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Abstract 
 
The presence of anomalous concentrations of metals within the soil profile can strongly affect its 
biological availability to plants, causing potential toxicity when exceeding threshold concentrations, 
and favoring numerous chemical exchanges. These interactions further facilitate metal dispersion in 
the hydrogeological and ecological systems, in response to weathering and erosion. Studies of the 
geospatial distribution of trace metal contaminants in Sudbury soils is thus important to unravel the 
dominant processes controlling dispersion patterns, contributing to sustainability of mining practice. 
A kriging geostatistical approach was applied to geochemical data obtained from the Sudbury Soil 
Survey to map multiscale geographic, enrichment trends in metal concentrations. Ordinary kriging 
prediction maps were developed to re-evaluate the multiscale spatial distribution of the chemicals of 
concern. Results show an anomalous distribution of metals centered on historical smelters, forming 
dominant northeast and southwest enrichment trends. The existence of these trends was validated by 
implementing a geostatistical Gaussian conditional simulation method, which reproduced the same 
spatial variability observed in the ordinary kriging maps and efficiently replicated the observed 
trends. The correlation analysis of the trends with remote sensing data, suggests that prevailing wind 
directions are likely one of the dominant driving forces controlling the trends. Integrating these 
results with satellite data showed improved vegetation regrowth patterns consistent with the 
geochemical northeast-southwest trend providing further, independent validation of the kriging 
results. Re-evaluation of the regional, geospatial distribution of the measured trace element 
concentrations will assist the monitoring and improved understanding of soil contamination trends and 
their impact on vegetation and other aspects of the biosphere in the Greater Sudbury area. 
 
Keywords 

Sudbury Soil Study, Kriging Interpolation, Gaussian Conditional Simulation, Remote Sensing, 
Normalized Difference Vegetation Index
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Chapter 1: Introduction 

Introduction 

The soil represents the uppermost layer of the Earth’s crust, with its main components being 

mineral particles, organic matter, air, and water. Metals are a natural component of the soil, 

located within mineral particles, comprised of mineral concentrations that are dependent on soil 

mineral concentrations and geochemical history (CEM, 2004). However, anthropogenic 

activities (smelting, refining, loading, and mining) have increased the number of metals in the 

soil, with anomalous concentrations occurring in elevated levels at varying soil profile depths.  

Human activity can lead to a variable degree of soil pollution where contamination by metals is 

one of the prominent contributors, especially in the Greater Sudbury area which is known to be 

an historically important mining district of northern Canada. Metals have been sourced from the 

exceptionally mineralised Sudbury Igneous Complex (SIC). Most of the soil contamination is 

related to early practices that involved roasting of sulphides, where combustion led to 

atmospheric suspension and deposition of metal-rich fumes, during smelting activity.   

Soil sampling more than any other geochemical investigation, shows accurately the total 

historical metal pollution from the point source (Saavedra, Spiers and Dunn, 2007). Sampling 

of the Sudbury soils has been extensively conducted over the past years, beginning in the 1960s, 

to evaluate and answer questions regarding the chemicals of concern (COC), the regreening 

processes, and the environmental and health concerns through studying the concentration of 

metals in the soil and vegetation across the area (SARA, 2008). Smelting and roast yards are 

the major contributors of atmospheric emissions and soil contamination in the Greater Sudbury 
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area, with contributing factors to the emissions including changes to facilities and emission 

sources, changes in production levels and, addition and closure of facilities. Soil sampling, 

analysis and interpretation of data describing metal levels within the footprint of Sudbury 

smelter regions is incredibly important for future developments in ecological and human risk 

assessment projects (Saavedra, 2008).  

This project proposes a re-evaluation of the geospatial distribution of measured trace metal 

concentrations to provide an up-to-date geostatistical modelling and representation to further 

assist the constant need of environmental monitoring and to improve understanding of soil 

contamination trends and their impact on vegetation regrowth and other aspects of the biosphere 

in the Greater Sudbury area. 

The thesis will provide an introduction of the study area with the study’s objectives explained. 

Metals and their impact on the environment will be evaluated and, a review of mining and 

smelting in Sudbury area will be outlined. The methods used to address the study’s objectives 

will be documented and explained in detail. Finally, results will be analysed and discussed with 

the main conclusions drawn and further suggestions laid out. 

 

1.1. Study area 
 

1.1.1. Location 

The City of Greater Sudbury is in Northern Ontario, Canada, and became a city in 2001 by the 

merging of multiple smaller towns and cities that made up the former municipality of Sudbury. 

According to the census of 2016, Greater Sudbury has a population of 161,531 and it is 

considered the largest municipality in Ontario by total area (3,627 km2). City of Greater Sudbury 
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comprises of 330 lakes, wetlands, various habitats, and vegetation communities (City of Sudbury, 

2005).  

 

Figure 1: City of Greater Sudbury. 

 

1.1.2. Climate 

Sudbury area lies at 260 m above sea level, it is a cold and temperate region. Rains are typical all 

year round with the summer being mildly hot and humid while winters are usually cold and 

covered with snow. During the winter season in Sudbury, January lows can reach down to -18⁰C 

(0 F) and in the summer season, July highs can be up to 25⁰C (77 F) (Canadian Climate Normals, 

1981-2010).  

1.1.3. Geology 
 

The Sudbury structure, formed by the Sudbury Impact Event, is an elliptical unit produced by a 

meteorite that collided with the southern part of the southern province of the Canadian Shield at 
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approximately 1.85 Ga. The structure consists of three main components: the Sudbury Basin; the 

SIC, which is geographically divided into the north, south and east ranges; and the Sudbury 

Breccia, which is an outer zone of locally brecciated footwall rocks extending as much as 80 km 

from the SIC (Figure 1, Rousell and Brown, 2009).  

There is still disagreement about the relative contributions of crustal and mantle magmas being 

responsible for the formation of the SIC and its associated mineralogy, regardless of more evidence 

pointing and favoring an impact origin for the formation of this structure (Lightfoot and Zotov, 

2005). The SIC is composed of four units, from bottom to top, contact sublayer, norite, quartz 

gabbro and granophyre rocks (Figure 3). The latter units form part of the main mass, with the 

contact sublayer forming part of the sublayer. At the top of the SIC lies the Whitewater Group 

comprising of four formations: Onaping, which consists of basal intrusion and fall-back breccia; 

Vermilion, made up of carbonate, chert and siltstone; Onwatin and Chelmsford; dominated by 

carbonaceous mudstone and siltstone, and muddy wackes respectively (Rousell and Brown, 2009).  

The formation of the Sudbury structure, from melting of surrounding rocks, resulted in the 

presence of Ni-Cu and secondary PGEs mineralization embedded in the SIC resulting in the region 

being one of the world’s largest mining camps. The deposits occur in and around the base of the 

SIC within the contact sublayer, footwall breccia, quartz diorite, Sudbury breccia and other 

footwall rocks, with pyrrhotite, pentlandite and chalcopyrite being the major ore minerals. The 

deposits are classified into; SIC-Footwall Contact deposit, footwall vein deposits, offset dike 

deposits and sheared deposits. About two thirds of the deposits are found at or below the bottom 

of the SIC with the majority of the remaining one third located in the offsets (Figure 3, Rousell 

and Brown, 2009). 
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Two major crosscutting breccias, which are the Sudbury Breccia (SB) and Footwall Breccia (FB) 

exists within the footwall of the SIC. The mineralogy of the FB is essential when discriminating 

anthropogenic contamination and any influences that the bedrock might have on the geochemistry 

of the soils (CEM, 2004). 

The FB occurs in four different regions that are, discontinuous sheets, mega breccia, offset dikes 

and as intrusions in felsic norite. The breccia is host to most of the Sudbury Ni-Cu-PGE ore bodies, 

made up of quartz diorite and different other rocks, with minerals including plagioclase (dominant 

mineral), quartz, K-feldspar, amphibole, chlorite, biotite, epidote, pyroxene, sericite, muscovite, 

apatite, ilmenite, and magnetite. Pyrrhotite, chalcopyrite, pentlandite and pyrite are the main 

sulphide minerals in the FB, the Ni-Cu-PGE mineralization occurs as pebbly to disseminated, 

veinlets or lenses and valves (Figure 3, Rousell and Brown, 2009). 

 

 

Figure 2: Regional setting of the Sudbury structure. After Rousell and Brown (2009). 
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Figure 3: A stratigraphic section of the Sudbury structure, where x= Ni-Cu-PGE deposit and += 
Zn-Pb-Cu deposit. After Rousell and Brown (2009). 

1.1.4. Glaciation and drainage  
 

Most of the parent material in Sudbury was transported by ice forming glacial till sediments during 

deglaciation of the Laurentide Ice Sheet. Till refers to material that is deposited by the movement 

of an ice sheet and the flow direction can be determined through studying features such as striations 

on the rocks. The ice-flow direction in the Abitibi highlands and the Sudbury Basin was north to 

south, at 170˚ to 210˚, within the valley it was at 220˚and 245˚, and at 205˚ to 225˚ south of the 

Sudbury Basin (CEM, 2004).  

The glacial sediments in the region form thin discontinuous layers above the bedrock, less than 1 

m in thickness, forming thicker accumulations along the slopes of the knolls and ridges on the 

bedrock (CEM., 2004). The transportation of glacier sediments and contamination metals can be 



16 | P a g e  
 

influenced by the drainage pattern of an area. The Sudbury area is drained in the: 1) southward 

direction by rivers and streams that flow into the Georgian bay, 2) Spanish river in the westward 

direction draining most of the region, and 3) French River in the east draining a small part of the 

region (CEM, 2004). An understanding of drainage patterns and a map can assist in visualizing 

how they affect metal contamination levels. 

 

1.1.5. Soil 
 

Soil is formed by weathering of bedrock (parent) material of which the classification is based upon 

the mode of formation which can be ice, water, gravity, wind, lakes, and oceans. The nature of the 

parent rock, weathering, erosion, drainage, and ice-flow direction greatly influences the 

characteristics of the soil. 

The soils in Sudbury area belong to five soil orders of the Canadian Soil Classification System, 

and they are namely: Luvisolic, Glysolic, Podzolic, Brunisolic and Organic soils 

(https://soilsofcanada.ca/orders/podzolic.php). The Podzolic soils are the most dominant kind 

found in this region. They are mainly found on well drained sandy tills in the region (Spektor, 

2003). Podzolic soils are forested soils found mainly on sandy parent materials in areas that are 

underlain by igneous rocks mostly on the Canadian Shield, but they can also be found elsewhere 

on Sandy Glacio-Fluvial deposits (https://soilsofcanada.ca/orders/podzolic.php), dominant 

vegetation types within these soils include coniferous-dominant plant communities. 

 

 

https://soilsofcanada.ca/orders/podzolic.php
https://soilsofcanada.ca/orders/podzolic.php
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1.1.6. Vegetation 
 

The Sudbury region is in a forest zone classified as the Great Lakes St. Lawrence Forest Region 

(SARA, 2008), which is a transition occurring between the boreal, coniferous forest to the north 

and the deciduous forest in the southern margin (Spektor, 2003). The southern margin (of the 

Northern Temagami Section) is characterized by large stands of red pine (pinus resinosa) and 

white pine (Pinus strobus). The southern margin, which is of the southern Algonquin Section, is 

characterized by white pine and eastern hemlock (Tsuga canadensis) that grew amongst sugar 

maple (Acer saccharum) and red oak (Quercus rubra) hardwoods in the uplands (SARA, 2008).  

The pre-settlement forest could have entailed of a mixture of white (pinus strobis) and red pine 

(pinus resinosa) in the uplands with white cedar swamps in the lowlands (Spektor, 2003). The 

existence of former forests can be seen by some evidence of remnant burnt white pine stumps 

(Figure 4) that can be seen in the uplands and in the barren peatlands, evidence of remnant eastern 

white cedar stumps can be seen (SARA, 2008).  
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Figure 4: Remnant burnt white pine stump in Sudbury (SARA, 2008). 

1.1.7. Wind patterns 
 

The deep history of smelting in the Sudbury area made the soils to be vulnerable to atmospheric 

pollutants. These pollutants could have fallen through snow, rain, and dust. Atmospheric pollutants 

can thus be linked to prevailing wind directions as they play a vital role in determining the direction 

in which most of the airborne particles will be blown from smelter locations. The emissions were 

and are dispersed into local communities surrounding the smelter stacks as a function of the local 

meteorological conditions and source characteristics (SARA, 2008).  

The distance at which these emissions or pollutants might travel also depends on the height of the 

stacks, meaning that tall stacks (e.g., Copper Cliff) might show high discrepancies as compared to 

shorter ones. An example is by Yang, Drohan and Yang (2020) who used seasonal wind directions 
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and proximity to source to determine soil contamination across an abandoned steel and iron plant, 

they found that the directions that had the highest pollutions were proximal to the prevailing wind 

direction. Winds are experienced from all directions in the Sudbury region, but the dominant 

directions are from the south westerly (SW) and the north to north easterly (N-NE) (Figure 5). The 

dominant historical wind direction has been found to be from the SW as shown in the rose plot of 

Figure 5. The fate of the emissions from the smelters and other operations has been determined by 

wind and other meteorological characteristics since the beginning of the operations and it is found 

that communities to the northeast and southwest would have experienced the maximum range of 

pollutants as compared to all the other areas in the Sudbury region (SARA, 2008). 
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Figure 5: Quarterly wind patterns in Sudbury area (top) and yearly predominant wind directions. 
Wind speeds are from 1971 to 2000 indicating dominant winds from the southwest and north. 
Sudbury Weather Stats (2020) and SARA (2008). 

 

1.2. Chemicals of concern (COC) 
 

The COC are the elements found to be present in the Sudbury area that present superior potential 

for exposure and risk to the environment and humans. The primary source of the high levels of 

the COC in the Sudbury Soils Study assessment was atmospheric deposition, in addition to other 
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factors such as dust emitted from mine tailings and roasting beds (SARA, 2008). The measured 

metals from the SSS were compared with soil quality guidelines presented by the MOE (SARA, 

2008). The elements that were present more than the MOE criterion were used for further risk 

assessments in the area. Initially, arsenic (As, metalloid), nickel (Ni), copper (Cu) and cobalt 

(Co) were the only elements regarded as COC in the area. Pb and Se were included at a later 

stage after further investigations, they were found to also have a link to smelter regions with a 

high positive correlation to Ni and Cu.  

As, lead (Pb), Cu, Ni and selenium (Se, metalloid) were found to be distributed in the vicinity 

of the historic smelter regions following a NE-SW ellipsoidal trend, which is consistent with 

the prevailing wind directions in the Greater Sudbury area (SARA, 2008; Mantha, Schindler 

and Kyser, 2012). In summary, the elevated metal levels of COC were centered in the vicinity 

of the smelting regions of Coniston, Copper Cliff, and Falconbridge (SARA, 2008). Figure 6 

presents the soil data screening process that was used in selection of the COC, starting with all 

the elements analyzed and the various screening parametrization that was used.  
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Figure 6: Soil data screening process as used in the SSS for selection of COC. Adapted from SARA 
(2008). Table A provides guidelines of surface soil and groundwater criteria for a potable 
groundwater condition while Table F is about Ontario typical range background soil 
concentrations. ERA refers to Environmental Risk Assessment. 
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1.3. Regions of interest 
 

The regions of interest in this study were centered on the historical smelters of Falconbridge, 

Copper Cliff and Coniston, and consider semi-barren areas surrounding them Figure 8 that were 

previously heavily contaminated by metals and deprived of vegetation growth.  

 

 

Figure 7: Regions of interest used for the SSS; the current study will also focus on some of these 
regions. Adapted from SARA, 2008. 
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1.4. Research objectives 
 

This research project aims at conducting a detailed geostatistical study of the historical soil 

chemistry data and make comparisons with up-to-date Landsat Earth-Observation maps, to better 

understand land recovery and regreening, in the past years. The objectives of the study are to: (1) 

evaluate the regional, geospatial distribution of measured trace element concentrations and their 

dependency on the interpolation statistics of kriging and Gaussian geostatistical simulation (2) 

and to fulfill the broader objectives of environmental monitoring and human impact assessment. 

A comparison between geostatistical and satellite data will be conducted using a Kriging spatial 

interpolation and conditional simulation of the multielement data and by integrating the results 

of these interpolations with the remote sensing information, to create comparative hybrid maps 

of both kriging and remote sensing map products. This will be done to improve the understanding 

of soil contamination trends and their impact on vegetation and other aspects of the biosphere. 

 

1.5. Expectations 
 

Based on the SSS results, the following is expected: 

• Anomalous metal (loid) concentrations in the upper 0-5 cm soil profile depth. 

• Concentration of individual metals decreasing at around 120 km from the smelters. 

• Elevated concentrations centered in the vicinity of the three smelters with an asymmetric 

distribution resembling a NE-SW ellipsoid. 

• Progressing vegetation regrowth in the smelter centroids. 
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The current study will aim at validating some of these results and enrich them to provide a 

refined interpretation and understanding, as it considers the use of different methods and new 

Landsat 8 data that were unavailable during the SSS study. 
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Chapter 2: Metals, smelting and contamination 
 

Introduction 
 

This section presents major key factors that will be considered during the discussion of the results. 

An introduction to metals, their sources, behaviour in the soil environment and how they impact 

the environment in terms of metal pollution or contamination is presented, to understand how the 

observed contamination patterns came to be. The term metals will be used when referring to both 

trace metals (elements) and metalloids (chemical elements with properties that are in between 

metals and non-metals) of concern in the study. The effects and impacts of smelting and 

contamination in Sudbury, as presented in this chapter, will aid as the backbone into analysing the 

various driving forces that could have led to the observed soil contamination patterns, this is to 

assist in meeting all the study’s objectives. The previous soil studies conducted will be aimed at 

introducing the SSS in major terms, as it forms the foundation of the current study. An example 

from a Ni-Cu mining center in Norilsk, Russia is presented, and their findings will therefore be 

compared with what has been previously analysed and will be currently analysed for the Sudbury 

area, to be able to draw up useful conclusions. 

 

2.1. Metals 
 

Metals refers to elements that form positive ions by losing electrons in chemical reactions and are 

lustrous. They can be described and categorized as trace metals, transition metals, micronutrients, 

toxic metals, and heavy metals (Mclean and Bledsoe, 1992). Naturally, all soils contain trace levels 

of metals Table 1 meaning that their presence is not indicative of contamination, however, the 

concentration of metals in uncontaminated soils is basically related to the parent material geology 
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that the soil was formed from (Mclean and Bledsoe, 1992). Many countries in the world depend 

on mining for their economic growth. Metals play a vital role in our daily lives and are useful for 

most of the technological developments. Humans, flora, and fauna also depend on metals for 

survival; however, this is available in micro-nutrients, an oversaturation of these metals can cause 

a survival threat. Trace element concentrations exist in plant and animal tissue in amounts less that 

0.01%, this increases when they become available in excess and said to be toxic. There are thirteen 

trace metals and metalloids, which are Ag, As, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, Tl and Zn, that 

are considered to be priority pollutants and can be derived by either natural or anthropogenic 

processes (Sparks, 2005). The Earth’s crust is mostly composed of metal oxides, of which most of 

them are found in the soils of active mining sites or regions.  

Table 1: Levels of some metals worldwide in the soils and their ranges. It should be noted that an 

excess of these levels is not a direct indicator of contamination as some regions also have an 

abundance of some metals within the parent rocks (Mclean and Bledsoe, 1992). 

 

Metal Selected average for soils 

mg/kg 

Common range for soils 

mg/kg 

Ni 40 5-500 

Cu 30 2-100 

Co  ?   ? 

Pb 10 2-200 

As 5 1.0-50 

Se 0.3 0.1-2 
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2.1.1. Natural sources 
 

The majority of trace metals occur in nature, with the main source being weathering of soil parent 

materials which includes both igneous, metamorphic and sedimentary rocks (Lal, 2017). The 

chemistry and mineralogy of soils in an area might therefore be a direct reflection of the bedrock 

geology. In the Sudbury basin, the bedrock is known to be highly mineralized. However this is not 

reflected in the higher background of soil concentrations and probably is due to the dilution with 

upstream rock materials as an aftermath of glaciation events (SARA, 2008). Further to this dilution 

effect, base metal-rich phases in sulphide-rich units of the regional bedrocks are relatively soft and 

might have been transported and then dissolved from the surficial materials because of glaciation 

and weathering. 

The metal distribution in the soil parent material was collected to determine the normal background 

levels of the contaminants of concern (Table 2) to meet one of the Center of Environmental 

Monitoring’s project goals. The soil samples were collected at depths greater than 80 cm (i.e., 85 

to 112 cm). The analytical data obtained from these samples serves as the first attempt into 

determining pre-industrial levels in the regional soils, the data hence provided an accurate 

representation of regional background levels of Aqua Regia extractable metals (CEM, 2004). The 

mean background concentrations in the parent materials were compared with, 1) values for mean 

crustal abundance for granite (the dominant rock in the region), 2) values of conterminous United 

States, 3) and values of soils of the Canadian Shield for comparisons (CEM, 2004). Documented 

true natural background surface soil metal concentrations in Sudbury have been found to be similar 

to other regions of the Canadian Shield (SARA, 2008). 
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Table 2: Mean background concentrations (ppm) of the chemicals of concern in Sudbury as 
compared to the Canadian Shield soils and Ontario Ministry of the Environment’s Table F. 

 

2.1.2. Anthropogenic sources 
 

Input of trace metals by anthropogenic sources includes agriculture, metallurgy, energy 

production, sewage sludge, microelectronics, and many others. Anthropogenic activities that are 

associated with industrial processes such as mining and smelting, manufacturing, disposal of 

domestic and industrial waste (e.g. slag heaps), and application of phosphorous fertilizers are 

found to be the major source of metal contamination in soils (Lal, 2017). Atmospheric deposition 

is a major catalyst for the input of trace metals in soils and plants (Sparks, 2005). In an active 

mining and smelting region, the soil contamination is usually due to dust fall with excess trace 

metals, mine waste and release of sulphur dioxide, which causes acid rain. Soils are the major 

recipient of metal contaminants in terrestrial ecosystems whereas in aquatic systems sediments are 

the major sink leading to the impact of freshwater due to runoff, drainage or disposal, and 

groundwater due to leaching or transport through mobile colloids (Sparks, 2005). 
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2.1.3. Influence on the environment 
 

Soil contamination by trace metals might occur due to atmospheric deposition or direct deposition 

on the soils. Trace metals can be deposited by either way. Accumulation of trace metals in the soil 

might result in the degradation of soil quality, crop yield, agricultural produce, ecosystem and have 

negative impacts on human and fauna’s health   

The elevated concentrations of Ni and Cu around Sudbury smelters is one of the reasons of slow 

development and degradation of vegetation cover and soil (Spektor, 2003). An increase in 

atmospheric deposition causes an increase in metals in the air and soil causing changes in the flora 

and degrading species that are sensitive to metal pollution. This in turn results in only few species 

surviving in the area. It is a matter of survival of the fittest, flora that is resistant to metal pollution 

or that has acquired resistance with time will survive while their counterparts degrade. Vegetation 

distribution can then be used as an indicator of metal pollution and to study an ecosystems heath.  

 

2.1.4. Metal behaviour in the soil environment. 
 

Metal concentration in the soil solution is controlled by a variety of processes that are 

interconnected, ranging from inorganic to organic complexion, oxidation-reduction reactions, 

precipitation or dissolution reactions, to adsorption or desorption reactions (Mclean and Bledsoe, 

1992). Any changes that might occur in the environmental conditions, could be man-made or 

natural processes, such as degradation of the soil organic waste matrix, changes in soil pH, redox 

potential, or soil solution composition may enhance metal mobility (Mclean and Bledsoe, 1992). 

The solubility, mobility, bioavailability, and toxicity of metals in the environment is controlled by 

biogeochemical processes at reactive natural surfaces, including clay minerals, metal oxides and 
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hydroxides, humic substances, plant roots and microbes surfaces (Sparks, 2005). The 

biogeochemical processes that metals and metalloids undergo occurs in the critical zone, which is 

the mixed near surface environment where the rock meets soil, water, air, and living organisms 

regulating the natural habitat, and can occur as described by Sparks (2005): when metal ions enter 

the soil solution, they may be subject to numerous pathways that can potentially overlap (Figure 

8), hence the soil solution contains metals that exist as free ions (free metal ions are the most 

bioavailable and toxic form of metals; Mclean and Bledsoe, 1992) or as complexed to inorganic 

or organic ligands, these can then be; 

1) Taken vertically by plants, 

2) Retained on mineral surfaces, natural organic matter, and microbes, 

3) Transported via the soil profile into groundwater through leaching or either by colloid-

facilitated transport, 

4) Precipitated as a solid phase, and 

5) Diffused in porous channels such as soils. 

Soils in mining regions usually have a low pH as an effect of acid rain, which increases the ability 

of soil to hold metals by increasing pH. The soil pH in the Sudbury area has been low for an 

exceptionally long time (Spektor, 2003) due to constant mining activities, resulting in the ease of 

metals to migrate through the soil profiles. Soil pH is inversely proportional to trace metal 

solubility, low pH entails high solubility and vice versa. Solid’s precipitation e.g. carbonates, 

sulphates, oxides, and sulphides increase the limitation of metal solubility (Spektor, 2003), hence 

lowering the time for these solids to dissolve in the soil, the metals can then be absorbed by flora 

and fauna. 
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Not much is known about the occurrence and forms of Sudbury’s main metals, which are Ni and 

Cu in the soils, but a study conducted  using Scanning Electron Microscopy with Energy 

Dispersive X-ray spectroscopy (SEM/EDX) that was applied on samples collected by (Dudka, 

Ponce-Hernandez and Hutchinson, 1995) showed that Cu is associated with non-residual organic 

matter and is highly mobile if compared to Ni. Nickel on the other side forms fewer mobile 

sulphides and oxides. So, it is expected to find Cu traveling for longer distances as compared to 

Ni within the Sudbury soils. Both Ni and Cu are found as sulphides usually associated with 

chalcopyrite, cubanite, magnetite, ilmenite, pyrite and the most common mineral, pyrrhotite 

(Adamo et al., 1996).  
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Fertilizers, land disposal, mining, atmospheric deposits 

                 
 

Figure 8: Biogeochemical pathways and processes of metals in the critical zone. Me = metal, 
Small green blobs = metal ion, big brown blobs = soil particles, and orange blob = colloid. After 
(Sparks, 2005). 

2.2. Smelting and contamination in Sudbury  

The abundance of ore minerals within the Sudbury basin has attracted mining and smelting 

processes, which resulted in the initiation of several smelters Figure 9 in the early 1930s and 

culminated with the construction of the superstack (main smelters sites: Copper Cliff facility, 

Coniston (closed in 1972) and Falconbridge operation; SARA, 2008).  

The aim of smelting has always been to separate the ore from the rocks via ignition. Several roast 

yards operated around the region (Figure 9), with a blast furnace used as a production of feed in 

Copper Cliff (SARA, 2008). Timber was used as roast beds to ignite the ore from the rocks, this 

Colloids: 
Transport and 

Mobility 

                                                                                                                        

Plant uptake 
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caused deforestation and enhanced soil erosion. Roasting is an exothermic reaction, air pollution 

was emitted relatively close to the ground, however the emissions could not have been carried 

far as from tall stacks (smelters), denoting that pollution was directly carried down to the soil in 

the immediate vicinity, contributing to extremely high metal concentrations. By 1930, blast 

furnaces and roast yards were then replaced with multi-hearth roasters and reverberatory furnaces 

as a means of smelting (SARA, 2008).  

During the peak years of smelting (between 1942-1944, as an effect of World War II), an average 

of 1.5 million tons of SO2, 200 tonnes of Pb, 120 tonnes As, 50 tonnes of Se, and over 1,000 

tonnes of Cu and Ni were emitted (Malcolm, 2015). Production and resources from the past 

exceeded 1.548 million tonnes of ore at approximately 1.2% Cu and 0.4 g/t Platinum Group 

Metals (PGMs), this resulted in an estimated production of 8.5 million tonnes of nickel and 8.4 

million tonnes of copper over the years (SARA, 2008). However, the current stack particulate 

loadings have decreased significantly and are lower than historical emissions, from 

commencement operations to the 1950s, due to developments and implementation of highly 

efficient dust removals technologies. 

 

 

 



35 | P a g e  
 

 

Figure 9: The location of key roasting and smelting sites in the Sudbury area, also shown are 
semi-barren and barren areas around the smelter centroid, with the lake damage area shown by 
image insert. After (Gunn et al., 1995). 

 

The Sudbury ore is comprised of 40% iron sulphides, 4-5% Cu and Ni, and 35% sulphur, with iron 

in the deposit, posing difficulties in smelting as the process of separating copper and nickel from 

sulphur, iron and barren rock is complicated and requires expensive and advanced technology 

(Group, 2008e). Copper and nickel are considered as Sudbury’s main metals. A study conducted 

by (Dudka, Ponce-Hernandez and Hutchinson, 1995) indicated that the concentrations of copper 

and nickel appears to be higher than other elements, with a range of Ni (5.3-2149.0 mg kg-1) and 

Cu (11.4-1891.0 mg kg-1, dry wt.) when compared with the world concentration of metals in 

uncontaminated soils (Ni , 25 mg kg-,  and Cu ,12 mg kg-1), in a study conducted by Berrow and 
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Ure (1986). These results showed that Ni and Cu are the most elevated metals in the Sudbury 

region and much attention should be paid to them.  

Emissions in Sudbury have decreased from the early mining years to present times. Figure 10 

shows an example of COC emission rates around the Falconbridge smelter (Xstrata smelter), it 

shows declines around the 1980s of the COC which spikes around the 1990s.  

 

Figure 10: Emission rates of COC at Falconbridge (Xstrata) smelter. (SARA, 2008). 

 

2.2.1. Effects on the environment 
 

The ellipsoidal distribution of denudation of vegetation due to mining and smelting activities in 

this region led to high levels of soil erosion and rapid geomorphological change of land. When 

vegetation recovery programs started, the area had already lost most of its topsoil which contains 

vital nutrients as phosphorus, nitrogen, magnesium, manganese, and calcium. This could be one 

of the reasons for the slow land recovery. The aim of the land recovery is to increase the soil pH 
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where soils have been found to have exceptionally low pH in the range of 2.0 to 4.5 (Gunn et al., 

1995). 

Much of the vegetation that is seen in Sudbury today is due to land restoration processes that 

started in 1917, to restore barren lands that were degraded of vegetation. These barren lands were 

due to slag heaps, intensive harvesting and forest fires, roasting yard impact and emission damage. 

Slag heaps take up a lot of space and provide an inhospitable environment for plants to grow. 

During precipitation, the slag can be washed off and enter the soil environment, hence 

contaminating it. The harvest process involves selection of certain species (e.g., red pine and white 

pine) for construction, conifer was also removed when building railways, sparks from the track 

would spark the timber left by the rail side. Fires were also caused by prospectors who lit up flora 

to expose the rock outcrops for exploration studies. Timber was used to ignite ore from the rocks 

on roast beds causing stress in the soil environment and deforestation as a lot of it was required for 

this process. Emissions damaged vegetation through acid rain and toxifying the surface with metals 

that the vegetation could not cling to for survival. The barren lands were mostly around the smelter 

regions (Figure 8) and can still be seen today. 

The vegetation recovery in the region followed a reduction in atmospheric emissions and follows 

a noticeable trend. Recovery has been slow and limited in certain areas, due to that soil properties 

are more critical than air quality in terms of suppressing colonization of barrens (SARA, 2008). 

Some of the key recovery limiting factors include, loss of soil micro-organism and organic matter, 

physical loss of soil erosion, elevated metal levels in surface soils, soil chemistry limitations and 

sever micro-climate conditions. The improved growth of vegetation (Figure 12) measured since 

1972 in regions that were moderately affected by pollution was the result of improved atmospheric 

quality (SARA, 2008). The type of metal pollutants, concentrations, accumulation, and behaviour 
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together with physiological system of the plants results in different reactions by the plant species. 

Different kinds of vegetation can be used as indicators of metal pollution levels, for example, 

lichens are used for biological monitoring as they have a high sensitivity to air pollution. The effect 

of air pollution on vegetation occurs in different stages. The first effect is the physiological level 

such as damaging of leaf cells, followed by visible symptoms appearing depending on level of cell 

degradation and under long influences the changes become more and more visible (Spektor, 2003). 

The study of plants can assist in giving a clear picture on the level of metal pollution in the soil 

environment, however, this study is not based solely on vegetation studies but rather the spatial 

distribution of trace metals in the soils. 

 

Figure 11: Part of Sudbury showing the changing landscape (Greater Sudbury.ca, 2009). 

 

2.2.2. Soil studies  
 

Previously, environmental studies had only focused on sulphur emissions, it was only until the 

1960s when environmental concerns expanded to include metal levels and acidification of the 

soils, that is when the soil studies began (SARA, 2008). The studies’ results indicated that the 

1981 2008 
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soil acidity and concentration of copper and nickel were elevated in the same areas where sulphur 

dioxide had been measured, making soils studies a pre-requisite.  

In September 2001, the Ontario Ministry of the Environment (MOE) released a report 

summarizing previously unreported extensive soil and vegetation chemistry data that was 

conducted in the Greater Sudbury area during 1971 to 2000, from the Ministry’s Sudbury Regular 

Survey, the Sudbury Special Survey, and the year 2000 Surface Soil Survey (MOE, 2001). The 

recommendations of the report were the following: (1) a more detailed study should be 

undertaken to fill data gaps and (2) a Human Health Risk Assessment (HHRA) and Ecological 

Risk Assessment (ERA) should be undertaken (MOE, 2001). These recommendations gave rise 

to the Sudbury Soil Study (SSS), with the underlying objective of determining whether Sudbury 

soils containing metal and metalloid levels (e.g., Arsenic) above generic guidelines posed an 

unacceptable ecological and human health risk. 

In 2001, two mining companies Vale Inco and Xstrata Nickel funded the SSS of which the report 

was released in 2008, this study is the most extensive soil study to ever be conducted for the 

Sudbury area (SARA, 2008). Three comprehensive soil surveys were conducted, with the aim of 

quantifying anthropogenic metals in the local soils and to determine pre-industrial metal levels 

in local soils and around smelter regions. The studies are namely, the Sudbury Urban Soil Study 

(SUSS), Sudbury Regional Soils Study (SRSS) and the Falconbridge Soil Survey (FSS). Data 

from these studies was combined, forming the 2001 SSS. The SUSS aimed at investigating metal 

concentrations in local urban soils and compared them to MOE guidelines, while the SRSS 

analyzed the distribution of metal species in undisturbed soils on a regional scale of the 0-5, 5-

10, and 10-20 cm soil profile depths (Malcolm, 2015). On the other hand, the FSS focused on 

sampling properties that are owned by Falconbridge.  
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The SSS identified six COC; Ni, Cu, Co, Pb, As and Se, to be distributed at approximately 20 

km from the smelter regions. The SRSS showed that samples that are within the 0-5 cm soil 

profile depth are highly enriched in metals than the deeper soil depths, and that their distribution 

is consistent with atmospheric deposition being the driving force and historical industrial 

activities of the Sudbury area (Malcolm, 2015). The Center of Environmental Monitoring 

(CEM) in Laurentian University also did a report on the SSS that indicated the concentrations 

of these metals (COC) along concentration gradients indicating the effects of smelter emissions 

as being relative to regional backgrounds at approximately 120 km from downtown Sudbury. 

The detailed maps of these can be found in the CEM (2004) report. 

 

2.2.3. Correlations with other Ni-Cu mining centers 
 

2.2.3.1. Russia-Noril’sk 
 
Noril’sk region sits at about 300 km north of the arctic circle with a population of approximately 

170,000 people. Located on the Tunguska basin in the center of the 3000*4000 km Siberian 

continental flood basalt (Habashi, 2012), the Noril’sk mining district is one of the world’s largest 

mining camps being principal producers of copper, nickel, and PGEs. Noril’sk history is no 

different from that of Sudbury with regards to environmental pollution by metal contaminants.  

This area is one of the most environmentally damaged in Russia, with vegetation degradation due 

to mining smelters around the region. Smelting in this region began around 1935 with the aim of 

producing copper and nickel at a much lower rate (Spektor, 2003). The extensive smelting led to 

surrounding ecosystem degradation destroying forests at 120 kms south-south-west from the 
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smelter source. Just like Sudbury, nickel smelting in this region is the main source of pollution in 

the form of smog and acid rain by sulphur dioxide emissions and metal contamination. The forest 

degradation was only recorded in 1968, but during this time not enough finances where available 

to switch over and start implementing current technologies of lower emissions. The soils in this 

area lack a top soil horizon with soil profiles having 3000-4000 mg/kg and 500-2000 mg/kg of 

copper and nickel respectively mostly in the 5-10 km zone from the emission point source 

(Spektor, 2003).  

The acquired information from this mining region will be used later for comparisons with what is 

already known and will be found for the Sudbury region. 
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Chapter 3: Methods 
Introduction 
 

Characterization of spatial variability of trace metals in soil is essential in the identification of 

pollution sources and the potential risk that this might cause to humans and the environment. 

Trace metal concentrations might depend on the geochemical nature of the bedrock, abiotic and 

biotic factors (Guagliardi, Cicchella and De Rosa, 2012). Geostatistics allows for the description 

and modelling of available spatial patterns, prediction (kriging) at unsampled locations and the 

assessment of the associated uncertainty by means of stochastic simulation (Saavedra, Spiers and 

Dunn, 2007). Geostatistical methods of ordinary kriging and simulation are being applied in this 

study to facilitate predictions of spatial distribution of trace metals through geospatial 

interpolation. 

This chapter introduces theories and methods that were used to investigate the distribution of 

spatial variation of soil pollutants and vegetation using respectively geostatistical methods and 

remote sensing techniques. The methods applied are introduced using brief theories, with 

important equations (equation derivations are not shown) where applicable and their use in the 

study. Kriging geostatistical interpolation methods were applied to estimate trends and the spatial 

distribution of metals, as the soil sampling that was conducted provides limited insights on trends, 

due to the sparsity of the information. On the other hand, remote sensing techniques were applied 

to look at vegetation distribution from a satellite point of view and further compare the analysis to 

what is depicted from geostatistical models. The aim of integrating the two methods is to compare 

the soil contamination trends obtained from kriging maps with remote sensing applications to 

assess any correlation to make precise decisions regarding the effect that these contaminants are 

having on the vegetation distribution of the study region. The chapter is divided into three main 
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sections (Figure 12), firstly, statistical, and geostatistical interpolation methods that were applied 

are introduced, then the application of remote sensing techniques with major focus on vegetation 

analysis is also explained and lastly, an illustration of the integration methodology will be 

presented. The use of ESRI ArcGIS 10.6.1. and its geostatistical analyst tool, excel spreadsheet, 

and an R package was implemented to meet the study’s objectives. 

 

  Figure 12: Method workflow implemented to meet the study's objectives. 
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3.1. Data  
 

Sampling is usually the first step in determining the concentration of pollutants at site locations. 

Data obtained from the 2001 Sudbury Soil Study (SSS) was acquired from an open-source dataset 

in a Microsoft excel format, with the data comprising of approximately 8000 samples. The soil 

samples were analysed for 20 key elements at soil profile depths of 0-5 cm, 5-10 cm and 10-20 

cm, the analysis procedure can be found on the (SARA, 2008) report. The concentrations of the 

metals are given in µg/g (ppm). The data was prepared in an Excel spreadsheet and exported into 

ArcGIS 10.6.1. and mapped (Figure 14).  

The data was subset by soil profile depth in ArcGIS and mapped as 2D dot maps for each COC. 

Data sub setting can be advantageous as this can help limit time in fitting a model and avoiding 

numerical errors by using a uniform subset. This assists in saving time for acquiring an accurate 

model, validation can be easily conducted, effects of clusters can be reduced, and the robustness 

of the data can be improved (Rennen, 2009). The general intuition is that using more data in 

geostatistics produces a better model and a large dataset is regarded as a good starting point in 

building a model (Rennen, 2009), therefore the entire sub-dataset was used for analysis. 



45 | P a g e  
 

 

Figure 13: Data point map showing locations where samples were collected. 

 

3.2. Exploratory spatial data analysis 
 

After mapping the data, exploratory spatial data analysis was performed for data exploration to 

understand the data behaviour and distribution. Box plots, histograms and normal Q-Q plots were 

produced for all the COC to look at data outliers, assess data distribution, and measure normality. 

Data outliers that were identified using boxplots were removed as they can vigorously affect the 

interpolation. Data that was skewed was log transformed, and normal Q-Q plot was used to assess 

normality. In the normal Q-Q plot, the closer the data points are to the 45-degree line, the closer 
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the data is to a normal distribution. Scatterplots were used to understand the relationship existing 

within these metals. This was done to assess similarities in the trends and behavior of the metals.  

The trend analysis tool of ArGIS was implemented to study global trends of the attributes (COC). 

A surface might comprise of different main components, which are a global trend (e.g., 

topographic influence) that is fixed and short-range variation (also known as short range error, 

e.g., precipitation); the latter can be modelled in spatial autocorrelation and the nugget effect 

(defined in section 3.3.1.4.). An existing global trend in the data can be removed using 

polynomials of different orders (e.g., 1st, 2nd, or 3rd order) or modelled depending on knowledge 

of the phenomena, with justifications of doing so. This study deconstructed the data into the 

global trend plus short-range variation, meaning that it was assumed that the global trend is fixed, 

and the short-range variation is randomly autocorrelated depending on its location in space. The 

final surfaces produced will be a combination of the global trend and short-range variation. This 

was done as removing the trend comes with a lot of complications (e.g., choosing the right 

polynomial, knowledge of the global trend) and due to that modelling sensitive values as soil 

contamination can often be difficult, so caution should be applied. However, data detrending was 

also tested as removing the global trend can lead to better visualization of local variations since 

kriging is carried out on the residuals, although the geostatistical analyst tool adds the trend back 

to the kriging results obtained from the residuals to rescale the data and produces different results. 

3.3. Spatial prediction 
 

Spatial interpolation or prediction refers to the use of values that are at sampled locations to 

estimate values at unsampled locations. All spatial interpolation methods are based on Tobler’s 

first law of geography that states that ‘Everything is related to everything else, but near things 
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are more related than distant things’ (Sui, 2004), this is documented as spatial autocorrelation. 

Spatial autocorrelation can be positive or negative. A positive spatial autocorrelation entails that 

the closer that observational units are to each other the more similar they are, the opposite is true 

for negative spatial autocorrelation. Spatial prediction models are used to measure spatial 

autocorrelation of a dataset, which is important in understanding how attributes are distributed in 

space. These models can be classified as (Hengl, 2007): mechanical (deterministic) models (e.g. 

theissen polygons, inverse distance interpolation, regression on coordinates, natural neighbors, 

and splines), linear statistical (probability) models (e.g. kriging (plain geostatistics), regression-

based, Bayesian- based, regression-kriging, and hybrid models) and expert-based systems (e.g. 

machine-learning algorithms, hand-drawn maps, and data driven expert based on neural network 

algorithms). This study makes use of kriging linear statistical models to look at spatial 

autocorrelation trends of the COC. In depth details on the above mentioned different kinds of 

interpolation models can be found in Hengl (2007). 

 

3.3.1. Geostatistics  
 

Geostatistics is a linear statistical modeling technique that specializes in the analysis and 

interpretation of geographically referenced data. It is based on the theory of regionalized variables 

developed by G.Matheron in honour of the pioneering work of mining engineer D. Krige and 

statistician H.S. Sichel as applied in the South African mining industry. This formed the first 

generation of geostatistics known as linear geostatistics. Geostatistics is used with two different 

meanings, as a collection of all statistical and probabilistic methods that are applied in 

geosciences and as an alternative name for the theory of regionalized variables (Bàrdossy, 1997). 

The theory of regionalized variables is based on an introduction of random functions (RF). 
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Introduction of RF was such that for each point x there exists a random variable Z(x) such that 

two points x and y with variables Z(x) and Z(y) are different but not independent (Matheron, G. 

Kleingeld, 1987). The theory provides a brief and essential methodology for describing and 

analysing data that is spatially distributed.  

 Geostatistical methods are based on statistical models that include autocorrelation, which are 

statistical relationships among the sample data, on top of their capability of producing a 

prediction surface, they can also provide an accurate measure of the predictions (Johnston et al., 

2003). Geostatistical analysis of data occurs in two main ways (1) the variogram or covariance is 

modelled to examine and model spatial autocorrelation of the data, (2) kriging is applied to 

predict values at unsampled locations. This means that the data is used twice, (1) to estimate the 

spatial autocorrelation and (2) to make the predictions (Johnston et al., 2003).  

 

3.3.1.1.  Kriging interpolation 
 

Kriging is the most used linear geostatistical method. It is a general term used as a synonym for 

geostatistical interpolation. Kriging is referred to as the best unbiased linear estimator (B.L.U.E.). 

This is because the estimates are unbiased and have a minimum variance as it is an optimal 

interpolator, this feature makes it more creditable as compared to other estimation methods 

(Oliver et al., 1989). Kriging has been compared with various other interpolation methods (e.g., 

Isaaks and Srivastava, 1989) and has proven to have higher credibility and to be reliable. 

Ordinary kriging (OK) is a standard version of kriging methods (Hengl, 2007) that was used in 

this study, as it usually proves to be robust for estimating unknown values at unsampled locations 

(Mousavifard et al., 2013). OK is by far the most implemented kriging type as it provides an 
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estimate for the entire region around measured data points (Mousavifard et al., 2013) as compared 

to other methods (e.g. deterministic methods). Isaaks and Srivastava (1989) looked at estimates 

produced by polygonal deterministic and OK methods, looking at different statistics (such as true 

value vs. estimate plots) they found that OK estimates had a lower overall and conditional bias 

as compared to the polygonal ones. It is for this reason, in addition to that kriging can calculate 

error estimates, and is able to interpolate data sources allowing a better and accurate 

representation of trends and overall spatial distribution of elements, that kriging is employed in 

this study. The OK weights are estimated by assuming a constant mean (µ) for the data (no trend) 

using the equation: 

 

                     𝑧𝑧(𝑠𝑠) = µ(𝑠𝑠) + 𝜀𝜀(𝑠𝑠)                                                      Equation 1 

 

Where z(s) is the unknown variable of interest at location s that is decomposed into a deterministic 

trend μ(s) and 𝜀𝜀(𝑠𝑠) is the form of the random autocorrelated errors with spatial dependence 

(Johnston et al., 2003). The predictor is developed as a weighted sum of the data defined by:  

 

               Ẑ(𝑠𝑠0) =  ∑ 𝜆𝜆𝑖𝑖𝑍𝑍𝑁𝑁
𝑖𝑖=1 (𝑠𝑠𝑖𝑖)                                                     Equation 2 

 

Where Z(𝑠𝑠𝑖𝑖) is the measured value at location i, the unknown weight for the value measured at 

location i is given by 𝜆𝜆𝑖𝑖 and, 𝑠𝑠0 is the location of prediction (Johnston et al., 2003). The weights 

are calculated by solving a system of linear equations comprising of coefficients that depend only 

on the variogram and they are not selected based on any rules but on the variation of the function 

in space (Johnston et al., 2003; Floch, 2013). These weights are also proportional to the 
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correlation between the estimated and measured points and inversely proportional to the 

intercorrelation existing between the data points. It is expected that some of the predictions might 

be above or below the actual values, the difference between these values should be zero on 

average. Making the predictions unbiased (Johnston et al., 2003). 

Some other types of commonly used kriging methods are the universal (UK) and simple (OK) 

kriging methods. Universal kriging assumes a polynomial trend model which can be a linear 

model, of the type: 

 

                      𝑧𝑧(𝑠𝑠) = µ(𝑠𝑠) + 𝜀𝜀(𝑠𝑠)                                               Equation 3 

 

Where z(s) is the unknown variable of interest at location s, μ(s) is some sort of deterministic 

function and 𝜀𝜀(𝑠𝑠) is the form of the random autocorrelated errors with spatial dependence. 

Simple kriging assumes stationarity of the first moment within the entire study domain with a 

known mean, using the model: 

 

                    𝑧𝑧(𝑠𝑠) = µ + 𝜀𝜀(𝑠𝑠)                                                          Equation 4 

 

Where z(s) is the unknown variable of interest at location s, μ is a known constant mean and 𝜀𝜀(𝑠𝑠) 

is the form of the random autocorrelated errors with spatial dependence. Due to that µ is assumed 

and known fully, it is also assumed that 𝜀𝜀(𝑠𝑠) is also exactly known at the data locations (ESRI, 

2020). 

3.3.1.2. Spatial dependency, second order stationarity and the intrinsic 
hypothesis 

 

Geostatistics is solely based on random processes with dependence (Johnston et al., 2003). 

Spatial dependency (also called spatial autocorrelation) entails that it is impossible to predict 
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values between data values that are spatially independent (Macleod, 2006). Dependency rules are 

usually unknown but can become apparent through continued observation of several samples 

(Johnston et al., 2003). Overlooking dependency might result in incorrect analysis and poor 

decisions when dealing with spatially dependent data (Macleod, 2006). Statistics relies on the 

means of the replication to estimate the dependency rules. To obtain the required replication in a 

spatial setting, stationarity is used which is an assumption required for spatial data wherein it is 

believed that estimates can be derived with the variation and uncertainty of the estimates 

understood from repeated observations (Johnston et al., 2003). This replication is provided by 

similar distances between any two data points (Johnston et al., 2003). 

Second order stationarity assumes that the expected value of a random function is constant all 

through out the area (Bàrdossy, 1997) and the covariance is the same between any two points 

that are the same distance apart no matter their location, the covariance is dependent on the 

distance separation between points and not on their coordinate positions. Stationarity does not 

directly propose second order stationarity, stationarity random functions may sometimes not be 

second-order stationarity as their first moments might be undefined (Myers, 1989).  

The intrinsic hypothesis assumption is slightly weaker than the second order stationarity 

(Bàrdossy, 1997). It requires the mean and variance to depend strictly on the separation distance 

between samples and not on the coordinate position of the data, hence distances that are alike 

between different pairs of data points provide statistical replication (Macleod, 2006).  

A RF can satisfy the intrinsic hypothesis and not second order stationarity (Myers, 1989). This 

means that a RF can enable a variogram to be calculated but this is not the case for the covariance 

(Floch, 2013). (The relationship between the covariance function and the variogram is shown in 
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Figure 15. The variogram function is the most frequently applied in the analysis of soils and will 

be considered for this study. Stationarity is what the variogram assumes and is dependent on, if 

data is in a non stationarity form, data detrending and data transformation should be applied to 

enable a normal Gaussian distribution (Macleod, 2006). Kriging can then be applied once the 

dependency and stationarity assumptions are known.  

 

Figure 14: Relationship between the covariance, C (h), and variogram, γ (h), function. 

 

 

3.3.1.3. Data transformation and normality 
 

The kriging estimator is a weighted average and hence sensitive to few exceptionally large 

variables and if the data is skewed, modeling of the variogram becomes hard (Macleod, 2006). 
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The main goal of log transforming data is to have a frequency distribution that is or mimics a 

gaussian normal distribution, hence decreasing skewness. By doing so, the variance of the data 

is reduced, and descriptive statistics are improved. If data transformation is not applied, low 

values might be overestimated while high values might be underestimated, which is one of the 

draw backs of kriging. Sample data that was heavily skewed (with a skewness of >5) was 

transformed using a natural logarithm to simplify variography and fulfill the kriging assumptions 

of data normality.  

 

3.3.1.4. Variogram modelling  
 

The variogram is the core of geostatistics, from it the form of the model that is applicable to the 

phenomena under study, the kriging weights, and standard errors of estimation by kriging can be 

gathered (Cressie and Hawkins, 1980). The kriging estimates, Gaussian simulation and indicator 

methods all need a variogram for each variable in each domain (Deutsch, 2014). It should be 

noted that some authors refer to this as the variogram (e.g. Leuangthong, McLennan and Deutsch, 

2004; Gringarten and Deutsch, 2001; Bàrdossy, 1997,  Myers and Journel, 1990; Myers, 1989; 

Journel, 1989 and 2003, Chilès, 2012; Compositing, Mory and Deutsch, 1989; Matheron and 

Kleingel, 1987; Floch, 2013) while some refer to it as the semi-variogram (e.g. Cambardella et 

al., 1994;  Cressie and Hawkins, 1980;  Yamamoto, 2005; Klauberg et al., 2018; Johnston et al., 

2003; and Macleod, 2006). The term can also be used interchangeably. For argument’s sake, this 

study will not dwell much on the effective use of the terminology but will use ‘variogram’ as the 

preferred term. The variogram is a measure of variability that increases as values become more 

different (Gringarten and Deutsch, 2001), which is used to quantify spatial autocorrelation 
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patterns of spatial locations. To further elaborate  Equation 5, the semi-variance of the variogram 

is used for analysing temporal and spatial correlations representing a measure of the degree of 

differences between different points or observations in a variogram and is defined by:  

 

            𝛾𝛾�(ℎ) = 1
2

× 1
𝑛𝑛(ℎ)

∑ (𝑧𝑧(𝑥𝑥𝑖𝑖 
𝑛𝑛(ℎ)
𝑖𝑖=1 + ℎ)  −  𝑧𝑧(𝑥𝑥𝑖𝑖))2                                           Equation 5 

 

Where 𝛾𝛾�(ℎ)  is the variance at lag distance h, 𝑛𝑛(ℎ) is the number of observation pairs separated 

by h,  𝑧𝑧(𝑥𝑥𝑖𝑖) is a measured variable at spatial location i, and 𝑧𝑧(𝑥𝑥𝑖𝑖 +  ℎ) is a measured variable at 

spatial location i + h (Johnston et al., 2003). The variogram plot (Figure 16) is a graph that shows 

how the variance 𝛾𝛾�(ℎ) varies as the observation distances between points increase 

(MuhaimeedAmal, 2013) giving estimates of γ(.) at observed values of h (Compositing, Mory 

and Deutsch, 1989). Only the pairs of lags ‖ℎ‖ that are apart are needed if the process is isotropic 

and if the process is anisotropic variogram estimates can be made at different directions through 

selecting certain directions and averaging the pairs of the lag distances ‖ℎ‖  that are apart in the 

chosen direction (Compositing, Mory and Deutsch, 1989).  

The variogram allows to estimate graphically various parameters, sill, nugget, range, and partial 

sill (Figure 16) which are helpful in the comparison of autocorrelation trends. The sill is the value 

on the y-axis at which the graph reaches its asymptote, beyond this distance (which is the range 

on the x-axis), observations are spatially uncorrelated. The nugget is the discontinuity from the 

origin of the graph (y-intercept), a high nugget effect often leads to smoother estimates excluding 

closer to data locations where artifact discontinuities become more pronounced (Compositing, 

Mory and Deutsch, 1989). Therefore, the nugget effect value holds more influence when 

modelling the variogram and can affect the outcome of kriging. The partial sill exists when there 
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is a nugget effect and is given by the sill value minus the nugget value. If a variogram point cloud 

shows a random distribution or does not show an increasing 𝛾𝛾�(ℎ)  on the y-axis with increasing 

separation distance h on the x-axis, it shows that there is no positive spatial autocorrelation 

amongst the data points (MacLeod, 2006), the resulting variogram will be a horizontal line.  

 

 

                                      Figure 15: Characteristics of the variogram. 

                  

 

The variogram comprises all of the information on the spatial variation of the attribute under study 

when the intrinsic hypothesis is obeyed. This allows the semi-variance to be estimated from a 

single realization of the underlying sample (Oliver et al., 2009). If the second order stationarity 

conditions are all met (i.e., for every distant point the corresponding random variables are 
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independent) this will produce a variogram that is constant after the sill, known as sill variograms 

(Floch, 2013). However, if the second order stationarity is not obeyed whilst the intrinsic 

hypothesis is, variograms without a sill are produced. Such models however still qualify to be 

called variograms. Some of the important widely used theoretical variogram models are spherical, 

exponential and gaussian, these are variograms with a sill and can be defined by the following 

equations (Floch, 2013):  

Spherical model:  

 

γ(h) =  �𝑐𝑐0 +  𝑐𝑐𝑠𝑠  �3
2

 �ℎ
𝑎𝑎
�

0
−1

2
  �ℎ

𝑎𝑎
 �
3

𝑐𝑐0 +  𝑐𝑐𝑠𝑠

�     
ℎ = 0

0 < ℎ ≤ 𝑎𝑎
ℎ > 0

�                                  Equation 6 

 

Where: 𝑐𝑐0 is the nugget effect, 𝑐𝑐𝑠𝑠  is the partial sill, 𝑐𝑐0 +  𝑐𝑐𝑠𝑠 is the sill and a is the range. 

The spherical model is the commonly used. This model has a linear behaviour at small separation 

distances near the origin and flattens out at a larger distance and reaches the sill 𝑐𝑐0 +  𝑐𝑐𝑠𝑠  at range 

a (Isaaks and Srivastava, 1989). 

Exponential model:  

 

γ(h) =  �𝑐𝑐0 +  𝑐𝑐𝑠𝑠  � 0
1 − 𝑒𝑒𝑥𝑥𝑒𝑒 �−

ℎ
𝑎𝑎
��    ℎ = 0

ℎ > 0�                                               Equation 7 

 

As the spherical model, the exponential model is also linear at noticeably short distances near the 

origin but rises more steeply and then flattens out graphically, reaching the sill 𝑐𝑐0 +  𝑐𝑐𝑠𝑠  

asymptotically at a range a (Isaaks and Srivastava, 1989). 
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Gaussian model: 

 

γ(h) =  �𝑐𝑐0 +  𝑐𝑐𝑠𝑠  � 0
1 − 𝑒𝑒𝑥𝑥𝑒𝑒 �−�

ℎ
𝑎𝑎
�
2
��    ℎ = 0

ℎ > 0�                                        Equation 8 

 

The gaussian model is also like the exponential in the sense that it also reaches the sill 

asymptotically with a range a, but different in that it has a parabolic behaviour at the origin and 

often used to model phenomena that is extremely continuous (Isaaks and Srivastava, 1989). 

However, choosing a suitable theoretical model is often challenging, the choice is always a 

concession. The choice of the variogram model to be used depends wholly on the spatial variability 

of the analysed natural phenomena which is greatly important in the analyses of soils since they 

are powerfully variable in space, this permits the determination of uncertainty of the results 

(Borkowski and Kwiatkowska-Malina, 2017). All three models were tested to determine which 

model best represents the data by adjusting the empirical variogram to theoretical models with 

well defined analytical forms through looking at the range, sill, nugget, and partial sill values. This 

was done to assess models that will better define the kriging equations.  

 

3.3.1.4.1. Directional influences 
 

During variogram modelling, the dependency of the phenomena on direction can also be 

interpreted, the variogram models can be omnidirectional (isotropic) or directional (anisotropic). 

The empirical variogram depends only on the separation distance and not on direction in the 

isotropic case and hence all the directional theoretical variograms will be the same (Isaaks and 

Srivastava, 1989) for the same attribute under study. In the anisotropic case, the variogram reveals 
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major changes in the range or sill direction (Isaaks and Srivastava, 1989). A knowledge of the 

phenomena under study is necessary when deciding on what kind of variogram to use. The current 

study considered using omnidirectional and directional variograms, as they are easy to control, and 

directional variograms as atmospheric pollution and metal mobility might be continuous in specific 

directions, due to impact of natural phenomena such as wind patterns. Directional influences and 

anisotropy were accounted for when analysing the data as they affect the predictions in the output 

kriging surface.  

 

3.3.1.4.2.  Parameter selection 
 

After data preparations and specific transformations, an empirical variogram is calculated in 

various directions, which is a graph of the averaged variogram values (y-axis) and distance (x-

axis), and different parameters are selected for modeling. The direction of the variogram (figure 

18A) was defined by directional trends based on the knowledge of trends previously reported for 

the elements under study (e.g. SARA Group, 2008). The lag parameters and tolerance (figure 

18b) were assigned based on the average of a nearest neighbour estimate of sample pair distances 

calculated in ArcGIS. The angle tolerances and bandwidths consider variability that exists in 

calculating directions and the sample configuration (Figure 17C) (Deutsch, 2014), these 

parameters were selected based on the knowledge of sampling space between samples. The final 

variogram (Figure 17D) shows a combination of all the above listed parameters. 
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Figure 16: A sketch showing different tolerance parameters of the variogram. The parameters are 
sketched in 2D but the angle of tolerance and bandwidth are reported in 3D from Deutsch (2014). 

 

3.3.1.5. Data validation 
 
A cross validation technique was used to check the results of different modeling approaches to 

choose the one that performed better. This technique allows the comparison of estimated and true 

values by assisting one to choose between different weighting procedures, neighborhood search 

strategies and variogram models (Isaaks and Srivastava, 1989). The method makes use of all the 

data set, to estimate the trend and autocorrelation models of the kriging estimates by removing 
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data points one at a time and using the rest of the data to make an estimate of that vacant data 

value.  

Sample cross-validation residuals have important spatial information that help in making informed 

decisions on the type of model providing the best OK predictions, it was used to assess the accuracy 

of the resulting surfaces produced and to make corrections and adjust variogram parameters. A 

careful study of the spatial distribution of cross validation residuals with the focus on the entire 

goals of the estimation exercise can give insights leading to case specific improvements of the 

estimation procedure, making cross validation a useful preliminary step before final estimates can 

be calculated (Isaaks and Srivastava, 1989).  

Validation is done using calculated statistics and follows Johnston et al. (2003) recommendations: 

for an accurate method the Mean Error (ME) must be close to zero, Root Mean Square Error 

(RMSE) and Average Standardised Error (ASE) should be as small as possible and Root Mean 

Square Standardised Error (RMSSE) should be close to 1; if the predictions are unbiased, the ME 

should be close to zero and if standard errors are accurate the RMSSE should be close to 1, with 

the RMSSE small when the predictions are close to the measured values. The summary statistics 

are obtained using the ArcGIS geostatistical analyst tool. They are mathematically written as 

(Johnston et al., 2003): 

 

ME = ∑ �Ẑ(𝑠𝑠𝑖𝑖)−𝑧𝑧(𝑠𝑠𝑖𝑖)�𝑛𝑛
𝑖𝑖=1

𝑛𝑛
                                                                                                       Equation 9 

 

RMSE = ��∑ �Ẑ(𝑠𝑠𝑖𝑖)−𝑧𝑧(𝑠𝑠𝑖𝑖�𝑛𝑛
𝑖𝑖=1 �2

𝑛𝑛
                                                                                           Equation 10 
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ASE = �∑ 𝜎𝜎 �  (𝑠𝑠𝑖𝑖)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
                                                                                               Equation 11 

 

MSE = ∑ �Ẑ(𝑠𝑠𝑖𝑖)−𝑧𝑧(𝑠𝑠𝑖𝑖)�/𝜎𝜎 �  (𝑠𝑠𝑖𝑖)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
                                                                               Equation 12 

 

RMSSE = �∑ [�Ẑ(𝑠𝑠𝑖𝑖)−𝑧𝑧(𝑠𝑠𝑖𝑖)�/𝜎𝜎 �  (𝑠𝑠𝑖𝑖)]2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
                                                                   Equation 13 

 

Where: Ẑ(𝑠𝑠𝑖𝑖) is the predicted value obtained from cross validation, 𝑧𝑧(𝑠𝑠𝑖𝑖) is the observed value 

and 𝜎𝜎 �  (𝑠𝑠𝑖𝑖) is the prediction standard error for location 𝑠𝑠𝑖𝑖. 

 

Cross validation also has its own limitations. An example is that pairs of true and estimated values 

can be generated only at sample locations, resulting in an inaccurate reflection of the actual 

performance of an estimation method as the estimation at sample locations is typically not 

representative of estimation at all of the unsampled locations (Isaaks and Srivastava, 1989). 

 

3.3.1.6.   Gaussian conditional simulation 
 

Kriging algorithms are preferred due to their ability of estimating data accounting for its spatial 

variability; however, such methods sometimes overly smoothen the data resulting in a 

misrepresentation of the exact behavior of the attribute under study (Leuangthong, McLennan and 

Deutsch, 2004). It is for this reason that interpolated maps should not be used when applied to 

cases sensitive extreme values and patterns of continuity such as soil pollution data and soil 

physical properties (Goovaerts, 1999). Simulation can assist in overcoming such a problem due its 

ability to improve heterogeneity characterization, while reproducing the spatial variability that was 
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modelled from the data. Geostatistical simulation uses the basis of kriging algorithms (                                                                                 

Equations 14, 15) and retains most of the positive attributes of kriging, which are, reproducing the 

exact data and use of spatial correlations existing between data (Leuangthong, McLennan and 

Deutsch, 2004).  

Accounting for variability between the simulated locations assists in overcoming the kriging 

smoothing effect. The drawback of conditional simulation is that it provides multiple equiprobable 

images of the phenomena or attribute under study and choosing a single representative image 

becomes a problem (Yamamoto, 2005). The least attractive feature about conditional simulation 

is that the stochastic realizations are not error free, with the errors being larger than those of kriging 

estimates, however, the best representative image can still be chosen based on certain criteria 

(outlined below).  

The ability to condition the simulation assists in selecting the best possible realizations of the 

simulation that reproduces the experimental data set (Torcal et al., 1999). To achieve this 

reproduction, the kriging equation is incorporated (Torcal et al., 1999): 

𝑦𝑦𝑐𝑐𝑠𝑠 = 𝑦𝑦𝑐𝑐𝑠𝑠(𝑥𝑥) + [𝑦𝑦𝑘𝑘∗(𝑥𝑥) − 𝑦𝑦𝑠𝑠𝑘𝑘∗ (𝑥𝑥)],                                                                                 Equation 14 

 

𝑦𝑦𝑐𝑐𝑠𝑠(𝑥𝑥) = 𝑦𝑦𝑠𝑠(𝑥𝑥) + ∑ 𝜆𝜆𝑖𝑖[𝑦𝑦(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑠𝑠(𝑥𝑥𝑖𝑖) ]𝑁𝑁
𝑖𝑖=1 ,                                                                   Equation 15 

 

Where:  

𝑦𝑦𝑐𝑐𝑠𝑠(𝑥𝑥) = the conditionally simulated datum, 

𝑦𝑦𝑠𝑠(𝑥𝑥) = the non-conditionally simulated datum, 

𝑦𝑦(𝑥𝑥) = the normalized experimental datum, 
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𝑦𝑦𝑘𝑘∗(𝑥𝑥) = the value estimated by kriging from the datum 𝑦𝑦(𝑥𝑥), 

𝑦𝑦𝑠𝑠𝑘𝑘∗ (𝑥𝑥) = the value estimated by kriging from the datum 𝑦𝑦𝑠𝑠(𝑥𝑥), 

𝜆𝜆𝑖𝑖 = the measured weights of the kriging system, and 

N = the number of nearby points that will be considered in the kriging. 

The Gaussian conditional geostatistical simulation was applied to the log-transformed dataset 

using the workflow modified from (Klauberg et al., 2018): 

(1) The data distribution of the attribute under study was transformed to normal, the trend 

was removed, data was declustered and normal score transformation was applied 

(2) Simple kriging was then applied to the data set in which a variogram model was fitted 

with the search neighborhood defined 

(3) The conditional simulation was performed 100 times using the simple kriging as the input 

raster and the original data was used as the conditioning field. 

(4) When the conditional simulations were applied the output rasters were generated cell by 

cell as mean and standard deviation that are calculated across all the 100 realizations. 

 

3.3.1.6.1.  Accuracy assessment  
 

Once the conditioned Gaussian values are obtained, the model was checked for accuracy as this is 

an especially important factor in the decision-making process. Accuracy of the simulated maps 

refers to their ability to replicate data and statistics from the original input dataset with reasonable 

bias based on the knowledge of the phenomena under study. The accuracy of the simulated maps 

was compared with the original kriging maps and tested for truthfulness. Stochastic simulation 
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does not focus on minimization of the error variance unlike kriging, its focus is solely on the 

reproduction of statistics as the sample histogram, variogram model and honoring the data values 

(Goovaerts, 1999). To confirm the statistic reproduction, consistency and accuracy of the models 

can be checked by assessing that the simulated models (Leuangthong, McLennan and Deutsch, 

2004): 

(1) Reproduce data values at their exact location, 

(2) The distribution of the attribute of interest must be reproduced, and 

(3) The spatial continuity characterized by the variogram model must be the same as that of 

the original data. 

Original input data was compared with gaussian conditional simulation results of the realizations 

by assessing scatterplots of the original vs. simulated data to verify data reproduction, reproduction 

of the histogram and Q-Q plot shape by correlating summary statistics (mean, median and 

variance) to check for the reproduction of the distribution of the data and the variogram 

reproduction. This checks must only be applied in normal or transformed space for gaussian 

simulation as only the normal scores variogram is imposed directly (Leuangthong, McLennan and 

Deutsch, 2004). The variogram was calculated for multiple realizations and compared to the input 

variogram in similar directions. Any departures from these expectations may be a cause for 

concern (Leuangthong, McLennan and Deutsch, 2004); however, any ergodic fluctuations should 

reasonable and unbiased. The values that are obtained from the geostatistical simulation should be 

aligned with the experimental (original) information and should reproduce the observed variability 

(Torcal et al., 1999). 

 



65 | P a g e  
 

3.4. Remote sensing applications 
 
This study made use of Landsat images collected from heavy industrial years (1970s) to present 

times of limited heavy emissions (2019) using ArcGIS 10.6.1. software. The Landsat data was 

acquired from the USGS Earth Explorer and GloVIS open-source websites. The Landsat satellites 

provide easy access to a large chain of continuous records of satellite-based observations of the 

Earth. Landsat serves as an invaluable resource for monitoring global change and is also a primary 

source of medium spatial resolution Earth observations used in decision making processes 

(Chander, Markham and Helder, 2009). The Landsat program began around 1972 and now has 4 

satellite groups which are: Group 1; Landsat 1 (L1) and Landsat 2 (L2) carrying the Multispectral 

Sensor (MSS); group 2, Landsat 5 (L5) carrying the Thematic Mapper Sensor (TM); group 3, 

Landsat 6 that carried the Thematic Mapper sensor (TM) (Landsat 6 failed upon launch, Chander, 

Markham and Helder, 2009), Landsat 7 (L7) carrying the Enhanced Thematic Mapper plus sensor 

(ETM+) and group 4, which is Landsat 8 (L8) carrying the Operational Land Imager (OLI) and 

the Thermal Infrared sensor (TIRS). Landsat 9 is to be launched in mid-2021, with a higher image 

capacity than past the Landsat’s. A total of four cloud free (or low cloud) Landsat images covering 

the study area, or some parts of the study area were available for the period between 1979 and 

2019 corresponding to the areas previously heavily affected by smelting activities. The images 

were used to calculate the NDVI and classify the land observation around the smelting regions and 

away from them. 
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Table 3: Different Landsat satellites used for image processing. The image acquisition date, 
scene ID and Image path are reported. 

Satellite and 

sensor 

Acquisition 

date 
Scene ID WRS path WRS row 

L2-MSS 1979-06-03 LM20210281979154PAC03 21              28 

L7-ETM+ 2000-08-27 LE70190282000240EDC00 19 28 

L8-OLI 2013-09-24 LC80190282013267LGN01 19 28 

L8-OLI 2019-07-07 LC80190282019188LGN00 19 28 

 

3.4.1.  Image pre-processing 

 

The ease of detecting and quantifying changes in the Earth’s environment highly depends on the 

sensors that can provide known accuracy, precision and consistence in measurements of the Earth 

through time (Chander, Markham and Helder, 2009). This makes radiometric calibration of data 

a pre-requisite for creating data that has high quality and is consistent with no artifacts. The digital 

raw numbers of the Landsat Level 1 images were converted to spectral radiance and spectral 

reflectance, to overcome product artifacts. These conversions were conducted as the images 

received were uncalibrated and to correct for the sun angle and atmospheric effects to have a 

better representation of the spectral response of objects. The values used in the conversion are 
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found in the MTL document of the Landsat data and the referenced authors.  Conversion of DN 

values to radians and reflectance for the MSS, TM and ETM+ sensors was calculated based on 

the methods outlined by  Chander, Markham and Helder (2009): 

DN values to radiance 

 

     𝐿𝐿𝜆𝜆 = (
𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝜆𝜆−𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝜆𝜆

𝑄𝑄𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝑚𝑚−𝑄𝑄𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑖𝑖𝑛𝑛
)( 𝑄𝑄𝑐𝑐𝑎𝑎𝑐𝑐 − 𝑄𝑄𝐶𝐶𝑎𝑎𝑐𝑐𝑚𝑚𝑖𝑖𝑛𝑛 + 𝐿𝐿𝑀𝑀𝑀𝑀𝑁𝑁𝜆𝜆)                                      Equation 16 

 

Where: 

 
𝐿𝐿𝜆𝜆 = Spectral radiance at the sensor's aperture [𝑊𝑊/(𝑚𝑚2𝑆𝑆𝑆𝑆 µ𝑚𝑚)] 

𝑄𝑄𝑐𝑐𝑎𝑎𝑐𝑐 = Quantized calibrated pixel value [DN] 

𝑄𝑄𝐶𝐶𝑎𝑎𝑐𝑐𝑚𝑚𝑖𝑖𝑛𝑛 = Minimum quantized calibrated pixel value corresponding to 𝐿𝐿𝑀𝑀𝑀𝑀𝑁𝑁𝜆𝜆 

𝑄𝑄𝐶𝐶𝑎𝑎𝑐𝑐𝑚𝑚𝑎𝑎𝑚𝑚 = Maximum quantized calibrated pixel value corresponding to 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝜆𝜆  

𝐿𝐿𝑀𝑀𝑀𝑀𝑁𝑁𝜆𝜆 = Spectral at-sensor radiance that is scaled to 𝑄𝑄𝐶𝐶𝑎𝑎𝑐𝑐𝑚𝑚𝑖𝑖𝑛𝑛[𝑊𝑊/(𝑚𝑚2𝑆𝑆𝑆𝑆 µ𝑚𝑚)] 

𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝜆𝜆  = Spectral at-sensor radiance that is scaled to 𝑄𝑄𝐶𝐶𝑎𝑎𝑐𝑐𝑚𝑚𝑎𝑎𝑚𝑚[𝑊𝑊/(𝑚𝑚2𝑆𝑆𝑆𝑆 µ𝑚𝑚)] 

DN values to reflectance 

 

    𝜌𝜌𝜆𝜆 = 𝜋𝜋∗𝐿𝐿𝜆𝜆∗𝑑𝑑2

𝐸𝐸𝑠𝑠𝑠𝑠𝑛𝑛𝜆𝜆∗𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠
                                                                                                  Equation 17 

 

Where: 

 
𝜌𝜌𝜆𝜆= Planetary TOA reflectance [unitless] 
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π = Mathematical constant ~3.14159 [unitless] 

𝐿𝐿𝜆𝜆 = Spectral radiance at the sensor's aperture [𝑊𝑊/(𝑚𝑚2𝑆𝑆𝑆𝑆 µ𝑚𝑚)] 

d = Earth-Sun distance [astronomical units] 

The OLI sensor DN values were directly converted to top of atmospheric reflectance without 

calculating the radiance based on equations from (Department of the Interior U.S. Geological 

Survey, 2016) Landsat 8 handbook: 

 

𝜌𝜌𝜆𝜆 = 𝑀𝑀𝑀𝑀∗𝑄𝑄𝑐𝑐𝐶𝐶𝐶𝐶+𝑀𝑀𝑝𝑝
𝑆𝑆𝑖𝑖𝑛𝑛𝑐𝑐𝑆𝑆𝑆𝑆

                                                                                                  Equation 18          

 

Where:  

𝜌𝜌𝜆𝜆 = TOA planetary reflectance 

𝑀𝑀𝜌𝜌 = Reflectance multiplicative scaling factor for the band 

(REFLECTANCE_MULT_BAND_n from the metadata).  

𝐴𝐴𝑀𝑀 = Reflectance additive scaling factor for the band (REFLECTANCE_ADD_BAND_N from 

the meta data) 

𝑄𝑄𝑐𝑐𝑎𝑎𝑐𝑐= Level 1-pixel value in DN 

𝑆𝑆𝑆𝑆𝑛𝑛𝑆𝑆𝑆𝑆𝐸𝐸 = Local sun elevation angle  

 

3.4.2.  Image processing 
 

3.4.2.1. Band composite 
 
Multiple bands were used to create single raster datasets. Different band combinations are used 

for different sensors. Various composites are commonly viewed to assess vegetation distribution, 
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barren regions, geology, and water bodies. An example is the 4, 3, 2 band combination for 

natural colour image of L8. 

 

3.4.2.2. Band ratioing 
 
 
Band ratioing techniques are used to modify spectral differences that exist within bands to reduce 

any shadow effects that might be caused by topographic artifacts (Rajendran, Al-Sayigh and Al-

Awadhi, 2016). Band ratio images were constructed by dividing the NIR band by the RED and the 

GREEN band. The NIR band is highly reflective such that the acquired band ratios show vegetated 

regions by bright pixels because the shadow effects are now greatly reduced on topography. The 

spatial distribution of the vegetation was then assessed, taking note of regions with little-moderate 

or no vegetation into consideration. 

 

3.4.2.3. NDVI 
 

Vegetation cover analysis was applied as a biophysical indication to locate regions with low and 

high vegetation cover, hence giving an idea of how metal contamination levels have or are 

affecting vegetation recovery trends. NDVI is a simple and straightforward numerical indicator 

that defines vegetation distribution based on characteristics of reflectance patterns of green 

vegetation (Gandhi et al., 2015). The values obtained are used to assess and differentiate between 

regions with live vegetation, semi-barren and barren. Meaning that, NDVI measures the level of 

chlorophyll that is being reflected off the surface or region of interest by calculating the difference 

between the NIR and the RED band. Larger values are indicative of greater chlorophyll density, 
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such that the level of greenness that is shown is equal to the chlorophyll concentration (Gandhi 

et al., 2015). NDVI values closest to zero are indicative of bare soil or water bodies, while values 

that are 0.1 and below generally correspond to barren areas of rock outcrops, snow, or sand. 

Values that are moderate (0.2-0.3) indicate low to moderate vegetation cover, representing shrub 

and grassland. High values that are between 0.6 and 0.8 indicates high vegetation density which 

may be temperate or rain forests (Gandhi et al., 2015). 

The NDVI is calculated as: 

 

NDVI= (NIR − RED)/(NIR + RED), the resulting values are between -1 and 1         Equation 19 

 

Where RED is the visible red reflectance, with a wavelength of 600-700 nm, and NIR is the near 

infrared reflectance, with a wavelength of 750-1300 nm. NDVI takes the difference between the 

NIR and RED band and normalizes it to balance out uneven illumination effects that might occur, 

such as clouds or hills (Gandhi et al., 2015).  

 

2.2.4. Integration of kriging with remote sensing techniques 
 

Integrating geostatistical and remote sensing approaches is an effective way in incorporating 

spatial information into mapping, to improve and better understand prediction quality of 

estimates. A study by López-Granados et al. (2005) proved this to be true. They made a 

comparison of various prediction methods (linear regression, ordinary kriging, and simple 

kriging) for mapping various soil properties (texture, organic matter, pH, phosphorus and 

potassium) by a means of incorporating secondary spatial information into mapping for precision 
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farming in Caracol (Seville, Andalusia, southern Spain). The primary information was from 

intensive grid sampling and the secondary spatial information from an aerial colour photograph 

of bare soil. To improve the linear regression prediction maps, the soil variables were interpolated 

using the ordinary kriging method, simple kriging was also employed on some specific soils. The 

prediction performances were later compared using the Mean Square Error (MSE). The poorest 

predictions were depicted for simple linear regression techniques as there was a low correlation 

between soil attributes and spectral values as compared to the kriging methods. The study results 

showed that when sparse and expensive soil measurement methods are combined with secondary 

information such as remotely sensed data from aerial photographs the geostatistical techniques 

become adequate to accurately map soil properties. The obtained results could also be used to 

suggest sampling intensity for future surveys in the area. The integration of kriged estimates and 

digital data from aerial photography were found to be accurate enough to improve the soil 

management zones. It was also suggested that the methodology can be used when mapping more 

permanent soil physical properties due to the effectives found. 

This kind of approach will assist when integrating geostatistical and remote sensing techniques 

in this study for soil contamination and vegetation change, although the workflow adopted varies 

significantly. 
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Chapter 4: Results and discussion 
Introduction 
 
The overall results of the present study are being presented. Firstly, the data distribution and 

variograms are discussed. The metal variability with soil profile depth (0-5, 5-10 and 10-20 cm) is 

being presented in the form of geostatistical prediction and simulation maps to show observations 

and validations. Statistical variability of the metals is also being presented. NDVI images from 

pre-industrial years to present times is being used to assess vegetation distribution and further 

integrated with geochemical maps. To correlate and understand the uncertainty of the metals, wind 

patterns, vegetation, bedrock geology and metal mobility is briefly assessed and discussed. 

4.1. Exploratory analyses and data transformation  
 

The data obtained from the 2001 SSS comprised of 3870, 2670, and 2592 samples for 0-5, 5-10 

and 10-20 cm soil depth profiles, respectively. The descriptive statistics (Table 4) were calculated 

for each depth to detect and analyze patterns of regularity. The table shows essential statistical 

characteristics that are vital in understanding the metal distribution. 

Observing the descriptive statistics, all elements are not normally distributed, which is a common 

case for contaminated soils. These is indicated by the fact that the mean, mode, and median are 

not all equal, which is one characteristic feature of a normal distribution. However, the mean and 

median for Co, As, Pb and Se are relatively close to each other. The coefficients of skewness and 

kurtosis for all the elements is higher than that of a normal distribution. The metals are skewed to 

the right, with a skewness greater than 0.5. Extreme values also exist within the entire dataset. The 

maximum values of all elements at all three depths are greater than their mean values. This makes 

it necessary to exercise caution when calculating the average value used in the site assessment, as 
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any additional high-concentration samples may push the mean to the right hence misleading 

decision makers (Ersoy, Yunsel and Atici;  2006). The maximum values also show some sort of 

contamination in these soils, as the mean of all the elements is greater than what was found for the 

Sudbury area by the MOE, with exceptions of Se (Table 5). 

The histogram, boxplot, and normal Q-Q plot of Ni, as a chosen example for presentation purposes, 

are illustrated in figure 29 (the rest of the elements are in the appendix). The raw data histogram 

confirms further what was observed earlier by the descriptive statistics, that the data is skewed to 

the right, this is observed for all the elements at all depths. This can be clearly seen by the departure 

from the symmetrical shape of a normal distribution. The histograms also further confirms that all 

elements contain some level of contamination. The normal QQ plots confirms this kind of 

distribution whereby the values can be seen deviating from the 45˚ line.  

As a result of the data skewness, normal logarithmic transformation was applied to the data (Figure 

18). The transformed data shows an improvement in normality. Ni, Cu, Pb and Co show the 

greatest improvement and similar patterns, with their mean and median being relatively close to 

each other. As and Se still represent a positively skewed distribution even after transformation. 

This could be due to that some of their values are extremely low. Although Ordinary kriging is 

referred to as the Best Linear Unbiased Estimator, even if the data is not normally distributed, the 

transformation was necessary to make it the best predictor and provide the best estimates, while 

making variogram modeling easy. 
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Figure 17: Histogram, boxplot and normal QQ plot for Ni at 0-5 cm. 
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Table 4: Descriptive statistics of the COC at 0-5, 5-10 and, 10-20 cm. All concentrations are 
given in  ppm. The values on the left of the variable are the raw data and those on the right are 
the log transformed data. MOE represents the mean background concentrations that have been 
measured for the Sudbury region by the Ontario Ministry of the Environment. 

 

 

4.2. Variogram analysis  
 

Variogram analyses was performed on the transformed data of all elements. The variogram graphs 

show binned points as red circles () and are generated through binning empirical variogram points 

by making use of square cells that are one lag wide. The average points ( ) are produced through 

grouping empirical variogram points falling within angular sectors, while the fitted theoretical 

variogram model is shown by the blue line. Visual inspection of the empirical semivariograms 

showed that the gaussian (Figure 26, 30) and spherical models would be suitable models to be 

fitted. The various features and parameters of the variogram are presented in Table 5.  

Mean 13.22 0.82 15.36 1.03 297.00 2.05 285.17 2.11 37.38 1.33 1.56 0.02
Standard Error 0.42 0.01 0.28 0.01 8.53 0.01 7.05 0.01 0.71 0.01 0.05 0.01
Median 6.00 0.78 9.00 0.95 89.00 1.95 110.00 2.04 22.00 1.34 0.00 -0.30
Mode 2.00 0.40 6.00 0.78 250.00 2.40 255.00 2.41 34.00 1.53 0.00 -0.30
Standard Deviation 25.88 0.46 17.35 0.33 530.69 0.59 438.83 0.53 44.19 0.48 2.98 0.40
Sample Variance 669.63 0.21 301.14 0.11 281636.41 0.35 192569.25 0.28 1952.65 0.23 8.86 0.16
Kurtosis 48.30 0.14 14.81 0.61 21.59 -0.60 12.41 -0.63 13.36 -0.64 41.99 0.22
Skewness 5.85 0.90 3.36 0.86 3.97 0.42 3.14 0.41 2.97 -0.07 4.89 1.05
Range 398.00 2.20 188.00 1.98 5595.00 3.03 3689.00 2.53 409.00 2.61 49.00 1.99
Minimum 2.00 0.40 2.00 0.30 5.00 0.72 11.00 1.04 1.00 0.00 0.00 -0.30
Maximum 400.00 2.60 190.00 2.28 5600.00 3.75 3700.00 3.57 410.00 2.61 49.00 1.69
Count 3870.00 3870.00 3870.00 3870.00 3870.00 3870.00 3870.00 3870.00 3870.00 3870.00 3870.00 3870.00

Mean 19.36 0.95 13.97 1.01 260.45 2.10 274.11 2.15 34.07 1.32 1.30 0.01
Standard Error 0.83 0.01 0.28 0.01 7.03 0.01 7.26 0.01 0.81 0.01 0.03 0.01
Median 9.00 0.95 10.00 1.00 120.00 2.08 130.00 2.11 18.00 1.26 1.00 0.00
Mode 2.00 0.40 14.00 1.14 250.00 2.40 255.00 2.41 34.00 1.53 0.00 -0.30
Standard Deviation 42.83 0.48 14.60 0.32 363.21 0.54 375.22 0.50 42.04 0.40 1.73 0.34
Sample Variance 1834.25 0.23 213.09 0.10 131922.06 0.29 140790.59 0.25 1767.40 0.16 2.98 0.12
Kurtosis 47.45 0.48 22.37 0.62 11.09 -0.70 12.22 -0.68 11.16 -0.26 6.67 -0.32
Skewness 6.10 0.72 3.97 0.51 2.95 0.11 3.06 0.24 3.01 0.47 2.13 0.79
Range 568.00 2.36 149.00 2.18 2995.00 2.81 3093.00 2.65 339.00 2.53 14.00 1.45
Minimum 2.00 0.40 1.00 0.00 5.00 0.67 7.00 0.85 1.00 0.00 0.00 -0.30
Maximum 570.00 2.76 150.00 2.18 3000.00 3.48 3100.00 3.49 340.00 2.53 14.00 1.15
Count 2670.00 2670.00 2670.00 2670.00 2670.00 2670.00 2670.00 2670.00 2670.00 2670.00 2670.00 2670.00

Mean 16.95 0.91 11.98 1.00 199.34 2.00 219.33 2.10 32.57 1.27 1.03 -0.04
Standard Error 0.71 0.01 0.17 0.00 4.80 0.01 4.98 0.01 0.93 0.01 0.03 0.01
Median 8.00 0.90 10.00 1.00 110.00 2.04 130.00 2.11 18.00 1.26 0.00 -0.30
Mode 2.00 0.40 14.00 1.14 250.00 2.40 255.00 2.41 34.00 1.53 0.00 -0.30
Standard Deviation 36.32 0.47 8.72 0.25 244.21 0.54 253.47 0.48 47.21 0.44 1.38 0.31
Sample Variance 1319.14 0.22 75.97 0.06 59639.30 0.29 64246.64 0.23 2228.39 0.19 1.89 0.09
Kurtosis 68.41 0.19 21.16 0.10 8.87 -0.73 10.30 -0.94 48.40 -0.38 4.91 -0.30
Skewness 6.92 0.71 3.32 0.37 2.57 -0.15 2.62 0.06 5.22 0.42 1.79 0.85
Range 618.00 2.39 108.00 1.74 1997.00 2.87 2490.00 2.40 788.00 2.60 11.00 1.34
Minimum 2.00 0.40 2.00 0.30 3.00 0.43 10.00 1.00 2.00 0.30 0.00 -0.30
Maximum 620.00 2.79 110.00 2.04 2000.00 3.30 2500.00 3.40 790.00 2.90 11.00 1.04
Count 2592.00 2592.00 2592.00 2592.00 2592.00 2592.00 2592.00 2592.00 2592.00 2592.00 2592.00 2592.00

85.00 43.00 120.00 1.90
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The theoretical omnidirectional variogram models of the variables poses an exceptionally low 

nugget effect of less than 1 (Figure 21). The lower nugget effect implies that the spatial model or 

the variograms can influence the estimation of the variables and assist in limiting data over 

smoothing, the sampling density is satisfactory to reveal spatial characteristics of the dataset. The 

existence of the nugget in the data set indicates that short scale randomness or noise in the variables 

of interest have been accounted for. There is no exact pattern in this nugget effect at various depths. 

The variograms show positive spatial autocorrelation which is represented by the existence of the 

sill in all of them. The range of influence for As and Co are the highest being 12,770.5 m and 

10,420.654 m for the 0-5 cm, respectively, but decreases with an increase in soil profile depth. Pb 

shows the lowest range of influence of 80.663 m at 0-5 cm depth increasing with an increase in 

depth to 6,774.037 m at 10-20 cm. The value of the range is dependent on the lag distance applied. 

The correlation between the predicted and measured values is also shown (Figure 19, 20), with a 

correlation of greater than 0.5, this shows that the kriging method is performing accurately. 

Directional sample variograms were also tested out (Figure 21). These models revealed changes 

of the range with direction implying the existence of geometric anisotropy. The directional 

variograms revealed that the data is anisotropic, as it varies with direction. Directional variograms 

plotted for the direction of maximum continuity and minimum continuity, which are 6˚ and 96˚ 

respectively, for Ni at 0-5 cm are shown in figure 32. At 6˚, the variogram slowly levels off 

indicating positive spatial autocorrelation, while at 96˚the variogram rapidly levels off showing 

weak or negative spatial autocorrelation. For the other elements, the directions of maximum and 

minimum continuity are: Cu, 2˚ and 88˚; As, 89˚ and 1˚; Co, 78˚ and 12˚; Se, 94˚ and 4˚; Pb, 74˚ 

and 16˚; respectively. The values are all similar for all the other depths.  
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In summary, all the variogram models showed positive spatial autocorrelation trends as they all 

showed an increasing semivariance, Ŷ(h), with an increase in the distance separation, (h). The 

second order stationarity is obeyed, the variograms tend to remain constant after the sill value is 

reached.  

These variograms assist in providing a good measure of the goodness of the sampling method that 

is being used, the spatial variability of samples, and assists in correlating the simulation variogram 

with the measured spatial variability (Ersoy, Yunsel, and Atici, 2008). But these models cannot 

tell us about pattern characterization and regions with high and low concentrations, which is why 

it is required to present the estimates in a form of geochemical maps. 

   

Figure 18: Gaussian variogram model (left) of Ni with a nugget effect, sill, and range of 

influence of 0.16, 0.119 and 7,465.555 m, respectively. The correlation between the predicted 

and measured values is on the right image. 

 



78 | P a g e  
 

   

Figure 19: Gaussian variogram model (left) for Se with a nugget effect, partial sill, and range of 

influence of 0.0891, 0.097, and 6653.33 m, respectively. The correlation between the predicted 

and measured values is on the right image. 

 

Figure 20:  Directional gaussian variogram models for Ni at 0-5 cm soil profile depth. The image 
on the left is at the direction of maximum continuity at an angle of 6˚, while the right image is 
the direction of minimum continuity at 96˚. The tolerance used is 45˚ with a bandwidth of 3 m.  
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Table 5: Parameters of the variogram models. The range of influence is given in meters. 

  

 

4.3. Data validation  
 
Prior to examining the interpolated surfaces, cross-validation statistics of the variograms for the 

kriging models, and data reproduction of the simulations were closely examined. 

4.3.1. Cross validation 
 
The statistics for the cross-validation parameters are presented in Table 6. The statistics show 

that the data is robust and efficient enough to be used to predict values, however, some models 

Variable As Co Cu Ni Se Pb

Variogram model type Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian
Number of lags 12 12 12 12 12 12
Lag size 2500 2500 2500 2500 1000 13
Nugget 0.117 0.066 0.176 0.16 0.089 0.049
Range 12770.495 10420.654 7226.567 7465.555 6656.33 80.663
Anisotropy No No No No No No
Partial Sill 0.097 0.038 0.167 0.119 0.097 0.134
Sill 0.214 0.104 0.343 0.279 0.186 0.183
Neigbhours to include 10 10 10 10 5 5
Include at least 5 5 2 5 2 2
Sector type Four and 45 degree Four and 45 degree Four and 45 degree Four and 45 degree Four and 45 degree Four and 45 degree

Variogram model type Gaussian Gaussian Spherical Gaussian Spherical Gaussian
Number of lags 12 12 12 12 12 12
Lag size 2000 2000 2000 2000 30 40
Nugget 0.138 0.067 0.059 0.147 0.026 0.083
Range 12450.406 11287.38 135.728 7740.769 114.016 192.28
Anisotropy No No No No No No
Partial Sill 0.123 0.039 0.155 0.107 0.07 0.079
Sill 0.261 0.106 0.214 0.254 0.096 0.162
Neigbhours to include 5 5 5 5 5 5
Include at least 5 2 2 2 2 2
Sector type Four and 45 degrees Four and 45 degrees Four and 45 degrees Four and 45 degrees Four and 45 degrees Four and 45 degrees

Variogram model type Gaussian Gaussian Gaussian Gaussian Spherical Gaussian
Number of lags 12 12 12 12 12 12
Lag size 2000 3000 1000 1000 50 1000
Nugget 0.13 0.046 0.116 0.114 0.036 0.153
Range 10813.968 7856.052 7245.416 7100.658 224.033 6774.037
Anisotropy No No No No No No
Partial Sill 0.118 0.021 0.169 0.123 0.048 0.068
Sill 0.248 0.067 0.285 0.237 0.084
Neigbhours to include 5 5 5 5 5 5
Include at least 2 2 2 2 2 2
Sector type Four and 45 degrees Four and 45 degrees Four and 45 degrees Four and 45 degrees Four and 45 degrees Four and 45 degrees

5-10 cm

10-20 cm

0-5 cm
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did not meet all the standard requirements for a good estimation. The presented statistics are for 

the best models selected. 

Table 6: Cross validation summary statistics for ordinary kriging. 

 

 

The results of ME and MSE showed that the models of Co, Se and Pb at 0-5 cm, As, Co, Ni and 

Cu at 5-10 cm and, As, Co, Cu, Ni and Pb at 10-20 cm displayed the least bias. Models of As and 

Cu at 0-5 cm and, Se at 5-10 cm shows the most underestimation. This was expected for Se and 

As given that they did not resemble a normal distribution even after transformation. A startling 

As 0.007 0.324 0.021 0.919 0.359 Gaussian
Co 0.001 0.23 0.004 0.868 0.268 Gaussian
Cu 0.002 0.386 0.007 0.882 0.453 Gaussian
Ni 0.002 0.363 0.003 0.877 0.425 Gaussian
Se 0.003 0.274 0.014 0.853 0.329 Gaussian
Pb -0.006 0.333 -0.002 0.889 0.393 Gaussian

As -0.004 0.334 -0.009 0.849 0.399 Gaussian
Co -0.007 0.233 -0.025 0.841 0.278 Gaussian
Cu -0.006 0.39 -0.013 0.903 0.428 Spherical
Ni -0.008 0.366 -0.02 0.869 0.419 Gaussian
Se 0.003 0.224 0.007 0.784 0.298 Spherical
Pb 0.002 0.318 0.001 0.832 0.392 Gaussian

As -0.009 0.327 -0.022 0.839 0.393 Gaussian
Co -0.006 0.183 -0.024 0.803 0.229 Gaussian
Cu -0.009 0.347 -0.025 0.901 0.379 Gaussian
Ni -0.009 0.327 -0.022 0.839 0.393 Gaussian
Se 0.002 0.209 0.005 0.784 0.281 Spherical
Pb -0.01 0.335 -0.025 0.804 0.422 Gaussian

0-5 cm

5-10 cm

10-20 cm

Average 
Standard 

Error (ASE)

Mean 
Error 
(ME)

Variable

Root 
Mean 

Square 
Error 

(RMSE)

Mean 
Standardised 
Error (MSE)

Root Mean 
Square 

Standardised 
Error 

(RMSSE)

Variogram 
model
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observation is that although As and Se were not close to a normal distribution for all the profile 

depths, the underestimation was only on particular depths i.e., 0-5 cm for As and 5-10 cm for Se. 

The ASE and RMSE of the models were relatively close to each other and small, ranging from 

0.209 to 0.428 illustrating a good measure of variability, with the exceptions of Cu and Ni at 0-5 

and 5-10 cm. This makes the models of Cu and Ni less reliable and trustworthy at these depths due 

to the slight difference in their ASE and RMSE values. Models with RMSSE deviating from 1 and 

showing higher prediction errors are that of Se at both 5-10 and 10-20 cm, which is not a surprise 

given that the transformed histograms of Se were not close to a normal distribution (positively 

skewed) and has sparsely distributed data. The rest of the models show lower prediction errors 

with Cu standing out the most at 0.9.                                                                                                                                         

4.3.2. Data reproduction 
 

Various tests were conducted to check the reproduction of the original data by the gaussian 

simulation models. 

Visual observation- The simulations were only produced for the upper soil profile depth of 0-5 

cm as no trends of interest were observed for the other depths. Visual inspection of the simulation 

means of 100 realizations indicated that they closely resemble the ordinary kriging estimations and 

proved to be robust. The low and high values are both located in areas where it was expected, 

based on the visualization of the ordinary kriging maps. The previously observed trends are also 

positively replicated by the simulations (Figure 22, 23). The variability is clearly reasonable and 

not very much questionable, it reproduces what we are interested in meeting the study’s first 

objective. 
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Descriptive statistics reproduction- The statistics of the simulation mean were used to compare 

with that of the raw data, shown in Table 7. The mean of the mean of the simulations is relatively 

close to the mean of the raw dataset, with Co, Cu and Ni closer than the other metals, with a 

difference therefore, the data statistics were closely reproduced. 

Correlation scatter plots- Scatterplots were implemented to accurately check the reproduction of 

the data Figure 22. The R-squared value was calculated to check for the goodness of fit for the 

linear regression models. The values were low showing a weak effect of the fitted model on the 

simulated values, meaning that not all the variances have been accounted for as most of the data 

points are falling far away from the regression line. The lowest R-squared value is that of Pb at 

0.37 with the highest being Se at 0.58, the rest are, As, 0.53; Co, 0.53; Cu, 0.52 and, Ni 0.49. Much 

attention should be paid to the simulated model of Pb due to this low coefficient of determination. 

However, the R-squared value does not really illustrate if a regression model provides adequate fit 

for the data and these models can still be used to draw conclusions. The coefficient of correlation 

(r) shows that the simulated values and the original data have a strong positive relationship. The 

highest correlation is that of Se at 0.76 with Pb being the lowest at 0.61, the values for Cu, Co, Ni 

and As are 0.72, 0.73, 0.70 and 0.7, respectively, which are relatively satisfying.  

Histogram reproduction- Comparisons of the raw data histograms and simulated values are 

shown in Figure 23, 24. The mean and standard deviation of the original data and the simulated 

values are relatively close; hence the simulations were able to reproduce the original histograms. 

QQ plot reproduction- The QQ plots were analyzed to further assess the histogram reproduction, 

as the histogram might have masked some information due to binning Figure 25. Most of the 

elements show great histogram reproduction such as Cu, Ni, Pb, Se and to a lesser extent Co. This 
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was also seen on the histograms where all the elements reproduced the original histogram on 

average, with As being an exception.  

Variogram reproduction- Variogram models were calculated for the mean of the 100 realizations 

and their reproduction compared with the sample variograms. The models are illustrated in Figure 

26 and 27. The models fitted to the variogram of the simulated realization mean are relatively close 

to the sample or original data in terms of the variogram shape. The range of influence for most of 

the elements was accurately reproduced, but the partial sill and nugget effect are not being 

reproduced. This could mean that the nugget effect that was previously depicted for the sample 

data was due to measurement error, and the variation that is associated with the nugget should not 

be reproduced by the simulations if it corresponds to measurement error (Marcotte, 1995). This 

great departure in the nugget effect could also be due to some sort of trend within the data which 

can be related to regions with elevated metal levels, this effect might not have an impact in the 

spatial structure of the data. 

Table 7: Descriptive statistics of the mean of the simulations. 

 

Mean 0.789 1.010 2.031 2.094 1.276 -0.026
Standard Error 0.005 0.004 0.007 0.006 0.005 0.005
Median 0.701 0.971 1.917 2.002 1.204 -0.173
Mode 1.515 1.505 2.636 2.664 1.635 0.231
Standard Deviation 0.330 0.264 0.433 0.370 0.288 0.300
Sample Variance 0.109 0.070 0.188 0.137 0.083 0.090
Kurtosis 0.295 0.485 -0.309 -0.642 -0.916 0.997
Skewness 0.981 0.164 0.792 0.636 0.321 1.378
Range 1.699 1.510 1.969 1.440 1.483 1.216
Minimum 0.205 0.162 1.071 1.439 0.433 -0.302
Maximum 1.904 1.672 3.040 2.879 1.916 0.914
Sum 3054.738 3907.424 7859.705 8103.023 4939.709 -101.376
Count 3870 3870 3870 3870 3870 3870

SeVariable As Co Cu Ni Pb
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Figure 21: Correlation plots of the original data vs. simulated values, with the R-squared and r 

value on the top right corner of each plot. 
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Figure 22: Histogram reproduction check for As, Co and Cu, the mean and standard deviations of 

the plots are shown on the top right corner of each plot. 
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Figure 23: Histogram reproduction check of Ni, Pb and Se, the mean and standard deviations of 

the plots are shown on the top right corner of each plot. 
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Figure 24: General QQ plots for the simulated vs. original data to assess histogram reproduction. 

Dataset #1 represents simulated values while Dataset #2 is the original value. 
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Figure 25: Sample (left) and simulated variograms (right) of the elements, showing the nugget, 

partial sill, and range of influence for the data. 
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Figure 26: Sample (left) and simulated variograms (right) of the elements, showing the nugget, 
partial sill, and range of influence for the data. 
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4.4. Kriging and simulation models 
 

To accurately analyze the patterns that the elements are making in the soil environment, the data 

is presented in the form of geochemical maps, this meets the first objective of the study. This will 

enable the detection of regions with positive concentration anomalies and possibly relate the 

observed patterns to different driving forces. Mapping the distribution of the COC will enable the 

identification of spatial trends and assist in subsequent risk assessment projects. 

Ordinary kriging maps of the elements As, Co, Cu, Ni, Pb and Se are presented alongside their 

corresponding gaussian simulation models. The maps are presented using a logarithmic scale with 

filled contours (connecting areas with the same values) representing concentrations given the same 

color. The log transformed kriging models produced showed that higher concentrations of Cu, Ni, 

As, Co and Se are centered within the vicinity of the three historic smelters, with the highest values 

around Copper Cliff and Falconbridge. According to SARA (2008), the highest concentrations of 

nickel (3200 mg/kg) and copper (5600 mg/kg) were detected within Copper Cliff, this is evident 

from the kriging models currently produced (Figure 37, 38). A fascinating factor is that the spatial 

distribution of Ni closely resembles that of Cu, which is in line with the findings of the SSS.  

A broad-scale gradient is readily observed approximately along the northwest to southeast 

direction (NW-SE), with the highest values of Cu (5.92-6.97 μg/g) and Ni (5.92-6.79 μg/g) 

progressively decreasing away from the smelters. A secondary trend is also reported, marking a 

narrow and elongated zone with elevated values of both Cu and Ni (northeast to southwest (NE-

SW) direction). The kriging model of Ni shows local discrepancies (< 3-5 kms) if compared to the 

Cu interpolation results. The kriging estimates of As, Co and Se also show similar observations as 

Cu and Ni, but in varying variabilities. Arsenic shows the same trends but in lower concentrations, 
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the highest concentrations are seen around the Falconbridge smelter, which is a similar observation 

with Se showing high concentrations in Copper Cliff. Cobalt on the other hand, shows similar 

concentrations distributed almost equally around the three smelters in similar patterns as that of 

Cu and Ni. The odd element in terms of patterns is Pb, it does not show any clear patterns and its 

estimates are not easy to interpret as no trends can be depicted. But however, the models show 

evidence of smoothing as the discrepancy between regions of high and low values cannot easily 

be made, but the trends can be seen with ease. The variability in patterns of these elements could 

be attributed to various soil types within the study area partly explaining the incongruence as well 

as a higher magnitude of control on air dispersion processes vs later mobilization in the soils. 

The simulations were produced using cell by cell declustered data and simple kriging models as 

outlined in Chapter 3 (3.1.1.6). The goal of using simulated models was to refine the kriging 

models as some of them showed evidence of over and underestimation with smoothing effects. 

The simulated maps of the elements show that much of the uncertainty is in preferred areas that 

were highly sampled, which are areas in the smelter centroid. The simulations were able to 

overcome the drawbacks that were observed in the kriging estimates (i.e., over and 

underestimation, and smoothing effect). The observed patterns from the estimates can now be 

clearly seen for Cu, Ni and Se, but however kriging seems to have accurately mapped the trends 

better as compared to the simulation models. The high values are at the regions were the 

distribution shows to occur most and so are the lower values. Although the simulations failed to 

replicate (on average) the variograms of the sample data, the maps can still be used for soil 

contamination interpretations. These geochemical maps can be used in land contamination 

characterization, site inspection of contaminated zones and to plan future sampling methods. 
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The middle (5-10 cm) and lower (10-20 cm) soil profile depths were also mapped (Figure 30). 

These ordinary kriging estimates did not show any pronounced trends. The maps show that the 

concentrations around the smelter centroid have decreased with an increase in the soil profile 

depth. At 5-10 cm minimum anomalies can still be seen around the smelters for the elements and 

appears to have decreased at 10-20 cm. The uncertainty that existed around these smelters can be 

said to decrease with an increase in soil profile depth. This is in line with what has been depicted 

already in earlier studies. 
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Figure 27: Ordinary kriging estimates (on the left) of As, Co, and Cu and the gaussian simulated 
values (on the right). All the values are log transformed and given in ppm. Historical smelter 
stacks are labeled as CC, Copper Cliff; C, Coniston; and F, Falconbridge. Common features in 
the region i.e., Sudbury Igneous Complex and Lake Wanapitei are inserted. 
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Figure 28: Ordinary kriging estimates (on the left) of Ni, Pb, and Se, and the gaussian simulated 
values (on the right). All the values are log transformed and given in ppm. Historical smelter stacks 
are labeled as CC, Copper Cliff; C, Coniston; and F, Falconbridge. Common features in the region 
i.e., Sudbury Igneous Complex and Lake Wanapitei are inserted. 
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5-10 cm 

 

10-20 cm 

 

Figure 29: Ordinary kriging estimates for soil profile depth 5-10 (top) and 10-20 cm (bottom) for 
As, Co, Cu, Ni, Pb, and Se. The interpolated values are given in ppm. 
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4.5. Vegetation analysis 
 

Figure 30 shows band composite images from the year 2019, this is to give a picture of the real-

life images that the spectral variabilities and vegetation change will be based upon. The images 

show real features of the region such as vegetated, non-vegetated regions, and previous barren 

areas of concern. The historic smelters are labelled as CC, Copper Cliff; C, Coniston and F, 

Falconbridge, for all the images under this section. 

 

 

Figure 30: RGB 4,3,2 natural colour (left) and 5,6,2 vegetation and soil cover band composites 
for Landsat 8 of the year 2019. 

The green colour on the left image and rusty orange to yellow colour on the right image indicates 

regions that are vegetated while the brownish colour (left image) and greenish colour (right image) 

indicates non-vegetated areas, infrastructure and roads are represented by white and blue-purple 

colour on the left and right images, respectively. Water bodies are in black in both images.  

Band ratioing was applied to the Landsat images,  figure 31 shows this for the year 2019. This 

gave an indication of regions that are expected to be vegetated and non-vegetated when assessing 

vegetation growth patterns. The image shows vegetated regions by bright pixels represented by 

the colour green, as the shadow effects are now reduced, and can be seen all around the area with 

a mild green surrounding the smelters. 



97 | P a g e  
 

 

 

                               Figure 31: Band ratio image from 2019 Landsat data.  

 

NDVI was used to determine the production of green vegetation and vegetation changes in and 

around regions that were previously damaged due to excess mining and smelting activities around 

the Sudbury region. The calculated NDVI images are presented in Figure 32. The main features of 

the images show that barren areas existed during the pre-industrial years (1979), indicated by 

NDVI values of <0.1 and has since decreased following the post-industrial years. The barren areas 

formed a northeast-southwest pattern, these could be following the geographic distribution of the 

smelters or some other driving forces.  The lowest NDVI values <0.1 are observed on non-

vegetated soil and water bodies, this is due to the high reflection that is given off by these areas, 

which in turn produce low values in the NIR band and high values in the RED, hence the values 

are low, the opposite is true for the vegetated regions. Visual inspection shows that the vegetation 

of the area has since recovered and most of the previous barren areas are now vegetated, this is 

shown by the NDVI classified images (Figure 33). The data was classified using unsupervised 

classification algorithms and the classes were made based on visual inspection of the band 
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composites in comparison with Google Earth images. The scars on the land in and around the 

smelter centroid that were captured in 1979 can be seen to have gradually decreased during the 

following mapped years. This can be attributed to improved dust removal and mining technologies, 

and regreening programs in the region. The semi-barren and barren patterns are like what was 

mapped by Gunn et al. (1995) in Figure 9. The 2019 image shows a lot of clouds at the top left and 

right, cloud masking was not effective for this data. The clouds should not be interpreted as non-

vegetated areas in Figure 33. 

 

 

Figure 32: NDVI images of the years 1979, 2000, 2013 and 2019. Vegetation is indicated by a 
green colour while non-vegetated regions and water bodies are in red-pale yellow colour. 
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Figure 33: Unsupervised classified NDVI images. 

 

4.6. Integration 

The kriging estimates and simulation trends were integrated with NDVI observed trends to map 

and create hybrid maps for precision interpretation of the observed patterns. The patterns 

observed from the geostatistical analysis conducted were directly combined with the NDVI and 

the trends were traced (Figure 34). The 1979 NDVI image was chosen for this as it clearly shows 

where the barren areas were located which makes it easy for integration. The printed patterns 

coincide with regions that have been mapped to be barren in 1979 elongated in the same 

directions. The occurrence of the observed distribution of elements according to wind patterns, 
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geology of the region, vegetation cover and metal deposition and mobility will be discussed in 

the following sections. 

 

 

 
Figure 34: Observed patterns from simulated maps printed onto the 1979 NDVI classification 
map. 
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4.7. Discussion 
 

4.7.1.  Wind patterns 
 

Most of the observed trends are causally linked to the predominant wind direction that is observed 

annually for the Sudbury region. The NE-SW trend that is depicted for the elements As, Cu, Ni, 

Co and Se, and to a lesser extent Pb, is in alignment with the prevailing wind direction (figure 5, 

35). In this case, the pollutant values are observed to change more slowly in the NE-SW direction 

which is aligned with the wind than perpendicular to the wind (Figure 35). This is the same 

observation that was predicted by geostatistics, more especially looking at the anisotropic 

variogram examples, and its existence further confirmed by NDVI mapping. The observation 

comes as no surprise given that most of the contamination by trace elements in the study area was 

due to atmospheric deposition. A study conducted by Hutchinson and Freeman (1980) on Sudbury 

soils, showed that the metals, Ni and Cu in particular, appeared to have enhanced and sometimes 

reduced concentrations depending on the period. They placed deposition collectors at 10, 20, 30 

and 60 km from the INCO (Copper Cliff) smelter to measure the deposition rates located at study 

sites that are 15, 25 and 30 km from the smelter. Their results showed that most of the contaminants 

are observed during periods when the wind is blowing directly to the smelter sites, which is 20% 

of the year, as compared to when the prevalent wind was not directly on the study sites, that is 

80% of the year (figure 36). From their results, they determined that approximately 100% of the 

metals were deposited within 35 km from the INCO smelter. This observation can be seen from 

the current study’s geochemical maps were much of the elements are distributed around the Copper 

Cliff smelter decreasing with distance (figure 27, 28). From figure 35 it can be concluded that soil 

metal concentration declines with an increase in distance from the source. However, for feasible 
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comparisons the fate of metals over long periods of time in these soils must be studied (Spektor, 

2003). 

 

Figure 35:  An image from the INCO smelter in Sudbury showing the influence of wind direction 
on metal deposition. The insert image (lower right corner) shows how metal concentrations are 
distributed with respect to the wind direction, the warm colours show high concentrations and cool 
colours low concentrations. https://www.myespanolanow.com/35204/the-sudbury-superstack-turns-another-chapter-in-its-
history/ 

 

Figure 36: Deposition rates analysed by Hutchinson and Freeman (1980). Left image shows a 
period when the prevailing wind was blowing directly to the smelter sites and the right shows the 
opposite. 

 

4.7.3 Trend variability based on metal mobility 
 

In the Sudbury soils, studies (e.g., Dudka, Ponce-Hernandez and Hutchinson, 1995) have shown 

that copper is available in more mobile forms as compared to nickel. Copper is found bounded to 

https://www.myespanolanow.com/35204/the-sudbury-superstack-turns-another-chapter-in-its-history/
https://www.myespanolanow.com/35204/the-sudbury-superstack-turns-another-chapter-in-its-history/
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organic matter of which it can be easily removed. The geochemical maps from this study agreed 

with this. The maps show elongated trends for Cu as compared to Ni. This is due to their varying 

mobilities as copper is removed at a faster rate than nickel. Cu has a high affinity for soluble 

organic ligands, the formation of these complexes greatly increases its mobility. Ni on the other 

hand will adsorb to clays, iron and manganese oxides, and organic matter, hence gets removed 

from the soil solution (Mclean and Bledsoe, 1992), the formation of Ni with inorganic ligands 

limits its mobility. But however, acidic soils, as those found in Sudbury, increases the mobility of 

Ni (Wuana and Okieimen, 2011). The results observed from Ni and Cu are very similar to what 

was found in Noril’sk Russia, whereby ecosystem degradation was in a south-south-west direction 

at 120 kms from the smelter point. 

The spatial distribution of lead appears to be patchy showing no predictable trend. This might be 

the result of smelting and atmospheric pollution not being the only sources of lead distribution, 

and that plants do not absorb lead in general (Mclean and Bledsoe, 1992). 

The metalloid arsenic is also viewed to have lower values and distributed for shorter distances. 

Many compounds of arsenic can adsorb strongly to soils but are then transported for just over 

shorter distances in ground and surface water. This could explain why arsenic only has moderate 

values around the smelter centroid. 

Concentrations of selenium are the lowest of all the elements. They are only high around the 

smelters, especially Copper Cliff (based on the OK maps), although the simulation maps refine the 

possible trends. Selenium is more mobile at higher pH values. Factors of the soil as alkaline pH, 

high selenium concentrations and oxidising conditions favour selenium mobility. The low mobility 

of selenium in these soils could be due to its low concentrations. 
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Cobalt is not widely distributed across the area and forms a rather unique trend. The high values 

of cobalt are in the vicinity of the three smelters. A detailed study on the mode of occurrence and 

minerals associated with the chemicals of concern in these soils would be essential in assessing 

further these observed behaviours.  

4.6.3. Vegetation 
 

The influence of local to regional scale biogeochemical processes, from carbon accumulation in 

individual trees and their underlying soils, to watershed cycling of elements is due to the reaction 

between soil and vegetation (Richardson and Friedland, 2016). Forest soils are responsible for the 

accumulation and cycling of micronutrients, macronutrients and toxic metals in terrestrial 

ecosystems, the cycling of plant essential metals is important for plant growth and any loss of these 

metals can pose a threat to the trees (Richardson and Friedland, 2016). Mining and smelting, and 

timber harvest are some of the main contributors to Sudbury’s soil disturbance which in turn 

disrupted metal accumulation and cycling processes causing some land to be barren by decreasing 

plant growth. The type of trees in a region can be used as a valuable tool in evaluating the role of 

airborne pollution in plant deterioration. In the study area, the dominant tree species are deciduous 

and coniferous trees. Based on their leaves, deciduous trees have been found to accumulate more 

pollution from air than coniferous trees (Spektor, 2003). Deciduous trees shed their leaves during 

the fall season, hence dropping accumulates into the litter horizon. During the winter season, with 

falling snow the accumulates get into the snow and runs off during the melt season. This kind of 

process does not really explain the role of vegetation type as a driving force for the observed soil 

metal contamination trends. A study on the direction of the drainage systems might further 

elaborate such. There are a variety of roles that plant type might play in metal accumulation in the 
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soil environment. Further detailed study is proposed for the understanding of vegetation on metal 

variability trends. 

4.6.4. Bedrock geology 
 

When compared with soils of other regions on the Canadian shield, the background concentrations 

of soils in the Sudbury region were found to have the same values. The high mineralization of the 

bedrock in the region is not reflected in the background concentrations. This observation has been 

suggested to be due to dilution with upstream material due to glaciation and that the base metal-

rich mineral phases that are hosted within the sulphide rich units of the regional bedrocks are 

relatively soft, and hence might have been transported and then dissolved from the surficial 

materials due to glacial activity and weathering (SARA, 2008). In any highly mineralized region, 

it is normal to find that the soil is also highly mineralized as soils are derived from the bedrocks, 

but the Precambrian rocks of the Sudbury region resisted ice abrasion that is responsible for 

forming soil materials during glacial periods. This finding rules out bedrock mineralization as a 

possible driving force to the high metal levels around the smelter centroid. To further validate this, 

rock sampling in and around the soil sampled regions might prove to be useful. 
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Chapter 5: Conclusions 
 

This study attempted to use geostatistics and remote sensing information to determine the regional 

and geospatial distribution of trace elements in the Sudbury region and to further correlate this to 

the vegetation distribution in the area. The study managed to meet all the objectives that were 

proposed.  

The study achieved the following 

• The existence of two key trends operating at different scales were observed for the 

elements, a secondary narrow northeast-southwest and a primary broader northwest-

southeast. The northeast-southwest trend can be attributed to the prevailing wind direction 

which forms similar patterns, and the existence of the northwest-southeast trend could be 

due to the geographic locations of the smelter stacks. 

• NDVI images further confirmed the existence of these trends through the ovoid distribution 

of vegetation around the vicinity of the smelters elongated in the same directions s the 

observed trends. The reduction of the barren soil/land could be attributed to improved dust 

removal technologies, mining methods and the regreening program. 

• The elements were found to have a high uncertainty in the smelter centroid, especially 

Copper Cliff decreasing with increasing soil profile depth and moving distance away from 

the smelters. 

• Implementation of Gaussian Conditional Simulation to the estimates proved to be robust 

in elucidating the metal patterns and overcoming some of the draw backs of kriging. 
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• The current study’s results reproduced what was observed by the Sudbury Soil Study using 

different approaches, however a new discovery was made which is the existence of a 

northwest-southeast trend in the data. 

• A brief study on wind patterns, vegetation, bedrock geology and metal mobility of the 

region assisted in the understanding and assessing the observed trends. 

The main challenge encountered during the study was that most of the elements were not normally 

distributed even after data transformation was applied, which also posed issues when modeling the 

variogram. This was not much of a concern as it is nearly impossible to find normally distributed 

data when dealing with sensitive values such as those of soil contamination. However, this might 

have been the cause of most of the issues encountered such as that the estimated and simulated 

values were not close to the sample data on average. Detailed research on the role in which the 

occurrence and behaviour of the chemicals of concern in the region played in influencing 

contamination levels is proposed. The results of this study can be used in future soil sampling 

programs, risk assessments and remediation of soil contamination by trace elements in the region. 
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Appendix 
 

 

 

 
Histogram, boxplot and QQ plot for the original data set of As, Co and Cu. 
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Histogram, boxplot and QQ plot for the log transformed data set of As, Co and Cu. 
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Histogram, boxplot and QQ plot for the original data set of Ni, Pb and Se. 
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Histogram, boxplot and QQ plot for the transformed data set of Ni, Pb and Se. 
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Theoretical variograms for the elements at 5-10 cm soil profile depth 
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Theoretical variogram models for the elements at 10-20 cm soil profile depth. 
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Predicted vs. measured for the ordinary kriging estimates. 

 

 
Band ratio images for the years 1979, 2000 and 2013. 

 

 



119 | P a g e  
 

 

 

 
Simple kriging prediction models that were used in the Gaussian Conditional Simulation. 

 
 

 


	Abstract
	Keywords
	Acknowledgments
	List of figures
	List of tables
	List of equations
	Introduction
	1.1. Study area
	1.1.1. Location
	1.1.2. Climate
	1.1.3. Geology
	1.1.4. Glaciation and drainage
	1.1.5. Soil
	1.1.6. Vegetation

	1.1.7. Wind patterns
	1.2. Chemicals of concern (COC)
	1.3. Regions of interest
	1.4. Research objectives
	1.5. Expectations

	Chapter 2: Metals, smelting and contamination
	Introduction
	2.1. Metals
	2.1.1. Natural sources
	2.1.2. Anthropogenic sources
	2.1.3. Influence on the environment
	2.1.4. Metal behaviour in the soil environment.
	2.2. Smelting and contamination in Sudbury
	2.2.1. Effects on the environment
	2.2.2. Soil studies
	2.2.3. Correlations with other Ni-Cu mining centers
	2.2.3.1. Russia-Noril’sk




	Chapter 3: Methods
	Introduction
	3.1. Data
	3.2. Exploratory spatial data analysis
	3.3. Spatial prediction
	3.3.1. Geostatistics
	3.3.1.1.  Kriging interpolation
	3.3.1.2. Spatial dependency, second order stationarity and the intrinsic hypothesis
	3.3.1.3. Data transformation and normality
	3.3.1.4. Variogram modelling
	3.3.1.4.1. Directional influences
	3.3.1.4.2.  Parameter selection

	3.3.1.5. Data validation
	3.3.1.6.   Gaussian conditional simulation
	3.3.1.6.1.  Accuracy assessment



	3.4. Remote sensing applications
	3.4.1.  Image pre-processing
	3.4.2.  Image processing
	3.4.2.1. Band composite
	3.4.2.2. Band ratioing
	3.4.2.3. NDVI

	2.2.4. Integration of kriging with remote sensing techniques



	Chapter 4: Results and discussion
	Introduction
	4.1. Exploratory analyses and data transformation
	4.2. Variogram analysis
	4.3. Data validation
	4.3.1. Cross validation
	4.3.2. Data reproduction
	4.4. Kriging and simulation models
	4.5. Vegetation analysis
	4.6. Integration
	4.7. Discussion
	4.7.1.  Wind patterns
	4.7.3 Trend variability based on metal mobility
	4.6.3. Vegetation
	4.6.4. Bedrock geology



	Chapter 5: Conclusions
	References
	Appendix

