Reconstructing Pairwise Comparisons Matrices Based on Differential

Evolution: A Monte Carlo Study

by

Zhangao <u>Lu</u>

A thesis submitted in partial fulfilment of the requirements for the degree of

Master of Science (MSc) in Computational Science

The Faculty of Graduate Studies

Laurentian University

Sudbury, Ontario, Canada

©Zhangao Lu, 2021

THESIS DEFENCE COMMITTEE/COMITÉ DE SOUTENANCE DE THÈSE Laurentian Université/Université Laurentienne

Faculty of Graduate Studies/Faculté des études supérieures

Title of Thesis

Titre de la thèse Reconstructing Pairwise Comparisons Matrices Based on Differential Evolution: A Monte

Carlo Study

Name of Candidate

Nom du candidat Lu, Zhangao

Degree

Diplôme Master of Science

Department/Program Date of Defence

Département/Programme Computational Sciences Date de la soutenance May 28, 2021

APPROVED/APPROUVÉ

Thesis Examiners/Examinateurs de thèse:

Dr. Waldemar W. Koczkodaj (Supervisor/Directeur(trice) de thèse)

Dr. Miroslaw Mazurek

(Committee member/Membre du comité)

Approved for the Faculty of Graduate Studies Approuvé pour la Faculté des études supérieures

Tammy Eger, PhD

Vice-President Research (Office of Graduate Studies)

Vice-rectrice à la recherche (Bureau des études supérieures)

Laurentian University / Université Laurentienne

Dr. Mariusz Pelc (External Examiner/Examinateur externe)

ACCESSIBILITY CLAUSE AND PERMISSION TO USE

I, Zhangao Lu, hereby grant to Laurentian University and/or its agents the non-exclusive license to archive and make accessible my thesis, dissertation, or project report in whole or in part in all forms of media, now or for the duration of my copyright ownership. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also reserve the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that this copy is being made available in this form by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Abstract

Pairwise comparisons have been used in the decision-making process since antiquities. However, it is a substantial challenge to generate a PC matrix from noisy or incomplete real-life input data. This study aims to investigate the reconstruction of pairwise comparisons matrices from not-so-inconsistent pairwise comparisons matrices by an optimization method based on differential evolution. A distance-based objective function is defined as a function of the inconsistency indicator and the distance metric. Monte Carlo experiments are designed to illustrate the research outcomes. The experimental results show that this method convergence quickly. It also provides comparisons of several traditional metrics.

Keywords

pairwise comparisons, pairwise comparisons matrix, inconsistency, differential evolution, optimization, Monte Carlo, metric.

Acknowledgments

I would like to express my sincere gratitude and appreciation to my supervi-

sor Dr. Waldemar Koczkodaj for his support and advice during my studies.

His explicit knowledge in the field helped me through to the end.

I would like to thank my wife for her constant support and patience throughout this process.

I would like to thank my parents for their interest and support throughout my degree.

I would like to thank all my friends who never wavered in their support.

Contents

	Abstract	iii
	Acknowledgments	iv
	List of Tables	vii
	List of Figures	viii
1	Introduction	1
2	Pairwise Comparisons	2
	2.1 Pairwise Comparisons Basics	. 2
	2.2 Problem Definition	. 5
3	Differential Evolution	8
1	Problem Formulation	13
	4.1 The NSI PC Matrices	. 13
	4.2 Selection of Metrics	. 16
	4.3 Metric Monotonicity	. 27
	4.4 Discussion	. 43

5	Rec	construct the Matrices with Differential Evolution	44
	5.1	Weight Coefficient	44
	5.2	Analysis of the Results	47
	5.3	Discussion	53
6	Cor	aclusion and Future Work	57
	6.1	Conclusion	57
	6.2	Future Work	59
${f A}_{f j}$	ppen	dix	61
\mathbf{A}	$Th\epsilon$	Core Part of the Python Program	61

List of Tables

1	The Coefficients of Quadratic Function	17
2	Several Metrics	18
3	Statistical Analysis for Order=4 Matrices	27
4	Statistical Analysis for Order=8 Matrices	28
5	The Threshold of α with respect to the Matrix Order and Metric	47
6	Statistical Measurements for Several Bray-Curtis Distances	51
7	Statistical Measurements for Several Canberra Distances	53
8	Statistical Measurements for Several Jensen-Shannon Diver-	
	gences	55

List of Figures

1	Triad	4
2	Sample Input Data	6
3	Differential Evolution Processes	10
4	The Mean of 100,000 NSI PC Matrices' Kii	15
5	The Original and Fit Curve	16
6	The Distribution of Bray-Curtis Distance	20
7	The Distribution of Canberra Distance	21
8	The Distribution of Chebyshev Distance	22
9	The Distribution of Cosine Similarity	23
10	The Distribution of Euclidean Distance	24
11	The Distribution of Jensen-Shannon Divergence	25
12	The Distribution of Kullback-Leibler Divergence	26
13	Distributions of Bray-Curtis Distances with respect to Differ-	
	ent Matrix Orders and Means of Kii	30
14	Distributions of Canberra Distances with respect to Different	
	Matrix Orders and Means of Kii	34
15	The Differences of $q(\kappa)$ with respect to κ .	39

16	Distributions of Jensen–Shannon Divergences with respect to
	Different Matrix Orders and Means of Kii 40
17	The New Distribution of Bray-Curtis Distance 50
18	The New Distribution of Canberra Distance 52
19	The New Distribution of Jensen-Shannon Distance 54

1 Introduction

In nature, pairs occur everywhere. A pair of binary digits is the foundation of computers. We compare objects or concepts in pairs more frequently than we realize. The pairwise comparisons (PC or PCs depending on the context) method deserves more attention than it is currently getting. There are many kinds of research for consistent PC matrices. Nevertheless, not all PC matrices are consistent matrices in practice. To generate a consistent PC matrix from a "not-so-inconsistent" PC matrix or NSI PC matrix, which was introduced in [9], is worth considering. Saaty proposed a method to solve that problem in 1977 [17]. After that, several methods have been raised [18] [4]. However, there is no decisive proof of which one is best until now. Therefore, it becomes an optimization problem. In this study, a new method is proposed based on Differential Evolution (DE) with the tolerance according to Kii (Koczkodaj inconsistency indicator [11]) and several distance measures.

2 Pairwise Comparisons

2.1 Pairwise Comparisons Basics

Pairwise comparisons method, described by Ramond Llull in the 13th century, was used for deciding elections. As a scientific method, it has evolved over hundreds of years and gained considerable importance to model inconsistency. Input data is usually represented by a square matrix with elements that are ratios between compared entities. The matrix is called a pairwise comparisons matrix (PC matrix for short). The ratio definitions imply that PC matrix elements are strictly positive real numbers. Extensions to fuzzy numbers and interval numbers have been analyzed in [22] but under the constraints outlined in [15].

In this study, only strictly positive real numbers, as PC matrix elements, will be considered. If needed, they can be generalized in time. Consider a 3×3 PC matrix:

$$M = \begin{bmatrix} 1 & m_{12} & m_{13} \\ m_{21} & 1 & m_{23} \\ m_{31} & m_{32} & 1 \end{bmatrix}$$

its elements are assumed to be reciprocal: $m_{ij} = 1/m_{ji}$ since the ration x/y = 1/(y/x). It implies that PC matrix elements on the main diagonal are equal to 1 (x/x = 1 for x > 0).

Using PC matrix M elements, we can express ratios $[A/B] = m_{12}$, $[B/C] = m_{23}$, $[A/C] = m_{13}$ where A, B, and C are entities. The object $T = (m_{12}, m_{13}, m_{23})$ is called a triad, and its elements create the triangular above the main diagonal of PC matrix M. Since the elements above the main diagonal create a cycle, there may be a contradiction in the real-life situation:

$$[A/B] * [B/C] \neq [A/C]$$

where [*] denotes a ratio. The ratios can be obtained by expert opinion where division operation may not be applicable (e.g., when comparing non-functional software attributes such as software reliability and software safety).

To focus our attention, assume the triad (2,5,3) in the PC matrix M above the main diagonal. It is represented by dotted arrows with solid arrowheads in Fig. 1.



Figure 1: Triad

For better research in consistency, W.Koczkodaj proposed an indicator to measure the inconsistency illustrated in Fig. 1 in 1993 [11]. *Kii* is defined based on the absolute value of distances between the ratios of triads and the constant 1:

$$Kii(M) = \max_{i < j < k} \min \left(\left| 1 - \frac{m_{ik}}{m_{ij}m_{jk}} \right|, \left| 1 - \frac{m_{ij}m_{jk}}{m_{ik}} \right| \right)$$

where M is any reciprocal matrix and m_{ij} , m_{jk} , and m_{ik} are its elements. Kii is simplified in 2014 [13]:

$$Kii(M) = 1 - \min_{i < j < k} \left(\frac{m_{ik}}{m_{ij}m_{jk}}, \frac{m_{ij}m_{jk}}{m_{ik}} \right)$$
 (2.1)

The range of Kii is [0,1). It means the matrix is consistent if Kii = 0, and

the matrix is inconsistent when $Kii \to 1$. Moreover, this indicator guarantees monotonicity. If N is a PC submatrix of M, we have $Kii(N) \le Kii(M)$ [14].

2.2 Problem Definition

This paper will address reconstructing PC matrices from NSI PC matrices. An example of this is people living in a bartering economy where they exchange goods for goods. In this circumstance, people need to remember plenty of rules about exchanging goods. For example, two tomatoes equal a chicken or two chickens equal three fish. For five goods, there are $5^2-5=20$ rules between them. These rules are symmetrical, therefore, people only need to remember 10 of them. See Fig. 2. Things become more difficult when the number of goods increases to 10, meaning there are now 45 rules to remember. By comparison, for 20 items, the number of rules increases to 140 and although this is still a small number compared to the number of merchandise items in life, the increase is substantial. In this situation, the probability of contradictions will increase significantly. Considering a practical example, some people claim that two tomatoes can exchange one chicken and three chickens are equal to one fish. However, they hold that five tomatoes equal one fish. There is a classic (2,3,5) contradiction that sets up some interesting

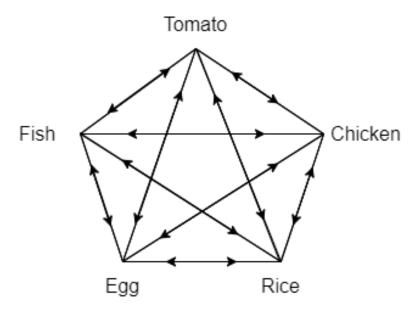


Figure 2: Sample Input Data

arbitrage opportunities. The rule can be rebuilt to solve this problem. For example, six tomatoes can exchange one fish. Now it looks like the problem is solved, and the rule is changed from (2,3,5) to (2,3,6). But why must it be (2,3,6)? Triad (2,2.5,5) or triad (1,5,5) can also satisfy the consistency condition. Moreover, if there are 40 contradictions in 140 rules, it will be tough to change the rules with all constraints.

A formal definition of this problem is that if there is an NSI PC matrix M'. The goal is to find a PC matrix M that differs from the original NSI PC matrix M' as little as possible. There are two constraints here: the

new matrix must be a consistent PC matrix, and this new matrix should be close to the original NSI matrix as much as possible. In other words, the distance between the two matrices should incline to zero. [12] proposed a distance-based inconsistency reduction algorithm with Kii, which has a quick convergence rate. This algorithm generates the consistency PC matrix with less than ten reductions in most cases if the Kii of the original NSI PC matrix is lower than $\frac{1}{3}$. However, this algorithm is developed only based on Kii from the beginning, and it cannot optimize other indicators or metrics together. Therefore, a new method should be designed to tackle mixed problems.

3 Differential Evolution

Differential evolution is a population-based evolutionary meta-heuristic, introduced by Storn and Price in 1996 [20]. Lampinen and Storn illustrated that DE was more accurate than some other optimization algorithms like simulated annealing and evolutionary programming in 2004 [16]. This method is widely applied in numerous branches of science. It is also used for solving engineering problems since the late 1990s, as documented in [5].

Although it does not guarantee a globally optimal solution, DE is regarded as a robust and powerful method with good convergence speed. Furthermore, it does not require the objective (goal) function to be differentiable, while differentiability is an essential condition for most of the classic global optimization methods (e.g., gradient descent). DE can be used to find approximate solutions to non-linear, non-convex, and non-differentiable objective functions. Generally, the optimization goal of the DE algorithm is to minimize the objective function:

$$f(X): \mathbb{R}^n \to \mathbb{R}$$

$$X = [x_1, x_2, \cdots, x_n], X \in \mathbb{R}^n$$

by optimizing its argument X and get X^* :

$$f(X^*) \le f(X), \forall X \in \mathbb{R}^n$$

X is an n-dimension vector, and its elements are subject to some boundary constraints:

$$L_i \leq x_i \leq U_i, i = 1, 2, \cdots, n$$

DE meta-heuristic can be described as four steps:

- 1. Initialization
- 2. Mutation
- 3. Crossover
- 4. Selection

See Fig. 3 for the block diagram of it.

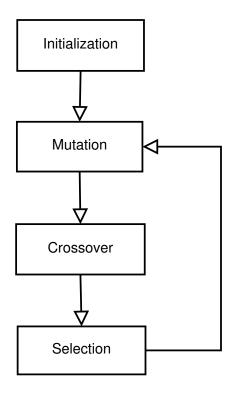


Figure 3: Differential Evolution Processes

Initialization: In the absence of the initial solution, the meta-heuristic may randomly select parameter vectors. Each vector represents a candidate solution for the objective function. We denote iterations in DE by $t=1,2,\cdots,t_{max}$. The pth vector of the population for the iteration t can be denoted by:

$$X_p^{(t)} = [x_{1,p}^{(t)}, x_{2,p}^{(t)}, \cdots, x_{n,p}^{(t)}]$$

where $x_{i,p}^{(t)}$ is a uniformly distributed number between L_i and U_i and can be represented by:

$$x_{i,p}^{(t)} = L_i + rand_{ip}[0,1](U_i - L_i)$$

Mutation: For each target vector $X_p^{(t)}$ in the current iteration t, DE generates a mutant vector $V_{p+1}^{(t)}$. Besides, the component of the mutant can be computed by:

$$v_{i,p}^{(t+1)} = x_{r_1,p}^{(t)} + F \cdot (x_{r_2,p}^{(t)} - x_{r_3,p}^{(t)}), \ F \in [0,2]$$

where r_1, r_2 and r_3 are randomly selected from $\{1, 2, \dots, n\}$ and $r_1 \neq r_2 \neq r_3$. Crossover: For diversity of the parameters, the donor vector $V_{p+1}^{(t)}$ combines its entries with the target vector $X_p^{(t)}$. Hence, we generate a trial vector $U_p^{(t+1)}$, where its components can be denoted by:

$$u_{ip}^{(t+1)} = \begin{cases} v_{i,p}^{(t+1)}, & if \ rand_{ip}[0,1] \leq CR, \\ x_{i,p}^{(t)}, & otherwise \end{cases}$$

where CR or crossover rate is a pre-fixed constant $\in [0, 1]$.

Selection: DE decides whether the target vector $X_p^{(t)}$ or the trail vector $U_p^{(t+1)}$ exists in the next iteration based on:

$$X_p^{(t+1)} = \begin{cases} U_p^{(t+1)}, & if \ f(U_p^{(t+1)}) \le f(X_p^{(t)}), \\ \\ X_p^{(t)}, & otherwise \end{cases}$$

where f is the objective function.

DE repeats Mutation, Crossover and Selection until some threshold is reached. Subsequently, the components of the vector $X_p^{(t)}$ are the optimized parameters for the objective function.

4 Problem Formulation

4.1 The NSI PC Matrices

The "not-so-inconsistent" or NSI PC matrices should be generated randomly with some criteria before optimized. It is clear that there is no scientific merit to optimize completely random matrices. There are numerous solutions for completely random matrices. Since there are no original PC matrices for these completely random matrices, the solution PC matrices cannot be compared with the original PC matrix. Thus, it is unknown which solution is the best and closest to the original matrix. [12] created these matrices by deviating a consistent PC matrix M randomly: M' = M * rand(). Meanwhile, [8] proposed a different formula: $M' = M * (1 \pm \rho D)$, where $\rho \in [0, 1]$ and D is a given constant. The former method built matrices by multiplying a fixed constant and did not consider the inter elements difference. The latter solved that problem using a random number ρ but has not dealt with possible negative numbers. Thus, a new method based on the distribution of errors is proposed to build these NSI matrices.

The elements m_{ij} of the PC matrix M are defined as ratios of entities, said V_i . Hence, there must be some errors if $m_{ik} \neq m_{ij} * m_{jk}$. According to the

central limit theorem, each error e_{ij} follows a normal distribution. In this paper, for convenience of computation, normal distributions with $\mu=0$ are applied when computing each error e_{ij} . However, it is not easy to set an appropriate value for standard deviation. Therefore, a Monte Carlo experiment is designed to find the best estimate for the standard deviation. First, we generate 100,000 PC matrices for each order. Then the standard deviation of the normal distribution is defined here to deviate these PC matrices:

$$\sigma = \rho * m_{ij}$$

where $\rho \in (0, 1]$ and m_{ij} is the corresponding element of the PC matrix. It is a reasonable estimate for standard deviation because of the 68-95-99.7 rule. Next, 100,000 NSI PC matrices were generated by $m_{ij} + e_{ij}$ (If $m_{ij} + e_{ij} <= 0$, we discard e_{ij} and generate a new one to replace it). After that, Kii for all NSI PC matrices were computed, and the arithmetic mean of these Kii were determined. Finally, a diagram to illustrate the results was created. See Fig. 4.

The diagram shows ρ and the arithmetic mean of Kii are linearly dependent when order = 3. However, the curve is more like a parabola when order > 3.

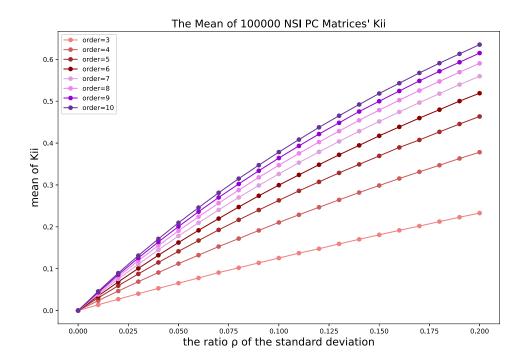


Figure 4: The Mean of 100,000 NSI PC Matrices' Kii

Therefore, we can fit the curve with the quadratic function: $\operatorname{mean}(Kii) = a\rho^2 + b\rho$, where a and b are constants. The result is displayed in Fig. 5. The dashed lines represent graphs of quadratic functions and fit the original curve almost perfectly. In addition, if we set a threshold for Kii of NSI PC matrices, like 0.1, we can compute the value of ρ by the equation $0.1 = a\rho^2 + b\rho$. See Table. 1. Subsequently, we can generate NSI PC matrices quantitatively using the value of ρ in this table.

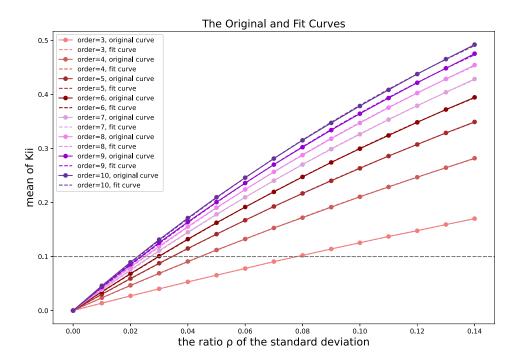


Figure 5: The Original and Fit Curve

4.2 Selection of Metrics

Now, 100,000 not-so-inconsistent PC matrices (The mathematical expectation of these matrices' Kii equals 0.1) is generated. And the indicator Kii can be used to measure a matrix's consistency. However, there is no standard measure of "close". In other words, to measure the distance between NSI PC matrices and PC matrices, some metrics should be defined or applied here. It is essential to compare the element-wise matrix distance metrics before

Table 1: The Coefficients of Quadratic Function

Threshold (Mean of Kii)	Order	ρ	a	b
0.1	3	0.0781	-1.0915	1.3653
0.1	4	0.0446	-2.4776	2.3549
0.1	5	0.0347	-3.7161	3.0093
0.1	6	0.0300	-4.7447	3.4753
0.1	7	0.0272	-5.5261	3.8247
0.1	8	0.0253	-6.2311	4.1051
0.1	9	0.0239	-6.8591	4.3401
0.1	10	0.0229	-7.4362	4.5422

applying the differential evolution algorithm to reconstruct PC matrices. In this sense, measuring the matrix distance is equivalent to computing the distance or similarity between vectors flattened from the matrix. There are several metrics to measure the distance. See Table. 2. It is worth noting that not all common metrics have been listed. For example, Minkowski distance, Manhattan distance or Pearson correlation coefficient has been tested and removed. Minkowski distance and Manhattan distance have similar characteristics to Euclidean distance. For Pearson correlation coefficient, the result

shows that Cosine similarity is generally superior to Pearson correlation coefficient.

Table 2: Several Metrics

Name	Formula	Range
Bray-Curtis distance	$d(u,v) = \frac{\sum_{i}(u_i - v_i)}{\sum_{i}(u_i + v_i)}$	[0,1]
Canberra distance	$d(u,v) = \sum_{i=1}^{n} \frac{ u_i - v_i }{ u_i + v_i }$	[0,n]
Chebyshev distance	$d(u,v) = \max_i u_i - v_i $	$[0,\infty)$
Cosine similarity	$\cos \theta = 1 - \frac{u \cdot v}{ u _2 v _2}$	[0, 1]
Euclidean distance	$d(u,v) = (\sum_{i} u_{i} - v_{i} ^{2})^{\frac{1}{2}}$	$[0,\infty)$
Jensen-Shannon divergence	$JSD(P Q) = \frac{1}{2}D(P R) + \frac{1}{2}D(Q R)$	[0,1)
Kullback-Leibler divergence	$D(P Q) = \sum_{i} P(x) \log \frac{P(x)}{Q(x)}$	$[0,\infty)$

For better display, a Monte Carlo experiment is designed to compare these metrics in Table. 2. First, 100,000 random PC matrices are created for each order between 3 and 10. The NSI PC matrix corresponding to each PC matrix is then generated through the method introduced before. This method also can ensure the matrix's Kii is equal to 0.1 by setting the ratio ρ according to Table. 1. After that, the distance or similarity between each

pair of PC matrices and NSI PC matrices is computed. Finally, the figures are drawn to scale the density and distribution of these metrics. Letter-Value box plots instead of box plots are used here. There are 700,000 samples or points that need to be displayed in the same diagram. Meanwhile, the box plot doesn't work well with a large number of outliers, and the Letter-Value box plot is designed to handle big data [7]. Fig. 6 to Fig. 12 are Letter-Value box plots. The X-axis denotes these matrices' order, while the Y-axis refers to the values of these metrics. The diamond points are the outliers. The black line in the middle of the most oversized box is the median of these metrics with respect to the specific order. The upper and lower limit of the most oversized box denotes 75% and 25%. For the second biggest box, the limits are 87.5% and 12.5%. At last, the box widths are proportional to the number of inside points. Here are the analysis for each metric:

i. Bray-Curtis distance

Bray-Curtis distance considers the vector space as grids. Similar to Manhattan distance, it computes the distance with absolute values. Fig. 6 shows that the values of this metric locate in a small range, and the range converges as the matrix order increases. It is not a suitable property here since it converges too fast to show the differences between

orders. Also, there are some outliers in Fig. 6. The outliers approach the median of distances as order increases.

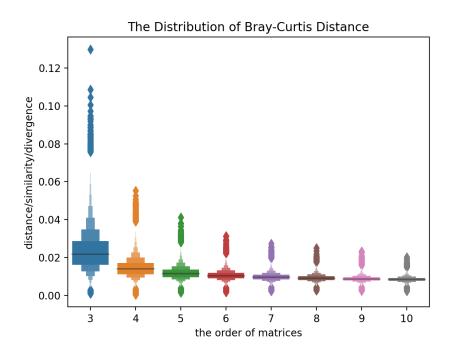


Figure 6: The Distribution of Bray-Curtis Distance

ii. Canberra distance

Canberra distance also applies absolute values to measure the distance. It may have comparable properties with Bray–Curtis distance or Manhattan distances. However, Fig. 7 presents a divergent view. This metric is highly distinguishable for each order. The graphs of each or-

der are similar, and the only difference is the values of mathematical expectations. Although the range of Canberra distance is [0, n] where n is the number of matrix elements, it can be treated as [0, 1] here. The figure illustrates that nearly all distances are lower than one when the matrix order is not greater than ten.

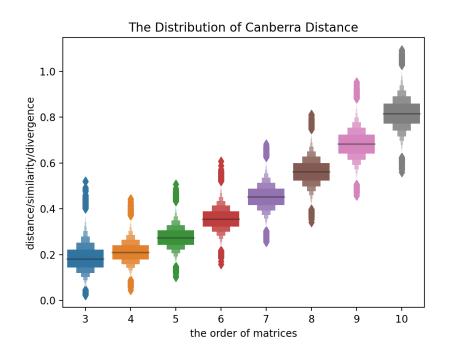


Figure 7: The Distribution of Canberra Distance

iii. Chebyshev distance

Chebyshev distance is a metric to compute the maximum element-wise

difference. It can be seen that the outliers will be a serious problem since this distance only calculates the absolute value of their differences. Fig. 8 illustrates that. Fig. 8(a) shows the maximum value is over 200,000 while the median of distances for order = 8 is almost zero. With the exception of outliers, the Chebyshev distance is stable. Most of the distances are located in [0,5], no matter which order the matrices have. Fig. 8(b) is included to provide more detail.

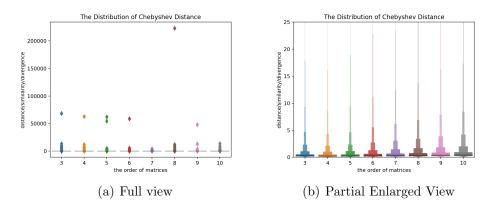


Figure 8: The Distribution of Chebyshev Distance

iv. Cosine similarity

Cosine similarity is applied to measure the similarity between two vectors. The range of this metric is also [0, 1]. Fig. 9 demonstrates its graph is quite similar to Fig. 6. However, its value range converges more rapidly than Bray-Curtis distance as the order increases. Be-

sides, it also has more outliers.

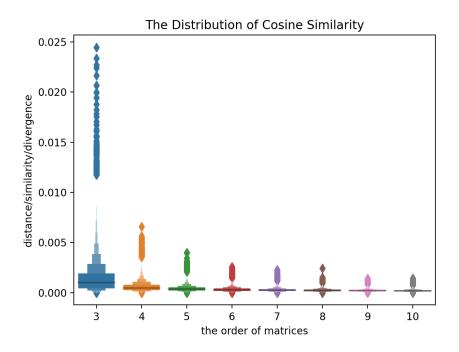


Figure 9: The Distribution of Cosine Similarity

v. Euclidean distance

Euclidean distance is the most popular distance metric. It is defined by the length of a line connected to two points. Obviously, Euclidean distance has the same problem as Chebyshev distance. Of note, the figures are notably similar. Fig. 10 demonstrates that. Nevertheless, Fig. 10(a) shows a higher density of data. All of the boxes are around zero. At last, Fig. 10(b) illustrated Euclidean distance is stable with

orders which are similar to Chebyshev distance.

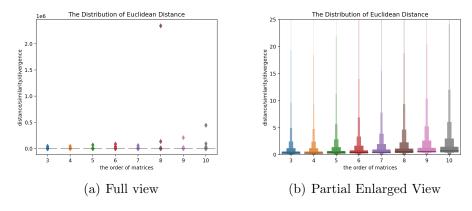


Figure 10: The Distribution of Euclidean Distance

vi. Jensen-Shannon divergence

Jensen–Shannon divergence or information radius is a metric to compute the similarity between two probability distributions. Although its range is [0,1], Fig. 11 shows that the value will be lower than 0.1 when the order is from [3, 10]. Moreover, the whole graph illustrates an explicit trend of the means, which is similar to the figure of Cosine similarity or Bray–Curtis distance, although these metrics have different theories and algorithms.

vii. Kullback-Leibler divergence

Kullback-Leibler divergence or relative entropy is commonly used as the loss function in DNNs(Deep Neural Networks). It is also the base

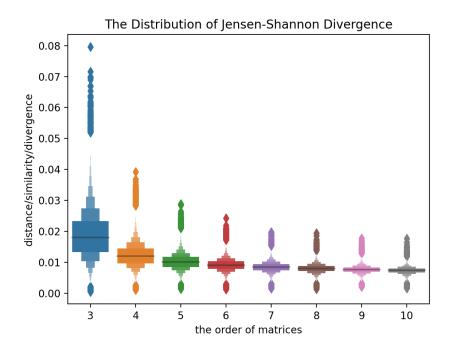


Figure 11: The Distribution of Jensen-Shannon Divergence

and precondition of Jensen–Shannon divergence. However, it does not perform well here. There are more outliers in Fig. 12, and the range convergences too fast.

In addition to these graphs, Table. 3 and Table. 4 analyze these distances statistically. To support this further, the distance data set generated by the matrices whose orders equal 4 and 8 are analyzed. It is clear that the standard deviation of Chebyshev distance and Euclidean distance are incredibly high, which indicates these distances are spread out widely. The maximum

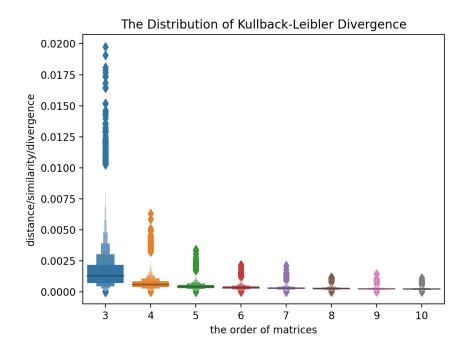


Figure 12: The Distribution of Kullback-Leibler Divergence

value denotes that on the other side. With regard to the above mentioned, it is not a good idea to set Chebyshev distance or Euclidean distance as the distance metric. For Cosine similarity and Kullback-Leibler divergence, there is another problem. Their maximum values are lower than 10^{-2} , which means they are hardly distinguishable for different orders. Thus, Bray-Curtis distance, Canberra distance and Jensen-Shannon divergence are kept for further research.

Table 3: Statistical Analysis for Order=4 Matrices

Name	Mean	SD	Min	25%	50%	75%	Max
Bray-Curtis	0.0146	0.005	0.0004	0.0112	0.0139	0.0172	0.0552
Canberra	0.2112	0.0465	0.0455	0.1787	0.209	0.2414	0.4436
Chebyshev	2.3262	207.7218	0.021	0.1265	0.2106	0.4761	62732
Cosine	0.0006	0.0005	0.0	0.0003	0.0005	0.0008	0.0066
Euclidean	2.2778	158.2255	0.0475	0.1927	0.2882	0.5825	46397
Jensen-Shannon	0.0122	0.0037	0.0011	0.0097	0.012	0.0145	0.0392
Kullback-Leibler	0.0007	0.0004	0.0	0.0004	0.0006	0.0008	0.0063

4.3 Metric Monotonicity

In this subsection, the distributions of these metrics concerning different means of Kii are discussed. Here and subsequently, we denote the mean of Kii briefly by κ . κ can be represented by $\kappa = \frac{\sum\limits_{i=1}^{n}Kii}{n}$. The above research focuses on the distances, similarities or divergences with respect to the same κ , which is 0.1. However, it is unknown whether these metrics are increasing or not as the κ is increasing. To address this question, another form is applied to represent the distance function D. It is recognized that the NSI PC matrix M' is generated from a PC matrix M by setting ratio ρ . Furthermore, ρ is

Table 4: Statistical Analysis for Order=8 Matrices

Name	Mean	SD	Min	25%	50%	75%	Max
Bray-Curtis	0.0092	0.0017	0.0026	0.0081	0.0091	0.0101	0.0251
Canberra	0.5619	0.057	0.3415	0.5228	0.5608	0.5996	0.8117
Chebyshev	4.7233	708.8502	0.0387	0.1696	0.3173	0.7656	223137
Cosine	0.0002	0.0001	0.0	0.0002	0.0002	0.0003	0.0024
Euclidean	28.1736	7427.259	0.1358	0.334	0.5223	1.1145	2344745
Jensen-Shannon	0.008	0.0014	0.0014	0.0071	0.008	0.0088	0.0194
Kullback-Leibler	0.0003	0.0001	0.0	0.0002	0.0003	0.0003	0.0012

determined by the mean of $Kii \kappa$. Hence, we have:

$$D(M, M') = D(M, h(M, \rho))$$

$$= D(M, h(M, l(\kappa)))$$

$$= g(\kappa)$$
(4.3)

where M is a constant matrix. Consequently, it is equivalent to check whether $g(\kappa) = D(M, M')$ is increasing or decreasing on an interval $\kappa \in [a, b]$. If this function $g(\kappa)$ is a monotonic function or the mean of $g(\kappa)$ is a monotonic

function when the sample size is quite large, the goal can be achieved by reconstructing a PC matrix M from an NSI PC matrix M' by optimizing the goal function $f(M, M') = Kii(M') + \alpha D(M, M')$, where α is a constant. In order to check the graph visually, 100,000 random NSI PC matrices are created for each order between 3 and 10 and each κ between 0.8 and 1.3. There are 4,200,000 matrices in total. The mean and standard deviation for every 100,000 random NSI PC matrices is computed. For the purpose of illustrating results more clearly, bubble charts are used to display the relations between each parameter. See Fig. 13 to Fig. 16. It is obvious that X-axis refers to the order of the matrices, and Y-axis is defined as the mean of metric values. Besides, the radius of each bubble is the standard deviation of metrics. Hence, if bubble A is higher and bigger than bubble B, it implies that the mean and standard deviation of these metrics denoted by A are larger than these statistical measures of B. In other words, the metric values of A are larger than B on average and are more spread out. Here are the analyses for each metric:

i. Bray-Curtis distance

The Fig. 13 shows $g(\kappa) = D_{Bray-Curtis}(M, M')$ is increasing as κ increases. Moreover, the distances converge to their mean as the order

increases, which is consistent with Fig. 6. It is impossible to prove

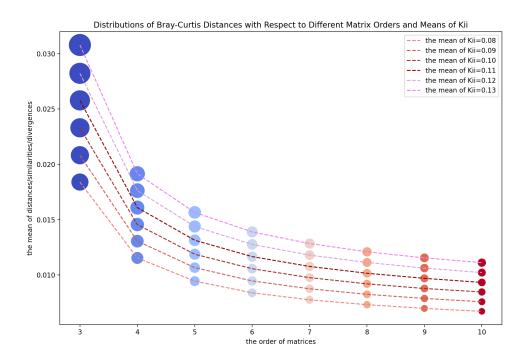


Figure 13: Distributions of Bray-Curtis distances with respect to Different Matrix Orders and Means of Kii

 $g(\kappa)$ is a monotonic function. However, it is also worth knowing that the mean of $g(\kappa)$ is monotonically increasing or not when the sample set is large enough. In order to prove $\frac{\sum_k g(\kappa)}{k}$, $k \to \infty$ is a monotonically increasing function, we assume that ρ is proportional to κ , which is illustrated in Fig. 4. When κ increases, ρ increases. For now on, we denote PC matrix $M = [m_{ij}] \in \mathbb{R}^{n \times n}_+$ and the NSI PC matrix

 $M' = [m'_{ij}] \in \mathbb{R}^{n \times n}_+$. According to the method mentioned above, we have:

$$m'_{ij} = m_{ij} + random(\mathcal{N}(\mu, \sigma^2))$$

$$= m_{ij} + random(\mathcal{N}(0, (\rho m_{ij})^2))$$

$$= m_{ij} + random(\mathcal{N}(0, (l(\kappa)m_{ij})^2))$$
(4.31a)

where $\rho = l(\kappa)$ and $l(\kappa)$ is an increasing function on the interval $\kappa \in [0, 1)$. Based on the definition of Bray-Curtis distance, we have:

$$D(M, M') = \frac{\sum_{ij} (|m_{ij} - m'_{ij}|)}{\sum_{ij} (|m_{ij} + m'_{ij}|)}$$
(4.31b)

From (4.31a) and (4.31b), we conclude that:

$$D(M, M') = \frac{\sum_{ij} (|m_{ij} - m_{ij} - random(\mathcal{N}(0, (l(\kappa)m_{ij})^2))|)}{\sum_{ij} (|m_{ij} + m_{ij} + random(\mathcal{N}(0, (l(\kappa)m_{ij})^2))|)}$$
$$= \frac{\sum_{ij} |random(\mathcal{N}(0, (l(\kappa)m_{ij})^2))|}{\sum_{ij} |2m_{ij} + random(\mathcal{N}(0, (l(\kappa)m_{ij})^2))|}$$

For abbreviation, $random(\mathcal{N}(0,(l(\kappa)m_{ij})^2))$ is denoted by n_{ij} . We get:

$$D(M, M') = \frac{\sum_{ij} |n_{ij}|}{\sum_{ij} |2m_{ij} + n_{ij}|}$$
(4.31c)

The task is now to find how n_{ij} changes while κ increases. Let Δn_{ij} represents the change of n_{ij} when κ increases. It is clear that the probability of generating bigger random numbers is increasing as the standard deviation $l(\kappa) * m_{ij}$ increases because of the definition of Normal distribution. Consider the law of large numbers, we obtain:

$$\lim_{i,j\to\infty} \frac{\sum_{ij} |n_{ij} + \Delta n_{ij}|}{ij} \ge \lim_{i,j\to\infty} \frac{\sum_{ij} |n_{ij}|}{ij}$$

If we denote the new distance by D(M, M''), it can be represented by adding a positive number c_{ij} to the numerator and denominator of (4.31c):

$$D(M, M'') = \frac{\sum_{ij} |n_{ij}| + \sum_{ij} c_{ij}}{\sum_{ij} |2m_{ij} + n_{ij}| + \sum_{ij} c_{ij}}$$

Thus, according to the mediant inequality and $m_{ij} > 0$, we have:

$$\frac{\sum_{ij} |n_{ij}|}{\sum_{ij} |2m_{ij} + n_{ij}|} < \frac{\sum_{ij} |n_{ij}| + \sum_{ij} c_{ij}}{\sum_{ij} |2m_{ij} + n_{ij}| + \sum_{ij} c_{ij}} < \frac{\sum_{ij} c_{ij}}{\sum_{ij} c_{ij}} = 1$$

This is to say,

$$D(M, M') < D(M, M'')$$

where M, M' and M'' are r by r matrices and $r \to \infty$. Hence, consider

the mean of k matrices which their orders are small but $k \to \infty$, we have:

$$\frac{\sum_{k} D(M, M')}{k} < \frac{\sum_{k} D(M, M'')}{k}$$

Moreover, it is proved that D(M, M') can be represented by the function of κ , see (4.3). There is:

$$\frac{\sum_{k} g(\kappa_1)}{k} < \frac{\sum_{k} g(\kappa_2)}{k}, if \ \kappa_1 < \kappa_2$$

where $k \to \infty$, and the proof is complete.

ii. Canberra distance

The Fig. 14 shows $g(\kappa) = D_{Canberra}(M, M')$ is increasing as κ increases. Generally, there is no change for the distances as the order increases, which is also consistent with Fig. 7. The proof for Canberra distance is similar. Based on the definition of Canberra distance, we have:

$$D(M, M') = \sum_{ij} \frac{|m_{ij} - m'_{ij}|}{|m_{ij}| + |m'_{ij}|}$$
(4.32a)

According to (4.31a), we can substitute m'_{ij} with $m_{ij} + random(\mathcal{N}(0, (l(\kappa)m_{ij})^2))$

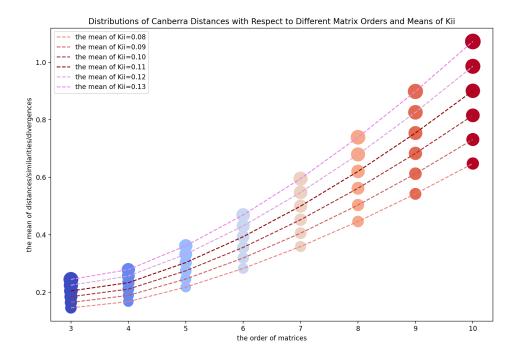


Figure 14: Distributions of Canberra Distances with respect to Different Matrix Orders and Means of Kii

and get:

$$D(M, M') = \sum_{ij} \frac{|random(\mathcal{N}(0, (l(\kappa)m_{ij})^2))|}{|m_{ij}| + |m_{ij} + random(\mathcal{N}(0, (l(\kappa)m_{ij})^2))|}$$

And again, we denote $random(\mathcal{N}(0, (l(\kappa)m_{ij})^2))$ by n_{ij} :

$$D(M, M') = \sum_{ij} \frac{|n_{ij}|}{|m_{ij}| + |m_{ij} + n_{ij}|}$$
(4.32b)

Thus, to prove $g(\kappa)$ is an increasing or decreasing function, it equals to prove the formula below:

$$g(\kappa_2) - g(\kappa_1) = D(M, M'') - D(M, M')$$

$$= D([m_{ij}], [m''_{ij}]) - D([m_{ij}], [m'_{ij}])$$

$$= \sum_{ij} \frac{|n_{ij} + \Delta n_{ij}|}{|m_{ij}| + |m_{ij} + n_{ij} + \Delta n_{ij}|} - \sum_{ij} \frac{|n_{ij}|}{|m_{ij}| + |m_{ij} + n_{ij}|}$$

$$> 0 \text{ or}$$

$$< 0$$

where $m_{ij} > 0$, $m'_{ij} = m_{ij} + n_{ij} > 0$ and $m''_{ij} = m_{ij} + n_{ij} + \Delta n_{ij} > 0$. Consider four cases:

$$\begin{cases}
\Delta n_{ij} = 0 \\
n_{ij} = 0, \Delta n_{ij} \neq 0 \\
n_{ij} \Delta n_{ij} > 0 \\
n_{ij} \Delta n_{ij} < 0
\end{cases}$$

Suppose that $\Delta n_{ij} = 0$, then we obtain:

$$\frac{|n_{ij} + \Delta n_{ij}|}{|m_{ij}| + |m_{ij} + n_{ij} + \Delta n_{ij}|} - \frac{|n_{ij}|}{|m_{ij}| + |m_{ij} + n_{ij}|}$$

$$= \frac{|n_{ij} + 0|}{|m_{ij}| + |m_{ij} + n_{ij} + 0|} - \frac{|n_{ij}|}{|m_{ij}| + |m_{ij} + n_{ij}|}$$

$$= 0 \tag{4.32c}$$

In a similar way, suppose that $n_{ij} = 0$, $\Delta n_{ij} \neq 0$, then we obtain:

$$\frac{|n_{ij} + \Delta n_{ij}|}{|m_{ij}| + |m_{ij} + n_{ij} + \Delta n_{ij}|} - \frac{|n_{ij}|}{|m_{ij}| + |m_{ij} + n_{ij}|}$$

$$= \frac{|0 + \Delta n_{ij}|}{|m_{ij}| + |m_{ij} + 0 + \Delta n_{ij}|} - \frac{0}{|m_{ij}| + |m_{ij} + n_{ij}|}$$

$$> 0 \tag{4.32d}$$

Suppose $n_{ij}\Delta n_{ij} > 0$, according to the mediant inequality, $m_{ij} + n_{ij} > 0$

and $m_{ij} + n_{ij} + \Delta n_{ij} > 0$, we get:

$$\frac{|n_{ij} + \Delta n_{ij}|}{|m_{ij}| + |m_{ij} + n_{ij} + \Delta n_{ij}|} - \frac{|n_{ij}|}{|m_{ij}| + |m_{ij} + n_{ij}|}$$

$$= \frac{|n_{ij}| + |\Delta n_{ij}|}{|m_{ij} + m_{ij} + n_{ij} + \Delta n_{ij}|} - \frac{|n_{ij}|}{|m_{ij} + m_{ij} + n_{ij}|}$$

$$\geq \frac{|n_{ij}| + |\Delta n_{ij}|}{|m_{ij} + m_{ij} + n_{ij}|} - \frac{|n_{ij}|}{|m_{ij} + m_{ij} + n_{ij}|}$$

$$> 0 \tag{4.32e}$$

However, the last case is extremely complicated. Suppose $n_{ij}\Delta n_{ij} < 0$, we have:

$$\frac{|n_{ij} + \Delta n_{ij}|}{|m_{ij}| + |m_{ij} + n_{ij} + \Delta n_{ij}|} - \frac{|n_{ij}|}{|m_{ij}| + |m_{ij} + n_{ij}|}$$

$$= \frac{|n_{ij} + \Delta n_{ij}|}{2m_{ij} + n_{ij} + \Delta n_{ij}} - \frac{|n_{ij}|}{2m_{ij} + n_{ij}} \tag{4.32f}$$

It is seen that (4.32f) can be positive, negative or equal to zero. Therefore, there is no mathematical proof for the monotonicity of $g(\kappa)$. Nevertheless, according to (4.32d), (4.32e) and (4.32f), it is obvious that $g(\kappa)$ is an increasing function in most cases. In other words, let A, which is the increment of $g(\kappa)$, be a random variable defined on the probability space $(\Omega, \mathcal{F}, \mathcal{P})$, we have $P(A \geq 0) > P(A < 0)$. Thus, it

is essential to design a Monte Carlo experiment and demonstrate the data distribution for $\lim_{i,j\to\infty}\sum_{i,j}(g(\kappa_i)-g(\kappa_j))$, $\kappa_i>\kappa_j$. See Fig. 15. The X-axis refers to the n-th trial, and Y-axis is defined as the increment $\Delta g(\kappa)$. Like other heat maps, darker color refers to more points located in this area. It can be seen that $\Delta g(\kappa)$ is a direct ratio to $\Delta \kappa$. In the last graph, the positive area is insignificantly larger than the negative one. Besides, the upper limit in the last graph is almost 0.75, while the color of the negative parts is lighter than the color in the first graph. In a nutshell, it cannot be proved that $g(\kappa)$ is an increasing function mathematically on the one hand. On the other hand, the Monte Carlo experiment shows it is probably true.

iii. Jensen-Shannon divergence

The Fig. 16 shows $g(\kappa) = D_{Jensen-shannon}(M, M')$ is increasing as κ increases. Moreover, this graph is similar to Fig. 13. Based on the definition of Jensen–Shannon divergence, we have:

$$JSD(P||Q) = \frac{1}{2}D(P||R) + \frac{1}{2}D(Q||R)$$

$$R = \frac{1}{2}(P+Q)$$
(4.33a)

where D refers to the Kullback–Leibler divergence. Since $P,\ Q$ and

The Differences Distribution with Respect to κ

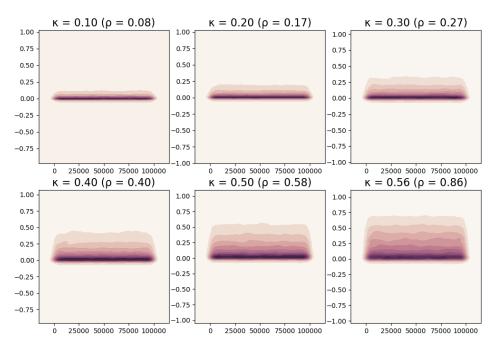


Figure 15: The Differences of $g(\kappa)$ with respect to κ . The ratios between κ and ρ are computed based on the matrix order = 3.

R are distributions for a continuous random variable defined on the probability space $(\Omega, \mathcal{F}, \mathcal{P})$, the KL divergence is defined as the integral:

$$D(P||R) = \int_{-\infty}^{\infty} p(x) \log(\frac{p(x)}{r(x)}) dx$$
 (4.33b)

$$D(Q||R) = \int_{-\infty}^{\infty} q(x)log(\frac{q(x)}{r(x)}) dx$$
 (4.33c)

KL divergence also can be represented by the differences of the cross-

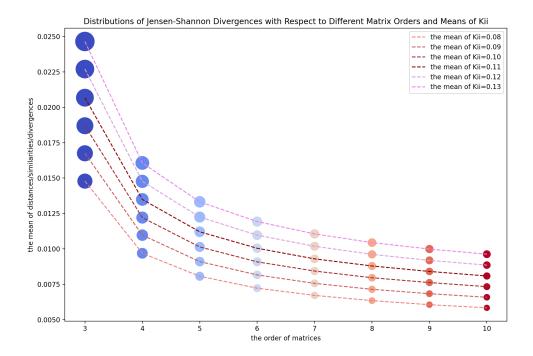


Figure 16: Distributions of Jensen–Shannon Divergences with respect to Different Matrix Orders and Means of Kii

entropy and the entropy:

$$D(P||R) = \int_{-\infty}^{\infty} p(x)log(\frac{1}{r(x)}) dx - \int_{-\infty}^{\infty} p(x)log(\frac{1}{p(x)}) dx$$
$$D(Q||R) = \int_{-\infty}^{\infty} q(x)log(\frac{1}{r(x)}) dx - \int_{-\infty}^{\infty} q(x)log(\frac{1}{q(x)}) dx$$

That is the reason why it is also called relative entropy [3]. In this study, the random numbers are generated from normal distributions. Then we denote these two distributions by $p(x) \sim \mathcal{N}(0, \sigma_p^2)$ and $q(x) \sim \mathcal{N}(0, \sigma_q^2)$.

From (4.33a), we have $R = \frac{1}{2}(P+Q)$. Thereby, r(x) also follows a normal distribution $\mathcal{N}(0, \sigma_r^2)$ where $\sigma_r = \frac{\sqrt{\sigma_p^2 + \sigma_q^2}}{2}$. In general, their probability density functions are written as:

$$p(x) = \frac{1}{\sigma_p \sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x}{\sigma_p})^2}$$

$$q(x) = \frac{1}{\sigma_q \sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x}{\sigma_q})^2}$$

$$r(x) = \frac{1}{\frac{\sqrt{\sigma_p^2 + \sigma_q^2}}{2} \sqrt{2\pi}} e^{-\frac{1}{2}\frac{2x^2}{\sigma_p^2 + \sigma_q^2}}$$
(4.33d)

Substituting (4.33d) into (4.33b), we obtain:

$$D(P||R) = \int_{-\infty}^{\infty} p(x)log \frac{\frac{1}{\sqrt{2\pi}\sigma_{p}}}{\frac{1}{\sqrt{2\pi}\sigma_{p}}} e^{-\frac{1}{2}\frac{x^{2}}{\sigma_{p}^{2}}}$$

$$= \int_{-\infty}^{\infty} p(x)(log \frac{\sigma_{p}}{\sigma_{r}} + log \frac{e^{-\frac{1}{2}\frac{x^{2}}{\sigma_{p}^{2}}}}{e^{-\frac{1}{2}\frac{x^{2}}{\sigma_{p}^{2}}}})dx$$

$$= log \frac{\sigma_{r}}{\sigma_{p}} \int_{-\infty}^{\infty} p(x)dx + \int_{-\infty}^{\infty} p(x)(-\frac{x^{2}}{2\sigma_{p}^{2}} + \frac{x^{2}}{2\sigma_{q}^{2}})dx$$

$$= log \frac{\sigma_{r}}{\sigma_{p}} - \frac{1}{2\sigma_{p}^{2}} \int_{-\infty}^{\infty} p(x)x^{2}dx + \frac{1}{2\sigma_{r}^{2}} \int_{-\infty}^{\infty} p(x)x^{2}dx$$

$$= log \frac{\sigma_{r}}{\sigma_{p}} - \frac{\sigma_{p}^{2}}{2\sigma_{p}^{2}} + \frac{\sigma_{p}^{2}}{2\sigma_{r}^{2}}$$

$$= log \frac{\sigma_{r}}{\sigma_{p}} + \frac{\sigma_{p}^{2}}{2\sigma_{p}^{2}} - \frac{1}{2}$$

$$(4.33e)$$

Similarly, substituting (4.33d) into (4.33c), we have:

$$D(Q||R) = \int_{-\infty}^{\infty} q(x) \log \frac{\frac{1}{\sqrt{2\pi}\sigma_q}}{\frac{1}{\sqrt{2\pi}\sigma_r}} e^{-\frac{1}{2}\frac{x^2}{\sigma_q^2}}$$

$$= \log \frac{\sigma_r}{\sigma_q} + \frac{\sigma_q^2}{2\sigma_r^2} - \frac{1}{2}$$
(4.33f)

Combine (4.33a), (4.33e) and (4.33f), we conclude that

$$JSD(P||Q) = \frac{1}{2}D(P||R) + \frac{1}{2}D(Q||R)$$

$$= \frac{1}{2} \left(log \frac{\sigma_r}{\sigma_p} + \frac{\sigma_p^2}{2\sigma_r^2} - \frac{1}{2} + log \frac{\sigma_r}{\sigma_q} + \frac{\sigma_q^2}{2\sigma_r^2} - \frac{1}{2} \right)$$

$$= \frac{1}{2} (log \frac{\sqrt{\sigma_p^2 + \sigma_q^2}}{2\sigma_p} + log \frac{\sqrt{\sigma_p^2 + \sigma_q^2}}{2\sigma_q} + \frac{\sigma_p^2}{\sqrt{\sigma_p^2 + \sigma_q^2}}$$

$$+ \frac{\sigma_q^2}{\sqrt{\sigma_p^2 + \sigma_q^2}} - 1)$$

$$= \frac{1}{2} \left(log \frac{\sigma_p^2 + \sigma_q^2}{4\sigma_p\sigma_q} + \sqrt{\sigma_p^2 + \sigma_q^2} - 1 \right)$$
(4.33g)

We can now proceed analogously to the proof of the monotonicity of $g(\kappa) = JSD(P||Q)$. When κ increases, ρ increases. So is σ_q . Besides, we have $\sigma_q > \sigma_p$ because $\sigma = \rho * m_{ij}$ and $m_{ij} > 0$. Under this circumstance, it is important to check the first-order partial derivative of $g(\kappa)$

by substituting (4.33g):

$$\begin{split} \frac{\partial g(\kappa)}{\partial \sigma_q} &= \frac{\partial g(\sigma_p, \sigma_q)}{\partial \sigma_q} \\ &= \frac{1}{2} \left(\frac{2\sigma_q}{\sigma_p^2 + \sigma_q^2} - \frac{1}{\sigma_q} + \frac{1}{2\sqrt{\sigma_p^2 + \sigma_q^2}} \right) \\ &= \frac{2\sigma_q^2 - 2\sigma_p^2 + \sigma_q\sqrt{\sigma_p^2 + \sigma_q^2}}{4\sigma_q(\sigma_p^2 + \sigma_q^2)} \\ &> 0 \end{split}$$

So $g(\kappa)$ is an increasing function, which completes the proof.

4.4 Discussion

To summarize, Bray-Curtis distance, Canberra distance and Jensen-Shannon divergence are all reliable metrics. The distributions of Bray-Curtis distance and Jensen-Shannon divergence are similar, although there is a big gap between their theories. They both have a problem that the value range convergences so fast as the matrix order increases. However, they are much better than Cosine similarity or Kullback-Leibler divergence, which have higher convergence rates. Meanwhile, they have fewer outliers than the Chebyshev distance or Euclidean distance. Canberra distance, has a unique distribution graph and excellent properties to measure the matrices' distance. However,

its monotonicity cannot be proved mathematically. Besides, its distance range is not strictly [0,1]. Nevertheless, it is still a good indicator. It has excellent distinguishability with different matrix orders. Simultaneously, the Monte Carlo experiment shows it is worth considering. Therefore, all of them will be used to optimize the objective function and reconstruct the matrices in the next section.

5 Reconstruct the Matrices with Differential Evolution

5.1 Weight Coefficient

According to the previous sections, for a l by l NSI PC matrix $M = [m_{pq}] p, q \in \{1, 2, \dots, l\}$, the distance-based objective function is defined as:

$$f(M, M') = Kii(M) + \alpha D(M, M')$$
(5.1)

where $\alpha \in [0, \infty]$. According to 2.1, 4.31c, 4.32b and 4.33g, we obtain:

$$\begin{split} f_{BC}(M,M') &= 1 - \min_{i < j < k} \left(\frac{m_{ik}}{m_{ij}m_{jk}}, \frac{m_{ij}m_{jk}}{m_{ik}} \right) + \alpha \frac{\sum_{ij} |n_{ij}|}{\sum_{ij} |2m_{ij} + n_{ij}|} \\ f_{CA}(M,M') &= 1 - \min_{i < j < k} \left(\frac{m_{ik}}{m_{ij}m_{jk}}, \frac{m_{ij}m_{jk}}{m_{ik}} \right) + \alpha \sum_{ij} \frac{|n_{ij}|}{|m_{ij}| + |m_{ij} + n_{ij}|} \\ f_{JS}(M,M') &= 1 - \min_{i < j < k} \left(\frac{m_{ik}}{m_{ij}m_{jk}}, \frac{m_{ij}m_{jk}}{m_{ik}} \right) + \frac{\alpha}{2} \left(\log \frac{\sigma_p^2 + \sigma_q^2}{4\sigma_p\sigma_q} + \sqrt{\sigma_p^2 + \sigma_q^2} - 1 \right) \end{split}$$

subject to constrains $m_{pq} > 0$. Of note, none of these functions is continuous or differentiable. Thus, the stochastic gradient descent algorithm, which is a well-known and effective optimization algorithm, or other first-order algorithms can not be used to optimize these functions. Nevertheless, there are many problem-independent algorithms for these optimization problems, for example, the pattern search method or heuristic algorithms [10]. In these algorithms, differential evolution algorithm is a popular derivative-free heuristic algorithm. It can be used to optimize non-differentiable, discontinuous or noisy objective functions by searching wide spaces of candidate solutions. Thereby, DE is used here to optimize above the objective functions.

The next concern is the value of α . The role of this parameter is to balance the weights between two parts of the objective function f. In other words, the inconsistent indicator Kii and the metric between two matrices D(M, M') have the same weight exactly if α equals a threshold $\hat{\alpha}$. Also, $\alpha > \hat{\alpha}$ or $\alpha < \hat{\alpha}$ means one of them is more important than the other one. Fig. 6 illustrates that the mean of the Bray-Curtis distances is different although there are no big gaps between these means. Similarly, Fig. 7 demonstrates that the means of Jensen-Shannon divergences are also different and converge to 0.01 as order increases. Meanwhile, the differences between Canberra distances are even higher when comparing the other two metrics. See Fig. 11. Thus, the same α cannot be applied for metrics with different matrix orders. For each combination of order and metric, there is a unique α :

$$\alpha = \frac{\text{the mean of } Kii}{\text{the mean of metrics}}$$

where the mean of Kii is set as 0.1 in this section. See Table. 5. Here is an example. The threshold of α is 4.4459 when the order is three and the metric is Bray-Curtis distance in this table. So the objective function is defined as:

$$f_{BC}(M, M') = 1 - \min_{i < j < k} \left(\frac{m_{ik}}{m_{ij}m_{jk}}, \frac{m_{ij}m_{jk}}{m_{ik}} \right) + 4.4459 * \frac{\sum_{ij} |n_{ij}|}{\sum_{ij} |2m_{ij} + n_{ij}|}$$

when three by three matrices are optimized based on Bray-Curtis distance.

Table 5: The Threshold of α with respect to the Matrix Order and Metric

Order	Bray-Curtis Distance	Canberra Distance	Jensen-Shannon Divergence		
3	4.4459	0.5499	5.3696		
4	6.7535	0.4745	8.1333		
5	8.7276	0.3723	9.9943		
6	9.3913	0.2801	11.0695		
7	10.285	0.2229	12.0492		
8	10.9508	0.1804	12.6775		
9	11.592	0.1487	13.3177		
10	12.0805	0.125	13.8052		

5.2 Analysis of the Results

100,000 NSI PC matrices have been generated and used to compare the distributions of metrics in the last section. Also, 10,000 matrices are chosen to be included in the Monte Carlo experiments in this section because the DE program is time-consuming. After optimizing and analyzing these NSI PC matrices, the results show that the Kii of all optimized matrices are zero,

which is as expected. There are numerous solutions for Kii = 0. There is no doubt that the DE algorithm can find them. Therefore, the critical point is the performance of these algorithms in metrics. In what follows, M' denotes the NSI PC matrix generated from the original PC matrix M^* , and M stands for the new PC matrix, which is optimized by the DE algorithm.

i. Bray-Curtis distance

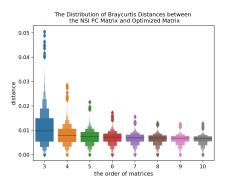
Fig. 17 illustrates the distribution of distances about the optimized matrix M. The X and Y axes are kept the same for these two subplots as well as the axes in Fig. 6. In other words, the X-axis denotes the orders of matrices, and the Y-axis refers to the distances between different matrices.

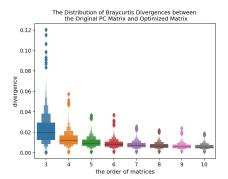
For Fig. 17(a), the distances are computed between the optimized matrix M and the NSI PC matrix M'. Compared with Fig. 6, which shows the distances between the NSI PC matrix M' and the original PC matrix M^* . It is unambiguous the new matrix M is much closer to M' than M^* which meets our goal. The most significant outlier is three times smaller now. Also, the median values of new distances are much closer to zero.

Fig. 17(b) demonstrates the distances between M and M^* . The corre-

sponding experiment is apparently a control group. There is no further information about the original matrix M^* in real-life optimization problems. Thus, the distribution of this distance between M^* and M is hard to predict since they are almost two random matrices. However, they still have one thing in common: they can converge to the same NSI PC matrix M' in some way. This subplot here is considerably similar to Fig. 6. The data shows similarity with the exception of fewer outliers in Fig. 17(b).

Several statistical measurements (mean, stand deviation, minimum and maximum value) of the experiment results have been detailed in Table. 6, in this way that they can be compared visibly. As mentioned before, all statistical measurements for distances between M' and M are smaller than these indicators for metrics between M' and M^* except the standard deviation (SD, for short). Besides, the most exciting result here is the minimum values of distances between M' and M are almost zero for all matrix orders (If the value is zero in this table, it means the exact value is lower than 0.00005). It implies that the optimization algorithm works well and obtains the significantly "close" PC matrices corresponding to some NSI PC matrices.





- (a) Distances between M' and M
- (b) Distances between M^* and M

Figure 17: The New Distribution of Bray-Curtis Distance

ii. Canberra distance

Canberra distance, which has unique properties for measuring matrix distance, is still differently distributed here. Compared with Fig. 17, Fig. 18 comes to a contrary conclusion. Fig. 18(a) and Fig. 7 are almost identical. Nevertheless, Table. 7 illustrates that all values, even the standard deviation, have decreased slightly, which proves that the DE algorithm performs a function in optimizing the Canberra distances. For another subplot Fig. 18(b), it is interesting that all indicators are decreased dramatically. For example, the median distance is lower than 0.33 when the matrix order is 10. Meanwhile the value for distances between M' and M^* is 0.8198. It looks like the algorithm optimize the distances between M and M^* instead of the distances between M and

Table 6: Statistical Measurements for Several Bray-Curtis Distances

Table 6. Statistical Measurements for Several Bray-Curtis Distances										
Bray-Curtis Distance		Matrix Order								
		3	4	5	6	7	8	9	10	
	Mean	0.0236	0.015	0.0122	0.0106	0.01	0.0095	0.009	0.0087	
Distances between	SD	0.0108	0.005	0.0033	0.0026	0.0021	0.0019	0.0016	0.0014	
M' and M^*	Min	0.0028	0.0047	0.0035	0.0035	0.004	0.0027	0.0046	0.0047	
	Max	0.0949	0.0405	0.027	0.0222	0.0216	0.0204	0.0174	0.0161	
	Mean	0.0106	0.0079	0.0072	0.0068	0.0065	0.0063	0.0062	0.0062	
Distances between	SD	0.007	0.0041	0.003	0.0027	0.0023	0.0022	0.002	0.0019	
M' and M	Min	0.0	0.0	0.0	0.0001	0.0	0.0001	0.0001	0.0001	
	Max	0.0393	0.0246	0.0188	0.0149	0.0134	0.0126	0.0103	0.0121	
	Mean	0.0224	0.0133	0.0101	0.0082	0.0078	0.0072	0.0066	0.0061	
Distances between	SD	0.014	0.0068	0.0049	0.0037	0.0034	0.0032	0.0029	0.0026	
M and M^*	Min	0.0006	0.0012	0.0012	0.001	0.0015	0.002	0.0017	0.0017	
	Max	0.1319	0.0454	0.0308	0.0279	0.0228	0.0236	0.0195	0.0181	

M'. It is unknown why Canberra distance has this property, but this property can be widely used in real-life problems and help approach the latent original matrix.

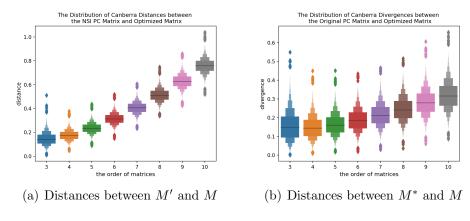


Figure 18: The New Distribution of Canberra Distance

iii. Jensen-Shannon divergence

The analysis results for Jensen-Shannon divergence shows both of the two divergences are dropped rapidly. All medians except the one for order=3 are lower than 0.1. Also, there are fewer outliers in Fig. 19. Table. 8 provides more details on the comparisons between these two divergences. It shows that the divergences between M and M^* are lower than those between M and M', which are the same as those in Table. 7. Hence, the abnormal property of Canberra Distance is not an isolated case. Similarly, it can also obtained the latent origin matrix by optimizing the objective function based on Jensen-Shannon divergence.

Table 7: Statistical Measurements for Several Canberra Distances Matrix Order Canberra Distance 3 7 4 5 6 8 9 10 Mean | 0.1838 | 0.2134 | 0.2783 | 0.3578 | 0.4538 | 0.565 0.68410.8198Distances between | SD $0.0589 \, | \, 0.0474 \, | \, 0.0475$ $0.0512 \, | \, 0.0541 \, | \, 0.058$ 0.0620.0676M' and M^* Min $0.0466 \, | \, 0.0898 \, | \, 0.1492 \, | \, 0.2195 \, | \, 0.2896 \, | \, 0.3993 \, | \, 0.4956 \, | \, 0.5869$ Max $0.4784 \mid 0.4007 \mid 0.4277$ $0.5574 \, | \, 0.6224 \, | \, 0.7224 \, |$ |0.8785|1.0693Mean | 0.1434 | 0.1739 | 0.2373 |0.3143|0.4037|0.5128|0.6263|0.7548Distances between SD $0.0535 \mid 0.0455 \mid 0.0474 \mid 0.05$ $0.0524 \mid 0.0562 \mid 0.0597 \mid 0.0661$ M' and MMin $0.0326 \mid 0.0464 \mid 0.1032 \mid 0.1789 \mid 0.2531 \mid 0.3366 \mid 0.4719 \mid 0.5535$ Max $0.3664 \, | \, 0.3318 \, | \, 0.399$ $0.4873 \, | \, 0.5785 \, |$ $0.6822 \mid 0.8482 \mid 1.0171$ Mean | 0.1539 | 0.1463 | 0.163 0.1840.214 $0.2436 \mid 0.279$ 0.3244 Distances between | SD $0.0819 \mid 0.0606 \mid 0.0591$ $0.0597 \mid 0.0643 \mid 0.0668 \mid 0.0713 \mid 0.079$ M and M^* Min $0.0049 \mid 0.0129 \mid 0.0191$ 0.033 $0.0618 \, | \, 0.0852 \, | \, 0.087$ 0.1175Max $0.4485 \,|\, 0.344$ $0.3612 \mid 0.4066 \mid 0.4561 \mid 0.4765 \mid 0.5354 \mid 0.6277$

5.3 Discussion

All results based on different metrics have been analyzed and compared yet.

The algorithm based on Bray-Curtis distances cannot minimize the distances

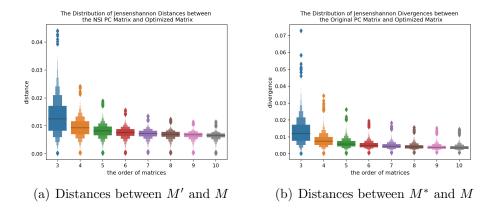


Figure 19: The New Distribution of Jensen-Shannon Distance

between M and M^* by optimizing the distances between M and M'. For Canberra distance, things are the opposite. The algorithm is designed to minimize the distance between M and M'. However, the result shows that it only optimizes this metric slightly and minimizes another metric inadvertently. Besides, the range of this metric is not strictly [0,1]. Also, there is no mathematical proof for its monotonicity. The algorithm based on Jensen-Shannon Divergence performances much better than the other two metrics. The figure and table illustrate it can minimize two divergences simultaneously, although only one of them is the target. As mentioned above, the range of Jensen-Shannon divergence is [0,1], and it is a monotonically increasing function with respect to the mean of Kii. In a nutshell, it is sufficient to say

Table 8: Statistical Measurements for Several Jensen-Shannon Divergences

Jensen-Shannon Divergence		Matrix Order							
		3	4	5	6	7	8	9	10
	Mean	0.0191	0.0128	0.0105	0.0093	0.0087	0.0083	0.0079	0.0076
Divergences between	SD	0.008	0.0038	0.0025	0.002	0.0016	0.0015	0.0012	0.0011
M' and M^*	Min	0.0013	0.0036	0.0019	0.003	0.0035	0.0027	0.0036	0.0041
	Max	0.0684	0.0325	0.0216	0.0183	0.0154	0.0181	0.0127	0.0132
	Mean	0.0129	0.0094	0.0082	0.0074	0.0071	0.0068	0.0066	0.0064
Divergences between	SD	0.0067	0.0036	0.0025	0.002	0.0017	0.0015	0.0014	0.0012
M' and M	Min	0.0002	0.0003	0.0002	0.0012	0.0006	0.0008	0.0007	0.001
	Max	0.0449	0.0213	0.017	0.0136	0.012	0.0111	0.0103	0.0105
	Mean	0.0128	0.008	0.0061	0.0051	0.0048	0.0044	0.0041	0.0038
Divergences between	SD	0.0072	0.0037	0.0026	0.0021	0.0018	0.0018	0.0015	0.0015
M and M^*	Min	0.0005	0.0009	0.0002	0.0012	0.0011	0.0012	0.0009	0.0013
	Max	0.0532	0.0284	0.017	0.0157	0.0151	0.0155	0.0115	0.0111

that:

$$f_{JS}(M,M') = \max_{i < j < k} \min \left(\left| 1 - \frac{m_{ik}}{m_{ij}m_{jk}} \right|, \left| 1 - \frac{m_{ij}m_{jk}}{m_{ik}} \right| \right) + \frac{\alpha}{2} \left(\log \frac{\sigma_p^2 + \sigma_q^2}{4\sigma_p\sigma_q} + \sqrt{\sigma_p^2 + \sigma_q^2} - 1 \right)$$

is the best-suited objective function for the differential evolution algorithm, which is applied to find the closest PC matrix.

6 Conclusion and Future Work

6.1 Conclusion

In this paper, an optimization method was proposed in accordance with differential evolution and matrix metrics to reconstruct pairwise comparisons matrices. The issue which reconstructs a PC matrix from an NSI PC matrix is introduced and defined in the first and second section. The previous method to solve this problem is the distance-based inconsistency reduction algorithm. It is a simple and straightforward design proposed by Koczkodaj in 2015 [12]. The basic concepts of pairwise comparisons are also presented in the second section. PC matrix, NSI PC matrix, consistency and Kii are all the bases of this unsolved problem. In section 3, the origin and history of the differential evolution algorithm are introduced at the beginning. The processes and details of this algorithm are also presented in this section. There are three subsections for Problem Formulation. A new method to generate random NIS PC matrices is proposed in the first subsection and compared with several other methods. The correlation between the parameters of this new method and Kii has been investigated. The examined result shows there is an approximate linear or quadratic correlation when the Kii is lower than a threshold. In the second subsection, several common metrics are proposed and compared based on a Monte Carlo experiment, which is designed to illustrate the distributions of these metrics with the same Kii and different matrix orders. The results demonstrate that Bray-Curtis distance, Canberra distance and Jensen-Shannon divergence have suitable properties to measure the matrix distances. In the last subsection, mathematical proofs are given to ensure the monotonicity of the metric function including Bray-Curtis distance and Jensen-Shannon divergence when the number or matrices or the order of a large matrix tends to infinity. For Canberra distance, there is no mathematical proof. However, a figure based on a Monte Carlo experiment demonstrates that the differences between two matrices tend to be bigger than zero.

In the first subsection of section 5, the value of the weight coefficient α is discussed. Also, a table of the thresholds of α is proposed, and these values are applied in the subsequent experiments. The differential evolution algorithm is used for optimization in the second section. The analysis of the optimized matrices shows that the algorithm, which its objective function is based on Jensen-Shannon divergence, is steady and has good performance in comparison to these algorithms based on other metrics.

6.2 Future Work

The following further research is proposed based on previous results. Firstly, all the research in this paper is based on inconsistency indicators. Koczkodaj inconsistency index is used here as the standard of inconsistency because it is straightforward and easy to compute. Besides, the range of Kii is [0,1], which is a suitable property for an objective function. However, there are some other indicators to measure the inconsistency of a PC matrix, like the GW index in 1989 [6], relative error in 1998 [2], Geometric Consistency Index in 2003 [1], Harmonic Consistency Index in 2007 [19] or K-Index in 2020 [21]. Thus, extending the work to those indicators is reasonably straightforward. Secondly, only seven common metrics are compared in section 4. are also a lot of other metrics as well as inconsistency indicators. With that said, there might be other metrics which have higher performance than Jensen-Shannon divergence since this divergence is an unexpected optimal solution. Finally, it is worth noting that Canberra distance and Jensen-Shannon divergence have some anomalous properties. The DE algorithm based on these metrics can minimize two distances or divergences at the same time, which is designed to optimize only one of them. What's more, the optimization algorithm does not receive any information for another distance or divergence. One possible reason is that there are some latent connections between the NSI PC matrix and its original PC matrix. More experiments will be designed to reveal these connections in the future.

Appendix

A The Core Part of the Python Program

```
# coding:utf8
2
   0.00
3
4
  @author: Zhangao Lu
  @contact: zlu2@laurentian.ca
  @time: 2021/2/24
6
7
   @description:
  1. Generate NSI PC matrices, save and test them.
   2. Fit the curve which is used to display the
      relations between rho
10 and mean of Kii.
   0.00
11
12
13 | import copy
14 | import numpy as np
15 | import matplotlib.pyplot as plt
16 | import scipy
17 from itertools import combinations
18 from scipy.optimize import curve_fit
19 from collections import OrderedDict
  from config import config
20
21
   from utils.pairwise_comparison_tools import
      compute_kii
22
   from utils.gerenal_tools import open_pickle,
      save_pickle, save_hickle, open_hickle
23
24
25
   class GenerateMatrices(object):
       def __init__(self, order=3, iterations=1000,
26
          std_rate=1):
           0.00
27
28
29
           :param order: int, default = 3
30
                   The order of generated matrices.
```

```
31
           :param iterations: int, default = 1000
32
                   The number of generated matrices.
33
           :param std_rate: float, default = 1
34
                   It is the parameter \rho in the thesis.
                   sigma = self.std_rate * origin_num.
35
           0.00
36
37
           self.order = order
38
           self.iterations = iterations
           self.std_rate = std_rate
39
           # A ordered dict to save the results
40
           self.result = OrderedDict()
41
           # Save the generated matrices with file name
42
              below.
43
           # The Kii threshold will always be 0.1,
           # which is determined in the thesis.
44
           self.file_name_of_pc = "%d pc matrices with
45
              order=%d kii_threshold=%0.1f.pkl" % \
                                    (self.iterations, self.
46
                                       order, 0.1) # for
                                       PC matrices
           self.file_name_of_nsi_pc = "%d nsi pc matrices
47
               with order=%d kii_threshold=%0.1f.pkl" % \
                                        (self.iterations,
48
                                           self.order, 0.1)
                                             # for NSI PC
                                           matrices
49
50
       @staticmethod
       def random_numbers(sigma, origin_num, mu=0):
51
52
           A static method used to generate errors for
53
              the elements of the original PC matrices.
           Errors followed normal distribution with mean
54
              = mu, standard deviation = sigma.
           And make sure origin_num + error > 0
55
56
           :param sigma: float
                   Standard deviation of the normal
57
                      distribution
           :param origin_num: float
```

```
59
                   The elements in the PC matrix. The
                      value must be greater than 0.
           :param mu: float, default = 0
60
61
                   Mean of the normal distribution. The
                      value is zero and will not be
                      changed during this experiment.
           :return: error, float
62
63
                     A float number which refers to the
                        random error of the PC matrices'
                        elements.
           0.00
64
65
           while 1:
66
               # numpy.random.randn() can return a sample
                    from the standard normal distribution.
               # So for random samples from N(\mu, \sigma
67
                   ^2), they are sigma * np.random.randn()
               error = sigma * np.random.randn() + mu
68
69
               # The error must make sure the sum of the
                   error and original element is greater
                  than zero.
               # If the error meets the requirement, then
70
                    break.
71
               if origin_num + error > 0:
72
                    break
73
           return error
74
75
       def generate_matrix(self):
76
           Generate PC matrices and NSI PC matrices.
77
78
           :return: dict
79
                    {"NSI_PC": nsi_pc, "PC": pc}
80
81
           # numpy.random.rand(n) can generate a random
              array with shape (n, 1).
82
           # However, the elements of this array can be
              zero. So if it happens, the array should be
               discarded.
83
           while 1:
```

```
84
                 vector = np.random.rand(self.order) # The
                     range of the samples is [0, 1).
                 if 0 not in vector: # If 0 in the array,
85
                    repeat the process. Otherwise,
                    terminate the loop.
                     break
86
87
            # np.eye() can return a 2-D array with ones on
                the diagonal and zeros elsewhere.
            pc = np.eye(self.order)
88
            # Use copy.deepcopy here to create another
89
               matrix.
            nsi_pc = copy.deepcopy(pc)
90
91
92
            Permutations and combinations are itertools
                functions, which are designed to return
               successive elements
93
            in the iterable.
            permutations (range (0, 2), 2) \Longrightarrow (0, 1), (0,
94
               2), (1, 0), (1, 2), (2, 0), (2, 1).
            combinations (range (0, 2), 2) \Longrightarrow (0, 1), (0,
95
               2), (1, 2).
96
            temp = combinations(range(0, self.order), 2)
97
98
99
            Generate the PC matrix according the array
               vector. The element of the PC matrix a_{ij}
                is equal to
            vector_i / vector_j. Because I use
100
                combinations here, the iterable only has
               half of the needed elements.
            So two elements of the PC matrices, a_{ij} and
101
                a_{ji}, must be generated in one loop.
102
            The O(n) for permutations is n(n-1).
            The O(n) for combinations is n(n-1)/2.
103
            0.00
104
105
            for elm in temp:
106
                 i = elm[0]
107
                 j = elm[1]
                 tmp1 = vector[i] / vector[j]
108
109
                 tmp2 = vector[j] / vector[i]
```

```
pc[i, j] = tmp1 # The PC matrix's element
110
                   : a_{ij} = vector_i / vector_j.
                pc[j, i] = tmp2 # The PC matrix's element
111
                   : a_{ji} = vector_j / vector_i.
112
                # The NSI PC matrix's element: b_{ij} =
                   vector_i / vector_j + error.
                nsi_pc[i, j] = tmp1 + self.random_numbers(
113
                   self.std_rate * tmp1, tmp1) if self.
                   std_rate else tmp1
                # The NSI PC matrix's element: b_{ji} =
114
                   vector_j / vector_i + error.
                nsi_pc[j, i] = tmp2 + self.random_numbers(
115
                   self.std_rate * tmp2, tmp2) if self.
                   std_rate else tmp2
            return {"NSI_PC": nsi_pc, "PC": pc}
116
117
118
        def generate_with_rho(self, start=0, end=21, step
           =1):
119
120
            Generate NSI PC matrices with different
               std_rate, then compute and compare the
               matrices' Kii.
121
            It is used to draw the graph in the thesis.
122
            :param start: int, default = 0
123
            :param end: int, default = 21
124
            :param step: int, default = 1
125
            :return: None
126
            # np.array(range(0, 21, 1)) / 100.0 will
127
               create a numpy.array: [0, 0.01, 0.02, ...,
128
            for self.std_rate in np.array(range(start, end
               , step)) / 100.0:
129
                kii_list = list()
                                   # Store the values of
                   Kii temporarily.
                for _ in range(self.iterations):
130
                    m = self.generate_matrix()
131
                                                # Generate
                        a PC and NSI PC matrix.
132
                    kii_list.append(compute_kii(m["NSI_PC
                       "])) # Choose the NSI one and
```

```
compute its Kii.
133
                mean_of_kii = float(np.mean(kii_list))
                   Compute the mean of all values of Kii.
134
                self.result[self.std_rate] = mean_of_kii
                   # Then save the mean into the ordered
                   dict: self.result.
135
        def generate_and_save(self):
136
137
            Generate NSI PC matrices and save them with
138
               pickle for further research.
139
            Generally, it is designed to generate matrices
                with Kii = threshold by setting different
               values
140
            for self.std_rate.
            In default, self.std_rate = 1
141
142
            :return: None
            0.00
143
144
            pc_list = list()
                               # To save PC matrices
               temporarily.
145
            nsi_pc_list = list() # To save NSI PC
               matrices temporarily.
            for _ in range(self.iterations):
146
147
                m = self.generate_matrix()
148
149
                np.expand_dims(arr, axis=2): add a new
                   dimension for a two dimension np.array
                   arr, then the np.array list
                can be merged in to a big 3d array in next
150
                     steps.
                The shape of arr is changed from shape (n,
151
                    n) to shape (n, n, 1).
152
153
                pc_list.append(np.expand_dims(m["PC"],
                   axis=2))
154
                nsi_pc_list.append(np.expand_dims(m["
                   NSI_PC"], axis=2))
155
            Concatenate a list of arrays, which the shape
156
               is (n, n, 1), into one big array,
```

```
157
            and its shape is (n, n, self.iterations). Then
                the big array can be saved by a faster
               tool: hickle,
            0.00
158
159
            pc_array = np.concatenate(tuple(pc_list), axis
160
            nsi_pc_array = np.concatenate(tuple(
               nsi_pc_list), axis=2)
            # If the file is a numpy array, I can use
161
               hickle to accelerate and save spaces and
162
            save_hickle(pc_array, config.path_for_thesis +
                self.file_name_of_pc)
163
            save_hickle(nsi_pc_array, config.
               path_for_thesis + self.file_name_of_nsi_pc)
164
165
        def read_array(self):
            0.00
166
167
            Read hickle files and decompose into array
               list.
168
            :return: pc_list, list
169
                      nsi_pc_list, list
                      The lists of PC matrices and NSI PC
170
                         matrices.
            0.00
171
172
            self.file_name_of_pc = "%d pc matrices with
               order=%d kii_threshold=%0.1f.pkl" %\
                                     (self.iterations, self.
173
                                       order, 0.1)
            self.file_name_of_nsi_pc = "%d nsi pc matrices
174
                with order=%d kii_threshold=%0.1f.pkl" %\
175
                                         (self.iterations,
                                            self.order, 0.1)
176
            pc_array = open_hickle(config.path_for_thesis
               + self.file_name_of_pc)
177
            nsi_pc_array = open_hickle(config.
               path_for_thesis + self.file_name_of_nsi_pc)
178
            pc_list = np.split(pc_array, pc_array.shape
               [2], axis=2) # (n, n, iterations) -> [(n,
               n, 1)], len()=1000
```

```
179
            nsi_pc_list = np.split(nsi_pc_array,
               nsi_pc_array.shape[2], axis=2)
180
            return pc_list, nsi_pc_list
181
182
        def print_results(self):
183
184
            Print all values of mean of Kii for further
               research.
185
            :return:
186
187
            # self.result is a ordered dict to save
               different values for mean of kii. Their
               keys are self.std_rate.
188
            for key in self.result:
189
                mean_of_kii = self.result[key]
                if key == 0:
190
191
                     print("the mean of %d %d by %d PC
                        matrices' Kii is %f" %
192
                           (self.iterations, self.order,
                              self.order, mean_of_kii))
193
                else:
194
                     print("standard deviation == %0.2f *
                        m_{ij}, the mean of %d %d X %d NSI
                        PC matrices' Kii is %f" %
195
                           (key, self.iterations, self.
                              order, self.order,
                              mean_of_kii))
196
197
198
    def draw_means_graph(is_fit=True, is_save=False,
       is_generate=False, iterations=100000):
        0.00
199
200
        Draw graphs to display the relations between mean
           of Kii and the ratio \rho (or self.std_rate) of
201
        the standard deviation.
202
        :param is_fit: boolean
203
               If True, fit the curve. Otherwise, draw the
                    original curve.
204
        :param is_save: boolean
```

```
205
               If True, save the graph. Otherwise, show
                  the graph.
206
        :param is_generate: boolean
207
               If True, generate these matrices and save.
                  Otherwise, access from the hard drive.
208
        :param iterations: int, default = 1000
209
               The number of generated matrices.
210
        :return:
211
        rho_collection = dict()
212
213
        # To display the graph better, set the figsize to
           (12, 8).
214
        fig = plt.figure(figsize=(12.00, 8.00))
215
        # fig = plt.figure(figsize=(19.20, 10.80))
        cnt = 0 # Counter of the loop, used to choose
216
           different colors.
217
        for order in range(3, 11, 1): # Matrix order [3,
           117
218
            if is_generate: # Run once.
                gm = GenerateMatrices(order=order,
219
                   iterations=iterations)
                gm.generate_with_rho(end=15)
220
                                               # Change end
                    from 21 to 15 for better display.
221
                gm.print_results()
222
                # Save these matrices to hard drive.
223
                save_pickle(gm.result, config.
                   path_for_thesis + "mean_of_kii_order=%d
                   .pkl" % order)
224
                res = gm.result
225
            else:
                # Access the matrices from hard drive.
226
227
                res = open_pickle(config.path_for_thesis +
                     "mean_of_kii_order=%d.pkl" % order)
228
            if is_fit: # If fit, draw the original curve
229
               and the fit curve.
230
                x = list(res.keys())[: 15]
                                             # Select some
                   std_rate/rho to analyze.
                y = list(res.values())[: 15]
231
                   some mean of Kii to analyze.
```

```
232
                # Draw the original curve at first.
233
                plt.plot(x, y, color=config.color_list[cnt
                   ],
234
                         marker="o", linestyle="-", label
                            ="order=%d, original curve " %
                              order)
235
                popt, pcov = compute_curve(x, y) # popt =
                    (x, y) = (std_rate/rho, mean of Kii)
                rho_collection[order] = list()
236
                   rho_collection = {order: []}
237
                for threshold in np.array(range(5, 16, 1))
                    / 100.0: # threshold = [0.05, 0.06,
                   ..., 0.15]
238
                    # scipy.optimize.fsolve is used to
                       find the roots (\rho) of the lambda
                        function:
239
                    \# a * \rho ^ 2 + b \rho - threshold =
240
                    rho = scipy.optimize.fsolve(lambda k:
                       popt[0] * (k ** 2) + popt[1] * k -
                       threshold, np.array([0]))[0]
                    # Print the results and round to four
241
                       decimal places.
242
                    print("order:", order, round(popt[0],
                       config.decimal_places), round(popt
                       [1], config.decimal_places),
243
                           round(rho, config.decimal_places
                              ), popt[0] * rho ** 2 + popt
                              [1] * rho)
                    # rho_collection = {order: [{"rho":, "
244
                       a":, "b":, "threshold":}, {}]}
245
                    rho_collection[order].append({"rho":
                       rho, "a": popt[0], "b": popt[1], "
                       threshold": threshold})
246
                # Draw the fit curve. *popt = popt[0],
                   potp[1].
247
                plt.plot(x, fit_function(np.array(x), *
                   popt), color=config.color_list[cnt],
                   linestyle="--",
```

```
248
                          label="order=%d, fit curve" %
                             order)
249
                # Draw a line for the threshold, 0.1.
250
                plt.axhline(y=config.threshold, color='
                    grey', linestyle='--')
251
            else:
                    # If not fit, draw the original curve.
252
                x = list(res.keys())
253
                y = list(res.values())
                # For this case, only draw the original
254
                    curve.
255
                plt.plot(x, y, color=config.color_list[cnt
                    ], marker="o", linestyle="-", label="
                    order=%d" % order)
256
            cnt += 1
257
258
        # Set different titles
259
        if is_fit:
            title = 'The Original and Fit Curves'
260
261
        else:
            title = 'The Mean of %d NSI PC Matrices\' Kii'
262
                % iterations
263
        plt.title(title, config.ft)
        plt.xlabel('the ratio %s of the standard deviation
264
           ' % chr(961), config.ft) # The label of X-axis
        plt.ylabel('mean of Kii', config.ft)
265
                                                # The label
           of Y-axis.
266
        plt.legend() # Display the legend of the graph.
267
        if is_save:
268
            if is_fit:
                # Eps file for latex. Pdf file for
269
                    checking.
                fig.savefig(config.path_for_thesis + "
270
                    the_original_and_fit_curve.pdf",
271
                             format = "pdf", dpi = 1200)
272
                fig.savefig(config.path_for_thesis + "
                    the_original_and_fit_curve.eps",
                             format="eps", dpi=1200)
273
274
            else:
```

```
275
                 fig.savefig(config.path_for_thesis + "
                    the_mean_of_NSI_PC_matrices_Kii.pdf",
276
                              format = "pdf", dpi = 1200)
277
                 fig.savefig(config.path_for_thesis + "
                    the_mean_of_NSI_PC_matrices_Kii.eps",
278
                              format="eps", dpi=1200)
279
        else:
280
            plt.show() # If not is_save, show the graph.
        # Print specific sentences, which is designed for
281
           writing the table in Latex.
282
        if rho_collection:
283
            # print(rho_collection)
            for key in rho_collection:
                                          # {order: [{"rho
284
                ":, "a":, "b":, "threshold":}, {}]}
                for elm in rho_collection[key]:
285
286
                     if elm["threshold"] == 0.1:
287
                         print("0.1 & %d & %0.4f & %0.4f &
                            %0.4f \\\" % (key, elm["rho"],
                             elm["a"], elm["b"]))
288
            save_pickle(rho_collection, config.
               path_for_thesis + "rho.pkl")
289
290
291
    def fit_function(x, a, b):
292
293
        y = a * x ^ 2 + b, the function used to fit the
           curve.
294
        :param x: float
295
               \rho/std_rate
296
        :param a: float
297
                coefficient
298
        :param b: float
               coefficient
299
300
        :return: y float
301
                 y is the mean of Kii
302
303
        y = a * x ** 2 + b * x
304
        return y
305
306
```

```
307
    def compute_curve(x, y):
308
309
        There are some relations between x (std_rate or \
           rho in the thesis) and y (mean of Kii).
310
        So fit a curve function for it.
        :param x: std_rate, list
311
312
        :param y: mean of Kii, list
313
        :return: popt float
314
                  coefficient a
315
                  pcov float
316
                  coefficient b
        0.00
317
318
        popt, pcov = curve_fit(fit_function, x, y)
319
        return popt, pcov
320
321
322
    if __name__ == '__main__':
323
        # gm = GenerateMatrices(order=3)
324
        # tmp = gm.generate_matrix()
325
        # for key in tmp:
              print(tmp[key])
326
327
        # for order in range(3, 11):
              # gm = GenerateMatrices(order=order,
328
           iterations=1000, std_rate=config.rho_table[
           order])
              # gm = GenerateMatrices(order=order,
329
           iterations=100000, std_rate=config.rho_table[
           order])
330
              gm = GenerateMatrices(order=order,
           iterations=10000, std_rate=config.rho_table[
           order])
331
        #
              gm.generate_and_save()
332
        # draw_means_graph(is_fit=False, is_save=False,
333
           is_generate=False)
334
        draw_means_graph(is_fit=True, is_save=False,
           is_generate=False)
 1
   # coding:utf8
 2
```

```
3
   @author: Zhangao Lu
4
  @contact: zlu2@laurentian.ca
  Otime: 2021/2/27
6
7 | @description:
  1. Use several methods to compute matrix distance.
  Euclidean distance
9
10
  Chebyshev distance
11
12 2. Analyze the results.
13
14
15
  import numpy as np
16 import pandas as pd
17 | import matplotlib.pyplot as plt
  import seaborn as sns
  import matplotlib.cm as cm
20 from scipy.spatial.distance import cdist
21 | from scipy.stats import entropy
22 from config import config
  from utils.gerenal_tools import open_pickle,
      save_pickle
   {\color{red} \textbf{from}} \hspace{0.1cm} \textbf{pairwise\_comparison.generate\_NSI\_PC\_matrices}
24
      import GenerateMatrices
25
   from utils.pairwise_comparison_tools import
      compute_kii
26
27
28
   class MatrixDistance(object):
       def __init__(self):
29
30
            pass
31
       Ostaticmethod
32
33
       def compute_distance(m1, m2, metric="euclidean",
          **kwargs):
34
            Compute distance between each pair of the two
35
               collections of inputs.
36
            :param m1: ndarray
37
                        It is a np.array with shape (n, n)
```

```
here.
38
            :param m2: ndarray
                       It is a np.array with shape (n, n)
39
                          here.
            :param metric: string, default = "euclidean".
40
41
                          The distance function can be "
                             braycurtis", "canberra", "
                             chebyshev", "cityblock",
                          "correlation", "cosine", "dice",
42
                              "euclidean", "hamming", "
                             jaccard", "jensenshannon", "
                             kulsinski",
                          "mahalanobis", "matching", "
43
                             minkowski", "rogerstanimoto",
                              "russellrao", "seuclidean",
                          "sokalmichener", "sokalsneath",
44
                             "sqeuclidean", "wminkowski",
                             "yule", "KLdivergence".
45
           :return: ds float
                     The value of distance.
46
           0.00
47
           if metric == "KLdivergence":
48
49
50
                entropy(): Calculate the entropy of a
                   distribution for given probability
                   values.
51
               m1.shape = (n, n)
               m1.reshape(1, -1).shape = (1, n^2)
52
                np.squeeze(m1.reshape(1, -1)).shape = (n
53
                   ^2,)
                0.00
54
55
                ds = entropy(np.squeeze(m1.reshape(1, -1))
                   , np.squeeze(m2.reshape(1, -1)))
56
           else:
                ds = cdist(m1.reshape(1, -1), m2.reshape
57
                   (1, -1), metric=metric)
                ds = ds[0][0]
                               # cdist will return a
58
                   ndarray, so use ds[0][0] to get a float
                    number.
           return ds
59
```

```
60
61
62
   def create_rho_table():
63
       Create a table about matrix order, threshold and \
64
          rho, then save it in hard drive.
                threshold_1
                             threshold_2
65
66
       order_1
               rho_{11}
                              rho_{12}
       order_2
               rho_{21}
                              rho_{22}
67
       :return: None
68
       0.00
69
70
       temp_dict = dict()
       tmp = open_pickle(config.path_for_thesis + "rho.
71
          pkl") # Access
       for key in range(3, 11):
72
           # print(key, tmp[key])
73
           # [{'rho': 0.038956560762328174, 'a':
74
               -1.4810377291603385, 'b':
               1.3411769934668802, 'threshold': 0.05}, {}]
           for elm in tmp[key]:
75
                if elm["threshold"] not in temp_dict:
76
                    temp_dict[elm["threshold"]] = [elm["
77
                       rho"]]
78
                else:
79
                    temp_dict[elm["threshold"]].append(elm
                       ["rho"])
80
       # The indices are orders, the columns are
          thresholds, and the elements are values of \rho
       df = pd.DataFrame(temp_dict, index=range(3, 11))
81
       print(df)
82
83
       save_pickle(df, config.path_for_thesis + "rho and
          order table.pkl")
84
85
86
   def generate_and_compute_the_distances(metric_list,
      iterations=1000):
       0.00
87
       Generate PC matrices and NSI PC matrices with
88
          different constraint: \rho (the mean of Kii).
```

```
Then compute the
89
        distances between them. Finally, save the results.
90
        :param metric_list: list
91
               A list of metrics. Check config.mc_para_1.
        :param iterations: int, default = 1000
92
93
               Check config.mc_para_1.
        :return: None
94
95
        md = MatrixDistance()
96
        tb = open_pickle(config.path_for_thesis + "rho and
97
            order table.pkl") # Get the table about the \
           rho.
98
        print(tb)
99
        res = dict()
        for metric in metric_list: # For each metric in
100
           the list
            res[metric] = dict() # res = {metric1: {},
101
               metric2: {}, ... }
102
            for ind in tb.index: # tb is the table of \
               rho and order, and the index of tb is the
               matrix order.
                order = ind # Rename it for better
103
                   understanding.
104
                res[metric][order] = dict()
105
                # Threshold is the mean of Kii, which is
                   set in advance.
106
                for threshold in np.array(range(8, 14, 1))
                    / 100.0:
107
                    print(metric, ind, threshold)
                    rho = tb.loc[ind][threshold] # Select
108
                        the \rho from the table.
109
                    # Generate matrices.
110
                    gm = GenerateMatrices(order=order,
                       iterations=iterations, std_rate=rho
                       )
111
                    # Compute all the distances in loops
112
                    res[metric][order][threshold] = list()
                         # res = {metric1: {order1:{
                        threshold1: []}}
113
                    for _ in range(iterations):
```

```
114
                         # generate and get the PC and NSI
                            PC matrix
115
                         tmp = gm.generate_matrix()
116
                         pc = tmp["PC"]
117
                         nsi_pc = tmp["NSI_PC"]
118
                         # Compute the distance between PC
                            matrices and NSI PC matrices
119
                         dt = md.compute_distance(pc,
                            nsi_pc, metric)
120
                         res[metric][order][threshold].
                            append(dt)
121
        save_pickle(res, config.path_for_thesis + "
           distances for %d matrices" % iterations)
122
123
124
    def analysis_results_chart1(metric_list, iterations,
       is_show=False, dpi=600):
125
126
        Draw Letter-Value Plots for Section 4.2 in the
           thesis.
127
        :param metric_list: list
128
               A list of metrics. Check config.mc_para_1.
129
        :param iterations: int
130
               Check config.mc_para_1.
        :param is_show: boolean, default = False
131
               Show the plot or not. Check config.
132
                  mc_para_1.
133
        :param dpi: int, default = 600
               When dpi is very high, the speed that latex
134
                   compile the file is very slow. 200 is
                  recommended for test.
135
               Check config.mc_para_1.
136
        :return: None
137
138
        # Access the results computed through function:
           generate_and_compute_the_distances
        # res = {metric: {order: {threshold: []}}}
139
        res = open_pickle(config.path_for_thesis + "
140
           distances for %d matrices" % iterations)
141
```

```
142
        for metric in metric_list:
            tmp = dict()
143
            for order in res[metric]: # res[metric] = {
144
               order: {threshold: []}}
145
                # All experiments are base on threshold =
                   0.1. So select the data where threshold
                    = 0.1.
146
                tmp[order] = res[metric][order][config.
                   threshold]
147
            df = pd.DataFrame(tmp) # Convert to pandas.
               Dataframe.
            order = list(range(3, 11)) # The X-axis of
148
               the graph.
149
            plot_name = config.printed_metric[metric] #
               Covert the metric names to print.
150
151
            For Chebyshev distance and Euclidean distance,
                there are two graphs need to draw.
152
            The first one is the whole graph, and the
               second one the partial enlarged view.
            0.00
153
            if metric in ["chebyshev", "euclidean"]:
154
                sns.boxenplot(data=df, order=order)
155
                   Letter-Value Plot
                plt.title("The Distribution of %s" %
156
                   plot_name) # Set the title of the
                   graph.
                plt.xlabel('the order of matrices') # Set
157
                    the label of X-axis.
                plt.ylabel('distance/similarity/divergence
158
                   ') # Set the label of Y-axis.
159
                # If is_show, then show the graph.
                   Otherwise, save it.
160
                if is_show:
161
                    plt.show()
162
                else:
163
                     plt.savefig(config.path_for_thesis + "
                        distribution_of_distances_%s_a.png"
                         % metric,
164
                                 format = "png",
```

```
165
                                  dpi=dpi)
166
167
                 sns.boxenplot(data=df, order=order,
                    showfliers=False) # Letter-Value Plot
168
                 plt.ylim([0, config.max_ylim[metric]])
                    Limit the Y-axis to show more details.
169
                 plt.title("The Distribution of %s" %
                    plot_name)
170
                plt.xlabel('the order of matrices')
                 plt.ylabel('distance/similarity/divergence
171
172
                 if is_show:
173
                     plt.show()
174
                 else:
175
                     plt.savefig(config.path_for_thesis + "
                        distribution_of_distances_%s_b.png"
                         % metric,
176
                                  format = "png",
177
                                  dpi=dpi)
178
            else:
                 sns.boxenplot(data=df, order=order) #
179
                   Letter-Value Plot
                 plt.title("The Distribution of %s" %
180
                    plot_name)
181
                 plt.xlabel('the order of matrices')
                 plt.ylabel('distance/similarity/divergence
182
                    ')
183
                 if is_show:
184
                     plt.show()
185
                 else:
                     plt.savefig(config.path_for_thesis + "
186
                        distribution_of_distances_%s.png" %
                         metric, format="png", dpi=dpi)
187
188
189
    def analysis_results_table(metric_list, iterations,
       need_order):
        0.00
190
        Generate the tables to show the statistical
191
           indicators for different orders, which is
```

```
displayed in
192
        Section 4.2 of the thesis.
193
        :param metric_list: list
194
                A list of metrics. Check config.mc_para_1.
195
        :param iterations: int
196
               Check config.mc_para_1.
197
        :param need_order: int
198
                Check config.mc_para_1.
                I only set order=4 or order=8 for my thesis
199
200
        :return: None
201
202
        # Access the results computed through function:
           generate_and_compute_the_distances
203
        # res = {metric: {order: {threshold: []}}}
204
        res = open_pickle(config.path_for_thesis + "
           distances for %d matrices" % iterations)
205
        need_merge = list()
206
        for metric in metric_list:
207
            tmp = dict()
            for order in res[metric]: # res[metric] = {
208
                order: {threshold: []}}
                 # All experiments are base on threshold =
209
                    0.1. So select the data where threshold
                 tmp[order] = res[metric][order][config.
210
                    threshold]
211
            df = pd.DataFrame(tmp)
            0.00
212
213
            An example of df.describe()
214
                                3
                                                4
                                                9
                    100000.000000
                                    100000.000000
215
            count
                100000.000000
                                100000.000000
                         0.024043
216
            mean
                                         0.014955
                      0.009011
                                      0.008663
217
                         0.010873
                                         0.005100
            std
                      0.001548
                                      0.001369
                         0.000922
218
            min
                                         0.000649
```

```
0.001851
                                     0.002561
219
            25%
                         0.016504
                                         0.011468
                      0.008016
                                     0.007785
220
            50%
                         0.022294
                                         0.014261
                      0.008873
                                     0.008547
221
            75%
                         0.029504
                                         0.017615
                      0.009832
                                     0.009401
222
            max
                         0.141391
                                         0.073217
                      0.022877
                                     0.022084
            0.00
223
224
            need_merge.append(df.describe()[need_order])
225
        mdf = pd.concat(need_merge, axis=1) # Merge all
           pandas. Series and get a big matrix or pandas.
           Dataframe.
226
        mdf.columns = [config.printed_metric[elm] for elm
           in metric_list] # Set the column names.
227
        mdf = mdf.T # Transpose the matrix.
        mdf = mdf[["mean", "std", "min", "25%", "50%",
228
           "75%", "max"]] # Select needed statistical
           measurements.
        # Print specific sentences, which is designed for
229
           writing the table in Latex.
        print(" name & " + " & ".join(list(mdf.columns)) +
230
            "\\\" + " \\hline")
        for ind in mdf.index:
231
            print(ind.split()[0] + " & " + " & ".join(map(
232
               lambda x: str(round(x, 4)), list(mdf.loc[
               ind]))) + "\\\" + " \\hline")
233
234
235
    def analysis_results_chart2(metric_list, iterations,
       is_show=False, dpi=600):
236
        Draw bubble charts for Section 4.3 in the thesis.
237
238
        :param metric_list: list
239
               A list of metrics. Check config.mc_para_2.
240
        :param iterations: int
241
               Check config.mc_para_2.
242
        :param is_show: boolean, default = False
243
               Show the plot or not. Check config.
```

```
mc_para_2.
        :param dpi: int, default = 600
244
               When dpi is very high, the speed that latex
245
                   compile the file is very slow. 200 is
                  recommended for test.
246
               Check config.mc_para_2.
247
        :return: None
248
        # Access the results computed through function:
249
           generate_and_compute_the_distances
250
        # res = {metric: {order: {threshold: []}}}
251
        res = open_pickle(config.path_for_thesis + "
           distances for %d matrices" % iterations)
252
        for metric in metric_list:
253
            fig = plt.figure(figsize=(12.00, 8.00))
254
            # Means are used to set the points of bubbles
               while standard deviations are used to set
               the size of bubbles.
255
            tmp1 = dict() # To save the values of mean
256
            tmp2 = dict()
                            # To save the values of std
257
            plot_name = config.printed_metric[metric]
            for order in res[metric]: # res[metric] = {
258
               metric: {order: {threshold: []}}}
259
                tmp1[order] = dict()
260
                tmp2[order] = dict()
                for threshold in res[metric][order]:
261
                   res[metric][order] = {threshold: []}
262
                     tmp1[order][threshold] = np.mean(res[
                        metric][order][threshold])
                     tmp2[order][threshold] = np.std(res[
263
                        metric][order][threshold])
            df1 = pd.DataFrame(tmp1)
264
            0.00
265
266
            An example of df1
267
            The indices are the thresholds. The columns
               are matrices' orders. The elements are mean
                of distances.
268
                         3
                                   4
                                                        10
269
                 0.019007 0.011864 0.009661
```

```
0.007491 0.007152 0.006878
270
            0.09 0.021488 0.013406 0.010922
               0.008462
                        0.008074 0.007772
271
            0.10 0.024043
                            0.014955
                                       0.012183
               0.009432
                        0.009011
                                   0.008663
272
            0.11 0.026739
                            0.016543 0.013473
               0.010423 0.009945
                                   0.009572
            0.12 0.029309
273
                            0.018190 0.014790
               0.011426
                         0.010894
                                   0.010493
            0.13 0.031895
                            0.019769 0.016071
274
               0.012431 0.011862
                                  0.011411
            0.00
275
276
            df2 = pd.DataFrame(tmp2)
277
278
            An example of df2
            The indices are the thresholds. The columns
279
               are matrices' orders. The elements are mean
                of distances.
280
                        3
                                   4
                                             5
                                  8
                                             9
                                                       10
            0.08 0.008581
                            0.004023
281
                                       0.002682
               0.001405 0.001231 0.001086
282
            0.09 0.009759
                            0.004555 0.003033
               0.001592 0.001385
                                   0.001232
283
            0.10 0.010873
                            0.005100 0.003373
               0.001766 0.001548 0.001369
284
            0.11 0.012127
                            0.005634 0.003737
               0.001955 0.001699
                                  0.001509
            0.12 0.013237
                            0.006177
                                      0.004099
285
               0.002150 0.001867
                                   0.001656
286
            0.13 0.014382
                            0.006742 0.004443
               0.002327 0.002038
                                  0.001806
            0.00
287
            cnt = 0
288
                     # counter
289
            for ind in df1.index:
                x = df1.columns
290
291
                y = df1.loc[ind]
292
                # The original size of the bubbles are too
                    small. So set a ratio to zoom in it.
293
                size = df2.loc[ind] * config.size_dict[
```

```
metric]
294
                plt.scatter(x, y, size, c=x, cmap=cm.
                   get_cmap("coolwarm"))
295
                plt.plot(x, y, config.color_list[cnt],
                   linestyle="--", label="the mean of Kii
                   =%0.2f" % ind)
296
                cnt += 1
297
            plt.title("Distributions of %ss with Respect
               to Different Matrix Orders and Means of Kii
               " % plot_name)
298
            plt.xlabel('the order of matrices')
299
            plt.ylabel('the mean of distances/similarities
               /divergences')
300
            plt.legend()
            if is_show:
301
302
                plt.show()
303
            else:
                fig.savefig(config.path_for_thesis + "
304
                   thresholds_%s_distribution.png" %
                   metric, format="png", dpi=dpi)
305
306
307
    def func_canberra_distance(error, m):
308
309
        A quick method to compute the canberra distance
           between two numbers.
        n = m + error, m > 0 and n > 0
310
        d = |n-m| / (|m| + |n|) = |e| / (2m + error)
311
312
        :param error: float
313
        :param m: float
314
        :return: float
315
                  The canberra distance.
316
        return abs(error) / (2 * m + error)
317
318
319
320
    def differences_between_canberra_distances(sigma,
       delta_sigma):
321
322
        Generate two random errors from two different
```

```
normal distributions with the original number m
323
        then compute the canberra distances between two
           random samples and m.
324
        After that, return the differences between two
           canberra distances.
325
        :param sigma: float
326
               The standard deviation of the normal
                  distribution.
327
        :param delta_sigma: float
328
               Measure the change of sigma.
329
        :return: float
                The differences between two canberra
330
                   distances.
        0.00
331
332
        while 1:
333
            m = np.random.random() / np.random.random()
                m is the elements of any PC matrices.
334
            gm = GenerateMatrices()
            error = gm.random_numbers(sigma, m, 0)
335
               Generate a random error from original
               distribution.
            new_error = gm.random_numbers(sigma +
336
               delta_sigma, m, 0) # Generate another
               error from the new distribution.
            if m > 0 and m + error > 0 and m + error +
337
               new_error > 0: # All random values should
               be greater than zero.
338
                return func_canberra_distance(new_error, m
                   ) - func_canberra_distance(error, m)
339
340
    def analysis_result_canberra_distance(iterations,
341
       is_show=False):
        0.00
342
343
        Draw a heat map for canberra distance which is
           also used in Section 4.3 of the thesis.
        The heat map demonstrates the distributions of the
344
            distances when order = 3.
345
        :param iterations: int
```

```
346
               Check config.mc_para_3.
347
        :param is_show: boolean, default = False
               Show the plot or not. Check config.
348
                  mc_para_3.
349
        :return: None
350
351
        # sigma = \ rho * origin_num, [0.1, 0.2, ... 1]
352
        fig = plt.figure(figsize=(12.00, 8.00))
        cnt = 1
353
354
        # \rho - \kappa table when order = 3, kappa is
           defined in thesis as the mean of Kii.
355
        kappas = [0.1, 0.2, 0.3, 0.4, 0.5, 0.56]
        rho_table = {0.1: 0.0781, 0.2: 0.1705, 0.3: 0.274,
356
            0.4: 0.4003, 0.5: 0.5783, 0.56: 0.8608}
357
        for kappa in kappas:
358
            x = list(range(iterations))
359
            y = list()
            for _ in range(iterations):
360
361
                value =
                   differences_between_canberra_distances(
                   config.sigma, delta_sigma=rho_table[
                   kappa])
362
                y.append(value)
363
            df = pd.DataFrame({'x': x, 'y': y, 'color': pd
               .cut(y, 10, labels=range(1, 11))})
            print(df)
364
365
            plt.subplot(2, 3, cnt) # Set 6 sub-plots.
            cmap = sns.cubehelix_palette(start=0.1, light
366
               =1, as_cmap=True)
            sns.kdeplot(x, y, cmap=cmap, shade=True, cut
367
                   # Draw heat maps.
368
            plt.title("%s = %0.2f (%s = %0.2f)" % (chr
               (954), kappa, chr(961), rho_table[kappa]),
               config.ft)
369
            cnt += 1
370
        plt.suptitle("The Differences Distribution with
           Respect to %s" % chr(954))
                                       # Set the sub
           titles.
371
        if is_show:
372
            plt.show()
```

```
373
        else:
            # fig.savefig(config.path_for_thesis + "
374
               distributions_of_differences_cd_highDPI.png
               ", format="png", dpi=200)
375
            fig.savefig(config.path_for_thesis + "
               distributions_of_differences_cd.png",
               format="png", dpi=100)
376
377
378
    def create_table_for_alpha(metric_list, iterations):
379
380
        Create a alpha-order table, which will be used in
           reconstruct.py and Section 5.1 of the thesis.
381
        :param metric_list: list
382
               A list of metrics. Check config.mc_para_2.
383
        :param iterations: int
384
               Check config.mc_para_3.
        :return: None
385
386
387
        table = dict()
388
        # Access the results computed through function:
           generate_and_compute_the_distances
        # res = {metric: {order: {threshold: []}}}
389
390
        res = open_pickle(config.path_for_thesis + "
           distances for %d matrices" % iterations)
        # Print specific sentences, which is designed for
391
           writing the table in Latex.
        print("Order & Bray-Curtis Distance & Canberra
392
           Distance & Jensen-Shannon Divergence" + "\\\"
           + " \\hline")
393
        for order in range(3, 11):
394
            for metric in res:
                if metric in metric_list:
395
                     table[metric] = dict()
396
                     rm = GenerateMatrices(iterations=
397
                        iterations, order=order)
398
                     arrays = rm.read_array()
                                                # Access the
                         NPI PC matrices from hard drive.
399
                     nsi_pc_list = arrays[1]
400
                     tmp = list()
```

```
401
                     for ind in range(len(nsi_pc_list)):
402
                         m_prime = np.squeeze(nsi_pc_list[
                            ind]) # (n, n, 1) \rightarrow (n, n)
403
                         tmp.append(compute_kii(m_prime))
                            # Compute the kii of the
                            matrices
                     table[metric][order] = {"mean of kii":
404
                         np.mean(tmp),
                                               "mean of
405
                                                  distances":
                                                   np.mean(
                                                  res[metric
                                                  ][order][
                                                  config.
                                                  threshold])
406
                                               "ratio": np.
                                                  mean(tmp) /
                                                   np.mean(
                                                  res[metric
                                                  ][order][
                                                  config.
                                                  threshold])
407
            # Print specific sentences, which is designed
408
               for writing the table in Latex.
            print(" & ".join([str(order), str(round(table
409
                ["braycurtis"][order]["ratio"], config.
               decimal_places)),
                                str(round(table["canberra"][
410
                                   order]["ratio"], config.
                                   decimal_places)),
                                str(round(table["
411
                                   jensenshannon"][order]["
                                   ratio"], config.
                                   decimal_places))])
                   + "\\\" + " \\hline")
412
        save_pickle(table, config.path_for_thesis + "alpha
413
            table for %d matrices" % iterations)
414
```

```
415
416
    if __name__ == '__main__':
417
        \# m1 = np.array(range(1, 10)).reshape(3, 3)
418
        # m2 = m1 + np.random.randn()
        # print(m1, "\n", m2)
419
420
        # md = MatrixDistance()
421
        # # md.compute_distance(m1, m2)
422
        # create_rho_table()
423
424
        # generate_and_compute_the_distances(config.
           mc_para_1["metrics"], config.mc_para_1["
           iterations"])
425
        # analysis_results_chart1(config.mc_para_1["
           metrics"], config.mc_para_1["iterations"],
        #
                                    config.mc_para_1["
426
           is_show"], config.mc_para_1["dpi"])
427
        # analysis_results_table(config.mc_para_1["metrics
           "],
428
        #
                                   config.mc_para_1["
           iterations"],
429
        #
                                   config.mc_para_1["
           need_order"])
430
431
        # analysis_results_chart2(config.mc_para_2["
           metrics"], config.mc_para_2["iterations"],
        #
                                    config.mc_para_2["
432
           is_show"], config.mc_para_2["dpi"])
433
        # analysis_result_canberra_distance(config.
434
           mc_para_3["iterations"], config.mc_para_3["
           is_show"])
435
        create_table_for_alpha(config.mc_para_3["metrics
           "], config.mc_para_3["iterations"])
   # coding:utf8
 1
   0.00
 3
 4 | Qauthor: Zhangao Lu
   @contact: zlu2@laurentian.ca
 6 Otime: 2021/3/16
```

```
@description:
   1. Reconstruct PC matrix from NSI PC matrix.
9
10
11
  import pandas as pd
12 | import matplotlib.pyplot as plt
13 | import time
14 | import seaborn as sns
15 from scipy import optimize
16 | from pairwise_comparison.matrix_distance import
      MatrixDistance
17 | from pairwise_comparison.generate_NSI_PC_matrices
      import GenerateMatrices
18
  from utils.pairwise_comparison_tools import *
  from multiprocessing import cpu_count
19
  from utils.gerenal_tools import open_pickle,
20
      save_pickle, open_hickle, save_hickle, my_round
   from utils.printing_format import PrintingFormat
21
22
  from config import config
  from config.config import key_names
23
24
   np.set_printoptions(suppress=True)
25
                                        # Do not use
      scientific notation when printing matrix.
   np.set_printoptions(threshold=np.inf) # Do not use
26
      Ellipsis when printing matrix.
27
28
   class ReconstructMatrices(MatrixDistance,
29
      GenerateMatrices):
30
       def __init__(self):
31
32
           super().__init__()
           GenerateMatrices.__init__(self)
33
           self.alpha = 1.0 # The weight coefficient in
34
              the objective function, see Section 5.1 in
              the thesis.
           self.m_origin = np.array([])
                                         # PC matrix
35
           self.v_origin = [] # original vector
36
           self.metric = "braycurtis"
37
           self.metric_list = config.mc_para_2["metrics"]
38
```

```
# The three metrics needed to analyze in
               section 5.
           self.alpha_plan = ""
39
           self.file_name_of_reconstruct_result = "%d
40
               matrices reconstructed result alpha plan=%s
               .pkl" % \
                                                      (self.
41
                                                         iterations
                                                         str(
                                                         self
                                                         alpha_plan
42
           self.file_name_of_new_pc = "%d new pc matrices
                with order=%d metric=%s alpha=%0.4f.pkl" %
                                         (self.iterations,
43
                                            self.order, self
                                            .metric, self.
                                            alpha)
           self.is_show = False # If is_show is True,
44
               show the graph.
45
           self.dpi = 200 # Set the dpi of the graphs.
           self.alpha_table = {}
46
47
48
       def objective_function(self, v):
49
           The objective function: f(m') = Kii(m') + \setminus
50
               alpha * D(m', m)
           :param v: list
51
52
                   v is a vector, and will be converted in
                       to the matrix m'
53
           :return: float
                     The number computed by the objective
54
                        function.
           0.000
55
           m_prime = vector_to_pc_matrix(v)
56
                                                # Convert
               the vector into a PC matrix
57
           kii = compute_kii(m_prime) # Compute the Kii
```

```
of the matrix.
58
           dt = self.compute_distance(m_prime, self.
              m_origin, self.metric)
           goal = kii + self.alpha * dt
59
60
           return goal
61
       def reconstruct_matrix(self, m, beta=0.2, maxiter
62
          =1000, disp=False):
           0.000
63
           Reconstruct the PC matrix based on DE.
64
65
           :param m: np.array
                   original matrix, its shape is (n, n),
66
                      cannot be (n, n, 1)
           :param beta: float, default = 0.2
67
68
                   beta is the coefficient of the bounds.
                   bounds = [v_i - beta * v_i, v_i + beta]
69
                      * v_i], v_i is a element of the
                      original vector
70
           :param maxiter: int, default = 1000
                   The maximum number of generations.
71
72
           :param disp: boolean
73
                   Prints the evaluated function at every
                      iteration.
74
           :return: np.array
75
                   The reconstruct matrix.
76
           self.m_origin = m # Rename the matrix, then
77
              it can be printed in the loop.
           bounds = list() # Bounds for variables.
78
           self.v_origin = pc_matrix_to_vector(self.
79
              m_origin)
80
           for elm in self.v_origin:
               bounds.append((elm - elm * beta, elm + elm
81
                    * beta))
82
           r = optimize.differential_evolution(self.
              objective_function, bounds, workers=
              cpu_count(), maxiter=maxiter,
83
                                                  updating="
                                                     deferred
                                                     ", disp
```

```
=disp)
84
            new_v = r.x
            return vector_to_pc_matrix(new_v)
85
86
        def run(self, iterations=1000, alpha_plan="plan1")
87
            0.00
88
89
            Run the main function of this algorithm. It
               will reconstruct matrices and save the
               results.
90
            :param iterations: int, default = 1000
            :param alpha_plan: string, default = "plan1"
91
                    It refers to a ratio used to change the
92
                        values of \alpha.
93
            :return: None
94
95
            self.alpha_table = self.read_alpha_table()
            self.alpha_plan = alpha_plan
96
97
            self.iterations = iterations
            for self.order in range(3, 11):
98
                arrays = super().read_array()
99
                pc_list = arrays[0] # List of PC matrices
100
101
                nsi_pc_list = arrays[1]
                                           # List of NSI PC
                   matrices.
102
                for self.metric in self.metric_list:
103
                     # Select the values of \alpha with
                        respect to different metrics and
                        orders
104
                     self.alpha = self.alpha_table[self.
                        metric][self.order]["ratio"] *
                        config.alpha_table[self.alpha_plan]
105
                     self.alpha = round(self.alpha, config.
                        decimal_places)
106
                     print(self.order, self.metric, "%0.4f"
                         % self.alpha)
107
                     new_pc_list = list()
                     for ind in range(len(nsi_pc_list)):
108
                         m_prime = np.squeeze(nsi_pc_list[
109
                            ind]) # (n, n, 1) \rightarrow (n, n)
```

```
110
                         new_m_prime = self.
                            reconstruct_matrix(m_prime)
111
                         new_pc_list.append(np.expand_dims(
                            new_m_prime, axis=2))
112
                     # Save the optimized matrices for
                        further research.
                     new_pc_array = np.concatenate(tuple(
113
                        new_pc_list), axis=2)
                     self.file_name_of_new_pc = "%d new pc
114
                        matrices with order=%d metric=%s
                        alpha=%0.4f.pkl" % (
115
                         self.iterations, self.order, self.
                            metric, self.alpha)
116
                     save_hickle(new_pc_array, config.
                        path_for_thesis + self.
                        file_name_of_new_pc)
117
118
        def read_new_array(self):
119
120
            Access the reconstructed PC matrices from the
               hard drive.
121
            :return: list
122
                     The list of reconstructed PC matrices
123
124
            self.file_name_of_new_pc = "%d new pc matrices
                with order=%d metric=%s alpha=%0.4f.pkl" %
125
                                         (self.iterations,
                                            self.order, self
                                            .metric, self.
                                            alpha)
126
            new_pc_array = open_hickle(config.
               path_for_thesis + self.file_name_of_new_pc)
127
            new_pc_list = np.split(new_pc_array,
               new_pc_array.shape[2], axis=2) # (3, 3,
               1000) -> [(3, 3, 1)], len()=1000
128
            return new_pc_list
129
130
        def read_alpha_table(self):
```

```
131
            Access the \alpha table from hard drive.
132
133
            :return: None
134
135
            # return open_pickle(config.path_for_thesis +
               "alpha table for %d matrices" % 1000)
            return open_pickle(config.path_for_thesis + "
136
               alpha table for %d matrices" % self.
               iterations)
137
138
        def check_and_draw(self, iterations=1000, readable
           =True, alpha_plan="plan1", is_show=True):
139
140
            Generate a complicated dict for drawing graphs
            res =
141
142
            {self.order:
143
                 {self.metric: {"kn": [],
144
                      "knn": [],
                      "dnp": [],
145
                      "dnnn": [],
146
147
                      "dnnp": [],
148
149
                }
150
            :param iterations: int, default = 1000
151
152
            :param readable: int, default=True
                    If True, access the results from the
153
                       hard drive. Otherwise, compute them.
             :param alpha_plan: string, default = "plan1"
154
                    It refers to a ratio used to change the
155
                        values of \alpha.
            :param is_show: boolean, default = False
156
157
                    Show the plot or not.
158
            :return: None
159
160
            self.iterations = iterations
            self.is_show = is_show
161
            self.alpha_table = self.read_alpha_table()
162
163
            self.alpha_plan = alpha_plan
```

```
164
            res = dict()
165
            self.file_name_of_reconstruct_result = "%d
               matrices reconstructed result alpha plan=%s
               .pkl" % \
166
                                                     (self.
                                                        iterations
                                                        str(
                                                        self
                                                        alpha_plan
167
            if readable:
168
                res = open_pickle(config.path_for_thesis +
                    self.file_name_of_reconstruct_result)
                   # If not readable, compute and save the
169
                data for further research.
170
                for self.order in range(3, 11):
171
                    res[self.order] = dict() # res = {
                        self.order: {}}
172
                    for self.metric in self.metric_list:
                         self.alpha = self.alpha_table[self
173
                            .metric][self.order]["ratio"] *
                             config.alpha_table[
174
                             self.alpha_plan] # Select the
                                 values of \alpha with
                                respect to different
                                metrics and orders
                        new_pc_list = self.read_new_array
175
                            () # The list of Reconstructed
                             PC matrices.
176
                         arrays = super().read_array()
177
                         pc_list = arrays[0] # The list of
                             original PC matrices.
178
                         nsi_pc_list = arrays[1]
                            list of NSI PC matrices.
                         res[self.order][self.metric] =
179
                            dict() # res = {self.order: {
                            self.metric: {}}}
                         # For short, use "kn", "knn" and
180
```

```
so on. The full name is
                            displayed in config.py.
181
                         temp_dict = {key_names["kn"]: [],
182
                                       key_names["knn"]: [],
                                       key_names["dnp"]: [],
183
184
                                       key_names["dnnn"]:
                                          [],
                                       key_names["dnnp"]: []
185
186
187
                         for ind in range(len(new_pc_list))
188
                             m_prime = np.squeeze(
                                nsi_pc_list[ind]) # (n, n,
                                 1) -> (n, n)
189
                             m_origin = np.squeeze(pc_list[
                                ind])
190
                             new_m_prime = np.squeeze(
                                new_pc_list[ind])
191
                             # The full name of keys in
                                config.py has explained the
                                 meaning of next 5
                                sentences.
                             temp_dict[key_names["kn"]].
192
                                append(compute_kii(m_prime)
193
                             temp_dict[key_names["knn"]].
                                append(compute_kii(
                                new_m_prime))
194
                             temp_dict[key_names["dnp"]].
                                append(self.
                                compute_distance(m_origin,
                                m_prime, self.metric))
195
                             temp_dict[key_names["dnnn"]].
                                append(self.
                                compute_distance(m_prime,
                                new_m_prime, self.metric))
                             temp_dict[key_names["dnnp"]].
196
                                append(self.
                                compute_distance(m_origin,
                                new_m_prime, self.metric))
```

```
res[self.order][self.metric] =
197
                            temp_dict
198
                 save_pickle(res, config.path_for_thesis +
                    self.file_name_of_reconstruct_result)
199
200
            self.create_data_tables(res)
201
202
            self.choose_data_to_draw(res, "alpha+metric+
                order+key-name.dnp")
203
            self.choose_data_to_draw(res, "alpha+metric+
                order+key-name.dnnn")
204
            self.choose_data_to_draw(res, "alpha+metric+
                order+key-name.dnnp")
205
206
        def choose_data_to_draw(self, res, gtype):
207
208
            Draw three letter-value plots for each metric.
                For example:
209
            metric=braycurtis. X-axis: order. Y-axis:
               key_names.dnp.
            metric=braycurtis. X-axis: order. Y-axis:
210
               key_names.dnnn.
            metric=braycurtis. X-axis: order. Y-axis:
211
               key_names.dnnp.
            :param res: dict
212
213
                    A complicated dict.
214
            res =
215
            {self.order:
216
                {self.metric: {"kn": [],
217
                      "knn": [],
                      "dnp": [],
218
                      "dnnn": [],
219
220
                      "dnnp": [],
221
222
                }
223
224
            :param gtype: string
225
                    Graph types. There are three gtypes
226
                    1. alpha+metric+order+key-name.dnp
```

```
227
                    2. alpha+metric+order+key-name.dnnn
228
                    3. alpha+metric+order+key-name.dnnp
229
            :return: None
            0.00
230
231
            xlabel = "the order of matrices"
232
            plot_format = "png"
233
                                                # The X-axis
234
            order_list = list(range(3, 11))
               of the graph.
235
            if gtype == "alpha+metric+order+key-name.dnp":
236
                for self.metric in self.metric_list:
                     tmp = dict()
237
238
                     for self.order in res:
                         tmp[self.order] = res[self.order][
239
                            self.metric][key_names["dnp"]]
240
                     df = pd.DataFrame(tmp)
241
                     ylabel = "distance"
242
                     plot_name = "The Distribution of %s
                        Distances between \n the NSI PC
                        Matrices and the Original PC " \
                                  "Matrices" % self.metric.
243
                                     capitalize()
                     # gtype.split(".")[1] = "dnp"
244
                     plot_saved_path = "
245
                        new_distribution_of_distances_%s_%s
                        .png" % (self.metric, gtype.split
                        (".")[1])
                     self.draw_box_plots(data=df, xaxis=
246
                        order_list, plot_name=plot_name,
                        xlabel=xlabel, ylabel=ylabel,
247
                                          plot_saved_path=
                                             plot_saved_path
                                              , plot_format=
                                             plot_format)
248
249
            elif gtype == "alpha+metric+order+key-name.
               dnnn":
250
                 for self.metric in self.metric_list:
251
                     tmp = dict()
252
                     for self.order in res:
```

```
253
                         tmp[self.order] = res[self.order][
                            self.metric][key_names["dnnn"]]
254
                     df = pd.DataFrame(tmp)
255
                     ylabel = "distance"
256
                     plot_name = "The Distribution of %s
                        Distances between \n the NSI PC
                        Matrix and Optimized Matrix" \
257
                                 % self.metric.capitalize()
                     plot_saved_path = "
258
                        new_distribution_of_distances_%s_%s
                        .png" % (self.metric, gtype.split
                        (".")[1])
                     self.draw_box_plots(data=df, xaxis=
259
                        order_list, plot_name=plot_name,
                        xlabel=xlabel, ylabel=ylabel,
260
                                          plot_saved_path=
                                             plot_saved_path
                                             , plot_format=
                                             plot_format)
261
262
            elif gtype == "alpha+metric+order+key-name.
               dnnp":
263
                for self.metric in self.metric_list:
264
                     tmp = dict()
                     for self.order in res:
265
                         tmp[self.order] = res[self.order][
266
                            self.metric][key_names["dnnp"]]
267
                     df = pd.DataFrame(tmp)
268
                     ylabel = "divergence"
269
                     # plot_name = "alpha=%0.4f x %d
                        metric=%s" % (self.alpha_table[self
                        .metric][self.order]["ratio"],
270
                        config.alpha_table[self.alpha_plan
                        ], self.metric)
271
                     plot_name = "The Distribution of %s
                        Divergences between \n the Original
                         PC Matrix and Optimized " \
                                 "Matrix" % self.metric.
272
```

```
capitalize()
273
                     plot_saved_path = "
                        new_distribution_of_distances_%s_%s
                        .png" % (self.metric, gtype.split
                         (".")[1])
274
                     self.draw_box_plots(data=df, xaxis=
                        order_list, plot_name=plot_name,
                        xlabel=xlabel, ylabel=ylabel,
275
                                           plot_saved_path=
                                              plot_saved_path
                                              , plot_format=
                                              plot_format)
276
277
        def create_data_tables(self, res):
278
279
            create a complicated table, see table 6 in
                Section 5.2 of the thesis.
280
             :param res: dict
281
                    A complicated dict. res =
282
            {self.order:
283
                 {self.metric: {"kn": [],
                      "knn": [],
284
                      "dnp": [],
285
286
                      "dnnn": [],
                      "dnnp": [],
287
288
289
                 }
290
            }
291
            :return: None.
292
293
            for self.metric in self.metric_list:
294
                 # Print the data with some specific format
                    , which is used to create tables in the
                     LaTex file.
295
                 np1 = PrintingFormat()
                 np2 = PrintingFormat()
296
297
                 np3 = PrintingFormat()
298
299
                 np1.for_reconstruct()
300
                 np2.for_reconstruct()
```

```
301
                 np3.for_reconstruct()
302
                 for self.order in res:
303
                     tmp1 = dict()
304
                     tmp2 = dict()
305
                     tmp3 = dict()
306
                     tmp1[self.order] = res[self.order][
                        self.metric][key_names["dnp"]]
                     tmp2[self.order] = res[self.order][
307
                        self.metric][key_names["dnnn"]]
308
                     tmp3[self.order] = res[self.order][
                        self.metric][key_names["dnnp"]]
309
                     df1 = pd.DataFrame(tmp1)
310
311
                     df2 = pd.DataFrame(tmp2)
                     df3 = pd.DataFrame(tmp3)
312
313
                     # print(df1.describe().loc[["mean", "
                        std", "min", "max"]])
314
                     # print(df2.describe().loc[["mean", "
                        std", "min", "max"]])
315
                     # print(df3.describe().loc[["mean", "
                        std", "min", "max"]])
316
317
                     np1.for_reconstruct(mean=df1.describe
                        () [self.order] ["mean"],
                                           std=df1.describe()
318
                                              [self.order]["
                                              std"],
319
                                           min_value=df1.
                                              describe()[self
                                              .order]["min"],
320
                                           max_value=df1.
                                              describe()[self
                                              .order]["max"])
321
                     np2.for_reconstruct(mean=df2.describe
                        () [self.order] ["mean"],
322
                                           std=df2.describe()
                                              [self.order]["
                                              std"],
323
                                           min_value=df2.
                                              describe()[self
```

```
.order]["min"],
324
                                           max_value=df2.
                                              describe()[self
                                              .order]["max"])
325
                     np3.for_reconstruct(mean=df3.describe
                        () [self.order] ["mean"],
                                           std=df3.describe()
326
                                              [self.order]["
                                              std"],
327
                                           min_value=df3.
                                              describe()[self
                                              .order]["min"],
328
                                           max_value=df3.
                                              describe()[self
                                              .order]["max"])
329
                 np1.for_reconstruct(end=True)
330
                 np2.for_reconstruct(end=True)
331
                 np3.for_reconstruct(end=True)
332
333
                 print(self.metric)
334
                 print("=" * 100)
335
                 np1.print_need_print()
                 print("=" * 100)
336
337
                 np2.print_need_print()
                 print("=" * 100)
338
339
                 np3.print_need_print()
                 print("=" * 100)
340
341
        def draw_box_plots(self, data, xaxis, plot_name,
342
           xlabel, ylabel, plot_saved_path, plot_format):
343
344
            Draw box plots according to different
                parameters.
345
             :param data: pandas.Dataframe
346
                    The data used to draw the graph.
347
             :param xaxis: list
                    The values of X-axis.
348
349
             :param plot_name: string
350
                    The name of this graph.
351
             :param xlabel: string
```

```
352
                    The label of X-axis.
             :param ylabel: string
353
354
                    The label of Y-axis.
355
             :param plot_saved_path: string
356
                    The file path to save the graph.
357
             :param plot_format: string
358
                    png or other formats.
359
            :return: None
360
            sns.boxenplot(data=data, order=xaxis)
361
                                                      # Draw
               the box plot.
362
            plt.title(plot_name, config.new_ft)
363
            plt.xlabel(xlabel, config.new_ft)
            plt.ylabel(ylabel, config.new_ft)
364
            if self.is_show:
365
                plt.show()
366
367
            else:
                 plt.savefig(config.path_for_thesis +
368
                    plot_saved_path , format=plot_format ,
369
                              dpi=self.dpi)
370
                 plt.close()
371
372
        def check_outliers_of_kii(self, alpha_plan):
373
374
            Check if there is any Kii of reconstructed PC
               matrix != 0.
375
             :param alpha_plan: String
376
                    plan1, plan2, plan3
377
            :return:
378
            self.alpha_table = self.read_alpha_table()
379
380
            self.alpha_plan = alpha_plan
            self.file_name_of_reconstruct_result = "%d
381
               matrices reconstructed result alpha plan=%s
                .pkl" \
382
                                                       % (self
                                                          iterations
                                                          str(
```

```
self
                                                          alpha_plan
                                                         ))
383
            for self.order in range(3, 11):
384
                 for self.metric in self.metric_list:
                     self.alpha = self.alpha_table[self.
385
                        metric][self.order]["ratio"] *
                        config.alpha_table[
386
                         self.alpha_plan]
387
                     new_pc_list = self.read_new_array()
388
                     arrays = super().read_array()
                     pc_list = arrays[0]
389
390
                     nsi_pc_list = arrays[1]
                     for ind in range(len(new_pc_list)):
391
392
                         m_prime = np.squeeze(nsi_pc_list[
                            ind]) # (n, n, 1) \rightarrow (n, n)
393
                         new_m_prime = np.squeeze(
                            new_pc_list[ind])
394
                         kii1 = compute_kii(m_prime)
                         kii2 = compute_kii(new_m_prime)
395
                         if kii2 != 0: # If kii2 !=0,
396
                            which means the DE algorithm
                            hasn't been converged correctly
397
                             print(kii1, kii2)
398
399
    if __name__ == '__main__':
400
401
        rm = ReconstructMatrices()
402
        # rm.run(10000, "plan1")
403
        # rm.check_and_draw(iterations=10000, readable=
           False, alpha_plan="plan1", is_show=False)
404
        # rm.check_and_draw(readable=False, alpha_plan="
           plan3", is_show=True)
405
406
        # rm.check_outliers_of_kii("plan1")
```

References

- [1] Juan Aguarón and José Mariéa Moreno-Jiménez. The geometric consistency index: Approximated thresholds. European Journal of Operational Research, 147(1):137–145, 2003.
- [2] Jonathan Barzilai. Consistency measures for pairwise comparison matrices. *Journal of Multi-Criteria Decision Analysis*, 7(3):123–132, 1998.
- [3] Thomas M Cover and Joy A Thomas. Entropy, relative entropy and mutual information. *Elements of information theory*, 2(1):12–13, 1991.
- [4] GB Crawford. The geometric mean procedure for estimating the scale of a judgement matrix. *Mathematical Modelling*, 9(3-5):327–334, 1987.
- [5] Swagatam Das and Ponnuthurai Nagaratnam Suganthan. Differential evolution: A survey of the state-of-the-art. *IEEE transactions on evolutionary computation*, 15(1):4–31, 2010.
- [6] Bruce L Golden and Qiwen Wang. An alternate measure of consistency.
 In The analytic hierarchy process, pages 68–81. Springer, 1989.
- [7] Hofmann Heike, H Wickham, and K Kafadar. Letter-value plots: Boxplots for large data. J. Comput. Graph. Stat, 26:469–477, 2017.

- [8] Michael W Herman and Waldemar W Koczkodaj. A monte carlo study of pairwise comparisons. arXiv preprint arXiv:1505.01888, 2015.
- [9] Włodzimierz Holsztyński and Waldemar W Koczkodaj. Convergence of inconsistency algorithms for the pairwise comparisons. *Information Processing Letters*, 59(4):197–202, 1996.
- [10] Mykel J Kochenderfer and Tim A Wheeler. Algorithms for optimization. Mit Press, 2019.
- [11] Waldemar W Koczkodaj. A new definition of consistency of pairwise comparisons. *Mathematical and computer modelling*, 18(7):79–84, 1993.
- [12] Waldemar W Koczkodaj, Marek Kosiek, Jacek Szybowski, and Ding Xu. Fast convergence of distance-based inconsistency in pairwise comparisons. *Fundamenta Informaticae*, 137(3):355–367, 2015.
- [13] Waldemar W Koczkodaj and Ryszard Szwarc. On axiomatization of inconsistency indicators for pairwise comparisons. Fundamenta Informaticae, 132(4):485–500, 2014.

- [14] Waldemar W Koczkodaj and Jacek Szybowski. On the convergence of the pairwise comparisons inconsistency reduction process. arXiv preprint arXiv:1505.01325, 2015.
- [15] WW Koczkodaj, F Liu, VW Marek, J Mazurek, Marcin Mazurek, L Mikhailov, C Özel, W Pedrycz, A Przelaskowski, A Schumann, et al. On the use of group theory to generalize elements of pairwise comparisons matrix: A cautionary note. *International Journal of Approximate Reasoning*, 124:59–65, 2020.
- [16] Jouni Lampinen and Rainer Storn. Differential evolution. In *New optimization techniques in engineering*, pages 123–166. Springer, 2004.
- [17] Thomas L Saaty. A scaling method for priorities in hierarchical structures. *Journal of mathematical psychology*, 15(3):234–281, 1977.
- [18] Thomas L Saaty and Luis G Vargas. Comparison of eigenvalue, logarithmic least squares and least squares methods in estimating ratios. Mathematical modelling, 5(5):309–324, 1984.
- [19] William E Stein and Philip J Mizzi. The harmonic consistency index for the analytic hierarchy process. European journal of operational research, 177(1):488–497, 2007.

- [20] Rainer Storn and Kenneth Price. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. *Journal of global optimization*, 11(4):341–359, 1997.
- [21] Jacek Szybowski, Konrad Kułakowski, and Anna Prusak. New inconsistency indicators for incomplete pairwise comparisons matrices. *Mathematical Social Sciences*, 2020.
- [22] Peter JM Van Laarhoven and Witold Pedrycz. A fuzzy extension of saaty's priority theory. Fuzzy sets and Systems, 11(1-3):229–241, 1983.