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Abstract:

The use of remote sensing in forest fire detection could allow earlier mitigation of active fires
resulting in a significant decrease in fire related health effects. Infrared detection can provide
more detailed and accurate information on fire size, spatial accuracy and temperature.
Hyperspectral sensors can allow the detection and earlier mitigation of high risk areas. Few
studies have concentrated on the efficiency of multiple types of sensors such as infrared,
hyperspectral and multispectral being used in combination. A literature review was done to
highlight health effects on humans and the environment in order to determine the need for
changes in current forest fire detection practices. The infrared portion of this research focused on
sensors abilities to detect heat signatures and compared the specifications of each sensor with the
others to ensure a cost-effective solution to current practices using off-the-shelf technologies.
The hyperspectral portion of this research focused on using vegetation indices to examine

potential use of such sensors in the detection of high risk areas.
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Chapter 1: Introduction

On October 4™, 1957, the Soviet Union successfully launched the worlds first satellite, Sputnik
(Dickson, 2001). In response, the United States attempted to launch the Naval Research Lab’s
Vanguard project which, exploded and became a nation wide embarrassment (Nille & Lishick,
2003). Soon after this failed launch, the United States pooled resources and built a four-stage
rocket and on January 31* 1958, Explorer 1 became the first successfully launched U.S. satellite
(McDonald & Naugle, 2008). This officially started the “Space Race™ and from this scientific
research, the world of remote sensing was born.

Remote sensing is defined as the acquisition of information about an object or
phenomenon without coming into contact with the area being studied (Campbell & Wynne,
2011). This information comes in the form of a special class of imagery that allows an overhead
perspective of the area in question. This includes aerial photographs which can be taken from
airplanes, satellites and Unmanned Aerial Vehicles (UAV), such as the data from this research,
as well as from a number of other methods. These datasets have special properties such as the
detection of various forms of radiation that allow us to better study the earth’s surface. These
remote sensing technologies have been and continue to be increasingly applied worldwide in
areas such as resource exploration and development because they allow us to determine patterns
and relationships between features that otherwise seem independent (Campbell & Wynne, 2011;
Lo, 1986).

There are two types of remote sensing technologies, active and passive. Active sensors
transmit energy to illuminate the target, then receive a portion of the energy scattered back as a

reflection and are then able to form images of the surface of the area in question (Campbell &



Wynne, 2011). This involves the use of a transmitter which transmits microwave energy at a
given frequency. The reflected energy is accepted by a receiver and is then filtered or amplified
as required. Finally a recorder allows for the signal to be recorded and/or displayed as an
image.Passive technologies detect variations in solar illumination and measure radiation that is
emitted, reflected or absorbed from the target (Campbell & Wynne, 2011; Njoku & Entekhabi,
1996). RADAR and LiDAR technologies are considered active, while infrared, radiometers and
film photography are considered passive (Tyo et al, 2006).

Thus far, the application of remote sensing technologies in forest fire management has been used
in post-fire assessments however, it has been used less often for operational fire management
coincident with burn . The literature seems to represent more research on the use of remote
sensing post-fire in comparison to pre- and peri-fire. Passive technologies such as infrared
sensors have mostly been used as an addition to other forms of passive sensors such as red-
green-blue (RGB) sensors, in an effort to reduce false positives when these color sensors are
being utilized in the field for smoke detection (Arrue ef al, 2000). The use of active remote
sensing technologies has concentrated on fuel type determination and quantification as well as in
the determination of fire severity and post-fire recovery of vegetation (Joseph et al, 2011).

In this thesis, several studies were completed with the objective of determining the
applicability of both passive and active remote sensing technologies for use in forest fire
management protocols for the province of Ontario. To begin, the health impacts of forest fires
were researched in order to establish a better understanding of the overall needs and implications
that the introduction of remote sensing technologies could have on both the health of the
environment and of humans. Next, the efficacy of several infrared sensors were examined in

order to determine which sensors could be the most beneficial additions to current practices.



Finally, the use of hyperspectral technology in pre-fire biofuel characterization was examined in
order to compare the applicability of this form of technology to previously explored

multispectral technologies in the identification of areas at high-risk.



Chapter 2: Thesis Hypothesis and objectives

Hypothesis: Remote sensing technologies will be beneficial as an addition to forest detection
practices.
Objectives:
1) Evaluate the impact of forest fires on the health of the environment and humans (Chapter
3).
2) Determine the use of infrared remote sensing as an alternative or additional method to
current forest fire detection and prevention protocols (Chapter 4)
3) Assess the applicability of hyperspectral remote sensing in pre-fire vegetation analysis
and risk management (Chapter 5).



Chapter 3: Remote sensing and the potential mitigation of forest fire
related health effects

Hotspot detection is an important part of forest fire prevention, monitoring and
maintenance as it allows initial data on location and fire size. The goal is to prevent injury and
death to humans as well as to reduce secondary health hazards (from indirect contact). Protecting
and monitoring environmental effects as well as reducing economic losses are also priorities
(MNR, 2017). A literature review was done in order to explore the topic of health impacts of
forest fires on both humans and the environment. Firstly, physical impacts on human health from
fires were explored. This included impacts from direct contact, combustion and air pollution.
Secondly, post-fire implications on ecosystems were examined.

When referring to fires in general it is clear that the majority of fatalities do not result
from burns but rather from smoke inhalation (Stefanidou et al, 2008). For forest fires, the
ecosystem’s physical and chemical compositions are variable and the severity of smoke toxicity
also varies accordingly (Stefanidou et al, 2008). Symptoms of acute smoke exposure may
include buming eyes and tearing, runny nose and a sore throat (Fowler, 2003). More serious
symptoms can include reduced pulmonary function, chronic obstructive pulmonary disease
(COPD), asthma, heart disease, rhinitis and other respiratory and heart problems (Liu et al,
2016).

Smoke is comprised of a mixture of airborne solids, liquid particulates as well as gases, all of
which are modified when they undergo vaporization and thermal decomposition (Nelson, 1987).
The components present in smoke depend on the specific materials involved in the combustion
(Liu et al, 2016). Smoke from vegetation fires usually contains carbon, oxygen and hydrogen

which make up the combustion conditions. When burmed completely, carbon is transformed into



carbon dioxide and water (Stefanidou et al, 2008). However, combustion conditions are rarely
able to attain complete combustion meaning that the carbon is transformed into carbon monoxide
(Stefanidou et al, 2008). Carbon monoxide can cause tissue hypoxia leading to the death of
tissues because it starves organs of oxygen by affecting the function of hemoglobin (Nacher et
al., 2007).

High particulate matter (PM) has also been correlated with health effects in humans caused by
forest fires (Rittmaster et al, 2006). Fine particulate matter, defined as particulate matter with a
diameter smaller than 2.5 um (PM:z ) in particular has been shown to have significant effects on
human health (Haikerwal et al, 2009). Furthermore, atmospheric emissions from forest fires are
known to impact air quality and therefore, human health (Stefanidou et al, 2008). One study
found that PM levels associated with forest fires are 10 times more damaging to the alveolar
macrophages than PM collected at an equal dosage under normal conditions (Wegesser et al,
2009). Furthermore, the number of findings related to this subject are limited due to the lack of
proper measurement tools in this field of research (Fowler, 2003). Although it is clear that forest
fire emissions of PM> s and other particulate matter show important health related effects, it is
therefore difficult to quantify PM trends. This is because of the sporadic nature of forest fires as
well as the lack of technological resources (Jaffe et al, 2008).

Although the current 24 hour standards for PM o (with a diameter of 10 um) established by the
National Ambient Air Quality Standards (NAAQS) is of 150 ug/m", one study done in Australia
found that when PMg levels exceed 40 pg/m* hospital admissions for asthma increase rapidly
(NAAQS, 2016: Bowman & Johnston, 2005).

Although fine particulate matter is the main constituent responsible for medical problems in

relation to forest fire smoke inhalation, other components also play a role in the effect on human



health (WHO, 1999). Polycyclic aromatic hydrocarbons or PAHs are organic compounds which
can be carcinogenic, for example benzopyrene. Formaldehyde may also be a component released
from fires, as well as other aldehydes such as acrolein which produces irritation of mucous
membranes and can cause pulmonary lesions. Other components such as free radicals can react
with human tissues and create negative outcomes for those exposed. Furthermore, radionuclides
such as iodine-129, chlorine-36, as well as cesium-137 can be released into the atmosphere, soil
or water, and these radionuclides are all known carcinogens (Naeher et al., 2007; Miranda &
Borrego, 2005; McDonald et al., 2000; Malilay, 1999).

Forest and bush fire smoke has been studied for many years and has been known to contain high
levels of polychlorinated dibenzo-p-dioxins (PCDDs) (McMahon & Bush, 1992).

PCDDs, commonly known as dioxins, are thought to be an anthropogenically originated member
of the chemical family polyhalogenated aromatics (Safe, 1986). The effects of PCDDs have
been well studied in animals and are dependent on the age, sex and species of the animal
subjected to the toxins as well as on the strain and dosage of the toxin itself (Safe, 1986). The
majority of studies on PCDDs use non-human animal models and involve high-dose oral
exposure (Mukerjee, 2011). No inhalation exposure data is available in the literature (Mukerjee,
2011). In humans, PCDDs have been confirmed as a cause for developmental defects in breast-
fed children’s teeth and thus the effects of the inhalation of PCDDs is thought to be quite
important and multigenerational (Alaluusua et al, 1996).

Recent research has shown that cardiac problems are also associated with smoke inhalation (Liu
et al, 2016). One study found evidence that the effect of smoke inhalation can also be seen in the
reduction of red blood cell levels as well as in the destruction of cellular membranes indicated by

the diminishment of macrophage activity and in the elevation of albumin and lactose



dehydrogenase levels (Larson & Koenig, 1994). Another study conducted in the 2000’s,
demonstrated an increase in white blood cell count as a result of forest fire smoke inhalation and
determined that the increase was being caused by polymorphonuclear leukocyte precursors from
the bone marrow (Tan et al, 2000). However, as previously mentioned, effects of smoke
inhalation are dependent on the composition of the smoke as well as on age and pre-existing
conditions which all influence the onset and severity of symptoms.

One such association has been found in a study conducted in the late 2000’s where their findings
demonstrate the susceptibility of different age groups to the effects of smoke inhalation (Delfino
et al, 2009). This study found that the strongest associations between PM> s and hospital
admissions were in people over 65 years of age (with a 10% increase per 10 pg/m* PM: s) and
under 5 years of age (with an 8% increase per 10 pg/m* PM2 ) (Delfino et al, 2009). The
conclusions drawn from these findings are that children are more susceptible because of their
continuing airway development and that the elderly are the most susceptible because they have
an increased amount of pre-existing conditions in comparison with younger people (Langmann et
al, 2009; Stefanidou et al, 2008; Dokas et al, 2007).

One recent topic in terms of the effect of forest fires on human health is the idea of urban
components making their way into the smoke composition. As previously mentioned, when a fire
expands outwards and reaches urbanized land such as fields, landfills as well as city limits,
buming of the materials in these areas releases components that can be hazardous to humans
(Statheropoulos & Karma, 2007). This is a result of the extension in burning area materials such
as plastics, pesticides, fungicides, fertilizers etc. which can also be burned and be added to the
natural smoke components (Stefanidou et al, 2008). The components that originate from sources

other than natural forest fuels can even mix with urban or industrial pollutants and create



secondary products which can result in both short and long term health effects in humans,
especially firefighters (Statheropoulos & Karma, 2007). An example of man made compounds
which may lead to increases in toxic by-products are herbicides. Contact with herbicides by
workers such as firefighters as well as the people responsible for prescribed burmings have been
labelled insignificant with lab findings but have not been a vast topic of field research, therefore
the effects of these manmade products during wildland fires is not well documented and could be
more significant than previously thought (McMahon & Bush, 1992).

Human health is directly impacted by the health of the environment around us. The health
of the environment itself is also an area of interest in forest fire research. On major
environmental impact is the emission of carbon from forest fires. Carbon emissions due to forest
fires are estimated to average 27 Tg carbon per year for 1959-1999 in Canada this is equivalent
to an average of 18% (2-75%) of carbon dioxide emissions (Amiro et al, 2001). This is very
close to the average yearly carbon emissions from conventional oil for the same years which is
equivalent to 29.8 Tg carbon per year meaning that the impact is great (Environment and Climate
Change Canada, 2017). Post fire effects can also cause additional impacts on carbon emissions.
Forest fire smoke not only affects humans but also our environment as it is a source of reactive
organic substances which can react with urban or industrial pollutants to produce secondary
substances such as O3 (Hogue, 2005). These substances may cause additive or synergistic effects
(Dokas et al, 2007). Furthermore, smoke can effectively decrease visibility by hazing caused by
water vapor from fires condensing onto fine particles as well as by scattering light with fine soot
particles (Statheropoulos & Goldammer, 2007). Decreased visibility means traditional fire
monitoring may become more difficult or even impossible. In addition, the particles emitted by

forest fires can affect cloud properties as well as precipitation by acting as cloud condensation



nuclei thereby further decreasing visibility from aerial detection (Vestin et al, 2007; Lin et al,
2006). The emissions from most fires are kept within 5 km in the atmospheric boundary
however, depending on conditions the emissions could extend to the troposphere or even to the
lower stratosphere, enhancing the lifetime of air pollutants (Langmann et al, 2009). Fire
emissions are therefore becoming a global concern (Simoneit, 2002).

Additionally, forest fires can affect soil and water quality. Soil and water properties can be
affected in many different ways including physical, chemical, mineralogical and biological. The
results are dependent on the severity of the fire as characterized by both peak of temperatures as
well as duration of the fire (Certini, 2005).

Fires classified as low to moderate, such as prescribed burnings promote revegetation of
dominant species by removing competing plants (Certini, 2005). These prescribed burnings
enable nutrient cycling by making nutrients available for new vegetation and by increasing pH
levels. In the case of low to moderate fires no irreversible ecological changes occur. Severe fires
such as wildland fires do create irreversible ecological changes. These fires cause the removal of
significant amounts of organic material as well as a deterioration in the structure, nutrient load,
as well as microbial and invertebrate content in soils (Certini, 2005). The result of severe
burnings can also cause increased erosion due to the lack of contact of precipitation with
vegetation that would normally slow it. The effects of fires on erosion are mainly determined by
the amount of forest floor organic matter burned and the creation of water repellant conditions.
This causes problems with sediment leaching as well as the leaching of ashes into the soil and
eventually into water (Pannkuk & Robichaud, 2003). For example, one study found that the
leaching of organic or particulate-bound mercury into waterways is facilitated after a fire (Burke

et al, 2010).
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The impacts of forest fires are endless, the loss of thousands of hectares, people and
animals are just the beginning of the losses incurred (Bonazountas et al, 2007). Goods are lost,
soil erosion occurs as the natural ecosystem ordinarily uses the presence of vegetation in order to
control water runoff and with the bumed vegetation erosion and compaction take place (Stokes et
al, 2014: Bonazountas et al, 2007). Furthermore, the degradation of water quality and changes in
hydrology are also provoked by the lack of interception of vegetation and by the compaction
caused by erosion which together prevent the soaking in of rainwater which would ordinarily
become a part of the underground water table. The loss of these and other ecological services is
incredible (Stokes et al, 2014; Bonazountas et al, 2007).

The implementation of new technologies into current forest fire protocols could limit the
health related effects to both humans and the environment by offering faster and more accurate
information not only on fires but on areas at high risk. This would allow us to better understand
the implications of fires on ecosystem function over short to long time scales as well as how this
affects humans and ecosystem services. If this information could be acquired sooner, the health

effects associated to forest fires could be better mitigated.
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Chapter 4: Efficacy of remote sensing in early forest fire detection: a
sensor comparison

Abstract:
The quantity and severity of forest fires is increasing on a yearly basis and current forest

fire detection protocols are lacking. The objective of this research was to determine what
technologies could be used to improve current forest fire detection methodologies.
Although human observation provides a wealth of information on the presence and size
of fires, remote sensing technologies can provide increasingly more detailed, rapid,
accurate and reliable information. Thus, the cost efficiency, thermal accuracy, spatial
accuracy, range and resolution of three different thermal sensors were analysed. Our
findings demonstrate that the incorporation of this form of technology in Ontario
protocols would be beneficial and that limitations exist for each sensor depending on
altitude. Our results indicate that the most affordable off-the-shelf addition to current

forest fire detection protocols in Ontario would be the FLIR Duo Pro R.

Résumé:
La quantité et graviter de feux de foréts augmente a chaque année et les protocoles en

place couramment ne sont pas approprié¢s. L’objectif de cette recherche était de
déterminer quelles technologies pourrait améliorer les techniques courantes pour la
détection de feux de foréts. L'observation par télédétection nous permet d’accumuler des
données plus détaillées et précises que ceux provenant d’autres méthodes. Une analyse as

alors ét¢ accomplie afin de comparer la précision des données thermiques et spatiales,
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ainsi que la validité des données a différents intervalles de distances, la résolution et le
cout de trois différents télédétecteurs infrarouge. Nos résultats démontrent que I’addition
de technologies infrarouges dans les protocoles de détection en Ontario serait d’avantage
et que des limits existent pour chacun des télédétecteurs testés dépendent sur l'altitude.
Nos résultats indiquent que le FLIR Duo Pro R serait le télédétecteur le plus abordable

dans les protocoles en Ontario selon les techniques examiner.
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Introduction :
Forest fires are increasing in quantity globally on a yearly basis as fire activity is linked to

weather and climate change (McFayden ef al, 2020; Flannigan et al, 2009). Studies suggest that
in the next century, because of global climate change, an increase of 50% in fire occurrence is to
be expected (Harvey, 2016; Flannigan et al, 2009). Furthermore, a doubling of area burned is
also to be expected due to anthropogenic activities (Harvey, 2016: Flannigan et al, 2009). This
trend is obvious in Ontario, Canada where during the 2018 fire season the government observed
nearly double the yearly average number of forest fires (MNRF, 2018). In the 2018 fire season
alone, 1325 fires were observed in Ontario. This increase in forest fires is notable when
compared to the 2017 fire season which recorded 749 fires and with the prior decade’s yearly
average of 750 fires (MNRF, 2018). We also observe similar increases in quantity, severity and
size of forest fires in other countries such as the United States (McClure & Jaffe, 2018). This is
especially true in the Northwest U.S. where there has been an obvious prolonging in wildland
fire season linked to forest management techniques, as well as increased temperatures, earlier
melting of snow, and increased dryness (Westerling et al, 2006).

Wildland fires occur as a result of dry weather, available fuel and ignition sources. Two
main sources of ignition exist, the first being lightning and the second being human activities.
Out of the 1325 fires observed in Ontario in 2018, approximately 29% of the fires were caused
by anthropogenic activities and approximately 71% of the fires were due to lightning (MNRF,
2018). Wildland fire spread rates are influenced by temperature, relative humidity, precipitation
and wind speeds.

As aresult of global temperatures increasing by approximately 0.2°C per decade, many
global changes have been observed (Hansen et al, 2010). These changes in the environment

influence other parts of various ecosystems in a cyclical fashion. The temperature increase for
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example, may have influenced global water cycles in an accelerated fashion thereby intensifying
rainfall events, creating more prominent droughts and even modifying regional humidity trends
(Dai, 2013; Dessler et al, 2008; Trenberth et a/, 2003). In turn, regional water availability which
is closely associated to regional droughts, can explain variations in burned area (Girardin et al,
2009). Changes in the climate are associated with global fire variations and are predicted to
increase fire season severity over time (Flannigan et al, 2013).

Hotspot detection, the detection of areas of unusual outcome, meaning areas representing
a cluster of heat signatures in forest fire detection, is an important part of forest fire prevention,
monitoring and maintenance as it allows initial data on location and fire size (McFayden et a/,
2020). The goal is to prevent injury and death to humans as well as to reduce secondary health
hazards such as disease or illness related to smoke inhalation (from indirect contact). Protecting
and monitoring environmental effects and reducing economic losses are also priorities
(McFayden et al, 2020; MNRF, 2017).

Hotspot detection is not currently in use in Ontario protocols for forest fire detection. In
order to understand current methodology in Ontario, it is important to review the history of fire
detection in Ontario. This begins with the implementation of an organized forest fire protection
division which has existed within the Ministry of Natural Resources and Forestry (MNRF) since
1885 (AFFES, 2019). In 1924, a new branch of the MNRF called the Aviation, Forest Fire and
Emergency Services (AFFES) program was developed. This branch of the MNREF is responsible
for responding to all natural disasters and for allocating resources to incidents. Through aviation,
Ontario is able to get more detailed information on the location and size of fires. This allows

decision makers to be better equipped when allocating fire resources (AFFES, 2019).
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Ontario is divided into two regions. The Northwest Region includes Fort Frances,
Kenora, Dryden, Thunder Bay, Nipigon, Red Lake and Sioux Lookout. The Northeast Region
includes the Haliburton, Sudbury, Timmins, Chapleau, Wawa and Cochrane sectors (AFFES,
2019). All sectors are monitored using aerial detection. The goal of the aerial detection program
is to detect fires when they are small in order to have a better chance at controlling them
(AFFES, 2019).

The actual procedure involved in aerial detection in Ontario, uses pilots and observers
who are trained through an MNRF course called AV109 (AFFES, 2019). Observers are assigned
a detection flight path and are flown by detection pilots in one of ten aircraft (Cessna Skymaster
337). Observers follow an observation protocol involving looking out of the window of the
aircraft for visible smoke. This is currently the most reliable signal for daytime visual detection
of forest fires (McFayden ef al, 2020; Zimmerman, 1969; Byram & Jemison, 1948).

Although all observers and pilots hired for detection go through the same training, the
information provided is relative to the perspective of the observer (AFFES, 2019). For example,
if an observer is not paying attention a small fire could be missed. Furthermore, an inaccurate
location or fire size could be reported as a result of an observer being inexperienced. Human
vision is limited by several factors such as acuity, sensitivity to light, attention of the observer:
the size, distance and intensity of the target and visibility factors such as haze, fog and dust
clouds (Byram & Jemison, 1984). An increase in interest for automatic surveillance and early
fire detection has started to take precedence over traditional human surveillance as a result of this
subjectivity and the effects it has on detection reliability (McFayden et al, 2020; Arrue et al,
2000). Detection reliability is the biggest problem recognized in the context of the creation of

forest fire detection systems.
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While aerial surveillance by use of observers has been used to identify burning areas,
remote sensing offers similar methods of detection without relying on human vision or smoke for
the detection of fires. Remote sensing is defined as the acquisition of information of an area
without making physical contact with it (Robert, 2007). In the case of infrared sensors for forest
fire detection this means flying sensors over areas of forest using airplanes, helicopters, drones or
satellites in order to gain information on these areas. This works by using sensors which convert
the energy information accumulated to receiving and processing software which create images
with the data. The image data is then used to interpret findings (Joseph, 2011).

Infrared is defined as electromagnetic radiation with wavelengths longer than the visible
light spectrum (Liew, 2017). These wavelengths, which are invisible to the human eye extend
from 700 to 1,000,000 nanometers and are located near the red edge of the visible spectrum from
which they received the name infrared (Liew, 2017). These wavelengths have frequencies which
range from 300 GHz to 430 THz (Haynes, 2011).

The heat emitted by fires is a detectible signal for sensors that are able to detect the
thermal infrared portion of the electromagnetic spectrum. Heat is transported by the fire in
several different ways — convection, conduction, and radiation. The radiated heat is the main
signal that these sensors are able to detect (Allison et al, 2016). This follows Planck’s law, which
describes spectral radiance distribution as a function of wavelength on the emitted
electromagnetic radiation scale (Kuenzer & Dech, 2013). This allows the detection of emitted
thermal radiation by targets and in the world of forest fires can allow early detection of fires.
(Arrue et al, 2000).

The use of remote sensing technologies in forest fire detection is not standardized across

Canada as forest fire detection protocols vary from province to province. Infrared sensing has
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been explored as a means of false alarm reduction in some studies (Arrue et al, 2000; Ollero et
al, 1999; Ollero et al, 1997). These studies have demonstrated the usefulness of IR technologies
in the assistance of other technologies such as red-green-blue (RGB) imagers (Arrue et al, 2000).
Most imaging techniques concentrate on the mid-wave infrared (MWIR, 3-5 um) or thermal
infrared (TIR, 8-15 um) regions (Dozier, 1981). TIR sensors have the advantage of being able to
see through smoke cover because even thick smoke is transparent at these wavelengths. The
dynamic range of the scene in TIR is also limited making it easier to get high contrast imagery of
both the heat source and the background (Allison et al, 2016).

Different airborne sensor platforms exist for monitoring (Allison et al, 2016). This paper
concentrates on airborne sensing usingfixed-wing aircraft and Unmanned Aerial Vehicles (UAV)
specifically. This is because these platforms allow for more maneuverability, can be more easily
deployed, can target priority areas and can revisit often and for longer periods than other
available platforms. Watch towers for example, are inflexible, need to be carefully placed, are
expensive, and are not suited for large, sparsely populated areas (McFayden et al, 2020; Allison
et al, 2016). The use UAVs has also come into the light recently as a possible addition to current
fire practices. UAVs provide rapid maneuverability, personnel safety, and allow faster data
acquisition than relying on satellite data (Yuan et al, 2015). However, UAVs depend on internal
batteries which limit range. The stability of the aircraft over the fire is also an issue for small
UAVs (Hinkley & Zajkowski, 2011). Also, the ability of UAVs to collect imagery requires them
to be flying directly on top of the area being studied and due to fire severity and the height of the
vegetation being burned, limitations exist (Ollero, 2006).

The time of day at which sensors are being flown, is another consideration in the

planning of aerial detection (Mcfayden et a/, 2020; Allison et al, 2016). Daylight airborme
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remote sensing allows for smoke detection and light level allow for increased safety during
flights and easier target detection (Allison et a/, 2016). However, daylight detection has its own
set of disadvantages as it is susceptible to the effects of reflected sunlight for MWIR sensing.
These effects include false positives due to solar heated rocks and other objects (Allison et al,
2016). Forest fires are known to be diurnally cyclical in terms of size and intensity. These
characteristics are known to be decreased markedly overnight (Wooster et al, 2013). Therefore,
although nighttime sensing (which is focused on bright object detection) allows a higher contrast
between hotspots and background temperatures, and negates effects of reflected sunlight, it may
not provide a completely representative image of active fires (Allison et al, 2016). Therefore,
flights need to be timed properly depending on the sensor being used. Current detection flights in
Ontario, take place during daylight hours and as such the infrared remote sensors being added to
current practices would need to be able to function properly during daylight in order to be viable
additions.

Since the current methods used for the detection and monitoring of forest fires operate
with such variability in success rates and since increasing fire occurrence could affect the
functionality of these methods, this study proposes the use of various remote sensing systems as
alternate or additional methods of hotspot detection for fire prevention and monitoring. The goal
is to develop methods for more efficient identification of potential fires using remote sensing to
provide support to current fire detection practices.

The present work deals with the application of infrared sensing technologies used for
hotspot detection and fire management activities from aircraft in early fire detection. Rapid,
accurate, and objective methods to quantify fire fuels are needed to evaluate the effectiveness of

current fire practices as well as to improve upon them. Therefore, the spatial accuracy, thermal
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accuracy, and ability to determine accurate sizes of hotspots were examined for several remote
sensing technologies. The focus of this study was to determine which of the infrared remote
sensors tested could be a useful addition to current methodology. We focused on off-the-shelf
infrared remote sensors and wanted to find the least expensive option that would be beneficial to
current practices. The intent is to provide information that could be used to develop a new
protocol for Ontario and for widespread deployment in wildland fire management in order to
allow for greater resource management and allocation, as well as to reduce health effects related

to forest fires.

Materials and Methods:

Study site:
The study area was located 1.2 NM (2200 m) southeast of Alban, Ontario, Canada at the French

River/Alban Aerodrome (DMS: 46°5' 36" N, 80° 36' 15" W). This is a private airport with two
turf runways. The first runway (Runway 1) runs North/South and has a length of 750 m. The
second runway (Runway 2) runs East/West and is 760 m in length (See Figure 1) (Nav Canada,

2019). Butane heaters were used to mimic fire hotspots and were set up on runway 2.

20



ONTARIO

WISCONSIN

MICHIGAN
NEW YORK

Figure 1. Demonstrates the location of the study site (Google Earth, 2020). The mnset image demonstrates a satellite
image of French River/Alban acrodrome this represents an aerial view of the arca being flown over during
experimentation (Google Maps, 2019). Runway 1 runs parallel to highway 607. Runway 2 runs approximately at a
90” angle to Runway 1.

f’fl’:gg ':e.nsors were used for this research (see Table 1). All sensors were nadir mounted, that is,
looking straight down from the aircraft.

The first sensor used in this study was the ITRES microTABI («TABI), which is a
broadband, wide array, cryo-cooled pushframe thermal imager. This sensor has a reported spatial
resolution of 0.7 m with a flight line swath of 1200 m at an aircraft speed of 56.58 meters per
second (110 knots) and an altitude of 1730 m AGL. This sensor is considered to be a mid-wave

infrared (MWIR) sensor as it has a spectral range of 3.7 - 4.8 um (Table 1).
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The second sensor, the FLIR Duo Pro R (Pro) is an HD dual-sensor thermal camera. It is
a combined high resolution radiometric thermal imager and 4K color camera. This sensor has an
uncooled VOx Microbolometer. This sensor is considered a thermal infrared (TIR) sensor as it
has a spectral range of 7.5 — 13.5 um (Table 1). The pixel resolution for the thermal portion of
this sensor is 0f 336 x 256 with pixels of 1.85 um in size.

Lastly, the FLIR Duo (Duo) was the third sensor used throughout this research. This is an
uncooled radiometric thermal and visible light imager that was designed for professional drone
applications. This sensor has been discontinued as of November 1* 2018. This sensor is
considered a thermal infrared (TIR) sensor as it has a spectral range of 7.5 — 13.5 um (Table 1).
The pixel resolution for the thermal portion of this sensor is of 160 x 120 with pixels of 12 pm in

size.
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Table 1. List of sensors and their specifications

microTABI- 640

FLIR Duo® Pro R

Duo R

Sensors
Price Approx $100,000  Approx $6,000 Approx $3,000
Dimensions (mm) 100 x230 % 250 85 x81.3x68.5 41 x 59 x29.6
Weight (g) 3800 325 84
Spectral range (um) 3.7-4.8 7.5-13.5 7.5-13.5
Spectral Channel | | 1
Max Frame rate (Hz) 90-110 30 8.3
Operating Temperature 0to 40 -20to 50 0to 50
(°C)
Thermal Measurement +5°C or 5% of
accuracy readings in the 25
A v to +135°C range +5°Cor5%
Not Available +20°C or 20% of of reading
readings in the —40
to +550°C range
Field of View (°) 40 25-45 (depending  57x44 (90 on
on lens) visible camera)
Maximnm Altitude 10000f/4500m  38000f/11582m  12000ft/3657m
Sensor Resolution 4000x3000 1920x1080
640x512 th 1 640x512 (thermal
(thermal 640x512) 4 6 (120
GPS GNSS or MEMS  GLONASS
none
(external)
Output Format BIP (ENVI Analog/Dlgltal Analogﬂ)lgltal
tibl video (1080p video (1080p
compatible) movAiffiripg) mov/tiffitipg)
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Aircraft:
Three different aerial platforms were used during this study. These include the Aero

Commander 500. This is a six-seat, high wing, fixed-wing, twin piston-engine aircraft. Standard
configuration allows for mission equipment and two pilots. This aircraft was used to acquire
uTABI data and was flown at 640.8 to 2590.8 m Above Ground Level (AGL) at an average
speed of 90 metres per second (175 knts). The «TABI was internally mounted in the Aero
Commander 500.

The Cessna 172 Skyhawk which is a four-seat, single engine, high wing, fixed-wing
aircraft made by the Cessna Aircraft Company was also used in data acquisition. The Cessna 172
was used to fly the FLIR Pro and FLIR Duo sensors at altitudes of 304.8 and 609.6 m AGL. A
SkyIMD camera mount was used for this data collection. This is a strut mount that is
customizable for use with smaller sensors. This aircraft flew at 51.44 meters per second (100
knts) for each pass.

A DJI Matrice 600 was used in this study. This is an Unmanned Aerial Vehicle (UAV),
specifically a drone. The aircraft was remotely piloted from the runway and the sensors were
placed one at a time on a gimbal mount and flown at 60.96 and 121.92 m. The sensors used on
this aircraft were the FLIR Pro and the FLIR Duo. This UAV was set to fly at 8.93 metres per

second (17.37 knts) for each pass.

Flight plans:
Several altitudes were flown in order to compare the effects on spatial resolution as well

as spatial and thermal accuracy. The planned altitudes for flights were between 60.96 and
2590.8 m AGL. These altitudes were modified according to conditions and to the restrictions of

the sensor and aircraft being used.
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In the case of the «TABI, in order to have the most accurate data, flight lines were flown
at several altitudes in the same direction each time. This was done in order to account for
positional bias seen in previous data collection trials. The line at each altitude was flown down
the center of the polygon.

uTABI data collection was done on June 21* 2019 in Alban Ontario. Conditions were
ideal for IR scanning; this means the flights took place in low wind < 10 km/h with clear skies.
The weather report for that day indicates that the temperature was at a low of 22°C and high of
23°C with passing clouds and an average humidity of 53%. At the time of each pass there were
no clouds overhead.

Both the FLIR Pro and FLIR Duo were flown on the 15" of August 2019 in Alban
Ontario. Conditions were ideal for IR scanning, the weather report for that day indicates that the
temperature was at a low of 13°C and high of 23°C with broken clouds and an average humidity

of 58%.

uTABI:
The uTABI was flown on the Aero Commander 500 over the five heaters on June 21°' 2019. The

aircraft was over the targeted area by 5:20 am. The altitudes flown were of 883.92, 1097.28,
1310.64, 1524, and 1767.84 m AGL

Pro and Duo:

These sensors were flown individually on a Cessna 172 on August 15" 2019. These sensors were
attached to the aircraft on an external wing strut mount. The flight took offat 11 am from the
French River/ Alban aerodrome. The altitudes flown were 307.54 and 609.6 m AGL. These

sensors were also flown at 60.96 and 121.92 m AGL using a UAV.
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Hotspots:
uTABI:
Five butane heaters were set up on the runway at the French River/Alban aerodrome. The space

between heaters 1 and 2 was 13 m. The space between heaters 2 and 3 was 15 m. The space
between heaters 4 and 5 was 22 m. Heaters 3 and 4 were set up at a shorter distance of 4 meters
in order to identify at what altitude these two heaters were represented by a single point. Heaters
1, 4, and 5 were all set to the same heat setting and had an average temperature of 335°C. Heater
2 was set to the lowest temperature setting with an average temperature of 244°C. Finally, Heater
3 was set to the highest temperature setting with an average temperature of 430°C. See Figure 2

for representation of heater set up. The GPS coordinates for each heater were also recorded

(Table 2).

Figure 2. Demonstrates heater placement and temperature plan. A represents the heater set up on June 21°, 2019
this is the set up for the uTABI data the heaters are represented by blue points on runway 2. B represents the heater
set up on August 15" 2019, this is the set up for the Duo Pro R and Duo R the heaters are represented by pink points
on runway 2. Each point on the image represents a heater. Heaters 1 to 5 are displaved from right to left.
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Table 2. List of heaters and their coordinates

F foordinate_il.

Latitude Longitude
Heater 1 46.09122015 -80.60574673
Heater 2 46.09122327  -B0.60581648
Heater 3 46.09121599  -B0.60589059
Heater 4 46.09120465 -80.60597589
Heater 5 46.09120834  -80.60599226

Pro and Duo:
Five butane heaters were set up on the runway at the French River/Alban aerodrome. Heaters 1,

2, and 3 were set up at approximately 5.5 meters apart. The space between heaters | and 2 was
5.41 m. The space between heaters 2 and 3 was 5.79 m. The space between heaters 3 and 4 was
6.72 m. Heaters 4 and 5 were set up at a shorter distance of 1.33 meters in order to identify at
what altitude these two heaters were represented by a single point. Heaters 1, 4, and 5 were all
set to the same heat setting and had an average temperature of 382°C. Heater 2 was set to the
coolest temperature setting with an average temperature of 245°C. Finally, Heater 3 was set to
the highest temperature setting with an average temperature of 428°C. See Figure 2 B for

representation of heater set up. The coordinates for each heater were also recorded (Table 2).

Temperature readings from the ground:
Temperature readings of each heater were taken from the ground using laser thermometers. The

Extech Instruments Dual Laser IR Thermometer with Color Alert was used for each hotspot.
Readings were taken and recorded three times for each heater, one reading was taken before the
flight, one during and one right as the planned flight lines were finished before tuming the
heaters off. These temperature readings were taken from the center of each heater at a distance of
approximately 12 inches. The readings were taken from the center of the heaters to ensure a

representative reading. A ground temperature reading near the area of the heaters was also taken
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as a reference for background temperature the average reading on June 21 was 9°C. The

average reading for background temperature on August 15" was 29°C.

Resolution:
The ability to differentiate between each individual heater was recorded for each altitude.

Ground sampling distance (GSD) which is the distance from pixel center to pixel center, was

calculated for the «TABI at each altitude.

Spatial Accuracy:
Coordinates of butane heaters were recorded from the ground using a Garmin eTrex 10 handheld

global positioning system (GPS). The distance between projected aerial coordinates and ground
coordinates was measured in meters in order to determine the range of accuracy for the ITRES
uTABI data. This measurement was not able to be completed with the data from the FLIR Pro or
the FLIR Duo. The diameter of each heater was also taken from the aerial data at each altitude
from the «TABI data. This data was collected by measuring the diameter of the heat signature for

each heater at each altitude.

Thermal accuracy:
The hottest pixel from each heater was selected for each altitude flown from the «TABI data.

The number of hot pixels for each heater was also obtained for all of the infrared data used

(«TABI, Pro, Duo).

Results:
uTABI:

Resolution:
A Pearson correlation was done to determine if an association exists between altitude and

spectral resolution (GSD). This showed a significant positive association between altitude and

GSD [r(5)=1, p<.001].
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Figure 3. Demonstrates the relationship between ground sampling distance (GSD) in meters and altitude in meters
for ITRES uTABL. [r(5)=1, p<.001, R’ = 1]. A single independent observation was used to derive these values at

each altitude.

Spatial accuracy:
A Pearson correlation was done to determine if an association exists between altitude and

average spatial variance. This showed a significant positive association between altitude and

average spatial variance [r(5)=.98, p<.001]. See Figure 4.

A Pearson correlation was also done to determine if an association exists between altitude and

diameter of heat plumes (Figure 5). This showed a significant positive association between these

variables, [r(5)=.98, p<.001].
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Figure 4. Demonstrates the relationship between average spatial variance in meters and altitude in meters for ITRES

uTABI data. [r(5)=.98, p<.001, R? = 0.9596). A single independent observation was used to derive these values at
each altitude.
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Figure 5. Demonstrates the relationship between diameter in meters and altitude in meters for ITRES uTABI data.
[1(5)=.98, p=.001, R? = 0.9595]. A single independent observation was used to derive these values at each altitude.

Thermal accuracy:

A Pearson correlation was done to determine if an association exists between altitude and the
ability to detect the hottest pixel. This showed a significant negative association between these
variables, [r(5)=-0.95, p=.002]. This data also demonstrates that on average Heater 3 represents
the highest pixel temperature and that Heater 2 represents the lowest pixel temperature.

A Pearson correlation was done to determine if an association exists between altitude and the
number of measured pixels (hot). There was no significant correlation, [r(5)=-0.55, p=.259]. As
altitude increased the amount of pixels did not seem to decrease. The average number of heated

pixels for each heater at each altitude demonstrates that Heater 3 consistently represents the
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largest quantity of pixels (92.75) and that the Heater 2 consistently represents the lowest count of

heated pixels (32).

Pro and Duo:

Resolution:
The GSD for the uTABI increased with altitude, meaning that the size of each pixel increases

with altitude (Figure 3). This indicates that with increasing altitude resolution decreases. When
plotted, 100% of change in resolution (GSD) are accounted for by a change in altitude. The
results (Figure 6) demonstrate that the FLIR Pro is capable of detecting each individual heater
from 60.96 to 609.6 m AGL. The FLIR Duo (Figure 7) is capable of detecting each individual
heater from 60.96 to 121.92 m AGL only. The imagery demonstrates that at altitudes of 304.8
and 609.6 m AGL the infrared imagery is unable to detect heat sources the size of our heaters.
The Duo at 640.8 m AGL is however still able to detect the heaters in its 4K colour imagery. At
609.6 m AGL however, even the 4K colour portion of the sensor is out of range for heaters of

that size.
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Figure 6. Demonstrates the aerial infrared view of hotspots from FLIR Duo Pro R. A1l represents heaters 1 and 2
from top to bottom at 200 ft AGL. A2 represents heaters 3, 4 and 5 from top to bottom at 200 ft AGL. B represents
heaters 1 to 5 from bottom to top at 400 ft AGL. C represents heaters 2 to 5 from top to bottom at 1000 ft AGL. D
represents heaters 2 to 5 from top to bottom at 2000 ft AGL. Yellow points in the center of the runway indicate the
butane heaters.
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Figure 7. Demonstrates the aerial infrared view of hotspots from FLIR DUO R. All photos represent heaters 1 to 5
from top to bottom. Heater 1 1s out in all of the images of this set. A represents the infrared view from 200 ft AGL.
B represents the infrared view from 400 fi AGL. C1 represents the mfrared view from 1000 ft AGL. C2 represents
the RGB view from 1000 ft AGL, the arrows demonstrate the placement of the heaters. D1 represents the infrared
view from 2000 ft AGL. D2 represents the RGB view from 2000 ft AGL. Yellow points in the center of the runway
indicate the butane heaters.

Thermal accuracy:
FLIR Pro and Duo data was combined in order to account for the small sample size for the Duo.

A Pearson correlation was done to determine if an association exists between altitude and the
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number of measured pixels (hot). There was a negative significant correlation, [r(5)=-0.856,
p=.029]. As altitude increased the amount of pixels did seem to decrease. The average number of
heated pixels for each heater at each altitude demonstrates that Heater 3 consistently represents
the largest quantity of pixels (227) and that the Heater 2 consistently represents the lowest count

of heated pixels (98).

Table 3. Number of high temperature pixels associated to cach heater per trial.

Sensor  Altitude Heater Heater 2 Heater 3 Heater 4 Heater 5

(ft. AGL) 1
FLIR 2000 N/A 18 31 26 23
Duo 1000 N/A 49 84 59 52
Pro 400 106 87 132 114 103
R 200 275 176 275 184 238
FLIR 400 N/A 80 175 141 127
Duo 200 N/A 116 279 179 198
R
Discussion:

Data collection is complicated for the evaluation of sensor technologies for wildland fire
detection as sensor performance and capabilities are usually tested in laboratory measurements as
opposed to in the field (Allison et al, 2016). Therefore, the majority of prior research has been
done through demonstrated projects as opposed to controlled studies (Ambrosia et al, 201 1;
Kontoes et al, 2009; Merino et al, 2006). This is due to the unpredictability and complexity of
fires (Allison et al, 2016). Studies involving wildland fire detection commonly involve
measuring detection distances or rates for staged events such as controlled burns or field trials in
actual use (Allison et al, 2016). The variety of data available for our use is thus limited.
However, this is a pilot project and the trends discovered throughout this project are essential for

the development of modifications for larger scale application.
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Resolution:
The results for GSD for the T ABI demonstrate that as altitude increases GSD increases.

Resolution is best when GSD is small therefore, as altitude increases resolution decreases. This
was the expected result for all sensors as it is commonly the case that with increasing altitudes
data resolution decreases quite rapidly (PeniZek et al, 2016). The visual data from both the FLIR
Pro and Duo demonstrate similar results, as altitude increases the ability to see the heaters
decreases and as a result accuracy decreases.

This was the expected result as the inverse square law states that a specified physical
quantity is inversely proportional to the square of the distance from the source of that physical
quantity (Adelberger ef a/, 2003). This means that at a certain height, which in this case is 1006
m, the accuracy begins to diminish greatly (see spatial accuracy).

In terms of the application of infrared technologies for forest fire detection protocols this
means that the altitude being flown needs to be taken into consideration depending on the sensor
being used in order to optimize spectral resolution. This is important for forest fire detection
because it allows us to determine a range for which each sensor performs within specific spectral
resolution criteria. This allows us to determine guidelines for altitude in order to maintain
consistency in spectral resolution no matter what sensor is being used. Basically, it allows us to
develop guidelines for the maximum altitudes each sensor can be flown at in order to accurately

detect fires. Accuracy will always be improved with lower altitudes where appropriate.

Spatial accuracy:
The average spatial variance values, which are the measurements of distance between the

coordinates on the ground to the proposed coordinates from the aerial data increase with
increasing altitudes. When plotted (Figure 4) 95.96% of change in accuracy is accounted for by a

change in altitude. Therefore, as altitude increases accuracy in meters decreases as the difference
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between ground and aerial data becomes larger. Once again, this data was from the «TABI as the
FLIR sensors were not capable of detecting this information.

If we base our protocol on that of the Hinton Grid Test in Alberta, which is the standard for
Canada, spatial accuracy needs to fall within a quantifiable distance of 10 m. In looking at the
results there is a clear demarcation where our data falls within that range, at any altitude under
1006 m spatial accuracy is within 10 m. Our protocol for flying in Ontario would then include
this guideline of 1006 m AGL being the maximum altitude for the application of infrared remote
sensing using the uTABL
The average diameter of heaters increases in the aerial data with altitude. When plotted 95.95%
of change in diameter is accounted for by a change in altitude. Meaning that, the data suggests
that the thermal plumes for each heater are becoming larger the higher the sensor is flown, when
in reality they are stable in terms of size. Because this is being measured from infrared data, we
are measuring the diameter of the plume and not of the heater itself. This result indicates that the
ability to determine the diameter of a fire accurately from the air decreases with increasing
altitude. Again, due to the inverse-square law. However, it is still possible to differentiate
between the hottest and coldest heaters (3 and 2 respectively) at every altitude. This means that it
would be possible to determine when a thermal plume is larger in relation to another but not to
determine the exact diameter of a fire from infrared remote sensing technologies such as the ones
we have tested. Based on our results hotter heat sources project more high temperature pixels and
thus a larger diameter could indicate either a larger fire or a hotter one. It would however be
difficult to determine whether the readings are displaying a larger fire or a hotter one.
Nevertheless, both are factors that indicate fire behaviour and could be useful for detection and

monitoring of forest fires.
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Thermal accuracy:
The average heat for the hottest pixel for each heater at each altitude demonstrates that as altitude

increases thermal accuracy, the ability to determine a temperature on the ground from aerial data,
decreases. This data was acquired only with the ¥TABI as the FLIR sensors were not of high
enough quality to be able to detect heat signatures for each pixel within an image. The aerial
results demonstrate temperatures from 7°C to 40°C which is not an accurate representation of the
temperatures as the recorded temperatures from the ground range from 230°C to 442°C. This is
explained by the fact that the heat plumes bleed out and are averaged out by surrounding
unheated pixels. This leads to the heat sources being detected at much lower temperatures from
the air and as altitude increases these temperatures decrease even further. However, it is still
possible to detect the heaters as the difference between them and ground temperatures is great
enough. It is also possible to differentiate between the hottest and coldest heaters (3 and 2
respectively) at every altitude. This means that it would be possible to detect fires and determine
if a fire is hotter than another in relation to each other but not to determine the exact temperature
of a fire from infrared remote sensing technologies such as the ones we have tested.

Although the data for the ¥TABI sensor demonstrated no significant correlation between
altitude and the decrease in quantity of hot pixels, the data for both the Pro and Duo did
demonstrate significant correlations. This indicates that as altitude increases the number of
represented hot pixels decreases. This is because the resolution results indicate that the size of
the pixels increases with altitude and as such, fewer are used to represent an area of the same size
(see inverse-square law). This was the expected result however, this data was still collected in
order to provide some information on thermal accuracy for the Pro and Duo which were not able
to give temperature readings for each pixel in the image data collected. The data also showed

that for each sensor the average number of heated pixels for each heater at each altitude
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demonstrates that Heater 3 consistently represents the largest quantity of pixels and that the
Heater 2 consistently represents the lowest count of heated pixels. This was the expected result
as Heater 3 represents the hottest heater and Heater 2 represents the coldest heater in all trials.
This is a well-known result of increasing altitude but was done in order to demonstrate the same
trends using our sensors and to be able to compare the function of our sensors to each other. We
were able to see with these results that the differentiation of the hottest and coldest heaters was
made possible and this is important information for the application of these sensors into current
forest fire detection protocols in Ontario.

These findings suggest that concentrating on the number of hot pixels could be a good
indicator of temperature as it is possible to differentiate between hotspots of different
temperatures based on pixel count.

In low altitude imaging, saturation is an issue that is not easily avoided with less specific
technology (Allison et al, 2016). The difference between the image of a fire that fills one pixel
and its background is large and can exceed the dynamic range for the sensor. For detection, a
saturated pixel can still be indicative of a fire (Allison et al, 2016; Matson & Dozier, 1981;).
However, in radiometric measurements saturation needs to be avoided in order to get accurate
readings. Thermal accuracy for both the FLIR Pro and FLIR Duo were analysed in relation to
themselves as a result as the saturation of pixels was obvious. This means that pixels that were
representative of our heat sources (heaters) made surrounding background pixels appear as high
temperature spots. We can therefore conclude that all three sensors are able to differentiate
targets of different temperatures when data is acquired within each sensors specific altitude
ranges.

Limitations:

39



As this was a preliminary study to identify the validity of the implementation of the FLIR Duo
Pro R, the FLIR Duo R and the ITRES «TABI into current methodology for forest fire detection
in Ontario, several limitations exist. Atmospheric temperature and humidity were not corrected
for these sensors, the impact of meteorological factors on testing have been shown to be
considerable and should be corrected for in future research (Tran et al, 2017). These corrections
could be useful in the identification of limitations for each of these infrared sensors. One study
showed that active thermography is more apparent in high ambient temperature and humidity
conditions and this information could be applied to any further staged testing. In forest fire
detection work for Ontario these sensors would primarily be used to collect presence/absence
data. This means that although several meteorological corrections were not done, our data still
allowed us to determine some of the limitations of our sensors because we could still determine
whether or not our sensors could detect heat sources (hotspots) the size of our butane heaters.
Staged testing is primarily done over field trials for testing infrared remote sensing technologies
and the use of meteorological corrections would be useful in those settings. As previously
mentioned, this is a pilot project and the trends discovered throughout this project are essential
for the development of modifications for larger scale application in Ontario forest fire detection
protocols.

Furthermore, the influence of wind was not taken into consideration as a wind reading for the
specific area being studied was not available, the general area of greater Sudbury showed wind
speeds of less than 10 km/h however no corrections were made to the data to account for wind.
Wind can affect temporal readings and should be taken into consideration in future research

(Leblon et al., 2012).
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Lastly, the number of independent observations used to derive our findings was small due to the
fact that we were using airplanes which were being used simultaneously for ongoing forest fire
detection across Ontario. Therefore, availability of the aircrafts for experimentation purposes
was limited. Furthermore, the costs associated with data collection of this sort were elevated
which is why we wanted to establish preliminary findings with a pilot study before doing a study
with an increased amount of passes over our heaters. In future, a reproduction equation should be
used to calculate the basic reproduction number which should be used during experimentation in

order to assure reproducibility and consistency.

Conclusion:
Our data suggests that as altitude increases resolution, accuracy in meters, ability to determine

the diameter of a fire and ability to determine a temperature on the ground from aerial data
decrease. This is due to the inverse-square law. Limitations exist for each of the sensors in
different contexts. The FLIR Duo for example is useful for low altitude UAV applications but
does not perform adequately at higher altitudes. This sensor could not be used on detection
flights as a result as typical detection flights fly at around 640.8 m AGL. The hotspots are not
identifiable in the imagery acquired by this sensor at 640.8 m AGL and at 609.6 m AGL at 51.44
meters per second. The FLIR Pro however, performs well even at altitudes above 609.6 m AGL
at speeds of 51.44 meters per second and could be a useful low cost addition to current detection
flights. The «TABI is the sensor that provides the most additional information on fire size and
location and is thus the best higher cost option.

Our results indicate that forest fire detection has the potential to be ameliorated by the
addition of this form of technology to current practices (Allison et al, 2016). Aerial infrared
remote sensing at a tactical level, at moderate altitudes can allow for improved data acquisition

and increased information about occurrence and development of fires and can help direct
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suppression tactics. Atan operational level, at low altitudes hotspot identification and
suppression assessments are possible (Allison ef al, 2016). The use of remote sensing in
combination with suppression practices such as having remote sensing technologies onboard
aircraft equipped for water bombing has been suggested to further increase the efficiency and
utility of such technologies (Allison et al, 2016).

These results indicate that the use of aerial infrared remote sensing could improve current
protocols. More precise data means that more fires will be accurately detected and that response
times to those fires will be faster and more efficient. This is because we can interpret data with
more accuracy when using data with more information. Therefore, although remote sensing is

not yet standardized, this shows it would be a beneficial addition to current practices.

Future research direction:
Research in Alberta has been conducted in order to ameliorate current aerial protocols for fire

detecting capabilities by providing more quantifiable information. These have explored ways to
decrease air time, increase ability to deliver thermal information more rapidly and studying using
fixed base applications in order to triangulate positions of smoke (Dutchak, 2006). This research
could be further combined with our findings in order to allow for better prescription of services.
There is a gradual drying out of forest fuels during July and August with increasing fire
danger (Joby et al, 2019). Frequent thunderstorms may occur then but little or no precipitation
reaches the surface, so that frequent and severe lightning fires occur in both Canada and the
United States. Technologies have been used for years to map weather and forecast potential
storms (Joby et al, 2019). Since 2016, NASA has been using the Geostationary Lightning
Mapper which is mounted on the GOES-16 satellite. This technology allows the collection of
information which helps give insight to weather forecasters and emergency response teams

before storms hit. Since lightning is linked to specific weather conditions, the area in which it has
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the potential to strike is predictable (Joby et al, 2019). While we cannot predict individual
strikes, forecasts for average lightning activity can be used to indicate the probability that
lightning flash density will exceed a threshold for a particular area. This technology can even be
useful up to a few days before a storm, meaning there is an opportunity for interference (Joby et
al, 2019). Therefore, a combination of this type of technology with infrared remote sensing
technologies such as those we have explored could allow for a more immediate fire detection
system. Furthermore, the use of other forms of remote sensing have been theorized to be useful
even in pre-fire conditions for fuel type mapping and in the prediction of high risk areas for fire
development (Veraverbeke et al, 2018). This type of research could be crucial in the coming

years due to increasing fire weather.
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Chapter 5: Pre-fire biofuel characterization and identification of high
risk areas using hyperspectral remote sensing technologies

Abstract:

Climate change is impacting our environment and health in several ways. The global warming of
the planet has caused an increase in dryness. As a result, we see a decrease in overall plant health
and function and an associated increase in the number and size of forest fires on a yearly basis.
The drier the area of forest, the more at risk of fire it becomes. Current methodology for fire
detection and suppression in Ontario, focuses on the detection of fires that are already buming
and involves visual aerial detection of smoke by humans. Although this method has been
beneficial for the management of effects of fires over the years, the idea of introducing pre-fire
detection could provide important information which could enhance current detection practices.
Thus, pre-fire high risk area identification was explored throughout this paper. The applicability
of various vegetation indices in fire detection was examined. A preliminary study was done to
determine the validity of the use of hyperspectral remote sensing in fire fuel characterization pre-
fire for the determination of high risk areas. Our study demonstrated preliminary findings that
this form of technology could be beneficial in the identification of high risk areas for ignition

pre-fire and that further investigation is warranted.

Résumé:
Le réchauffement planétaire de la planéte terre as plusieurs impactent sur I’environnement et

notre santé. Ce réchauffement cause une diminution d’humidité et alors une diminution dans la
santé de la végétation et dans leur fonctionnement. Ceci est donc li¢ a une augmentation dans le
taux ainsi que la grandeur des feux de foréts a chaque année. La méthodologie courante pour la

détection et suppression des feux concentre sur les feux actifs et compte sur la détection visuelle
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de fumée par des observations aériennes. Cette méthode as améliorer la gestion des feux mais
I'idée d’introduction de la détection de pré-feux pourrait nous provenir plusieurs nouvelles
informations. Alors, I'identification de zones pré-feux a haute risque sera exploré le long de cet
article. L application de plusieurs indices de végétation a été explorée. Une étude préliminaire a
¢été conduite afin de déterminer la validité des télédétecteurs hyperspectraux pour la
characterization des combustibles pré-feux. Notre étude as demontrer des résultats préliminaires
que cette sorte de technologie serait utile dans 1'identification des zones a haute risque pour feu

et qu'une enquéte plus approfondie est justifiée.
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Introduction

A branch of the Ministry of Natural Resources and Forestry (MNRF) called the Aviation, Forest
Fire and Emergency Services (AFFES) program was developed in 1924 (AFFES, 2019). This is
the world’s longest operating, continuous flying, non-scheduled, government air service. AFFES
is responsible for the management of natural disasters such as wildland fires, flooding and
drought. AFFES performs all fire operations and organizes responses to incidents. Their goal is
to optimize resource allocation, respond promptly and accurately to all reported incidents and
make sure that the public as well as responders are safe (AFFES, 2019).

Two Regional Emergency Operations Centres (REOCs) make up Ontario’s fire
management program. The Northwest Region is comprised of Fort Frances, Kenora, Dryden,
Thunder Bay, Red Lake, Sioux Lookout, and Geraldton. The Northeast Region is made up of
Haliburton, Sudbury, Timmins, Chapleau, Wawa, and Cochrane. All sectors are monitored using
aerial detection (AFFES, 2019).

Early detection of wildland fires is essential for control efforts and reduces the impacts of
fires in terms of socioeconomic and suppression costs (Martell and Sun, 2008 Arienti et al.
2006; Cumming 2005; Hirsch et al. 1998; Kourtz 1994, 1987). The aerial detection program
minimizes the impact of wildland fires by finding fires when they are smaller and more
controllable and by providing more reliable information on fire size and position than found in
public reports. It also contributes to risk management by making ignition sources clear and
predicting fire behaviour as well as providing a way to monitor areas of concern. This coverage
is only made possible by the fleet of 10 long-term contract aircraft which are primarily used for

detection patrols (AFFES, 2019).
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Two types of aerial detection are utilized in Ontario; the first being direct and the second
being indirect. Direct detection involves events planned by fire managers for detection and
reporting of fires. These are planned detection flights which actively search for fires in specific
locations at specific times. Indirect detection involves detection by non-MNRF fire reporting.
This is any passive detection or reporting done by the public or by industry or by suppression
staff (AFFES, 2019; McFayden et al. 2019).

The method for detection currently being used in the aerial detection program is the use
of observers on-board aircraft. The observer’s duties involve scanning for fires by looking out of
the windows in the airplane, reporting fires to the MNRF and completing the required
paperwork. Although all observers are trained in the same way by the Ministry of Natural
Resources and Forestry through a course called AV109 Aerial Detection for Pilots and
Observers, relying on human eyesight is not as accurate as the implementation of new
technologies could be (AFFES, 2109). Human vision is limited by several factors such as acuity,
sensitivity to light, attention of the observer; the size, distance and intensity of the target and
visibility factors such as haze, fog and dust clouds (Byram & Jemison, 1984). Therefore, this
method of detection is prone to personal bias and human error.

An increase in the quantity and size of fires as a result of global warming is expected in
the next century and this trend has already become obvious in some parts of the world (Woolford
et al. 2014). These increases could hinder current protocols and render them less useful. This is
especially true in Ontario, where the current detection infrastructure is not equipped to monitor
the broadening area needing to be surveyed. The increase in quantity and size of fires would
cause the current system to fail because of an inability to keep track of every individual fire as

they start due to the limited number of detection personnel and aircraft available. Therefore, this
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research examines the use of hyperspectral remote sensing technologies as an additional resource
for current forest fire detection practices. The focus is on the use of these technologies for pre-
fire characterization of fire fuels in order to determine areas at high risk for ignition. Ideally, this
will allow better resource management.

Hyperspectral sensors detect wavelengths ranging from the visible, near-infrared and
mid-infrared segments of the electromagnetic spectrum. These sensors allow differentiation
between spectrally similar materials and provide accurate and detailed information that other
sensors can not obtain (Shippert, 2004). This is because the broad range of wavelengths provided
by these sensors allow differential absorption, transmission and reflectance of energy depending
on the material being targeted and their biophysical and biochemical attributes such as its cellular
structures and water content (Thenkabail & Lyon, 2016). Unlike multispectral sensors, that
measure the reflectance, absorption and transmission of the earth’s surface within a few
wavelengths (up to 15 bands) with separations where no readings are taken, hyperspectral
imagers measure the radiation in many (>100) discrete narrow bands (Hagen & Kudenov, 2013;
(Joseph et al, 2011). Therefore, each individual pixel appears as a spectrum, which is much more
detailed (Shippert, 2004). The images produced from this form of remote sensing have been
successfully used in fuel type mapping as well as in fire risk assessments in the pre-fire temporal
phase in the fire disturbance continuum (Jain et al, 2004).

To date, the application of sensors in fire work has been limited by the technology being
used. However, some findings such as the use of hyperspectral sensing in fuel type determination
and quantification as well as in the determination of fire severity and recovery post-fire have
been examined (Veraverbeke et al, 2018; Colombo et al, 2008; Jollineau & Howarth, 2008;

Kokaly et al, 2007; Thenkabail et al, 2004; Lyon et al, 1998). Infrared sensing has also been

48



applied in order to determine fire temperatures as well as in the examination of active fires and in
the determination of emission levels (Joseph et al, 2011).

Recent hyperspectral research has demonstrated the usefulness of this technology in pre-
and post-fire conditions as well as during active fires. It is thought that the use of hyperspectral
information in unison with data from multispectral or light detection and ranging (LIDAR)
sensors could be extremely advantageous in forest fire research (Joseph et al, 2011). This is
because a multi-source approach to increasing knowledge on fire fuel data and fire trends during
active burning could allow earlier and more appropriate mitigation (Koetz et al, 2008).

Local weather dictates landscape-scale fire behaviour but biome-level fire behaviour is
more appropriately linked to fire danger indices which are representations of daily synoptic
weather patterns (Abatzoglou & Kolden, 2013). All fire danger indices are based on daily surface
weather such as ignitability, spread rate and control difficulty. These indices also examine fuel
consumption such as changes in fuel (live and dead plant material) moisture (Brown et al, 1991).

The present work deals with the application of hyperspectral sensing and the use of
vegetation indices determined from the hyperspectral sensors tested, in pre-fire high risk biofuel
identification. This was done by way of an airbome data study as well as a satellite data study.
Using these technologies as additional information sources in fire detection could indicate high
risk areas before a fire happens which would allow more efficient resource management and
allocation. This chapter examines the use of hyperspectral remote sensing technologies for
identifying changes in fire fuels by examining trends across a local sub area in Sudbury, Ontario,
called Daisy Lake. This chapter also uses these methods to identify pre-fire risk across four
separate areas, through imagery from before the fires happened, in areas which have been

affected by fire.
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Materials and Methods:

Study 1:

Selection of Datasets:

Sensors were flown on 20 June, 3 July, 8 July and 14 August 2019 (see Figures | and 2). These

flights took off from the Greater Sudbury Airport and flew over a flight line near Daisy Lake.
Daisy Lake is a lake in Greater Sudbury Ontario, Canada (NRC, 2016). It is in the Lake Huron
drainage basin and is the source of the Whitefish River. The lake is approximately 3.2 kilometres
by 0.3 kilometres, and lies at an elevation of 230 meters. It is located 0.7 kilometres south of the
Ontario Highway 17. Surrounding Daisy Lake is the Daisy Lake Uplands Provincial Park. The
park was officially designated by an amendment to the Ontario Provincial Parks Act in 2006. It
is 620 hectares in size and is considered a non-operating park (NRC, 2016). This park serves to
protect a recovering ecosystem polluted by the city’s mining industry and is designated as a
control area for ecological research. Unlike other parts of the city this area has been set aside in
order to study the site’s ability to recover on its own, without human intervention. The ecosystem
is made up primarily of white birch trees, metal tolerant grasses, sedges, rock barrens and bog
vegetation. This type of vegetation is strongly representative of the Sudbury area landscape
which has a history of over 100 years of forestry, prospecting, mining, smelting and urbanization
(MECP, 2016). Due to deforestation in the area heavy erosion of soils has taken place. The
amount of disturbance of this area has affected biological diversity in the Daisy Lake Uplands
Provincial Park and throughout Sudbury as a whole. Representative and special features in this
area are the pioneer plant communities that have regrown in response to the disturbances
previously mentioned. Previously, red pine and red oak grew in the dryer rock sites of this area
and sugar maple and yellow birch grew in sites of deeper soil, however, these are no longer

represented in the biodiversity of the area (MECP, 2016). The park topography is represented by
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strongly broken, shallow and sandy till uplands. There is evidence of folding and partial
metamorphosis of the bedrock in this area and bedrock surfaces are blackened and etched from
industrial atmospheric pollution (MECP, 2016). The area from which data was collected was an

area primarily comprised of trees and barren rock (NRC, 2016).
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Figure 1. Daisy Lake Uplands Provincial Park flight line, Sudbury, Ontario, Canada. The grey
area represents the area from which data was collected.
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Figure 2. NDVI images of Daisy Lake demonstrating the overlapping data that was run through all vegetation
indices. A represents data acquired June 20%. B represents data acquired July 3. C represents data acquired July 8%
D represents data acquired August 149

Sensor:
The sensor used in this study was the ITRES microCASI 1920 («CASI), which is a portable

air/ground hyperspectral VNIR imager. This sensor has a spectral coverage of 0.4-1.0 um, 288

spectral channels, 1920 spatial imaging pixels and a 36.6° field of view (FOV). This sensor was
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flown on an Aero Commander 500. This is a six-seat, high wing, fixed-wing, twin piston-engine
aircrafi.

Weather:

Average humidity percentages both three and seven days prior to data collection were calculated

for each date flown.

Analysis:
Once aerial hyperspectral data was acquired for the site, the data was atmospherically corrected

using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH)
atmospheric correction code. The most representative data, in this case referring to data with the
largest overlapping area among the different flight days, was selected. This overlapping data
represented the same area across all dates. All selected data was then clipped to fit within the
same geographical area. Multiple vegetation indices were then calculated using the hyperspectral
data acquires, the index values for each pixel were then averaged and compared in order to
identify if areas of higher risk for ignition could be identified and tracked according to preceding

weather patterns.

Indices:

Forest Health:

The forest health tool is a spatial map which shows overall health of forested regions. It uses
vegetation index categories such as: broadband and narrowband greenness: leaf pigments;
canopy water content; and light use efficiency. These categories show the distribution of green
vegetation, the concentration of carotenoids and anthocyanin pigments for stress levels, the
concentration of water and forest growth rate respectively. This allows for an overall health

estimation for a given area (Harris, 2020). The input scene is divided into nine classes from

weakest or least healthy forest to healthiest.
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Normalized Difference Vegetation Index (NDVI):
Chlorophyll absorbs visible light at 400 nm to 700 nm and the cell structure of leaves reflects

near-infrared strongly from 700 nm to 1100 nm. Therefore, using visible and near-infrared data it
is possible to determine if vegetation is live and green or not and to determine water stress. This
information can then potentially be used in order to estimate fire danger. This index varies
between -1 and 1, with free standing water showing very low positive or negative values as a

result of its low reflectance in both spectral bands (Crippen, 1990; Rouse et al, 1973).

(NIR — Red)

NDVI = ———
(NIR + Red)

Plant Senescence Reflectance Index (PSRI):
Senescence is defined as the condition or process of deterioration with age. As plants senesce

they become higher risk fire fuels (McHugh & Gil, 2018). In many plants a preferential
degradation of chlorophyll over carotenoids results in yellowing, therefore the use of a ratio
between pigments can allow for the determination of senescence (Biswall 1995; Matile Ph Flash
& Eller, 1991; Knee, 1988; Hendry et al, 1987; Knee, 1972; Chichester & Makayama, 1965).
The estimation of chlorophyll has been shown to be possible when looking at reflectance in the
green (550 nm) and red (700 nm) ranges of the visible spectrum (Gitelson and Merzlyak 1996,
1997). Thus, the Plant Senescence Reflectance Index (PSRI) uses the ratio of bulk carotenoids
(alpha and beta) to chlorophyll. The value of this index ranges from -1 to 1 and the common

range for green vegetation is -0.1 to 0.2 (Merzlyak et al, 1999).

PSR] = Peso — Psoo

P7s0

At around 750 nm fruit ripening and senescing leaves were seen for each species. At 500

nm reflectance is controlled by a combined absorption of Chlorophyll a, Chlorophyll b and
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Carotenoids. At 680 nm this changes to Chlorophyll a absorption only. When there is a decrease
in Chlorophyll the Carotenoid/Chlorophyll ratio increases. Thus, an increase in PSRI indicates

that there is increased canopy stress (Carotenoids) (Merzlyak et al, 1999).

Study 2:

Selection of datasets:
An in depth analysis of several fires worldwide was conducted in order to be able to compare

hyperspectral and multispectral analysis. Historical forest fire databases were explored for
countries such as Canada, the United States, Greece and Russia. Search criteria focused on fires
that had useable hyperspectral imagery within the area of the bumn scar of the fire within one year
before the fire occurred. These images needed to fit within the various satellite launch and
decommission dates for the specific geographic location of the fire within those dates. They
needed to have known burn scars with post-fire imagery and needed to be high quality images
with low cloud cover, low pixilation, high visibility and no striping. Three hyperspectral
databases were used in the identification of useable fire data. These include EO-1 Hyperion,
Proba-1 Chris and AVIRIS.

Five fires were identified through this search. These include Cedar Fire in San Diego
from 2003, a fire from 2012 in Bistrishko Branishte in Bulgaria, Rim Fire from California in
2013, King Fire from California in 2013 and the Mendocino Fire Complex from California in
2018. The Bulgaria fire was later removed from this analysis due to the image quality, noise and

striping. See Figure 3. for datasets
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Figure 3. This figure represents the datasets used for study 2. The darker inner colour represents
the area defined as inside. The lighter area represents the area defined as outside. A represents
the data used for Cedar Fire. B represents the data used for Rim Fire. C represents the data used
for King Fire. D represents the data used for Mendocino Fire Complex. E represents all four

datasets in geographic relation to each other.
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Cedar Fire:

Cedar Fire was a 273 246 acre (1106 km?) wildland fire in San Diego County, California. This
fire destroyed over 2200 homes and nearly 600 other properties, killed 15 people and caused
non-fatal injuries to 113 people (CAL FIRE, 2019). This fire was started on October 25™, 2003
by a hunter who had gotten lost and wanted to be visible to rescuers (USDA, 2003). Once lit the
hunter quickly lost control of the fire due to the heat, low humidity, low moisture content of
surrounding vegetation as well as the wind conditions (USDA, 2003).

The fire started in the Cuyamaca Mountains in Cleveland National Forest with
coordinates of 33.016667°N 116.683333°W. Within five and a half hours of the fire being
reported it had grown in size to 5319 acres (USDA, 2003). To this day, this fire is one of the
largest wildland fires in California history and actually ranks third in terms of size for the state
(CAL FIRE, 2019).

The vegetation conditions recorded pre-fire and the week of the fire demonstrated
historical maximums for fire potential hazards (USDA, 2003). Samples taken of old and new
vegetation from Poser Mountain, San Diego County, California, on October 7", 2003 showed
averages 0f 49% and 55% respectively. Nighttime fine dead fuel moisture declined to 4 % and
was even lower in the daytime. The National Fire Danger Rating System used indices such as
Buming Index (BI), Energy Release Component (ERC) and 1000-Hour dead fuel moisture which

were all at record measures of fire hazard (USDA, 2003).

Rim Fire:
Rim fire was a 257 314 acre (1041.31 km?) wildland fire in Sierra Nevada, in California in a

remote canyon of Stanislaus National Forest. This was the third largest wildland fire in
California’s history. This fire started on August 17", 2013 approximately 20 miles east of

Sonora, California. Fire behaviour exhibited was high to extreme. The fire was caused by a
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hunter’s illegal fire and was responsible for destroying 11 residences, as well as three
commercial buildings and 98 outbuildings (Lydersen et al, 2014). Several thousand people were
evacuated as a result of this fire and a state of emergency was declared for the city of San
Francisco (Staley, 2013). This was as a result of the fire causing damage to the power
infrastructure serving the Bay Area, including shutting down two out of the three hydroelectric
power plants (Peterson et al, 2015). On October 24", 2013 the Rim Fire was declared contained.
Hotspots on the inside of the perimeter of the fire continued to burn for a year before it was

considered extinguished (Polivka et al, 2016).

King Fire:
King Fire was a 97 000 acre (390 km?) wildland fire in El Dorato County, California. This fire

started on September 13'", 2014 near Pollock Pines, California to the east of Sacramento. The
cause of this fire was arson, the fire was intentionally started. The King Fire destroyed 12
residences and 68 outbuildings and caused the evacuation of approximately 20 000 homes. It was
the second largest wildland fire in the 2014 California wildland fire season. This fire was

officially extinguished by October 31 2014 (Stavros et al, 2018; Rocha & Xia, 2014).

Mendocino Fire Complex:
The Mendocino Fire Complex was a complex made up of two wildland fires that joined together

to form a 459 123 acre (1858 km?) fire (CAL FIRE a, 2018). This Complex was comprised of the
River Fire and the Ranch Fire in Mendocino County, Northern California, United States. This
complex was the largest recorded fire complex in California causing over $257 million (2018
USD). It destroyed 280 buildings and damaged 37 others. It also killed one firefighter and caused
non-fatal injuries to four others. The Mendocino Complex also caused the evacuation of several
local communities such as the city of Lakeport, communities of Kelseyville, Luceme, Upper

Lake, Nice, Saratoga Springs, Witter Springs, Potter Valley and Finley as well as parts of
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Hopland and indigenous communities of Hopland Rancheria and Big Valley Rancheria (CAL
FIRE b, 2018). The fires were started July 27", 2018 and officially out November 7, 2018,

The Ranch Fire alone burned 410 203 acres (1660 km?). This fire was originally reported
at 12:05 pm on July 27", This fire was reported to have been started by a farmer who had tried to
seal an underground wasp nest by pounding a metal stake into it. The farmer inadvertently
sparked the dry grass while hammering the metal stake into the ground (CAL FIRE a, 2018).

The Ranch fire became part of the Mendocino Complex when the River Fire started a few
hours later. The complex started in the State Responsibility Area and burned through to
Mendocino, Lake, Colusa and Glenn Counties. Once lit the farmer quickly lost control of the fire
due to the heat, low humidity, low moisture content of surrounding vegetation and gusty winds
(CAL FIRE a, 2018).

The River Fire was smaller and burned six miles north of Hopland, to the south of the
Ranch Fire (CAL FIRE a, 2018). This fire was under control by August 13" according to local
news, while the Ranch fire continued to bum for several months (Crauss, 2018). The cause of

this fire is still under investigation.

Sensors:
Two hyperspectral sensors and two multispectral sensors were used.

EO-1 Hyperion:
The first hyperspectral dataset used in this study was obtained using the Earth Observing-1 (EO-

1) Hyperion. Hyperion is an imaging spectrometer that records more than 200 wavelengths
ranging from 0.357 to 2.576 micrometers with a 10 nm bandwidth. Hyperion is a push-broom
sensor meaning it operates by collecting data following a specified path in a line. This data has a
scene width of 7.7 kilometers and a standard length of 42 kilometers. The length can also be

increased by an additional 185 kilometers. The pixel resolution of this sensor is of 30 m. This
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sensor was attached to the EO-1, a decommissioned National Aeronautics and Space

Administration (NASA) Earth observation satellite. EO-1 was launched 21 November 2000 by

the U.S. Geological Survey (USGS) and NASA and was decommissioned 30 March 2017. The

dataset used from this sensor is of San Diego, California from March 23", 2003. All details

regarding this image are available in Table 1.

Table 1. EO-1 Hyperion dataset information

Data Set Attribute Attribute Value

Entity ID EO1H0400372003082110KV_SGS 01.
Cloud Cover 10% to 19% Cloud Cover

Orbit Path 41

Orbit Row 37

Target Path 40

Target Row 37

Station SGS

Scene Start Time
Scene Stop Time
Sun Azimuth

Sun Elevation
Satellite Inclination
Look Angle

Center Latitude
Center Longitude

2003:082:18:18:18.973
2003:082:18:18:32.973
139.18541

51.069536

98.22

12.286

32°37'16.58"N
117°1047.31"W

NW Comer Lat 33°01'08.71"N
NW Comer Long 117°06'28.97"W
NE Corner Lat 33°00'05.24"N
NE Corner Long 117°01'27.13"W
SE Comer Lat 32°1324.70"N
SE Comer Long 117°15'06.90"W
SW Corner Lat 32°14'27.66"N
SW Corner Long 117°20'06.23"W
AVIRIS:

The second, third and fourth hyperspectral datasets used in this study were obtained using

Airbome Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS is an imaging spectrometer

developed at the Jet Propulsion Laboratory at NASA. This sensor delivers calibrated images in
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224 contiguous wavelengths ranging from 400 to 2500 nanometers. Using four spectrometers
and scanning optics it is able to image a 614 pixel swath simultaneously from each of the 224
bands. AVIRIS is not attached to a satellite but is instead flown as a high altitude sensor from
aircrafts such as ER-2-AFRC, Proteus, Twin Otter and WB-57-JSC. AVIRIS has been flown
over North America, Europe and portions of South America but concentrates mostly on data
acquisition for the United States.

The first and second datasets used from this sensor were sourced from a secondary
government website - these files were preprocessed and the original unprocessed files were not
readily available (Stavros ef al., 2016). The first dataset represents a remote canyon in Stanislaus
National Forest, California from June 26", 2013. The second dataset represents El Dorado
County, California on September 19", 2013.

The third dataset used from this sensor is of Mendocino, California from June 12, 2018. All
available information on this flight is located in Table 2 and was sourced directly from the
AVIRIS government website.

Table 2. AVIRIS dataset information

Data Set Attribute Attribute Value

Entity ID 18061210 1p00r08

Site Name HyspIRI 3 linel2 (orthocorrected)

Start Lat 42.9253753

Start Lon -120.7521843

Stop Lat 37.6873814

Stop Lon -123.3472464

Start GMT 1918

Stop GMT 2011

Comments Flight South to North
Landsat 7:

Landsat 7 was launched on April 15", 1999 as the seventh satellite of the Landsat Program. Its

mission was to provide updated and high quality cloud-free imagery. This satellite was
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developed by Lockheed Martin Space Systems and operated by USGS and NASA. Its design
enables it to take 532 images per day with a panchromatic band of 15 m spatial resolution. It also
can detect visible, near-infrared and mid-infrared wavelengths with 30 m spatial resolution, and
thermal wavelengths with 60 m resolution. On May 31%, 2003 the Scan Line Corrector (SLC) in
the ETM+ instrument failed. The role of the SLC is to correct for the forward motion of the
spacecraft. Therefore, approximately 22% of the data from each image collected after the date of
the SLC failure is missing. For this reason, only images taken prior to the SLC failure were
considered during this research.

The image used from this sensor is the multispectral image of the Cedar Fire, San Diego County,
California, United States. This was used in order to determine the boundary of the burn scar. The
image was collected on May 19, 2003. All data associated to the image is available in Table 3.

Table 3. Landsat 7 dataset information

Data Set Attribute Attribute Value
Entity ID LEO7 LITP 040037 20030519 20160928 01 T1
Land Cloud Cover 1%
Center Latitude 33°09'32.40"N
Center Longitude 117°13'58.80"W
NW Comer Lat 34°06'55.80"N
NW Comer Long 118°01'43.32"W
NE Corner Lat 33°49'13.44"N
NE Corner Long 115°59"28.68"W
SE Comer Lat 32°29'07.80"N
SE Comer Long 118°27'23.76"W
SW Corner Lat 32°11'44.88"N
SW Corner Long 116°27'22.32"W
Landsat 8:

Landsat § is an American Earth observation satellite; it was launched February 11", 2013. This
satellite provides moderate-resolution imagery from 15 to 100 metre resolution. It operates in
visible, near-infrared, short wave infrared and thermal infrared spectrums. It captures over 700

images per day. Two images from this sensor were used for the Mendocino Fire Complex. The
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first image (Table 4) was collected July 17", 2018 and represents Mendocino before the fire. The
second image (Table 5) was collected October 30", 2018 and represents Mendocino after the

fire. These were used in order to determine the boundary of the bum scar.

Table 4. Landsat 8 Mendocino Fire Complex dataset information before fire

Data Set Attribute Attribute Value
Entity ID LCO8 LITP 045033 20180710 20180717 01 TI
Land Cloud Cover 0.1%

Center Latitude 38°54'16.49"N
Center Longitude 123°12'00.79"W
NW Comer Lat 39°57'27.90"N
NW Comer Long 124°01'08.76"W
NE Corner Lat 39°33'11.27"N
NE Corner Long 121°51'15.12"W
SE Comer Lat 38°14'21.98"N
SE Comer Long 124°31'25.03"W
SW Corner Lat 37°50'11.62"N
SW Corner Long 122°24'36.65"W

Table 5. Landsat 8 Mendocino Fire Complex dataset information after fire

Data Set Attribute Attribute Value
Entity ID LCO8 LITP 045033 20181030 20181115 01 TI
Land Cloud Cover 0.2%

Center Latitude 38°54'15.16"N
Center Longitude 123°13'46.20"W
NW Comer Lat 39°57'25.78"N
NW Comer Long 124°02'55.50"W
NE Corner Lat 39°33'11.02"N
NE Corner Long 121°53'01.46"W
SE Comer Lat 38°14'19.72"N
SE Comer Long 124°33'09.47"W
SW Corner Lat 37°50'11.11"N
SW Corner Long 122°26'20.69"W
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Analysis:
Pre-fire imagery was assessed and classified in terms of what burned (Inside) and what did not

burn (Outside). The data from the Rim Fire and the King Fire were sourced from a secondary

government website, and as a result two treatments of the data exist.

Treatment 1: Cedar Fire and Mendocino Fire Complex:
Firstly, the data from Cedar Fire and the Mendocino Complex Fire were atmospherically

corrected using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH)
atmospheric correction code. The area of the burn scar within the hyperspectral image was
measured in km” and an equal sized area outside of the burn scar was selected to represent the
outside vegetation. The inside and outside of the burn scar were identified and defined on the
hyperspectral images from before the fires occurred. The data was then run through multiple
indices for both the areas within and outside of the fire. The index values for each pixel were

then averaged for both the inside and the outside of the fires and this data was then compared.

Treatment 2: Rim and King Fires:
The processed data was acquired. The inside of the perimeter of the fire was separated from the

outside buffer area. The buffer area represents a 2-km buffer around the fire boundary of the
respective fire area. In this case, the data available had already been run through the various
indices using topographically, atmospherically-corrected, and georectified data. The index values
for each pixel were then averaged for both the inside and the outside of the fires and this data

was then compared.

Indices:

Moisture Stress Index (MSI):

This index is a reflectance measurement that is sensitive to increasing leaf water content. As

water content in canopies increases, absorption around 1599 nm increases. Absorption at 819 nm

is unaffected by water content and is therefore used as reference. The value of this index ranges
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from 0 to more than 3 and the common range for green vegetation is from 0.4 to 2 (Vogelmann
& Rock, 1985).

P1s99

MSI =
Ps19

Please see section 1.3 for the rest of the indices as the same ones were used. FH was not used for

the Rim and King fires as this data was not available.

Results:

Study 1:
Index values were run through a repeated measures analysis of variance in order to detect any

overall differences between the dates that were flown.

Forest health (FH):

The FH analysis revealed that all dates were significantly different from each other (F 1, s10468580) =
265243.976, p < .001). The FH values for June 20" were significantly higher than those from
July 3" (p <.001) and July 8" (p < .001). This analysis also revealed that June 20" had a
significantly lower FH than that of August 14" (p <.001). The FH values for July 3™ were
significantly lower than all other dates (p < .001). July 8" FH values were higher than July 3™ (p
<.001) and lower than those of June 20" (» < .001) and August 14" (p < .001). FH values for

August 14" were higher than all other values (p <.001).

Normalized Difference Vegetation Index (NDVI):
The NDVI analysis revealed that all dates were significantly different from each other (F3,

ax397281) = 29846.632, p < .001). The NDVI values for June 20" were significantly lower than all
other dates. July 3™ values were significantly higher than all other dates (p <.001). The NDVI
values for July 8" were higher than those from June 20" (p <.001) and August 14" (p < .001).

July 8" NDVI values are significantly lower than those from July 3™ (p < .001). August 14"
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NDVI values were higher than those from June 20™ (p < .001) and lower than those from July 3™
(p<.001)and July 8" (p <.001).

Plant Senescence Reflectance Index (PSRI):
The PSRI analysis revealed that all dates were significantly different from each other (F(3 49057915

=12970.020 p < .001). June 20™ PSRI values were higher than both July 3™ (p <.001) and July
8" (p <.001). June 20" values were lower than August 14" (p < .001). July 3" values were
significantly higher than July 8" (p <.001) and significantly lower than June 20" (» <.001) and
August 14" (p < .001). July 8" values were significantly lower than all other dates (p < .001).

August 14" PSRI values were significantly higher than all other dates (p < .001).

Weather:
A paired samples t test was run in order to compare the means between the humidity levels at 3

and 7 days prior to the flight dates. This analysis revealed that the mean humidity 7 days prior to
the flight dates was always significantly higher than the mean humidity 3 days prior (#(3)=

28.041, p <.001). The means for each flight date can be found in table 6.

FH:
A multiple linear regression was calculated using a stepwise method to predict FH based on

humidity percentage, the mean humidity percentage three days prior to data collection and 7 days
prior to data collection were used as independent variables. A significant regression equation was
found (Fo, ss763508) = 130417.063, p < .001), with an R? of 0.003. The predicted FH values are
equal to 4.680 - .007 + .317, where FH increased by .317 with each percent of humidity.

NDVI:
A multiple linear regression was calculated using a stepwise method to predict NDVI based on

humidity percentage, the mean humidity percentage three days prior to data collection and 7 days

prior to data collection were used as independent variables. A significant regression equation was
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found (Fe, 4539781 = 42017.925, p < .001), with an R?0f 0.002. The predicted NDVI values are

equal to .372 +.041 - .063, where NDVI decreased by .063 with each percent of humidity.

PSRI:
A multiple linear regression was calculated using a stepwise method to predict PSRI based on

humidity percentage, the mean humidity percentage three days prior to data collection and 7 days
prior to data collection were used as independent variables. A significant regression equation was
found (Fo, 190535 = 14909.717, p < .001), with an R>0f 0.001. The predicted PSRI values are

equal to .344 - .024 + .020, where PSRI increased by .020 with each percent of humidity.

Table 6. Mean humidity %

Dates Humidity % 3 Days Prior Humidity % 7 Days prior
June 20" 65.76 73.31
July 3™ 70.01 77.62
July 8 68.67 75.4
August 14" 64.25 70.92

Study 2:
An independent samples t test was done to compare the means between the inside and outside of

the fires for each index in order to determine whether these areas were significantly different

from each other. The mean values can be found in table 7.

Cedar Fire:
The inside and outside areas were significantly different from each other for each index. The

means inside of the fire area were significantly higher for the FH (#(126187)= 131.937, p <.001),
MSI (#(126187)= 10.177, p< .001) and NDVT (#(126187)= 126.892, p < .001) indices. The mean
outside of the fire area was significantly higher for the PSRI ((#(126179)=-5.467, p < .001)

index.

Rim Fire:
The inside and outside areas were significantly different from each other for each index. The

mean inside of the fire area was significantly higher for NDVI (#(2552513)= 44.005, p <.001).
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The means outside of the fire area were significantly higher for both the PSRI (#(437278)= -

55.277, p <.001) and MSI (#(3518479)= -533.587, p <.001) indices.

King Fire:
The inside and outside areas were significantly different from each other for each index. The

mean inside of the fire area was significantly higher for NDVI (#(3171339)= 304.808, p <.001).
The means outside of the fire area were significantly higher for both the PSRI (¢#(157092)= -

16.14, p < .001) and MSI (#(3168940)= -173.25, p < .001) indices.

Mendocino Fire Complex:
The inside and outside areas were significantly different from each other for each index. The

means inside of the fire area were significantly higher for the FH (#(2630735)= -807.750, p <
.001), MSI (#(2628776)= 297.388, p < .001) and NDVI (#(2628776)= -297.388, p < .001) indices.
The mean outside of the fire area was significantly higher for the PSRI ((#(2628767)= -48.540, p
< .001) index.

Table 7. Mean index values inside and outside of burn scar areas for Cedar Fire, Mendocino Fire
Complex, King Fire and Rim Fire

Cedar Fire Mendocino Fire King Fire Rim Fire
Complex
Index Inside Outside Inside Outside  Inside Outside Inside Outside
FH 6.32 439 5.13 7.02 N/A N/A N/A N/A
MSI 0.531 0.347 0.641 0.356 0.481 0.540 0.626 0.837
NDVI 0.531 0.347 0.356 0.641 0.779 0.540 0.703 0.007
PSRI 0.137 0.164 0.031 0.212 0.309 0.320 0216 0.224

Discussion:

The use of hyperspectral sensors in forest fire applications has been limited thus far (Joseph et al,
2011). Due to the unpredictability of fires, data collection is complicated and the majority of
research has been completed using laboratory measurements as opposed to field measurements

(Allison et al, 2006). This being said, the data available for such research is also limited. This is
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certainly true in the case of hyperspectral data. Similarly, no general forest fire database exists
for the purpose of locating fires that demonstrate specific criteria for the purpose of research.
However, this is a pilot project and the trends discovered through out this project are essential for

the development of modifications for larger scale application and further research.

Study 1:

Forest health (FH):
The results for FH demonstrate that all dates were significantly different from each other. In

terms of health in accordance with the Forest Health analysis, results demonstrated that August
14" was significantly healthier than all other dates. This was followed by June 20™, July 8" and
July 3" respectively.

Normalized Difference Vegetation Index (NDVI):
The results for NDVI demonstrate that all dates were significantly different from each other. In

terms of health in accordance with the Normalized Difference Vegetation Index analysis, results
demonstrated that July 3™ was significantly healthier than all other dates. This was followed by

July 8" August 14" and June 20" respectively.

Plant Senescence Reflectance Index (PSRI):
The results for PSRI demonstrate that all dates were significantly different from each other. In

terms of health in accordance with the Plant Senescence Reflectance Index analysis, results
demonstrated that July 8" was significantly healthier than all other dates. This was followed by

July 3", June 20" and August 14'" respectively.

Weather:
The results for weather in terms of percentage of humidity, demonstrate that all dates were

significantly different from each other. In terms of health in accordance with humidity, results
demonstrated that July 3rd was significantly more humid than all other dates. This was followed

by July 8", June 20™ and August 14™ respectively.
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Qverall trends:
According to the results, none of the indices used in this study demonstrated the same trends as

the humidity. The hypothesis was that the humidity would be a major influence in the
determination of health for each index as seen in other studies (Ozyavuz et al, 2015; Funk &
Brown, 2006; Meyers et al, 1970). However, according to our data all indices demonstrated
significantly different data for each date therefore demonstrating their individual abilities to
differentiate according to their respective criteria. This means that although we did not see a
unanimous result of which date seems the healthiest, each index was capable of sequentially
scoring the data from separate dates.

Furthermore, if we group the data from June 20" and August 14" and compare it to the
grouped data from July 3™ and 8" we see that the July group is higher in the sequence than the
June and August group for NDVI and PSRI. This would mean that the July group is rated
healthier than the June and August group overall for those two indices. Likewise, the humidity
analysis ranks the July group higher than the June and August group in terms of humidity.
Taking this into account, we can see that our data is following a similar trend to the humidity
analysis which leads us to believe that our findings are in accordance with the hypothesis that
humidity would be a major influence in the determination of health.

Additionally, these findings would indicate that if humidity is a predictor of health, FH
does not seem to be a good indicator of high risk areas. Necessarily, this indicates that NDVIand
PSRI would not be good predictors of FH.

Limitations:
Although we were able to see trends in our grouped data, limitations do exist in this study.
Humidity is one of the main components responsible for the characterization of fire fuels as high

risk for ignition (Schroeder & Buck, 1970). Our weather analysis on percentage of humidity
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shows a significant correlation to the indices however, these results are not as significant as we
expected. This can be explained based on the fact that the humidity readings are showing relative
humidity for Greater Sudbury versus the local humidity in the exact area of Daisy Lake being
monitored. Thus, it would be important to take local readings in future research.

Furthermore, our research focuses on short term changes in humidity from 3 and 7 days prior to
our data collection which indicates that the changes being reported are most likely related to an
atmospheric effect and may not be representative of the plant physiology. In order to see the
effect of humidity on the health and function of plants and not on the atmospheric level,
atmospheric corrections were done using FLAASH. This form of correction may however, not
have been sufficient enough to counter the effects of temperature and humidity on the
transmission of wavelengths (Villars & Weisskopf, 1954). Plant acclimation to humidity varies
depending on the type of vegetation being monitored and on the hydro-climate of the area being
studied, therefore, the small time frame being used for comparison may not be fully appropriate
to represent changes in plant health and function (Cowles et al, 2018; Pappas et al, 2018; Amiro

et al, 2006).

Study 2:

Cedar Fire and Mendocino Fire Complex:
The trends for all indices (FH, MSI, NDVI and PSRI) for both of these fires were the same. For

both fires, the results demonstrated that the inside and outside areas were significantly different
from each other. In terms of health, FH, NDVI and PSRI indicated that the inside vegetation was
healthier than the outside vegetation. However, the MSI index indicated that the inside area

demonstrated a higher stress level and was therefore, less healthy than the outside area.
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Rim Fire and King Fire:
The trends for all indices (MSI, NDVI and PSRI) for both of these fires were the same. For both

fires, the results demonstrated that the inside and outside areas were significantly different from
each other. In terms of health, MSI, NDVI and PSRI indicated that the inside vegetation was

healthier than the outside vegetation.

Overall Trends:
Two treatments of the data exist and we see that the trends are representative of the treatments.

Thus, we see that in the case of the preprocessed data (Rim Fire and King Fire) sourced from a
secondary government website we are unable to prove the hypothesis that by using this set of
indices we are capable of identifying areas at high risk for fires. However, by using our
methodology from the material and methods section 2.3 Analysis for Cedar Fire and Mendocino
Fire Complex, we were able to see a high risk area in the pre-fire data.

The composition and moisture content of forest vegetation is a factor in the probability of
ignition (Wotton & Martell, 2005). When vegetation is dry and wind is sufficient, fires can
spread almost immediately and become active surface or crown fires. If surface fuels are damp
and deeper underground organic layers are dry, we see “holdover™ fires which smoulder in the
deeper layers until surface fuels dry or until fuel is no longer available (Martell & Sun, 2008).
Atmospheric moisture also has a direct effect on flammability and indirect effects on fire
behaviour (Schroeder & Buck, 1970). Not only does moisture affect the dryness of potential fire
fuels, it also affects surface temperature by controlling radiation in its vapour state and by
reflecting and radiating in its condensed cloud form.

Water vapor in the air can come from three places - evaporation from water bodies, evaporation
from soil, and transpiration of plants. This means that in a dry environment, vegetation is drier

because the moisture content is transpired by the plants and taken back into the atmosphere. This
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means that these plants are more likely to become fire fuels (Schroeder & Buck, 1970). This
illustrates the influence that moisture content has on forest fires both on the surface and in deeper
organic layers. Our research highlighted the importance of moisture in prefire fuel
characterization as MSI was the only index that was capable of qualifying the inside area for
both Cedar Fire and the Mendocino Fire Complex data as less healthy than the outside area
which did not bum. This being said, for our raw datasets, MSI was the only index with the ability
to consistently indicate an area at higher risk for ignition before the fire happened.

Limitations:

Our study allowed us to see preliminary findings on the application of hyperspectral remote
sensing technologies for use in fire fuel characterization and in the identification of high risk
areas for ignition. However, many limitations exist related to our study.

Firstly, as mentioned in the limitations section of study 1, environmental conditions such as
temperature, humidity and differences in the biodiversity of land cover can impact findings in
this field of study (Schroeder & Buck, 1970). Environmental conditions have an impact on plant
physiology but also on the transmission of wavelengths (Villars & Weisskopf, 1954). Our
atmospheric corrections using FLAASH may not have been sufficient enough to eliminate
atmospheric effects on our data. These environmental conditions need to be monitored in future
studies and it is important that this data be representative of the precise area being studied.
Weather data from the specific area being researched would improve the validity of any findings.
It is however important to understand that this study is based on data pre-fire and that data
collection was not done specifically for the purpose of determining areas at high risk of ignition.
The data used throughout this study was selected because it coincided with areas which

happened to ignite, therefore some information which could be useful for the elimination of
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atmospheric or environmental effects was not collected, this includes things like wind speed, fire
weather, environmental conditions, shadow conditions, etc. This means that unlike in a staged
event like in study 1, we are reliant on data which is acquired for other purposes and as such we
are limited in what we are able to control for.

Our research focuses on the averages of mixed land cover which should be corrected for in future
research. This is because different land covers may not be comparable, if for example a wetland
is being compared to a forested area, the results for high risk areas for ignition would be biased
by the water content in the wetland (Herold et a/, 2008). Using a land cover classification system
would allow us to separate areas of similar biodiversity and the comparison between the grouped
areas would improve the validity of any findings (Anderson, 1976). Furthermore, using
randomized points from data separated into vegetation types would allow for the correction of
unknowns such as the topography, hydrology, age of vegetation, species, etc (Rodriguez-Galiano
et al, 2012).

Another limitation of our study is the possible lag between plant physiology and acclimation to
the environmental conditions in the areas being analysed. The hyperspectral data used in this
study is pre-fire imagery from within one year before the fire happened. There are variations in
the timeframe from which the data was acquired and when the fire happened. For example, the
data used from the Rim Fire was collected 1.5 months before the fire started. However, the data
from the King Fire was collected one full year before the fire started. The impact of the data
acquired closer to the time of the fire is more representative of the vegetation health at the time
of the fire than data acquired several months before the fire even happened. Therefore, it may be
necessary to change the timeframe criteria for dataset collection as older data may not be

representative. The criteria for future research would need to be based on plant acclimation
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studies in order to represent changes in plant health and function (Cowles et al, 2018; Pappas et
al, 2018; Amiro et al, 2006).

Finally, the small sample size in this study due to the difficulties related to finding data which fit
the criteria of timeframe, image quality and cover the area of the burn scar pre-fire limits our
ability to determine trends in the data. There is also variation due to the use of different
hyperspectral sensors which function at different altitudes and have different pixel resolutions.
This could impact the results as the data from one sensor could be of higher quality than another

dataset and could make comparisons between the two difficult (Townsend & Foster, 2002).

Conclusion:
Our data suggests that the indices used in our research were capable of differentiating areas of

lower vegetation quality from areas of healthier vegetation with some limitations. While these
indices were capable of differentiating values that represented significantly differentiated data,
our results did not show the expected consistency across indices. It is important to note that we
were not testing the validity of these indices, rather testing their use in forest fire research.

In the first study we can conclude that although we can not see an exact replica of the
pattern of humidity among the indices, we are able to see a trend emerge when the dates are
grouped. This indicates that further investigation into this trend is warranted. Therefore, the
second study was conducted.

In the second study we can see a difference between the preprocessed data treatment and
the original raw data treatment. The results demonstrate that when using our methodology (raw
data treatment) with the MSI index we are able to see an area at high risk before a fire happens.
This is important information that could be used in further research and in current sensor related

protocols for fuel source mapping for forest fires and the forestry industry.
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The two biggest influences on fire behaviour are wind and fuel moisture (Schroeder & Buck,
1970). Therefore, it would be possible to determine where high-risk areas exist by use of remote
sensing which would allow for better coordination of firefighting practices and resource

allocation.

Future research:
Research on forest fire danger rating has been a work in progress in Canada since 1928. Several

different systems have been created over time and thus several different indices exist (Van
Wagner, 1974). The use of these indices in protocol development for fuel type mapping pre-fire
is novel and seems promising. Our research suggests that the direction that future research
should be taking is examining indices related to water content and humidity. One index that
could be introduced in a similar fashion is the Water Band Index (WBI). The WBI is a
reflectance measurement that looks at water content in the canopy and should be compared to
our findings with MSIL.

Research has been conducted on treatments that can be done on forested areas in order to
minimise the risks of ignition. These involve removing undergrowth, creating dozer lines,
mechanical thinning of trees and the use of prescribed burnings (USDA, 2013). The results
demonstrate that in general the treated areas see reduced fire intensity in comparison to
surrounding untreated areas. Thus, future research could concentrate on the implementation of
these treatments in prevention policies which could be reinforced in areas at high risk.

Finally, future research should focus on the implementation of storm tracking in unison with
remote sensing in order to be able to better predict areas at high risk for forest fire ignition.
Lightning is the only known natural source of ignition for fires and the probability that lightning
causes a sustainable ignition in a forested area has been researched (Wotton, 2005). Similarly,

research has been conducted in order to develop systems better able to track where lightning will
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hit (Ullah et al, 2019). This research in combination with our findings should be explored in

order to create the best prediction model.
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Chapter 6: Conclusion

In this thesis, several studies were conducted in order to assess the applicability of the
implementation of remote sensing technologies for potential use in forest fire management
protocols.

The quantity of forest fires is increasing due to climate change. With this, the health of
both humans and of the environment are being affected. We know that smoke inhalation is one
of the main concemns for human health and that the effects are associated to the components
being bumed by the fire. In terms of the environment, the main concemns include effects on air,
soil, vegetation and water. Current methodology lacks the ability to quickly and accurately
acquire data on fires that are burning. The sooner a fire is detected, the sooner mitigation
strategies can be applied and thus, the smaller the effect on health.

Chapter 4, concentrates on the application of infrared remote sensing technologies on
early mitigation of forest fires. Thanks to the results from this chapter, we can conclude that
forest fire detection has the potential to be ameliorated by the use of this form of remote sensing
technologies. Our results indicate that each sensor has its limitations and that the abilities of the
sensors are limited by altitude. Our findings indicate that each of the sensors tested could be
useful at different altitudes and that the lowest cost addition to current methodology would be the
FLIR Duo Pro R.

Chapter 5, concentrated on the application of hyperspectral remote sensing technologies
on pre-fire bio-fuel characterization for the identification of areas at high risk for forest fires. Our
findings allow us to conclude that this form of remote sensing is also a valuable tool that could
be used to ameliorate current methodology. Our results suggest that we were able to differentiate

areas of higher and lower vegetation quality. Our data highlights the importance of fuel moisture
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in the probability of ignition. Finally, we conclude that the Moisture Stress Index can be used to
determine areas of high risk.

Overall, we can conclude that the implementation of remote sensing technologies into
standard forest fire detection and monitoring protocols would be beneficial. It would allow for

more detailed and accurate information on early fires and on areas at higher risk for ignition.
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