4.6) caused a

significant velocity heterogeneity, and not only produced high-order diffractions but also

made the reflections from the reflectors beneath it strongly nonhyperbolic. Numerical

tests have shown that the new approximation is significantly accurate for highly curved

reflectors with relatively strong heterogeneity at large offsets or at large midpoint sepa-

rations. Application of the new method on the real seismic data provided a more focused

zero-offset wavefield volume with improved resolution compared to the conventional re-

sults. The 3D GSMF method enabled us to obtain a 3D stacked cube and visualize the

subsurface more accurately.

4.10 Conclusion

We proposed a novel multifocusing stacking method by extending the spherical multifo-

cusing method into the most general form in three dimensions, called the 3D generalized

spherical multifocusing (GSMF) algorithm. Our algorithm transforms multi-coverage

prestack seismic data into a synthesized 3D zero-offset wavefield volume. The intro-

duced method account for the elevation and spatial coordinate of all source and receiver

positions, so can be applied for crooked-line/3D seismic data collected with arbitrary

recording geometry from areas with irregular topography. The extended method si-

multaneously corrects for elevation statics, non-hyperbolic moveout associated with re-
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flections beneath complex overburden structures, and azimuth-dependent dip-moveout

effects. We evaluated the performance of the new method in the optical form on different

3D complex synthetic models generated with both 3D and crooked-line surveys. The nu-

merical tests have demonstrated that the new formulation is significantly accurate for a

range of low to relatively high heterogeneity, variations of source and receiver elevations,

and a broad range of offsets and midpoint separations. Application of the proposed ap-

proach on the generic synthetic model revealed that the new stacking formula is stretch

free and can accurately simulate reflections and diffractions traveltime over a vast range

of curvatures – ranging from the diffraction limit (RN → RNIP ) to the planar interface

(RN → ∞) – even for seismic data with rugged topography and from beneath a strong

inhomogeneous overburden with an irregular salt body. The differences and root-mean-

square errors (RMSE) of reflection surfaces estimated using the 3D GSMF method were

calculated with respect to the exact traveltime simulated using the finite-difference al-

gorithm for synthetic models. Quantitative analysis revealed that the new operator was

able to simulate the wavefield with high accuracy (with mean RMSEs of 0.0025 s and

0.0042 s for the crooked-line and 3D surveys, respectively) and accurately corrected the

source-receiver elevation statics, normal, and dip moveout effects simultaneously (not

sequentially). In the example of a super common-cell gather produced for the 3D SEG

C3WA benchmark model, the reflections were aligned across all of the near and far off-

sets and midpoint separations, and the flatness and temporal location of events in the

corrected gather showed the effectiveness of the proposed method. Application of the

3D GSMF method on the 3D low-fold seismic data acquired over a complex trust-belt

area with rugged topography and noisy data environment yielded a high-resolution and

more focused zero-wavefield stacked volume compared to the conventional 3D stacking

method. Also, the experiments demonstrated that the new formulation was accurate for

surveys that varied in elevation by 400 and 450 m in the synthetic examples and 144
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m in the field example. The estimated attribute volumes were used for visualizing the

subsurface quantitatively and for structural interpretation. The attributes panel clearly

showed an anticline structure and determined the curvatures and dips of reflections.

Compared to the conventional processing, the proposed approach significantly improved

the quality of the 3D stacked volume with enhanced S/N and more coherent reflections

(particularly in shallow zones).
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Appendix 4-A: Traveltime on a circular/spherical re-

flector

The analysis of reflection phenomena on a circular reflector has been discussed in several

disciplines such as Alhazens problem in mathematics, collision detection in robotics, re-

flection from a spherical mirror in geometrical optics, and the circular billiard problem.

A fourth-order algebraic equation has been derived to model reflection from a circular

reflector (Neumann, 1998; Drexler and Gander, 1998). Analytical solutions of the equa-

tion are also provided that generally include four complex responses. We presented an

implicit formulation for 3D generalized spherical multifocusing which is based on the

closed-form solution to the 2D reflection problem. Simply, we derive the proposed 3D

method based on the solution for finding the tangency point of an ellipse and a circle.

Consider the ray geometry for the 2D reflection problem from the source s = [−h, 0] to

the receiver g = [+h, 0] with the half-offset h and in a constant velocity v0. The equation

of the fitted ellipse to the source-receiver pair as the focal points is given by

E =
√

(x− xs)2 + (z − zs)2 +
√

(x− xg)2 + (z − zg)2 − v0t→

E =
√

(x+ h)2 + z2 +
√

(x− h)2 + z2 − v0t. (4-A.1)

The circular reflector with the center of c = [xc, xz] and radius of rc can be expressed by

C = (x− xc)2 + (z − zc)2 − r2
c . (4-A.2)
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The tangency condition in Euclidean space is expressed as follows (Zill et al., 2011);

||∇E ×∇C||2= ||det(


i k

∂E/∂x ∂E/∂z

∂C/∂x ∂C/∂z

)||2= 0, (4-A.3)

where ∇ = ∂/∂x+ ∂/∂z. The equation 4-A.3 indicates that the ellipsoid and the sphere

are tangent to each other if their gradients are parallel, in other words, the L2-norm of

their cross product needs to be equal to zero. The traveltime (t) can be determined by

inserting partial derivations of 4-A.1 and 4-A.2 into 4-A.3:

t =
2

v0

√
h2 x (zc − z)

zc x− xc z
. (4-A.4)

The circle can be expressed in the parametric form by x = xc + rc cos θ and z =

zc + rc sin θ. Substituting θ = 2 arctan u → u = tan θ/2, sin θ = 2 tan θ/2

1+tan2
θ/2

, and

cos θ = 1−tan2
θ/2

1+tan2
θ/2

gives:

x = xc + rc
1− u2

1 + u2
, z = zc + rc

2 u

1 + u2
. (4-A.5)

Inserting 4-A.4 and 4-A.5 in 4-A.1 lead to

Q(u)

2 h2 u(u− 1)(u+ 1)
= 0, (4-A.6)
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where

Q(u) = b4 u
4 + b3 u

3 + b2 u
2 + b1 u

1 + b0 = 0,

b0 = zc (xc + rc),

b1 = 2 h2 − 2 xc
2 + 2 zc

2 − 2 rc xc,

b2 = −6 xc zc,

b3 = −2 h2 + 2 xc
2 − 2 zc

2 − 2 rc xc,

b4 = zc (xc − rc),

In 4-A.6, u = 0 and u = ±1 correspond to a vertical and a horizontal tangents and are

only possible when zc = 0 and xc = 0, respectively. Hence, solving Q(u) can provide

all solutions to 4-A.6. By substituting the solutions in 4-A.5 the reflection point can

be determined. Then, substituting the reflection point coordinate in 4-A.4 gives the

reflection traveltime t.
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Chapter 5

Concluding statements

5.1 Summary and Conclusions

Three-dimensional (3D) seismic surveys can: 1) provide reliable and accurate subsurface

images of complex 3D structures; 2) focus seismic energy at the correct location; and

3) reduce spatial aliasing. However, low fold coverage reduces the resolution of the

resulting images. Two-dimensional (2D) seismic surveys can lead to a high-resolution

image if the geology is also 2D and the traverse is perpendicular to strike but often this is

not the case. Furthermore, the surveys are also conducted along a crooked line traverse

due to poor access in rugged terrains, logistical reasons, and environmental restrictions.

The crookedness of line traverses, irregular topography, and complex subsurface geology

with steeply dipping and curved interfaces could adversely affect the signal-to-noise ratio

(S/N) of the data. The crooked-line geometry violates the assumption of a straight-line

survey that is a basic principle behind the 2D multifocusing (MF) method and leads

to crossline spread of midpoints. Additionally, the crooked-line geometry can give rise
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to potential pitfalls and artifacts such as deformation of reflections and considerable

time- and offset-variant time shifts. All these factors lead to difficulties in imaging and

velocity-depth model estimation.

I introduced two methods that can generate a stacked section that is equivalent to a

synthesized zero-offset wavefield for crooked-line/3D seismic data with arbitrary record-

ing geometry from areas with a complicated near-surface and a complex subsurface.

The traveltime equation in these methods achieves better signal alignment before stack-

ing for transforming multicoverage prestack data into an accurate poststack zero-offset

wavefield. The first method uses a 2.5D multifocusing (2.5D MF) reflection traveltime

equation, which explicitly takes into account the midpoint dispersion and crossdip ef-

fects. The 2.5D MF formulation is based on an extension of the planar MF method into

three dimensions with a flat datum. This method does not consider the variation of

source and receiver elevations, and the recording surface is assumed to be flat. The new

formulation simultaneously corrects for 3D normal and azimuth-dependent dip moveouts

(or inline and crossline dip moveouts in the context of crooked-line seismic data process-

ing). A simultaneous correction is significantly more accurate than removing these effects

sequentially. The method is accurate for quasi-hyperbolic reflections and its capability

is limited in resolving non-hyperbolic diffractions and reflections. The second method is

a three-dimensional generalized spherical multifocusing (3D GSMF) algorithm, which is

based on a 3D extension of the spherical MF method into the most general form with

irregular topography. I developed a non-hyperbolic higher-order moveout operator with

a closed-form implicit formulation that can be applied to seismic data with arbitrary

spatial coordinates of sources and receivers. The second method simultaneously corrects

for elevation statics, non-hyperbolic moveout associated with reflections beneath com-

plex overburden structures, and azimuth-dependent dip-moveout effects. The algorithms

can accurately extract 3D structural information and remove anomalous dip-dependent
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velocities, which enable us to produce more accurate and high-resolution seismic images.

This would allow for maximally resolved data-driven reconstructions of the complex sub-

surface structure. Both proposed methods can be applied to generate either a 2D stacked

section along the crooked traverse or a 3D stacked volume. The resulting stacked seis-

mic section can then be time- or depth-migrated using a 2D/3D zero-offset migration

algorithm to obtain the 2D/3D subsurface image.

The developed kinematic expressions of the traveltime stacking surface for each proposed

method depend on a set of four unknown parameters measured at each image point and

time location. The main practical problem of the multifocusing implementation is the

simultaneous determination of the optimal wavefield parameters. Determining global

optimal parameters is a crucial step, particularly for complex structures and low-fold

data. Wavefield analysis is required to estimate the wavefield attributes, which is a

nonlinear multi-dimensional global optimization problem. Searching optimal attributes

can be performed automatically using a multidimensional nonlinear global optimization

method based on a coherency objective function. I incorporated a numerical approach

by adapting the very fast simulated annealing (VFSA) and differential evolution (DE)

algorithms to estimate optimal attributes and improve the accuracy and resolution of the

generated results. The convergence behavior, computational cost, and accuracy of both

optimization algorithms were evaluated on synthetic data for searching for the optimal

solution of the wavefield attributes. The stacking velocity field derived from conventional

stacking velocity analysis is used to determine the lower and upper bound constraints

of the search range for the radius of curvature of normal incidence point wave (RNIP ).

The results showed that the both algorithms are well-suited to determine the wavefield

attributes within a reasonable number of iterations. The use of the stacking velocity field

as a priori information to constrain for RNIP leads to noticeable improvements in the

estimation of the wavefront parameters and speeds up the convergence. Comparing the



198

effectiveness and efficiency of both optimization methods demonstrates that the VFSA

method is computationally cost-effective, however, the DE algorithm is more accurate

than the VFSA algorithm. The DE can find optimal parameters with good precision and

accuracy, and fine-tuning the parameters for DE algorithms can reduce the running time.

The VFSA method can reach the global maximum faster than DE, but it is accompanied

by uncertainty.

I investigated the accuracy of the 2.5D MF formulation by testing it on different 3D

synthetic models containing various 3D dipping and curved interfaces and heterogeneous

overburdens with crooked-line surveys. Numerical tests show that the 2.5D MF travel-

time formula yields more accurate time shifts and better-flattened stretch-free reflections

before stacking and can accurately focus the primary reflections at their poststack correct

locations. The results showed that the 2.5D MF method extracts structural information

with good accuracy even for layers with dips over 40◦.

Also, I tested the 2.5D MF method on two real data sets with crooked-line surveys.

Applying the proposed approach to one 2D crooked-line data set collected in a thrust-belt

area with subsurface complexity led to a high-resolution seismic stacked section with a

significant quality improvement compared to the conventional methods. The generalized

cross dip moveout analysis and conventional normal moveout stacking algorithm were

both applied to generate conventional stacked sections for comparison purposes. Steeply

dipping reflections were better focused and were mapped with high clarity compared

to the conventional methods. Also, this algorithm brought new reflections into focus

that did not appear in the conventional results. The 2.5D MF method enhanced the

vertical resolution and S/N of the stack section compared to both conventional stacking

algorithms.
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I also presented the application of the 2.5D MF method on the Larder-Lake crooked 2D

seismic reflection transect, which was acquired over a crystalline geological environment

in the Superior Craton of Canada. I compared the Kirchhoff time migrated image of the

2.5D MF stack with the 2D phase-shift time migration of dip moveout corrected stack,

2D prestack Kirchhoff time migration, and the swath 3D poststack migration. Com-

pared to the results of other methods mentioned above, applying the 2.5D MF stacking

algorithm improved the quality of the structural stack considerably and yield a more

reliable subsurface section with a high resolution. The 3D swath processing could not

image steeply dipping reflections correctly, however, it delineated the extension of some

of the subhorizontal reflections, particularly in the Larder Lake structural basin. The

2.5D MF method mapped the prominent steeply dipping reflection packages more co-

herently. In addition to the main feature, the 2.5D MF method focused new reflections

with a high S/N, which were not constructed by the 2D DMO stack and 2D prestack

migration workflows. Furthermore, the proposed method accurately extracted 3D struc-

tural information including inline and crossline dips. This study clarified that the 2.5D

multifocusing method can be an effective alternative to the 2D conventional stacking

(NMO+DMO+CDMO) and 2D prestack migration methods in processing crooked sur-

veys. The swath 3D imaging result convinced us to test the 2.5D MF or 3D GSMF

approach to produce a volumetric stack in further research.

I evaluated the performance of the 3D GSMF method parameterized in optical auxiliary

medium on different 3D complex synthetic models generated with both 3D and crooked-

line surveys. The numerical tests demonstrated that the new formulation is accurate for a

range of low to relatively high heterogeneity, variations of source and receiver elevations,

and a broad range of offsets and midpoint separations. Quantitative analysis revealed

that the new operator was able to simulate the wavefield with high accuracy (with mean

RMS errors of 2.5 and 4.2 ms for the crooked-line and 3D synthetic surveys, respectively)
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and accurately corrected the source-receiver elevation statics, normal, and dip moveout

effects simultaneously (not sequentially). Application of the proposed approach on the

3D SEG C3WA benchmark synthetic velocity model depicted that the new stacking

formula is stretch free. In this example, the reflections were aligned across all of the

near and far offsets and midpoint separations, and the flatness and temporal location

of events in the corrected gather showed the effectiveness of the proposed method. The

result also showed that the proposed method can accurately simulate reflections and

diffractions traveltime over a vast range of curvatures – ranging from the diffraction limit

(RN → RNIP ) to the planar interface (RN → ∞) – even for seismic data with rugged

topography and from beneath a strong inhomogeneous overburden with an irregular salt

body. The differences and RMS errors of reflection surfaces estimated using the 3D

GSMF method were calculated with respect to the exact traveltime simulated using the

finite-difference algorithm for synthetic models.

Application of the 3D GSMF method on the 3D low-fold seismic data acquired over a

complex trust-belt area with rugged topography and a noisy data environment yielded a

high-resolution and more focused zero-wavefield stacked volume compared to the conven-

tional 3D stacking method. Also, the experiments demonstrated that the new formula-

tion was accurate for surveys that varied in elevation by 450 m in the synthetic examples

and 144 m in the field example. The estimated attribute volumes were used for visu-

alizing the subsurface and for structural interpretation. Compared to the conventional

processing, the proposed approach significantly improved the quality of the 3D stacked

volume with enhanced S/N and more coherent reflections (particularly in shallow zones).

Comparing the application of the two newly developed methods on crooked-line synthetic

seismic data from a single sphere reflector showed that the 3D GSMF operator simulated

the reflection traveltime surface almost two times better than the 2.5D MF formula (with
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RMS errors of 1.0 and 1.97 ms for the 3D GSMF and 2.5D MF methods, respectively),

even in the presence of a severe elevation variation. The reason behind this can be

attributed to the fact that the 2.5D MF formula is derived for a locally planar interface

and is a quasi-hyperbolic moveout operator, whereas the 3D GSMF is developed for a

locally spherical reflector and is a non-hyperbolic operator.

Comparing the 2.5D MF with the 3D GSMF methods can help to determine which

method would be suitable to use according to their accuracy, applicability, and com-

putational cost. The 2.5D multifocusing method (Jodeiri Akbari Fam and Naghizadeh,

2020; Jodeiri Akbari Fam et al., 2021a) offers 3D planar multifocusing moveout cor-

rection and 3D modeling of the wavefront. This approach assumes a locally spherical

wavefront around the zero-offset central ray, which is valid for a quasi-hyperbolic approx-

imation and short to mid offsets. The 3D multi-parameter moveout formula is based on

the higher-order assumption of locally circular wavefronts and is assuming an analytical

reflector geometry and a constant velocity overburden. Assuming an analytical reflector

geometry allows deriving moveout approximations without increasing the number of de-

grees of freedom. The 3D GSMF utilizes the same set of kinematic attributes that are

used in the 2.5D multifocusing but in a different formulation, which allows more accurate

moveout modeling in a large range of offsets and midpoints. The 3D GSMF method can

achieve better results than the 2.5D MF method for highly curved reflectors beneath

strong heterogeneous overburden, but it has a high computational cost. While both

methods depend on four wavefield attributes, the 3D GSMF method requires solving a

quartic equation. Also, irregular topographies are considered in the 3D method which

makes it a more sophisticated method, while the 2.5D method can only be applied to

seismic data after elevation statics corrections and reference data to a flat datum.

The Larder Lake transect mostly includes planar dipping interfaces, where both 2.5D
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MF and 3D GSMF methods might lead to similar results, except to the part beneath a

strong heterogeneous overburden and the near-surface that includes tight folding. Hence,

testing the 3D GSMF algorithm on Larder Lake data would not be a suitable case study

to examine its performance and show the strength of the proposed method. Also, the

application of the 3D GSMF method on crooked-line seismic data to generate a 2D

stacked section or a 3D stacked volume can be considered its secondary application.

Therefore, we first attempted to test the 3D GSMF method on the 3D data set, rather

than crooked-line seismic data, to realize the main potential application of the proposed

method.

Generally, our research on multifocusing made noticeable improvements in imaging com-

plex structures. We opened new horizons in the processing of crooked seismic lines by

developing new theoretical methods for applying 2.5D and 3D multifocusing methods,

which can be considered as innovative contributions of the current thesis. The new

theoretical frameworks could address the longstanding challenges in the processing of

crooked-line seismic data acquired in hard-rock environments. The proposed methods

can be utilized to generate a very detailed and high-resolution stacked section with a

high signal-to-noise ratio for comprehensive interpretation of seismic data acquired by a

survey using a crooked line or a sparse irregular 3D seismic survey from a geologically

complex area with rugged topography and heterogeneous overburden. Developing the

advanced multifocusing seismic stacking package aims to use the potential of the new,

robust, and coherent MF algorithms efficiently in generating high-resolution seismic sec-

tions from Metal Earths data making the section easier to interpret and less ambiguous.
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5.2 Future works

The current research focused on deriving mathematical concepts, developing the theoret-

ical background, and testing the performance of the introduced algorithms on challenging

seismic data sets. Future work should focus on exploiting the potential of multifocus-

ing algorithms to maximally resolve data-driven reconstructions of the solid earth. The

2.5D MF method can be applied to 2D crooked-line or 3D seismic data to produce a

3D stacked volume. The 3D GSMF method can be used to produce 2D straight/slalom

stacked sections from 2D crooked-line seismic data. These can be other important ap-

plications of proposed methods that are required to be tested in the future. A possible

future work is applying the 2.5D MF and 3D GSMF methods to Larder Lake or other

Metal Earth crooked-line traverses to produce 3D stacked volume.

I suggest examining the performance of reflection-based elevation statics corrections ap-

plied by the 3D GSMF method on the seismic data with severe horizontal heterogeneity.

In addition to generating a high-resolution zero-offset wavefield, the proposed methods

have a wide range of applications in further imaging processes and quantitative structural

interpretation. For instance, wavefield attributes can be used for multiple attenuations

and wavefield separation of converted waves. The input seismic data for prestack migra-

tion requires to be regularly sampled spatially and enhanced. As another application,

the noisy prestack super common-midpoint gathers with non-hyperbolic reflections and

irregular acquisitions can be moveout corrected, enhanced, and regularized using the

proposed formulations. As future research, we could work on adapting the 3D GSMF

method to generate 3D diffraction volume, which would be crucial for prospecting geo-

logical discontinuities, local heterogeneities of mineral deposits, and networks of fractures

in reservoirs. Furthermore, the introduced methods can be modified to improve images

obtained using vertical seismic profiling. The 3D GSMF method can be also adapted to
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localize passive seismic events in earthquake seismology by deriving a dual formulation

expressed in the time- and velocity-shifted auxiliary media for the moveout of a point

diffractor in the shot gather.

In addition to the applications mentioned above, the generalized spherical multifocusing

theory importantly provides the fundamental basis for developing a moveout expression

for different geometrical shapes, such as general three-dimensional ellipsoids. A more

general algorithm would assume an elliptical reflector with arbitrary orientation and three

distinct curvatures along the semi-axes. Deriving a multifocusing traveltime expression

for an ellipsoid with three radii of curvature and arbitrary orientation can offer a more

realistic and accurate moveout operator for a full range of three-dimensional reflector

curvatures but increases the number of wavefield parameters, which in turn increases the

computational cost and might reduce the accuracy of simultaneous estimation of optimal

parameters. Deriving a formulation of an elliptical multifocusing is underway and will

be published in the near future.

5.3 Summary of the key achievements

5.3.1 Peer-reviewed journal publications and under review manuscripts

A research paper was published and two manuscripts were submited in international Q1

and Q2 academic journals as follows:

• Jodeiri, H., Naghizadeh, M., and Ö. Yilmaz, 2021, 2.5D multifocusing imaging of

crooked-line seismic surveys: Geophysics, 86, no. 6, 1–67, doi: 10.1190/geo2020-

0660.1.



205

- This article was nominated by the Geophysics editors and highlighted in ”Geo-

physics Bright Spots” in The Leading Edge, 41, no. 1, 62.

• Jodeiri, H., Naghizadeh, M., and Ö. Yilmaz, 3D generalized spherical multifocusing

seismic imaging: Geophysics. (Under review)

• Jodeiri, H., Naghizadeh, M., and Ö. Yilmaz, High-resolution 2.5D multifocusing

imaging of crooked seismic profile in a crystalline rock environment: results from

the Larder Lake area, Ontario, Canada: Geophysical prospecting. (Under re-

view)

5.3.2 Conference publications

• Jodeiri, H., Naghizadeh, M., and Ö. Yilmaz, 2021, Application of 2.5D multi-

focusing seismic imaging in a crystalline rock environment: Results from Larder

Lake area, Ontario, Canada: First International Meeting for Applied Geoscience

& Energy, Extended Abstracts, 2639–2643, doi: 10.1190/segam2021-3594582.1.

• Jodeiri, H. and M. Naghizadeh, 2020, 2.5D multi-focusing imaging of crooked-line

seismic surveys: 82nd Conference and Exhibition, EAGE, Extended Abstracts,

1–5, doi: 10.3997/2214-4609.202011662.

• Jodeiri, H. and M. Naghizadeh, 2020, High-resolution multi-focusing seismic imag-

ing of Metal Earth’s Larder Lake transect: Prospectors & Developers Association

of Canada International Convention.

• Jodeiri, H. and M. Naghizadeh, 2019, Multi-focusing stacking using the very fast

simulated annealing global optimization algorithm: GeoConvention, Extended Ab-

stracts.
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• Jodeiri, H. and M. Naghizadeh, 2019, Multi-Focusing stacking technique: A ro-

bust method of improving subsurface seismic imaging: Prospectors & Developers

Association of Canada International Convention.

5.3.3 Developed software packages

The code packages that were developed in Matlab and using C and C++ in Seismic Unix

software framework are listed as follows:

• 3D GSMF stacking and wavefield analysis using differential evolution algorithm

• 2.5D MF stacking and wavefield analysis using differential evolution and simulated

annealing algorithms

• 2D MF stacking and wavefield analysis using differential evolution algorithm

• 3D and crooked-line seismic data binning

• Super common-midpoint/common-cell gather enhancement by removing nonhy-

perbolicity of reflections and partial stacking using new formulations

• 2D/3D synthetic velocity model building and crooked-line/2D/3D survey designing

pack for generating synthetic seismic data using finite difference algorithm

For efficient implementation of the proposed processing flows, the packaged C and C++

codes were executed and parallelized using a serial farming technique by Shell scripting.
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(2011). Reflection seismic investigations in the Dannemora area, central Sweden: In-

sights into the geometry of polyphase deformation zones and magnetite-skarn deposits.

Journal of Geophysical Research: Solid Earth, 116(B11).

Malehmir, A., Durrheim, R., Bellefleur, G., Urosevic, M., Juhlin, C., White, D. J.,

Milkereit, B., and Campbell, G. (2012). Seismic methods in mineral exploration and

mine planning: A general overview of past and present case histories and a look into

the future. Geophysics, 77(5):WC173–WC190.

Malehmir, A., Schmelzbach, C., Bongajum, E., Bellefleur, G., Juhlin, C., and Tryg-

gvason, A. (2009). 3D constraints on a possible deep > 2.5 km massive sulphide

mineralization from 2D crooked-line seismic reflection data in the Kristineberg mining

area, northern Sweden. Tectonophysics, 479(3-4):223–240.

Mancuso, C. and Naghizadeh, M. (2021). Generalized cross dip moveout correction of

crooked 2D seismic surveys. Geophysics, 86:1–61.

Mann, J. (2002). Extensions and applications of the common reflection surface stack

method. Logos-Verlag.

Mann, J. and Duveneck, E. (2004). Event-consistent smoothing in generalized high-

density velocity analysis. In SEG Technical Program Expanded Abstracts 2004, pages

2176–2179. Society of Exploration Geophysicists.

Marfurt, K. J. and Kirlin, R. L. (2000). 3D broad-band estimates of reflector dip and

amplitude. Geophysics, 65:304–320.

Martin, G. S., Wiley, R., and Marfurt, K. J. (2006). Marmousi2: An elastic upgrade for

marmousi. The Leading Edge, 25(2):156–166.



220

May, B. T. and Straley, D. K. (1979). Higher-order moveout spectra. Geophysics,

44(7):1193–1207.

Mayne, W. H. (1962). Common reflection point horizontal data stacking techniques.

Geophysics, 27(6):927–938.

Milkereit, B., Berrer, E., King, A. R., Watts, A. H., Roberts, B., Adam, E., Eaton, D. W.,

Wu, J., and Salisbury, M. H. (2000). Development of 3D seismic exploration technol-

ogy for deep nickel-copper depositsa case history from the Sudbury basin, Canada.

Geophysics, 65(6):1890–1899.

Mooney, W. D. (2021). The moho discontinuity. In Alderton, D. and Elias, S. A.,

editors, Encyclopedia of Geology (Second Edition), pages 732–743. Academic Press,

Oxford, second edition edition.

Müller, N. A. (2003). The 3D common-reflection-surface stack – Theory and application.

Master’s thesis, Karlsruhe Institute of Technology.

Müller, T. (1999). The common reflection surface stack method: Seismic imaging without

knowledge of the velocity model. Der Andere Verlag.

Naghizadeh, M., Smith, R. S., Sherlock, R., Rubingh, K., Lafrance, B., Ayer, J. A.,

Cheraghi, S., Snyder, D. B., Vergne, J., Mordret, A., et al. (2021). Active and passive

seismic imaging of the central Abitibi greenstone belt, Larder Lake, Ontario. Earth

and Space Science Open Archive ESSOAr.

Naghizadeh, M., Snyder, D., Cheraghi, S., Foster, S., Cilensek, S., Floreani, E., and

Mackie, J. (2019). Acquisition and processing of wider bandwidth seismic data in

crystalline crust: progress with the Metal Earth project. Minerals, 9(3):145.



221
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