
Reconstructing Pairwise Comparisons Matrices Based on Di↵erential

Evolution: A Monte Carlo Study

by

Zhangao Lu

A thesis submitted in partial fulfilment

of the requirements for the degree of

Master of Science (MSc) in Computational Science

The Faculty of Graduate Studies

Laurentian University

Sudbury, Ontario, Canada

Zhangao Lu, 2021

THESIS DEFENCE COMMITTEE/COMITÉ DE SOUTENANCE DE THÈSE
Laurentian Université/Université Laurentienne

Faculty of Graduate Studies/Faculté des études supérieures

Title of Thesis
Titre de la thèse Reconstructing Pairwise Comparisons Matrices Based on Differential Evolution: A Monte

Carlo Study

Name of Candidate
Nom du candidat Lu, Zhangao

Degree
Diplôme Master of Science

Department/Program Date of Defence
Département/Programme Computational Sciences Date de la soutenance May 28, 2021

APPROVED/APPROUVÉ

Thesis Examiners/Examinateurs de thèse:

Dr. Waldemar W. Koczkodaj
(Supervisor/Directeur(trice) de thèse)

Dr. Miroslaw Mazurek
(Committee member/Membre du comité)

Approved for the Faculty of Graduate Studies
Approuvé pour la Faculté des études supérieures
Tammy Eger, PhD
Vice-President Research (Office of Graduate Studies)

Dr. Mariusz Pelc Vice-rectrice à la recherche (Bureau des études supérieures)
(External Examiner/Examinateur externe) Laurentian University / Université Laurentienne

ACCESSIBILITY CLAUSE AND PERMISSION TO USE

I, Zhangao Lu, hereby grant to Laurentian University and/or its agents the non-exclusive license to archive and make
accessible my thesis, dissertation, or project report in whole or in part in all forms of media, now or for the duration of my
copyright ownership. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also
reserve the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. I
further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be
granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department in
which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for
financial gain shall not be allowed without my written permission. It is also understood that this copy is being made available
in this form by the authority of the copyright owner solely for the purpose of private study and research and may not be copied
or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

ii

Abstract

Pairwise comparisons have been used in the decision-making process since

antiquities. However, it is a substantial challenge to generate a PC matrix

from noisy or incomplete real-life input data. This study aims to investigate

the reconstruction of pairwise comparisons matrices from not-so-inconsistent

pairwise comparisons matrices by an optimization method based on di↵er-

ential evolution. A distance-based objective function is defined as a function

of the inconsistency indicator and the distance metric. Monte Carlo exper-

iments are designed to illustrate the research outcomes. The experimental

results show that this method convergence quickly. It also provides compar-

isons of several traditional metrics.

Keywords

pairwise comparisons, pairwise comparisons matrix, inconsistency, di↵eren-

tial evolution, optimization, Monte Carlo, metric.

iii

Acknowledgments

I would like to express my sincere gratitude and appreciation to my supervi-

sor Dr. Waldemar Koczkodaj for his support and advice during my studies.

His explicit knowledge in the field helped me through to the end.

I would like to thank my wife for her constant support and patience through-

out this process.

I would like to thank my parents for their interest and support throughout

my degree.

I would like to thank all my friends who never wavered in their support.

iv

Contents

Abstract iii

Acknowledgments iv

List of Tables vii

List of Figures viii

1 Introduction 1

2 Pairwise Comparisons 2

2.1 Pairwise Comparisons Basics 2

2.2 Problem Definition . 5

3 Di↵erential Evolution 8

4 Problem Formulation 13

4.1 The NSI PC Matrices . 13

4.2 Selection of Metrics . 16

4.3 Metric Monotonicity . 27

4.4 Discussion . 43

v

5 Reconstruct the Matrices with Di↵erential Evolution 44

5.1 Weight Coe�cient . 44

5.2 Analysis of the Results . 47

5.3 Discussion . 53

6 Conclusion and Future Work 57

6.1 Conclusion . 57

6.2 Future Work . 59

Appendix 61

A The Core Part of the Python Program 61

vi

List of Tables

1 The Coe�cients of Quadratic Function 17

2 Several Metrics . 18

3 Statistical Analysis for Order=4 Matrices 27

4 Statistical Analysis for Order=8 Matrices 28

5 The Threshold of ↵ with respect to the Matrix Order and Metric 47

6 Statistical Measurements for Several Bray-Curtis Distances . . 51

7 Statistical Measurements for Several Canberra Distances . . . 53

8 Statistical Measurements for Several Jensen-Shannon Diver-

gences . 55

vii

List of Figures

1 Triad . 4

2 Sample Input Data . 6

3 Di↵erential Evolution Processes 10

4 The Mean of 100,000 NSI PC Matrices’ Kii 15

5 The Original and Fit Curve 16

6 The Distribution of Bray-Curtis Distance 20

7 The Distribution of Canberra Distance 21

8 The Distribution of Chebyshev Distance 22

9 The Distribution of Cosine Similarity 23

10 The Distribution of Euclidean Distance 24

11 The Distribution of Jensen-Shannon Divergence 25

12 The Distribution of Kullback-Leibler Divergence 26

13 Distributions of Bray-Curtis Distances with respect to Di↵er-

ent Matrix Orders and Means of Kii 30

14 Distributions of Canberra Distances with respect to Di↵erent

Matrix Orders and Means of Kii 34

15 The Di↵erences of g() with respect to . 39

viii

16 Distributions of Jensen–Shannon Divergences with respect to

Di↵erent Matrix Orders and Means of Kii 40

17 The New Distribution of Bray-Curtis Distance 50

18 The New Distribution of Canberra Distance 52

19 The New Distribution of Jensen-Shannon Distance 54

ix

1 Introduction

In nature, pairs occur everywhere. A pair of binary digits is the foundation

of computers. We compare objects or concepts in pairs more frequently

than we realize. The pairwise comparisons (PC or PCs depending on the

context) method deserves more attention than it is currently getting. There

are many kinds of research for consistent PC matrices. Nevertheless, not all

PC matrices are consistent matrices in practice. To generate a consistent PC

matrix from a “not-so-inconsistent” PC matrix or NSI PC matrix, which was

introduced in [9], is worth considering. Saaty proposed a method to solve that

problem in 1977 [17]. After that, several methods have been raised [18] [4].

However, there is no decisive proof of which one is best until now. Therefore,

it becomes an optimization problem. In this study, a new method is proposed

based on Di↵erential Evolution (DE) with the tolerance according to Kii

(Koczkodaj inconsistency indicator [11]) and several distance measures.

1

2 Pairwise Comparisons

2.1 Pairwise Comparisons Basics

Pairwise comparisons method, described by Ramond Llull in the 13th cen-

tury, was used for deciding elections. As a scientific method, it has evolved

over hundreds of years and gained considerable importance to model incon-

sistency. Input data is usually represented by a square matrix with elements

that are ratios between compared entities. The matrix is called a pairwise

comparisons matrix (PC matrix for short). The ratio definitions imply that

PC matrix elements are strictly positive real numbers. Extensions to fuzzy

numbers and interval numbers have been analyzed in [22] but under the con-

straints outlined in [15].

In this study, only strictly positive real numbers, as PC matrix elements, will

be considered. If needed, they can be generalized in time. Consider a 3 ⇥ 3

PC matrix:

M =

2

6666664

1 m12 m13

m21 1 m23

m31 m32 1

3

7777775

2

its elements are assumed to be reciprocal: mij = 1/mji since the ration

x/y = 1/(y/x). It implies that PC matrix elements on the main diagonal are

equal to 1 (x/x = 1 for x > 0).

Using PC matrix M elements, we can express ratios [A/B] = m12, [B/C] =

m23,[A/C] = m13 whereA, B, and C are entities. The object T = (m12,m13,m23)

is called a triad, and its elements create the triangular above the main diag-

onal of PC matrix M . Since the elements above the main diagonal create a

cycle, there may be a contradiction in the real-life situation:

[A/B] ⇤ [B/C] 6= [A/C]

where [⇤] denotes a ratio. The ratios can be obtained by expert opin-

ion where division operation may not be applicable (e.g., when comparing

non-functional software attributes such as software reliability and software

safety).

To focus our attention, assume the triad (2,5,3) in the PC matrix M above

the main diagonal. It is represented by dotted arrows with solid arrowheads

in Fig. 1.

3

56.9

31.9 11.2

2
5

3

Figure 1: Triad

For better research in consistency, W.Koczkodaj proposed an indicator to

measure the inconsistency illustrated in Fig. 1 in 1993 [11]. Kii is defined

based on the absolute value of distances between the ratios of triads and the

constant 1:

Kii(M) = max
i<j<k

min

✓����1�
mik

mijmjk

���� ,
����1�

mijmjk

mik

����

◆

where M is any reciprocal matrix and mij, mjk, and mik are its elements.

Kii is simplified in 2014 [13]:

Kii(M) = 1� min
i<j<k

✓
mik

mijmjk
,
mijmjk

mik

◆
(2.1)

The range of Kii is [0, 1). It means the matrix is consistent if Kii = 0, and

4

the matrix is inconsistent whenKii ! 1. Moreover, this indicator guarantees

monotonicity. If N is a PC submatrix of M , we have Kii(N)  Kii(M) [14].

2.2 Problem Definition

This paper will address reconstructing PC matrices from NSI PC matrices.

An example of this is people living in a bartering economy where they ex-

change goods for goods. In this circumstance, people need to remember

plenty of rules about exchanging goods. For example, two tomatoes equal a

chicken or two chickens equal three fish. For five goods, there are 52�5 = 20

rules between them. These rules are symmetrical, therefore, people only need

to remember 10 of them. See Fig. 2. Things become more di�cult when the

number of goods increases to 10, meaning there are now 45 rules to remem-

ber. By comparison, for 20 items, the number of rules increases to 140 and

although this is still a small number compared to the number of merchandise

items in life, the increase is substantial. In this situation, the probability of

contradictions will increase significantly. Considering a practical example,

some people claim that two tomatoes can exchange one chicken and three

chickens are equal to one fish. However, they hold that five tomatoes equal

one fish. There is a classic (2, 3, 5) contradiction that sets up some interesting

5

Figure 2: Sample Input Data

arbitrage opportunities. The rule can be rebuilt to solve this problem. For

example, six tomatoes can exchange one fish. Now it looks like the problem

is solved, and the rule is changed from (2, 3, 5) to (2, 3, 6). But why must it

be (2, 3, 6)? Triad (2, 2.5, 5) or triad (1, 5, 5) can also satisfy the consistency

condition. Moreover, if there are 40 contradictions in 140 rules, it will be

tough to change the rules with all constraints.

A formal definition of this problem is that if there is an NSI PC matrix

M 0. The goal is to find a PC matrix M that di↵ers from the original NSI

PC matrix M 0 as little as possible. There are two constraints here: the

6

new matrix must be a consistent PC matrix, and this new matrix should

be close to the original NSI matrix as much as possible. In other words,

the distance between the two matrices should incline to zero. [12] proposed a

distance-based inconsistency reduction algorithm withKii, which has a quick

convergence rate. This algorithm generates the consistency PC matrix with

less than ten reductions in most cases if theKii of the original NSI PC matrix

is lower than 1
3 . However, this algorithm is developed only based on Kii from

the beginning, and it cannot optimize other indicators or metrics together.

Therefore, a new method should be designed to tackle mixed problems.

7

3 Di↵erential Evolution

Di↵erential evolution is a population-based evolutionary meta-heuristic, in-

troduced by Storn and Price in 1996 [20]. Lampinen and Storn illustrated

that DE was more accurate than some other optimization algorithms like sim-

ulated annealing and evolutionary programming in 2004 [16]. This method

is widely applied in numerous branches of science. It is also used for solving

engineering problems since the late 1990s, as documented in [5].

Although it does not guarantee a globally optimal solution, DE is regarded

as a robust and powerful method with good convergence speed. Further-

more, it does not require the objective (goal) function to be di↵erentiable,

while di↵erentiability is an essential condition for most of the classic global

optimization methods (e.g., gradient descent). DE can be used to find ap-

proximate solutions to non-linear, non-convex, and non-di↵erentiable objec-

tive functions. Generally, the optimization goal of the DE algorithm is to

minimize the objective function:

f(X) : Rn ! R

X = [x1, x2, · · · , xn], X 2 Rn

8

by optimizing its argument X and get X⇤:

f(X⇤)  f(X), 8X 2 Rn

X is an n-dimension vector, and its elements are subject to some boundary

constraints:

Li  xi  Ui, i = 1, 2, · · · , n

DE meta-heuristic can be described as four steps:

1. Initialization

2. Mutation

3. Crossover

4. Selection

See Fig. 3 for the block diagram of it.

9

Initialization

Mutation

Crossover

Selection

Figure 3: Di↵erential Evolution Processes

Initialization: In the absence of the initial solution, the meta-heuristic may

randomly select parameter vectors. Each vector represents a candidate solu-

tion for the objective function. We denote iterations in DE by t = 1, 2, · · · , tmax.

The pth vector of the population for the iteration t can be denoted by:

X(t)
p = [x(t)

1,p, x
(t)
2,p, · · · , x(t)

n,p]

10

where x(t)
i,p is a uniformly distributed number between Li and Ui and can be

represented by:

x(t)
i,p = Li + randip[0, 1](Ui � Li)

Mutation: For each target vector X(t)
p in the current iteration t, DE gener-

ates a mutant vector V (t)
p+1. Besides, the component of the mutant can be

computed by:

v(t+1)
i,p = x(t)

r1,p + F · (x(t)
r2,p � x(t)

r3,p), F 2 [0, 2]

where r1, r2 and r3 are randomly selected from {1, 2, · · · , n} and r1 6= r2 6= r3.

Crossover: For diversity of the parameters, the donor vector V (t)
p+1 combines

its entries with the target vector X(t)
p . Hence, we generate a trial vector

U (t+1)
p , where its components can be denoted by:

u(t+1)
ip =

8
>>><

>>>:

v(t+1)
i,p , if randip[0, 1]  CR,

x(t)
i,p, otherwise

11

where CR or crossover rate is a pre-fixed constant 2 [0, 1].

Selection: DE decides whether the target vector X(t)
p or the trail vector U (t+1)

p

exists in the next iteration based on:

X(t+1)
p =

8
>>><

>>>:

U (t+1)
p , if f(U (t+1)

p)  f(X(t)
p),

X(t)
p , otherwise

where f is the objective function.

DE repeats Mutation, Crossover and Selection until some threshold is reached.

Subsequently, the components of the vector X(t)
p are the optimized parame-

ters for the objective function.

12

4 Problem Formulation

4.1 The NSI PC Matrices

The “not-so-inconsistent” or NSI PC matrices should be generated randomly

with some criteria before optimized. It is clear that there is no scientific merit

to optimize completely random matrices. There are numerous solutions for

completely random matrices. Since there are no original PC matrices for

these completely random matrices, the solution PC matrices cannot be com-

pared with the original PC matrix. Thus, it is unknown which solution is

the best and closest to the original matrix. [12] created these matrices by

deviating a consistent PC matrix M randomly: M 0 = M ⇤ rand(). Mean-

while, [8] proposed a di↵erent formula: M 0 = M ⇤ (1± ⇢D), where ⇢ 2 [0, 1]

and D is a given constant. The former method built matrices by multiply-

ing a fixed constant and did not consider the inter elements di↵erence. The

latter solved that problem using a random number ⇢ but has not dealt with

possible negative numbers. Thus, a new method based on the distribution

of errors is proposed to build these NSI matrices.

The elements mij of the PC matrix M are defined as ratios of entities, said

Vi. Hence, there must be some errors if mik 6= mij ⇤mjk. According to the

13

central limit theorem, each error eij follows a normal distribution. In this

paper, for convenience of computation, normal distributions with µ = 0 are

applied when computing each error eij. However, it is not easy to set an ap-

propriate value for standard deviation. Therefore, a Monte Carlo experiment

is designed to find the best estimate for the standard deviation. First, we

generate 100,000 PC matrices for each order. Then the standard deviation

of the normal distribution is defined here to deviate these PC matrices:

� = ⇢ ⇤mij

where ⇢ 2 (0, 1] and mij is the corresponding element of the PC matrix. It is

a reasonable estimate for standard deviation because of the 68-95-99.7 rule.

Next, 100,000 NSI PC matrices were generated by mij+eij (If mij+eij <= 0,

we discard eij and generate a new one to replace it). After that, Kii for all

NSI PC matrices were computed, and the arithmetic mean of these Kii were

determined. Finally, a diagram to illustrate the results was created. See

Fig. 4.

The diagram shows ⇢ and the arithmetic mean of Kii are linearly dependent

when order = 3. However, the curve is more like a parabola when order > 3.

14

Figure 4: The Mean of 100,000 NSI PC Matrices’ Kii

Therefore, we can fit the curve with the quadratic function: mean(Kii) =

a⇢2 + b⇢, where a and b are constants. The result is displayed in Fig. 5. The

dashed lines represent graphs of quadratic functions and fit the original curve

almost perfectly. In addition, if we set a threshold forKii of NSI PC matrices,

like 0.1, we can compute the value of ⇢ by the equation 0.1 = a⇢2 + b⇢. See

Table. 1. Subsequently, we can generate NSI PC matrices quantitatively

using the value of ⇢ in this table.

15

Figure 5: The Original and Fit Curve

4.2 Selection of Metrics

Now, 100,000 not-so-inconsistent PC matrices (The mathematical expecta-

tion of these matrices’ Kii equals 0.1) is generated. And the indicator Kii

can be used to measure a matrix’s consistency. However, there is no standard

measure of “close”. In other words, to measure the distance between NSI PC

matrices and PC matrices, some metrics should be defined or applied here.

It is essential to compare the element-wise matrix distance metrics before

16

Table 1: The Coe�cients of Quadratic Function

Threshold (Mean of Kii) Order ⇢ a b

0.1 3 0.0781 -1.0915 1.3653

0.1 4 0.0446 -2.4776 2.3549

0.1 5 0.0347 -3.7161 3.0093

0.1 6 0.0300 -4.7447 3.4753

0.1 7 0.0272 -5.5261 3.8247

0.1 8 0.0253 -6.2311 4.1051

0.1 9 0.0239 -6.8591 4.3401

0.1 10 0.0229 -7.4362 4.5422

applying the di↵erential evolution algorithm to reconstruct PC matrices. In

this sense, measuring the matrix distance is equivalent to computing the

distance or similarity between vectors flattened from the matrix. There are

several metrics to measure the distance. See Table. 2. It is worth noting that

not all common metrics have been listed. For example, Minkowski distance,

Manhattan distance or Pearson correlation coe�cient has been tested and

removed. Minkowski distance and Manhattan distance have similar charac-

teristics to Euclidean distance. For Pearson correlation coe�cient, the result

17

shows that Cosine similarity is generally superior to Pearson correlation co-

e�cient.

Table 2: Several Metrics

Name Formula Range

Bray–Curtis distance d(u, v) =
P

i(|ui�vi|)P
i(|ui+vi|) [0, 1]

Canberra distance d(u, v) =
nP

i=1

|ui�vi|
|ui|+|vi| [0, n]

Chebyshev distance d(u, v) = max
i

|ui � vi| [0,1)

Cosine similarity cos ✓ = 1� u·v
||u||2||v||2 [0, 1]

Euclidean distance d(u, v) = (
P
i
|ui � vi|2)

1
2 [0,1)

Jensen–Shannon divergence JSD(P ||Q) = 1
2D(P ||R) + 1

2D(Q||R) [0, 1)

Kullback-Leibler divergence D(P ||Q) =
P
i
P (x) log P (x)

Q(x) [0,1)

For better display, a Monte Carlo experiment is designed to compare these

metrics in Table. 2. First, 100,000 random PC matrices are created for

each order between 3 and 10. The NSI PC matrix corresponding to each

PC matrix is then generated through the method introduced before. This

method also can ensure the matrix’s Kii is equal to 0.1 by setting the ratio

⇢ according to Table. 1. After that, the distance or similarity between each

18

pair of PC matrices and NSI PC matrices is computed. Finally, the figures

are drawn to scale the density and distribution of these metrics. Letter-Value

box plots instead of box plots are used here. There are 700,000 samples or

points that need to be displayed in the same diagram. Meanwhile, the box

plot doesn’t work well with a large number of outliers, and the Letter-Value

box plot is designed to handle big data [7]. Fig. 6 to Fig. 12 are Letter-Value

box plots. The X-axis denotes these matrices’ order, while the Y-axis refers

to the values of these metrics. The diamond points are the outliers. The

black line in the middle of the most oversized box is the median of these

metrics with respect to the specific order. The upper and lower limit of the

most oversized box denotes 75% and 25%. For the second biggest box, the

limits are 87.5% and 12.5%. At last, the box widths are proportional to the

number of inside points. Here are the analysis for each metric:

i. Bray–Curtis distance

Bray–Curtis distance considers the vector space as grids. Similar to

Manhattan distance, it computes the distance with absolute values.

Fig. 6 shows that the values of this metric locate in a small range, and

the range converges as the matrix order increases. It is not a suitable

property here since it converges too fast to show the di↵erences between

19

orders. Also, there are some outliers in Fig. 6. The outliers approach

the median of distances as order increases.

Figure 6: The Distribution of Bray-Curtis Distance

ii. Canberra distance

Canberra distance also applies absolute values to measure the distance.

It may have comparable properties with Bray–Curtis distance or Man-

hattan distances. However, Fig. 7 presents a divergent view. This

metric is highly distinguishable for each order. The graphs of each or-

20

der are similar, and the only di↵erence is the values of mathematical

expectations. Although the range of Canberra distance is [0, n] where

n is the number of matrix elements, it can be treated as [0, 1] here. The

figure illustrates that nearly all distances are lower than one when the

matrix order is not greater than ten.

Figure 7: The Distribution of Canberra Distance

iii. Chebyshev distance

Chebyshev distance is a metric to compute the maximum element-wise

21

di↵erence. It can be seen that the outliers will be a serious problem

since this distance only calculates the absolute value of their di↵erences.

Fig. 8 illustrates that. Fig. 8(a) shows the maximum value is over

200,000 while the median of distances for order = 8 is almost zero.

With the exception of outliers, the Chebyshev distance is stable. Most

of the distances are located in [0, 5], no matter which order the matrices

have. Fig. 8(b) is included to provide more detail.

(a) Full view (b) Partial Enlarged View

Figure 8: The Distribution of Chebyshev Distance

iv. Cosine similarity

Cosine similarity is applied to measure the similarity between two vec-

tors.The range of this metric is also [0, 1]. Fig. 9 demonstrates its

graph is quite similar to Fig. 6. However, its value range converges

more rapidly than Bray-Curtis distance as the order increases. Be-

22

sides, it also has more outliers.

Figure 9: The Distribution of Cosine Similarity

v. Euclidean distance

Euclidean distance is the most popular distance metric. It is defined

by the length of a line connected to two points. Obviously, Euclidean

distance has the same problem as Chebyshev distance. Of note, the

figures are notably similar. Fig. 10 demonstrates that. Nevertheless,

Fig. 10(a) shows a higher density of data. All of the boxes are around

zero. At last, Fig. 10(b) illustrated Euclidean distance is stable with

23

orders which are similar to Chebyshev distance.

(a) Full view (b) Partial Enlarged View

Figure 10: The Distribution of Euclidean Distance

vi. Jensen–Shannon divergence

Jensen–Shannon divergence or information radius is a metric to com-

pute the similarity between two probability distributions. Although

its range is [0, 1], Fig. 11 shows that the value will be lower than 0.1

when the order is from [3, 10]. Moreover, the whole graph illustrates an

explicit trend of the means, which is similar to the figure of Cosine sim-

ilarity or Bray–Curtis distance, although these metrics have di↵erent

theories and algorithms.

vii. Kullback-Leibler divergence

Kullback-Leibler divergence or relative entropy is commonly used as

the loss function in DNNs(Deep Neural Networks). It is also the base

24

Figure 11: The Distribution of Jensen-Shannon Divergence

and precondition of Jensen–Shannon divergence. However, it does not

perform well here. There are more outliers in Fig. 12, and the range

convergences too fast.

In addition to these graphs, Table. 3 and Table. 4 analyze these distances

statistically. To support this further, the distance data set generated by the

matrices whose orders equal 4 and 8 are analyzed. It is clear that the stan-

dard deviation of Chebyshev distance and Euclidean distance are incredibly

high, which indicates these distances are spread out widely. The maximum

25

Figure 12: The Distribution of Kullback-Leibler Divergence

value denotes that on the other side. With regard to the above mentioned, it

is not a good idea to set Chebyshev distance or Euclidean distance as the dis-

tance metric. For Cosine similarity and Kullback-Leibler divergence, there is

another problem. Their maximum values are lower than 10�2, which means

they are hardly distinguishable for di↵erent orders. Thus, Bray-Curtis dis-

tance, Canberra distance and Jensen-Shannon divergence are kept for further

research.

26

Table 3: Statistical Analysis for Order=4 Matrices

Name Mean SD Min 25% 50% 75% Max

Bray-Curtis 0.0146 0.005 0.0004 0.0112 0.0139 0.0172 0.0552

Canberra 0.2112 0.0465 0.0455 0.1787 0.209 0.2414 0.4436

Chebyshev 2.3262 207.7218 0.021 0.1265 0.2106 0.4761 62732

Cosine 0.0006 0.0005 0.0 0.0003 0.0005 0.0008 0.0066

Euclidean 2.2778 158.2255 0.0475 0.1927 0.2882 0.5825 46397

Jensen-Shannon 0.0122 0.0037 0.0011 0.0097 0.012 0.0145 0.0392

Kullback-Leibler 0.0007 0.0004 0.0 0.0004 0.0006 0.0008 0.0063

4.3 Metric Monotonicity

In this subsection, the distributions of these metrics concerning di↵erent

means of Kii are discussed. Here and subsequently, we denote the mean of

Kii briefly by .  can be represented by  =

nP
i=1

Kii

n . The above research

focuses on the distances, similarities or divergences with respect to the same

, which is 0.1. However, it is unknown whether these metrics are increasing

or not as the  is increasing. To address this question, another form is applied

to represent the distance function D. It is recognized that the NSI PC matrix

M 0 is generated from a PC matrix M by setting ratio ⇢. Furthermore, ⇢ is

27

Table 4: Statistical Analysis for Order=8 Matrices

Name Mean SD Min 25% 50% 75% Max

Bray-Curtis 0.0092 0.0017 0.0026 0.0081 0.0091 0.0101 0.0251

Canberra 0.5619 0.057 0.3415 0.5228 0.5608 0.5996 0.8117

Chebyshev 4.7233 708.8502 0.0387 0.1696 0.3173 0.7656 223137

Cosine 0.0002 0.0001 0.0 0.0002 0.0002 0.0003 0.0024

Euclidean 28.1736 7427.259 0.1358 0.334 0.5223 1.1145 2344745

Jensen-Shannon 0.008 0.0014 0.0014 0.0071 0.008 0.0088 0.0194

Kullback-Leibler 0.0003 0.0001 0.0 0.0002 0.0003 0.0003 0.0012

determined by the mean of Kii . Hence, we have:

D(M,M 0) = D(M,h(M, ⇢))

= D(M,h(M, l()))

= g() (4.3)

whereM is a constant matrix. Consequently, it is equivalent to check whether

g() = D(M,M 0) is increasing or decreasing on an interval  2 [a, b]. If this

function g() is a monotonic function or the mean of g() is a monotonic

28

function when the sample size is quite large, the goal can be achieved by

reconstructing a PC matrix M from an NSI PC matrix M 0 by optimizing

the goal function f(M,M 0) = Kii(M 0)+↵D(M,M 0), where ↵ is a constant.

In order to check the graph visually, 100,000 random NSI PC matrices are

created for each order between 3 and 10 and each  between 0.8 and 1.3.

There are 4,200,000 matrices in total. The mean and standard deviation

for every 100,000 random NSI PC matrices is computed. For the purpose

of illustrating results more clearly, bubble charts are used to display the

relations between each parameter. See Fig. 13 to Fig. 16. It is obvious that

X-axis refers to the order of the matrices, and Y-axis is defined as the mean

of metric values. Besides, the radius of each bubble is the standard deviation

of metrics. Hence, if bubble A is higher and bigger than bubble B, it implies

that the mean and standard deviation of these metrics denoted by A are

larger than these statistical measures of B. In other words, the metric values

of A are larger than B on average and are more spread out. Here are the

analyses for each metric:

i. Bray–Curtis distance

The Fig. 13 shows g() = DBray�Curtis(M,M 0) is increasing as  in-

creases. Moreover, the distances converge to their mean as the order

29

increases, which is consistent with Fig. 6. It is impossible to prove

Figure 13: Distributions of Bray-Curtis distances with respect to Di↵erent
Matrix Orders and Means of Kii

g() is a monotonic function. However, it is also worth knowing that

the mean of g() is monotonically increasing or not when the sample

set is large enough. In order to prove
P

k g()
k , k ! 1 is a monotoni-

cally increasing function, we assume that ⇢ is proportional to , which

is illustrated in Fig. 4. When  increases, ⇢ increases. For now on,

we denote PC matrix M = [mij] 2 Rn⇥n
+ and the NSI PC matrix

30

M 0 = [m0
ij] 2 Rn⇥n

+ . According to the method mentioned above, we

have:

m0
ij = mij + random(N (µ, �2))

= mij + random(N (0, (⇢mij)
2))

= mij + random(N (0, (l()mij)
2)) (4.31a)

where ⇢ = l() and l() is an increasing function on the interval  2

[0, 1). Based on the definition of Bray-Curtis distance, we have:

D(M,M 0) =

P
ij(|mij �m0

ij|)P
ij(|mij +m0

ij|)
(4.31b)

From (4.31a) and (4.31b), we conclude that:

D(M,M 0) =

P
ij(|mij �mij � random(N (0, (l()mij)2))|)P
ij(|mij +mij + random(N (0, (l()mij)2))|)

=

P
ij |random(N (0, (l()mij)2))|P

ij |2mij + random(N (0, (l()mij)2))|

For abbreviation, random(N (0, (l()mij)2) is denoted by nij. We get:

D(M,M 0) =

P
ij |nij|P

ij |2mij + nij|
(4.31c)

31

The task is now to find how nij changes while  increases. Let �nij

represents the change of nij when  increases. It is clear that the prob-

ability of generating bigger random numbers is increasing as the stan-

dard deviation l() ⇤mij increases because of the definition of Normal

distribution. Consider the law of large numbers, we obtain:

lim
i,j!1

P
ij |nij + �nij|

ij
� lim

i,j!1

P
ij |nij|
ij

If we denote the new distance by D(M,M 00), it can be represented

by adding a positive number cij to the numerator and denominator of

(4.31c):

D(M,M 00) =

P
ij |nij|+

P
ij cijP

ij |2mij + nij|+
P

ij cij

Thus, according to the mediant inequality and mij > 0, we have:

P
ij |nij|P

ij |2mij + nij|
<

P
ij |nij|+

P
ij cijP

ij |2mij + nij|+
P

ij cij
<

P
ij cijP
ij cij

= 1

This is to say,

D(M,M 0) < D(M,M 00)

where M , M 0 and M 00 are r by r matrices and r ! 1. Hence, consider

32

the mean of k matrices which their orders are small but k ! 1, we

have:
P

k D(M,M 0)

k
<

P
k D(M,M 00)

k

Moreover, it is proved that D(M,M 0) can be represented by the func-

tion of , see (4.3). There is:

P
k g(1)

k
<

P
k g(2)

k
, if 1 < 2

where k ! 1, and the proof is complete.

ii. Canberra distance

The Fig. 14 shows g() = DCanberra(M,M 0) is increasing as  increases.

Generally, there is no change for the distances as the order increases,

which is also consistent with Fig. 7. The proof for Canberra distance

is similar. Based on the definition of Canberra distance, we have:

D(M,M 0) =
X

ij

|mij �m0
ij|

|mij|+ |m0
ij|

(4.32a)

According to (4.31a), we can substitutem0
ij withmij+random(N (0, (l()mij)2))

33

Figure 14: Distributions of Canberra Distances with respect to Di↵erent
Matrix Orders and Means of Kii

and get:

D(M,M 0) =
X

ij

|random(N (0, (l()mij)2))|
|mij|+ |mij + random(N (0, (l()mij)2))|

And again, we denote random(N (0, (l()mij)2) by nij:

D(M,M 0) =
X

ij

|nij|
|mij|+ |mij + nij|

(4.32b)

34

Thus, to prove g() is an increasing or decreasing function, it equals to

prove the formula below:

g(2)� g(1) = D(M,M 00)�D(M,M 0)

= D([mij], [m
00
ij])�D([mij], [m

0
ij])

=
X

ij

|nij + �nij|
|mij|+ |mij + nij + �nij|

�
X

ij

|nij|
|mij|+ |mij + nij|

> 0 or

< 0

where mij > 0, m0
ij = mij + nij > 0 and m00

ij = mij + nij + �nij > 0.

Consider four cases: 8
>>>>>>>>>>><

>>>>>>>>>>>:

�nij = 0

nij = 0,�nij 6= 0

nij�nij > 0

nij�nij < 0

35

Suppose that �nij = 0, then we obtain:

|nij + �nij|
|mij|+ |mij + nij + �nij|

� |nij|
|mij|+ |mij + nij|

=
|nij + 0|

|mij|+ |mij + nij + 0| �
|nij|

|mij|+ |mij + nij|

= 0 (4.32c)

In a similar way, suppose that nij = 0, �nij 6= 0, then we obtain:

|nij + �nij|
|mij|+ |mij + nij + �nij|

� |nij|
|mij|+ |mij + nij|

=
|0 + �nij|

|mij|+ |mij + 0 + �nij|
� 0

|mij|+ |mij + nij|

> 0 (4.32d)

Suppose nij�nij > 0, according to the mediant inequality, mij+nij > 0

36

and mij + nij + �nij > 0, we get:

|nij + �nij|
|mij|+ |mij + nij + �nij|

� |nij|
|mij|+ |mij + nij|

=
|nij|+ |�nij|

mij +mij + nij + �nij
� |nij|

mij +mij + nij

� |nij|+ |�nij|
mij +mij + nij + |�nij|

� |nij|
mij +mij + nij

> 0 (4.32e)

However, the last case is extremely complicated. Suppose nij�nij < 0,

we have:

|nij + �nij|
|mij|+ |mij + nij + �nij|

� |nij|
|mij|+ |mij + nij|

=
|nij + �nij|

2mij + nij + �nij
� |nij|

2mij + nij
(4.32f)

It is seen that (4.32f) can be positive, negative or equal to zero. There-

fore, there is no mathematical proof for the monotonicity of g(). Nev-

ertheless, according to (4.32d), (4.32e) and (4.32f), it is obvious that

g() is an increasing function in most cases. In other words, let A,

which is the increment of g(), be a random variable defined on the

probability space (⌦,F ,P), we have P (A � 0) > P (A < 0). Thus, it

37

is essential to design a Monte Carlo experiment and demonstrate the

data distribution for lim
i,j!1

P
i,j
(g(i)� g(j)), i > j. See Fig. 15. The

X-axis refers to the n-th trial, and Y-axis is defined as the increment

�g(). Like other heat maps, darker color refers to more points located

in this area. It can be seen that �g() is a direct ratio to �. In the

last graph, the positive area is insignificantly larger than the negative

one. Besides, the upper limit in the last graph is almost 0.75, while the

color of the negative parts is lighter than the color in the first graph.

In a nutshell, it cannot be proved that g() is an increasing function

mathematically on the one hand. On the other hand, the Monte Carlo

experiment shows it is probably true.

iii. Jensen–Shannon divergence

The Fig. 16 shows g() = DJensen�shannon(M,M 0) is increasing as 

increases. Moreover, this graph is similar to Fig. 13. Based on the

definition of Jensen–Shannon divergence, we have:

JSD(P ||Q) =
1

2
D(P ||R) +

1

2
D(Q||R)

R =
1

2
(P +Q)

(4.33a)

where D refers to the Kullback–Leibler divergence. Since P , Q and

38

Figure 15: The Di↵erences of g() with respect to . The ratios between 
and ⇢ are computed based on the matrix order = 3.

R are distributions for a continuous random variable defined on the

probability space (⌦,F ,P), the KL divergence is defined as the integral:

D(P ||R) =

Z 1

�1
p(x)log(

p(x)

r(x)
) dx (4.33b)

D(Q||R) =

Z 1

�1
q(x)log(

q(x)

r(x)
) dx (4.33c)

KL divergence also can be represented by the di↵erences of the cross-

39

Figure 16: Distributions of Jensen–Shannon Divergences with respect to Dif-
ferent Matrix Orders and Means of Kii

entropy and the entropy:

D(P ||R) =

Z 1

�1
p(x)log(

1

r(x)
) dx�

Z 1

�1
p(x)log(

1

p(x)
) dx

D(Q||R) =

Z 1

�1
q(x)log(

1

r(x)
) dx�

Z 1

�1
q(x)log(

1

q(x)
) dx

That is the reason why it is also called relative entropy [3]. In this study,

the random numbers are generated from normal distributions. Then we

denote these two distributions by p(x) ⇠ N (0, �2
p) and q(x) ⇠ N (0, �2

q).

40

From (4.33a), we have R = 1
2(P + Q). Thereby, r(x) also follows a

normal distribution N (0, �2
r) where �r =

p
�2
p+�2

q

2 . In general, their

probability density functions are written as:

p(x) =
1

�p

p
2⇡

e
� 1

2 (
x
�p

)2

q(x) =
1

�q

p
2⇡

e
� 1

2 (
x
�q

)2

r(x) =
1p

�2
p+�2

q

2

p
2⇡

e
� 1

2
2x2

�2
p+�2

q

(4.33d)

Substituting (4.33d) into (4.33b), we obtain:

D(P ||R) =

Z 1

�1
p(x)log

1p
2⇡�p

e
� 1

2
x2

�2
p

1p
2⇡�r

e
� 1

2
x2

�2
r

=

Z 1

�1
p(x)(log

�p

�r
+ log

e
� 1

2
x2

�2
p

e
� 1

2
x2

�2
r

)dx

= log
�r

�p

Z 1

�1
p(x)dx+

Z 1

�1
p(x)(� x2

2�2
p

+
x2

2�2
q

)dx

= log
�r

�p
� 1

2�2
p

Z 1

�1
p(x)x2dx+

1

2�2
r

Z 1

�1
p(x)x2dx

= log
�r

�p
�

�2
p

2�2
p

+
�2
p

2�2
r

= log
�r

�p
+

�2
p

2�2
r

� 1

2
(4.33e)

41

Similarly, substituting (4.33d) into (4.33c), we have:

D(Q||R) =

Z 1

�1
q(x)log

1p
2⇡�q

e
� 1

2
x2

�2
q

1p
2⇡�r

e
� 1

2
x2

�2
r

= log
�r

�q
+

�2
q

2�2
r

� 1

2
(4.33f)

Combine (4.33a), (4.33e) and (4.33f), we conclude that

JSD(P ||Q) =
1

2
D(P ||R) +

1

2
D(Q||R)

=
1

2

✓
log

�r

�p
+

�2
p

2�2
r

� 1

2
+ log

�r

�q
+

�2
q

2�2
r

� 1

2

◆

=
1

2
(log

p
�2
p + �2

q

2�p
+ log

p
�2
p + �2

q

2�q
+

�2
pp

�2
p + �2

q

+
�2
qp

�2
p + �2

q

� 1)

=
1

2

✓
log

�2
p + �2

q

4�p�q
+
q
�2
p + �2

q � 1

◆
(4.33g)

We can now proceed analogously to the proof of the monotonicity of

g() = JSD(P ||Q). When  increases, ⇢ increases. So is �q. Besides,

we have �q > �p because � = ⇢ ⇤mij and mij > 0. Under this circum-

stance, it is important to check the first-order partial derivative of g()

42

by substituting (4.33g):

@g()

@�q
=

@g(�p, �q)

@�q

=
1

2

2�q

�2
p + �2

q

� 1

�q
+

1

2
p
�2
p + �2

q

!

=
2�2

q � 2�2
p + �q

p
�2
p + �2

q

4�q(�2
p + �2

q)

> 0

So g() is an increasing function, which completes the proof.

4.4 Discussion

To summarize, Bray-Curtis distance, Canberra distance and Jensen-Shannon

divergence are all reliable metrics. The distributions of Bray-Curtis distance

and Jensen-Shannon divergence are similar, although there is a big gap be-

tween their theories. They both have a problem that the value range conver-

gences so fast as the matrix order increases. However, they are much better

than Cosine similarity or Kullback-Leibler divergence, which have higher

convergence rates. Meanwhile, they have fewer outliers than the Chebyshev

distance or Euclidean distance. Canberra distance, has a unique distribution

graph and excellent properties to measure the matrices’ distance. However,

43

its monotonicity cannot be proved mathematically. Besides, its distance

range is not strictly [0, 1]. Nevertheless, it is still a good indicator. It has

excellent distinguishability with di↵erent matrix orders. Simultaneously, the

Monte Carlo experiment shows it is worth considering. Therefore, all of them

will be used to optimize the objective function and reconstruct the matrices

in the next section.

5 Reconstruct the Matrices with Di↵erential

Evolution

5.1 Weight Coe�cient

According to the previous sections, for a l by l NSI PCmatrixM = [mpq] p, q 2

{1, 2, · · · , l}, the distance-based objective function is defined as:

f(M,M 0) = Kii(M) + ↵D(M,M 0) (5.1)

44

where ↵ 2 [0,1]. According to 2.1, 4.31c, 4.32b and 4.33g, we obtain:

fBC(M,M 0) = 1� min
i<j<k

✓
mik

mijmjk
,
mijmjk

mik

◆
+ ↵

P
ij |nij|P

ij |2mij + nij|

fCA(M,M 0) = 1� min
i<j<k

✓
mik

mijmjk
,
mijmjk

mik

◆
+ ↵

X

ij

|nij|
|mij|+ |mij + nij|

fJS(M,M 0) = 1� min
i<j<k

✓
mik

mijmjk
,
mijmjk

mik

◆
+

↵

2

✓
log

�2
p + �2

q

4�p�q
+
q

�2
p + �2

q � 1

◆

subject to constrains mpq > 0. Of note, none of these functions is continuous

or di↵erentiable. Thus, the stochastic gradient descent algorithm, which is

a well-known and e↵ective optimization algorithm, or other first-order algo-

rithms can not be used to optimize these functions. Nevertheless, there are

many problem-independent algorithms for these optimization problems, for

example, the pattern search method or heuristic algorithms [10]. In these al-

gorithms, di↵erential evolution algorithm is a popular derivative-free heuris-

tic algorithm. It can be used to optimize non-di↵erentiable, discontinuous

or noisy objective functions by searching wide spaces of candidate solutions.

Thereby, DE is used here to optimize above the objective functions.

The next concern is the value of ↵. The role of this parameter is to balance

the weights between two parts of the objective function f . In other words, the

inconsistent indicator Kii and the metric between two matrices D(M,M 0)

45

have the same weight exactly if ↵ equals a threshold ↵̂. Also, ↵ > ↵̂ or ↵ < ↵̂

means one of them is more important than the other one. Fig. 6 illustrates

that the mean of the Bray-Curtis distances is di↵erent although there are

no big gaps between these means. Similarly, Fig. 7 demonstrates that the

means of Jensen-Shannon divergences are also di↵erent and converge to 0.01

as order increases. Meanwhile, the di↵erences between Canberra distances

are even higher when comparing the other two metrics. See Fig. 11. Thus,

the same ↵ cannot be applied for metrics with di↵erent matrix orders. For

each combination of order and metric, there is a unique ↵:

↵ =
the mean of Kii

the mean of metrics

where the mean of Kii is set as 0.1 in this section. See Table. 5. Here is an

example. The threshold of ↵ is 4.4459 when the order is three and the metric

is Bray-Curtis distance in this table. So the objective function is defined as:

fBC(M,M 0) = 1� min
i<j<k

✓
mik

mijmjk
,
mijmjk

mik

◆
+ 4.4459 ⇤

P
ij |nij|P

ij |2mij + nij|

46

when three by three matrices are optimized based on Bray-Curtis distance.

Table 5: The Threshold of ↵ with respect to the Matrix Order and Metric

Order Bray-Curtis
Distance

Canberra
Distance

Jensen-Shannon
Divergence

3 4.4459 0.5499 5.3696

4 6.7535 0.4745 8.1333

5 8.7276 0.3723 9.9943

6 9.3913 0.2801 11.0695

7 10.285 0.2229 12.0492

8 10.9508 0.1804 12.6775

9 11.592 0.1487 13.3177

10 12.0805 0.125 13.8052

5.2 Analysis of the Results

100,000 NSI PC matrices have been generated and used to compare the

distributions of metrics in the last section. Also, 10,000 matrices are chosen

to be included in the Monte Carlo experiments in this section because the

DE program is time-consuming. After optimizing and analyzing these NSI

PC matrices, the results show that the Kii of all optimized matrices are zero,

47

which is as expected. There are numerous solutions for Kii = 0. There is no

doubt that the DE algorithm can find them. Therefore, the critical point is

the performance of these algorithms in metrics. In what follows, M 0 denotes

the NSI PC matrix generated from the original PC matrix M⇤, and M stands

for the new PC matrix, which is optimized by the DE algorithm.

i. Bray–Curtis distance

Fig. 17 illustrates the distribution of distances about the optimized

matrix M . The X and Y axes are kept the same for these two subplots

as well as the axes in Fig. 6. In other words, the X-axis denotes the

orders of matrices, and the Y-axis refers to the distances between dif-

ferent matrices.

For Fig. 17(a), the distances are computed between the optimized ma-

trix M and the NSI PC matrix M 0. Compared with Fig. 6, which

shows the distances between the NSI PC matrix M 0 and the original

PC matrix M⇤. It is unambiguous the new matrix M is much closer

to M 0 than M⇤ which meets our goal. The most significant outlier is

three times smaller now. Also, the median values of new distances are

much closer to zero.

Fig. 17(b) demonstrates the distances between M and M⇤. The corre-

48

sponding experiment is apparently a control group. There is no further

information about the original matrixM⇤ in real-life optimization prob-

lems. Thus, the distribution of this distance betweenM⇤ andM is hard

to predict since they are almost two random matrices. However, they

still have one thing in common: they can converge to the same NSI PC

matrix M 0 in some way. This subplot here is considerably similar to

Fig. 6. The data shows similarity with the exception of fewer outliers

in Fig. 17(b).

Several statistical measurements (mean, stand deviation, minimum and

maximum value) of the experiment results have been detailed in Ta-

ble. 6, in this way that they can be compared visibly. As mentioned

before, all statistical measurements for distances between M 0 and M

are smaller than these indicators for metrics between M 0 and M⇤ ex-

cept the standard deviation (SD, for short). Besides, the most exciting

result here is the minimum values of distances between M 0 and M are

almost zero for all matrix orders (If the value is zero in this table, it

means the exact value is lower than 0.00005). It implies that the opti-

mization algorithm works well and obtains the significantly ”close” PC

matrices corresponding to some NSI PC matrices.

49

(a) Distances between M 0 and M (b) Distances between M⇤ and M

Figure 17: The New Distribution of Bray-Curtis Distance

ii. Canberra distance

Canberra distance, which has unique properties for measuring matrix

distance, is still di↵erently distributed here. Compared with Fig. 17,

Fig. 18 comes to a contrary conclusion. Fig. 18(a) and Fig. 7 are almost

identical. Nevertheless, Table. 7 illustrates that all values, even the

standard deviation, have decreased slightly, which proves that the DE

algorithm performs a function in optimizing the Canberra distances.

For another subplot Fig. 18(b), it is interesting that all indicators are

decreased dramatically. For example, the median distance is lower than

0.33 when the matrix order is 10. Meanwhile the value for distances

between M 0 and M⇤ is 0.8198. It looks like the algorithm optimize the

distances between M and M⇤ instead of the distances between M and

50

Table 6: Statistical Measurements for Several Bray-Curtis Distances

Bray-Curtis Distance
Matrix Order

3 4 5 6 7 8 9 10

Distances between

M 0 and M⇤

Mean 0.0236 0.015 0.0122 0.0106 0.01 0.0095 0.009 0.0087

SD 0.0108 0.005 0.0033 0.0026 0.0021 0.0019 0.0016 0.0014

Min 0.0028 0.0047 0.0035 0.0035 0.004 0.0027 0.0046 0.0047

Max 0.0949 0.0405 0.027 0.0222 0.0216 0.0204 0.0174 0.0161

Distances between

M 0 and M

Mean 0.0106 0.0079 0.0072 0.0068 0.0065 0.0063 0.0062 0.0062

SD 0.007 0.0041 0.003 0.0027 0.0023 0.0022 0.002 0.0019

Min 0.0 0.0 0.0 0.0001 0.0 0.0001 0.0001 0.0001

Max 0.0393 0.0246 0.0188 0.0149 0.0134 0.0126 0.0103 0.0121

Distances between

M and M⇤

Mean 0.0224 0.0133 0.0101 0.0082 0.0078 0.0072 0.0066 0.0061

SD 0.014 0.0068 0.0049 0.0037 0.0034 0.0032 0.0029 0.0026

Min 0.0006 0.0012 0.0012 0.001 0.0015 0.002 0.0017 0.0017

Max 0.1319 0.0454 0.0308 0.0279 0.0228 0.0236 0.0195 0.0181

M 0. It is unknown why Canberra distance has this property, but this

property can be widely used in real-life problems and help approach

the latent original matrix.

51

(a) Distances between M 0 and M (b) Distances between M⇤ and M

Figure 18: The New Distribution of Canberra Distance

iii. Jensen-Shannon divergence

The analysis results for Jensen-Shannon divergence shows both of the

two divergences are dropped rapidly. All medians except the one for

order=3 are lower than 0.1. Also, there are fewer outliers in Fig. 19.

Table. 8 provides more details on the comparisons between these two

divergences. It shows that the divergences between M and M⇤ are

lower than those between M and M 0, which are the same as those in

Table. 7. Hence, the abnormal property of Canberra Distance is not an

isolated case. Similarly, it can also obtained the latent origin matrix by

optimizing the objective function based on Jensen-Shannon divergence.

52

Table 7: Statistical Measurements for Several Canberra Distances

Canberra Distance
Matrix Order

3 4 5 6 7 8 9 10

Distances between

M 0 and M⇤

Mean 0.1838 0.2134 0.2783 0.3578 0.4538 0.565 0.6841 0.8198

SD 0.0589 0.0474 0.0475 0.0512 0.0541 0.058 0.062 0.0676

Min 0.0466 0.0898 0.1492 0.2195 0.2896 0.3993 0.4956 0.5869

Max 0.4784 0.4007 0.4277 0.5574 0.6224 0.7224 0.8785 1.0693

Distances between

M 0 and M

Mean 0.1434 0.1739 0.2373 0.3143 0.4037 0.5128 0.6263 0.7548

SD 0.0535 0.0455 0.0474 0.05 0.0524 0.0562 0.0597 0.0661

Min 0.0326 0.0464 0.1032 0.1789 0.2531 0.3366 0.4719 0.5535

Max 0.3664 0.3318 0.399 0.4873 0.5785 0.6822 0.8482 1.0171

Distances between

M and M⇤

Mean 0.1539 0.1463 0.163 0.184 0.214 0.2436 0.279 0.3244

SD 0.0819 0.0606 0.0591 0.0597 0.0643 0.0668 0.0713 0.079

Min 0.0049 0.0129 0.0191 0.033 0.0618 0.0852 0.087 0.1175

Max 0.4485 0.344 0.3612 0.4066 0.4561 0.4765 0.5354 0.6277

5.3 Discussion

All results based on di↵erent metrics have been analyzed and compared yet.

The algorithm based on Bray-Curtis distances cannot minimize the distances

53

(a) Distances between M 0 and M (b) Distances between M⇤ and M

Figure 19: The New Distribution of Jensen-Shannon Distance

between M and M⇤ by optimizing the distances between M and M 0. For

Canberra distance, things are the opposite. The algorithm is designed to

minimize the distance between M and M 0. However, the result shows that

it only optimizes this metric slightly and minimizes another metric inadver-

tently. Besides, the range of this metric is not strictly [0, 1]. Also, there is

no mathematical proof for its monotonicity. The algorithm based on Jensen-

Shannon Divergence performances much better than the other two metrics.

The figure and table illustrate it can minimize two divergences simultane-

ously, although only one of them is the target. As mentioned above, the range

of Jensen-Shannon divergence is [0, 1], and it is a monotonically increasing

function with respect to the mean of Kii. In a nutshell, it is su�cient to say

54

Table 8: Statistical Measurements for Several Jensen-Shannon Divergences

Jensen-Shannon Divergence
Matrix Order

3 4 5 6 7 8 9 10

Divergences between

M 0 and M⇤

Mean 0.0191 0.0128 0.0105 0.0093 0.0087 0.0083 0.0079 0.0076

SD 0.008 0.0038 0.0025 0.002 0.0016 0.0015 0.0012 0.0011

Min 0.0013 0.0036 0.0019 0.003 0.0035 0.0027 0.0036 0.0041

Max 0.0684 0.0325 0.0216 0.0183 0.0154 0.0181 0.0127 0.0132

Divergences between

M 0 and M

Mean 0.0129 0.0094 0.0082 0.0074 0.0071 0.0068 0.0066 0.0064

SD 0.0067 0.0036 0.0025 0.002 0.0017 0.0015 0.0014 0.0012

Min 0.0002 0.0003 0.0002 0.0012 0.0006 0.0008 0.0007 0.001

Max 0.0449 0.0213 0.017 0.0136 0.012 0.0111 0.0103 0.0105

Divergences between

M and M⇤

Mean 0.0128 0.008 0.0061 0.0051 0.0048 0.0044 0.0041 0.0038

SD 0.0072 0.0037 0.0026 0.0021 0.0018 0.0018 0.0015 0.0015

Min 0.0005 0.0009 0.0002 0.0012 0.0011 0.0012 0.0009 0.0013

Max 0.0532 0.0284 0.017 0.0157 0.0151 0.0155 0.0115 0.0111

that:

fJS(M,M 0) = max
i<j<k

min

✓����1�
mik

mijmjk

���� ,
����1�

mijmjk

mik

����

◆
+

↵

2

✓
log

�2
p + �2

q

4�p�q
+
q
�2
p + �2

q � 1

◆

55

is the best-suited objective function for the di↵erential evolution algorithm,

which is applied to find the closest PC matrix.

56

6 Conclusion and Future Work

6.1 Conclusion

In this paper, an optimization method was proposed in accordance with dif-

ferential evolution and matrix metrics to reconstruct pairwise comparisons

matrices. The issue which reconstructs a PC matrix from an NSI PC ma-

trix is introduced and defined in the first and second section. The previous

method to solve this problem is the distance-based inconsistency reduction

algorithm. It is a simple and straightforward design proposed by Koczkodaj

in 2015 [12]. The basic concepts of pairwise comparisons are also presented

in the second section. PC matrix, NSI PC matrix, consistency and Kii are

all the bases of this unsolved problem. In section 3, the origin and history

of the di↵erential evolution algorithm are introduced at the beginning. The

processes and details of this algorithm are also presented in this section.

There are three subsections for Problem Formulation. A new method to

generate random NIS PC matrices is proposed in the first subsection and

compared with several other methods. The correlation between the parame-

ters of this new method and Kii has been investigated. The examined result

shows there is an approximate linear or quadratic correlation when the Kii

57

is lower than a threshold. In the second subsection, several common metrics

are proposed and compared based on a Monte Carlo experiment, which is de-

signed to illustrate the distributions of these metrics with the same Kii and

di↵erent matrix orders. The results demonstrate that Bray-Curtis distance,

Canberra distance and Jensen-Shannon divergence have suitable properties

to measure the matrix distances. In the last subsection, mathematical proofs

are given to ensure the monotonicity of the metric function including Bray-

Curtis distance and Jensen-Shannon divergence when the number or matrices

or the order of a large matrix tends to infinity. For Canberra distance, there

is no mathematical proof. However, a figure based on a Monte Carlo ex-

periment demonstrates that the di↵erences between two matrices tend to be

bigger than zero.

In the first subsection of section 5, the value of the weight coe�cient ↵ is

discussed. Also, a table of the thresholds of ↵ is proposed, and these values

are applied in the subsequent experiments. The di↵erential evolution algo-

rithm is used for optimization in the second section. The analysis of the

optimized matrices shows that the algorithm, which its objective function is

based on Jensen-Shannon divergence, is steady and has good performance in

comparison to these algorithms based on other metrics.

58

6.2 Future Work

The following further research is proposed based on previous results. Firstly,

all the research in this paper is based on inconsistency indicators. Koczkodaj

inconsistency index is used here as the standard of inconsistency because it

is straightforward and easy to compute. Besides, the range of Kii is [0, 1],

which is a suitable property for an objective function. However, there are

some other indicators to measure the inconsistency of a PC matrix, like the

GW index in 1989 [6], relative error in 1998 [2], Geometric Consistency Index

in 2003 [1], Harmonic Consistency Index in 2007 [19] or K-Index in 2020 [21].

Thus, extending the work to those indicators is reasonably straightforward.

Secondly, only seven common metrics are compared in section 4. There

are also a lot of other metrics as well as inconsistency indicators. With

that said, there might be other metrics which have higher performance than

Jensen-Shannon divergence since this divergence is an unexpected optimal

solution. Finally, it is worth noting that Canberra distance and Jensen-

Shannon divergence have some anomalous properties. The DE algorithm

based on these metrics can minimize two distances or divergences at the

same time, which is designed to optimize only one of them. What’s more, the

optimization algorithm does not receive any information for another distance

59

or divergence. One possible reason is that there are some latent connections

between the NSI PC matrix and its original PC matrix. More experiments

will be designed to reveal these connections in the future.

60

Appendix

A The Core Part of the Python Program

1 # coding:utf8

2

3 """

4 @author: Zhangao Lu

5 @contact: zlu2@laurentian.ca

6 @time: 2021/2/24

7 @description:

8 1. Generate NSI PC matrices , save and test them.

9 2. Fit the curve which is used to display the

relations between rho

10 and mean of Kii.

11 """

12

13 import copy

14 import numpy as np

15 import matplotlib.pyplot as plt

16 import scipy

17 from itertools import combinations

18 from scipy.optimize import curve_fit

19 from collections import OrderedDict

20 from config import config

21 from utils.pairwise_comparison_tools import

compute_kii

22 from utils.gerenal_tools import open_pickle ,

save_pickle , save_hickle , open_hickle

23

24

25 class GenerateMatrices(object):

26 def __init__(self , order=3, iterations =1000 ,

std_rate =1):

27 """

28

29 :param order: int , default = 3

30 The order of generated matrices.

61

31 :param iterations: int , default = 1000

32 The number of generated matrices.

33 :param std_rate: float , default = 1

34 It is the parameter \rho in the thesis.

35 sigma = self.std_rate * origin_num.

36 """

37 self.order = order

38 self.iterations = iterations

39 self.std_rate = std_rate

40 # A ordered dict to save the results

41 self.result = OrderedDict ()

42 # Save the generated matrices with file name

below.

43 # The Kii threshold will always be 0.1,

44 # which is determined in the thesis.

45 self.file_name_of_pc = "%d pc matrices with

order =%d kii_threshold =%0.1f.pkl" % \

46 (self.iterations , self.

order , 0.1) # for

PC matrices

47 self.file_name_of_nsi_pc = "%d nsi pc matrices

with order=%d kii_threshold =%0.1f.pkl" % \

48 (self.iterations ,

self.order , 0.1)

for NSI PC

matrices

49

50 @staticmethod

51 def random_numbers(sigma , origin_num , mu=0):

52 """

53 A static method used to generate errors for

the elements of the original PC matrices.

54 Errors followed normal distribution with mean

= mu , standard deviation = sigma.

55 And make sure origin_num + error > 0

56 :param sigma: float

57 Standard deviation of the normal

distribution

58 :param origin_num: float

62

59 The elements in the PC matrix. The

value must be greater than 0.

60 :param mu: float , default = 0

61 Mean of the normal distribution. The

value is zero and will not be

changed during this experiment.

62 :return: error , float

63 A float number which refers to the

random error of the PC matrices ’

elements.

64 """

65 while 1:

66 # numpy.random.randn () can return a sample

from the standard normal distribution.

67 # So for random samples from N(\mu, \sigma

^2), they are sigma * np.random.randn ()

+ mu.

68 error = sigma * np.random.randn () + mu

69 # The error must make sure the sum of the

error and original element is greater

than zero.

70 # If the error meets the requirement , then

break.

71 if origin_num + error > 0:

72 break

73 return error

74

75 def generate_matrix(self):

76 """

77 Generate PC matrices and NSI PC matrices.

78 :return: dict

79 {" NSI_PC ": nsi_pc , "PC": pc}

80 """

81 # numpy.random.rand(n) can generate a random

array with shape (n, 1).

82 # However , the elements of this array can be

zero. So if it happens , the array should be

discarded.

83 while 1:

63

84 vector = np.random.rand(self.order) # The

range of the samples is [0, 1).

85 if 0 not in vector: # If 0 in the array ,

repeat the process. Otherwise ,

terminate the loop.

86 break

87 # np.eye() can return a 2-D array with ones on

the diagonal and zeros elsewhere.

88 pc = np.eye(self.order)

89 # Use copy.deepcopy here to create another

matrix.

90 nsi_pc = copy.deepcopy(pc)

91 """

92 Permutations and combinations are itertools

functions , which are designed to return

successive elements

93 in the iterable.

94 permutations(range(0, 2), 2) ==> (0, 1), (0,

2), (1, 0), (1, 2), (2, 0), (2, 1).

95 combinations(range(0, 2), 2) ==> (0, 1), (0,

2), (1, 2).

96 """

97 temp = combinations(range(0, self.order), 2)

98 """

99 Generate the PC matrix according the array

vector. The element of the PC matrix a_{ij}

is equal to

100 vector_i / vector_j. Because I use

combinations here , the iterable only has

half of the needed elements.

101 So two elements of the PC matrices , a_{ij} and

a_{ji}, must be generated in one loop.

102 The O(n) for permutations is n(n-1).

103 The O(n) for combinations is n(n-1)/2.

104 """

105 for elm in temp:

106 i = elm[0]

107 j = elm[1]

108 tmp1 = vector[i] / vector[j]

109 tmp2 = vector[j] / vector[i]

64

110 pc[i, j] = tmp1 # The PC matrix ’s element

: a_{ij} = vector_i / vector_j.

111 pc[j, i] = tmp2 # The PC matrix ’s element

: a_{ji} = vector_j / vector_i.

112 # The NSI PC matrix ’s element: b_{ij} =

vector_i / vector_j + error.

113 nsi_pc[i, j] = tmp1 + self.random_numbers(

self.std_rate * tmp1 , tmp1) if self.

std_rate else tmp1

114 # The NSI PC matrix ’s element: b_{ji} =

vector_j / vector_i + error.

115 nsi_pc[j, i] = tmp2 + self.random_numbers(

self.std_rate * tmp2 , tmp2) if self.

std_rate else tmp2

116 return {" NSI_PC ": nsi_pc , "PC": pc}

117

118 def generate_with_rho(self , start=0, end=21, step

=1):

119 """

120 Generate NSI PC matrices with different

std_rate , then compute and compare the

matrices ’ Kii.

121 It is used to draw the graph in the thesis.

122 :param start: int , default = 0

123 :param end: int , default = 21

124 :param step: int , default = 1

125 :return: None

126 """

127 # np.array(range(0, 21, 1)) / 100.0 will

create a numpy.array: [0, 0.01, 0.02, ...,

0.2]

128 for self.std_rate in np.array(range(start , end

, step)) / 100.0:

129 kii_list = list() # Store the values of

Kii temporarily.

130 for _ in range(self.iterations):

131 m = self.generate_matrix () # Generate

a PC and NSI PC matrix.

132 kii_list.append(compute_kii(m[" NSI_PC

"])) # Choose the NSI one and

65

compute its Kii.

133 mean_of_kii = float(np.mean(kii_list)) #

Compute the mean of all values of Kii.

134 self.result[self.std_rate] = mean_of_kii

Then save the mean into the ordered

dict: self.result.

135

136 def generate_and_save(self):

137 """

138 Generate NSI PC matrices and save them with

pickle for further research.

139 Generally , it is designed to generate matrices

with Kii = threshold by setting different

values

140 for self.std_rate.

141 In default , self.std_rate = 1

142 :return: None

143 """

144 pc_list = list() # To save PC matrices

temporarily.

145 nsi_pc_list = list() # To save NSI PC

matrices temporarily.

146 for _ in range(self.iterations):

147 m = self.generate_matrix ()

148 """

149 np.expand_dims(arr , axis =2): add a new

dimension for a two dimension np.array

arr , then the np.array list

150 can be merged in to a big 3d array in next

steps.

151 The shape of arr is changed from shape (n,

n) to shape (n, n, 1).

152 """

153 pc_list.append(np.expand_dims(m["PC"],

axis =2))

154 nsi_pc_list.append(np.expand_dims(m["

NSI_PC"], axis =2))

155 """

156 Concatenate a list of arrays , which the shape

is (n, n, 1), into one big array ,

66

157 and its shape is (n, n, self.iterations). Then

the big array can be saved by a faster

tool: hickle ,

158 """

159 pc_array = np.concatenate(tuple(pc_list), axis

=2)

160 nsi_pc_array = np.concatenate(tuple(

nsi_pc_list), axis =2)

161 # If the file is a numpy array , I can use

hickle to accelerate and save spaces and

time.

162 save_hickle(pc_array , config.path_for_thesis +

self.file_name_of_pc)

163 save_hickle(nsi_pc_array , config.

path_for_thesis + self.file_name_of_nsi_pc)

164

165 def read_array(self):

166 """

167 Read hickle files and decompose into array

list.

168 :return: pc_list , list

169 nsi_pc_list , list

170 The lists of PC matrices and NSI PC

matrices.

171 """

172 self.file_name_of_pc = "%d pc matrices with

order =%d kii_threshold =%0.1f.pkl" %\

173 (self.iterations , self.

order , 0.1)

174 self.file_name_of_nsi_pc = "%d nsi pc matrices

with order=%d kii_threshold =%0.1f.pkl" %\

175 (self.iterations ,

self.order , 0.1)

176 pc_array = open_hickle(config.path_for_thesis

+ self.file_name_of_pc)

177 nsi_pc_array = open_hickle(config.

path_for_thesis + self.file_name_of_nsi_pc)

178 pc_list = np.split(pc_array , pc_array.shape

[2], axis =2) # (n, n, iterations) -> [(n,

n, 1)], len()=1000

67

179 nsi_pc_list = np.split(nsi_pc_array ,

nsi_pc_array.shape[2], axis =2)

180 return pc_list , nsi_pc_list

181

182 def print_results(self):

183 """

184 Print all values of mean of Kii for further

research.

185 :return:

186 """

187 # self.result is a ordered dict to save

different values for mean of kii. Their

keys are self.std_rate.

188 for key in self.result:

189 mean_of_kii = self.result[key]

190 if key == 0:

191 print ("the mean of %d %d by %d PC

matrices ’ Kii is %f" %

192 (self.iterations , self.order ,

self.order , mean_of_kii))

193 else:

194 print (" standard deviation == %0.2f *

m_{ij}, the mean of %d %d X %d NSI

PC matrices ’ Kii is %f" %

195 (key , self.iterations , self.

order , self.order ,

mean_of_kii))

196

197

198 def draw_means_graph(is_fit=True , is_save=False ,

is_generate=False , iterations =100000):

199 """

200 Draw graphs to display the relations between mean

of Kii and the ratio \rho (or self.std_rate) of

201 the standard deviation.

202 :param is_fit: boolean

203 If True , fit the curve. Otherwise , draw the

original curve.

204 :param is_save: boolean

68

205 If True , save the graph. Otherwise , show

the graph.

206 :param is_generate: boolean

207 If True , generate these matrices and save.

Otherwise , access from the hard drive.

208 :param iterations: int , default = 1000

209 The number of generated matrices.

210 :return:

211 """

212 rho_collection = dict()

213 # To display the graph better , set the figsize to

(12, 8).

214 fig = plt.figure(figsize =(12.00 , 8.00))

215 # fig = plt.figure(figsize =(19.20 , 10.80))

216 cnt = 0 # Counter of the loop , used to choose

different colors.

217 for order in range(3, 11, 1): # Matrix order [3,

11]

218 if is_generate: # Run once.

219 gm = GenerateMatrices(order=order ,

iterations=iterations)

220 gm.generate_with_rho(end =15) # Change end

from 21 to 15 for better display.

221 gm.print_results ()

222 # Save these matrices to hard drive.

223 save_pickle(gm.result , config.

path_for_thesis + "mean_of_kii_order =%d

.pkl" % order)

224 res = gm.result

225 else:

226 # Access the matrices from hard drive.

227 res = open_pickle(config.path_for_thesis +

"mean_of_kii_order =%d.pkl" % order)

228

229 if is_fit: # If fit , draw the original curve

and the fit curve.

230 x = list(res.keys())[: 15] # Select some

std_rate/rho to analyze.

231 y = list(res.values ())[: 15] # Select

some mean of Kii to analyze.

69

232 # Draw the original curve at first.

233 plt.plot(x, y, color=config.color_list[cnt

],

234 marker ="o", linestyle ="-", label

="order =%d, original curve " %

order)

235 popt , pcov = compute_curve(x, y) # popt =

(x, y) = (std_rate/rho , mean of Kii)

236 rho_collection[order] = list() #

rho_collection = {order: []}

237 for threshold in np.array(range(5, 16, 1))

/ 100.0: # threshold = [0.05 , 0.06,

..., 0.15]

238 # scipy.optimize.fsolve is used to

find the roots (\rho) of the lambda

function:

239 # a * \rho ^ 2 + b \rho - threshold =

0

240 rho = scipy.optimize.fsolve(lambda k:

popt [0] * (k ** 2) + popt [1] * k -

threshold , np.array ([0]))[0]

241 # Print the results and round to four

decimal places.

242 print ("order:", order , round(popt[0],

config.decimal_places), round(popt

[1], config.decimal_places),

243 round(rho , config.decimal_places

), popt [0] * rho ** 2 + popt

[1] * rho)

244 # rho_collection = {order: [{"rho":, "

a":, "b":, "threshold ":}, {}]}

245 rho_collection[order]. append ({" rho":

rho , "a": popt[0], "b": popt[1], "

threshold ": threshold })

246 # Draw the fit curve. *popt = popt[0],

potp [1].

247 plt.plot(x, fit_function(np.array(x), *

popt), color=config.color_list[cnt],

linestyle="--",

70

248 label=" order=%d, fit curve" %

order)

249 # Draw a line for the threshold , 0.1.

250 plt.axhline(y=config.threshold , color=’

grey ’, linestyle=’--’)

251 else: # If not fit , draw the original curve.

252 x = list(res.keys())

253 y = list(res.values ())

254 # For this case , only draw the original

curve.

255 plt.plot(x, y, color=config.color_list[cnt

], marker ="o", linestyle ="-", label ="

order =%d" % order)

256 cnt += 1

257

258 # Set different titles

259 if is_fit:

260 title = ’The Original and Fit Curves ’

261 else:

262 title = ’The Mean of %d NSI PC Matrices\’ Kii ’

% iterations

263 plt.title(title , config.ft)

264 plt.xlabel(’the ratio %s of the standard deviation

’ % chr (961), config.ft) # The label of X-axis

.

265 plt.ylabel(’mean of Kii ’, config.ft) # The label

of Y-axis.

266 plt.legend () # Display the legend of the graph.

267 if is_save:

268 if is_fit:

269 # Eps file for latex. Pdf file for

checking.

270 fig.savefig(config.path_for_thesis + "

the_original_and_fit_curve.pdf",

271 format ="pdf", dpi =1200)

272 fig.savefig(config.path_for_thesis + "

the_original_and_fit_curve.eps",

273 format ="eps", dpi =1200)

274 else:

71

275 fig.savefig(config.path_for_thesis + "

the_mean_of_NSI_PC_matrices_Kii.pdf",

276 format ="pdf", dpi =1200)

277 fig.savefig(config.path_for_thesis + "

the_mean_of_NSI_PC_matrices_Kii.eps",

278 format ="eps", dpi =1200)

279 else:

280 plt.show() # If not is_save , show the graph.

281 # Print specific sentences , which is designed for

writing the table in Latex.

282 if rho_collection:

283 # print(rho_collection)

284 for key in rho_collection: # {order: [{"rho

":, "a":, "b":, "threshold ":}, {}]}

285 for elm in rho_collection[key]:

286 if elm[" threshold "] == 0.1:

287 print ("0.1 & %d & %0.4f & %0.4f &

%0.4f \\\\" % (key , elm["rho"],

elm["a"], elm["b"]))

288 save_pickle(rho_collection , config.

path_for_thesis + "rho.pkl")

289

290

291 def fit_function(x, a, b):

292 """

293 y = a * x ^ 2 + b, the function used to fit the

curve.

294 :param x: float

295 \rho/std_rate

296 :param a: float

297 coefficient

298 :param b: float

299 coefficient

300 :return: y float

301 y is the mean of Kii

302 """

303 y = a * x ** 2 + b * x

304 return y

305

306

72

307 def compute_curve(x, y):

308 """

309 There are some relations between x (std_rate or \

rho in the thesis) and y (mean of Kii).

310 So fit a curve function for it.

311 :param x: std_rate , list

312 :param y: mean of Kii , list

313 :return: popt float

314 coefficient a

315 pcov float

316 coefficient b

317 """

318 popt , pcov = curve_fit(fit_function , x, y)

319 return popt , pcov

320

321

322 if __name__ == ’__main__ ’:

323 # gm = GenerateMatrices(order =3)

324 # tmp = gm.generate_matrix ()

325 # for key in tmp:

326 # print(tmp[key])

327 # for order in range(3, 11):

328 # # gm = GenerateMatrices(order=order ,

iterations =1000 , std_rate=config.rho_table[

order])

329 # # gm = GenerateMatrices(order=order ,

iterations =100000 , std_rate=config.rho_table[

order])

330 # gm = GenerateMatrices(order=order ,

iterations =10000 , std_rate=config.rho_table[

order])

331 # gm.generate_and_save ()

332

333 # draw_means_graph(is_fit=False , is_save=False ,

is_generate=False)

334 draw_means_graph(is_fit=True , is_save=False ,

is_generate=False)

1 # coding:utf8

2

73

3 """

4 @author: Zhangao Lu

5 @contact: zlu2@laurentian.ca

6 @time: 2021/2/27

7 @description:

8 1. Use several methods to compute matrix distance.

9 Euclidean distance

10 Chebyshev distance

11 ...

12 2. Analyze the results.

13 """

14

15 import numpy as np

16 import pandas as pd

17 import matplotlib.pyplot as plt

18 import seaborn as sns

19 import matplotlib.cm as cm

20 from scipy.spatial.distance import cdist

21 from scipy.stats import entropy

22 from config import config

23 from utils.gerenal_tools import open_pickle ,

save_pickle

24 from pairwise_comparison.generate_NSI_PC_matrices

import GenerateMatrices

25 from utils.pairwise_comparison_tools import

compute_kii

26

27

28 class MatrixDistance(object):

29 def __init__(self):

30 pass

31

32 @staticmethod

33 def compute_distance(m1 , m2 , metric =" euclidean",

** kwargs):

34 """

35 Compute distance between each pair of the two

collections of inputs.

36 :param m1: ndarray

37 It is a np.array with shape (n, n)

74

here.

38 :param m2: ndarray

39 It is a np.array with shape (n, n)

here.

40 :param metric: string , default = "euclidean ".

41 The distance function can be "

braycurtis", "canberra", "

chebyshev", "cityblock",

42 "correlation", "cosine", "dice",

"euclidean", "hamming", "

jaccard", "jensenshannon", "

kulsinski",

43 "mahalanobis", "matching", "

minkowski", "rogerstanimoto",

"russellrao", "seuclidean",

44 "sokalmichener", "sokalsneath",

"sqeuclidean", "wminkowski",

"yule", "KLdivergence ".

45 :return: ds float

46 The value of distance.

47 """

48 if metric == "KLdivergence ":

49 """

50 entropy (): Calculate the entropy of a

distribution for given probability

values.

51 m1.shape = (n, n)

52 m1.reshape(1, -1).shape = (1, n^2)

53 np.squeeze(m1.reshape(1, -1)).shape = (n

^2,)

54 """

55 ds = entropy(np.squeeze(m1.reshape(1, -1))

, np.squeeze(m2.reshape(1, -1)))

56 else:

57 ds = cdist(m1.reshape(1, -1), m2.reshape

(1, -1), metric=metric)

58 ds = ds [0][0] # cdist will return a

ndarray , so use ds [0][0] to get a float

number.

59 return ds

75

60

61

62 def create_rho_table ():

63 """

64 Create a table about matrix order , threshold and \

rho , then save it in hard drive.

65 threshold_1 threshold_2

66 order_1 rho_ {11} rho_ {12}

67 order_2 rho_ {21} rho_ {22}

68 :return: None

69 """

70 temp_dict = dict()

71 tmp = open_pickle(config.path_for_thesis + "rho.

pkl") # Access

72 for key in range(3, 11):

73 # print(key , tmp[key])

74 # [{’rho ’: 0.038956560762328174 , ’a’:

-1.4810377291603385 , ’b’:

1.3411769934668802 , ’threshold ’: 0.05}, {}]

75 for elm in tmp[key]:

76 if elm[" threshold "] not in temp_dict:

77 temp_dict[elm[" threshold "]] = [elm["

rho "]]

78 else:

79 temp_dict[elm[" threshold "]]. append(elm

["rho "])

80 # The indices are orders , the columns are

thresholds , and the elements are values of \rho

.

81 df = pd.DataFrame(temp_dict , index=range(3, 11))

82 print(df)

83 save_pickle(df, config.path_for_thesis + "rho and

order table.pkl")

84

85

86 def generate_and_compute_the_distances(metric_list ,

iterations =1000):

87 """

88 Generate PC matrices and NSI PC matrices with

different constraint: \rho (the mean of Kii).

76

Then compute the

89 distances between them. Finally , save the results.

90 :param metric_list: list

91 A list of metrics. Check config.mc_para_1.

92 :param iterations: int , default = 1000

93 Check config.mc_para_1.

94 :return: None

95 """

96 md = MatrixDistance ()

97 tb = open_pickle(config.path_for_thesis + "rho and

order table.pkl") # Get the table about the \

rho.

98 print(tb)

99 res = dict()

100 for metric in metric_list: # For each metric in

the list

101 res[metric] = dict() # res = {metric1: {},

metric2: {}, ... }

102 for ind in tb.index: # tb is the table of \

rho and order , and the index of tb is the

matrix order.

103 order = ind # Rename it for better

understanding.

104 res[metric][order] = dict()

105 # Threshold is the mean of Kii , which is

set in advance.

106 for threshold in np.array(range(8, 14, 1))

/ 100.0:

107 print(metric , ind , threshold)

108 rho = tb.loc[ind][threshold] # Select

the \rho from the table.

109 # Generate matrices.

110 gm = GenerateMatrices(order=order ,

iterations=iterations , std_rate=rho

)

111 # Compute all the distances in loops

112 res[metric][order][threshold] = list()

res = {metric1: {order1 :{

threshold1: []}}}

113 for _ in range(iterations):

77

114 # generate and get the PC and NSI

PC matrix

115 tmp = gm.generate_matrix ()

116 pc = tmp["PC"]

117 nsi_pc = tmp[" NSI_PC "]

118 # Compute the distance between PC

matrices and NSI PC matrices

119 dt = md.compute_distance(pc ,

nsi_pc , metric)

120 res[metric][order][threshold].

append(dt)

121 save_pickle(res , config.path_for_thesis + "

distances for %d matrices" % iterations)

122

123

124 def analysis_results_chart1(metric_list , iterations ,

is_show=False , dpi =600):

125 """

126 Draw Letter -Value Plots for Section 4.2 in the

thesis.

127 :param metric_list: list

128 A list of metrics. Check config.mc_para_1.

129 :param iterations: int

130 Check config.mc_para_1.

131 :param is_show: boolean , default = False

132 Show the plot or not. Check config.

mc_para_1.

133 :param dpi: int , default = 600

134 When dpi is very high , the speed that latex

compile the file is very slow. 200 is

recommended for test.

135 Check config.mc_para_1.

136 :return: None

137 """

138 # Access the results computed through function:

generate_and_compute_the_distances

139 # res = {metric: {order: {threshold: []}}}

140 res = open_pickle(config.path_for_thesis + "

distances for %d matrices" % iterations)

141

78

142 for metric in metric_list:

143 tmp = dict()

144 for order in res[metric]: # res[metric] = {

order: {threshold: []}}

145 # All experiments are base on threshold =

0.1. So select the data where threshold

= 0.1.

146 tmp[order] = res[metric][order][config.

threshold]

147 df = pd.DataFrame(tmp) # Convert to pandas.

Dataframe.

148 order = list(range(3, 11)) # The X-axis of

the graph.

149 plot_name = config.printed_metric[metric] #

Covert the metric names to print.

150 """

151 For Chebyshev distance and Euclidean distance ,

there are two graphs need to draw.

152 The first one is the whole graph , and the

second one the partial enlarged view.

153 """

154 if metric in [" chebyshev", "euclidean "]:

155 sns.boxenplot(data=df , order=order) #

Letter -Value Plot

156 plt.title ("The Distribution of %s" %

plot_name) # Set the title of the

graph.

157 plt.xlabel(’the order of matrices ’) # Set

the label of X-axis.

158 plt.ylabel(’distance/similarity/divergence

’) # Set the label of Y-axis.

159 # If is_show , then show the graph.

Otherwise , save it.

160 if is_show:

161 plt.show()

162 else:

163 plt.savefig(config.path_for_thesis + "

distribution_of_distances_%s_a.png"

% metric ,

164 format ="png",

79

165 dpi=dpi)

166

167 sns.boxenplot(data=df , order=order ,

showfliers=False) # Letter -Value Plot

168 plt.ylim([0, config.max_ylim[metric]]) #

Limit the Y-axis to show more details.

169 plt.title ("The Distribution of %s" %

plot_name)

170 plt.xlabel(’the order of matrices ’)

171 plt.ylabel(’distance/similarity/divergence

’)

172 if is_show:

173 plt.show()

174 else:

175 plt.savefig(config.path_for_thesis + "

distribution_of_distances_%s_b.png"

% metric ,

176 format ="png",

177 dpi=dpi)

178 else:

179 sns.boxenplot(data=df , order=order) #

Letter -Value Plot

180 plt.title ("The Distribution of %s" %

plot_name)

181 plt.xlabel(’the order of matrices ’)

182 plt.ylabel(’distance/similarity/divergence

’)

183 if is_show:

184 plt.show()

185 else:

186 plt.savefig(config.path_for_thesis + "

distribution_of_distances_%s.png" %

metric , format ="png", dpi=dpi)

187

188

189 def analysis_results_table(metric_list , iterations ,

need_order):

190 """

191 Generate the tables to show the statistical

indicators for different orders , which is

80

displayed in

192 Section 4.2 of the thesis.

193 :param metric_list: list

194 A list of metrics. Check config.mc_para_1.

195 :param iterations: int

196 Check config.mc_para_1.

197 :param need_order: int

198 Check config.mc_para_1.

199 I only set order =4 or order =8 for my thesis

.

200 :return: None

201 """

202 # Access the results computed through function:

generate_and_compute_the_distances

203 # res = {metric: {order: {threshold: []}}}

204 res = open_pickle(config.path_for_thesis + "

distances for %d matrices" % iterations)

205 need_merge = list()

206 for metric in metric_list:

207 tmp = dict()

208 for order in res[metric]: # res[metric] = {

order: {threshold: []}}

209 # All experiments are base on threshold =

0.1. So select the data where threshold

= 0.1.

210 tmp[order] = res[metric][order][config.

threshold]

211 df = pd.DataFrame(tmp)

212 """

213 An example of df.describe ()

214 3 4 ...

9

10

215 count 100000.000000 100000.000000 ...

100000.000000 100000.000000

216 mean 0.024043 0.014955 ...

0.009011 0.008663

217 std 0.010873 0.005100 ...

0.001548 0.001369

218 min 0.000922 0.000649 ...

81

0.001851 0.002561

219 25% 0.016504 0.011468 ...

0.008016 0.007785

220 50% 0.022294 0.014261 ...

0.008873 0.008547

221 75% 0.029504 0.017615 ...

0.009832 0.009401

222 max 0.141391 0.073217 ...

0.022877 0.022084

223 """

224 need_merge.append(df.describe ()[need_order])

225 mdf = pd.concat(need_merge , axis =1) # Merge all

pandas.Series and get a big matrix or pandas.

Dataframe.

226 mdf.columns = [config.printed_metric[elm] for elm

in metric_list] # Set the column names.

227 mdf = mdf.T # Transpose the matrix.

228 mdf = mdf [[" mean", "std", "min", "25%" , "50%" ,

"75%" , "max"]] # Select needed statistical

measurements.

229 # Print specific sentences , which is designed for

writing the table in Latex.

230 print (" name & " + " & ".join(list(mdf.columns)) +

"\\\\" + " \\ hline")

231 for ind in mdf.index:

232 print(ind.split ()[0] + " & " + " & ".join(map(

lambda x: str(round(x, 4)), list(mdf.loc[

ind]))) + "\\\\" + " \\ hline")

233

234

235 def analysis_results_chart2(metric_list , iterations ,

is_show=False , dpi =600):

236 """

237 Draw bubble charts for Section 4.3 in the thesis.

238 :param metric_list: list

239 A list of metrics. Check config.mc_para_2.

240 :param iterations: int

241 Check config.mc_para_2.

242 :param is_show: boolean , default = False

243 Show the plot or not. Check config.

82

mc_para_2.

244 :param dpi: int , default = 600

245 When dpi is very high , the speed that latex

compile the file is very slow. 200 is

recommended for test.

246 Check config.mc_para_2.

247 :return: None

248 """

249 # Access the results computed through function:

generate_and_compute_the_distances

250 # res = {metric: {order: {threshold: []}}}

251 res = open_pickle(config.path_for_thesis + "

distances for %d matrices" % iterations)

252 for metric in metric_list:

253 fig = plt.figure(figsize =(12.00 , 8.00))

254 # Means are used to set the points of bubbles

while standard deviations are used to set

the size of bubbles.

255 tmp1 = dict() # To save the values of mean

256 tmp2 = dict() # To save the values of std

257 plot_name = config.printed_metric[metric]

258 for order in res[metric]: # res[metric] = {

metric: {order: {threshold: []}}}

259 tmp1[order] = dict()

260 tmp2[order] = dict()

261 for threshold in res[metric][order]: #

res[metric][order] = {threshold: []}

262 tmp1[order][threshold] = np.mean(res[

metric][order][threshold])

263 tmp2[order][threshold] = np.std(res[

metric][order][threshold])

264 df1 = pd.DataFrame(tmp1)

265 """

266 An example of df1

267 The indices are the thresholds. The columns

are matrices ’ orders. The elements are mean

of distances.

268 3 4 5 ...

8 9 10

269 0.08 0.019007 0.011864 0.009661 ...

83

0.007491 0.007152 0.006878

270 0.09 0.021488 0.013406 0.010922 ...

0.008462 0.008074 0.007772

271 0.10 0.024043 0.014955 0.012183 ...

0.009432 0.009011 0.008663

272 0.11 0.026739 0.016543 0.013473 ...

0.010423 0.009945 0.009572

273 0.12 0.029309 0.018190 0.014790 ...

0.011426 0.010894 0.010493

274 0.13 0.031895 0.019769 0.016071 ...

0.012431 0.011862 0.011411

275 """

276 df2 = pd.DataFrame(tmp2)

277 """

278 An example of df2

279 The indices are the thresholds. The columns

are matrices ’ orders. The elements are mean

of distances.

280 3 4 5 ...

8 9 10

281 0.08 0.008581 0.004023 0.002682 ...

0.001405 0.001231 0.001086

282 0.09 0.009759 0.004555 0.003033 ...

0.001592 0.001385 0.001232

283 0.10 0.010873 0.005100 0.003373 ...

0.001766 0.001548 0.001369

284 0.11 0.012127 0.005634 0.003737 ...

0.001955 0.001699 0.001509

285 0.12 0.013237 0.006177 0.004099 ...

0.002150 0.001867 0.001656

286 0.13 0.014382 0.006742 0.004443 ...

0.002327 0.002038 0.001806

287 """

288 cnt = 0 # counter

289 for ind in df1.index:

290 x = df1.columns

291 y = df1.loc[ind]

292 # The original size of the bubbles are too

small. So set a ratio to zoom in it.

293 size = df2.loc[ind] * config.size_dict[

84

metric]

294 plt.scatter(x, y, size , c=x, cmap=cm.

get_cmap (" coolwarm "))

295 plt.plot(x, y, config.color_list[cnt],

linestyle="--", label="the mean of Kii

=%0.2f" % ind)

296 cnt += 1

297 plt.title (" Distributions of %ss with Respect

to Different Matrix Orders and Means of Kii

" % plot_name)

298 plt.xlabel(’the order of matrices ’)

299 plt.ylabel(’the mean of distances/similarities

/divergences ’)

300 plt.legend ()

301 if is_show:

302 plt.show()

303 else:

304 fig.savefig(config.path_for_thesis + "

thresholds_%s_distribution.png" %

metric , format ="png", dpi=dpi)

305

306

307 def func_canberra_distance(error , m):

308 """

309 A quick method to compute the canberra distance

between two numbers.

310 n = m + error , m > 0 and n > 0

311 d = |n-m| / (|m| + |n|) = |e| / (2m + error)

312 :param error: float

313 :param m: float

314 :return: float

315 The canberra distance.

316 """

317 return abs(error) / (2 * m + error)

318

319

320 def differences_between_canberra_distances(sigma ,

delta_sigma):

321 """

322 Generate two random errors from two different

85

normal distributions with the original number m

,

323 then compute the canberra distances between two

random samples and m.

324 After that , return the differences between two

canberra distances.

325 :param sigma: float

326 The standard deviation of the normal

distribution.

327 :param delta_sigma: float

328 Measure the change of sigma.

329 :return: float

330 The differences between two canberra

distances.

331 """

332 while 1:

333 m = np.random.random () / np.random.random () #

m is the elements of any PC matrices.

334 gm = GenerateMatrices ()

335 error = gm.random_numbers(sigma , m, 0) #

Generate a random error from original

distribution.

336 new_error = gm.random_numbers(sigma +

delta_sigma , m, 0) # Generate another

error from the new distribution.

337 if m > 0 and m + error > 0 and m + error +

new_error > 0: # All random values should

be greater than zero.

338 return func_canberra_distance(new_error , m

) - func_canberra_distance(error , m)

339

340

341 def analysis_result_canberra_distance(iterations ,

is_show=False):

342 """

343 Draw a heat map for canberra distance which is

also used in Section 4.3 of the thesis.

344 The heat map demonstrates the distributions of the

distances when order = 3.

345 :param iterations: int

86

346 Check config.mc_para_3.

347 :param is_show: boolean , default = False

348 Show the plot or not. Check config.

mc_para_3.

349 :return: None

350 """

351 # sigma = \rho * origin_num , [0.1, 0.2, ... 1]

352 fig = plt.figure(figsize =(12.00 , 8.00))

353 cnt = 1

354 # \rho - \kappa table when order = 3, kappa is

defined in thesis as the mean of Kii.

355 kappas = [0.1, 0.2, 0.3, 0.4, 0.5, 0.56]

356 rho_table = {0.1: 0.0781 , 0.2: 0.1705 , 0.3: 0.274 ,

0.4: 0.4003 , 0.5: 0.5783 , 0.56: 0.8608}

357 for kappa in kappas:

358 x = list(range(iterations))

359 y = list()

360 for _ in range(iterations):

361 value =

differences_between_canberra_distances(

config.sigma , delta_sigma=rho_table[

kappa])

362 y.append(value)

363 df = pd.DataFrame ({’x’: x, ’y’: y, ’color ’: pd

.cut(y, 10, labels=range(1, 11))})

364 print(df)

365 plt.subplot(2, 3, cnt) # Set 6 sub -plots.

366 cmap = sns.cubehelix_palette(start =0.1, light

=1, as_cmap=True)

367 sns.kdeplot(x, y, cmap=cmap , shade=True , cut

=5) # Draw heat maps.

368 plt.title ("%s = %0.2f (%s = %0.2f)" % (chr

(954) , kappa , chr (961) , rho_table[kappa]),

config.ft)

369 cnt += 1

370 plt.suptitle ("The Differences Distribution with

Respect to %s" % chr (954)) # Set the sub

titles.

371 if is_show:

372 plt.show()

87

373 else:

374 # fig.savefig(config.path_for_thesis + "

distributions_of_differences_cd_highDPI.png

", format ="png", dpi =200)

375 fig.savefig(config.path_for_thesis + "

distributions_of_differences_cd.png",

format ="png", dpi =100)

376

377

378 def create_table_for_alpha(metric_list , iterations):

379 """

380 Create a alpha -order table , which will be used in

reconstruct.py and Section 5.1 of the thesis.

381 :param metric_list: list

382 A list of metrics. Check config.mc_para_2.

383 :param iterations: int

384 Check config.mc_para_3.

385 :return: None

386 """

387 table = dict()

388 # Access the results computed through function:

generate_and_compute_the_distances

389 # res = {metric: {order: {threshold: []}}}

390 res = open_pickle(config.path_for_thesis + "

distances for %d matrices" % iterations)

391 # Print specific sentences , which is designed for

writing the table in Latex.

392 print ("Order & Bray -Curtis Distance & Canberra

Distance & Jensen -Shannon Divergence" + "\\\\"

+ " \\ hline")

393 for order in range(3, 11):

394 for metric in res:

395 if metric in metric_list:

396 table[metric] = dict()

397 rm = GenerateMatrices(iterations=

iterations , order=order)

398 arrays = rm.read_array () # Access the

NPI PC matrices from hard drive.

399 nsi_pc_list = arrays [1]

400 tmp = list()

88

401 for ind in range(len(nsi_pc_list)):

402 m_prime = np.squeeze(nsi_pc_list[

ind]) # (n, n, 1) -> (n, n)

403 tmp.append(compute_kii(m_prime))

Compute the kii of the

matrices

404 table[metric][order] = {"mean of kii":

np.mean(tmp),

405 "mean of

distances ":

np.mean(

res[metric

][order][

config.

threshold])

,

406 "ratio": np.

mean(tmp) /

np.mean(

res[metric

][order][

config.

threshold])

407 }

408 # Print specific sentences , which is designed

for writing the table in Latex.

409 print (" & ".join([str(order), str(round(table

[" braycurtis "][order][" ratio"], config.

decimal_places)),

410 str(round(table[" canberra "][

order][" ratio"], config.

decimal_places)),

411 str(round(table["

jensenshannon "][order]["

ratio"], config.

decimal_places))])

412 + "\\\\" + " \\ hline")

413 save_pickle(table , config.path_for_thesis + "alpha

table for %d matrices" % iterations)

414

89

415

416 if __name__ == ’__main__ ’:

417 # m1 = np.array(range(1, 10)).reshape(3, 3)

418 # m2 = m1 + np.random.randn()

419 # print(m1, "\n", m2)

420 # md = MatrixDistance ()

421 # # md.compute_distance(m1, m2)

422 # create_rho_table ()

423

424 # generate_and_compute_the_distances(config.

mc_para_1 [" metrics"], config.mc_para_1 ["

iterations "])

425 # analysis_results_chart1(config.mc_para_1 ["

metrics"], config.mc_para_1 [" iterations "],

426 # config.mc_para_1 ["

is_show"], config.mc_para_1 ["dpi "])

427 # analysis_results_table(config.mc_para_1 [" metrics

"],

428 # config.mc_para_1 ["

iterations "],

429 # config.mc_para_1 ["

need_order "])

430

431 # analysis_results_chart2(config.mc_para_2 ["

metrics"], config.mc_para_2 [" iterations "],

432 # config.mc_para_2 ["

is_show"], config.mc_para_2 ["dpi "])

433

434 # analysis_result_canberra_distance(config.

mc_para_3 [" iterations "], config.mc_para_3 ["

is_show "])

435 create_table_for_alpha(config.mc_para_3 [" metrics

"], config.mc_para_3 [" iterations "])

1 # coding:utf8

2

3 """

4 @author: Zhangao Lu

5 @contact: zlu2@laurentian.ca

6 @time: 2021/3/16

90

7 @description:

8 1. Reconstruct PC matrix from NSI PC matrix.

9 """

10

11 import pandas as pd

12 import matplotlib.pyplot as plt

13 import time

14 import seaborn as sns

15 from scipy import optimize

16 from pairwise_comparison.matrix_distance import

MatrixDistance

17 from pairwise_comparison.generate_NSI_PC_matrices

import GenerateMatrices

18 from utils.pairwise_comparison_tools import *

19 from multiprocessing import cpu_count

20 from utils.gerenal_tools import open_pickle ,

save_pickle , open_hickle , save_hickle , my_round

21 from utils.printing_format import PrintingFormat

22 from config import config

23 from config.config import key_names

24

25 np.set_printoptions(suppress=True) # Do not use

scientific notation when printing matrix.

26 np.set_printoptions(threshold=np.inf) # Do not use

Ellipsis when printing matrix.

27

28

29 class ReconstructMatrices(MatrixDistance ,

GenerateMatrices):

30

31 def __init__(self):

32 super ().__init__ ()

33 GenerateMatrices.__init__(self)

34 self.alpha = 1.0 # The weight coefficient in

the objective function , see Section 5.1 in

the thesis.

35 self.m_origin = np.array ([]) # PC matrix

36 self.v_origin = [] # original vector

37 self.metric = "braycurtis"

38 self.metric_list = config.mc_para_2 [" metrics "]

91

The three metrics needed to analyze in

section 5.

39 self.alpha_plan = ""

40 self.file_name_of_reconstruct_result = "%d

matrices reconstructed result alpha plan=%s

.pkl" % \

41 (self.

iterations

,

str(

self

.

alpha_plan

))

42 self.file_name_of_new_pc = "%d new pc matrices

with order=%d metric =%s alpha =%0.4f.pkl" %

\

43 (self.iterations ,

self.order , self

.metric , self.

alpha)

44 self.is_show = False # If is_show is True ,

show the graph.

45 self.dpi = 200 # Set the dpi of the graphs.

46 self.alpha_table = {}

47

48 def objective_function(self , v):

49 """

50 The objective function: f(m’) = Kii(m’) + \

alpha * D(m’, m)

51 :param v: list

52 v is a vector , and will be converted in

to the matrix m’

53 :return: float

54 The number computed by the objective

function.

55 """

56 m_prime = vector_to_pc_matrix(v) # Convert

the vector into a PC matrix

57 kii = compute_kii(m_prime) # Compute the Kii

92

of the matrix.

58 dt = self.compute_distance(m_prime , self.

m_origin , self.metric)

59 goal = kii + self.alpha * dt

60 return goal

61

62 def reconstruct_matrix(self , m, beta =0.2, maxiter

=1000 , disp=False):

63 """

64 Reconstruct the PC matrix based on DE.

65 :param m: np.array

66 original matrix , its shape is (n, n),

cannot be (n, n, 1)

67 :param beta: float , default = 0.2

68 beta is the coefficient of the bounds.

69 bounds = [v_i - beta * v_i , v_i + beta

* v_i], v_i is a element of the

original vector

70 :param maxiter: int , default = 1000

71 The maximum number of generations.

72 :param disp: boolean

73 Prints the evaluated function at every

iteration.

74 :return: np.array

75 The reconstruct matrix.

76 """

77 self.m_origin = m # Rename the matrix , then

it can be printed in the loop.

78 bounds = list() # Bounds for variables.

79 self.v_origin = pc_matrix_to_vector(self.

m_origin)

80 for elm in self.v_origin:

81 bounds.append ((elm - elm * beta , elm + elm

* beta))

82 r = optimize.differential_evolution(self.

objective_function , bounds , workers=

cpu_count (), maxiter=maxiter ,

83 updating ="

deferred

", disp

93

=disp)

84 new_v = r.x

85 return vector_to_pc_matrix(new_v)

86

87 def run(self , iterations =1000 , alpha_plan ="plan1 ")

:

88 """

89 Run the main function of this algorithm. It

will reconstruct matrices and save the

results.

90 :param iterations: int , default = 1000

91 :param alpha_plan: string , default = "plan1"

92 It refers to a ratio used to change the

values of \alpha.

93 :return: None

94 """

95 self.alpha_table = self.read_alpha_table ()

96 self.alpha_plan = alpha_plan

97 self.iterations = iterations

98 for self.order in range(3, 11):

99 arrays = super().read_array ()

100 pc_list = arrays [0] # List of PC matrices

.

101 nsi_pc_list = arrays [1] # List of NSI PC

matrices.

102 for self.metric in self.metric_list:

103 # Select the values of \alpha with

respect to different metrics and

orders

104 self.alpha = self.alpha_table[self.

metric][self.order][" ratio "] *

config.alpha_table[self.alpha_plan]

105 self.alpha = round(self.alpha , config.

decimal_places)

106 print(self.order , self.metric , "%0.4f"

% self.alpha)

107 new_pc_list = list()

108 for ind in range(len(nsi_pc_list)):

109 m_prime = np.squeeze(nsi_pc_list[

ind]) # (n, n, 1) -> (n, n)

94

110 new_m_prime = self.

reconstruct_matrix(m_prime)

111 new_pc_list.append(np.expand_dims(

new_m_prime , axis =2))

112 # Save the optimized matrices for

further research.

113 new_pc_array = np.concatenate(tuple(

new_pc_list), axis =2)

114 self.file_name_of_new_pc = "%d new pc

matrices with order =%d metric =%s

alpha =%0.4f.pkl" % (

115 self.iterations , self.order , self.

metric , self.alpha)

116 save_hickle(new_pc_array , config.

path_for_thesis + self.

file_name_of_new_pc)

117

118 def read_new_array(self):

119 """

120 Access the reconstructed PC matrices from the

hard drive.

121 :return: list

122 The list of reconstructed PC matrices

.

123 """

124 self.file_name_of_new_pc = "%d new pc matrices

with order=%d metric =%s alpha =%0.4f.pkl" %

\

125 (self.iterations ,

self.order , self

.metric , self.

alpha)

126 new_pc_array = open_hickle(config.

path_for_thesis + self.file_name_of_new_pc)

127 new_pc_list = np.split(new_pc_array ,

new_pc_array.shape[2], axis =2) # (3, 3,

1000) -> [(3, 3, 1)], len()=1000

128 return new_pc_list

129

130 def read_alpha_table(self):

95

131 """

132 Access the \alpha table from hard drive.

133 :return: None

134 """

135 # return open_pickle(config.path_for_thesis +

"alpha table for %d matrices" % 1000)

136 return open_pickle(config.path_for_thesis + "

alpha table for %d matrices" % self.

iterations)

137

138 def check_and_draw(self , iterations =1000 , readable

=True , alpha_plan =" plan1", is_show=True):

139 """

140 Generate a complicated dict for drawing graphs

.

141 res =

142 {self.order:

143 {self.metric: {"kn": [],

144 "knn": [],

145 "dnp": [],

146 "dnnn": [],

147 "dnnp": [],

148 }

149 }

150 }

151 :param iterations: int , default = 1000

152 :param readable: int , default=True

153 If True , access the results from the

hard drive. Otherwise , compute them.

154 :param alpha_plan: string , default = "plan1"

155 It refers to a ratio used to change the

values of \alpha.

156 :param is_show: boolean , default = False

157 Show the plot or not.

158 :return: None

159 """

160 self.iterations = iterations

161 self.is_show = is_show

162 self.alpha_table = self.read_alpha_table ()

163 self.alpha_plan = alpha_plan

96

164 res = dict()

165 self.file_name_of_reconstruct_result = "%d

matrices reconstructed result alpha plan=%s

.pkl" % \

166 (self.

iterations

,

str(

self

.

alpha_plan

))

167 if readable:

168 res = open_pickle(config.path_for_thesis +

self.file_name_of_reconstruct_result)

169 else: # If not readable , compute and save the

data for further research.

170 for self.order in range(3, 11):

171 res[self.order] = dict() # res = {

self.order: {}}

172 for self.metric in self.metric_list:

173 self.alpha = self.alpha_table[self

.metric][self.order][" ratio "] *

config.alpha_table[

174 self.alpha_plan] # Select the

values of \alpha with

respect to different

metrics and orders

175 new_pc_list = self.read_new_array

() # The list of Reconstructed

PC matrices.

176 arrays = super().read_array ()

177 pc_list = arrays [0] # The list of

original PC matrices.

178 nsi_pc_list = arrays [1] # The

list of NSI PC matrices.

179 res[self.order][self.metric] =

dict() # res = {self.order: {

self.metric: {}}}

180 # For short , use "kn", "knn" and

97

so on. The full name is

displayed in config.py.

181 temp_dict = {key_names ["kn"]: [],

182 key_names ["knn"]: [],

183 key_names ["dnp"]: [],

184 key_names ["dnnn "]:

[],

185 key_names ["dnnp "]: []

186 }

187 for ind in range(len(new_pc_list))

:

188 m_prime = np.squeeze(

nsi_pc_list[ind]) # (n, n,

1) -> (n, n)

189 m_origin = np.squeeze(pc_list[

ind])

190 new_m_prime = np.squeeze(

new_pc_list[ind])

191 # The full name of keys in

config.py has explained the

meaning of next 5

sentences.

192 temp_dict[key_names ["kn"]].

append(compute_kii(m_prime)

)

193 temp_dict[key_names ["knn "]].

append(compute_kii(

new_m_prime))

194 temp_dict[key_names ["dnp "]].

append(self.

compute_distance(m_origin ,

m_prime , self.metric))

195 temp_dict[key_names ["dnnn "]].

append(self.

compute_distance(m_prime ,

new_m_prime , self.metric))

196 temp_dict[key_names ["dnnp "]].

append(self.

compute_distance(m_origin ,

new_m_prime , self.metric))

98

197 res[self.order][self.metric] =

temp_dict

198 save_pickle(res , config.path_for_thesis +

self.file_name_of_reconstruct_result)

199

200 self.create_data_tables(res)

201

202 self.choose_data_to_draw(res , "alpha+metric+

order+key -name.dnp")

203 self.choose_data_to_draw(res , "alpha+metric+

order+key -name.dnnn")

204 self.choose_data_to_draw(res , "alpha+metric+

order+key -name.dnnp")

205

206 def choose_data_to_draw(self , res , gtype):

207 """

208 Draw three letter -value plots for each metric.

For example:

209 metric=braycurtis. X-axis: order. Y-axis:

key_names.dnp.

210 metric=braycurtis. X-axis: order. Y-axis:

key_names.dnnn.

211 metric=braycurtis. X-axis: order. Y-axis:

key_names.dnnp.

212 :param res: dict

213 A complicated dict.

214 res =

215 {self.order:

216 {self.metric: {"kn": [],

217 "knn": [],

218 "dnp": [],

219 "dnnn": [],

220 "dnnp": [],

221 }

222 }

223 }

224 :param gtype: string

225 Graph types. There are three gtypes

here:

226 1. alpha+metric+order+key -name.dnp

99

227 2. alpha+metric+order+key -name.dnnn

228 3. alpha+metric+order+key -name.dnnp

229 :return: None

230 """

231 xlabel = "the order of matrices"

232 plot_format = "png"

233

234 order_list = list(range(3, 11)) # The X-axis

of the graph.

235 if gtype == "alpha+metric+order+key -name.dnp":

236 for self.metric in self.metric_list:

237 tmp = dict()

238 for self.order in res:

239 tmp[self.order] = res[self.order][

self.metric][key_names ["dnp"]]

240 df = pd.DataFrame(tmp)

241 ylabel = "distance"

242 plot_name = "The Distribution of %s

Distances between \n the NSI PC

Matrices and the Original PC " \

243 "Matrices" % self.metric.

capitalize ()

244 # gtype.split (".") [1] = "dnp"

245 plot_saved_path = "

new_distribution_of_distances_%s_%s

.png" % (self.metric , gtype.split

(".") [1])

246 self.draw_box_plots(data=df, xaxis=

order_list , plot_name=plot_name ,

xlabel=xlabel , ylabel=ylabel ,

247 plot_saved_path=

plot_saved_path

, plot_format=

plot_format)

248

249 elif gtype == "alpha+metric+order+key -name.

dnnn":

250 for self.metric in self.metric_list:

251 tmp = dict()

252 for self.order in res:

100

253 tmp[self.order] = res[self.order][

self.metric][key_names ["dnnn "]]

254 df = pd.DataFrame(tmp)

255 ylabel = "distance"

256 plot_name = "The Distribution of %s

Distances between \n the NSI PC

Matrix and Optimized Matrix" \

257 % self.metric.capitalize ()

258 plot_saved_path = "

new_distribution_of_distances_%s_%s

.png" % (self.metric , gtype.split

(".") [1])

259 self.draw_box_plots(data=df, xaxis=

order_list , plot_name=plot_name ,

xlabel=xlabel , ylabel=ylabel ,

260 plot_saved_path=

plot_saved_path

, plot_format=

plot_format)

261

262 elif gtype == "alpha+metric+order+key -name.

dnnp":

263 for self.metric in self.metric_list:

264 tmp = dict()

265 for self.order in res:

266 tmp[self.order] = res[self.order][

self.metric][key_names ["dnnp "]]

267 df = pd.DataFrame(tmp)

268 ylabel = "divergence"

269 # plot_name = "alpha =%0.4f x %d

metric =%s" % (self.alpha_table[self

.metric][self.order][" ratio"],

270 #

config.alpha_table[self.alpha_plan

], self.metric)

271 plot_name = "The Distribution of %s

Divergences between \n the Original

PC Matrix and Optimized " \

272 "Matrix" % self.metric.

101

capitalize ()

273 plot_saved_path = "

new_distribution_of_distances_%s_%s

.png" % (self.metric , gtype.split

(".") [1])

274 self.draw_box_plots(data=df, xaxis=

order_list , plot_name=plot_name ,

xlabel=xlabel , ylabel=ylabel ,

275 plot_saved_path=

plot_saved_path

, plot_format=

plot_format)

276

277 def create_data_tables(self , res):

278 """

279 create a complicated table , see table 6 in

Section 5.2 of the thesis.

280 :param res: dict

281 A complicated dict. res =

282 {self.order:

283 {self.metric: {"kn": [],

284 "knn": [],

285 "dnp": [],

286 "dnnn": [],

287 "dnnp": [],

288 }

289 }

290 }

291 :return: None.

292 """

293 for self.metric in self.metric_list:

294 # Print the data with some specific format

, which is used to create tables in the

LaTex file.

295 np1 = PrintingFormat ()

296 np2 = PrintingFormat ()

297 np3 = PrintingFormat ()

298

299 np1.for_reconstruct ()

300 np2.for_reconstruct ()

102

301 np3.for_reconstruct ()

302 for self.order in res:

303 tmp1 = dict()

304 tmp2 = dict()

305 tmp3 = dict()

306 tmp1[self.order] = res[self.order][

self.metric][key_names ["dnp"]]

307 tmp2[self.order] = res[self.order][

self.metric][key_names ["dnnn "]]

308 tmp3[self.order] = res[self.order][

self.metric][key_names ["dnnp "]]

309

310 df1 = pd.DataFrame(tmp1)

311 df2 = pd.DataFrame(tmp2)

312 df3 = pd.DataFrame(tmp3)

313 # print(df1.describe ().loc[[" mean", "

std", "min", "max "]])

314 # print(df2.describe ().loc[[" mean", "

std", "min", "max "]])

315 # print(df3.describe ().loc[[" mean", "

std", "min", "max "]])

316

317 np1.for_reconstruct(mean=df1.describe

()[self.order][" mean"],

318 std=df1.describe ()

[self.order]["

std"],

319 min_value=df1.

describe ()[self

.order]["min"],

320 max_value=df1.

describe ()[self

.order]["max"])

321 np2.for_reconstruct(mean=df2.describe

()[self.order][" mean"],

322 std=df2.describe ()

[self.order]["

std"],

323 min_value=df2.

describe ()[self

103

.order]["min"],

324 max_value=df2.

describe ()[self

.order]["max"])

325 np3.for_reconstruct(mean=df3.describe

()[self.order][" mean"],

326 std=df3.describe ()

[self.order]["

std"],

327 min_value=df3.

describe ()[self

.order]["min"],

328 max_value=df3.

describe ()[self

.order]["max"])

329 np1.for_reconstruct(end=True)

330 np2.for_reconstruct(end=True)

331 np3.for_reconstruct(end=True)

332

333 print(self.metric)

334 print ("=" * 100)

335 np1.print_need_print ()

336 print ("=" * 100)

337 np2.print_need_print ()

338 print ("=" * 100)

339 np3.print_need_print ()

340 print ("=" * 100)

341

342 def draw_box_plots(self , data , xaxis , plot_name ,

xlabel , ylabel , plot_saved_path , plot_format):

343 """

344 Draw box plots according to different

parameters.

345 :param data: pandas.Dataframe

346 The data used to draw the graph.

347 :param xaxis: list

348 The values of X-axis.

349 :param plot_name: string

350 The name of this graph.

351 :param xlabel: string

104

352 The label of X-axis.

353 :param ylabel: string

354 The label of Y-axis.

355 :param plot_saved_path: string

356 The file path to save the graph.

357 :param plot_format: string

358 png or other formats.

359 :return: None

360 """

361 sns.boxenplot(data=data , order=xaxis) # Draw

the box plot.

362 plt.title(plot_name , config.new_ft)

363 plt.xlabel(xlabel , config.new_ft)

364 plt.ylabel(ylabel , config.new_ft)

365 if self.is_show:

366 plt.show()

367 else:

368 plt.savefig(config.path_for_thesis +

plot_saved_path , format=plot_format ,

369 dpi=self.dpi)

370 plt.close ()

371

372 def check_outliers_of_kii(self , alpha_plan):

373 """

374 Check if there is any Kii of reconstructed PC

matrix != 0.

375 :param alpha_plan: String

376 plan1 , plan2 , plan3

377 :return:

378 """

379 self.alpha_table = self.read_alpha_table ()

380 self.alpha_plan = alpha_plan

381 self.file_name_of_reconstruct_result = "%d

matrices reconstructed result alpha plan=%s

.pkl" \

382 % (self

.

iterations

,

str(

105

self

.

alpha_plan

))

383 for self.order in range(3, 11):

384 for self.metric in self.metric_list:

385 self.alpha = self.alpha_table[self.

metric][self.order][" ratio "] *

config.alpha_table[

386 self.alpha_plan]

387 new_pc_list = self.read_new_array ()

388 arrays = super().read_array ()

389 pc_list = arrays [0]

390 nsi_pc_list = arrays [1]

391 for ind in range(len(new_pc_list)):

392 m_prime = np.squeeze(nsi_pc_list[

ind]) # (n, n, 1) -> (n, n)

393 new_m_prime = np.squeeze(

new_pc_list[ind])

394 kii1 = compute_kii(m_prime)

395 kii2 = compute_kii(new_m_prime)

396 if kii2 != 0: # If kii2 !=0,

which means the DE algorithm

hasn ’t been converged correctly

.

397 print(kii1 , kii2)

398

399

400 if __name__ == ’__main__ ’:

401 rm = ReconstructMatrices ()

402 # rm.run (10000 , "plan1 ")

403 # rm.check_and_draw(iterations =10000 , readable=

False , alpha_plan =" plan1", is_show=False)

404 # rm.check_and_draw(readable=False , alpha_plan ="

plan3", is_show=True)

405

406 # rm.check_outliers_of_kii ("plan1 ")

106

References

[1] Juan Aguarón and José Marıéa Moreno-Jiménez. The geometric consis-

tency index: Approximated thresholds. European Journal of Operational

Research, 147(1):137–145, 2003.

[2] Jonathan Barzilai. Consistency measures for pairwise comparison ma-

trices. Journal of Multi-Criteria Decision Analysis, 7(3):123–132, 1998.

[3] Thomas M Cover and Joy A Thomas. Entropy, relative entropy and

mutual information. Elements of information theory, 2(1):12–13, 1991.

[4] GB Crawford. The geometric mean procedure for estimating the scale

of a judgement matrix. Mathematical Modelling, 9(3-5):327–334, 1987.

[5] Swagatam Das and Ponnuthurai Nagaratnam Suganthan. Di↵erential

evolution: A survey of the state-of-the-art. IEEE transactions on evo-

lutionary computation, 15(1):4–31, 2010.

[6] Bruce L Golden and Qiwen Wang. An alternate measure of consistency.

In The analytic hierarchy process, pages 68–81. Springer, 1989.

[7] Hofmann Heike, H Wickham, and K Kafadar. Letter-value plots: Box-

plots for large data. J. Comput. Graph. Stat, 26:469–477, 2017.

107

[8] Michael W Herman and Waldemar W Koczkodaj. A monte carlo study

of pairwise comparisons. arXiv preprint arXiv:1505.01888, 2015.

[9] W lodzimierz Holsztyński and Waldemar W Koczkodaj. Convergence

of inconsistency algorithms for the pairwise comparisons. Information

Processing Letters, 59(4):197–202, 1996.

[10] Mykel J Kochenderfer and Tim A Wheeler. Algorithms for optimization.

Mit Press, 2019.

[11] Waldemar W Koczkodaj. A new definition of consistency of pairwise

comparisons. Mathematical and computer modelling, 18(7):79–84, 1993.

[12] Waldemar W Koczkodaj, Marek Kosiek, Jacek Szybowski, and Ding

Xu. Fast convergence of distance-based inconsistency in pairwise com-

parisons. Fundamenta Informaticae, 137(3):355–367, 2015.

[13] Waldemar W Koczkodaj and Ryszard Szwarc. On axiomatization of

inconsistency indicators for pairwise comparisons. Fundamenta Infor-

maticae, 132(4):485–500, 2014.

108

[14] Waldemar W Koczkodaj and Jacek Szybowski. On the convergence of

the pairwise comparisons inconsistency reduction process. arXiv preprint

arXiv:1505.01325, 2015.

[15] WW Koczkodaj, F Liu, VW Marek, J Mazurek, Marcin Mazurek,

L Mikhailov, C Özel, W Pedrycz, A Przelaskowski, A Schumann, et al.

On the use of group theory to generalize elements of pairwise compar-

isons matrix: A cautionary note. International Journal of Approximate

Reasoning, 124:59–65, 2020.

[16] Jouni Lampinen and Rainer Storn. Di↵erential evolution. In New opti-

mization techniques in engineering, pages 123–166. Springer, 2004.

[17] Thomas L Saaty. A scaling method for priorities in hierarchical struc-

tures. Journal of mathematical psychology, 15(3):234–281, 1977.

[18] Thomas L Saaty and Luis G Vargas. Comparison of eigenvalue, log-

arithmic least squares and least squares methods in estimating ratios.

Mathematical modelling, 5(5):309–324, 1984.

[19] William E Stein and Philip J Mizzi. The harmonic consistency index for

the analytic hierarchy process. European journal of operational research,

177(1):488–497, 2007.

109

[20] Rainer Storn and Kenneth Price. Di↵erential evolution–a simple and

e�cient heuristic for global optimization over continuous spaces. Journal

of global optimization, 11(4):341–359, 1997.

[21] Jacek Szybowski, Konrad Ku lakowski, and Anna Prusak. New inconsis-

tency indicators for incomplete pairwise comparisons matrices. Mathe-

matical Social Sciences, 2020.

[22] Peter JM Van Laarhoven and Witold Pedrycz. A fuzzy extension of

saaty’s priority theory. Fuzzy sets and Systems, 11(1-3):229–241, 1983.

110

