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Abstract 

This work investigates and develops an approach to resolve some of the unique 

challenges associated with condition monitoring variable duty equipment. The proposed 

solution utilizes the mechanical redundancy of parallel systems to create dynamic 

criterion for detecting incipient faults. In this context, parallel systems are those which 

contain multiple subsystems (with similar construction) having synchronized operating 

conditions. This work evaluates the proposed methodology through its application on 

parallel hydraulic gear pumps. By comparing the dynamic pressure and vibration signal 

features, it was found that this approach is capable of distinguishing various incipient 

failures while the pumps were in both stationary and non-stationary operation. 

 

Keywords: Condition monitoring, fault detection, hydraulic pump, gear pump, non-

stationary operation, variable duty, parallel system 
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Chapter 1 

1 Introduction 

All mechanical systems have a finite operating life and serious hazards may emerge as 

they approach the end of their service. Unexpected failures can cause substantial profit 

losses accrued from down time, and even endanger employees or the environment. 

These consequences are increasingly unacceptable in today’s competitive global 

economy. In attempt to mitigate these risks, companies have been known to invest 

between 30-50% of their annual operation expenses in maintenance programs [1]. The 

ever-present goal of increasing profits while maintaining competitive prices generates a 

continuous effort to reduce the cost of operation. In economic recessions, this is also a 

primary method of minimizing a deficit. In either case, maintenance can have a significant 

effect on a company’s profitability. 

1.1.1 Types of Maintenance 

Maintenance programs can be grouped into three general categories: reactive, scheduled 

and condition-based. These approaches can be distinguished by how and why 

maintenance is initiated. The reactive approach only initiates maintenance once a 

machine brakes down. Though this may have the lowest upfront cost, there is an 

extremely high risk of unexpected machine breakdowns. To reduce the likelihood of an 

unexpected breakdown, it’s become common practice to perform scheduled 

maintenance, whereby technicians routinely inspect and replace components. This 

generally requires the machine to be taken out of service several times more often than 

it would if maintenance were performed upon failure. However, if there are multiple 
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components that are required to operate in unison to perform a larger task, scheduled 

maintenance allows multiple repairs to be made at the same time. This also reduces the 

risk of consecutive component failures. Nonetheless, the main drawback of this approach 

is that premature or unnecessary repairs are continually made to ensure parts are 

replaced before catastrophic failures occur. This also means it’s necessary to carry a 

surplus of stock components, which increases the cost of inventory.  

To strike a balance between running the machine to failure and repairing it prematurely, 

condition-based maintenance systems monitor the equipment for any signs that a fault is 

developing. If the system detects a fault early enough, repairs can be scheduled as 

needed and minimize the amount of unnecessary maintenance. Another benefit is that 

the machine can be shut down if an imminent catastrophic failure is detected. This also 

prevents damage to other components in the system and reduces risk to people nearby. 

Although condition-based maintenance provides considerable advantages over other 

forms of maintenance, there remains some applications that are particularly problematic 

for existing Condition Monitoring (CM) techniques. For instance, when monitoring the 

vibration of equipment operating under changing speeds and loads, it becomes difficult 

to detect developing faults using conventional approaches since variable operation has a 

significant effect on the frequency and amplitude of the systems’ vibration. Hence there 

is a demand for research on CM systems for variable-duty machinery.  

1.2 Research Scope 

This research investigates the use of parallel systems as a condition monitoring tool to 

overcome some of the current challenges associated with monitoring variable duty 
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equipment. In this context, parallel systems refer to a class of machinery containing 

multiple subsystems (with similar construction) operating under the same conditions at 

any given time. The premise is that the mechanical redundancy in these systems can be 

utilized to generate a dynamic baseline for detecting incipient faults. This work will extend 

this concept to hydraulic systems by monitoring the pressure and vibration of gear pumps 

in various operating conditions. 

1.3 Thesis Structure 

This thesis is arranged as follows: 

Chapter 1: Introduction  

• Introduction of the concept of condition monitoring and its importance to industry.  

• Establishment of the need for research on variable duty CM systems. 

• Definition of the terms and scope of this research on parallel hydraulic pumps. 

• Outline of the thesis structure.  

Chapter 2: Background and Theory 

• Review of the principle theories of condition monitoring and fault detection. 

• Outline of relevant gear pump characteristics and failure modes.  

Chapter 3: Literature Review 

• Discussion on the unique challenges with variable duty equipment. 

• Identification of the current solutions for these problems and a discussion on their 

limitations. 
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Chapter 4: Experimental Design 

• Description of the equipment and systems that were used for collecting data on 

parallel hydraulic pumps in dynamic operation. 

• Explanation of the tests and machining methods that were used to replicate the 

various failure modes.  

Chapter 5: Data Analysis 

• Presentation on the analytical methodology used to process the signal data to a 

point where it’s possible to identify faults. 

Chapter 6: Results and Discussions 

• Illustration of the results obtained from the experiments. 

• Discussion of the performance of the purposed methodology. 

Chapter 7: Conclusion and Future Work 

• Revision of the key findings of this research. 

• Discussion of potential developments that can be made based on these results. 
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Chapter 2 

2 Background and Theory 

This chapter will describe the generalized approach to developing a condition monitoring 

system for rotating machinery. This section will also provide the reader with a brief 

background on the relevant theory and provide references for further reading. The chapter 

begins by introducing the fundamentals of condition monitoring, such as: the 

characteristics of incipient faults, feature selection, reduction techniques and 

classification methods. To conclude, this chapter will investigate hydraulic gear pump 

characteristics and failure modes to identify the relevant techniques for detecting faults in 

gear pumps. 

2.1 Machinery Condition Monitoring Fundamentals 

Condition monitoring systems can be categorised into three classes: fault detection, fault 

prognosis and fault diagnostics [2]. As the names imply, fault detection systems are 

designed to detect incipient faults to provide early warnings and prevent equipment from 

reaching catastrophic failure. In addition to detecting the faults, fault prognosis systems 

attempt to predict the time remaining until the fault renders the machine inoperable, and 

fault diagnostic systems attempt to determine the type of failure that the machine is 

experiencing. Despite their differences, these systems all share the fundamental objective 

of determining the current condition of the machine through some means of observation. 

However, most faults cannot be directly observed without removing the equipment from 

its normal operation. For example, hydraulic pumps are sealed units and to be visually 
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inspected for damage they must be taken out of service. This can have considerable 

consequences on critical pieces of industrial equipment, since machine downtime often 

results in substantial profit losses. This has driven the advancement of “online” condition 

monitoring systems. These systems generally utilize indirect methods of deducing the 

machine condition by monitoring the symptoms that faults produce while the machine is 

in operation.  

2.2 Failure Symptoms 

Faults produce a variety of characteristic symptoms (such as: changes in vibrations, 

temperature or reduced efficiency) and the first step in developing a condition monitoring 

system is to identify the most effective method of sensing the expected failure modes. 

This can prove to be difficult since different faults manifest in deferent ways from others, 

not to mention, normal (fault free) operation and wear often produce some background 

level of these same symptoms. For this reason, it’s critical to select the appropriate 

sensors that will provide an optimal resolution of the failures specific to the equipment. 

Table 1 shows a list of common machinery failures and the characteristic symptoms that 

they generate. 

Table 1: Characteristic symptoms of common failure modes (Adapted from ISO 17359 [3]) 

 Effected Parameters 

Faults Vibration Temperature 
Flow / 

Pressure 
Oil 

Particulates 

Unbalanced Shaft X    

Damaged Bearing X X  X 

Damaged Gear X   X 

Lubrication Breakdown X X  X 

Mechanical Looseness X    

Damaged Seals  X X X 
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The following will provide a brief description on some common analytical techniques that 

are available to measure these failure symptoms. 

Oil Analysis 

Some faults can be detected by analysing samples of oil from the machinery under 

observation to determine changes in chemical and/or physical composition that may be 

linked to a failure. This technique is particularly effective at detecting an increase in metal 

particles in the oil (typically caused by abrasive wear or fractures), as well as oil 

contamination and degradation of lubricant properties. One of the challenges of this type 

of monitoring system is that conventional laboratory analysis is not conducive to 

applications where continuous monitoring is required. This has driven the development 

of real time monitoring systems, such as the on-line partial debris sensors manufactured 

by Parker Inc [4]. These systems can measure the size and quantity of particles in the oil 

using spectrometric analysis and ferrous density. This is a useful method for condition 

monitoring, although as seen in Table 1, there are some failures which may not have a 

direct effect on the oil composition.  

Thermal Analysis 

Several types of faults also cause an increase in the amount of energy that gets converted 

to thermal energy. These faults can be detected by simply monitoring the changes to the 

system’s baseline temperature or by observing the infrared spectrum emitted from the 

system. This method is particularly effective on faults that cause an increase in 
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mechanical friction or a sudden drop in hydraulic pressure. A key benefit of thermal 

monitoring is that it can be non-contact and doesn’t interfere with normal machine 

operation. However, there are also several failure modes that may not produce a 

noticeable change in temperature. In addition, some systems operate at temperatures 

that would dwarf the marginal thermal variations generated by the fault.  

Vibration Analysis 

Vibration is a common indication that a fault is developing, especially in rotating 

machinery.  This is because any unbalance or mechanical defect will typically generate a 

periodic system disturbance above normal levels. Like any underdamped mechanical 

system, this causes an oscillating energy conversion between potential and kinetic 

energy. This can be readily sensed by using commercial piezoelectric accelerometers. 

Vibration analysis is considered one of the most powerful and widely used tools for 

condition monitoring because numerous faults not only generate a detectable change in 

vibration, but also produce unique frequency signatures. Meaning, vibration monitoring 

not only allows one to detect an imminent failure, it also becomes possible to identify the 

type of fault [5]. 

Flow/Pressure Analysis 

In many fluid power applications, the system flow and pressure are directly affected by 

the condition of the equipment [6]. This will be discussed in greater detail in the gear 

pump section of this chapter. Essentially, the efficiency of a hydraulic system is highly 

dependent on its capability to seal the high-pressure fluid. Over time, components 

degrade and can allow some fluid to leak past them, causing a change in the pressure 
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and flow rate. Hence, these parameters can be monitored to gain insight on the condition 

of the machine. However, the resolution and frequency response of conventional 

flowmeters are often incapable of distinguishing the marginal flow differences caused by 

incipient faults. This is not the case for pressure transducers, which can achieve a much 

greater resolution and frequency response. Like vibration, frequency analysis can enable 

fault diagnostics in addition to detection. For this reason, pressure is typically a superior 

monitoring parameter for fault detection in hydraulic systems.  

It’s often beneficial to utilize a combination of these techniques since a single technique 

may not detect all potential failure modes in their infancy. From these techniques, it 

appears most of the expected failure modes of hydraulic gear pumps will affect the 

system’s vibration and/or the flow and pressure.  

2.3 Feature Selection 

Once the appropriate sensors have been selected, it’s necessary to process the signal to 

extract characteristics (features) that can be used to evaluate the condition of the 

machine. The most common features for condition monitoring can be categorized into the 

following domains: time, frequency and time-frequency. 

Time Domain Features 

One of the most frequently used approaches for extracting signal characteristics, is to use 

statistical parameters of the raw time-series signal. This is because statistics, such as: 

root mean square, standard deviation, range, and kurtosis, provide intuitive information 

on the characteristics of the time series data [7]. In vibration analysis, these values can 
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be used to interpret the relative magnitude or energy of vibration, or the “smoothness” of 

the signal. These features are particularly useful for capturing transient events in a signal, 

since frequency-based approaches lose temporal information from the signal. However 

this approach on its own does have its short comings, especially when the background 

noise is relatively high compared to the failure signal characteristics. The performance of 

these features can be improved when used in conjunction with signal processing 

techniques (discussed in section 2.4). 

Frequency Domain Features 

Frequency spectrum analysis can also provide useful insight into the condition of the 

machine since many faults in rotating equipment cause a periotic system response. 

Several signal processing techniques have been developed to convert time series data 

to the frequency domain. An excellent review of frequency analysis techniques can be 

found in [8]. This work will utilize the Fast Fourier Transform (FFT) to examine the 

frequency spectrum of the signal data. When using the FFT, care must be taken to avoid 

some issues such as: aliasing, spectral leakage and DC offset. These can be resolved 

by: using a low pass filter with a cut off frequency set to half of the sampling frequency 

(Nyquist frequency), windowing, and subtracting the mean of the signal respectively.  

The signal amplitudes at known fault frequencies and their harmonics & sidebands or the 

power spectral density can be used as features for condition monitoring.  However, there 

are some limitations when converting a signal to the frequency domain. In the case where 

a fault generates an impulse at random, the dominant signal frequencies will often 

conceal the fault signature. Temporal signal information is also lost, meaning there is 
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ambiguity in determining the time at which failure frequency signatures were excited. For 

this reason, time-frequency techniques have been developed to retain information from 

both the time and frequency domains.  

 

Time-Frequency Domain Features 

 Time-Frequency techniques are those which extract frequency information over the 

duration of the signal. There are several time-frequency techniques that have been used 

for condition monitoring, the most fundamental is the Short Time Fourier Transform 

(STFT). This technique uses a sliding window to segment the signal into a series of slices 

which are then processed using a FFT to obtain the frequency contents at each slice in 

time. The frequency and amplitude can then be plotted with respect to time to show how 

the signal frequencies change with time. This is known as a spectrogram. This technique 

can be useful for detecting and diagnosing faults in variable duty machinery since the 

characteristic fault frequencies are often proportional to the speed of the equipment. In 

which case, the spectrogram would likely show a noticeable trend opposed to the 

smeared spectrum that would be obtained from the FFT of the whole signal. 

However, the spectrogram does share much of the same limitations as the FFT. In the 

case where the machine speed varies along the window length, “the higher harmonics (in 

particular) no longer appear as discrete frequencies and are smeared over a number of 

lines which increases with harmonic order” [8]. In addition, there is a trade-off between 

the time and frequency resolutions. This is because a narrower window length will 

increase the time resolution but reduce the frequency resolution. This is referred to as the 



12 
 

Gabor limit. To use this technique successfully, it’s important to find the balance between 

sufficiently small window lengths (to minimize speed variance over the sample) at the 

expense of the frequency resolution.  

Opposed to the STFT, where the signal is decomposed into its sinusoidal components, 

Wavelet analysis can be used to decompose the signal by iteratively scaling and shifting 

a mother wavelet along a signal. A series of localized time-frequency coefficients, 

representing the correlation between location and scale of the mother wavelet and the 

signal, can be depicted as a representation of the frequency spectrum over the signal 

duration. If a proper mother wavelet is chosen, this technique can improve time resolution 

of high frequency components while maintaining the frequency resolution of low 

frequency components. Wavelet analysis has been used extensively for signal processing 

and noise reduction. A more detailed review of the wavelet method can be found in  [9].  

As was just mentioned, the success of the wavelet technique is highly dependent on the 

choice of the mother wavelet. In contrast, Empirical Mode Decomposition (EMD) does not 

rely on the choice of a basis function. Instead EMD decomposes the signal using the 

oscillatory modes of frequency bands (intrinsic mode functions) and the mean trend of 

the signal (residue). EMD (and its variants) have proved to be useful tools for analysing 

non-stationary signals and is described in much greater detail in [10]. 

Another technique that can also provide useful features is the Autoregressive (AR) model. 

Essentially, the AR function iteratively determines a set of time-series coefficients that 

best predict the future signal values based on previous data. AR models have been used 

for condition monitoring by either using the coefficients themselves as features [11] or the 
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prediction error can be monitored [12]. [13] compared the performance of AR modelling 

to back propagation neural networks and radial basis function networks and was found to 

require less vibration data for pattern classification. A detailed review of how AR modeling 

can be used for CM, can be found in [14]. 

2.4 Preprocessing and Noise Reduction 

When extracting features from the signal, there are several techniques that can be used 

to improve the signal to noise ratio. The following are a few common methods used in 

condition monitoring applications. 

One approach is to segment the signals to minimize operational variance within the 

segment (much like the process for the STFT). Another common approach is to utilize 

filters to reduce the amount of unwanted frequency content from the signal before 

extracting features. Adaptive noise cancelation can be used to reduce noise by taking a 

reference signal and continually adapting a filter to remove signal contents that are similar 

between each signal. An extension of this method, called self adaptive noise cancelation, 

uses a time delayed version of the original signal. Details on these techniques can be 

found in [15].  

Minimum Entropy Deconvolution (MED) is another method designed to enhance 

impulsive features in the signal by optimizing a filter to maximize the kurtosis of the signal. 

A detailed review of this algorithm can be found in [16], the authors of which have also 

recently proposed an extension of this approach [17]. Their latest paper addresses that 

MED targets single impulses and proposes a new method (Multipoint Optimal Minimum 
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Entropy Deconvolution Adjusted) for the deconvolution of an infinite periodic impulse 

train.  

Another signal processing technique that has been used extensively for condition 

monitoring rotating equipment is called time-synchronous averaging (TSA). In TSA, the 

signal is resampled a fixed number of times per revolution and averaged over successive 

revolutions. This results in the filtering of the non-synchronous background noise from the 

dominant synchronous signal components. An excellent review of this method can be 

found in [18]. 

Another well-known preprocessing technique used for condition monitoring is envelope 

analysis. This technique is useful for extracting the modulation frequencies of cyclical 

impacts by finding the amplitude modulation (or envelope) of the high frequency signal 

content, that is excited due to the systems natural resonance, then analysing this 

envelope in the frequency domain. An excellent review of this method can be found in [8]. 

2.5 Feature Reduction  

Since different faults can be more challenging to detect in different features, it is common 

practice to monitor several features to ensure a fault is not missed. However, the downfall 

of this is that the amount of training data required for classification increases exponentially 

with the number of features being monitored. This is known as “the curse of 

dimensionality” and there are two general approaches to this problem. The first approach 

is to select only the features that best correlate with the desired failure. However, in 

applications where this data is not available, component analysis techniques can be used 

to transform the feature vector into its principle components.  
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Principal Component Analysis 

In its most general form, Principal Component Analysis (PCA), calculates the orthogonal 

principal vectors that have the least variance in the sample [19]. Transforming the feature 

set by these vectors essentially combines any redundant or correlated features, making 

classification a much simpler task. Variants of PCA, such as, independent component 

analysis, non-linear PCA and dynamic PCA, have been developed to reduce the feature 

set to the most statistically independent hyperspace, identify non-linear relationships or 

those which change over time, respectively. An excellent review of PCA and its variants 

can be found in [20]. 

2.6 Classification  

After the characteristics of the signal have been extracted, the next objective is to classify 

them as faulted or healthy. From a machine learning prospective, this is often a very 

complex task. Numerous algorithms and techniques have been developed to solve these 

challenges and have proven useful for condition monitoring.  

Expert Systems 

One of the most commonly employed classification techniques for fault detection is the 

expert or rule-based approach. These systems are designed by identifying logical 

relations between the machine condition and the features, typically structured using if-

then statements. The most basic rule is where one would set a maximum (or minimum) 

acceptable value on a feature. If it begins to exceed this threshold level, an alarm is 

triggered indicating that a fault is present [14]. Additional rules can be added to construct 
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logical relationships or dependencies between features, commonly referred to as decision 

tables or trees. An excellent review on expert system theory can be found in [21]. Some 

of these logical relationships can be best described using the principles of Fuzzy Logic, 

whereby a variable can be a represented as some degree between two states. Mechefske 

provides an excellent review of this methodology in [22]. 

The simplicity of the expert system approach makes it a very useful tool for CM however, 

there are a few problems which arise when using this method. Foremost, is how to 

determine the appropriate value of the threshold. To make this decision, some a priori 

knowledge is required to estimate the variance in the features from normal vs faulted 

operation. This task is made even more difficult if the machine operates under variable 

speeds or loads (this topic will be explored further in chapter 3). However, the data 

required to form these decisions is often limited, so researchers have developed other 

algorithms to further automate the classification process and more efficiently process 

available data.  

Supervised Classification Systems 

Advanced machine learning techniques, such as: Artificial Neural Networks (ANN) and 

Support Vector Machines (SVM) have proven to be very powerful tools for condition 

monitoring classification of multivariate systems. This is largely attributed to their ability 

to process highly dimensional and nonlinear systems. 

ANNs were loosely inspired by the biology of cognitive learning. This type of system is 

trained by sending the features as inputs to a black box neural network layer, which then 

adjusts the gains between the layers of nodes [23]. During the training phase, it can be 



17 
 

forced to output a set of specific values corresponding to the condition of the machine. If 

healthy and faulted data are available, these can then be tested and refined by inputting 

new data and validating the outputs are correct.   

In contrast, SVMs use statistical based machine learning algorithms.  During training this 

system maps the features into a higher dimensional (kernel) space and determines the 

hyper-plane that optimally separates the healthy and faulted data. An excellent review of 

SVM can be found in [24] . This method has been used for diagnosing hydraulic gear 

pump failures in [25].  

Novelty Detection  

One of the limitations of these general supervised classification techniques is that they 

require an ample supply of training data (both healthy and faulted) to classify any new 

data. For many industrial applications, it’s often difficult or impractical to acquire faulted 

data. This has driven the development of Novelty Detection (aka, one class classification) 

schemes. These systems are trained using only healthy data, and any novel data that is 

not identified as healthy is considered faulted. Well known examples of these systems 

are the autoencoder neural network and support vector data descriptor (SVDD).  

The autoencoder neural network, is a type of ANN where the nodes are structured into a 

bottleneck, forcing the network to compress and decompress the data. When new data 

doesn’t match the training data, the reconstructed output will no longer effectively match 

the inputs. The fundamentals of this approach are reviewed in [26]. Timusk used this 

approach for detecting hydraulic system faults in [27].  
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SVDD is an extension of the SVM classifier. Instead of determining the optimal 

hyperplane to separate different classification states, SVDD aims to encapsulate the 

healthy training data in the kernel space. [28], [29] are excellent reviews of this 

algorithm. Once complete, it’s possible to determine whether new data resides outside 

the hypersphere to detect faults. A relative distance measure was used with SVDD for 

classifying gear pump faults in [30]. 

2.7 Summary of Condition Monitoring Theory 

This chapter has described the generalized approach and theory required to develop a 

condition monitoring system for rotating machinery. Table 2 illustrates the process of 

developing a condition monitoring system and summarizes the topics that were discussed 

so far. Since this research is focused on developing a condition monitoring system for 

hydraulic gear pumps, the following section will introduce some the relevant 

characteristics of this equipment.  



19 
 

Table 2: Condition Monitoring Development Process 

 
 

 Equipment 

Pumps 

Bearings  

Gearboxes 

Failure 
Characteristics 

Vibration 

Pressure/Flow 

Temperature 

Sensors 

Accelerometer 

Pressure Transducer 

Thermocouple 

Preprocessing 

Segmentation 

Filtering 

Noise Cancelation 

Deconvolution 

Envelope Analysis 

Feature 
Extraction 

Time Domain 

Frequency Domain 

Time-Frequency Domain 

Feature 
Reduction 

Feature Selection 

Principle Component Analysis 

Classification 

Expert System  

Supervised Classification 

Novelty Detection 

 

2.8 Hydraulic Gear Pumps  

Gear pumps are used in numerous industrial applications because of their simplicity, cost 

and reliability. However, like all mechanical systems, these pumps eventually wear out 

and require maintenance. The following section will discuss gear pump characteristics 

and failure modes to identify relevant features for developing a condition monitoring 

system. 
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2.8.1 Characteristics 

There are several gear pump designs, this work will focus on external gear pumps. 

However, other designs share much of the same operational theory. As the name 

suggests, flow is established by the rotating gears, as shown in Figure 1 [31]. As the teeth 

un-mesh, a low-pressure zone is created at the inlet port causing oil to flow into the voids 

between the gear teeth. Oil is then circulated around the pump housing in the cavities 

between teeth. A mechanical seal is created as the teeth come back into mesh, which 

forces the oil through the outlet port. In one rotation, the volume of oil displaced by the 

pump is equal to the sum the volume between teeth. Since there are two gears and the 

void volume is roughly equal to the volume of gear teeth, the total volumetric displacement 

per revolution is calculated as the cylindrical volume between the root diameter and the 

crest diameter of the gear. The theoretical flow rate can then be expressed by Eq. (1).  

𝑄𝑇 =  
𝜋

4
(𝐷𝑜

2 −  𝐷𝑖
2)𝑤 × 𝑁 

Eq. (1) 

Where: QT is the theoretical flow rate, Do and Di are the outer and inner diameters of the 

gear respectively, w is the width of the gear teeth and N is the number revolutions per 

minute.  
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 Figure 1: Gear Pump Cross-Section [31]  

 

Leakage is an inherit operating characteristic of gear pumps and is attributed to the slight 

clearance required between components to operate smoothly. As pressure builds at the 

outlet port, oil can leak between these clearances in the opposite direction to the intended 

flow. The velocity profile of the oil leaking between the clearances can be approximated 

by using Eq. (2) for laminar flow between non-stationary parallel plates with an applied 

pressure gradient. This is also depicted in Figure 2. However, many assumptions are 

required to manually integrate this equation over the clearance volumes to determine the 

net leakage flow rate. Thus making this calculation better suited for approaches that 

employ numerical tools such, as Computational Fluid Dynamics.  

𝑢(𝑦) =  
1

2𝜇

𝛿𝑃

𝛿𝑥
(𝑦2 − ℎ𝑦) +

𝑉𝑦

ℎ
 Eq. (2) 

Where: 𝑢(𝑦) is the fluid velocity at position 𝑦,  
𝛿𝑃

𝛿𝑥
 is the pressure gradient along 𝑥, 𝜇 is the 

fluid viscosity, ℎ is the distance between plates and 𝑉 is the relative velocity of the plate. 

Note 𝑉 is positive if moving in the direction of the pressure drop. 
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Figure 2: Velocity profile of flow between non-stationary parallel plates with applied pressure 
gradient, dashed lines indicate the profile for a zero pressure gradient, and dotted lines indicate 
the profile for a stationary upper plate. [32] 

 

As machinery wears over time, an increase in the clearance between components tends 

to develop.  This clearance can result in a significant effect on the performance of the 

hydraulic system. Maintenance is required once the pumps ability to generate flow 

becomes unacceptable. This is often quantified by the volumetric efficiency in Eq. (3).  

𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒
 Eq. (3) 

 

Since the total flow is generated by a finite number of gear teeth, the control volume of 

the outlet port varies slightly as the gears rotate. This makes flow ripple an inherit feature 

of the gear pump design [33][34]. The fundamental frequency of this ripple is a function 

of the number of teeth and the angular frequency of the gears, represented in Eq. (4). 
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Since the gears are out of phase with each other, the harmonics of the fundamental 

frequency are also prevalent in the system.  

𝑓𝑟 =  𝜔 × 𝑛 Eq. (4) 

Where: fr is the fundamental flow ripple frequency, ω is the gear rotational frequency and 

n is the number of teeth per gear.  

From a condition-monitoring perspective, abnormalities in the flow ripple could be used 

to identify a developing fault. However, it can be a challenge to directly measure this since 

these marginal flow fluctuations are too small and occur too fast to be detected by 

conventional flow meters. Alternatively, it’s possible to utilize the relation between flow 

and pressure to observe this phenomenon using pressure transducers. These offer the 

advantages of being non-intrusive and having greater resolutions and frequency 

responses. The Bernoulli equation (Eq. (5)) for an ideal fluid expresses that, in a control 

volume, the sum of the energy in the system is constant. The intuitive relation that 

fluctuations in the flow cause proportional fluctuations in the system pressure can be 

mathematically described by taking the time derivative of this equation, shown in Eq. (6) 

assuming negligible changes in gravitational potential over time.  

 

𝑃 + 
1

2
𝜌 𝑣2 + 𝜌𝑔ℎ = 𝑐 Eq. (5) 

𝑑𝑃

𝑑𝑡
+  𝜌 𝑣 

𝑑𝑣

𝑑𝑡
= 0 Eq. (6) 
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Where: P is pressure, ρ is the fluid density, v is fluid the velocity, g is the gravitational 

acceleration constant and h is the height above a reference frame. 

2.8.2  Failure Modes of Hydraulic Gear Pumps 

In hydraulic gear pumps, the most common cause for replacement or repair is mechanical 

wear [35]. Small abrasions occur as oil contaminants get caught between stationary and 

rotating components. As these abrasions accumulate, the amount of internal leakage 

increases and reduces the efficiency of the pump. The softer material components in 

contact with the rotating gears are the most susceptible to this type of failure. Thrust plates 

are used to seal the axial face of the gears and are typically made of brass. Hence, they 

are often the first component to see signs of wear. However, the housing and gear 

surfaces can also experience this form of failure.  

The effects of cavitation or aeration are another common cause of gear pump failure. 

Cavitation occurs when suction pressure falls below the vaporization pressure of the fluid, 

causing small vapor bubbles to form in the fluid. As these bubbles reach the high-pressure 

outlet, they collapse and cause localized high-pressure shocks in the fluid. These 

repetitive impacts can cause considerable erosion to the pump components, forming pits 

on the gear teeth, housing and thrust plates. Similar effects are experienced if air 

becomes entrapped into the fluid.    

Gear pumps can also experience several other failure modes analogous to a typical gear 

box used for power transmission, including: impact or fatigue fracturing, fretting and 

bending deformation. As well as rolling element bearing failures such as: inner, outer race 
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or rolling element failures. These failure modes are studied extensively in their own 

domain and were therefore chosen to be exempted from the scope of this work.  

Gear pumps are fixed positive displacement pumps, meaning a fixed volume of fluid is 

discharged per revolution. Recent advancements in variable drive motor technology has 

sparked interest in using fixed displacement pumps with a variable drive in place of 

variable displacement pumps [36]. These systems typically require the pumps to operate 

at changing speeds and pressures, and are an excellent example of where novel CM 

systems for variable-duty operation would be beneficial. 
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Chapter 3 

3 Literature Review 

This chapter will continue exploring principle works concerning fault detection and 

condition monitoring techniques for rotating machinery, with a focus on equipment in 

variable operation. This section will describe the current state of this domain and why 

there is a need to continue advancing CM systems for variable duty equipment.  

The chapter begins with a discussion on the unique challenges that arise when attempting 

to monitor equipment in variable operation, as well as, the current techniques being used 

for this class of equipment. The subsequent section will then present the emerging 

solution which utilizes the mechanical redundancy in parallel systems and how the CM 

discipline benefits from this research.   

3.1 Condition Monitoring Equipment in Variable Operation 

Most traditional condition monitoring systems perform very well for stationary signals. 

However, there are some difficulties that arise when analysing signals from equipment in 

variable operation. In these applications, the machines’ operational state can have a 

significant effect on the signal and its features. This makes it challenging to differentiate 

between feature variance caused by incipient faults and the variance caused by the 

change in operation. In the case where a machine is subjected to an extreme operational 

state, it’s possible that a conventional CM system could falsely identify the signal variation 

as a developing fault.   
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In the CM discipline, false alarms can often have severe consequences [37]. A major 

concern is that these cause the technicians to lose faith in the system, meaning next time 

the alarm is triggered it will not be taken as seriously. Rudimentary CM systems control 

the threshold levels as a means of reducing the risk of false alarms caused by operational 

variations. However, this also increases the risk of undetected faults and reduces the 

amount of lead time available to initiate proactive maintenance. If too many faults are 

detected late or are not detected at all, the technicians will again lose faith in the CM 

system and resort to other less efficient maintenance strategies. This is a major challenge 

that arises when implementing CBM on variable duty equipment. The following will 

investigate some of the methodologies have been developed in attempt to solve these 

issues.  

Comparison to Historical Samples: 

A general approach to this problem has been to collect a complete set of normal and 

faulted data spanning all possible operational conditions so that new data can be 

compared to historical samples having similar operational states.  State specific 

classifiers can then be trained to identify the most probable condition of the machine while 

in a given operational state. This approach has also been extended to novelty detection 

classifiers where only healthy samples are collected for all possible operational states. In 

2001 Timusk utilized this approach for identifying faults in a hydraulic system using state 

specific autoencoder neural networks [38]. More recently in 2009, McBain built on this 

methodology using statistical parameterization to reduce the need for training multiple 

classifiers [39]. In this paper, McBain used a generalized SVDD classifier to detect 

gearbox faults with marginal effects on classification error.  



28 
 

Though this approach is well suited for a number of applications, the primary challenge 

with it is in the amount of data that is required for its implementation. In most industrial 

applications, it is not possible (or feasible) to collect a complete set of historical data that 

spans all possible operational states that the machine could be subjected to. This task 

compounds as additional system state parameters (speed, load, temperature etc...) are 

added to the state definition. It’s also necessary to identify how similar a new operational 

state must be to a historical record before the new data can be compared. To be effective, 

a balance is needed between the state accuracy and the amount of required training data. 

Since a larger tolerance correlates to more feature variance per given state, while a 

smaller tolerance reduces the amount of available data for a given state.  

Signal Processing Techniques 

Another approach to reducing the influence of variable machine operation has been to 

process the signal in a way which eliminates signal characteristics that are known to be 

dependent on the machines operation. One such technique was developed on the 

premise that many frequency components of rotating systems are highly correlated to the 

rotational frequency. Thus, by processing the signal to the angular or order domain much 

of the effects of changing speed can be reduced. Figure 3 depicts the spectral smearing 

which occurs when directly analysing the frequency spectrum of a signal containing an 

increase in frequency.  It also shows how this effect can be reduced by resampling the 

signal a set number of times per fundamental cycle. This results in spectral lines 

correlating to an order of the fundamental resampling frequency. Excellent reviews on 

this methodology, its implementation and its limitations can be found in [40] and [41]. 
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Figure 3: Analysis of a fundamental component which is increasing in frequency [8] 

a) Data record resulting from a uniform sampling rate, and its spectrum which spreads 

over a frequency band corresponding to the speed change; 

b) The original time signal; 

c) Data record resulting from sampling 8 times per fundamental cycle, and its spectrum 

which is concentrated in one analysis line. 

 

While this approach can help reduce the effects of the machines changing speed, there 

are still other operational states (load, temperature etc.) that can have a significant effect 

on the signal. In addition, the effect of structural resonance can also affect the signal 

characteristics. In either case, it should be noted that the amplitude of the order spectrum 

is still highly affected by changes in the machines’ operation. 
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System Modeling Techniques 

Another approach, which has seen substantial development over recent years, has been 

utilizing computational models to determine the theoretical system response to changes 

in operation. A recent review of over 200 publications focusing on  the dynamic modeling 

of gearbox faults can be found in [42]. In lumped-parameter modeling, systems are 

approximated by a series of mass, spring and dampening components. By inputting the 

real-time operating conditions to the numerical model and solving for the systems 

response, it becomes possible to compare the actual system to the theoretical response. 

The machine condition can then be deduced by monitoring the residual difference 

between the theoretical and actual system. It’s also possible to simulate known failures 

into the system model to compare a theoretical failure response to the actual system. This 

approach was used in [43] where, spur gear dynamics were modeled to estimate the 

effects of fault growth, illustrated in Figure 4. Similarly, finite element analysis has also 

been used to simulate the dynamics for condition monitoring purposes. 

Though system modeling techniques have been used to increase the performance of 

condition monitoring systems for variable duty machinery, it too has its limitations. A 

common shortcoming when applying this approach to industry is the time and technical 

knowledge required to properly model a complete physical system. Even a simple single 

stage gear box, can quickly become complex. In addition, each element is only an 

approximation of the real-world system and therefore there will always be some error 

between the physical and theoretical systems. In addition, there are often numerous 

sources of noise and variables which are near impossible to model in most industrial 

applications. Thus, transferring the challenge to quantifying the tolerable error.  
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Figure 4: System Modeling Approach for Calculating Theoretical Spur Gear Dynamics and 

Estimation of Fault Growth [43] 

 

In summary, many techniques have been developed to increase the performance of 

condition monitoring systems for variable duty equipment. However, there are still some 

limitations to their implementation on industrial equipment. It’s clear that this domain 

requires a solution with the following criteria: 

• Requires a minimal amount of healthy training data. 

• Minimizes all effects of variable duty operation (speed, load, temperature 

resonance, noise, etc.). 

• Is simple to understand and can be implemented quickly.  
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3.2 Mechanical Redundancy in Parallel Machinery  

In this work, parallel machinery refers to equipment with multiple similar subsystems in 

synchronized (or linked) operation. This type of machinery presents a unique opportunity 

for condition monitoring systems due to the mechanical redundancy that becomes 

available. Intuitively, healthy subcomponents under the same operating conditions should 

produce similar feature responses, and as a fault develops in a subsystem, the features 

should become noticeably different. ElMaghraby [44] explored the concept of exploiting 

this phenomenon for a condition monitoring system and designed a machine for testing 

this approach on a variety of parallel mechanisms in non-stationary operation. 

This technique would be particularly useful to solve the issues that arise when attempting 

to detect faults in variable duty machinery. This is because a dynamic baseline becomes 

available by simply observing and comparing the features from each subcomponent at 

any time. This would effectively minimize the amount of training data required to detect 

anomalies during the various operational states.  

Two ways in which this approach can be implemented in industry are:  

• identifying parallel subsystems that exist in current products, and 

• the intentional design of parallel subsystems in critical applications. 

Therefore, research in this field benefits the condition monitoring discipline by increasing 

the scope of machinery that are eligible for CBM and increasing the tools available to 

overcome CM challenges when variable operation is necessary. The present work aims 

to expand this area of research into hydraulic systems, in particular hydraulic gear pumps.  
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3.3 Summary  

To conclude, this review has provided an overview on condition monitoring theory for 

monitoring machinery in variable operation. Upon review of the current solutions, it’s clear 

that additional research is needed to overcome some of the challenges that remain when 

implementing these systems in the industrial environment. An emerging technique, 

utilizing the mechanical redundancy of parallel systems, was also identified as a high 

potential solution to overcome these issues.   
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Chapter 4 

4 Experimental Design 

This chapter describes the equipment and systems that were used for testing parallel 

hydraulic pumps in dynamic operation. Section 3.1 describes the mechanical components 

that were used for these experiments. Section 3.2 provides details on the sensors, 

instrumentation and data acquisition equipment. Section 3.3 presents the machine’s 

operation cycle and systems that were implemented to control and vary the speed and 

load. Section 3.4 explains the various tests and machining methods that were used to 

replicate the various failure modes.  

4.1 Apparatus  

The flexible machinery simulator (Figure 5) was principally designed by [45] to test various 

components in parallel drive systems. The main design criterion for this apparatus was to 

construct two mechanically identical subsystems that are subjected to synchronized 

variable operation. It was also designed to easily replace and test components containing 

seeded faults in numerous types of industrial systems such as: electric motors, gear 

boxes, bearings, belt drives and hydraulic systems. This design made for an excellent 

apparatus to collect experimental data for this work. The following describes the various 

components of this machine.  

4.1.1 Mechanical Design Overview 

Each subsystem is driven by an AC electric motor. Power is transmitted through a 

reduction gear box and a serpentine belt system to a hydraulic gear pump. The pumps 
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are connected in parallel to a solenoid pressure control valve used to regulate the load 

on each subsystem.  

Figure 5: Flexible Machinery Simulator at Laurentian University 

 

4.1.2 Motor Specifications 

Baldor Reliance® AC induction motors were used as the prime movers in this work. The 

specifications of these motors are listed:  

• Power rating: 10 HP 

• Number of poles: 4  

• Speed at 60 Hz: 1800 RPM 

• Torque Rating: 30 lb·ft at 1800 RPM 
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4.1.3 Gearbox Specifications 

A new modular gear box was manufactured for this work. This was done to reduce the 

amount of space that the previous gear boxes occupied so that torque transducers could 

be placed between the gearbox and the motors for future work. This design also improved 

shaft alignment tolerances and increased accessibility to the gears and bearings. The 

specifications of the gearbox are listed:  

• Reduction ratio: 3:1 

• Gear face width: 0.5” 

• Gear pitch: 15  

• Center to center distance: 4” 

• Bearings: Rexnord™ ERK-16  

4.1.4 Serpentine Belt Drive Specifications 

An automotive accessory drive system was used to transmit power from the gearbox to 

the hydraulic pump. Figure 6 shows the geometrical design for the serpentine system. 

The specifications of the serpentine belt drive are listed:  

• Drive pulley diameter: 6.3125” 

• Pump pulley diameter: 2.875”  

• Number of belt groves: 6 

• Static belt tension: 80 Lbs 
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Figure 6: Serpentine Belt Drive Geometry 

 

4.1.5 Hydraulic Gear Pumps 

Two Metaris™ MHP-20 external gear pumps were used in this work. These pumps are 

fully serviceable and replacement components can be purchased easily at a relatively low 

cost. These pumps allowed for relatively easy fault seeding. The specifications of the 

hydraulic gear pumps are listed:  

• Gear width: 1” 

• Pump displacement: 1.97 in3/rev 

• Maximum pressure: 3000 psi 

• Number of teeth per gear: 10 

 

 



38 
 

4.1.6 Hydraulic Loading Circuit 

Figure 7 depicts the machine schematic diagram which shows the details of the hydraulic 

circuit used to load the machine in this work. The proportional solenoid pressure relief 

valve restricts the flow of hydraulic oil, increasing the output pressure at the pumps and 

the load on the system. The solenoid’s electrical current is proportional to the relief 

pressure and is used to control the system load. Several hydraulic components were also 

used to ensure the safety of the operator and machine in the case of a potential 

catastrophic failure. A detailed list of the components used in this circuit is shown in Table 

3. 

 

 

Figure 7: Machine Schematic  

a) Pump Piezoelectric Accelerometer b) Pump Pressure Sensor c) Manifold Pressure Sensor         

d) Encoder e) Solenoid Pressure Relief Valve 
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Table 3: Hydraulic Component List 

Symbol Component Manufacture 
and Model 

Number 

Specifications 

 

Solenoid 
proportional 
pressure relief 
valve  

Hydraforce™ 
TS12-26 

Maximum pressure: 3000psi 
Rated flow: 50 gpm  
Voltage: 10 V DC  
Max current: 1.3 A 

 

Pressure relief 
valve 

Parker™     
RDFA-LAN-
CEM 

Cracking pressure: 800 psi 
Rated flow: 25 gpm 
 

 

Check valve Parker™               
C-1000-S5-
SAE 

Cracking pressure: 50 psi 
Rated flow: 25 gpm 

 

Hydraulic oil 
reservoir 
 

Generic 
 

Max volume: 30 gallons 

 

Filter 
 
 

Generic N/A 

 

To prevent over pressurization of the system, a pressure relief valve was used with a 

cracking pressure set slightly above the intended operation pressure (760 psi). This was 

done to ensure safety in the event of a line blockage or stuck proportional valve. Check 

valves were used to prevent flow reversal in the pumps which could cause damage to 

some of the machine components. The reservoir size was chosen to minimize the 

possibility of pump cavitation or aeration and to adequately dissipate any heat generated 

during operation. It is common design practice to size the reservoir at least three times 

the flow rate of the system [46]. This reduces the possibility of the operator getting burnt 

when they work on the hydraulic pumps or other components of the machine. Particle 

contaminants can increase wear on moving components, thus a filter was also used to 

insure any oil contaminants are removed during the oil circulation.  
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4.2 Data Acquisition 

In order to gather time series data representing the various machine conditions, the 

apparatus was instrumented with an array of sensors and a data acquisition system. This 

data could then be used to examine the pressure and vibration of the hydraulic pumps 

and control the speed and load of the system. This section defines the data acquisition 

equipment and sensors that were used in this work. 

4.2.1 Sensors and Instrumentation  

The machine schematic (Figure 7) in the previous section illustrates the locations of the 

sensors that were used in this work. Two IFM™ PU5401 pressure sensors were selected 

and purchased to gather time series pump pressure data. These sensors were selected 

for their excellent step response time and relatively low cost. The sensor specifications 

are listed: 

• System pressure measuring range: 0-3625 psi 

• Analog output signal: 0-10 V 

• Step response time: 1 ms 

Two manifolds were machined from 2” OD mild steel bar to place these sensors as close 

as possible to the outlet ports of the pumps. This was done to capture transient pressure 

data that could be used for gear pump fault detection. The manifolds were drilled and 

taped using an SAE-16 O-Ring Boss thread on the ends to connect the manifold to the 

hydraulic pumps and hoses. A ¼”-19 BSPP thread was drilled and tapped in the radial 

direction and a 7/8” wide flat section was machined using an end mill to connect and seal 

the sensors to the manifold. 
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A Barksdale™ 423X pressure transducer was placed in the hydraulic circuit at the 

proportional relief valve. This sensor was used to determine the total pressure and load 

on the system. The sensor specifications are listed: 

• System pressure measuring range: 0-3000 psi 

• Analog output signal: 0.5-5.5 V 

A PCB Piezoelectronics™ 603C01 ceramic shear accelerometer was mounted on each 

hydraulic pump in the radial direction to capture changes in the machine vibration due to 

incipient faults. These transducers function due to the piezoelectric effect of certain 

crystals, where an electric charge is generated proportional to the force applied to the 

crystal. For these sensors, the sensed force is proportional the acceleration of the sensor. 

These sensors also contain an integrated circuit that converts the high-impedance charge 

generated by the piezoelectric to a usable low impedance voltage signal. The 

accelerometer specifications are listed:  

• Sensitivity: (±10%) 100 mV/g 

• Frequency Range: (±3 dB) 0.5-10000 Hz 

• Measurement Range: ±50 g 

A BEI™ XHS25 dual channel incremental optical encoder was used to record and control 

the rotational speed of the electric motors. Optical encoders work by shining lights through 

slits on a disk onto photodiodes. As the disk rotates it either blocks or permits the light 

from reaching the photodiode. The signal that is produced can be used to determine the 

rotational speed by knowing the angular resolution of the encoder and the time between 

signal cycles. The encoder resolution used in this work is 360 cycles/turn. 
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4.2.2 Data Acquisition Platform and Modules 

A Windows® computer with a Peripheral Component Interconnect Express (PCIe) bus 

was used as the data acquisition platform for this research. PCI is an international bus 

standard for personal computers and there is a large selection of hardware modules that 

can be purchased and easily installed for data acquisition. National Instruments™ (NI) 

PCI-4472 8-Channel Dynamic Signal Acquisition Board module was used for data 

acquisition of the pressure transducers and accelerometers. This module has eight 

simultaneously sampled ±10 V analog inputs and is specifically designed for high-

accuracy sound and vibration data acquisition. The NI PCIe-7851R Multi-function 

reconfigurable input/output (RIO) with an onboard Field-Programmable Gate Array 

(FPGA) module was used in conjunction with the SCB-68R shielded input/output (I/O) 68 

pin connector block to control the speed and load of the system and for encoder speed 

data acquisition. The FPGA module allows for user-programmable onboard processing 

which provides enhanced execution speeds. The RIO delivers versatility for additional 

data acquisition channels and control outputs. NI LabVIEW™ software was installed and 

used to program the various controls and setup the data acquisition modules. Figure 8 

illustrates the connectivity between the various data acquisition and control units. Time 

series data was collected from the PCI-4472 at a synchronized 10 kHz sampling 

frequency.   
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Figure 8: Flow Chart of Data Acquisition Modules and Control Systems  

 

4.3 Duty Cycle and Control 

This section will describe the duty cycle and control systems that were designed to 

simultaneously control the speed and loading conditions. 

4.3.1 Duty Cycle 

The variable duty cycle shown in Figure 9 was designed to examine the machine in 

various operational states with independently controlled speeds and pressures. This duty 
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cycle tests a variety of ramp up, hold, ramp down combinations between three steady 

state motor speeds (200, 400, 600 rpm) and pump pressures (17.5, 35, 52.5 bar).  

 

4.3.2 Speed Control System 

The speed profile was programed in the LabVIEW program. When the program was run, 

it would output a set point to the PCIe-7851R which would then send a 0-10 V signal to 

the Baldor™ VS1GV Motor Drive. Based on this signal voltage and the encoder shaft 

speed, an optimized closed-loop Proportional Integral Derivative (PID) controller in the 

Baldor Drives then applies the appropriate output voltage and current frequency to the 

motors. The PID gains were optimized using the onboard automated system during the 

machine setup. Specifications for the Baldor Driver are listed: 

 

Figure 9: Variable Duty Cycle 
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• Input voltage: 575 VAC (3-phase) 

• Power rating: 30 hp 

• Control mode: closed loop vector 

4.3.3 Load Control System 

The system load was independently controlled using an open-loop control by similarly 

sending a 0-10 V signal from the PCIe-7851R to the Lynch™ proportional driver. This 

driver then delivers the appropriate solenoid current signal based on the input voltage, 

thus setting the system pressure. Specifications for the proportional driver are listed: 

• Input signal: 0-10 VDC 

• Rated output current: 2 A 

4.4 Test Matrix and Fault Replication 

The main objective of this section is to describe the strategy that was employed to compile 

a representative set of normal and faulted data. The section also describes the various 

machining methods that were required to replicate the different faults. 

4.4.1 Test Matrix  

Table 4 shows the various tests that were completed to collect data on the healthy and 

faulted components. Between each test, the pumps would be disassembled and 

reassembled with the given components for the next test. The pumps were then primed 

by running the machine at low speeds and low loads until the air was forced out of the 

system. Loud noises were audible when air was still trapped in the pumps and valves. 

Occasionally, the entrapped air could not be forced out and the machine would need to 
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be turned off overnight to let the air settle out of the system. Due to the great deal of time 

that was required between tests, the number of times that the pumps were required to be 

disassembled and reassembled was optimized by carefully organizing the test matrix 

such that only one pump was being opened at a time. The only exception to this was 

when a faulted component was to be tested in both pumps consecutively.   

 Control data was collected using eight unique combinations of fault free (healthy or 

normal) pump gear sets and thrust plates. This was done to gather a comprehensive set 

of control data and to minimize any experimental bias from specific components being 

placed in an individual pump.  

The three gear pump failure modes (thrust plate wear, gear wear and cavitation damage), 

were replicated by incrementally damaging a component and replacing it into the pump. 

Ideally each fault would be tested in each pump however, this was unrealistic due to the 

amount of time required to complete these tests. It was decided that adequate amounts 

of data could be collected by testing the first and last three progressions in opposite 

pumps, as well as, testing the third and sixth progressions in both pumps. Tests six and 

seven of the gear tooth wear progression had to be removed from the test matrix due to 

a noticeable change in the system operation during the fifth test.  
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Table 4: Test Matrix 

 

  

Gear Plate Gear Plate

1 N.a. 3 2 4 3

2 N.a. 1 2 4 3

3 N.a. 1 2 2 3

4 N.a. 4 1 2 3

5 N.a. 4 1 3 3

6 N.a. 2 1 3 3

7 N.a. 2 1 1 2
8 N.a. 3 1 1 2

1 0.001 3 1A10 1 2

2 0.002 3 1A20 1 2

3 0.003 3 1A30 1 2

4 0.003 3 3 1 1A30

5 0.004 3 3 1 1A40

6 0.005 3 3 1 1A50

7 0.006 3 3 1 1A60

8 0.006 3 1A60 1 2

1 0.001 2B1 3 1 2

2 0.002 2B2 3 1 2

3 0.0033 2B3 3 1 2

4 0.0033 1 3 2B3 2

5 0.004 1 3 2B4 2

6 0.999 1 3 2B5 2

7 0.999 1 3 2B6 2

8 0.004 2B4 3 1 2

1 1 4C10 3 1 2

2 2 4C20 3 1 2

3 3 4C30 3 1 2

4 4 1 3 4C30 2

5 5 1 3 4C40 2

6 6 1 3 4C50 2

7 7 1 3 4C60 2

8 8 4C60 3 1 2

Notes:
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4.4.2 Thrust Plate Wear Replication 

To accurately reproduce progressive thrust plates wear, a computer numerical control 

(CNC) milling machine was programed to remove 0.001” from 70% of the sealing face 

area of the thrust plate. After testing the CNC on some test pieces of aluminium it was 

realized that a jig would be required to consistently control the depth of cut. Realistically, 

this wear would likely occur over the entire face, however fasteners were required to 

secure the plate (Figure 10) and thus only 70% was removed for practicality. The first and 

last progressions of the thrust plate wear can be seen in Figure 11. A slight score of the 

coating material can be seen in the first progression, while a deeper groove into the metal 

can be seen in the last progression.  

 

Figure 10: CNC Thrust Plate Machining Setup 
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a) 0.001”  b) 0.006”  

Figure 11: Thrust Plate Wear Progression 

 

4.4.3 Gear Wear Replication 

To reproduce the gear wearing from abrasions between the thrust plate and the gear, 

material was removed from the side face in the radial plane. A lathe was used for the first 

attempt to replicate gear wear. However, due to the hardness of the material, it proved to 

be extremely difficult to cut uniformly into the gear surfaces. One reason for this difficulty 

was because the tool holder deformed slightly during the cut. This would reduce the 

cutting back pressure, making an uneven cut on the gear teeth. Secondly, the amount of 

material that was being removed was too little to initiate consistent shearing plastic 

deformation. This problem was resolved by using a surface grinder to remove material 

and an indexing chuck to rotate the gear. This setup (Figure 12) allowed for a consistent 

and uniform removal of material from the gear teeth. Figure 13 shows the first and last 

progressions of the replicated gear wear.  
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Figure 12: Surface Grinder Setup for Gear Wear Replication 

 

  

a) 0.001” b) 0.004”  

Figure 13: Gear Wear Progression 
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4.4.4 Gear Cavitation Replication 

A hand-held high speed abrasive tool was used to replicate gear cavitation damage. For 

each progression of the fault, a pit ~0.125” in dimeter was created using 0.375” diameter 

spherical abrasion tool to remove material at a single point along the meshing surface of 

each gear tooth.  Figure 14 illustrates the first and last progressions of the replicated gear 

cavitation damage used in this work. 

 

  

a) 1 Pit per Tooth b) 6 Pits per Tooth 

Figure 14: Gear Cavitation Progression 
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Chapter 5 

5 Data Analysis  

This chapter presents the analytical methodology that was developed to detect faults in 

parallel hydraulic gear pumps. Section 5.1 begins by providing a brief overview of the 

analytical process to give a greater context to the following sections. Section 5.2 explains 

the time series data segmentation process and section 5.3 describes the preprocessing 

techniques that were implemented for this work. Following which, section 5.4 presents 

the various features that were used to detect incipient faults, as well as, the residual 

calculations that have been designed specifically for CM parallel systems. Section 5.5 

then defines the normalization scheme that was implemented to ensure equal 

comparisons between features. Section 5.6 presents the method that was used to 

consolidate the features from common domains to values that can be compared and 

utilized to represent the machine condition. To conclude, section 5.7 will describe the 

approach that was used to compare the feature domains and their response to various 

operational states.  

5.1 Analytical Methodology Overview 

Figure 15 graphically depicts the analytical methodology and how the time series data 

was manipulated to determine the likelihood that a fault has developed in one of the 

subsystems. Continuing from the end of Chapter 4, the first process that is depicted is the 

collection of data from the two subsystems. The nine steady-state acceleration and 

pressure signals were extracted and segmented from the 130 second duty cycle test. 
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Envelope analysis was then used as a preprocessing technique to prepare acceleration 

data segments for frequency domain feature extraction. Feature extraction is the 

mathematical analysis on the data segments to obtain numerical parameters which are 

sensitive to developing faults. The features that were examined in this work were broken 

into three groups: time domain, frequency domain and auto-regressive features. These 

groups were examined individually to compare the performance of each group for each 

of the various failure modes. 

 

Figure 15: Analytical Methodology Flow Diagram 
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The feature residuals were then calculated by computing the difference between the 

features from each subsystem.  However, some feature residuals can be orders of 

magnitude different, making it difficult to compare one feature to another. To solve this 

problem, each residual was normalized between -1 and 1 with respect to mean and 

standard deviation of the residuals that were collected using healthy components. The 

root sum of squared residuals (i.e. Euclidean distance) was then used to obtain a single 

value that essentially represents the magnitude of similarity between the features from 

each subsystem. A progressing fault is expected to cause features from each subsystem 

to become increasingly different. Thus, shifting the normalized feature residuals from the 

typical -1 to 1 range and yielding a shift in the Euclidean distance distributions. Statistical 

analysis on these values was then used to compare which feature sets trended best with 

a given fault.  

5.2 Segmentation 

In unsteady machinery, variance in speed and load typically cause changes to the time 

series data signals. If the entire signal is analysed for feature extraction, these normal 

operational variations can make it difficult to distinguish the slight changes that are 

caused by incipient faults from the changes caused by variability in machine operation. 

This effect can be minimized by analysing smaller segments of the signals, since 

operational changes are negligible over a short time. However, if the segment length is 

too small, there is a possibility that a fault signature will not be captured in the segment. 

the signals were segmented every five pump shaft revolutions with 70% overlap. This 

was selected to ensure that periodic fault phenomena and any irregular signal features, 
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diminished from the Hann window (in Section 5.3.2), were captured. Figure 16 and Figure 

17 illustrate the segmentation process of the pressure and acceleration signals. Also, the 

beginning and end sections of each test were removed at this stage to exclude any 

interval where the machine was operating at less than 200 rpm and 17.5 bar. 

5.3 Preprocessing 

5.3.1 Acceleration Signal 

Several techniques have been developed to refine raw time-series data and enhance the 

extraction of condition indicating information from the signal. One of the major difficulties 

in vibration analysis is separating the diagnostic information from a signal which is 

dominated by noise from normal machine vibration. Envelope analysis [8] is an effective 

solution to this problem.  

Every mechanical system has a natural resonation frequency that is excited when 

impacted. In a condition monitoring system, envelope analysis can exploit this 

phenomenon since incipient faults typically produce some form of periodic impulse. The 

frequency of which (modulation frequency) can be extracted through amplitude 

demodulation of the high frequency band carrying the resonance signal.   

Figure 18 illustrates the steps required to extract the envelope signal for spectral analysis. 

In step 1, a Fast Fourier Transform (FFT) on the data segment was used to obtain the full 

frequency spectrum of the signal. During preliminary analysis, a demodulation band was 

selected using a Fast Kurtogram [14] to find the frequency range with high spectral 

kurtosis. The 4200-4600 Hz range had consistently high kurtosis over the duty cycle. 
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Figure 16: Segmentation of Pressure Time-Series Data  

 

 

Figure 17: Segmentation of Acceleration Time-Series Data 
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 Figure 18: Envelope Analysis Preprocessing 

 
The complex frequency spectrum in this band was then extracted and padded with an 

equal number of zeros to create a one-sided spectrum for amplitude demodulation (Step 

2). The inverse Fourier transform was then used to obtain the demodulated signal 

containing a series of periodic impulses (Step3). The envelope of this signal was then 

attained by taking the square root of the squared signal (Step 4). A FFT of the envelope 

signal was then taken (Step 5) for spectral analysis of the dominant modulation 

frequencies.  

2 
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5.3.2 Pressure Signal  

The examined faults were not observed to exhibit high frequency resonance in the 

pressure signal that could be used for amplitude demodulation. Therefore, the envelope 

analysis technique was not used since it did not provide any improvements to the 

pressure signal frequency features. However, some standard preprocessing was done to 

the pressure signal to enhance the frequency domain feature extraction. Unlike the 

acceleration signal, the pressure signal was not centred about zero. Therefore, the DC 

offset had to be corrected by subtracting the average pressure (effects are shown in 

Figure 19). A Hann Window was also used to minimize spectral leakage (Figure 20). 
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Figure 19: Pressure Signal Preprocessing (Adjusting DC Offset) 
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Figure 20: Pressure Signal Preprocessing (Improving Spectral Leakage) 
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5.4 Feature Extraction 

The literature review established three categories of features that would likely reveal 

faults in this system: time domain features, frequency domain features and auto-

regressive (AR) model features. The following sections provide details on the 

mathematical operations that were utilized for fault detection and comparison of each 

category’s response to the different failure modes. The main objective of this work is to 

calculate the residual difference between subsystems characteristic parameters. The 

residuals will then be used as features to assess the response to various failure modes 

while in both stationary and non-stationary operation.  

5.4.1 Time Domain Features 

Statistical analysis of the time series data segments can provide meaningful parameters 

that describe characteristics of the signal. An incipient fault would likely cause a change 

to the signal characteristics of the corresponding subsystem. Equations 7 to 10 show the 

parameters that were calculated using the time series data segments (with N data points) 

collected from pump A and B (xA and xB respectively). 

Peak-to-Peak  𝑓1 = [max(𝑥𝐴) − min (𝑥𝐴)]  −   [max(𝑥𝐵) − min (𝑥𝐵)] Eq. (7) 

RMS 

 

𝑓2 = √
1

𝑁
∑ 𝑥𝐴𝑖

2

𝑁

𝑖=1

  −   √
1

𝑁
∑ 𝑥𝐵𝑖

2

𝑁

𝑖=1

 Eq. (8) 

Crest Factor 
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Eq. (9) 

Shape Factor 
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5.4.2 Frequency Domain Features 

As discussed in the literature review, hydraulic gear pumps inherently produce flow 

ripples that cause periodic fluctuations in the pressure and vibration signals. Changes in 

the frequency of these oscillations could provide valuable information on the condition of 

the machine [33], [34]. The dominant pressure excitation frequencies, produced by the 

flow ripple, are equivalent to the gear mesh frequency and the harmonics (since gears 

are out of phase). The modulation frequencies, of vibrations induced by gear faults, 

should also be equal to the gear mesh frequency and the harmonics. Therefore, 

maximum amplitude of the signals in four harmonic ranges corresponding to ½, 1, 1½ 

and 2 times the gear mesh frequency (GMF) were used as features in this work, shown 

in Eq. (11). 

𝑓5−8 =  max(𝐴𝑚𝑝(𝐹𝑟𝑒𝑞𝑅𝑎𝑛𝑔𝑒 𝑘)𝐴)  −  max(𝐴𝑚𝑝(𝐹𝑟𝑒𝑞𝑅𝑎𝑛𝑔𝑒 𝑘)𝐵) Eq. (11) 

 
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑅𝑎𝑛𝑔𝑒1 = (0.25: 0.75) ∗ 𝐺𝑀𝐹  
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑅𝑎𝑛𝑔𝑒2 = (0.75: 1.25) ∗ 𝐺𝑀𝐹  
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑅𝑎𝑛𝑔𝑒3 = (1.25: 1.75) ∗ 𝐺𝑀𝐹  

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑅𝑎𝑛𝑔𝑒4 = (1.75: 2.25) ∗ 𝐺𝑀𝐹  
 
 

5.4.3 Autoregressive Model Features 

The Autoregressive (AR) algorithm computes coefficients (ai) of an Nth order model that 

provide the least estimated variance e(t) based on the prior values of a time series y(t), 

shown in Eq. (12). A 10th order model using the forward-backward approach was chosen 

for this work. The model order was arbitrarily selected with the intent of optimizing the 

model with further analysis. However, for reasons discussed in Section 6.5.2, this was 

deemed out of the scope of this research. Eq. (13) shows the residual calculations of the 
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model coefficients collected from pump A and B (aA and aB respectively) that were used 

as features in this work.   

𝑦(𝑡) + 𝑎1 ∗ 𝑦(𝑡 − 1) + 𝑎2 ∗ 𝑦(𝑡 − 2) + ⋯ + 𝑎𝑁 ∗ 𝑦(𝑡 − 𝑁) = 𝑒(𝑡) Eq. (12) 

 

𝑓9−18 = 𝑎𝑖 𝐴   −    𝑎𝑖 𝐵 Eq. (13) 

 
 

5.5 Normalization 

When attempting to compare features to one another, there is a challenge that arises 

when the feature values differ by orders of magnitudes. To overcome this, Eq. (14) shows 

how features were normalized with respect to the mean and standard deviation of the 

features that were collected during the healthy test. By subtracting the mean and dividing 

by three standard deviations of the healthy features (fiH) each feature becomes 

normalized between -1 and 1 with a confidence interval of 99.7%.  This interval was 

chosen so that a shift in either direction will have an equal influence on the Euclidean 

distance (described in the following section). This is beneficial since, a fault in subsystem 

A is expected to cause a shift in one direction and in the opposite direction if the fault is 

seeded in subsystem B. A feature before and after normalization is shown in Figure 21 

and Figure 22 respectively.  

𝐹𝑖 =  
𝑓𝑖 − 𝑚𝑒𝑎𝑛(𝑓𝑖𝐻)

3 ∗ 𝑠𝑡𝑑𝑣(𝑓𝑖𝐻)
 Eq. (14) 
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Figure 21: Feature Distribution Before Normalization 
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Figure 22:Feature Distribution After Normalization 
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5.6 Feature Vector Dimension Reduction  

Comparing the numerous features individually would be tedious and would require 

additional training data to avoid the curse of dimensionality (where the amount of data 

required for classification increases exponentially with the number of features used for 

classification). Instead, a reduction technique was used to summarize the features from 

each group into a single parameter. The Euclidean distance of the normalized features 

(Fi) was chosen to do this because it produces an intuitive value which represents how 

close the features from each subsystem are, as shown in Eq. (15). This value is useful 

for condition monitoring since an incipient fault is expected to increase the distance 

between subsystem feature vectors.  

𝐸 =  √∑ 𝐹𝑖
2  Eq. (15) 

 
 

The resulting values closely resemble a lognormal distribution (Figure 23). Since feature 

residuals have been normalized between -1 and 1 at this point, healthy Euclidean values 

will mostly be distributed between 0 and 1. Residuals from the faulted tests were 

normalized using statistics from the healthy tests, meaning any changes that occur due 

to the faults will shift their normalized residuals and cause the Euclidean distance to 

increase. These values could then be analysed to classify the condition of the machine. 

It should be noted that the number of features can have an influence on the location and 

scale of this distribution. In future work, this equation should be normalized by dividing by 

the number of features in the set.  
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Figure 23: Histogram of Euclidean Distance Values of Pressure Features 

(Complete Duty Cycle) 

 

5.7 Feature Group Comparison 

5.7.1 Complete Duty-Cycle 

Several techniques were examined to compare which feature sets were best at indicating 

failures.  Visual inspections of the box plots (samples shown in Figure 30 and Figure 31) 

were conducted to observe the changes in the distance distributions that occur due to the 

various failures. This preliminary result, discussed in Section 6.4, confirmed that faults 

have an effect on the distance distributions. The most noticeable being the increase in 

the number and magnitude of outliers (>95th percentile). Due to the high quantity of 

samples obtained from the entire duty cycle, the mean of these distributions are only 



66 
 

marginally affected by the presence of these outliers. However, a slight increase in the 

mean (from the presence of outliers) has a much more significant effect on the standard 

deviation, since it contains the sum of the squared differences from the mean. Therefore, 

the standard deviation of the Euclidean distributions will be used when comparing the 

response of each feature domain to each of the failure modes over the entire duty cycle. 

5.7.2 Steady-State Sections 

The samples from the steady-state sections had fewer samples that were closer together, 

meaning the standard deviation did not show a substantial change even though the mean 

of the steady-state samples varied with the presence of faults and operating conditions. 

Therefore, the mean of the Euclidean distance values will be used to compare the 

response of each feature domain with respect to the different failure modes and operating 

conditions.   
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Chapter 6 

6 Results and Discussions 

This chapter reports on the results that were obtained from the experiments and will 

discuss the performance of the approach that was developed for condition monitoring 

parallel hydraulic pumps in dynamic operation. Sections 6.1 to 6.4 will demonstrate the 

challenges that are encountered when condition monitoring dynamic systems, as well as, 

confirm preliminary hypotheses that form the foundation of the analytical methodology. 

Section 6.5 describes the performance of feature vector groups over the entire duty cycle 

of the machine. Section 6.6 separates the results into 9 unique steady state operating 

sections and reflects on the findings.  

6.1 Effects of Operational Changes on Subsystem Features 

Figure 24 and Figure 25 confirm a fundamental problem that arises when attempting to 

condition monitor equipment in dynamic operation; changes in operation have substantial 

effects on diagnostic features. In these samples, the peak-to-peak measurement of the 

pressure signal from each pump is plotted with respect to speed and load. The magnitude 

of the diagnostic feature increased significantly as pressure increased from 22 bar to 45 

bar and decreased as speed increased from 200 rpm to 600 rpm (ANOVA, p<0.05). 

These variations are what make it difficult to determine whether a change in a feature is 

due to a developing fault or if it is merely due to a change in operation.    
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Figure 24: Effects of Changing Load on Diagnostic Feature 

 
 

 

Figure 25: Effects of Changing Speed on Diagnostic Feature 
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Figure 24 and Figure 25 also illustrate that the features obtained from both sub-systems 

(pump A & B) are similar while operating in parallel at different speeds or loads. This 

supports the theory that the mechanical redundancy of parallel systems can be exploited 

to improve the performance of condition monitoring systems for equipment in variable 

operation.  

6.2 Effects of Operational Changes on Feature Residuals 

Figure 26 and Figure 27 validate the notion that the feature residuals that were identified 

for the parallel system approach are not significantly affected by changes in operation 

(ANOVA, p > 0.05). These examples show the residual between the subsystems’ peak-

to-peak feature plotted with respect to speed and load. The feature residuals are 

significantly less affected by the changes in operation. This confirms that the feature 

residuals from parallel systems have potential to be used as parameters that are less 

sensitive to variations in the operating state.   
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Figure 26: Effects of Changing Load on Feature Residual 

 

 

Figure 27: Effects of Changing Speed on Feature Residual 
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6.3 Effects of Fault Progressions on Normalized Residuals 

Figure 28 and Figure 29 illustrate that the developing faults caused a noticeable change 

in feature residuals. These plots show the distributions of normalized peak-to-peak 

pressure residuals with respect to healthy and faulted tests. The samples from the healthy 

tests show negligible variance between the eight tests. In contrast, the quantity and 

magnitude outliers in the thrust plate wear progression were observed to increase from 

an average of nine outliers with an average magnitude of 1 to a maximum of 25 outliers 

with an average magnitude of eight. This is of interest because it supports the initial 

research question that the feature residuals can be sensitive to developing failures in 

parallel systems.   

Another noteworthy observation is that the sign of the outliers was found to be related to 

the subsystem that the fault was seeded in. This has potential to be exploited in future 

work for identifying which subsystem the fault is located in. Figure 29 shows a positive 

shift when the fault is in the right pump and vice versa. The peak-to-peak residual was 

calculated by subtracting the right from the left (L-R), suggesting that the fault either 

causes a decrease in the pressure pulsation amplitude in the faulted pump or an increase 

in the non-faulted pump. Assuming the incipient faults have minimal effect on the healthy 

subsystem, the former is likely the case and is probably attributed to the increase in 

internal leakage that this fault causes.   
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 Figure 28: Normalized Feature Residual (Healthy Tests) 
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Figure 29: Normalized Feature Residual (Thrust Plate Wear Progression) 
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6.4 Effects of Fault Progressions on Domain Specific Euclidean 

Distances 

 Figure 30 and Figure 31 illustrate the distribution of Euclidean distance values, obtained 

from the pressure signal time domain features, with respect to healthy and faulted tests. 

Consistent with the previous section, there is a pronounced increase in the quantity and 

magnitude of outliers shown in the thrust plate wear progression compared to the healthy 

tests. This supports that the Euclidean distance of a set of features preserves the 

sensitivity to developing faults.  

Compared to the previous section, the healthy tests show some variance in the outlier 

magnitude (specifically tests 5, 6 and 8). This is likely attributed to the components having 

variable run in times. However, the magnitudes of the healthy outliers are marginal when 

compared to the magnitude of the outliers from the thrust plate wear progression.   
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Figure 30: Euclidean Distance Distributions, Time Domain Features of the 

Pressure Signal (Healthy Tests) 
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Figure 31: Euclidean Distance Distributions, Time Domain Features of the 

Pressure Signal (Thrust Plate Wear Progression) 
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6.5 Feature Group Comparison-Complete Duty Cycle 

This section will compare the influences that the various faults had on the three feature 

groups (Time domain, Frequency Domain and AR) from the pressure and acceleration 

signals. The objective of analysing these results was to compare the signal source 

(pressure vs. acceleration) and feature groups that trend best with the different faults.   

6.5.1 Pressure Signal Features 

Figure 32 to Figure 35 show the standard deviations of the pressure signal Euclidean 

distance distributions over the complete duty cycle. As shown in Figure 33 and Figure 34, 

the standard deviation of the time and frequency domain Euclidean distance values 

increased with the thrust plate and gear wear progressions from an average healthy value 

of 0.3 to a maximum of 2.3 during test 7 of the thrust plate wear progression. However, 

the pressure features were not noticeably affected by the cavitation damage. AR 

coefficients showed very little response to any faults and generally had the highest 

baseline values in the healthy tests. 

The trend between the pressure signal time & frequency domain features and the thrust-

plate and gear wear faults supports that these failures caused an increase in the amount 

of internal leakage. Conversely, the lack of trend between the pressure signal features 

and the cavitation damage likely indicates that this failure did not cause significant internal 

leakage.  
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Figure 32: Pressure Signal Feature Comparison (Healthy Tests) 
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Figure 33: Pressure Signal Feature Comparison (Thrust Plate 

Progression) 
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Figure 34: Pressure Signal Feature Comparison (Gear Wear Progression) 
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Figure 35: Pressure Signal Feature Comparison (Cavitation Damage 

Progression) 
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Acceleration Signal Features 

Figure 36 to Figure 39 show the standard deviations of the acceleration signal Euclidean 

distance distributions over the complete duty cycle. As shown in Figure 39, the standard 

deviation of the acceleration signal time and frequency domain Euclidean distance 

distributions increased with the cavitation damage progression from an average healthy 

value of 0.3 to a maximum of 1.6 in tests 4, 5 and 7. However, acceleration features were 

not noticeably affected by the thrust plate and gear wear progressions. AR coefficients 

showed very little response to any faults. 

The trend between the cavitation damage progression and the acceleration signal time 

and frequency domain features indicates that this failure influenced the system vibration 

response, likely due to the irregularities in the meshing surface. Conversely, the lack of 

trend between the thrust-plate and gear wear faults likely indicates that these faults did 

not cause a significant excitation to the vibration of the system.  
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Figure 36: Acceleration Signal Feature Comparison (Healthy Tests) 
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Figure 37: Acceleration Signal Feature Comparison (Thrust Plate Wear 

Progression) 
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Figure 38: Acceleration Signal Feature Comparison (Gear Wear 

Progression) 
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Figure 39: Acceleration Signal Feature Comparison (Cavitation Damage 

Progression) 
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6.5.2 AR Feature Discussions 

The AR features did not show a clear response to any of the failure modes that were 

tested in this work. During initial data collection and analysis, optimization of the model 

order was proposed to ensure the order selected is was robust and relatively noise 

immune. However, the intent of this work matured to solving the existing challenges by: 

minimizing the amount of healthy training data required, keeping it simple to understand 

and quick to implement. Therefore, it was decided that the optimization of the AR features 

no longer fit within the scope and was not examined further.  

6.6 Feature Group Comparison - Steady State Sections 

The Euclidean distance values were sampled from the nine-unique steady state operating 

conditions to compare the effects of different speeds and loads. In the following section 

(Figure 40 to Figure 47): low, medium and high speeds correspond to 200, 400 and 600 

RPM and low, medium and high loads correspond to 17.5, 35 52.5 bar respectively. In 

this section, the feature groups are compared by assessing the mean of the Euclidean 

distance samples as discussed in Section 5.7.2. 

6.6.1 Pressure Signal Features 

The low speed, high load condition yielded the greatest changes in the pressure signal 

features particularly in the thrust plate and gear wear progressions (Figure 41 and Figure 

42). This result is likely attributed to high pressures resulting in increased internal leakage 

due to the increased pressure differential and low speeds (i.e. low flow rates) resulting in 

a greater ratio of leakage to total flow. This could explain why the high pressures and low 

speeds produced greater feature differences between the subsystems for these faults.  
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Figure 40: Steady State Pressure Feature Group Comparison (Healthy Tests) 
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Figure 41: Steady State Pressure Feature Group Comparison (Thrust Plate Wear Progression) 
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Figure 42: Steady State Pressure Feature Group Comparison (Gear Wear Progression) 
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Figure 43: Steady State Pressure Feature Group Comparison (Cavitation Damage Progression) 
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Acceleration Signal Features 

The high-speed conditions yielded the greatest changes in the acceleration signal 

features specifically in the cavitation damage progression (Figure 47). This is likely 

attributed to the vibration transmissibility characteristics of the system. Essentially, the 

amplitude of a system’s vibration increases with respect to the excitation frequency (if it’s 

below the systems resonance frequency). This means that the vibration amplitude of the 

faulted pump is expected to increase with the speed of the system, thus creating greater 

differences between subsystems at higher speeds. This effect can especially be seen in 

the frequency features since each feature was related to the amplitude differences in 

various frequency ranges. Although this effect is also seen in the healthy tests, the 

variance is marginal when compared to the results from the cavitation damage 

progression.   
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Figure 44: Steady State Acceleration Feature Group Comparison (Healthy Tests) 
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Figure 45: Steady State Acceleration Feature Group Comparison (Thrust Plate Wear 

Progression) 
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Figure 46: Steady State Acceleration Feature Group Comparison (Gear Wear Progression) 
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Figure 47: Steady State Acceleration Feature Group Comparison (Cavitation Damage 

Progression) 
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6.6.2 General Discussions 

From what has been discussed so far, these results provide substantial insight into the 

nature of these faults and how they propagate. However, the most significant observation 

is that the healthy tests are only marginally affected by the operational state. This is 

important because it supports that this approach could help reduce the number of false 

alarms that would typically be triggered during variable operation of healthy equipment, 

while also maintaining sensitivity to incipient faults with minimal analysis.  

Admittedly, these results only show marginal differences for many of the other operating 

states that have not already been discussed. However, this could likely be improved using 

other analytical techniques such as: investigating other statistical parameters (other than 

the mean values that were used in this section), additional data collection to improve the 

distribution sample size of the steady state sections, and by using machine learning 

classification algorithms like SVDD or ANN.    
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Chapter 7 

7 Conclusions and Future Work 

7.1 Summary of the Problem and Proposed Solution 

From a review of the relevant literature, this work identified a need to continue developing 

condition monitoring techniques for applications where equipment is operating under 

variable duty. Although solutions exist for this class of machinery, their industrial 

implementation is mostly limited to due to: the amount of required training data, their 

ability to minimize all effects of variable operation, or their complexity.  

The review also identified an emerging solution that improves on these limitations by 

utilizing the mechanical redundancy of parallel systems as a dynamic baseline source. It 

was determined that this concept warrants further investigation into its application for 

other mechanical components. 

Due to the growing interest in using variable drives with fixed displacement pumps as an 

alternative to variable displacement pumps, hydraulic gear pumps were chosen as the 

novel components to which to apply this methodology.  The review then identified three 

common failure modes (thrust plate wear, gear tooth wear and cavitation damage) that 

were selected to be studied in this work.  
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7.2 Experimental Methodology Summary 

The flexible machinery simulator was utilized to collect the experimental data for this work.   

Hydraulic gear pumps were instrumented with accelerometers and pressure sensors, 

while a closed loop control program was developed to vary the system speed and load 

cycles for testing. After developing a test matrix, pumps were seeded with faults by 

incrementally damaging a component and replacing it into the pumps. 

7.3 Analytical Methodology Summary 

Pressure and acceleration signals were then collected from each subsystem and the 

signals from the (nine) unique steady-state machine operations were segmented for 

analysis. Features from these segments were then extracted and separated into three 

categories (time, frequency and AR features). The residual difference between 

subsystem features were then calculated and normalized with respect to the average 

healthy training data to ensure features are reconditioned to the same order of magnitude. 

The Euclidean distance was then calculated to measure the magnitude of similarity 

between subsystem feature groups.  

7.4 Summary of Results 

Changing speeds and loads were verified to have a profound effect on diagnostic 

features. This variance is what makes condition monitoring variable duty equipment so 

challenging, since it becomes difficult to differentiate between a developing fault and 

changes due to the operational state. Features from parallel subsystems were also 

observed to be closely related in any operational state. Furthermore, the residual 
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difference between subsystems’ features were shown to be independent of the changes 

in operation. Normalized feature residuals where then shown to be sensitive to developing 

faults and the Euclidean distance of a set of features was shown to preserve this trend.   

Statistical analysis of the Euclidean distance values obtained over the complete variable 

duty test show:  

• Consistent results were obtained using 8 unique sets of healthy components from 

both pressure and acceleration signal features. 

• Pressure signal, time and frequency domain features were shown to trend well 

with thrust plate and gear wear fault progressions. 

• Acceleration signal, time and frequency domain features were shown to trend well 

with the cavitation damage fault progression. 

Logical relationships between these trends were discussed and support that, although 

the machine was operating under changing loads and speeds, this approach maintained 

a sensitivity to incipient faults. 

Similar results were shown when taking a closer look at the nine unique steady state 

sections of the duty cycle. However, some interesting observations were also made, such 

as: 

• The low-speed, high-load condition yielded the greatest changes in the pressure 

signal features during the thrust plate and gear wear progressions. 

• The high-speed conditions yielded the greatest changes in the acceleration signal 

features during the cavitation damage progression. 
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• The healthy tests showed that both pressure and acceleration features exhibited 

only marginal variance during any operational state. 

The observed relationships were also discussed and were also found to have logical 

explanations. However, most importantly, the residual results were not significantly 

affected by changing speeds and loads while healthy subcomponents were installed. 

Meaning, this research successfully validates that this approach can be used to improve 

the performance of condition monitoring systems for variable duty equipment. 

7.5 Future Work 

A potential development on this work that would be highly favorable to industry is the 

ability to identify which subsystem the fault is located in. A phenomenon that could be 

exploited to accomplish this was identified in section 6.3, where it was observed that the 

value of a normalized feature was highly correlated to the subsystem in which the fault 

was seeded in. In this work, this information was lost during the Euclidean distance 

calculation when the normalized residuals were squared. Perhaps there is a different 

distance metric that could preserve this information successfully. 

Another avenue that would be worth exploring further is whether this approach can 

identify similar failures occurring simultaneously in multiple subsystems. The opposing 

argument is that similar failures occurring at the same time would produce similar signal 

responses and thus decrease the residual that this approach utilized to detect the fault. 

This could be particularly problematic for hydraulic systems where oil contaminants could 

potentially compromise multiple subsystems. However, it may be worth investigating 

phase coherence to distinguish the failure transients.  
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It would also be critical to investigate how this approach is recommissioned after a 

component has been replaced in one subsystem. The foreseen problem being that the 

new component may need an adequate run-in period before the fault detection system 

can reliably compare the two systems. Although this concern is somewhat addressed by 

using 8 healthy tests with unique combinations of sub-components, it would be interesting 

to study this aspect in an industrial application.  In this study, it may be beneficial to save 

some historical data for intermittent comparison. 

Direct comparisons to other methods of detecting faults in variable duty equipment would 

also be beneficial to this domain of research.  
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