
Economic Geology
 

A shake-up in the porphyry world?
--Manuscript Draft--

 
Manuscript Number: SEG-D-18-00165R2

Full Title: A shake-up in the porphyry world?

Article Type: Express Letters

Corresponding Author: Jeremy Richards, PhD
Laurentian University
Sudbury, Ontario CANADA

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Laurentian University

Corresponding Author's Secondary
Institution:

First Author: Jeremy Richards, PhD

First Author Secondary Information:

Order of Authors: Jeremy Richards, PhD

Order of Authors Secondary Information:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



 1 

A shake-up in the porphyry world? 1 

 2 

Jeremy P. Richards 3 

Mineral Exploration Research Centre 4 

Harquail School of Earth Sciences 5 

Laurentian University 6 

Sudbury, ON, P3E 2C6, Canada 7 

Phone: +1 (705) 675-1151 ext 2349 8 

E-mail: JRichards2@laurentian.ca 9 

 10 

Abstract 11 

Porphyry Cu deposits form in the shallow crustal parts of arc magmatic systems, which root 12 

in the mantle wedge, evolve in lower crustal MASH zones (melting, assimilation, storage, 13 

homogenization) and lower-to-mid crustal hot zones, and accumulate in mid-to-upper crustal 14 

batholiths at depths of 5–10 km. A small proportion of the magma and most of the volatile load 15 

rises due to buoyancy towards the surface, and may erupt as volcanic or fumarolic emissions. 16 

Low levels of volcanism and fumarolic activity, as well as subsurface hydrothermal flow and 17 

alteration, are normal and semi-continuous features of active arc magmatic systems, which may 18 

operate for millions of years. Porphyry Cu deposits, on the other hand, form rarely (typically ≤1 19 

per batholith) and rapidly (≤100,000 years) in the subsurface (2–5 km depth), where hydrous 20 

volatiles exsolved from the underlying batholith are channeled into structurally controlled cupola 21 

zones and cool before reaching the surface. The explosively brecciated character of early 22 

mineralization stages (breccia pipes and stockworks) suggests that the initiation of fluid flow 23 
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 2 

may be essentially instantaneous and catastrophic, with the longer total duration of hydrothermal 24 

activity reflecting slower kinetically controlled fluid exsolution processes, or draining of deeper 25 

parts of the system. These fluids generate intense subsurface hydrothermal alteration, and may 26 

precipitate economic concentrations of Cu-sulfide minerals in potassic alteration zones as they 27 

cool between ~400°–300°C. 28 

The suddenness and infrequency of these ore-forming hydrothermal events suggests that they 29 

are triggered by an external process acting on otherwise normally evolving magmatic systems. 30 

Sudden depressurization or agitation of a large, primed, volatile-saturated or supersaturated mid–31 

upper crustal magma chamber could lead to rapid and voluminous volatile exsolution and fluid 32 

discharge. This sudden volatile flux could result in either a large explosive volcanic eruption if 33 

the surface is breached, or a large magmatic-hydrothermal system that could form a porphyry Cu 34 

deposit if fluid flow is restricted to the subsurface. Candidates for triggers of these destabilizing 35 

events are catastrophic mass wasting such as volcanic edifice collapse, or mega-earthquakes, the 36 

latter possibly causing the former. The frequency of such catastrophic events occurring in 37 

proximity to active arc batholiths may approximate the recurrence rate of formation of large 38 

porphyry Cu deposits. 39 

 40 

Introduction 41 

Porphyry Cu±Mo±Au (hereafter simply porphyry Cu deposits) are one of the most studied 42 

and best understood mineral deposit types in the world, with benchmark studies by Lowell and 43 

Guilbert (1970), Gustafson and Hunt (1975), and Sillitoe (2010) being amongst the most cited 44 

papers in the economic geology literature. And yet a very fundamental question remains 45 

unanswered: What is the trigger for porphyry ore-forming events? We know that porphyry 46 
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 3 

deposits are formed by the release of large volumes (≥10 km3) of hydrothermal fluid from mid- 47 

to-upper crustal batholithic-scale magma chambers (≥100 km3; Burnham, 1979; Cline and 48 

Bodnar, 1991; Richards, 2003, 2005), and numerous studies have shown that these magmatic 49 

systems can have lifetimes of several million years (e.g., Matzel et al., 2006). However, 50 

individual porphyry Cu deposits have lifespans that rarely exceed 100,000 years (e.g., Chiaradia 51 

et al., 2013), and are commonly unique events within the history of their associated batholith. In 52 

addition, the well-established vein paragenesis from high-temperature A-veins to low-53 

temperature D-veins (sensu Gustafson and Hunt, 1975) is rarely repeated or reversed within 54 

individual deposits, indicating a fluid flow regime that evolves from hot to cold (e.g., Reed et al., 55 

2013). Finally, although porphyry-type hydrothermal alteration systems are relatively common in 56 

arc volcanoplutonic complexes, mineralized systems, and especially large economic porphyry Cu 57 

deposits, are rare (by economic definition). So what sometimes triggers these large magmatic-58 

hydrothermal ore-forming events at singular points in the much longer histories of arc magmatic 59 

systems? 60 

Here I first review constraints on the duration of arc magmatic and ore-forming processes, 61 

and then consider the key question of timing. It turns out that, whereas the duration and 62 

mechanics of these processes are reasonably well understood, predicting when major events such 63 

as mega-volcanic eruptions or the formation of large porphyry Cu deposits will occur is 64 

extremely difficult. This is because these geologically sudden, singular events are stochastic, 65 

being the products of multiple cumulative and coincidental events, none of which are 66 

individually rare, but whose correct combination has a low probability of occurrence (Richards, 67 

2013). In particular, it appears that large volcanic eruptions and large magmatic-hydrothermal 68 

events require an external trigger to push an otherwise fairly passively evolving mid-to-upper 69 
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 4 

crustal magmatic system into a state of instability and sudden voluminous fluid exsolution. If 70 

that fluid flux drives magma to the surface, a violent explosive volcanic eruption will ensue; if 71 

the fluid flux is contained and channeled below surface, an ore deposit might be formed. 72 

Candidates for this triggering process include the impact of a mega-earthquake or sudden mass 73 

wasting events such as volcanic edifice collapse (the former perhaps prompting the latter), which 74 

could cause sudden depressurization and agitation of a volatile-saturated or supersaturated 75 

magma chamber, resulting in voluminous fluid exsolution and expulsion. 76 

 77 

Porphyry Cu deposits: Timing is everything 78 

Large (billion tonne) porphyry Cu deposits are globally associated with large batholithic 79 

scale arc plutonic systems (Burnham, 1979; Richards, 2003; Rohrlach and Loucks, 2005; Rezeau 80 

et al., 2016). They do not form within the batholith itself, which represents the source of hot 81 

fluids and metals at mid-to-upper crustal depths of 5–10 km, but rather they form in the shallow 82 

apical parts of the system at depths of 2–5 km, where fluids and bubbly magma are channeled 83 

towards the surface (the cupola zone; Burnham, 1979; Shinohara and Hedenquist, 1997; Cloos, 84 

2001; Weis, 2015). Accurately measuring the age and duration of these magmatic and 85 

hydrothermal systems has been the focus of many recent field and analytical studies, using 86 

combinations of U-Pb zircon dating of igneous rocks, K-Ar and 40Ar/39Ar dating of hydrothermal 87 

minerals, and Re-Os dating of molybdenite in ore assemblages. The results are incontrovertible: 88 

 89 

Magmatic duration: Batholiths of the size necessary to supply the volume of Cu in large 90 

porphyry deposits (≥100 km3; 10 Mt Cu; Richards, 2005) are assembled in the mid- to upper 91 

crust on timescales of millions of years (Matzel et al., 2006; Miller et al., 2007; Fiannacca et al., 92 
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 5 

2017), while the magmatic lifetime of a single upper crustal pluton may extend for up to 106 yr 93 

(Matzel et al., 2006; Chiaradia et al., 2013; Kaiser et al., 2017). These durations are comparable 94 

to timescales for deep crustal heating and melting by underplating of basaltic magmas from the 95 

subduction zone (Petford et al., 2000; Annen and Sparks, 2002; Hawkesworth et al., 2004). 96 

 97 

Porphyritic pluton duration: The typically small volume plutons and dikes found at shallower 98 

crustal (subvolcanic) levels and within the porphyry deposits themselves would have cooled and 99 

crystallized much more quickly (≤105 yr) and even more rapidly if convectively cooled by 100 

groundwater circulation (Norton, 1982; Cathles et al., 1997; Weis et al., 2012). 101 

 102 

Porphyry ore-formation duration: The duration of an individual porphyry ore-forming event 103 

appears to be shorter than the precision of most of our geochronological techniques, and has been 104 

repeatedly shown to be on the order of 105 yr or less (Arribas et al., 1995; Marsh et al., 1997; 105 

Shinohara and Hedenquist, 1997; Weis et al., 2012; Chiaradia et al., 2013; Chelle-Michou et al., 106 

2017; Mercer et al., 2015). Furthermore, many porphyry deposits are characterized by early 107 

high-temperature breccia and stockwork events that likely formed explosively (Sillitoe, 1985; 108 

Skewes et al., 2002; Vry et al., 2010; Harrison et al., 2018). This suggests that the initial event 109 

involved the essentially instantaneous escape of previously exsolved but physically trapped 110 

fluids (e.g., Christopher et al., 2015; Boudreau, 2016; Parmigiani et al., 2016; Edmonds and 111 

Wallace, 2017), with prolonged or pulsed flow of high-temperature fluids reflecting the slower 112 

kinetics of magmatic fluid exsolution, and the draining of fluids from deeper or peripheral parts 113 

of the underlying magmatic system (Candela, 1997; Wallace et al., 1999). 114 
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 6 

Lower temperature alteration may extend the overall hydrothermal duration to ~106 yr, likely 115 

reflecting the thermal (subsolidus) life of the underlying pluton (Goff et al., 1992; Cathles et al., 116 

1997). 117 

 118 

Cyclicity of ore-formation: Detailed paragenetic studies of numerous porphyry deposits 119 

worldwide (e.g., Cannell et al., 2005; Redmond and Einaudi, 2010; Vry et al., 2010; Sepp and 120 

Dilles, 2018) have confirmed the vein paragenesis originally defined by Gustafson and Hunt 121 

(1975) for the El Salvador porphyry Cu deposit in Chile. Early dark mica (EDM) and sinuous, 122 

deformed (ductile) quartz-K-feldspar-anhydrite-sulfide A veins are formed from high 123 

temperature fluids associated with intense potassic (K-feldspar, biotite) alteration, and are 124 

generally only weakly mineralized. These early veins are crosscut by linear, parallel-sided 125 

(brittle), quartz-anhydrite-chalcopyrite-molybdenite B veins deposited from lower temperature 126 

fluids (450°–350°C) with potassic alteration, which, together with disseminated sulfide 127 

mineralization, account for the bulk of ore in most deposits (Redmond et al., 2004; Landtwing et 128 

al., 2005; Klemm et al., 2007). 129 

A and B veins are in turn cut by pyritic D veins, with minor quartz and anhydrite, and 130 

feldspar-destructive sericitic (phyllic) alteration halos that may link to affect large volumes of 131 

rock. This alteration stage forms around and above the potassic zone, and overprints it 132 

downwards and inwards as the hydrothermal system begins to cool and collapse back on itself. 133 

The phyllic zone is generally barren except where some residual Cu from earlier potassic 134 

alteration is preserved, or where molybdenite precipitates in muscovite-stable assemblages 135 

(Westra and Keith, 1981). Fluids in D-veins are typically lower temperature (350°–250°C; 136 

Landtwing et al., 2005; Harris et al., 2005). 137 
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The phyllic zone grades upwards into clay-stable assemblages (argillic and advanced argillic) 138 

which are formed from the condensation of increasingly acidic low density magmatic vapors, 139 

and are generally barren (except where high-sulfidation sulfide assemblages occur in advanced 140 

argillic alteration zones, but these are relatively rare) (Deyell et al., 2004; Harrison et al., 2018). 141 

The entire system is surrounded by a propylitic alteration envelope (chlorite-epidote-142 

carbonate) formed by ground water circulation heated by the underlying intrusions (Norton, 143 

1982; Weis, 2015), with variable contributions from magmatic fluids (Cooke et al., 2014; 144 

Wilkinson et al., 2015). Propylitic alteration begins with initial magmatic emplacement, and 145 

continues to the end of the thermal life of the igneous system. As such it is coeval with (but 146 

peripheral to) early high-temperature potassic alteration, but also overprints this alteration as the 147 

externally circulating fluid invades the collapsing magmatic-hydrothermal system (Sheppard, 148 

1977; Beane and Titley, 1981). 149 

Arribas et al. (1995), Hedenquist et al. (1998), and Reed et al. (2013) have shown that 150 

cooling and depressurization of a single high-temperature magmatic-hydrothermal fluid can 151 

account for all of the alteration styles observed in typical porphyry deposits as described above, 152 

and in theory a single vein could be traced upwards through these alteration styles. However, 153 

there is also a temporal aspect to the evolution, such that as the initial magmatic-hydrothermal 154 

fluid flux wanes, the acidic alteration fronts collapse back inwards and downwards, overprinting 155 

earlier higher-temperature alteration and mineralization. At the same time, cooler external 156 

ground waters also invade the system. 157 

Reed et al. (2013, p. 1379) asserted that there is a “universally observed sequence of vein 158 

cutting relations in porphyry copper deposits”. Reversals in this sequence are almost never 159 

observed, and repetitions of the paragenesis are relatively uncommon. Exceptions where 160 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 8 

repetition of the high-temperature vein stages have been recorded, perhaps related to pulsed 161 

magmatism, include the Boyongan and Bayugo porphyry Cu-Au deposits, Philippines (Braxton 162 

et al., 2018), El Teniente, Chile (Cannell et al., 2005), and Northparkes, Australia (Lickfold et 163 

al., 2003). The normal sequence is interpreted to represent a single hydrothermal event that starts 164 

hot and progressively cools as fluid flow wanes. Repetitions occur in the form of multiple 165 

mineralized centers in some of the largest porphyry districts, but these are typically separate 166 

intrusive–hydrothermal events with their own unidirectional paragenetic sequences, occurring at 167 

different times and mostly in different places within the overall life and spatial extent of the 168 

magmatic system (e.g., Richards et al., 2001; Lickfold et al., 2003; Cannell et al., 2005; Vry et 169 

al., 2010; Braxton et al., 2018). 170 

 171 

Arc magmatic systems: Longer is better 172 

Large porphyry Cu deposits tend to form relatively late in the history of arc magmatic cycles 173 

(Hine and Mason, 1978; Richards et al., 2001; Richards, 2003; Rohrlach and Loucks, 2005; 174 

Rezeau et al., 2016). This observation likely reflects the need for the arc to evolve towards more 175 

felsic, volatile-rich (H2O, S, Cl), and oxidized magmatic compositions, all of which are 176 

prerequisites for upper crustal emplacement and exsolution of a voluminous ore-forming 177 

magmatic-hydrothermal phase (Burnham, 1979; Burnham and Ohmoto, 1980; Candela, 1992; 178 

Richards, 2003, 2011; Rohrlach and Loucks, 2005). Recent studies have shown that it may take 179 

up to 10 m.y. to establish a trans-crustal magmatic system that can deliver evolved magmas in 180 

volume to upper crustal levels (Whattam and Stern, 2016), and perhaps as long as 50 m.y. before 181 

steady-state thermal conditions are established in the arc crust (Rees Jones et al., 2018). Ardill et 182 

al. (2018) describe this process in terms of magmatic focusing, whereby transcrustal magma 183 
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flow, mid–upper crustal pluton assembly, and volcanism become spatially focused (102–105 km2) 184 

over timescales of 105–107 yr. These scenarios require that the axis of magmatism remains fixed, 185 

but subduction zones are dynamic systems, with rapid and frequent changes in the angle of 186 

subduction or subduction polarity, leading to arc migration or cessation. Early termination of arc 187 

magmatism is likely one of the most common reasons for the lack of development of large 188 

porphyry systems in any given arc segment. 189 

The need to emplace a large volume (≥100 km3) of fertile (volatile-rich, moderately 190 

oxidized) magma in the mid-to-upper crust without excessive eruption and venting to the surface 191 

also implies specific tectonic conditions that favor plutonism over volcanism. Transpressional 192 

strain can localize vertical magma ascent and mid–upper crustal pooling (batholithic plutonism), 193 

whereas compressional stress will tend to trap magmas in the deep crust, and extensional 194 

structures will allow magmas to rise directly to the surface (Brown, 1994; Tosdal and Richards, 195 

2001; Richards, 2003; Chaussard and Amelung, 2014). Thus, changes in subduction zone 196 

dynamics leading to changes in upper plate stress conditions, following a prolonged period of 197 

compressional tectonics that built up a large deep-crustal magma volume, may be a first-order 198 

control on voluminous mid–upper-crustal plutonism that could source a large magmatic-199 

hydrothermal system (e.g., Barton, 1996; Richards et al., 2001; Skewes et al., 2002; Cooke et al., 200 

2005; Rohrlach and Loucks, 2005; Rezeau et al., 2016). However, this is still a precondition for 201 

ore-formation, and not necessarily a trigger for the actual ore-forming event. 202 

 203 

Mid–upper crustal magma chambers: Stability to instability 204 

The evidence from studies of batholithic plutonism and related volcanism is that, provided 205 

the flux of magma from depth is sustained, mid–upper crustal magmatic activity can continue 206 
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over periods of many millions of years. Pulsed or semi-continuous magma influx activity is 207 

suggested by peaks in pluton emplacement and volcanic flare-ups, which may repeat on million-208 

year cycles (Glazner et al., 2004; Matzel et al., 2006; Fiannacca et al., 2017; Kaiser et al., 2017; 209 

Pritchard et al., 2018). In between these pulses of activity, when recharge by hotter more 210 

primitive magma from the deep crustal MASH zone (melting, assimilation, storage, and 211 

homogenization; Hildreth and Moorbath, 1988) or deep-to-mid-crustal hot zones (Annen et al., 212 

2006) wanes, mid-to-upper crustal plutons will either completely solidify (if small, or if the 213 

hiatus is too long), or will stagnate as largely crystallized mushes with small volumes of residual 214 

interstitial melt (Eichelberger et al., 2006; Klemetti, 2016). Recharge of these magma chambers 215 

by more primitive magma may trigger explosive eruption of residual felsic melts (Snyder, 2000; 216 

Eichelberger et al., 2006; Schubert et al., 2013; van Zalinge et al., 2017), or lead to hybridized 217 

intermediate-composition magmatism (diorite–granodiorite plutonism, andesite–dacite effusive 218 

volcanism; Eichelberger et al., 2006; Zellmer et al., 2012; Bergantz et al., 2015). 219 

Volcanologists debate the processes that trigger massive explosive eruptions of felsic magma 220 

versus those that lead to more passive plutonism and effusive volcanism (Cashman and Sparks, 221 

2013; Sparks and Cashman, 2017; Wilson, 2017). Overpressuring of a subvolcanic magma 222 

chamber by fluid exsolution (Eichelberger, 1995; Stock et al., 2016; Chelle-Michou et al., 2017; 223 

Edmonds and Wallace, 2017; Tramontano et al., 2017) or gas injection (Caricchi et al., 2018), 224 

perhaps linked to mafic magma recharge (Caricchi et al., 2014; Putirka, 2017), depressurization 225 

by catastrophic mass wasting, such as volcanic edifice collapse (Pinel and Jaupart, 2003; Voight 226 

et al., 2006; Roman and Jaupart, 2014), or seismic shaking (Walter, 2007; Namiki et al., 2016; 227 

Avouris et al., 2017; Nishimura, 2017) have all been suggested as triggers for cataclysmic 228 

explosive volcanism. 229 
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The build-up of dissolved volatile content to the point of saturation and exsolution is 230 

inevitable in already volatile-rich arc magmas as they depressurize, cool, and crystallize 231 

anhydrous minerals during ascent through the crust. Mafic to intermediate composition magmas 232 

containing 4–6 wt.% H2O will saturate in water at pressures of ~2 kb, or depths of ~5–10 km 233 

under lithostatic pressure conditions (Burnham, 1979; Burnham and Ohmoto, 1980). This is the 234 

depth at which mid–upper crustal batholiths assemble, and implies that the magmatic volatile 235 

phase originates from batholithic volumes of magma, well below the levels of small subvolcanic 236 

plutons and dikes, and also below the level of porphyry ore formation (2–5 km). 237 

The separation of a volatile phase will either result in expansion of the melt-crystal-bubble 238 

mixture, lowering its density and driving it towards an explosive eruption at the surface 239 

(Eichelberger, 1995), or will increase the magma chamber pressure if trapped below surface 240 

(Burnham, 1979; Burnham and Ohmoto, 1980; Snyder, 2000). 241 

Christopher et al. (2015), Sparks and Cashman (2017), and Cashman et al. (2017) have 242 

suggested that mid–upper crustal magma chambers cycle between dormancy, unrest, and 243 

instability (eruption), controlled by gravitational instabilities caused by localized accumulation 244 

of volatiles (e.g., Turner et al., 1983; Pritchard et al., 2018). Overturn and coalescence of lenses 245 

of bubble-rich crystal mush may lead to the rapid ascent and expulsion of large volumes of low-246 

density, bubbly magma. Sparks and Cashman (2017) suggest that this may explain the 247 

periodicity of large explosive volcanic eruptions. However, if the fluids and magma cannot vent 248 

readily to the surface, then an alternative possibility is that these instability events could generate 249 

pulses of subsurface hydrothermal fluid flow, which may lead to ore formation if other factors 250 

align. 251 

 252 
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Subsurface venting, hydrothermal alteration, and (sometimes) ore-formation 253 

Volcanic rocks and shallowly emplaced porphyry systems (<1 km depth) are typically poorly 254 

mineralized, because fluids exsolved at low pressure are mostly low density vapors (with only 255 

small volumes of high density brine or even solid salt) that have little capacity to transport metals 256 

(Cline and Bodnar, 1991; Muntean and Einaudi, 2000). In contrast, most porphyry Cu deposits 257 

form at depths of 2–5 km, from supercritical saline fluids or liquids coexisting with higher 258 

density vapors that can efficiently transport Cu, Mo, Au, and other metals (Cline and Bodnar, 259 

1991; Redmond et al., 2004; Landtwing et al., 2005; Rusk et al., 2008). These fluids in turn are 260 

derived from volatile-saturated magmas in the underlying source magma chamber at depths of 5–261 

10 km, as described above. An efficient magmatic-hydrothermal system that could precipitate 262 

economic porphyry-type mineralization at 2–5 km depth will therefore only form if fluid 263 

released from a deeper source magma chamber is not vented directly to surface in an explosive 264 

eruption, but is instead channeled towards the surface under a confining pressure and along a 265 

steep geothermal gradient, cooling to below 300°C at shallow depths (≤1 km; Shinohara and 266 

Hedenquist, 1997). However, the question remains as to what conditions might allow a sudden, 267 

voluminous release of fluid (on time scales of ≤105 yr) from this deep magma chamber, which 268 

has otherwise been evolving and degassing relatively passively on timescales of ≥106 yr? Could 269 

the conditions, and triggers, be similar to those described above for large-scale explosive 270 

volcanic eruptions, with the difference being that the fluid emission was largely trapped below 271 

surface instead of venting? 272 

Under the dormant or passive states described by Sparks and Cashman (2017), volatile 273 

exsolution in the batholith can be expected to be a slow, continuous process as magmas 274 

progressively cool and crystallize. Bubbles of low-density supercritical magmatic-hydrothermal 275 
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fluid will coalesce and slowly escape upwards towards the surface, initially by forming channels 276 

between crystals in the magma mush (Candela, 1997; Boudreau, 2016), then along hydraulic 277 

fractures propagated by their own fluid pressure, and finally through joints and fracture networks 278 

in the brittle overlying cover rocks. If there is no focusing of this fluid flow, it can be expected to 279 

cool rapidly due to wallrock interaction, and cause widespread but weak hydrothermal alteration 280 

(perhaps indistinguishable from groundwater-generated propylitic alteration; e.g., Pritchard et al., 281 

2018), and little or no mineralization (Fig. 1a). But if instead fluids are released in a sudden 282 

pulse, perhaps in response to an instability of the type described by Sparks and Cashman (2017), 283 

and if the ascent of this fluid pulse is focused into an apical part of the batholith and then into a 284 

narrow overlying cupola zone, then conditions may be favorable for ore formation (Shinohara 285 

and Hedenquist, 1997; Weis et al., 2012; Weis, 2015). 286 

Such sudden fluid flow events may be marked initially by diatreme or breccia pipe 287 

formation, as initial high fluid pressures blast a pathway through overlying rocks (Fig. 1b; 288 

Sillitoe and Sawkins, 1971; Norton and Cathles, 1973; Burnham, 1985; Sillitoe, 1985; Vry et al., 289 

2010; Harrison et al., 2018). Bubbly magma and large volumes of fluid will then flow along 290 

these conduits as the entire underlying magma chamber decompresses and more slowly 291 

devolatilizes (Fig. 1c), consistent with the observation that diatremes and breccia pipes are 292 

commonly mineralized immediately after initial emplacement, and intruded by dikes of the same 293 

generative magma (Fig. 2; Sillitoe and Sawkins, 1971; Sillitoe, 1985; Anderson et al., 2009; 294 

Richards, 2011; Large et al., 2018). This implies that the onset of hydrothermal activity in 295 

porphyry systems may be a sudden, even seismic event, triggered by explosive release of 296 

magmatic fluid pressure into shallower, lower-pressure environments above the brittle–ductile 297 

transition zone (400–350°C; Fournier, 1999; Gorczyk and Vogt, 2018). It is important to note 298 
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that many hydrothermal breccia pipes rooted in magmatic breccias do not extend to the surface, 299 

indicating that fluid flow was restricted to the subsurface (Sillitoe and Sawkins, 1971; Sillitoe, 300 

1985; Anderson et al., 2009). Gorczyk and Vogt (2018) also suggest that this process may 301 

explain the narrow cylindrical or pipe-like shape of many porphyry systems (“pencil-302 

porphyries”; Norton, 1982; Skewes et al., 2002; Lickfold et al., 2003). 303 

 304 

A seismic trigger for ore-forming magmatic-hydrothermal events? 305 

Sparks and Cashman (2017) did not speculate on what actually tips a dormant magmatic 306 

system into an unstable state, although they implied that it may result from progressive build up 307 

of low-density volatile-rich lenses within the magma chamber, which eventually overturn 308 

gravitationally (Turner et al., 1983). They also imply that recharge by fresh, volatile-rich mafic 309 

magma contributes to this process. Indeed, recharge is essential if the magma chamber is not to 310 

simply solidify. However, recharge alone is unlikely to be the actual trigger for instability, not 311 

least because recharge must occur almost continuously throughout the history of the batholith (as 312 

noted above), and is not a singular, short-lived event like a major volcanic eruption or the 313 

formation of a porphyry ore deposit (e.g., Putirka, 2017). 314 

It seems more likely that a sudden external event triggers this process, by acting 315 

serendipitously on a primed, volatile-saturated or -supersaturated mid-upper crustal magma 316 

chamber (Tramontano et al., 2017). This event could lead either to a major explosive volcanic 317 

eruption, as envisaged by Sparks and Cashman (2017), or to a major subsurface magmatic-318 

hydrothermal event as proposed here. These two processes are closely related and may occur at 319 

different times in the same magmatic system, but are antithetical in the sense that surface venting 320 

is the opposite of subsurface hydrothermal circulation (e.g., Buret et al., 2017). 321 
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Candidates for this triggering process must be sudden, large-scale events, which are normal 322 

but infrequent occurrences in volcanic arcs, happening only a few times over the life of a 323 

batholith (i.e., with a recurrence rate of once every 105–106 yr). Two possibilities, already 324 

identified as potential triggers of explosive volcanism, are catastrophic mass wasting events, 325 

such as volcanic edifice sector collapse, and M>9 mega-earthquakes (which may themselves 326 

trigger mass wasting events). Sudden unloading of a magma chamber by edifice collapse (e.g., 327 

Voight et al., 2006), or seismic shaking of supersaturated melt or a melt-crystal-bubble mush 328 

(Davis et al., 2007; Cannata et al., 2010; Namiki et al., 2016; Avouris et al., 2017) may trigger a 329 

sudden pulse of fluid exsolution and hydrothermal activity. Analogues are found in the way that 330 

seismic shaking can trigger mud volcanoes and geothermal fluid flow (Manga and Brodsky, 331 

2006), and suddenly depressurizing a shaken can of beer results in explosive effervescence 332 

(Rodríguez-Rodríguez et al., 2014). Seismic pressure release has also been proposed as an 333 

important mechanism for gold deposition in epithermal and mesothermal gold deposits, due to 334 

vapor exsolution (Sibson et al., 1988). 335 

Volcanic sector collapse is a relatively common feature of arc volcanoes (Francis and Wells, 336 

1988), historically occurring at ~4 events per 100 yr. globally (Siebert, 1984), and perhaps at 337 

least once over the life of a typical multi-million-year-old stratovolcano and underlying batholith 338 

(e.g., Cantagrel et al., 1999). Similarly, M>9 earthquakes occur 1–3 times per 100 yr. globally 339 

(McCaffrey, 2008). Given that these are individually stochastic events, and furthermore that they 340 

would need to coincide spatially and temporally with a primed batholith, their probability of 341 

occurrence may be comparable to the observed frequency of formation of large porphyry Cu 342 

deposits globally in the Mesozoic–Cenozoic (1–2 per m.y.; Singer et al., 2008). (Note that 343 
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Wilkinson and Kesler, 2009, predict a higher rate of 244 per m.y. if undiscovered and eroded 344 

deposits are included.) 345 

Thus, it is concluded that an external trigger such as a mega-earthquake and/or catastrophic 346 

mass wasting, acting on a primed, volatile saturated or oversaturated magma chamber, may 347 

explain the sudden, random, and generally singular formation of large magmatic-hydrothermal 348 

systems and associated porphyry Cu deposits in otherwise unmineralized arc magmatic systems. 349 

Similar ideas have been mooted in the past by Sillitoe (1994) and Mpodozis and Cornejo (2012), 350 

and it is suggested that a fruitful avenue of research would focus on the effects of seismic 351 

devolatilization of hydrous magmas leading to explosive volcanism and/or subsurface 352 

hydrothermal ore formation. These are truly stochastic events, with the successful eruption of a 353 

large volcanic plume, or the formation of a large subsurface porphyry Cu deposit, depending not 354 

only on the efficient and maximized operation of a sequence of processes, from mantle magma 355 

generation to fluid exsolution and focusing, but also on the serendipitous timing of an external 356 

trigger that will tip an otherwise relatively passively evolving magmatic system into a state of 357 

sudden devolatilization. 358 
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Figure captions 684 

 685 

Figure 1. From steady state degassing to unstable fluid expulsion. (a) A primed (vapor-saturated 686 

or supersaturated) magma chamber undergoing steady state volcanism and degassing. (b) An 687 

external trigger such as volcano sector collapse or mega-earthquake tips the system into an 688 

unstable state, resulting in massive fluid exsolution and expulsion. (c) If fluid flow is largely 689 

contained below surface, it will cause intense hydrothermal alteration and possibly ore 690 

deposition. 691 

 692 

Figure 2. Magmatic-hydrothermal breccia textures from the Pachapaqui Ag-Zn-Pb-Cu mine, 693 

Huaraz province, Peru. (a) Magmatic-hydrothermal breccia with clasts of wallrock and dacite 694 

porphyry, subsequently intruded by the same porphyry magma which generated the breccia; 695 

late cavity space partially filled by vuggy hydrothermal quartz. Photograph of adit wall. (b) 696 

Magmatic-hydrothermal breccia with “live” clasts of dacite porphyry magma, showing 697 

rounded, cuspate, or “amoeboid” shapes indicating that the clasts were still partially molten 698 

when incorporated into the breccia, presumably by explosive disaggregation of the same 699 

magma. The breccia in this location is unmineralized (DDH101). (c) (Slightly) later 700 

hydrothermal alteration and sulfide mineralization overprinting a different part of the same 701 

magmatic-hydrothermal breccia pipe (DDH28). 702 
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