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Abstract 

Blood microsampling techniques, like Dried Blood Spots (DBS), have seen recent development 

as an alternative to wet blood samples and offer numerous advantages. Quantification of ng/mL-

range concentrations using DBS microvolumes (10-20 µL) is made possible with cutting edge 

instrumentation. Worldwide establishment of per se limits for drug impaired driving requires 

timely methods of sampling blood for accurate drug concentration measurements and 

interpretation. The method validation for the analysis of stimulants and metabolites in DBS 

samples by Ultra Performance Liquid Chromatography-Quadrupole Time of Flight-High 

Resolution Mass Spectroscopy (UPLC-QTOF-HRMS) is presented. Limits of detection and 

quantitation to 10 ng/mL was achieved. Method validation criteria was satisfied for 10 of 14 

analytes. DBS drug stability over 8 weeks varied by analyte. DBS samples may assist in 

overcoming challenges in blood sampling as they are less invasive, easily transported and stored, 

and accurate drug quantitation even at low concentrations in DBS samples is possible.  

 

Keywords 

Dried Blood Spots, DBS, microvolume sampling, QTOF, high resolution mass spectrometry, 

forensic toxicology. 
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Chapter 1  

1 Introduction 

1.1 Forensic Toxicology 

A drug is a compound that elicits a change in biologic function through its chemical actions in 

the body.1 Forensic toxicology is the study of the toxic effects of drugs and poisons on the 

human body in a medicolegal, or “forensic”, context.2 Like pharmacology, the study of the 

therapeutic effects of drugs, toxicology applies the disciplines of chemistry, biology, 

biochemistry and physics to separate, isolate, detect, and identify drugs in biological samples and 

to determine the pharmacokinetics and pharmacodynamics of drugs and poisons in the human 

body.  

There are 3 main fields in forensic toxicology: human performance testing, postmortem 

toxicology, and forensic drug testing.2 Human performance testing investigates performance 

enhancing drugs in athletics. Postmortem toxicology determines the presence and concentrations 

of drugs in the body to aid in death investigations. Forensic drug testing is used for a wide 

variety of investigations including criminal investigations, such as alcohol or drug impaired 

driving. Many biological matrices, including organ tissues, urine, hair, oral fluid, finger nails, 

and bone, have been used in forensic toxicological analyses.3–18 However, drug positive results in 

these sample matrices only indicate past exposure or use of drugs and cannot give information 

about dose or impairment. Since blood carries drugs to the brain, concentrations of drugs in 

blood are a surrogate estimate of brain drug concentration and is why blood is the matrix of 

choice for forensic drug testing to assess allegations of impairment. 
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1.2 Blood Physiology and Drug Disposition in Blood 

Blood is the fluid connective tissue within the vasculature that transports nutrients, wastes and 

respiratory gases throughout the body.19 Blood is composed of erythrocytes, leukocytes, 

thrombocytes, and plasma proteins, suspended in serum fluid. Dissolved respiratory gases, 

electrolytes, nitrogenous metabolic waste products, hormones, fatty acids and other components, 

including drugs, are circulated to and from cells in blood’s support of life function.  

Whole blood can be separated into 3 fractions via centrifugation: plasma, erythrocytes, and a 

“buffy coat”, made of leukocytes and thrombocytes. Plasma is approximately 90% water and 

makes up roughly 55% of the volume of whole blood. Plasma is a straw coloured fluid that 

contains plasma proteins, dissolved electrolytes, and other components that cannot be separated 

by centrifugation. Erythrocytes, also known as red blood cells (RBC), make up roughly 45% of 

whole blood volume. Erythrocytes are anucleate, concave disc-shaped “cells” made of a plasma 

membrane and cytoplasm containing high amounts of hemoglobin for gas transport. Discounting 

water, hemoglobin makes up roughly 97% of RBC. Erythrocyte content is expressed as the 

hematocrit (HCT) value, which is the fraction of volume in whole blood made up of RBCs. The 

value of hematocrit can vary greatly. The HCT range of 0.19 to 0.63 covers 99.5% of the 

population, though typical male and female HCTs range from 0.41 to 0.50, and 0.36 to 0.44, 

respectively.20,21 The viscosity of blood is largely due to RBC content. Blood with a low HCT 

will be less viscous than a blood with a high HCT. Leucocytes, or white blood cells (WBCs), 

critical in immunoresponses, are the only complete cell component in blood tissue and make up 

less than 1% of whole blood volume. Thrombocytes, or platelets, are essential for the clotting 

response in plasma to ruptured or injured blood vessels and make up less than 1% of blood 

volume.  
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Once a drug enters the body, blood concentrations of drugs change as the body exerts the 

pharmacokinetic processes of absorption, distribution, metabolism and elimination. In order to be 

absorbed, a drug must be soluble in blood. A drug’s absorption is highly dependent on the route 

of administration (RoA); a drug injected intravenously (IV) enters systemic circulation 

immediately, while a drug administered orally (PO) is subject to first pass metabolism in the 

liver and is delayed prior to entering blood circulation.  

Once in systemic circulation, blood transports the drug throughout the body to the site of action 

and all other tissues, in proportion to the degree of a tissue’s vascularization.1,2,22,23 The chemical 

nature of a drug will dictate distribution. Lipophilic drugs uncharged at blood pH will readily 

partition from blood across cellular membranes.1 The degree to which a drug is bound to plasma 

proteins can also influence distribution. A drug bound to plasma proteins is excluded from 

having clinical effect at the drug’s site of action.1,24 Warfarin is highly bound to plasma proteins 

and remains largely in blood; however, ∆9-tetrahyrdocannabinol (THC), also highly bound to 

plasma proteins, distributes readily into highly perfused tissues and adipose due to its 

lipophilicity.2,22–25 The chemistry of a drug and that of the blood environment will largely 

determine drug distribution in the body; however, physical barriers like the blood brain barrier 

(BBB) excludes some drugs from reaching sites of action in the central nervous system.  

Metabolism is the biochemical process of altering the structure of a drug to facilitate 

elimination.1,2 The metabolism of a drug can occur simultaneously with its absorption and 

distribution, and the RoA will determine the extent of metabolism prior to a drug entering 

systemic circulation. Metabolism occurs principally in the liver, though metabolism can occur in 

the brain, blood, and other tissues.1,26–29 Drugs taken orally will undergo first pass metabolism by 

hepatic and gastrointestinal enzymes prior to entering blood circulation while IV administration 
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bypasses first pass metabolism all together.1,2 There are two general phases of metabolism: phase 

I is the enzymatic conversion of a drug to a more polar metabolite by introducing or unmasking a 

polar functional group; phase II metabolism is the enzymatic conjugation of a drug or phase I 

metabolite with a highly polar endogenous substrate such as acetic acid or glucuronic acid.1,2 

Increasing the polarity of a drug reduces its ability to distribute across plasma membranes and 

facilitates excretion from the body.1,2 Drug activity is changed by metabolism. Generally, drug 

activity is reduced or eliminated; however, some metabolites can have equivalent or greater 

activity than the parent drug.30–38 Metabolism can be exploited for drug therapy. A prodrug is an 

inactive compound that has pharmacological activity after metabolism.39–41 Once transformed, 

metabolites circulate in the blood to reach drug targets, and if active, display activity. Given that 

metabolites can be active, pharmacogenetics and drug interactions are important considerations 

as toxic outcomes can arise from the inhibition or inducement of enzymatic activity, especially in 

individuals with atypical metabolism due to polymorphisms in genes relevant to drug 

disposition.38,42–47 Age and hepatic disease states can affect metabolic rates, thereby influencing 

drug, prodrug, or metabolite concentrations in blood.48–52 

Elimination of drugs occurs by biotransformation into inactive metabolites and excretion from 

the body. Excretion of drugs and metabolites from blood occurs primarily in liver and kidneys, 

the rates of which are influenced by liver and kidney health.48–52 Small amounts of volatiles like 

ethanol can be eliminated in breath as volatiles diffuse from capillary beds to lung air across the 

alveolar membrane.53 Drugs and metabolites eliminated by the liver form part of the bile, which 

enters the gastrointestinal tract (GI) for elimination in feces.2,19 Drugs are also eliminated in by 

passive filtration or active secretion into urine in the kidneys. Molecules less than 65,000 Da are 

passively filtered from blood in the glomerulus of the kidneys.1,19 Drugs bound to plasma 
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proteins larger than 65,000 Da are eliminated by active transportation in the proximal tubule by 

specific carrier proteins secreting drugs and metabolites into the urine.1,2 Lipophilic or uncharged 

drugs may reabsorb into the blood from kidney tubules. Altering the pH of urine can increase 

elimination by trapping drugs and metabolites by exploiting their pKa values to create charged 

drug and metabolite ions that can’t cross plasma membranes of renal tubule cells.1,2 

Route of administration is an important factor in drug disposition in blood. The time to effect, 

time course, and bioavailability, the amount of drug in blood available to reach a site of action, is 

directly related to the RoA, therefore, the RoA used has important therapeutic, toxicologic and 

public health implications.54–67 Intravenous administration allows the full dose to enter 

circulation immediately. Other RoAs require the drug to cross biological membranes which can 

limit drug adsorption into blood or subject a drug to metabolism.1,2,60–63 Other common routes of 

administration are intramuscular injection (IM), smoking (SM), and nasal insufflation (IN). Time 

to effect and drug bioavailability for RoAs is presented in Table 1. 

Table 1: Time to effect and drug bioavailability of common routes of administration. 

Route of administration Time to effect Bioavailability (%) References 

Intravenous (IV) < 1 to 3 minutes 100 1, 60, 61 

Smoking (SM) 1 to 3 minutes 5 to < 100 1, 60, 61 

Insufflation (IN) 6 to 20 minutes 68 to 100 60, 61 

Intramuscular (IM) 10 to 30 minutes 75 to 100 1, 67 

Oral (PO) 30 to > 90 minutes 5 to < 100 1, 2, 64-66 

Transdermal < 60 minutes to hours 80 to ≤ 100 1, 62, 63 

1.3 Blood Sampling Techniques 

Blood sampling is an invasive procedure that requires training and consideration for patient and 

sampler safety. Typically, blood is drawn by medical professionals or trained phlebotomists in a 
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controlled setting. With respect to allegations of drug impaired driving, the time between typical 

blood sampling and incident can be hours, which can render interpretation of drug concentrations 

in blood at the time of the incident impossible. 

1.3.1 Liquid Blood Sampling 

Liquid whole blood sampling is one of the most common invasive medical procedures 

performed.68 Blood is drawn from veins in volumes from a few to tens of mL by trained 

phlebotomists or medical professionals with hypodermic needles, syringes, or vacuum extraction 

vessels, and then stored in a liquid state.69 Preservatives and refrigeration are required to inhibit 

analyte and sample degradation of liquid blood during transport and storage.14,70–74 Maintaining 

sample stability is an important consideration in forensic analyses as analyte loss or generation in 

blood samples complicate drug concentration interpretations.2,70,73,74 

Whole blood sampling exposes the sampler to blood from other people, putting them at risk for 

bloodborne pathogens, such as hepatitis B and C viruses, human immunodeficiency virus (HIV), 

malaria and viral hemorrhagic fevers.69,75–77 Serious blood sampling events in people being 

sampled, though rare, include tonic-clonic seizures and loss of consciousness.69 Other unwanted 

outcomes of blood sampling include pain, anxiety, nerve damage, and hematoma.69,78 Because 

blood sampling is necessary in clinical and forensic practices, these hazards must be considered 

and best practices followed when sampling whole blood. 

1.3.2 Microvolume Dried Blood Spot Sampling 

Dried blood spots (DBS) have been used as an economical and easily collected alternative to 

drawn venous blood samples for a variety of biochemical and biological analyses.79–81 DBS 

samples capture microvolumes of capillary blood (10 to 30 μL) on an adsorbent material from a 
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small puncture in a finger or heel. Devices that collect a fixed microvolume sample of blood in 

an absorbent media are available. The first published use of DBS was in 1913, when Ivar Bang 

established microsampling as a reliable and practical method of measuring blood glucose 

levels.82,83 DBS samples saw widespread use after Guthrie and Susi used the sampling technique 

in a rapid screening method for phenylketonuria in newborns in 1963.79 Not only is DBS a 

simple and cost effective technique, DBS samples confer greater stability relative to liquid blood 

samples for a number of analytes prone to ex vivo production and degradation.70,84–88 DBS 

samples have displayed equivalent or better analyte recoveries than wet whole blood samples, an 

important consideration for samples with potentially low analyte concentrations.85,86,88–90 

Published ratios of whole blood to DBS sample concentrations are close to unity. Mean ratios of 

whole blood/DBS blood concentrations for dexamphetamine (n = 29), MDMA (n = 36), and 

MDA (n = 32) were 0.95, 0.99 and 0.98, respectively.91 Recent studies have investigated 

quantifying drugs in DBS, and a comparison of different methods for the analyses of drugs in 

DBS samples is presented in Table 2. 

DBS samples also exhibit significant improvements in biohazard safety over liquid blood 

samples. Pathogens like HIV-1 have been shown to lose their virulence upon sample drying, 

while retaining sample stability permitting virus detection, genotyping, and viral load 

monitoring.92–96 Further, DBS samples do not require the same travel and storage considerations 

as typical liquid blood, and DBS samples have been used successfully in resource limited 

locations.92,96,97 Superior biohazard safety, transportation and storage considerations of DBS 

samples over liquid blood samples make them an ideal method for sampling blood in field 

locations without phlebotomists for a number of analytes, including drugs.  
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Table 2: Comparison of different microvolume DBS methods for selected drug analyses in humans. 

Author and 
year Drugs 

Absorptive 
medium 

Analytical 
method Extraction method 

Analytical 
range 

Blood type, 
volume 

Punch 
size 

Thomas, et al., 
2012 98 

CN, MDMA, MDA, 
MP, THC, others 

Sartorius TFN 
cards 

UPLC-
Orbitrap 
MS/MS 

45 min sonication in 0.5 mL 1:4 MeOH 
TMBE; 13000g centrifuge 5 min; 30 
min sonication with 0.3 mL acetone; 
dried; recon in 35 μL 6:4 ACN-H2O 

0.5–20 ng/mL Human WB, 
10 μL 

Whole 
spot 

Ambach, et 
al., 2013 99 

AMP, MA, MDMA, 
MDEA, others 

Bioanalysis 
226-1004 cards 

HPLC-QTrap 
MS/MS 

15 min vortex in 0.5 mL MeOH, dried, 
recon 100 μL H2O + 1% FA 

2.5–1000 
ng/mL 

Human WB, 
10 μL 

Whole 
spot 

Kyriakou et 
al., 2016 100 

AMP, MA, CN, 
MDMA, MDA, 

BZE, THC, others 

Whatman® 903 
Protein Saver 

Cards 

UPLC-
MS/MS 

15 min sonication in 1 mL MeOH; 
3500g centrifuge 5 min; dried; recon 

80:20 MPA-MPB 

5-500 ng/mL Human HB, 
30 μL 

Whole 
spot 

Moretti et al., 
2018 88 

CN, BZE, CE, EME Whatman® 903 
Cards 

HPLC-QTrap 
MS/MS 

10 min sonication in 1 mL PBS; 4000g 
centrifuge 5 min; SPE; dried; recon 200 

μL 0.1% FA 

10-500 
ng/mL 

Postmortem 
heart blood, 

85 μL 

Whole 
spot 

Ambach & 
Stove, 2019 101 

CN, BZE, CE, EME, 
norcocaine, OH-BZE 

Whatman® 903 
Specimen Paper 

HPLC-QTrap 
MS/MS 

15 min shake at 1000 rpm in 0.2 mL 2 
mM ammonium acetate, shake at 1000 
rpm + 1 mL ACN; centrifuge 14000g 
for 20 min; dried; recon 50 μL 10 mM 

AmmF + 0.1% FA 

1-1000 
ng/mL 

Human WB, 
25 μL 

6 mm 

Ambach et al., 
2019 102 

Controlled cocaine 
administration: CN, 

BZE, CE, EME, 
norcocaine, OH-BZE 

Whatman® 903 
Specimen Paper 

HPLC-QTrap 
MS/MS 

15 min shake at 1000 rpm in 0.2 mL 2 
mM ammonium acetate, shake at 1000 
rpm + 1 mL ACN; centrifuge 14000g 
for 20 min; dried; recon 50 μL 10 mM 

AmmF + 0.1% FA 

1-1000 
ng/mL 

Human WB, 
25 μL 

6 mm 

de Lima 
Feltraco Lizot 
et al., 2019 103 

CN, BZE, CE, EME, 
norcocaine 

Whatman® 903 
Paper 

UPLC-
MS/MS 

45 min vortex at 1000 rpm in 0.5 mL 
3:1 MeOH-ACN; dried, recon 0.1 mL 5 

mM AmmF (pH 3) 

10-1000 
ng/mL 

Whole 
blood, 50 μL 

8 mm 
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1.4 Quantitative Analysis of Drugs in Blood 

Drug concentrations in biological samples are quantitated following the extraction, isolation, and 

detection of the analyte. Drugs are separated from interfering compounds in biological samples 

by extraction methods such as liquid-liquid or solid phase extraction (SPE). Drugs are isolated 

from other compounds in a sample using chromatographic methods, such as liquid 

chromatography (LC). Identification and quantitation of drugs is typically performed by mass 

spectrometry (MS) instrumentation. A review of the methods and instrumentation used in this 

study is presented. 

1.4.1 Drug Extraction I: Sonication and DBS Drug Extraction 

Drugs are extracted from DBS samples by emersion and agitation in a solvent. The nature of the 

solvent used will depend on the chemistry of targeted analytes, the presence of matrix 

interferents, and downstream sample preparation conditions. Mechanical agitation (shaking and 

vortex stirring) increases the surface area interactions of the sample with solvent and provides 

mechanical energy, facilitating extraction of components off the DBS spot. Extracted compounds 

include drugs and blood components. Vortex stirring or mechanical shaking has successfully 

extracted a wide range of drugs from DBS samples in methanol, 1:5 2 mM ammonium formate-

acetonitrile, and 3:1 methanol-acetonitrile extraction solvents.99,101,103 Extraction is complete 

between 15 and 35 minutes at 1000 RPM using mechanical agitation methods.99,101,103 The low 

volumes of DBS samples require correspondingly small volumes of extraction solvents. DBS 

drug extraction is possible in as little as 0.5 mL extraction solvent. Selected methods of DBS 

analysis using physical agitation extraction is presented in Table 2. 
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Sonication is the irradiation of a liquid system with ultrasonic acoustic frequencies, and was first 

described by Richards and Loomis in 1927.104 Ultrasonic frequencies span 15 kHz to 10 MHz 

with respective acoustic wavelengths of 10 to 0.1 cm.105 The physical effects of sonication is due 

to cavitation, the generation of short duration microbubbles (10-6 to 10-4 seconds) within the 

liquid and on the surfaces of immersed solids that release high energy and pressures when the 

bubbles collapse.104–106 The high pressures and energy create microstreaming and localized high 

shear stress fields that alters chemical bonds, and also disrupts cell membranes and can cause cell 

death, mechanisms that have been exploited in drug extraction from plants and biological 

samples.88,98,100,104–109 Selected sonication extraction methods used in DBS samples are 

summarized in Table 2. 

Cavitation is the result of three distinct microbubble phases: nucleation, growth, and collapse. In 

a homogenous fluid, nucleation occurs at localized points of weakness like a gas-filled void in or 

on suspended matter, or the microbubbles from previous cavitation events.105 Rapid microbubble 

growth occurs inertially when cavity expansion is faster than the recompression during the 

positive half of the pressure cycle.105 Slow microbubble growth is the result of “rectified 

diffusion”, where slow growth occurs over many pressure cycles as the microbubble growth is 

incrementally faster than shrinking, since microbubble surface area is slightly greater during 

expansion than compression.105 A microbubble will grow until it reaches a resonant size 

determined by ultrasound frequency (e.g., roughly 170 μm at 20 kHz) at which it efficiently 

absorbs acoustic energy; a microbubble at this size and in phase with the ultrasound field will 

rapidly expand over a single expansion cycle and lose its ability to absorb acoustic energy, and 

become unstable and implode.105 The implosion of a microbubble can generate localized, short-

lived, extraordinary heat and pressure on the order of 5,000 °C and 500 atm.105 Cavitation on 
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liquid-solid interfaces is different from that in homogenous liquids. Irregular interface 

environments cause self-reinforcing deformation as the microbubble collapses, creating a fast 

moving “microjet” stream of liquid (greater than 100 m/s) through the collapsing cavity and 

impact the surface of the solid.105,110 Cavitation also causes shock waves that together with the 

fluid microjet impacts results in ultrasonic cleaning, dissolution of compounds, breakup and 

ejection of material off solid surfaces, and catalysis of surface chemistry reactions.105,111,112 

Surface-liquid sonication effects make it a useful technique in a wide variety of chemical and 

biochemical applications. 

Sonication is a high energy process that disrupts protein-drug bonds and frees analytes from 

within mammalian cells.106,113,114 Cavitation forces along liquid-solid interfaces will also breakup 

dried blood, facilitating extraction from DBS samples. Liberating and recovering as much 

analyte as possible is of importance in small volume, potentially low concentration DBS 

samples. Successful sonication extraction of DBS samples has been demonstrated down to 0.5 

ng/mL in volumes as small as 10 μL, making sonication a sound method for extraction of drugs 

from DBS samples.88,98,100  

1.4.2 Drug Extraction II: Solid Phase Extraction 

Solid phase extraction (SPE) is a technique used to separate components in a fluid mixture by 

exploiting a components chemistry to retain it on a solid sorbent phase. Separation is achieved by 

altering the SPE conditions to promote analyte interaction with the sorbent phase while 

potentially interfering mixture components are removed.  

SPE can be divided into three general mechanisms of extraction: reversed phase, ion exchange, 

and mixed-mode SPE. Reversed phase SPE consists of a nonpolar solid phase used with a polar 
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sample matrix.115,116 Nonpolar sorbent beds made from silica or polymer backbones are surface 

modified with alkyl or aryl groups, and nonpolar analytes adsorb onto the sorbent material via 

van der Waals forces while polar compounds are retained in the polar sample matrix.115 Ion 

exchange SPE is made of either anion or cation exchange functional groups bonded onto a silica 

or polymer backbone material.115 Compounds are retained through ionic interactions with the 

sorbent material. Positively charged analytes are retained by anion exchange groups made of 

either quaternary or secondary amine groups, and negatively charged analytes are sequestered on 

the sorbent bed by their interactions with cation exchange groups made from sulfonic or 

carboxylic acid groups.115,116 Generally, cation or anion exchange interaction with the sorbent 

bed requires preconditioned sorbent beds and solvent environments at pH conditions such that 

both analyte and sorbent groups are sufficiently charged to facilitate ionic interactions.115 For 

cation exchange SPE, the pH should be 2 below the acid dissociation constant of targeted 

analytes. Mixed-mode SPE utilizes reverse-phase and either anion or cation exchange functional 

surface modifications on sorbent backbone material. Mixed-mode SPE allows extraction of 

neutral compounds via hydrophobic interactions with revere phase alkyl functional groups and 

simultaneous extraction of either basic or acidic analytes via ionic interactions with their 

respective cationic (acidic) or anionic (amine) exchange functional groups.115 Like ion exchange 

SPE, mixed-mode requires sorbent and solvent environments at appropriate pH to allow both 

reverse and ionic extraction interactions. 

Traditionally, SPE is performed in five steps: condition, equilibration, load, wash, and elution. 

Each step can be performed under gravity or negative pressure drawing solvents through the 

sorbent bed. A sorbent is conditioned with a strong organic solvent to wet and activate the 

surface and create a path between sorbent and sample.115 A buffer solution or the sample solvent 
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is used to equilibrate the sorbent environment to an appropriate pH and allow sample analytes 

access to the sorbent surfaces.115 The sample is loaded and targeted analytes and other 

compounds with similar chemistry adsorb onto sorbent surfaces as the sample passes through the 

sorbent bed.115 Unwanted components interacting with the sorbent bed are washed off to isolate 

analytes remaining on the sorbent bed; this may take a series of steps of increasingly strong wash 

solvents to sufficiently remove unwanted sample components.115 In the final step, analytes are 

eluted from the sorbent material with a solvent capable of disrupting the bonds between analyte 

and sorbent bed, by either solvent polarity, solvent pH, or both.115 The elution solvent should be 

strong enough to remove the analytes of interest but not so strong as to remove all sample 

compounds that remain after washing. 

Recent development of water-wettable SPE sorbent materials that don’t require sorbent bed 

conditioning or equilibration, reduce the time and solvent volumes required for SPE. Two such 

wettable SPE sorbents are Oasis® PRiME HLB, or “Hydrophilic-Lipophilic Balanced” reversed 

phase (HLB), and Oasis® PRiME MCX, a novel “Mixed-mode Cation eXchange” (MCX) 

sorbent, manufactured by Waters Corporation (Milford, Massachusetts). HLB is composed of a 

proprietary blend of hydrophilic N-vinylpyrrolidone groups and lipophilic divinylbenzene 

functionalities, allowing for simultaneous extraction of neutral, basic and acidic analytes from 

sample extracts.117 MCX is a mixed-mode cation exchange with proprietary ratios of reverse 

phase and sulfonic acid ion exchange functionalities that offer improved selectivity for basic 

analytes than HLB sorbent.118 SPE apparatus are available as individual cartridges or well plate 

forms with different sorbent bed masses that allow tailored sample and elution volumes for large 

or small sample types. 
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1.4.3 Drug Isolation: Liquid Chromatography 

Chromatography is a technique used to isolate compounds in a mixture by the basic principle of 

“like attracts like”. A fluid mobile phase carries the sample through the instrument in a defined 

direction. Separation of compounds in a mixture occurs via chemical interactions with a 

stationary phase within a column. A compound similar to the chemistry of the stationary phase 

will preferentially interact with the stationary phase relative to a compound with a chemistry 

dissimilar to the stationary phase. The analyte’s degree of interaction with the stationary phase 

depends on adsorption, partition, polarity, ion exchange, and analyte exclusion.119 The degree of 

interaction will determine how long a compound will take to travel through the column; a 

compound dissimilar to the stationary phase will move through the column more quickly than a 

compound that is complementary to the chemistry of the stationary phase. Similarly, the 

composition of the mobile phase can be adjusted so that compounds with similar chemistry will 

preferentially interact with the mobile phase and travel through the column in less time. 

Compounds exit the column and are carried in the mobile phase to detection instrumentation for 

identification and quantitation. The period of time a compound takes to travel through the 

instrument and reach the detector is the retention time (RT). Retention time is characteristic for 

compounds at given liquid chromatography (LC) conditions and is used to identify analytes. 

Liquid chromatography uses liquid mobile phase(s) to drive differential distribution of 

components in a mixture between the mobile and stationary phases and can be used to separate 

compounds that are soluble in a liquid sample.2 Liquid chromatography was first described by 

Mikail Tsvet in 1903 in the separation of leaf extracts using a calcium carbonate-packed tube and 

petrol ether in a technique now known as column chromatography.2,120 Separation was carried 

out using gravity, and later vacuum, to drive mobile phase flow through the column.121 Tsvet 
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correctly identified the role of adsorption of analytes on solid phase matrices, both sample and 

stationary phase, and highlighted the importance of appropriate solvent strength for both the 

extraction and separation of compounds from a sample.120,121 Isolation of plant pigments using 

Tsvet’s methods was better than other isolation techniques used at that time.122 Analyte 

adsorption on cellulose and the importance of appropriate solvent selection identified by Tsvet in 

his discovery of chromatography is an important consideration in the extraction of DBS samples 

today.120,121  

Liquid chromatography methods were improved in the 1930’s with the development of thin layer 

chromatography (TLC). The thin layer stationary phase is made from small silica particles 

affixed to glass plates, which allowed the simultaneous separation of several samples.2 When 

compared to chromatographic columns of that time, TLC methods achieve more efficient 

separation of samples due to the small particle size of TLC stationary phase material.2  

Significant advancements in LC were seen in the 1960’s with the breakthrough development of 

high-pressure/high-performance liquid chromatography (HPLC).2 HPLC was made possible after 

the development of HPLC columns and liquid mobile phase pumps and instrumentation capable 

of operating reliably at high pressures, and offered  improved analyte resolution, peak shapes, 

reproducibility, and analysis time over earlier LC techniques.119 Early HPLC columns were made 

from relatively coarse (44 μm) porous silica or alumina with strongly polar hydroxyl surface 

functional groups; separation was achieved with selective adsorption and polar interactions.2 

Methods to alter the surface functional groups of HPLC column packing was developed in the 

1960’s by reacting octadecyl-chlorosilanes with surface hydroxyl groups on silica packing.2 The 

new C18 “reverse-phase” columns became widely used. Reverse-phase separation is achieved 

through weaker intermolecular hydrophobic interactions vs. ion-exchange and polar interactions 
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in early unmodified column packing.2 Column particle size dropped from 10 μm in the 1970’s, 

and again to 3.5 μm particles in the 1990’s.123 As column particle size decreases, column 

efficiency (height equivalent of theoretical plates) increases. Smaller and smaller column particle 

sizes improved peak capacity (the number of peaks resolved per unit time) and separation 

efficiency of HPLC. The efficiency of a chromatographic column with respect to particle size 

and flow rate can be described by the van Deemter equation below:124 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝐴𝐴 +
𝐵𝐵
𝜇𝜇

+ (𝐶𝐶𝑆𝑆 + 𝐶𝐶𝑀𝑀) 𝑥𝑥 𝜇𝜇 (1) 

HETP: Height equivalent of theoretical plate (column efficiency, m) 

A: eddy diffusion term (m) 

B: longitudinal diffusion coefficient (m2/s) 

μ: interstitial linear velocity (flow rate; m/s) 

CS: stationary phase mass transfer resistance coefficient (s) 

CM: mobile phase mass transfer resistance coefficient (s) 

Within a column, the eddy (A) and longitudinal dispersion (B) terms decrease in concert with the 

particle size of column packing material. From the van Deemter equation above, we see 

decreasing particle size results in improved separation efficiency (HETP) and improvements in 

resolution due to increased flow rate (μ).119 Column efficiency is then inversely proportional to 

particle size. A van Deemter plot illustrating the relationship between column efficiency, flow 

rate, and column particle size is presented in Figure 1.123 However, as particle size decreases, 

increasingly extreme pressures are required for adequate flow rates through the column. 

Pressures can reach several thousand psi in HPLC columns, and pressure increases exponentially 

with decreasing column particle size.119 



17 

 

To take advantage of small particle sizes, high strength column materials had to be developed. In 

2004, Waters synthesized a novel 1.7 μm column material with ethane-linked silanes with 

sufficient strength to withstand ultra-high pressures (15,000 psi) created in columns packed with 

the new material.123 LC techniques using small particle columns and ultra-high pressures is 

called ultra-performance liquid chromatography (UPLC). The ultra-high pressures and small 

column packing in UPLC have made for improvements in solvent consumption and narrowed 

peak widths with a corresponding increase in detector sensitivity, improved peak resolution, and 

increased peak capacity.119,123 UPLC techniques allow for increased flow rates without loss of 

chromatographic performance, giving high quality data in shorter run times than HPLC 

methods.123 These advantages make UPLC more practical and cost effective vs. HPLC, and with 

the development of high quality <2 μm columns, UPLC has been adopted worldwide. 

Figure 1: van Deemter plot comparison of column efficiency and column particle sizes. 

Adapted from Reference 123. 
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A variety of adsorbent surfaces are currently available in UPLC columns, allowing users to 

optimize chromatographic separations. Reverse-phase columns separate components via 

hydrophobic interactions with compounds dissolved in an aqueous mobile phase; normal-phase 

separates compounds by adsorptive and polar interactions with compounds carried in a nonpolar 

organic mobile phase.2 An advantage of LC methods is the use of binary solvent systems. Binary 

solvent systems can have two mobile phases with different properties on board the instrument, 

for example, an aqueous mobile phase “A” (MPA), and an organic mobile phase “B” (MPB). 

This allows a user to further optimize separation, peak characteristics, and runtime by setting 

isocratic conditions with static mobile phase composition, ramp conditions with changing mobile 

phase composition, or a combination of isocratic and ramp conditions, to exploit analyte 

chemistries promoting the column retention or elution of an analyte.123,125 This makes selecting 

appropriate column and mobile phases with the chemistries of the targeted analytes in mind a 

critical step for method development and optimization. 

1.4.4 Introduction to Mass Spectroscopy 

Mass spectrometry (MS) is a technique that is used to determine the masses of atoms, ionized 

molecules and molecular fragments.126 Fragmentation of a “parent” or molecular ion gives 

structural information which, together with parent ion mass and retention time, can determine the 

chemical structure and elemental composition of analytes.126 The fundamental properties of mass 

(m) and charge (z) are used to separate and detect parent and molecular ions in a mass 

spectrometer by manipulating ion paths by magnetic and electrostatic fields.126 Mass 

spectrometry coupled with chromatography has become a common technique for the analysis of 

biological fluids in pharmacology and toxicology laboratories.2,127  
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A typical mass spectrometer will consist of an ion source, at least one mass analyzer, a detector, 

and a computer for instrument control and data processing.126 The ion source produces gas phase 

ions required for MS analysis. A mass analyzer, or “quadrupole”, can isolate ions based on their 

mass-to-charge ratio (m/z). For example, a molecule with a mass of 200 Da and molecular charge 

of +1 will have an m/z (200 Da / +1) of 200 Da; a molecule of 200 Da and +2 charge will have 

an m/z (200 Da / +2) of 100 Da. The detector will count the number of ions of selected m/z that 

exit the quadrupole. The number of ions that reach the detector is proportional to the 

concentration for the source of that ion in the analyzed sample.2 Computer software will convert 

data from the quadrupole and detector to generate mass spectrum and chromatogram, when 

paired with chromatography instrumentation. The mass spectrum is presented as a bar graph of 

relative abundances of different m/z ions. 

Mass spectrometry was developed in the late 19th and early 20th century by Wien and Thompson 

and used in the measurement of atomic masses and the discovery of elemental isotopes.128 

Charged ions that pass through an electromagnetic field are deflected relative to an ion’s m/z.128 

Improvements in MS design were developed by Arthur Demptser and Francis Aston through 

1917 and 1919, for which Aston won the Nobel Prize in 1922 for the discovery of isotopes and 

the whole number rule.128 Subsequent mass spectrometers relied on the designs of Demptser and 

Francis, with considerable work done by Harold Washburn using magnetic sector MS for the 

characterization and refinement of petroleum in the 1940’s.128 Washburn compiled reference 

spectra from pure hydrocarbons and organic compounds, and serendipitously detected and 

identified trace levels of acetone in petroleum analyses. Washburn did not know sample vessels 

were cleaned with acetone, and today the ability to identify unknown compounds using MS is 

now widely regarded as one of the greatest strengths of the technique.128 
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In early MS, the mass analyzer was generally a magnetic sector apparatus. The development of 

the quadrupole mass analyzer in 1953 by Wolfgang Paul and Helmut Steinwedel revolutionized 

MS methods.129 The breakthrough of Paul and Steinwedel allowed mass filtering of ions passing 

through the quadrupole. The quadrupole is made from 4 precisely-machined, parallel electrode 

rods mounted in a square configuration.129 Opposing rods are paired and applied with radio 

frequency (RF) voltage, which is an alternating current (AC) electric potential that oscillates at 

radio frequencies.129 Direct current (DC) voltages are also applied, and bias the potential 

between opposing rods in either the x or y axis.129  

Ions that enter the MS are directed down the central axis of the quadrupole. RF and DC 

potentials applied to the electrode rods generate time-dependent electric fields that alter the 

trajectory of ions within the quadrupole.129 Ion trajectories are complex, and can be described by 

second-order Mathieu differential equations. Mathieu equations for RF and DC potentials give 

either stable and periodic solutions or unbounded and unstable solutions.129 Ions within stable 

solutions in both x and y directions travel through the quadrupole to reach the detector while ions 

with unstable solutions will collide with the electrodes and are removed from MS analysis.129 

The stability of an ion with a given m/z depends on the amplitude of RF and DC potentials and 

the frequency of the oscillating electric field.129 By altering the RF and DC, ions of specific m/z 

will reach the detector while all other ions are filtered out. By narrowing the mass filter 

resolution, fewer and fewer trajectories will be stable; lighter ions are ejected by x-axis 

instability while heavier ions are lost through y-axis instability.129 Conversely, by operating in 

RF-only (zero DC potential), almost all ions are transmitted through the quadrupole.129 Mass 

filtration can be set for unit mass resolution or a range of masses.  
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Computing advancements in the 1960’s and 1970’s allowed for computerized instrument control, 

which allowed for very fast, high quality spectral data acquisition and precise RF and DC 

control.129 In addition to computerized control, setting quadrupoles in series further augmented 

the capabilities of MS. Multi-stage MS, also called tandem MS, “triple quad” (MS/MS), allow 

for sensitive and accurate characterization and identification of analytes. In MS/MS, the first 

quadrupole (Q1) functions as a mass filter, allowing only specific m/z ions, or “parent ions”, 

through to the instrument. The second quadrupole (Q2), also called a “collision cell”, operates in 

RF-only; parent ions in Q2 are fragmented by kinetic interactions with a collision gas that 

produce fragment ions at diagnostic, reproducible masses and relative ratios for given collision 

energies and cell conditions.2 Fragment ions generated in Q2 are transmitted to the third 

quadrupole (Q3), which acts as a second mass filter, segregating specific fragment ions from all 

others. Q3 selects for diagnostic ions produced by the parent ion for identification and 

quantitation. By selecting specific parent ions in Q1, fragmenting the parent in Q2, and selecting 

fragment ions unique to the parent ion in Q3, MS/MS methods offer highly selective and 

sensitive techniques for quantitation of targeted analytes in a wide variety of samples, including 

biological matrices for toxicological analysis. 

The most common detector in mass spectrometry is the electron multiplier detector, first patented 

in 1930.130 Electron multipliers are ideal for MS analyses due to their wide dynamic range, very 

fast response, and high sensitivity.130 The detector functions by multiplying incident charges that 

strike a dynode surface of the detector. Ions are accelerated into the detector by significant 

electrical potential (-2 to 5 kV) applied at the entrance of the multiplier. Ions strike a dynode 

surface made of an emissive material which ejects multiple electrons for each ion striking the 

dynode. In a discrete electron multiplier, emitted electrons strike the surfaces of a series of 
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dynode plates of increasing potential. Each electron strike emits multiple electrons, resulting in a 

cascade of electrons several orders in magnitude more (~106-fold gain) reaching the detector than 

the number of ions that initially strike the first dynode.130 The electron cascade terminates at an 

output generating an output current of several mA. The continuous electron multiplier was 

developed in 1962, and is constructed in a horn or cornucopia shape, lined with a continuous 

dynode made of proprietary electron emissive surfaces.130 The electron cascade propagates to the 

narrow output end with negligible lag time, making continuous electron multipliers sensitive and 

fast enough for LC-MS applications.130  

The electrons at the end of the multiplied electron cascade generate a current at the terminal 

electrode of the detector.130 This current is proportional to the amount of ions striking the 

dynode; therefore, the current generated is assumed to be proportional to the concentration of the 

source of the ion in the sample. The current is a continuous, analog signal and is converted to a 

numerical digital output by an analog to digital converter circuit (ADC). The digital signal is a 

discrete value calculated in the ADC over a very short window of time. The speed at which 

digital outputs are calculated from the analog input is the sampling rate. The resolution of an 

ADC is defined by the range of discrete values produced over the range of voltages generated by 

the ADC. The ADC allows for very fast acquisition of digital data and simultaneous data 

processing by instrument computing, ideal for high throughput analytical laboratories. 

1.4.5 Electrospray Ionization 

Because ions must be in a gaseous state for MS analysis, ionization of analytes within a liquid 

solvent at atmospheric pressures was a significant challenge in the development of LC-MS 

systems. Today, atmospheric pressure ionization (API) sources are used to ionize and transfer 

analyte ions into MS instrumentation. Electrospray ionization (ESI) is the most regularly used 
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API method in forensic toxicology LC applications.2 Many drugs are, or are derived from, plant 

alkaloids; alkaloids generally contain polar functionalities in their structure, and therefore are 

readily charged using ESI.2 Electrospray is also capable of creating gas phase ions of high 

molecular weight analytes. ESI has been used for mass measurement and structural 

determination of proteins and virions up to MDa masses, like Hepatitis B, Norovirus, and 

Tobacco Mosaic Virus, even in native conformations.131–136 Analytes and mobile phase exit the 

LC system into the ESI source enclosure through a narrow sample capillary housed within the 

electrospray probe for desolvation and ionization. Desolvation of mobile phase in ESI is 

achieved by nebulizing gas and desolvation gas. Nebulizing gas is pumped parallel with LC flow 

through a cylinder enclosing the sample capillary. As liquid droplets exit the capillary, 

nebulizing gas creates a turbulent aerosol “plume”. At the electrospray probe tip, desolvation gas 

well above vaporization temperatures of the mobile phase is directed at the electrospray plume to 

further promote desolvation of mobile phase solvents. 

Ionization of analytes can occur by two mechanisms: acid-base reactions of analytes in solution, 

and at the capillary tip where protons are generated by redox reactions at the liquid-metal 

interface (e.g., 2 H2O → 4H+ + 4 e- + 2 O2).137 A strong electric potential (up to several kV) is 

carried along the capillary, generating a strong electric potential between the capillary and MS 

orifice. At the capillary tip, surface tension and electrostatic forces pull the liquid into an ellipse 

that becomes a pointed cone at a threshold voltage called the Taylor Cone voltage.138 Prior to 

reaching the Taylor Cone voltage, surface tension and Coulombic forces are balanced for 

specific radius curvatures at the apex of the fluid ellipse. However, the radius of apex curvature 

approaches zero as the applied voltage nears the Taylor Cone voltage.138 At the Taylor Cone 

voltage, the radius of the apex becomes a point, forming a Taylor Cone from which droplets are 
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emitted.138 The charge density at the point of the Taylor Cone is very high. Ejected droplets are 

close to their Rayleigh limit, the point at which a droplet’s surface tension is in equilibrium with 

its Coulombic repulsion.137 Droplets emitted from the Taylor cone undergo desolvation while in 

flight. Desolvation drives the droplet towards the Rayleigh limit, and Taylor Cones form highly 

charged smaller secondary droplets with radii approximately 1/10th that of the ejecting 

droplet.137,138 Charged droplets split into very small droplets only a few nm in diameter with 

continued desolvation and droplet fission. Nanodroplets are the source of gas phase ions 

analyzed by the MS.137,138 

There are two proposed mechanisms of gas-phase ion release: ion evaporation and charge 

residue mechanisms. In ion evaporation, the surface of nanodroplets is sufficiently charged that 

individual ions are expelled in a solvated state by Coulombic repulsion.138 In this model, 

electrical field strength of the droplet surface is so high that the energy needed to increase the 

droplet size during ion ejection is quickly compensated for due to the reduction of Coulombic 

repulsion from the loss of the ejected ion.137,138 Ion evaporation rates are highly dependent on the 

chemical properties of the ion and the Gibbs Free Energy required for ion evaporation.137,138 Ions 

that are highly “surface active” are more likely to undergo ion evaporation, and there is some 

evidence that low molecular weight molecules are more likely to undergo ion evaporation.137 In 

the charged residue mechanism, nanodroplets that contain a single charged ion evaporate to 

dryness, leaving only the molecular ion.137,138 It is not unreasonable to expect a single droplet to 

contain one molecule of analyte. For an analyte at 1 pmol/μL, a droplet with a diameter of 200 

nm would contain on average less than one molecule.138 Charged residue mechanism is widely 

accepted as the mechanism by which large, globular molecules like proteins in native 

conformation are released into the gas phase; however, it is likely the two mechanisms work in 
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concert.137,138 The ESI process from plume to gaseous ion occurs within milliseconds.139 Once in 

gaseous state, ions are drawn into the mass spectrometer along the electric potential between the 

source capillary and MS orifice for mass analysis. 

It is important to note that the ESI source is essentially an electrochemical cell capable of 

operating in positive (POS) and negative (NEG) ion modes.126,137 In POS, the electrospray plume 

carries a net positive charge with analytes in a cation state. To maintain electrical balance in 

POS, an electron must move from the sample solution to the electrode (the capillary) for each 

positive ion produced in the ESI source, and the reverse holds true for electronic balance in 

NEG.126 Furthermore, components in the sample solution that generate ion current can disrupt 

the electrospray, leading to ionization suppression and potential loss of analyte signal.126 It is 

therefore necessary to remove salts and other nonvolatile components in biological samples 

during sample preparation to minimize ionization suppression in biological sample extracts.127 

1.4.6 Quadrupole Time of Flight Mass Spectroscopy 

The quadrupole time of flight instrument (QTOF) is a high-resolution mass spectrometer. At its 

simplest, the QTOF consists of an ion source, quadrupole mass analyzer, ion drift tube, and 

detector with a sensitive and accurate timer. The first time of flight (TOF) MS was built in 1948 

by A. E. Cameron and D. F. Eggers at the Tennessee Eastman Corporation.140 The principle of 

TOF mass measurement is simple. Ions in a vacuum are accelerated down the axis of a drift tube 

by an electric field of known energy from a “pusher plate” pulse. The kinetic energy an ion 

receives is equivalent to the electric potential energy of a charged ion in an electric field, which 

is the product of the ion’s charge (z) and electric field potential (V). Ions travel at speeds 

inversely proportional to an ion’s m/z and will reach the detector at different times. The time 

from ion acceleration to detector impact is recorded, and ion velocity is calculated from the 
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measured time and the known drift tube length. Since we know the accelerating electric field 

potential, we can calculate an ion’s m/z using simple Newtonian kinetics: 

𝑞𝑞𝑞𝑞𝑘𝑘 = 𝑧𝑧𝑧𝑧 ;   𝑎𝑎𝑎𝑎𝑎𝑎  𝑞𝑞𝐸𝐸𝑘𝑘 =  
1
2
𝑚𝑚𝑣𝑣2 ;  ↔   𝑚𝑚 = 2𝑞𝑞𝑞𝑞𝑘𝑘

𝑣𝑣2�  ; (2.1) 

𝑣𝑣 =  𝑑𝑑 𝑇𝑇𝑇𝑇𝑇𝑇�  ;      𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑑𝑑 𝑣𝑣�  ;     𝑎𝑎𝑎𝑎𝑎𝑎  𝑣𝑣 =  ��2𝑞𝑞𝑞𝑞𝑘𝑘 𝑚𝑚� �  ;    𝑣𝑣 =  �2𝑞𝑞𝑞𝑞𝑞𝑞
𝑚𝑚�  ; (2.2) 

 𝑇𝑇𝑇𝑇𝑇𝑇 =  �𝑑𝑑
�(2𝑞𝑞𝑞𝑞𝑞𝑞 𝑚𝑚⁄ )� �  ;   𝑇𝑇𝑇𝑇𝑇𝑇2 =  𝑚𝑚𝑚𝑚

2
2𝑞𝑞𝑞𝑞𝑞𝑞�  ;   𝑇𝑇𝑇𝑇𝑇𝑇2 =  

𝑚𝑚
𝑧𝑧

 �
𝑑𝑑2

2𝑞𝑞𝑞𝑞
�  (2.3) 

𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,     𝒎𝒎 𝒛𝒛⁄ =  (𝟐𝟐𝟐𝟐𝟐𝟐 𝒙𝒙 𝑻𝑻𝑻𝑻𝑻𝑻𝟐𝟐) 𝒅𝒅𝟐𝟐⁄  (2.4) 

Ek: Kinetic energy (J, or C·V, or kg·m2/s2) 

z: ion charge number 

q: elemental charge (1.602 × 10-19 C) 

V: electric field potential (V, or kg·m2/A·s3, where 1 A = 1 C/s) 

m: mass (kg, or Da) 

v: velocity (m/s) 

d: distance (drift tube length, m) 

TOF: time of flight (ion travel time through the drift tube, (s) 

Simplifying the units of formula 2.4 gives kg/z, or simply, mass to charge number. 

Two major TOF advancements were developed in 1955; electric field-free ion gate pulse that 

allowed for measuring a full spectra between pulses, and two-grid pusher plate that compensated 

for kinetic energy differences in earlier single grid pusher plates.140 Coupling TOF with MS first 

occurred with a gas chromatograph (GC) in 1956, with fast and accurate spectra measurements 
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from different organic compounds.140 Early TOF instruments had resolutions (the mass of an 

ion/difference in mass at 50% peak height, or m/∆m) around 300.140 The development of the 

“reflectron” in 1973 greatly increased mass resolution by functionally lengthening the flight tube 

and minimizing the spread of ions of given m/z’s over time.140 Developments in computing and 

alternative ion sources such as ESI advanced TOF further by increasing the dynamic range and 

resolution of TOF MS, and allowing for spectral measurements of high mass molecules, even 

singly-charged proteins with masses greater than 100,000 Da.140  

The Waters Xevo G2-XS (Waters Corporation, Milford, Massachusetts), is a quadrupole time-of-

flight high-resolution mass spectrometer (QTOF-HRMS). The Xevo G2-XS can operate in 

positive or negative ion modes, and in MSE or multiple reaction monitoring (MRM) mass spectra 

modes. MSE mode can be thought of MS-“every” data independent acquisition, as all ions 

reaching the quadrupole pass through to the detector. Ions scanned in MSE are fragmented by 

collisions with argon gas; collisions within alternating narrow time bins of “high energy” and 

“low energy” scans that permits simultaneous mass spectra data for parent ions from low energy 

scans, and fragment ion data from high energy scans. MSE records all ion data without mass 

segregation allowing for retrospective MS analysis for unknowns or novel substances. The 

modern QTOF is an incredibly capable and robust instrument and is ideal for a wide range of 

applications like metabolomics or forensic toxicology analyses. 

1.5 Pharmacology and Toxicology of Selected Stimulants 

Central nervous system stimulants are a class of drugs that typically act on dopamine, 

norepinephrine, and/or serotonin neurotransmitter pathways in neuronal synapses to increase 

dopamine (DA), serotonin (5-HT), and norepinephrine (NE) concentrations in neuronal clefts, 

eliciting sympathomimetic effects.141 Effects of CNS stimulants include increased alertness and 
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vigilance, improved accuracy and speed in certain task performances, reduced fatigue, improved 

concentration, increased blood pressure and heart rate, and elevated mood and euphoric 

effects.141–146 Central nervous system stimulants have been used for thousands of years. Spanish 

conquistadors witnessed South American peoples chewing coca leaves to ward off hunger, and 

lift mood and energy.147 Coca leaves were, and continue to be, chewed with an alkali, like lime 

from burnt shells, to help extract cocaine from the leaves.147,148 In Ecuador and northern Chile, 

archaeological evidence of chewing coca leaves with an alkali has been found in graves as old as 

4,000 years, and cocaine has been identified in mummified remains up to 1,500 years of age.147  

Today in Canada, CNS stimulants are available over the counter or by prescription for a variety 

of clinical indications like congestion, narcolepsy, attention deficit disorders, depression, and as 

a smoking cessation aid. Given the stimulating and euphoric effects of stimulant drugs, abuse 

potential for CNS stimulant drugs are high, resulting in the diversion of therapeutic stimulants 

and clandestine production of illicit stimulants for nonmedical and recreational use.147,149–151 The 

use of stimulants is a global problem. In 2016, 34 million individuals used amphetamines and 

prescription stimulants, 21 million used MDMA/“ecstasy”, and 18 million individuals used 

cocaine.152 Nonmedical use of stimulant effects includes improving cognition and focus by 

increasing neurotransmitter concentrations in synaptic clefts within the brain in academic 

settings, and in athletics via stimulant agonist action on β-andrenergic receptors that increases 

cardiovascular output.141,149,153–156 Recreational use of stimulants typically sees higher than 

therapeutic doses to elicit desired CNS stimulation effects that include euphoria, increased self-

confidence, sexual stimulation, hallucinations, and increased energy; however, acute and chronic 

recreational use of stimulants comes with increased risks for hypertension, serotonin syndrome, 
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hepatotoxicity, neurological degradation, transmission of infectious diseases, seizures, stroke, 

and heart failure.157–163  

In this study, commonly encountered stimulants and selected metabolites were selected for 

analysis in DBS samples. The panel of analytes are: cocaine (CN), benzoylecgonine (BZE), 

cocaethylene (CE), ecgonine methyl ester (EME), anhydroecgonine methyl ester (AME), 

amphetamine (AMP), methamphetamine (MA), phentermine (PH), 3,4-methylenedioxy-

methamphetamine (MDMA), 3,4-methylenedioxyethylamphetamine (MDEA), 3,4- 

methylenedioxyamphetamine (MDA), bupropion (BUP), hydroxybupropion (OH-BUP), and 

methylphenidate (MP). Analytes were selected for their prevalence and forensic relevance. 

1.5.1 Cocaine and Selected Metabolites 

Cocaine is an alkaloid present in the leaves of Erythoxylum coca, used for thousands of years by 

the peoples of northern South America.148 Cocaine was first extracted from coca leaves by Albert 

Niemann in 1860 and its chemical structure was determined in 1894 by Richard Willstätter.34,164 

The stimulant and anesthetic effects of cocaine were characterized following the extraction and 

purification of the drug, and recreational use worldwide began soon after.34,148 Today in Canada, 

there are no legitimate clinical uses for CN, however, it is still used in certain jurisdictions as a 

vasoconstrictor and local anesthetic in certain nasal and ophthalmological procedures.148,165 The 

UN Office on Drug and Crime (UNODC) estimated the 2017 global production of pure cocaine 

was 1,976 tons, while 1,275 tons of adulterated cocaine was seized.166 From the UNODC’s 

figures, it is clear that cocaine is significantly cut with adulterants. Adulterants in cocaine, like 

fentanyl and fentanyl-analogues, can have significant, even fatal, toxicologic effects.167,168 

However, cocaine adulterants are not within the scope of this study and are excluded from this 

work. E. coca leaves and derivatives, including cocaine, are Schedule I drugs in Canada. 
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Cocaine is typically administered by insufflation of the powdered hydrochloride salt, or smoking 

a freebase derivative, or IV injection of a cocaine hydrochloride solution.2 The RoA for cocaine 

has been shown to influence the onset of subjective effects of cocaine, with the fastest onset from 

SM, then IV, and intranasal IN having the slowest onset of effects.61,169 Bioavailability (the 

fraction of drug entering systemic circulation) of cocaine varies by RoA. Cocaine IN 

bioavailability range from 25% to 94%, and varies due to propensity to swallow some of the 

dose, and vasoconstriction of nasal capillaries by blocking NE reuptake as the drug crosses sinus 

mucosal membranes.2,170 Cocaine is highly permeable across mucosal membranes, permeating 

by simple diffusion without competition.170 Smoking cocaine gives an intense and rapid onset of 

action as the drug readily crosses across alveolar membranes into the blood for circulation, 

however, bioavailability for SM ranges 57% to 70%, and dependent on the temperature and 

smoking topography.2,171 Once in the blood, cocaine readily crosses the BBB by passive 

diffusion and proton-antiporter transport.172 

Cocaine anesthesia results from sodium channel blockade in peripheral nerve cells, increasing 

the threshold required for an action potential.2 Cocaine vasoconstriction is the result of agonist 

action on cardiovascular adrenergic receptors.173,174 Cocaine binds DA transporters (DAT), 5-HT 

transporters (SET) and NE transporters (NET) with similar affinities, and inhibits neuro-

transmitter reuptake by the presynaptic neuron.159,175 Increased neurotransmitter concentrations 

in the synapse increases post-synaptic neuronal stimulation. The primary psychostimulant 

mechanism of CN is its action on dopamine.159,175 Dopamine buildup in the limbic system in the 

frontal cortex, especially in the nucleus accumbens, produces euphoric pleasure and acts on the 

reward pathway, reinforcing cocaine seeking, and is an important mechanism in developing 

cocaine dependence.159,176  
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Cocaine’s primary metabolites benzoylecgonine and ecgonine methyl ester are formed by 

different mechanisms. Benzoylecgonine is formed by spontaneous hydrolysis at physiological 

pH (in vivo and in vitro) and by hepatic methylesterases.30,177 Ecgonine methyl ester is produced 

by plasma cholinesterase and hepatic carboxylesterase action on cocaine.30  

Anhydroecgonine methyl ester and benzoic acid is formed while smoking freebase and sodium 

bicarbonate derivatives of freebase cocaine.178 Anhydroecgonine methyl ester is an analytical 

marker of smoking cocaine in forensic analyses.171 The degree of AME formation is temperature 

dependent. Approximately 50% of CN is converted to AME and benzoic acid at 350-400 ℃, and 

almost all CN was pyrolyzed to AME and benzoic acid at 650 ℃.171 Anhydroecgonine methyl 

ester also displays neurotoxic effects on memory and potentiation of CN effects, and because the 

degree of conversion of CN to AME is highly variable, AME may have greater significance than 

just as a marker of smoking cocaine, and its toxicology requires further study.178,179  

Cocaethylene is an equipotent metabolite of cocaine formed by a transesterification reaction 

catalyzed by hepatic carboxylesterases with cocaine and ethanol.34 Cocaine and CE show 

equivalent inhibition of DAT, reinforcing the effects of cocaine in the limbic system when CN 

and CE are present together.34 Cocaethylene is metabolized to BZE; however, CE is longer 

acting than CN. In a human study, mean half-lives (t1/2; ± standard error) of CN and CE 

administered by IV were 1.07 ± 0.09 hr and 1.68 ± 0.11 hr, respectively.180 Another human study 

determined mean t1/2 of CN and CE were roughly 1.5 hr and 2.5 hr, respectively, for both 0.25 

mg/kg and 0.50 mg/kg doses by IV.181 The longer half-life of CE means it is active longer, and 

can be detected in blood samples roughly 2.5 to 5 hours longer than CN. Given that CE and CN 

are equipotent, it has been suggested to add blood concentrations of CE and CN when 

interpreting the effects of the two drugs on intoxication, task performance, and toxicity.34 The 
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chemical structures and pathways of formation for CN, CE, BZE, EME and AME are 

summarized in Figure 2. 

Cocaine and its metabolites are excreted into urine by simple filtration in the glomeruli of the 

kidneys.2 Though the t1/2 of CN is relatively short, repeated use of cocaine can prolong the 

detection of CN in urine, presumably due to release of drug sequestered in tissues.182  

1.5.2 Amphetamine, Methamphetamine and Phentermine 

Amphetamine (AMP), methamphetamine (MA) and phentermine (PHEN) are potent CNS 

stimulants with similar structures to the endogenous monoamine neurotransmitters serotonin, 

norepinephrine and dopamine.183 Amphetamine was first synthesized in Germany by Lazar 

Edeleano in 1887.184 The same year, Nagayoshi Nagai isolated ephedrine from Ephedra sinica, 

and later synthesized methamphetamine from ephedrine in 1893.183 Like coca leaves, alkaloid 

Figure 2: Cocaine related analyte structures and formation pathways. 
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derived from Ephedra have been used for thousands of years for its stimulant and antitussive 

effects.183,185 Considerable attention was given to sympathomimetic compounds following Oliver 

and Schaefer’s 1895 work on adrenal gland extracts, and methamphetamine was synthesized in 

Germany by E. Schmidt, independently from Nagai’s earlier work.183 In 1929, methamphetamine 

was separated into its dextro- and levo-isomers, and potent CNS stimulant effects from the d-MA 

and not l-MA were soon discovered.186 Amphetamine and MA are Schedule I drugs in the 

Controlled Drugs and Substances Act of Canada. 

Amphetamine’s clinical effects of bronchodilation, pressor action, and reversal of barbiturate 

coma were reported by George Piness in 1930.187 Amphetamine was available OTC in inhalers 

as Benzidrine for treatment of sinus congestion and asthma in 1932.151,183 Interestingly, CNS 

stimulant effects of amphetamine were not reported until 1933; amphetamine misuse soon 

followed.183,188 Amphetamine was widely available over the counter (OTC) and by prescription 

throughout most of the 20th century to treat sinus congestion and narcolepsy, as a weight-loss aid 

and appetite suppressant, and for hyperactive children.183 Amphetamine has a high potential for 

abuse given its euphoric effects and reinforcement of dopaminergic reward pathways.158 Reports 

of AMP misuse became increasingly frequent from the 1940’s onward, reaching “epidemic” 

levels in the 1950’s in Japan and Sweden, and increasingly problematic in the US during the 

1960’s. Misuse of AMP led to its control and withdrawal from OTC availability in the second 

half of the 20th century.183,189 Today in Canada, amphetamine is available as the active 

component in Adderall® and the active metabolite of the prodrug lisdexamfetamine (Vyvance®) 

for the treatment of attention deficit disorders. Amphetamine can also arise in the body as a 

metabolite of methamphetamine.43 Nonmedical AMP is available by illicit manufacture or 

diversion of therapeutics. Diversion is most likely in grade school and post-secondary 
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environments.149,190 A survey of 826 physician respondents reported the majority of physicians 

believed one or more patients feigned symptoms to obtain an ADHD diagnosis, pursued 

prescription stimulants to improve academics, or diverted their prescription stimulants.191 

Methamphetamine was widely available OTC and by prescription from the 1940’s throughout 

the mid-20th century as aids in weight loss and wakefulness.151 Methamphetamine was sold OTC 

as Pervertin in National Socialist Germany starting in 1938, Philopon and Sedrin in Imperial 

Japan from 1941 on, and as Methedrine or Desoxyn in the United States beginning in 

1943.151,192–194 During the war, MA was recommended or given freely to troops, airmen, laborers 

and housewives for increased alertness, energy, focus, and lift in mood. Most shockingly, MA 

was used to fuel the German Blitzkrieg attacks during WWII, and German troops consumed up 

to 35 million MA tablets in May through June of 1940 alone.151,192–194 For excellent insight into 

the use of MA during the WWII, the author recommends reading Blitzed: Drugs in Nazi 

Germany by Norman Ohler. Negative effects of methamphetamine use were soon apparent to 

German troop commanders, and military MA use became far more judicious, falling to just 1 

million MA tablets per month by December of 1940.193 Civilian and military use and misuse of 

MA continued throughout the 1940’s. Imperial Japan stockpiled a large amount of MA for 

military and industrial used during WWII.151 Following the end of the war, the surplus MA 

flooded Japan and misuse of the drug became rampant between 1945 and 1957, a period known 

in Japan as the “first methamphetamine epidemic”.151 The timeline of MA controls follows that 

for AMP, given the contemporaneous availability and shared effects. Controls on MA began 

nationally in the 1950’s, and became global in the 1970’s as the negative effects of MA misuse 

became apparent.151,183,186,189 In Canada, there is no therapeutic psychostimulant use for MA, 

though the drug (Desoxyn) is rarely prescribed in the US for treatments of attention deficit 
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disorders and obesity.195 Illicit use and production of MA remains prevalent. Clandestinely 

manufactured MA was identified in roughly one third of all US drug seizures, and was the most 

identified drug seized in the US west of the Mississippi River in both 2016 and 2017.196 

Amphetamine and MA have similar pharmacokinetics and will be described as one. 

Amphetamine and MA are stereoisomeric and the psychoactive effects are caused by the 

dextrorotary isomers S(+)-AMP and S(+)-MA.197 Clinically, S(+)-AMP is the principle 

ingredient in Adderall® and generic versions, and S(+)-MA is found in Desozyn and generic 

equivalents.195,197,198 Currently, R(-)-AMP is found in a 1:3 enantiomeric mixture with S(+)-

AMP (Adderall® and equivalents), and l-MA is available OTC in decongestant inhalers.195,197,198 

The isomers of amphetamine, methamphetamine, and the chemical structures of phentermine, 

ephedrine, dopamine, norepinephrine, and serotonin are presented in Figure 3. 

Figure 3: Chemical structure of amphetamine related compounds, serotonin, dopamine 

and norepinephrine. 
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Therapeutic formulations of MA and AMP taken orally are readily absorbed, with a 

bioavailability of 67%.2 Route of administration for nonmedical and recreational misuse of AMP 

and MA typically include oral, IV, SM, and IN.158 IV is associated with higher risks for 

unwanted effects that include anxiety, psychosis, paranoia and hallucinations.158,199 Oral 

ingestion does not elicit amphetamine “rush”, and people seeking euphoric high effects from 

AMP and MA are more likely to follow IV, SM, or IN administration routes.158 Amphetamine 

and MA are weakly basic, low molecular weight and highly lipophilic molecules that easily cross 

epithelial membranes when smoked or snorted.158 The drugs are volatile, lending to misuse by 

smoking. Bioavailability for SM can be up to 90% with a rapid and intense onset of the desired 

effect, which is distinct from the effects following oral or IN administration.2 

CNS stimulant effects of AMP and MA are the result concerted stereoselective inhibition of 

SERT, NET, and DAT reuptake transporters, the release of NE, DA, and 5-HT from presynaptic 

vesicular monoamine transporters (VMATs) and reversal of SERT, NET, and DAT presynaptic 

transporters that results in efflux of DA, NE, and 5-HT into the synaptic cleft.200–202 S(-)-isomers 

of AMP and MA have similar affinities with VMATs as DA, and are readily taken into 

VMATs.202 VMAT efflux of neurotransmitters into presynaptic intracellular fluid is caused by 

collapse of the pH gradient across the vesicular gradient (pH = 5.5 within VMAT, intracellular 

pH = 7.5) by neutralizing the acidic pH within the VMAT.202,203 Reversal of SERT, NET, and 

DAT is caused by S(+)-AMP and S(+)-MA agonism on trace amine-associated receptor-1 

(TARR1).200,201,204 Methamphetamine is shown to bind with TAAR1 and activate protein kinase 

C phosphorylation, leading to presynaptic DAT internalization and efflux of DA.204 

Amphetamine reversal of DAT was later shown to follow the same mechanism.201 Amphetamine 

and MA mediated action on NE transporters is equivalent to DAT, and DA, and NE are both 
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released into the synaptic cleft in roughly equal proportions in a dose-dependent manner.201 

SERT reversal and presynaptic efflux of 5-HT is also triggered by AMP and MA, though to a 

lesser extent than for NE and DA.201 Like cocaine, reward pathway reinforcement by DA 

stimulation is an important mechanism for developing dependence on AMP or MA.  

Phentermine (PH) is a structural isomer of methamphetamine (Fig. 3) and was approved as a 

short-term weight loss aid by the FDA in 1959.205 Phentermine has been considered an atypical 

amphetamine and is not subject to strict controls placed on AMP and MA since PH has a low 

potential for abuse.206 Phentermine came to notoriety in the 1990’s in “fen-phen”, a combination 

of fenfluramine and phentermine that increased the risk of newly diagnosed and potentially fatal 

cardiac valve disorders, and “fen-phen” was withdrawn from markets in 1997.207–209 Phentermine 

is still available in the US, though it was withdrawn from European markets in 2000 for its poor 

risk-benefit ratio.205 

Phentermine is primarily an adrenergic agonist and lacks the psychostimulant action of AMP and 

MA, nor dependence from dopaminergic reward-reinforcement.210 Phentermine causes release of 

NE from presynaptic vesicles in neurons in the lateral hypothalamus.205 Increasing NE 

concentration in the synaptic cleft increases the stimulation of β2-adrenergic receptors, causing a 

reduction in appetite.205,211  

Amphetamine, methamphetamine, and phentermine are excreted in urine by simple filtration in a 

pH dependent manner. Approximately 45% of dose of MA is excreted in urine at normal pH 

within 24 hours. Excretion of AMP, MA, and PH can be accelerated by making the urine acidic, 

creating an ion trap for the drugs.2,212 Roughly 7% of a given dose of methamphetamine is 

excreted as amphetamine following N-dealkylation by hepatic CYP2D6.43  
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1.5.3 3,4-Methylenedioxymethamphetamine Related Drugs 

The ring-substituted phenethylamine compounds 3,4-methylenedioxymethamphetamine 

(MDMA), 3,4-methylenedioxyethylamphetamine (MDEA), and 3,4-methylenedioxy-

amphetamine (MDA) are potent CNS stimulant empathogens known as “ecstasy”-group drugs, 

or designer drugs. Ecstasy group drugs are popular for their euphoric effects, lifted mood and 

energy, changes in perception, enhanced empathy and emotional connectedness, and increased 

pleasure and sensation from intimate and sexual stimulation.213–215 In Canada, MDA, MDMA, 

and MDEA are listed on Schedule I of the Controlled Drugs and Substances Act. 

MDA was first synthesized in 1910 by German chemists Mannich and Jacobsohn.216 MDA was 

marketed in the US for antitussive, ataractic, and anorexigenic uses in the 1950’s and 1960’s.217 

Abuse of MDA for its psychostimulant properties was reported in the 1960’s, and MDA was 

listed on the original Schedule I table in the American Controlled Substances Act of 1970.218 

MDMA was first described after a two-step synthesis from safrole in an E Merck patent written 

in 1912.214,219 Pre-clinical trials of MDMA to investigate NE-like substances were conducted in 

1927 at Merck; however, psychotropic effects in humans was first reported by Alexander 

Shulgin and David Nicols in 1978.219,220 The role of Shulgin in the development and popularity 

of ecstasy-group drugs should be stated. Shulgin synthesized and tested over 200 designer drugs 

himself and with a close cohort, and introduced a number of colleagues to the drugs themselves 

and their syntheses.221,222 Recreational use of MDMA is reported in the early 1970’s in the 

Chicago area, purportedly after Shulgin’s synthesis of MDMA was provided to a “psychology 

student in the Midwest” in 1970.221 Shulgin as the origin of modern MDMA use is speculative; 

however, the popularity of the drug skyrocketed world-wide in the 1980’s and was added to 

controlled drug schedules that decade.219,221 MDEA was first synthesized by Shulgin in 1967, but 
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wasn’t reported in literature until 1978.221,223,224 MDEA effects are similar to MDMA, though 

shorter lived.223 MDEA is an example of an early designer drug, with a molecular structure 

different from a scheduled drug but maintains similar psychotropic effects. MDEA was 

scheduled as a Class I drug in the US in 1987, but remained uncontrolled in Germany and The 

Netherlands until the early 1990’s.145 Ecstasy-group drugs are manufactured clandestinely in 

tablet, powder and crystal forms of varying ecstasy content.166,225 Adulterants found in ecstasy 

include caffeine, methamphetamine, mephedrone, and novel psychoactive substances that can 

elicit undesired or toxic effects.166,225–227  

Ecstasy-group drugs are typically taken orally, though insufflation and smoking is also 

reported.228 Typical oral doses for MDEA, MDMA and MDA are 100-200 mg, 100-200 mg, and 

60-120 mg, respectively.145,158 Like amphetamines, ecstasy-group drugs are isomeric, weakly 

basic, are highly bioavailable orally, and can readily cross cellular membranes and distribute into 

tissues.158,229 The chemical structures of MDMA, MDEA and MDA are presented in Figure 4.  

Ecstasy-group drugs elicit psychostimulant effects by primarily acting on SERT, as well as DAT 

and NET in an enantiomeric mechanism similar to those of MA and AMP.145 MDMA, MDEA 

Figure 4: Chemical structure of MDMA, MDA and MDEA. 
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and MDA affinities for 5-HT presynaptic transporters are stereoselective, and the empathogenic 

effects are primarily due to reuptake inhibition and efflux of 5-HT from presynaptic 

neurons.145,158,230 TAAR1 activation is stereospecific to (S)-MDMA, leading to presynaptic 

internalization and reversal of SERT, DAT, and NET.230 Observations from animal experiments 

and human studies comparing (S) to (R)-isomers of MDA, MDMA and MDEA support the 

stereospecific action of (S)-isomers on TAAR1.145,158,217,230 Some studies have shown ecstasy-

group drugs release intracellular stores of 5-HT, DA, and NE; however, amphetamine-like action 

on VMATs in animal models is not observed; SERT downregulation is seen following repeated 

MDMA administration, indicating that the primary action of MDMA is on SERT and not on 

VMATs.231,232 R(-)-MDMA has higher affinity for post-synaptic 5-HT2A receptors and 

potentiates secondary signaling, which some studies, though not all, indicate R(-)-MDMA elicits 

hallucinogenic effects at recreational doses.233,234 Recent investigations have shown R,S(±)-

MDMA to be a useful post-traumatic stress disorder therapy. Preclinical studies of R(-)-MDMA 

has been shown to have equal efficacy with R,S(±)-MDMA on social and emotional behaviors in 

patients with post-traumatic stress disorder, without the psychostimulant effects and abuse risks 

that come with S(+)-MDMA, though more research is needed.233 

MDMA, MDEA, and MDA are metabolized extensively by hepatic enzymes, and metabolic 

clearance of MDMA ranges from 50-75% of a given dose.43,234 Methylenedioxy-ring 

demethylation follows CYP2D1, 2D6, 3A2, and 3A4 action, and N-dealkylation of the amine 

side chain is due to CYP1A2, 2D1, 3A4, and 3A2 metabolism.145 Roughly 20% of a given 

MDMA dose is excreted unchanged in urine.234 MDA is produced from N-dealkylation of 

MDMA.145,158  
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1.5.4 Bupropion and Hydroxybupropion 

Bupropion (BUP) is a substituted cathinone CNS stimulant with selective inhibition of NE and 

DA reuptake and noncompetitive inhibition of nicotinic acetylcholine receptors (nAChR).235,236 

Bupropion was first described in a patent filed by Glaxo Wellcome Inc in 1970 (claims priority 

Dec. 4, 1969, granted June 25, 1974) with noted antidepressant effects in mammals without 

inhibition of monoamine oxidase.237 Stimulant effects were observed in animals at doses well 

above those that elicited antidepressant effects.237 Bupropion is available by prescription in 

Canada, the US, and much of Europe for the treatment of major depression disorder (MDD) and 

seasonal affective disorder (Wellbutrin®), as a smoking cessation aid (Zyban®), and in 

combination with naltrexone (Contrave®) for chronic weight management.235,238,239. 

Bupropion is available in 3 oral formulations of racemic R,S-BUP for immediate, sustained, and 

extended slow release.235,240 Bupropion is often categorized as an “atypical antidepressant”, 

shown to have equivalent efficacy with some tricyclic antidepressants (TCAs) and selective 

serotonin reuptake inhibitors (SSRIs), without the unwanted weight gain, somnolence, and 

sexual dysfunction effects of some antidepressants.235 Unlike TCAs, BUP does not inhibit 

monoamine oxidase, nor elicit sympathomimetic or anticholinergic effects.241 Pharmacologic 

effects are due to BUP and its active metabolite hydroxybupropion (OH-BUP).236,242 

Antidepressant action is due to relatively weak NET and DAT inhibition by BUP and OH-BUP 

with zero serotonergic activity, though the mechanism of transporter inhibition is not fully 

understood.235,243 PET imaging has confirmed BUP and OH-BUP’s clinical effect by inhibiting 

striatal uptake of a radiolabeled DAT-selective ligand up to 24 hr after BUP administration.244 

Higher blood OH-BUP concentrations are more predictive of smoking cessation outcomes than 

BUP concentrations, and OH-BUP may significantly contribute to smoking cessation.242,245 



42 

 

Bupropion’s efficacy as a smoking cessation aid may be due to the simultaneous noncompetitive 

antagonist of BUP and OH-BUP on nAChRs and dopaminergic alleviation of withdrawal 

symptoms by inhibiting DAT.236,246  

Pharmacologic activity of OH-BUP is stereoselective. Racemic BUP is metabolized to (2S,3S)-

OH-BUP and (2R,3R)-OH-BUP, and drug activity is due to BUP and (2S,3S)-OH-BUP.236,241,246 

The stereochemistry of BUP and OH-BUP is presented in Figure 5. The (2S,2S)-OH-BUP 

isomer has a higher affinity for DAT and preferential blockade of nAChR subtypes associated 

with nicotine’s behavioral effects than racemic BUP, but not for NET.236 

Metabolism of BUP to OH-BUP is primarily mediated by CYP2B6.240,247,248 Stereoselective 

metabolism of BUP in human liver microsomes is reported. Formation of (2S,3S)-OH-BUP is 

more favorable in CYP2B6, and observed elevated hepatic excretion of S-BUP relative to R-

BUP is a product of stereoselective CYP2B6 activity.240,248 A fraction of OH-BUP is produced 

Figure 5 Chemical structure of bupropion and hydroxybupropion. 



43 

 

by CYP2C19 and CYP3A4.240 CYP2D6 polymorphisms have equivalent effects on R,S-BUP 

hydroxylation rates without effect on plasma BUP concentrations or elimination of BUP.249 

CYP2B6*6 homozygotes displayed decreased hydroxylation and CYP2D6*4 types had 

increased OH-BUP formation rates.249 CYP2C19 variants did not affect the disposition of OH-

BUP.249  

Less than 1% of a given BUP dose is eliminated unchanged in urine.250 Glucuronidation of BUP 

metabolites is extensive; only 10% of a BUP dose is excreted as unchanged drug or free 

metabolites.250 Glucuronidation of BUP metabolites is stereoselective, with (R,R)-isomers of 

OH-BUP and hydro-bupropion are the most abundant metabolites of BUP in urine.250 

Stereospecific metabolism and elimination pathways may have important clinical effects on BUP 

and its active metabolite (2S,3S)-OH-BUP; however, the lack of polymorphism effect on BUP 

plasma concentrations and clearance speaks to complex metabolism for BUP. CYP2D6, 

CYP3A4, and CYP2C19 are relatively minor contributors to BUP metabolism and therefore 

clinical outcomes are relatively unchanged across polymorphisms in OH-BUP metabolism.240,249 

Bupropion is a safe and effective treatment for MDD and tobacco dependence, however, 

seizures, though rare, have been reported at high therapeutic doses.251 Misuse of BUP for 

“cocaine-like high” has been reported via IN and IV injection of BUP.252–254 Effects of BUP 

misuse include tachycardia, hallucinations, tremors, and agitation.255 Seizures are a common 

indication of BUP overdose and occur regardless of RoA.255 Severe cases of BUP poisonings are 

survivable with supportive care. Of 975 BUP poisonings captured by US poison centres between 

2000 to 2013, four fatalities were reported.255  
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1.5.5 Methylphenidate 

Methylphenidate (MP) is a CNS stimulant prescribed for attention deficit disorders and 

narcolepsy.143 Methylphenidate was first synthesized in 1944 and saw clinical use in the 1950’s 

and 1960’s to reverse barbiturate-induced coma; today it is better known by its trade name, 

Ritalin® and its wide use for the treatment of attention deficit disorders in children and adults.256 

Methylphenidate is a piperidine-derived molecule with two chiral centers and 4 enantiomers.143 

The first MP formulations were a mix of all 4 enantiomers. Present MP formulations are made 

from d,l-threo-methyphenidate, with pharmacological activity coming from the d-threo 

isomer.143,257 The structure of methylphenidate is presented in Figure 6. 

Methylphenidate and dopamine compete for binding in lieu of their shared phenethylamine 

structure.258 The clinical effects of MP are due to blockade of presynaptic DAT by d-threo-MP; 

l-threo-MP binds non-specifically in humans and does not increase synaptic concentrations of 

Figure 6: Chemical structure of methylphenidate isomers. 
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DA.257 Inhibition of DA reuptake leads to neurotransmission amplification by prolonged 

presence of DA in the synaptic cleft.258 In vivo  microdialysis and photon emission computed 

tomography imaging with labeled MP has shown MP uptake is highest in the striatum and 

nucleus accumbens.143 Methylphenidate mediated improvements in accuracy and reaction time 

for go/no-go sustained attention tasks studied with functional MRI imaging have shown MP 

promotes activity in brain networks associated with sustained attention and improved task 

performance, and may be a mechanism for the cognitive improvements observed with MP 

treatment.259,260 Improvements in cognition and focus are the primary reason for diversion of MP 

for nonmedical use in secondary school students, though snorting and IV misuse of crushed MP 

for recreational euphoric effects is also reported.261,262  

Methylphenidate is readily absorbed by oral administration, with a relatively short plasma t1/2 of 

1.5 to 2.5 hr.143 Extended release formulations of MP are available (e.g., Concerta®) for once-

daily dosing, with t1/2 of roughly 4 hours in extended release tablets.143 Most of MP is 

hydrolyzed to the inactive metabolite ritalinic acid by carboxylesterases.143,258 Major metabolism 

by carboxyesterase-1 isoform may show enatioselection of l-threo-MP, resulting in prolonged 

half-life and higher circulating concentrations of active d-threo-MP.258 Less than 1% of a MP 

dose is excreted unchanged in urine, and 60% to 80% of the dose is eliminated in urine as 

ritalinic acid.258 Minor metabolites excreted in the urine are lactam and an active metabolite, 

hydroxymethylphenidate.258 

1.5.6 Task and Driving Impairment by Stimulant Drugs 

Drugs impair task performance, including driving, by acting on the brain in proportion to the 

brain drug concentration. In the EU, between 28 to 53% of drivers seriously injured in 

automotive accidents test positive for at least one psychoactive substance.263 Compared to sober 
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drivers, polydrug use increases the risk of serious injury or death 5 to 30-fold.264 Polydrug use is 

prevalent in medical and nonmedical users of therapeutic stimulants and ecstasy users, increasing 

the risk for negative driving outcomes in stimulant users.153,213,264,265 Polydrug use also happens 

unwittingly as adulteration of illicit stimulants is common.166–168,225–227 Stimulant drugs are often 

the second most commonly detected class of drugs in drivers involved in accidents, random 

roadside surveys studies, and driving violations.266–270 Regionally and in commercial drivers, 

stimulants have been reported as the most common drug detected in drivers following traffic 

violation stops.155,270 Truck drivers that tested positive for stimulants have been reported to have 

a greater proportion of driving infractions compared to drivers free of stimulant drugs.271 Both 

illicit and therapeutic stimulants may improve certain tasks at lower blood concentrations, 

however, stimulants can impair driving tasks in the intoxication or “high” phase, and post-

intoxication in the withdrawal, or “crash” phase, and have contributed to impaired driving 

accidents and deaths.142,155,213,272–279 

Low doses of stimulants are shown to improve simple task performance, but the observed 

improvements can reduce or disappear as the complexity of task increases.2 Therapeutic doses of 

methylphenidate show improvement in driving, especially in subjects with attention deficit 

disorders.142,280 Driving is a vigilance task, and lapses of attention can lead to accidents.281 

Enhanced vigilance task performance and improved performance over time are seen with 

administration of AMP and MP, and the benefits are not limited to fatigued subjects.144 Driving 

task improvements are also observed following administration of recreational stimulants. 

Methamphetamine showed dose dependent improvements (0, 20, or 40-60 mg) in driving 

simulation tasks in both narcoleptics and controls.282 Cocaine can improve reaction time and task 
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vigilance. In a study of non-simulated driving and ecstasy, road tracking performance (lateral 

lane position) improved in individuals following a single 75 mg dose of MDMA.272  

However, in the same MDMA study, accuracy of speed adaptation during car-following was 

poorer following MDMA administration.272 The authors highlighted some important limitations 

of this study. 75 mg is a relatively low dose for recreational MDMA use, and multiple doses of 

MDMA are taken over successive days, and this study does not capture impairments following 

real-world use of MDMA.272 Another study of MDMA showed drivers were prone to accepting 

higher levels of risk, though MDMA doses in this study were also lower (mean 56 mg) than 

typical recreational use.283 Speeding, jumping red lights, and other reckless driving is reported in 

injuries and serious accidents that resulted from MDMA, MDA and MDEA impairment, and 

speak to the potential role that risk taking behavior has in stimulant impaired driving.213,275,284,285  

Methamphetamine impairments of driving tasks are similar to those seen with ecstasy-group 

drugs. Behavioral manifestations of MA and AMP intoxication are expressed while driving, and 

are seen as erratic driving, drifting both out of the lane of travel and off the road, and speeding, 

and MA-related traffic fatalities are consistent with these driving behaviors.273,286,287 Drivers 

impaired by MA also have shorter following distances between vehicles and left less distance 

between oncoming traffic when making turns in traffic.288 

Drivers impaired by cocaine exhibit risky driving behaviors common with other stimulant 

impaired driving: speeding, deviation from lane of travel, and running stop signals.278,289 Further, 

positive physical effects and overconfidence following cocaine and other stimulant misuse can 

impair decision making when driving, and may make driving under the influence of cocaine 

more likely than under the influence of cannabis.279,289   
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In addition to impairment during stimulant highs, the pattern of binge-use for stimulants can 

cause significant fatigue, or “crash” following extended sessions of stimulant use.155,287 The 

crash phase can come on sharply, sometimes within 15 to 30 minutes after binge use. Crash-

phase related lethargy, psychomotor retardation, cognitive impairments, and dysphoria can 

persist for several days.290 Stimulant crash and withdrawal symptoms are consistent with 

dopamine and serotonin depletion and can impair driving tasks.157,232,291,292 

1.6 Interpretive Challenges 

Blood delivers drugs to the brain, making blood drug concentration a surrogate estimate of brain 

drug concentration. Although oral fluid or urine analyses for drugs are practiced forensically, 

blood, and only blood, provides interpretive value to assess allegations of impairment. 

Jurisdictions worldwide have established drug in blood concentration per se limits for impaired 

driving, thus requiring methods for convenient sampling and accurate quantitation of drugs in 

blood. Current methods of liquid blood collection are invasive, require trained staff or medical 

professionals, and often hours have passed between an incident and sample collection. Such time 

delays often render interpretation of drug concentrations in blood at the time of the incident 

impossible. A simple and timely method for sampling blood that can be performed in a number 

of environments is required. 

Another challenge is the lack of correlation between intoxication and drug concentrations in 

blood, be it from wet whole blood or DBS sample measurements. Case studies have shown 

significant variation in drug in blood levels following traffic accidents and observed driving 

behaviors, and intoxicated drivers have a wide range of drug in blood concentrations. Once 

source of variability in drug in blood concentrations is tolerance. Tolerance is the reduction of a 

drug’s effect with repeated administration of that drug. It follows that tolerant individuals will 
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have higher stimulant blood concentrations than non-tolerant individuals for a given level of 

intoxication. Another confound is crash phase intoxication, in which a person is impaired by 

effects typically associated with CNS depressants, potentially at low stimulant in blood 

concentrations. Yet another significant challenge is the propensity for polydrug use among 

recreational drug users. Drugs with synergistic impairment may present serious effects at lower 

blood concentrations. The disposition and effects of polydrug use may be mitigated or enhanced 

by genetic factors, especially for prodrugs or drugs with active metabolites. 

1.7 Goals of This Study 

The aim of this study was to optimize and develop a validated method for the simultaneous 

screening and quantitation of the panel of stimulants at forensically relevant blood concentrations 

in microvolume DBS samples using sonication and SPE drug isolation with UPLC-QTOF-

HRMS instrumentation, and to investigate room temperature stability of the analytes in DBS 

samples over 8 weeks. 
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Chapter 2  

2 Optimization of Sample Preparation for Analysis of Stimulants in 
DBS Samples  

DBS sampling is a stable, cost effective, and easy method for analyses of endogenous 

compounds and xenobiotics in blood. Recent developments in analytical instrumentation have 

made accurate and reliable detection and quantitation of analytes at low concentrations in 

microvolume samples possible. The optimization of DBS sample preparation for the analysis of 

stimulants in DBS samples is described in this chapter.  

2.1 Considerations in DBS Sample Preparation 

The two main challenges of drug analyses in DBS are the sample matrix and low masses of 

analytes. Blood is a complex matrix of cells, proteins, lipids, and cellular residues that can 

suppress analyte signal in LC-MS analyses. Components in a sample that alter the signal of an 

analyte are known as “matrix interferences”. Analytes in blood have to be isolated from matrix 

interferences using extraction methods like SPE. Drug concentrations in blood are often 

forensically relevant at low concentrations (< 101 to 102 ng/mL), and drugs may only be present 

in picogram amounts in a 20 µL DBS sample. Even with ultrasensitive instrumentation, it is 

necessary to recover as much of the analyte as possible for reliable analyses of DBS samples. 

Drug extraction from DBS samples ideally take as few steps as possible as each preparation step 

can introduce potential for result variability and analyte loss. The combination of matrix 

interferences and low levels of analytes require a reliable, efficient, and high recovery sample 

extraction method for DBS drug analyses.  
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2.2 Experimental 

Sample preparation optimization followed Scientific Working Group for Forensic Toxicology 

(SWGTOX) method validation criteria for matrix effects (±25%). Matrix effects were calculated 

from the ratio of drug response in post extraction spiked samples to drug response in neat 

standards at 10 ng/mL, 100 ng/mL, and 1000 ng/mL concentrations. Drug recovery was 

calculated from the ratio of analyte response in drug positive samples to drug response in post 

extraction spiked samples.  

2.3 Chemicals and Reagents 

All solvents used were LC/MS grade. Methanol (MeOH), acetonitrile (ACN), water, and 2-

propanol (IPA) were obtained from EMD Millipore (Billerica, Massachusetts). All other 

chemicals used were reagent grade. Ammonium hydroxide (NH4OH), ammonium formate, and 

formic acid were purchased from Fisher Chemicals (Bridgewater, New Jersey). Phosphoric acid 

(H3PO4) and sodium hydroxide (NaOH) were purchased from BDH (Radnor, Pennsylvania). 

Leucine encephalin (LeuEnk) was provided by Waters (Medford, Pennsylvania). Drug standards 

(CN, BZE, CE, EME, AMP, MA, MDMA, MDEA, MDA, PH, BUP, OH-BUP and MP) and 

deuterated internal standards (CN, BZE, CE, EME,-d3; MDA, MDEA, MDMA,-d5; OH-BUP-

d6, AMP-d8, BUP-d9, and MA-d11) were obtained from Cerilliant Corporation (Round Rock, 

Texas). Drug-free sheep blood was obtained from the Canadian Food Inspection Agency 

(Ottawa, Ontario). 

2.4 Sample Preparation 

Drug-free sheep blood was serially diluted for extraction optimization at drug concentrations of 

10, 100, and 1000 ng/mL. Drug positive samples, negative controls, and post-extraction spike 
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(PES) samples (20 μL, n = 3) were spotted on Whatman® 903 Protein Saver Cards (GE 

Healthcare, Chicago, Illinois) and dried overnight at ambient conditions. Whole DBS samples 

were cut from sample cards using a ½″ punch. DBS samples were extracted in 1 mL of 

extraction solvent within fresh test tubes immersed in an ultrasonic bath using an FS20D 

Ultrasonic Cleaner (Fisher Scientific, Waltham, Massachusetts). Extractions using water and 

solutions of 10%, 20%, 30%, 40%, and 50% MeOH in water as extraction solvents were 

assessed.  

2.5 Solid Phase Extraction 

Three different wettable Oasis® SPE products  (Waters Corporation) were assessed during 

method optimization: PRiME HLB 10 mg sorbent 96 well plates, PRiME MCX 10 mg sorbent 

96 well plates, and a product introduced after the onset of this work, PRiME MCX µElution 2 

mg sorbent 96 well plates.   

2.5.1 Hydrophilic-Lipophilic Balance Solid Phase Extraction 

Oasis® PRiME HLB (HLB) is a wettable “Hydrophilic-Lipophilic Balance” polymeric based 

sorbent material. The surface chemistry of sorbent material is a proprietary blend of hydrophilic 

N-vinylpyrrolidone groups and lipophilic divinylbenzenes that allow for simultaneous extraction 

of neutral, basic, and acidic analytes and removal of phospholipid matrix interferences from 

biological samples. SPE methods in this study followed a generic protocol from the vendor. 

Sample extracts from DBS spots were acidified to 2% H3PO4 and loaded onto 10 mg sorbent 

wells by gravity. Loaded wells were washed with 0.5 mL 5% MeOH. Analytes were eluted by 

gravity into clean collection plates with 300 µL 9:1 ACN:MeOH. Elutants were acidified with 30 

µL 0.5M HCl, dried under vacuum at 30℃ and reconstituted in 200 µL MPA and centrifuged for 
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14 min. at 13,000 RPM and 4℃. Supernatants were transferred into microinserts in autosampler 

vials for analysis. 

2.5.2 Mixed-Mode Cation Exchange Solid Phase Extaction 

Oasis® PRiME MCX (MCX) is a wettable mixed mode cation exchange SPE product. MCX 

sorbent material is made of a proprietary ratio of a polymeric reverse phase and sulfonic acid ion 

exchange functionalities that are ideal for basic analyte extraction. The protocol used in this 

work followed a generic method from the vendor. Sample extracts were acidified to 2% H3PO4 

and loaded onto 10 mg sorbent wells by gravity. Loaded wells were washed sequentially with 0.5 

mL portions of 100 mM ammonium formate + 2% formic acid (100 mM AmF + 2% FA). 

Samples were eluted with 300 µL 5% NH4OH in MeOH by gravity. Elutants were acidified with 

55 µL 0.5M HCl and then evaporated to dryness under vacuum at 30℃. Dried samples were 

reconstituted in 200 µL MPA, centrifuged and 14 min. at 13,000 RPM at 4℃, and the 

supernatants were transferred into microinserts in autosampler vials for analysis. 

2.5.3 μElution Mixed Mode Cation Exchange SPE Chemistry 

Waters µElution (µMCX) plates used in this work were made from the same Oasis® PRiME 

MCX sorbent surface chemistry but in 2 mg beds of 30 µm particle diameter. Sorbent material in 

µElution plates is packed with smaller pore space and required a vacuum manifold for sample 

loading and well washing. Samples (1 mL) were acidified to 2% H3PO4 and loaded onto 2 mg 

sorbent beds under 10 to 15 kPa vacuum. Wells were washed with sequential 200 µL aliquots of 

100 mM AmmF + 2% FA and MeOH under 5 to 10 kPA vacuum. Samples were eluted with 2 25 

µL portions of 1:1 ACN-MeOH + 5% NH4OH. Elutants were diluted with 150 µL 2% FA and 

transferred to microinserts in autosampler vials for analysis. 
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2.6 UPLC-QTOF-HRMS Analysis 

Analyses were performed using a Waters Acquity® UPLC with a Waters Acquity® HSS-C18 

1.8 µm, 2.1 mm x 150 mm column, equipped to a Waters Xevo® G2-XS QTOF-HRMS with 

electrospray ionization (ESI).  

2.6.1 UPLC Instrument Conditions 

UPLC analysis was controlled using MassLynx 4.1 software (Waters). Analytes in neat standards 

(100 ng/mL) were run over various mobile phase gradient conditions to determine optimal 

column retention, analyte resolution, and run time. Injection volumes of 2, 5 and 10 μL were 

assessed. Mobile phase A was 5 mM ammonium formate + 0.1% formic acid and mobile phase 

B was ACN + 0.1% formic acid. Optimized UPLC conditions are presented in Table 3.  

Table 3: UPLC instrument conditions. 

UPLC Parameters: Mobile Phase Ramp: 

Sample chamber temperature: 5°C 100% MPA 0 - 1.1 min. 

Column temperature: 45°C  15% MPB at 3.0 min. 

Flow rate: 0.4 mL/min 30% MPB at 4.8 min. 

5 mM ammonium formate + 0.1% formic acid: MPA 50% MPB at 5.9 min. 

Acetonitrile + 0.1% formic acid: MPB 100% MPB 7.9 - 9.0 min. 

Run time: 11 minutes 100% MPA 9.0 - 11.0 min. 

2.6.2 QTOF-HRMS Instrument Conditions 

Mass spectral analysis was performed using Xevo® G2-XS QTOF-HRMS instrumentation with 

electrospray ionization (ESI) in positive ion mode. Full scan MSE from 40 Da to 601 Da was 

acquired using MassLynx 4.1 software. LeuEnk LockSpray™ mass correction at 278.1141 Da 

was acquired every 20 seconds (0.1 second per acquisition) and applied throughout every 
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analysis. QTOF instrument calibration and LockSpray setup was performed prior to every 

analysis. A retention time standard was run in triplicate prior to samples to insure analyte stable 

retention times for sample analysis. Optimized ESI and QTOF settings are presented in Table 4. 

Table 4: ESI and QTOF Instrument Settings. 

QTOF Instrument Settings: 

Cone voltage: 25 V Cone gas flow rate: 25 L/Hr 

Capillary voltage: 1.0 kV Acquisition time: 0 - 10 min. 

Source offset: 40 V MSE mass acquisition range: 40 - 601 Da 

Source temperature: 140 C° Low collision energy: 4.0 V 

Desolvation gas temperature: 250 Cº High collision energy ramp: 10 - 40 V 

Desolvation gas flow rate: 900 L/Hr LockSpray reference mass: 278.1141 Da 

2.7 Data Processing 

Drugs were identified from MSE data in UNIFI 1.8.2 (Waters), and peak areas were integrated 

for quantitative comparison. Analyte identification was assigned in in UNIFI from monoisotopic 

mass spectra match generated by UNIFI from analyte entries in the Waters Scientific Library and 

Waters Forensic Toxicology Solution Library. Mass spectra matches were assigned in UNIFI 

from high and low collision energy mass spectra information. Identification criteria were 

retention time error <0.1 minutes and accurate mass error < 10 mDa. Accurate mass error was 

calculated in UNIFI from the ratio of the difference between measured mass and monoisotopic 

mass to monoisotopic mass.  
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2.8 Results 

Retention times and the accurate masses of quantitation ions and diagnostic fragment ions for the 

analytes and internal standards used in this work are presented in Table 5, with parent ion masses 

in bold. UNIFI determined analyte responses using the peak area of parent ions. Later 

quantitative comparisons for AMP and PH used responses of the most abundant diagnostic 

fragments. 

Table 5: Analyte Retention Times and Ions Accurate Mass and Internal Standards. 

Analytes: 
Retention time 

(minutes): 
Quantitation 

ion: Diagnostic ions: 
Internal 

standard: 

CN 5.87 304.1593 182.1187, 150.0930 CN-d3 

CE 6.25 318.1731 196.1340, 150.0930 CE-d3 

BZE 4.96 290.1405 168.1028, 105.0330 BZE-d3 

EME 1.41 200.1304 182.1187, 150.0930 EME-d3 

AME 3.54 182.1187 150.0930, 91.05423 - 

AMP 4.55 91.0543 136.1117, 119.0863 AMP-d8 

MA 4.75 150.1281 91.0543, 119.0863 MA-d11 

PHEN 4.9 91.0543 150.1281, 65.0377 - 

MDMA 4.78 194.1195 163.0753, 135.0456 MDMA-d5 

MDEA 5.06 208.1349 163.0753, 135.0456 MDEA-d5 

MDA 4.61 163.0753 180.1037, 135.0456 MDA-d5 

BUP 6.1 240.1159 131.0746, 184.0534 BUP-d9 

OH-BUP 5.55 256.1114 131.0746, 167.0489 OH-BUP-d6 

MP 5.58 234.1532 84.0804, 174.1284 - 

The UPLC conditions were used throughout optimization and method development. A total ion 

chromatogram (TIC) of the analytes is presented in Figure 7. 
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Figure 7: UPLC-QTOF-HRMS total ion chromatogram for analytes in a standard solution. 

2.8.1  Expression of Drug Levels 

Drug responses were calculated in UNIFI from the peak area of the parent ion of analytes 

identified by the software using the identification criteria of < 10 mDa mass error and < 0.1 

minute retention time error.  

2.8.2 Extraction Solvent and SPE Method Characterization 

Extraction solvents of 0%, 10%, 20%, 30%, 40%, and 50% MeOH were assessed for recovery 

and matrix effects using HLB, MCX, and µMCX. Matrix effect acceptance criteria was set at ± 

25%. Average 10 ng/mL DBS recoveries (n = 3) in 40% and 50% MeOH extraction solvents 

using HLB ranged from 60% (MDA) to 0% (PH and MDMA); 40% and 50%  extraction 
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solvents were removed from the study because of poor analyte recovery. Data presented in this 

section is from 2 µL injections. 

Mean recoveries for 10 ng/mL and 100 ng/mL DBS samples (n = 3) using 0%, 10%, 20%, and 

30% MeOH solvents with HLB are presented in Figure 8. 

 

Figure 8: Mean drug recoveries for 10 ng/mL and 100 ng/mL DBS samples from 0%, 10%, 

20%, and 30% MeOH extraction solvents with 10 mg PRiME HLB SPE plates (0% MeOH 

= 100% H2O). 
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Mean matrix effects for 10 ng/mL and 100 ng/mL DBS samples (n = 3) using 0%, 10%, 20% 

and 30% MeOH extraction solvents with HLB PRiME are presented in Figure 9.  

Mean drug recoveries from 10 ng/mL, 100 ng/mL, and 1000 ng/mL (n = 3) using 0%, 10%, 

20%, and 30% MeOH extraction solvents with PRiME MCX are presented in Figure 10.  

Figure 9: Mean matrix effects of 10 ng/mL and 100 ng/mL DBS samples from 0%, 10%, 

20%, and 30% MeOH extraction solvents with 10 mg PRiME HLB SPE plates (0% MeOH 

= 100% H2O). 



60 

 

 

Figure 10: Mean drug recoveries for 10 ng/mL, 100 ng/mL, and 1000 ng/mL DBS samples 

from 0%, 10%, 20%, and 30% MeOH extraction solvents with 10 mg PRiME MCX SPE 

plates (0% MeOH = 100% H2O). 
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Mean matrix effects for 10 ng/mL, 100 ng/mL, and 1000 ng/mL DBS samples (n = 3) using 0%, 

10%, 20%, and 30% MeOH extraction solvents with MCX is presented in Figure 11.  

Figure 11: Mean matrix effects of 10 ng/mL, 100 ng/mL, and 1000 ng/mL DBS samples 

from 0%, 10%, 20%, and 30% MeOH extraction solvents with 10 mg PRiME MCX SPE 

plates (0% MeOH = 100% H2O). 
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Mean µMCX recovery and matrix effects are presented in Figures 12 and 13 respectively, from 

10, 100, and 1000 ng/mL DBS (n = 3) extracted in 1 mL 0%, 10%, 20%, and 30% MeOH. 

Figure 12: Mean drug recoveries for 10 ng/mL, 100 ng/mL, and 1000 ng/mL DBS samples 

from 0%, 10%, 20%, and 30% MeOH extraction solvents with 2 mg µMCX SPE plates 

(0% MeOH = 100% H2O). 
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Figure 13: Mean matrix effects of 10 ng/mL, 100 ng/mL, and 1000 ng/mL DBS samples 

from 0%, 10%, 20%, and 30% MeOH extraction solvents with 2 mg µMCX SPE plates 

(0% MeOH = 100% H2O). 
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2.8.3 Injection Volume Characterization 

Because of the potentially picogram amounts of analytes in DBS samples, injection volumes of 2 

µL, 5 µL, and 10 µL were assessed. It was expected that increasing the injection volume would 

improve analyte signal due to correspondingly larger amount of analyte on column. Injection 

volumes were assessed concordantly with the matrix effect and recovery studies across HLB, 

MCX, and µMCX plates using 0%, 10%, 20%, and 30% MeOH solvents. 

Matrix effects were magnified across all extraction solvents and SPE methods with increasing 

injection volumes. Mean matrix effects from 10 ng/mL DBS (n = 3) using MCX with 0%, 10%, 

20%, and 30% MeOH for 2 µL, 5 µL, and 10 µL injection volumes is presented in Figure 14, 

and is typical of the observed changes in matrix effects with increased injection volumes. 

2.9 Discussion 

Extraction solvents and the SPE products evaluated in this work were assessed by the recoveries 

and matrix effects observed for each SPE plate type and extraction solvent composition. 

Accepted matrix effect criteria were set at ± 25%. An acceptance criterion for analyte recovery 

was not set; however, recovery values approaching 100% are ideal, especially given the 

picogram levels of drugs in microvolume DBS samples at forensically relevant concentrations.  

Initial work compared HLB and MCX SPE protocols. MCX offered comparable recovery and 

matrix effects to HLB for all methanolic extractions following generic vendor protocols. Matrix 

effects for HLB (2 µL injections) were within ± 25% for 11 of 14 analytes at all concentrations. 

Matrix effects for MCX (2 µL injections) were within accepted criteria for 11/14 analytes at 100 

ng/mL, 12/14 analytes 1000 ng/mL, and 8/14 analytes at 10 ng/mL, typically as ion suppression. 
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Figure 14: Increasing mean matrix effects with increasing injection volumes of 2 µL, 5 µL, 

and 10 µL, from 10 ng/mL DBS samples using MCX SPE with 0%, 10%, 20%, and 30% 

MeOH extraction solvents (0% MeOH = 100% H2O). 



66 

 

In general, analyte recovery decreased with increasing MeOH content in the loaded extraction 

solvent. This trend was strongest in HLB extractions. Using HLB, mean cocaine recovery in 10 

ng/mL DBS samples fell from 79.5% in 0% MeOH to 7.7% in 30% MeOH, a typical trend for 

HLB recoveries. HLB also suffered poor recoveries for AMP, MA, PH, EME, and AME. Poor 

recoveries in HLB were due to analyte loss during SPE wash. To test this, wash fractions were 

collected and analyzed by the UPLC-QTOF-HRMS methods in this study, and significant drug 

responses were detected in HLB wash fractions. Of HLB and MCX, 0% MeOH with MCX 

clean-up gave the best recovery across analytes, ranging from 38.9% to 91.8%.  

The overall performance of MCX was superior to HLB for the analytes and SPE protocols used 

in this work, however, anomalously high recoveries were observed for BUP (> 125%) in both 

MCX and HLB. The cause of the abnormal BUP recoveries is unknown, however, analyte 

reduction-oxidation has been observed in our lab during evaporation under vacuum.293 Both 

MCX and HLB sample preparation methods required sample evaporation and reconstitution. A 

hypothesis of this mechanism is reduction of OH-BUP to BUP during evaporation. BUP and a 

component in the elutant undergo redox reactions, with the reaction driven to the right as the 

concentration of these components increase with solvent evaporation. Further assessment of this 

phenomena will be left for future work. 

PRiME µMCX plates were included for assessment after the onset of this work. The small 

elution volumes (50 µL) for µMCX permits simple dilution of samples prior to injection. 

Recovery from µMCX were lower than for MCX, ranging from 9% to 75%; however, the 

anomalous BUP recoveries were not seen for µMCX extractions. Matrix effects for µMCX using 

0% MeOH were within ± 25% for all analytes except EME in 100 ng/mL and 1000 ng/mL DBS 

samples, and for all analytes except EME (51.3%) and PH (-100%).  
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Results from the injection volume assessment showed improved matrix effects for 2 µL 

injections over 5 µL and 10 µL volumes. Larger injection volumes were tested to see if improved 

analyte signal was seen with greater injection volumes; however, matrix effects were magnified 

with increasing injection volume.  

2.9.1 Comparison of SPE Methods 

Following generic vendor protocols, the µMCX SPE plates performed the best, analyte recovery 

with µMCX was suitable. Overall, µMCX displayed the least matrix effects of all sample 

preparation methods compared in this study. In particular, matrix effects were improved for MA, 

AMP, CN, and MDMA. Matrix effects for EME were outside accepted criteria; however, EME 

is an inactive metabolite of CN, and accurate quantitation of EME concentrations may not be 

forensically or clinically relevant.  

The evaporation step is eliminated using µMCX. Removing the evaporation step reduced sample 

preparation time from 10-11 hours to 4 hours. Anomalous BUP recoveries observed in HLB and 

MCX were absent in µMCX, supporting the notion that some redox conversion between OH-

BUP and BUP may be occurring during evaporation.  

One need for evaporation is the removal of organic solvents that can impact chromatography. 

Analytes solvated in organic solvents have a more complex partition from the organic solvent to 

the aqueous mobile phase, and again to the solid phase of the column. This can result in bimodal 

or broadened peaks. The impact of organic solvent content in samples on chromatography with 

the UPLC conditions used in this study is presented in Figure 15. Increasing organic solvent 

content in samples resulted in poor chromatography. Though µMCX extracts are 50 µL, the final 

sample composition is 25% organic solvent, enough to cause peak broadening (Figure 15). 
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However, using µMCX, peak broadening of analytes was only seen at 10 µL injections. Thus, 2 

µL injections were chosen for their improved matrix effects and mitigation of chromatography 

problems due to organic solvent content in samples. 

 

Figure 15: Effects of organic solvents in samples on chromatography of amphetamine, 

methamphetamine and phentermine. 
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From the results of sample preparation optimization studies, µMCX was chosen for method 

validation. Water (0% MeOH) was chosen as the extraction solvent for simplicity, solvent 

consumption considerations, and lack of clear improvement in sample clean-up in the MeOH 

compositions tested in this work. Injection volume was set at 2 µL due to the observed 

improvements in matrix effects and chromatography. 

2.9.2 Sonication Extraction Time Characterization 

Sonication extraction time was characterized after a sample preparation method was selected. 

Drug-positive DBS samples at 1000 ng/mL and drug-free DBS samples (n = 3) were extracted in 

1 mL of H2O for 60 minutes. The extraction solvent was removed after 10, 20, 30, and 40 

minutes of extraction time and replaced with fresh 1 mL volumes of H2O. The final 1 mL was 

removed after 60 minutes. Extracts were prepared following the µMCX sample preparation 

method and UPLC-QTOF analysis developed in this work. Extraction time was evaluated from 

the cumulative analyte responses for time points compared to total cumulative analyte response 

after 60 minutes. Mean cumulative responses for analytes are presented in Table 6. The majority 

of all analytes are extracted within the first 10 minutes of sonication. Almost all of the analytes 

are extracted within 30 minutes (range 93.3% to 100%; mean 98.5%), and 30 minutes was the 

chosen period for ultrasonic extraction. 
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Table 6: Cumulative mean analyte response of sonication extraction time intervals. 

Cumulative mean analyte response: 

Analyte: 10 min (%): 20 min (%): 30 min (%): 

CN 88.2 98.5 99.7 
CE 85.1 97.2 98.9 
BZE 89.9 99.5 99.9 
EME 83.0 97.7 99.2 
AME 89.9 98.3 99.3 
AMP 83.5 100.0 100.0 
MA 85.8 96.3 98.0 
PH 77.4 95.8 100.0 
MDMA 78.7 90.4 93.8 
MDEA 87.1 97.3 98.6 
MDA 78.1 89.6 93.3 
BUP 84.7 97.9 99.8 
OH-BUP 84.4 96.9 99.0 
MP 87.6 97.8 99.2 

2.10 Conclusion 

The data presented shows that ultrasonic extraction with PRiME MCX µElution SPE is an 

efficient sample preparation method for toxicological analyses of DBS samples. Sample clean-up 

using µMCX gives suitable analyte recovery and improved matrix effects, while also reducing 

sample preparation time by several hours. Sample preparation parameters may have to be 

optimized for each compound of interest. The sample preparation developed in this work was 

suitable for 13 of 14 analytes, EME was the only analyte that did not meet acceptance criteria for 

matrix effects. However, accurate quantitation of EME is generally not of forensic or clinical 

interest, and its omission from validation does not diminish the general scope of this work. 
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Chapter 3  

3 Simultaneous Screening and Quantitation of Stimulants and 
Selected Metabolites in Dried Blood Spot Samples Using UPLC-
QTOF-HRMS 

3.1 Introduction 

Drugs impair task performance, including driving, by acting on the brain in proportion to the 

brain drug concentration. Forensic investigations of impairment require blood samples reflective 

of the time of the investigated incident for appropriate interpretation of drug concentrations in 

blood. Several hours can pass between an incident in question and the drawing of whole blood in 

drug impaired investigations and this time delay can render forensic interpretations of drug 

concentrations at the time of an incident impossible. Further, the establishment of per se limits of 

stimulant drugs in blood require timely sample collection and accurate quantitation of stimulants 

to accurately and fairly assess allegations of drug impairment. A blood sampling method that 

addresses the time course problem of current blood sampling protocols is required for drug 

impaired investigations. Dried blood spot sampling is a simple and cost-effective sampling 

method that can be performed in almost any environment and with minimal training. Not only do 

DBS samples display equivalent or superior analyte recovery and stability, the sampling method 

permits accurate quantitation of drug concentrations.  

Stimulant drugs, including cocaine, amphetamines, and methamphetamines, are a commonly 

encountered class of drugs in drivers involved in accidents, random roadside surveys studies, and 

driving violations.266–270 Driving while impaired by stimulant drugs has contributed to accidents 

and deaths.142,155,213,272–279 The goal of this work is to develop a validated method for the 

simultaneous screening and quantitation of a panel of forensically relevant stimulant drugs in 
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DBS samples using UPLC-QTOF-HRMS instrumentation and to assess the room temperature 

stability of the analytes in DBS samples over 8 weeks. 

The development of high resolution and sensitive mass spectrometry has made quantitation of 

ng/mL-range drug concentrations of microvolume (i.e. 10-20 μL) DBS samples possible. 

Commonly encountered stimulants and selected metabolites [cocaine (CN), benzoylecgonine 

(BZE), cocaethylene (CE), ecgonine methyl ester (EME), anhydroecgonine methyl ester (AME), 

amphetamine (AMP), methamphetamine (MA), phentermine (PH), bupropion (BUP), 

hydroxybupropion (OH-BUP), methylphenidate (MP), 3,4-methylenedioxymethamphetamine 

(MDMA), 3,4-methylenedioxyethylamphetamine (MDEA), 3,4-methylenedioxyamphetamine 

(MDA)] were analyzed in 20 μL DBS samples prepared from blood spiked with anlaytes at 

concentrations ranging from 10 to 1000 ng/mL. The chosen concentration range encompass 

established drug driving per se limits, therapeutic, and toxic to fatal drug blood concentrations.295  

3.2 Materials and Methods 

3.2.1 Chemicals and Reagents 

Chemicals and materials used in method validation were the same used in sample preparation 

optimization, presented in Chapter 2.3 and 2.4, unless otherwise noted. Standards used in drug 

interference assessment (codeine, fentanyl, hydrocodone, hydromorphone, mephedrone, 

methadone, morphine, norcodeine, noroxycodone, oxycodone, oxymorphone, pseudoephedrine, 

Δ9-THC, 11-nor-9-carboxy-Δ9-THC, 11-hydroxy-Δ9-THC) were purchased from Cerilliant; 

(R,S)-(±)-ephedrine, (R)-(+)-β-methylphenethylamine (BMPEA), and norephedrine were 

obtained from Sigma Aldrich (Oakville, Ontario); cathine was purchased from LGC Standards 
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(Manchester, New Hampshire). Drug-free human whole blood was purchased from Utak 

laboratories Inc (Valencia, California). 

3.2.2 Preparation of Solutions 

All DBS samples and standard solutions were prepared using fixed-volume and digital positive 

displacement microdispensers from Drummond Scientific (Broomall, Pennsylvania). Drug 

standards were diluted in methanol (MeOH) and acetonitrile (ACN) stocks from the following 1 

mL ampules: AMP, MA, MDMA, MDEA, MDA, PHEN; “Amine Mix-6”, 250 μg/mL in 

MeOH.  CN, BZE, CE, EME; “Cocaine Mix”, 250 μg/mL in ACN. AME, 1 mg/mL in ACN.  

BUP, 1 mg/mL in MeOH. OH-BUP, 1 mg/mL in ACN. MP, 1 mg/mL in MeOH. Deuterated 

internal standards (CN, BZE, CE, EME: d3; MDA, MDEA, MDMA: d5; OH-BUP-d6, AMP-d8, 

BUP-d9, and MA-d11) were similarly diluted from 100 μg/mL and 1 mg/mL (MA-d11 only) 

solutions. Instrument calibration (0.5 mM ammonium formate in 90:10 ISA:H2O) and LeuEnk 

LockSpray™ solutions were prepared per vendor instructions (Waters, Meford, Pennsylvania).  

3.2.3 Sample Preparation 

Drug-free sheep blood was serially diluted for calibration curves at drug concentrations of 0, 10, 

50, 100, 250, 500 and 1000 ng/mL. Bias was assessed in each calibration curve from low, mid 

and high bias samples at 25, 400 and 800 ng/mL, respectively. Drug positive calibrators, 

negative controls and post-extraction spike (PES) samples (20 μL, n = 3) were spotted on 

Whatman® 903 Protein Saver Cards (GE Healthcare, Chicago, Illinois) and allowed to dry 

overnight. Samples for analyte stability analysis at 0, 10, 100 and 1000 ng/mL (n = 3, stability 

time points of 0, 1, 4 and 8 weeks) were kept in a paper envelope and stored in the dark at room 

temperature prior to extraction; however, temperature or humidity conditions were not recorded. 



74 

 

Whole DBS samples were punched from sample cards using a ½″ punch and extracted with 2 ng 

of each internal standard in 1 mL of water for 30 minutes by sonication in clean test tubes. DBS 

card punches were removed from test tubes and extracts were acidified to 2% concentrated 

H3PO4 and vortexed. Acidified extracts were loaded via a vacuum manifold onto Oasis® PRiME 

MCX μElution 96 well plates. Loaded wells were sequentially washed with 200 μL of 100 mM 

ammonium formate + 2% formic acid and 200 μL MeOH. Analytes were eluted from wells using 

2 × 25 μL aliquots of 1:1 ACN:MeOH + 10% NH4OH into clean collection plates. Calibrators 

and negative controls were diluted with 150 μL 2% formic acid. PES sample elutants were 

spiked to calibrator levels with drug positive aliquots of 150 μL of 2% formic acid. Neat 

standards at calibrator levels were prepared by adding drug positive aliquots of 150 μL of 2% 

formic acid to 50 μL of blank elution solvent in empty collection plate wells. Diluted elutants 

and neat standards were mixed on a shaker plate at 500 RPM for 30 seconds, then transferred to 

microcentrifuge tubes. Samples were centrifuged at 13,000 RPM for 14 minutes at 4 °C. 

Supernatants were transferred to glass inserts in autosampler vials for analysis. 

3.2.4 Instrumentation 

Samples were loaded into the autosampler of an Acquity® UPLC with an Acquity® HSS-C18 

1.8 µm, 2.1 mm × 150 mm column, equipped with Xevo® G2-XS QTOF-HRMS 

instrumentation with electrospray ionization (ESI) in positive ion mode. Full scan MSE data was 

acquired using MassLynx 4.1 software. UPLC and QTOF instrument conditions are presented in 

Chapter 2.4.1 and 2.4.2, respectively. 
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3.2.5 Identification and Quantitation 

Drug identifications were made in UNIFI from MSE data following the methods described in 

Chapter 2. UNIFI does not allow the user to edit identified peaks or peak areas. Invalid areas 

from erroneous peak shapes generated by the software led to poor quantification data. Because of 

this, UNIFI was abandoned for quantitation. 

Analyte and internal standard peak areas were calculated in QuanLynx 4.1 software using a mass 

window of 0.01 Da and retention time window of 0.05 minutes. Analytes for quantitation were 

identified in MassLynx by retention time and the diagnostic ions presented in Table 5 (Chapter 

2.8). Deuterated internal standards were not readily available for AME, PH or MP at the time of 

this study. Internal standards used for PH and MP were MA-d11 and OH-BUP-d6, respectively; 

response ratios (analyte peak area/internal standard peak area) for AME were not calculated. 

Peak areas calculated in QuanLynx were manually reviewed prior to export as .xml files into 

Excel 2013 (Microsoft Corporation, Redmond, Washington). Quadratic calibration curves were 

calculated from peak area ratios of analyte to internal standard at each calibrator level using 1/x2 

weighting with XLSTAT 2019.1.2 Build 56803 add-in for Excel (Addinsoft, Paris, France). 

3.2.6 Method Validation 

Method validation followed standard practices for forensic toxicology applications.296 LOD, 

LOQ, recovery, bias, precision, and carryover were assessed in 5 calibration curve analyses at 6 

analyte levels (n = 3) on 5 different days. Drug interferences, matrix interferences, internal 

standard interferences, matrix effects, and DBS card stability were assessed in separate 

experiments at analyte levels of 0, 10, 100 and 1000 ng/mL (n = 3). Statistical analysis was 

performed using Excel 2013 and XLSTAT. 
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3.2.7 Limit of Detection and Limit of Quantitation 

LOD was administratively defined as the lowest non-zero calibrator identified by UNIFI in all 5 

standard curves. LOD was manually confirmed in QuanLynx. Analyte ion signal to noise ratios 

(S/N) of 5 was set as an identification criteria. LOQ was determined at the lowest non-zero 

calibrator in which detection, precision, and bias criteria were met in all 5 standard curves. LOQ 

was not determined for AME due to the lack of an appropriate internal standard.  

3.2.8 Calibration Model 

Calibration curves were calculated using quadratic nonlinear regression with 1/x2 weighting in 

XLSTAT from triplicate DBS samples at 10, 50, 100, 250, 500 and 1000 ng/mL in 5 different 

standard curves on 5 different days. Fit to the calibration model is reported as the coefficient of 

determination, R2. The standard deviation (σ) and variance (σ2) for each analyte response ratio 

were plotted against concentration across the calibration range for each standard curve to 

determine the weighting factor. Appropriate weighting was assessed qualitatively; the σ of 

relative responses were proportional to concentration and 1/x2 weighting was selected.297 

3.2.9 Recovery and Matrix Effects 

Recovery at calibrator levels was calculated as [analyte peak area of drug positive 

sample/analyte peak area in blank sample spiked after extraction] × 100%. An acceptance for 

recovery was not set. Matrix effects were determined by comparing analyte peak areas in blank 

sample extracts spiked to concentrations of 10, 100 and 1000 ng/mL (n = 3) to neat standards at 

identical concentrations using the formula [(mean peak area of analyte in blank sample spiked 

after extraction/mean peak area of analyte in neat standard) – 1] × 100%. A matrix effect value 
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less than zero reflects ion suppression and a matrix effect value greater than zero indicates ion 

enhancement. Matrix effects within ± 25% were deemed acceptable for quantitation.  

3.2.10 Precision 

Precision expressed as the coefficient of variation (%CV) was determined for each analyte at 

every calibrator level (n = 3) for each of the 5 standard curves as [analyte response ratio σ/mean 

response ratio] × 100%. The criteria for %CV acceptance was set at 15%. 

3.2.11 Bias 

The standard curve data used to determine precision was used in the bias studies. Bias was 

assessed at low, mid and high concentration levels (n=3) in each of the 5 standard curves. 

Concentrations for bias samples were calculated from their relative responses and calibration 

curve regression equations. Bias was calculated using [100% × (mean of calculated 

concentration – nominal concentration)/nominal concentration]. The maximum acceptable bias 

was set at ±20%. 

3.2.12 Selectivity 

Blank samples from 5 different blood matrices were analyzed for peaks interfering with analytes 

or internal standards. Blank samples fortified with internal standards at 400 ng/mL (n = 3) were 

extracted to assess interferences with analytes of interest. Blank samples spiked to 1000 ng/mL 

(n = 3) without internal standard were extracted to assess interference with internal standard ions. 

DBS samples prepared from blood spiked with cannabinoids (50 ng/mL, n = 3), opioids (various 

concentrations; n = 3) and other amphetamine-related compounds (300 ng/mL, n = 3), were 

extracted to assess interferences from other commonly encountered analytes. 
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3.2.13 Analyte DBS Stability 

Drug positive DBS samples (10, 100 and 1000 ng/mL; n = 3 for all time points) were prepared 

and analyzed at time points of 0, 1, 4 and 8 weeks after sample spotting. Dried DBS samples 

were kept in a paper envelope and stored in the dark at room temperature prior to extraction. 

Analyte stability was assessed by comparing response ratios of analytes at time points of 1, 4 and 

8 weeks to time zero response ratios. Acceptance criteria was not set for card stability. 

3.2.14 Analyte Stability on Autosampler 

Mean analyte responses at time zero for samples at 10, 100 and 1000 ng/mL (n = 3) were 

compared to mean analyte responses after 44 hrs on the instrument to assess analyte stability 

using [(mean time zero analyte response/analyte response after 44 hr on instrument −1) × 100%]. 

Acceptable stability criteria was set at ±15%. 

3.2.15 Carryover 

Blank samples were analyzed immediately following high concentration samples and neat 

standards to assess carryover with every analysis. The concentration deemed free of carryover 

was the highest concentration at which no analyte carryover was observed. 

3.2.16 Hematocrit Effects 

Hematocrit effects on matrix effects and recovery was assessed. Human whole blood was 

separated into plasma and erythrocyte fractions by centrifugation at 2200 rpm for 15 minutes. 

HCT levels were prepared from plasma and erythrocyte fractions at HCT levels of 0.25, 0.45 and 

0.75. DBS samples were spotted from the HCT blood prepared at analyte concentrations of 0 

ng/mL, 10 ng/mL, 100 ng/mL and 1000 ng/mL (n = 3) and dried overnight prior to analysis.  
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3.3 Results 

A quantitative UPLC-QTOF-HRMS method for DBS samples between 10 and 1000 ng/mL was 

achieved for cocaine, cocaethylene, amphetamine, methamphetamine, MDMA, MDEA, MDA, 

bupropion, hydroxy-bupropion and methylphenidate. An LOD of 10 ng/mL was achieved for all 

analytes. Recovery and DBS card stability were analyte dependent. 

3.3.1 Method Validation 

Quantitative method validation criteria was met for 10/14 analytes and semi-quantitative for 

BZE, EME, and PH. Though AME responses were concentration dependent, this analyte was not 

quantitated.  

3.3.2 Limit of Detection and Limit of Quantitation 

The lowest calibrator concentration that met identification criteria in UNIFI was administratively 

defined as the LOD. All detected analytes were confirmed manually in QuanLynx. All analytes 

had an LOD of 10 ng/mL in DBS samples. Average S/N in 10 ng/mL DBS samples ranged from 

16.3 (PH) to 686.3 (CN).  

The LOQ was determined at the lowest concentration with acceptable bias, precision and 

detection criteria in all 5 standard curves. A 10 ng/mL LOQ was achieved for all analytes except 

PH. Phentermine quantitation criteria to 10 ng/mL was in met in 4 of 5 standard curves, however 

the lowest PH concentration with acceptable quantitation criteria in all 5 standard curves was 50 

ng/mL. AME was not quantitated in this work. Analyte LOD and LOQ values are presented in 

Table 7. 
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3.3.3 Calibration Model 

Calibration with quadratic regression and 1/x2 weighting were used to model standard curves 

from analyte response ratios (n = 3) at 6 calibrator levels in 5 different standard curves analyzed 

on different days. R2 values of the calibration curves for the 10 analytes with acceptable 

quantitation criteria ranged from 0.980 to 0.999. The range of R2 values for each analyte across 

the 5 standard curves is presented in Table 8.   

3.3.4 Recovery 

Recovery was analyte dependent, average recoveries are presented in Table 4. Mean analyte 

recoveries ranged from 6.1% to 77.5%. Average recoveries for the 10 quantitative analytes 

ranged from 66.3% to 76.6%. Mean recoveries for BZE, EME and PH were 29.9%, 6.1% and 

77.5%, respectively. 

3.3.5 Matrix Effects 

Matrix effects were within ± 25% at all levels for all analytes except EME and PH. Mean matrix 

effects for EME was 89.3% (range -13.9 to 173.0%). Mean PH matrix effects at 10 ng/mL 

were -31.8%. Average PH matrix effects at 100 ng/mL and 1000 ng/mL were 16.1% and 9.0%, 

respectively. For quantitative analytes, mean matrix effects ranged from 0.5% to 13.1%. In 

general, ion enhancement was noted for all analytes, however, every matrix effect value for the 

quantitative drugs were within ± 25% acceptance criteria (range from -18.7% to 23.4%). Matrix 

effect values are presented in Table 9.
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Table 7: Validation results for quantitative and semi-quantitative analytes. 

      Bias (%)  

LOD LOQ Recovery (%) Matrix effects (%) Precision (%CV) Low (25 ng/mL) Mid (400 ng/mL) High (800 ng/mL) 

Analytes (ng/mL) (ng/mL) mean min max mean min max mean min max mean min max mean min max mean min max 

CN 10 10 73.4 35.3 115.7 12.3 1.9 23.2 2.7 0.2 8.2 -6.1 -11.7 -1.0 0.3 -7.6 12.2 -3.9 -5.8 1.3 

CE 10 10 74.4 33.4 110.9 1.2 -16.3 13.8 4.0 0.3 8.3 -10.5 -12.2 -5.1 2.0 -5.2 12.8 -5.5 -13.8 -0.6 

AMP 10 10 74.5 31.3 113.9 11.6 3.9 23.4 2.5 0.6 6.5 -4.0 -5.9 0.4 -3.2 -8.4 8.4 -5.1 -7.0 0.0 

MA 10 10 76.6 22.8 118.7 6.9 -15.8 16.8 4.3 0.2 10.5 -6.8 -10.8 -2.5 -1.5 -10.7 10.9 -5.9 -15.8 5.1 

MDMA 10 10 73.4 17.2 117.0 10.9 3.1 21.9 5.1 0.2 14.7 -6.8 -8.7 -3.2 1.2 -5.9 10.2 -5.8 -10.4 2.4 

MDEA 10 10 66.9 24.5 102.6 6.1 -3.4 16.7 5.9 0.8 13.3 -12.3 -15.0 -7.2 7.6 -0.2 13.9 -6.5 -12.6 2.0 

MDA 10 10 71.4 22.4 112.0 1.0 -12.7 8.8 3.1 0.9 6.4 -6.2 -8.9 -3.1 -1.3 -7.0 6.1 -3.2 -6.0 1.5 

BUP 10 10 66.3 31.1 101.7 7.0 -2.4 12.1 2.8 0.6 6.5 -12.8 -14.9 -11.1 0.1 -4.6 11.2 -1.9 -5.0 1.4 

OH-BUP 10 10 76.3 35.4 115.8 6.6 -1.8 10.9 3.7 0.2 8.1 -7.0 -11.9 -3.7 -1.9 -6.9 6.8 -2.6 -6.4 1.5 

MP 10 10 72.2 32.0 107.0 0.5 -18.7 10.7 5.4 0.7 10.9 -9.9 -17.2 -1.8 -2.2 -5.5 5.8 -3.2 -8.0 1.2 

BZE 10 10 29.9 11.2 61.8 10.9 1.5 16.6 2.7 0.2 9.5 -4.9 -9.7 -1.0 -0.3 -4.1 5.8 -4.2 -5.6 -1.8 

EME 10 10 6.1 2.3 13.1 89.3 -13.9 173.0 3.6 0.4 8.4 -6.1 -7.7 -4.7 2.6 -4.2 8.4 -2.4 -7.8 3.6 

PH 10 50 77.5 24.2 119.1 1.5 -100.0 20.2 7.6 1.2 37.8 -13.9 -27.9 -8.7 -2.5 -12.3 10.5 -4.1 -12.8 6.8 
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Table 8: Analyte retention times, ion masses, and coefficient of determinations from calibration curves. 

Analytes 
Retention time 

(minutes) Quantitation ion Identifying ions 
Internal 
standard 

R2 values 
min max 

CN 5.87 304.1593 182.1187, 150.0930 COC-d3 0.986 0.997 
CE 6.25 318.1731 196.1340, 150.0930 CE-d3 0.988 0.992 
BZE 4.96 290.1405 168.1028, 105.0330 BZE-d3 0.989 0.997 
EME 1.41 200.1304 182.1187, 150.0930 EME-d3 0.990 0.995 
AME* 3.54 182.1187 150.0930, 91.05423 - - - 
AMP 4.55 91.0543 136.1117, 119.0863 AMP-d8 0.996 0.999 
MA 4.75 150.1281 91.0543, 119.0863 MA-d11 0.985 0.997 
PH 4.9 91.0543 150.1281, 65.0377 MA-d11 0.872 0.994 
MDMA 4.78 194.1195 163.0753, 135.0456 MDMA-d5 0.980 0.997 
MDEA 5.06 208.1349 163.0753, 135.0456 MDEA-d5 0.983 0.991 
MDA 4.61 163.0753 180.1037, 135.0456 MDA-d5 0.991 0.999 
BUP 6.1 240.1159 131.0746, 184.0534 BUP-d9 0.988 0.994 
OH-BUP 5.55 256.1114 131.0746, 167.0489 OH-BUP-d6 0.990 0.995 
MP 5.58 234.1532 84.0804, 174.1284 OH-BUP-d6 0.982 0.993 

 *An internal standard for AME was unavailable at the time of this study, therefore calibration curves were not generated.
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3.3.6 Precision 

Intra-curve precision acceptance criteria (15 %CV) was met for all analytes at every 

concentration in all 5 standard curves except for PH, which had satisfactory precision at all 

concentrations in 4 of 5 standard curves. Excluding PH, values for %CV ranged from 0.2% to 

14.7%. Precision was assessed for bias samples, and with the exception of PH, precision was 

acceptable for all analytes at low, mid and high bias levels in all standard curves, and ranged 

from 0.1% to 12.5%. Precision values are presented in Table 7. 

3.3.7 Bias 

With the exception of PH, bias was acceptable (within ± 20%) for all low, mid, and high 

concentration bias samples in 5 standard curves, and ranged from -15.8% to 15.0%. Bias samples 

for PH were acceptable in all standard curves at mid and high levels only; PH bias at low 

concentrations was acceptable in 4 of 5 standard curves. Bias for PH ranged from -27.9% to 

10.5%. For low levels, bias is generally negative but within acceptable ranges, indicating the 

calibration model is elevated at lower concentration regions on the calibration curve. Bias is 

presented in Table 7. 

3.3.8 Selectivity 

False identifications were not detected in blank DBS samples and in DBS samples positive for 

other drugs. Other drugs analyzed were commonly encountered opioids, cannabinoids, and other 

stimulants. All analytes were fully resolved from other drugs with common ions, with the 

exception of AMP and BMPEA. Retention times (RT) for AMP and BMPEA were 4.55 and 4.59 

respectively, with a resolution score of 0.727, calculated as [2 × (RTBMPEA – RTAMP)/(Peak 
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WidthBMPEA + Peak WidthAMP)]. Resolution scores > 1 are fully resolved. In the absence of 

BMPEA, the method is quantitative for AMP.  

3.3.9 Analyte DBS Stability 

Analyte stability within DBS cards during storage was analyte dependent. Stability was assessed 

from the ratio of analyte relative ratios to time zero analyte relative ratios and is presented in 

Figures 16 through 19. A stability value less than 100% indicates analyte loss in the sample. In 

general, low concentration DBS samples (10 ng/mL) were less stable than higher concentration 

samples (100 ng/mL and 1000 ng/mL) over all time points (1, 4 and 8 weeks). In general, 

relative response to time zero fell in week one and were steady through weeks 1 to 8 with the 

exception of EME and BUP, which showed a steady decrease in time zero relative response. In 

week 8, relative responses for MDEA, MDA, and MP were greater than 150% in 1000 ng/mL 

samples, and greater than 200% for BZE in 100 ng/mL and 1000 ng/mL samples. Excluding 

these unexpectedly high stability values, average stability was 70.4% for all analytes, and ranged 

from 0% to 124%. 
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Figure 16: Eight-week stability of cocaine and selected metabolites in DBS samples. 
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Figure 17: Eight-week stability of amphetamine related compounds in DBS samples. 
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Figure 18: Eight-week stability of MDMA, MDEA, and MDA in DBS samples. 
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Figure 19: Eight-week stability of bupropion, hydroxybupropion and methylphenidate in 

DBS samples. 
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3.3.10 Analyte Stability on Autosampler 

Instrument drug stability was assessed by comparing analyte peak areas after 44 hours on the 

instrument autosampler to time zero analyte peak areas. All analytes met instrument stability 

criteria (within ± 15%) except BZE, EME, and PH. For analytes that met stability criteria, mean 

instrument stability was 0.9% and ranged from -14.2% to 14.9%.  

3.3.11 Carryover 

Mobile phase negative controls and blank samples were injected immediately following high 

concentration samples and neat standards to assess UPLC carryover. No carryover was observed. 

3.3.12 Hematocrit Effects 

Matrix effects across HCT ranges are presented in Table 9, and ranged from -24.8% to 33.8%, 

and generally showed ion enhancement. Mean analyte recoveries ranged from 5.0% to 91.8% 

across all HCT levels. Mean analyte recovery and matrix effects for analytes at 10 ng/mL, 100 

ng/mL and 1000 ng/mL, across HCT levels of 0.25, 0.45 and 0.75 are presented in Table 9. 

Matrix effects were < 20% for all concentrations and all HCTs for CN, CE, BZE, EME, AME, 

AMP, MA, MDMA, MDEA, BUP and OH-BUP. Matrix effects for PH were 33.8% for 0.25 

HCT at 10 ng/mL and acceptable for all other HCTs and concentrations. Matrix effects for MP 

were suitable for all HCTs at 100 ng/mL and 1000 ng/mL, and for 0.75 HCT in 10 ng/mL DBS. 

Methylphenidate was detected in blank DBS samples in the hematocrit study. Mean MP response 

in blank DBS was 31% of 10 ng/mL MP responses and is likely why matrix effects for MP were 

outside acceptance criteria for 10 ng/mL DBS samples at 0.25 and 0.45 HCT levels. No other 

analytes were detected in blank samples in the HCT study. A general improvement in analyte 

recovery and matrix effects were observed with increasing drug concentration for all HCT levels.
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Table 9: Matrix effects of DBS samples of hematocrits of 0.25, 0.45 and 0.75 at 10, 100, and 1000 ng/mL. 

CN 
Mean 

Recovery (%) SD 
Mean Matrix 
Effects (%) SD  CE 

Mean 
Recovery (%) SD 

Mean Matrix 
Effects (%) SD 

10 
ng/mL 

25% HCT 60.3 ±2.3 21.1 ±2.5  
10 

ng/mL 

25% HCT 53.3 ±10.2 2.5 ±5.8 
45% HCT 65.8 ±6.6 14.4 ±8.4  45% HCT 44.6 ±17.5 -21.6 ±3.2 
75% HCT 59.8 ±4.8 10.8 ±3.3  75% HCT 52.3 ±22.0 -24.8 ±9.1 

100 
ng/mL 

25% HCT 64.5 ±11.2 22.8 ±9.0  
100 

ng/mL 

25% HCT 57.2 ±4.0 4.4 ±16.0 
45% HCT 52.2 ±15.1 21.8 ±12.3  45% HCT 56.3 ±27.5 -8.5 ±28.3 
75% HCT 61.8 ±17.3 10.6 ±9.0  75% HCT 57.8 ±20.9 -17.2 ±12.2 

1000 
ng/mL 

25% HCT 84.6 ±0.1 6.0 ±1.0  
1000 

ng/mL 

25% HCT 88.4 ±3.5 6.6 ±3.5 
45% HCT 70.9 ±16.1 6.2 ±1.8  45% HCT 81.1 ±14.5 -2.6 ±4.7 
75% HCT 80.4 ±0.4 7.4 ±1.6  75% HCT 80.2 ±2.7 -1.1 ±6.7 

BZE 
Mean 

Recovery (%) SD 
Mean Matrix 
Effects (%) SD  EME 

Mean 
Recovery (%) SD 

Mean Matrix 
Effects (%) SD 

10 
ng/mL 

25% HCT 36.2 ±3.6 18.3 ±3.5  10 
ng/mL 

25% HCT 5.5 ±0.6 24.4 ±2.9 
45% HCT 20.1 ±8.1 16.4 ±0.5  45% HCT 5.0 ±1.4 18.8 ±1.3 
75% HCT 31.6 ±15.4 15.0 ±1.6  75% HCT 6.1 ±2.2 15.7 ±4.6 

100 
ng/mL 

25% HCT 43.6 ±9.9 19.7 ±2.0  100 
ng/mL 

25% HCT 5.7 ±0.7 22.5 ±2.7 
45% HCT 20.2 ±0.9 18.3 ±0.7  45% HCT 5.8 ±1.7 17.8 ±1.5 
75% HCT 46.4 ±15.4 13.6 ±3.3  75% HCT 5.9 ±1.4 15.2 ±1.3 

1000 
ng/mL 

25% HCT 57.3 ±5.2 19.1 ±3.8  1000 
ng/mL 

25% HCT 14.4 ±1.7 19.0 ±1.4 
45% HCT 54.8 ±20.9 17.2 ±0.3  45% HCT 11.3 ±4.1 15.4 ±0.6 
75% HCT 31.9 ±29.5 13.9 ±1.3  75% HCT 10.3 ±3.7 13.3 ±1.1 
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Table 9 Continued: Matrix effects of DBS samples of hematocrits of 0.25, 0.45 and 0.75 at 10, 100, and 1000 ng/mL. 

MDMA 
Mean 

Recovery (%) SD 
Mean Matrix 
Effects (%) SD  MDA 

Mean 
Recovery (%) SD 

Mean Matrix 
Effects (%) SD 

10 
ng/mL 

25% HCT 62.7 ±0.6 12.4 ±6.3  
10 

ng/mL 

25% HCT 61.3 ±6.8 28.6 ±4.1 
45% HCT 43.4 ±1.4 15.3 ±10.0  45% HCT 42.9 ±8.6 18.2 ±7.9 
75% HCT 54.8 ±2.2 6.8 ±5.5  75% HCT 54.7 ±19.7 15.7 ±8.6 

100 
ng/mL 

25% HCT 60.2 ±0.7 24.1 ±2.2  
100 

ng/mL 

25% HCT 59.8 ±5.4 19.3 ±1.8 
45% HCT 35.8 ±1.7 18.6 ±1.8  45% HCT 35.3 ±10.6 15.0 ±1.3 
75% HCT 52.9 ±1.4 15.0 ±3.3  75% HCT 52.0 ±13.5 12.7 ±3.2 

1000 
ng/mL 

25% HCT 85.8 ±1.7 12.4 ±1.0  
1000 

ng/mL 

25% HCT 76.5 ±2.3 23.4 ±1.2 
45% HCT 73.0 ±4.1 12.4 ±0.8  45% HCT 59.7 ±17.6 21.6 ±1.0 
75% HCT 86.5 ±3.7 10.7 ±1.2  75% HCT 77.4 ±1.3 19.8 ±0.9 

AME 
Mean 

Recovery (%) SD 
Mean Matrix 
Effects (%) SD  MDEA 

Mean 
Recovery (%) SD 

Mean Matrix 
Effects (%) SD 

10 
ng/mL 

25% HCT 67.3 ±2.7 23.4 ±2.5  
10 

ng/mL 

25% HCT 56.5 ±2.7 22.5 ±2.8 
45% HCT 44.5 ±14.8 16.6 ±1.6  45% HCT 35.5 ±14.8 17.1 ±5.9 
75% HCT 52.6 ±20.0 15.4 ±2.0  75% HCT 50.8 ±20.0 9.9 ±5.5 

100 
ng/mL 

25% HCT 66.8 ±4.3 19.5 ±3.0  
100 

ng/mL 

25% HCT 59.2 ±4.3 23.3 ±2.2 
45% HCT 51.8 ±10.0 13.6 ±3.0  45% HCT 34.2 ±10.0 18.5 ±3.6 
75% HCT 60.4 ±18.4 8.6 ±4.1  75% HCT 53.5 ±18.4 15.7 ±3.8 

1000 
ng/mL 

25% HCT 91.8 ±4.0 8.6 ±4.1  
1000 

ng/mL 

25% HCT 87.5 ±4.0 14.1 ±3.6 
45% HCT 79.3 ±11.0 7.4 ±4.1  45% HCT 78.3 ±11.0 10.4 ±2.3 
75% HCT 85.4 ±2.3 12.4 ±5.1  75% HCT 88.8 ±2.3 7.8 ±3.2 
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Table 9 Continued: Matrix effects of DBS samples of hematocrits of 0.25, 0.45 and 0.75 at 10, 100, and 1000 ng/mL. 

AMP 
Mean 

Recovery (%) SD 
Mean Matrix 
Effects (%) SD  MA 

Mean 
Recovery (%) SD 

Mean Matrix 
Effects (%) SD 

10 
ng/mL 

25% HCT 63.5 ±2.3 16.1 ±1.0  
10 

ng/mL 

25% HCT 58.8 ±3.65 19.9 ±2.08 
45% HCT 42.8 ±6.6 10.6 ±2.9  45% HCT 42.3 ±8.12 15.4 ±1.80 
75% HCT 59.7 ±4.8 3.5 ±1.8  75% HCT 57.5 ±15.44 13.3 ±1.71 

100 
ng/mL 

25% HCT 61.7 ±11.2 18.4 ±1.1  
100 

ng/mL 

25% HCT 59.1 ±9.92 18.2 ±2.73 
45% HCT 38.6 ±15.1 12.8 ±1.1  45% HCT 36.0 ±0.94 13.0 ±1.06 
75% HCT 55.8 ±17.3 9.2 ±4.6  75% HCT 56.1 ±15.45 8.4 ±2.94 

1000 
ng/mL 

25% HCT 78.9 ±0.1 22.3 ±0.6  
1000 

ng/mL 

25% HCT 90.7 ±5.23 6.6 ±2.21 
45% HCT 62.8 ±16.1 19.6 ±1.4  45% HCT 78.1 ±20.95 6.2 ±1.07 
75% HCT 80.0 ±0.4 16.8 ±0.8  75% HCT 91.5 ±29.47 6.3 ±3.55 

PH 
Mean 

Recovery (%) SD 
Mean Matrix 
Effects (%) SD  MP 

Mean 
Recovery (%) SD 

Mean Matrix 
Effects (%) SD 

10 
ng/mL 

25% HCT 66.7 ±10.2 33.8 ±6.4  
10 

ng/mL 

25% HCT 66.1 ±1.9 35.4 ±5.9 
45% HCT 54.3 ±17.5 17.7 ±7.3  45% HCT 44.6 ±10.0 32.9 ±6.1 
75% HCT 59.9 ±22.0 24.7 ±5.5  75% HCT 58.6 ±19.5 23.7 ±6.3 

100 
ng/mL 

25% HCT 66.7 ±4.0 24.2 ±4.1  
100 

ng/mL 

25% HCT 62.7 ±2.5 22.0 ±3.4 
45% HCT 43.8 ±27.5 19.6 ±3.1  45% HCT 54.4 ±11.9 19.6 ±7.4 
75% HCT 61.3 ±20.9 15.9 ±4.5  75% HCT 60.7 ±17.8 12.5 ±4.8 

1000 
ng/mL 

25% HCT 73.9 ±3.5 22.2 ±1.0  
1000 

ng/mL 

25% HCT 81.9 ±1.4 17.9 ±0.4 
45% HCT 56.1 ±14.5 17.5 ±3.7  45% HCT 71.6 ±13.2 13.9 ±2.5 
75% HCT 72.1 ±2.7 14.1 ±1.3  75% HCT 83.4 ±1.9 10.0 ±1.7 
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Table 9 Continued: Matrix effects of DBS samples of hematocrits of 0.25, 0.45 and 0.75 at 10, 100, and 1000 ng/mL. 

BUP  
Mean 

Recovery (%) SD 
Mean Matrix 
Effects (%) SD  OH-BUP  

Mean 
Recovery (%) SD 

Mean 
Matrix 

Effects (%) SD 

10 
ng/mL 

25% HCT 57.0 ±4.9 17.2 ±2.7  
10 

ng/mL 

25% HCT 78.7 ±24.5 -11.7 ±4.1 
45% HCT 41.0 ±12.5 -1.8 ±1.1  45% HCT 43.9 ±9.1 -23.3 ±13.5 
75% HCT 47.4 ±14.9 -1.4 ±8.8  75% HCT 43.9 ±9.5 -24.0 ±2.9 

100 
ng/mL 

25% HCT 58.5 ±2.8 23.8 ±4.2  
100 

ng/mL 

25% HCT 64.0 ±3.5 6.2 ±12.9 
45% HCT 49.7 ±14.6 13.5 ±12.5  45% HCT 68.6 ±31.9 -15.1 ±22.2 
75% HCT 56.5 ±13.7 5.7 ±16.7  75% HCT 61.6 ±19.3 -20.7 ±19.2 

1000 
ng/mL 

25% HCT 90.8 ±4.8 2.4 ±5.3  
1000 

ng/mL 

25% HCT 83.1 ±3.3 -8.0 ±5.5 
45% HCT 74.8 ±14.2 4.1 ±2.6  45% HCT 65.3 ±21.8 -14.8 ±14.1 
75% HCT 81.7 ±3.1 4.7 ±5.7  75% HCT 52.2 ±2.9 -10.0 ±2.2 
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3.4 Discussion 

A method for screening and quantitation of selected stimulant drugs in microvolume dried blood 

spot samples using full-scan QTOF-HRMS in MSE mode has been developed. Method validation 

demonstrated acceptable bias, accuracy, instrument stability and matrix effects for the 

quantitation of CN, CE, AMP, MA, MDMA, MDEA, MDA, BUP, OH-BUP, and MP from 10 

ng/mL to 1000 ng/mL in DBS samples. The method was validated over a wide range of 

concentrations that captures therapeutic, recreational, and toxic blood concentrations for these 

analytes. Semi-quantitative results were obtained for BZE, EME, and PH. Anhydroecgonine 

methyl ester was included as a marker of cocaine pyrolysis and was not assessed for validation. 

The LOQ of 10 ng/mL was obtained at the lowest calibrator concentration. The results in this 

work show lower LOQ and LOD may be possible, even in 20 µL DBS samples. Though analyte 

stability in DBS samples was analyte dependent, CE and OH-BUP displayed good DBS stability 

across all time points and concentrations. Mean CE response relative to time zero was 96.5% and 

ranged from 77.2% to 124.0%, and the mean OH-BUP response relative to time zero was 83.5% 

with a range of 63.2% to 99.7%. Amphetamine, MA, PH, and MDMA showed a decrease in 

week 1 responses relative to time zero but remained generally stable through week 8 after the 

initial decrease in response. Week 4 and 8 responses for AMP, MA, and MDMA ranged from 

44.1% to 100.6%. The results here show promise for the use of DBS samples as a matrix for 

drug testing in forensic toxicology and other applications. 

Matrix effects were suitable for the majority of analytes at all concentration levels. Only EME 

and PH displayed matrix effects outside of accepted criteria. Mean EME matrix effects were 

51.3%, 167.2% and 49.3% for 10 ng/mL, 100 ng/mL and 1000 ng/mL DBS samples, 

respectively. For PH, matrix effects were outside acceptable criteria only for 10 ng/mL spots, 
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at -31.8%. Matrix effects for PH were 16.1% and 9.0% for 100 ng/mL and 1000 ng/mL samples, 

respectively. Average matrix effects for all acceptable values, including those for PH, was 7.9%, 

and ranged from -18.7% to 23.4%. Accepted mean analyte matrix effects at all concentrations 

ranged from 0.5% to 13.1%. Though matrix effects determined here generally indicate matrix 

enhancement, the results of this study show that Oasis® PRiME MCX μElution sufficiently 

removed matrix interferents for all but EME. Because the elution volume of MCX μElution wells 

is only 50 μL, simply diluting the samples prior to injection was possible. Using μElution well 

plates eliminated up to 7 hours of sample prep time required for evaporation of larger volume 

elutants used in typical SPE methods.  

Good linearity through the calibration concentration range was observed for most analytes. 

However, some compounds, methamphetamine in particular, displayed nonlinear responses 1000 

ng/mL samples. Due to the observed nonlinear responses, all calibration models used quadratic 

regression with 1/x2 weighting for all analytes. Bias and precision were acceptable for all 

analytes in all standard curves except for PH. Bias and precision for PH was suitable in 4 of 5 

standard curves. For low concentration bias samples, mean bias values for all analytes and 

standard curves were generally below 0% (range 0.4% to -17.2 %). The consistent negative bias 

at low levels indicate that drug concentrations at low levels would be routinely underestimated, 

beneficial to those accused of drug-impaired driving. The persistent negative bias at low 

concentrations in the models calculated in this work indicate care should be taken to establish 

detection limits lower than 10 ng/mL and may require a narrower calibration concentration range 

to satisfy bias criteria at low levels. Mid and high bias samples for all analytes did not display a 

positive or negative bias.  
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Though validation for the analysis of 10 stimulant drugs in DBS samples was achieved, a 

number of limitations are present. DBS analyte stability was poor for some of the analytes. 

analyte stability was especially poor for EME and BUP. The minimum EME responses relative 

to time zero of 0.0% were seen at week 4, and minimum BUP response was 4.0% at week 8. 

Methylphenidate, MDEA, MDA, and benzoylecgonine displayed increased responses relative to 

time zero for 100 ng/mL and/or 1000 ng/mL samples to varying degrees in week 4 and 8 time 

points. Mean responses relative to time zero for MP, MDEA, MDA and BZE ranged from 

130.1% to 225.9% for these analytes. Previous studies have proposed hydrolysis of CN to BZE is 

inhibited on DBS due to the loss of water, and CN breakdown to BZE seen in wet blood samples 

is limited in DBS samples.86,88 The observed increase in BZE responses over time was not 

expected, and the cause of increased analyte responses over time in this work is not known at this 

time. 

Other studies have shown analyte levels in DBS samples retain original concentrations after 

prolonged storage, even at air temperature. 85,88,298 A recent study by Moretti et al. showed 

negligible degradation over 10 weeks for cocaine and selected metabolites in DBS samples using 

the same DBS cards and stored at room temperature.88 In our work, cocaine week 1 responses 

relative to time zero responses displayed degradation ranging from 70.8% to 56.4%, compared to 

a 20% median degradation for CN reported in Moretti.88 However, our results showed that CN 

was generally stable after the initial drop in response, with degradation relative to time zero 

responses ranging from 78.5% to 44.5% after 8 weeks of storage at room temperature. BZE and 

EME in our work also displayed poor DBS stability compared to the results published in Moretti. 

Cocaethylene stability in our results showed better stability that in reported in other work.88 CE 
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displayed good stability (mean degradation of 13.4% after 8 weeks) in all our samples vs. similar 

stability in just 2 of 5 cases reported by Moretti.  

A significant challenge in using microvolume DBS samples for quantitation is determining 

sample volume. For applications that require measuring accurate concentrations, as in measuring 

drugs in blood for legal per se limits, volumes of blood must be known. Attempts have been 

made to correlate DBS spot area to sample volume for drug analysis.299 Though DBS volume 

and area may be related, spot area is influenced by both hematocrit and DBS card type, making 

volume estimations from spot areas unreliable.20,85,300–303 Being able to reliably obtain a fixed 

volume of blood for DBS samples would allow precise concentration calculations from drug 

responses in DBS samples. A number of volumetric absorptive microsampling devices (VAMS) 

have been developed to sample fixed microvolumes of blood. VAMS devices range from simple 

pads on the ends of small strips to shaped tips of porous media attached to plastic handles 

designed for easy use for sample collection by unskilled persons. Though VAMS were not used 

in this study, the method developed in this work has shown accurate quantitation of drug 

concentrations is possible in microvolume DBS samples even at low concentrations in samples 

of known volumes.  

Though VAMS can assist in solving challenges in DBS sampling, correlations with venous 

whole blood and the capillary blood collected in DBS samples needs to be determined before 

VAMS/DBS samples can be used in the field.90,302 The ratio of whole blood/DBS sample drug 

concentrations has been shown to be close to unity for 12 drugs that influence driving 

performance, including amphetamine, MDMA and MDA.91 Regardless, the difference between 

capillary blood and venous blood cannot be taken for granted. A recent study highlighted this 

issue and demonstrated differences in CN, BZE and EME concentrations for paired samples of 
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venous whole blood and capillary blood DBS samples. However, this study used 6 mm punches 

of DBS samples, and some of the differences in paired samples may be due to bias introduced in 

partial punching. Partial punching of DBS samples is problematic as hematocrit levels and radial 

chromatography of blood spreading across DBS cards have been shown to impart uneven 

distributions of analytes across DBS sample areas.300,304,305 Regardless of accurate volumes 

collected with VAMS, the concentrations of drugs in microsamples cannot be accurately 

measured and interpreted until the relationship between venous and capillary blood can be 

established for analytes of interest.  

3.5 Conclusion 

A quantitative method was validated for 10 commonly encountered stimulants and selected 

stimulant metabolites in 20 μL DBS samples using UPLC-QTOF-HRMS analyses. The method 

is semi-quantitative for an additional 4 analytes. The LOD was 10 ng/mL for all analytes, and 

LOQ was 10 ng/mL for all fully validated analytes. The method shows accurate quantitation of 

concentrations that range from the 10’s of ng/mL to toxic levels is possible in DBS samples. 

Matrix effects, precision and bias was acceptable for all analytes except ecgonine methyl ester 

and phentermine. Though the use of microsampling is promising, a number of challenges prevent 

widespread use of dried blood spot samples. The results of this study highlight some of those 

challenges. Extended DBS sample stability for some analytes was poor, though modified DBS 

media have been shown to impart drug stability in DBS samples as good as, or better than 

preserved wet whole blood sampling84,85. The requirement of accurate sample volumes for 

quantitation of drug concentrations is also acknowledged. The development of volumetric 

absorptive microsampling devices may be able to address volumetric and stability requirements, 

but the relationship between capillary blood and venous blood drug concentrations needs to be 
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understood before the use of microsampling can be used for quantitation and interpretation in 

forensic casework. Despite these microsampling challenges, the method presented in this work 

demonstrates DBS sampling is an effective technique for the screening and quantitation of drugs 

and may be an approach useful to overcome a number of challenges in determining relevant 

blood-drug concentrations in cases of drug impaired driving. 
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Chapter 4  

4 Conclusion 

4.1 General Conclusions 

A validated method for screening and quantitation of selected stimulant drugs in microvolume 

DBS samples using UPLC-QTOF-HRMS analyses has been developed. Sample preparation was 

optimized using ultrasonic extraction and MCX µElution SPE. The µMCX plates proved to be 

an efficient and effective sample cleanup method, and the absence of an evaporation step in 

µMCX methods reduced sample preparation time by several hours. Method validation following 

SWGTOX criteria was performed using the optimized sample preparation protocol developed in 

this work. Method validation demonstrated acceptable bias, accuracy, instrument stability and 

matrix effects for the quantitation of CN, CE, AMP, MA, MDMA, MDEA, MDA, BUP, OH-

BUP, and MP from 10 ng/mL to 1000 ng/mL in DBS samples. Semiquantitative analysis was 

achieved for BZE, EME, AME and PH. Drug stability on DBS cards was drug dependent. The 

results of this work show DBS can be an effective technique for the screening and quantitation of 

commonly encountered stimulants in forensic analyses and may be a technique that can 

overcome a number of challenges present in current blood sampling techniques employed in 

drug impaired driving investigations.  

4.2 Future Work 

Microvolume DBS samples show tremendous potential for pharmaceutical and toxicological 

analyses and future research is warranted. A number of challenges remain before widespread use 

of microvolume sampling is employed in drug testing, and the results of this study highlight 

some of those challenges. Stability for some analytes in the DBS samples in this work was poor, 

though other studies have shown DBS imparts equivalent or superior drug stabilities relative to 
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preserved wet blood samples. The primary challenge facing DBS samples is collection of 

accurate sample volumes. A number of volumetric absorptive microsampling devices have been 

developed that may address drug stability and volume accuracy challenges, and these products 

should be assessed. Further work should develop validated methods for analysis of multiple 

classes of commonly encountered drugs. The simultaneous detection and quantitation of 

stimulants, opioids, cannabinoids, benzodiazepines, and other drugs in DBS samples would be of 

great value in toxicological and pharmacological analyses. Finally, ultra-sensitive analytical 

methods like triple quadrupole MS instrumentation should be employed to push detection limits 

of drugs in DBS samples to the ng/mL or pg/mL levels required by per se limits in drug impaired 

driving legislation, and for high potency drugs like carfentanil seen in impaired driving casework 

today. 
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