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Abstract  

Technosols, soils substantially influenced by human activity, are often found on former 

mine sites. In some cases they develop as a result of natural processes on abandoned sites; in 

others, they are intentionally manufactured as part of the mine’s reclamation program. In this 

study Technosols with either 40% woody residuals and 60% mine rock or 80% woody residuals 

and 20% mine rock were constructed and placed over mine rock lysimeters in either 30 cm or 60 

cm layers to evaluate their potential for use in the reclamation of a gold mine in the Canadian 

boreal forest. The Technosol plots were constructed in summer 2012 and have been continuously 

monitored for water chemistry, soil microclimate, and vegetation health. In 2016 soil pits were 

excavated to examine the physical, chemical, and microbial development of Technosol profiles.   

The high organic Technosols had higher concentrations of bioavailable nutrients, reduced 

availability of Mo and Cd, less extreme soil temperatures, increased soil moisture, and reduced 

soil pH compared to the low organic. In all Technosol plot water samples pH was between 7 – 8, 

high levels of DOC were measured, and no elements exceeded site compliance limits specified 

by the Ontario government. Little profile development was observed in the Technosols, but there 

were differences between comparison field and forest soils in terms of chemistry and microbial 

functional diversity. Green alder (Alnus viridis subsp. crispa) grew well on the Technosol plots, 

but bearberry (Arctostaphylos uva-ursi) struggled and after two years almost complete mortality 

was seen. This is likely due to a combination of factors including high soil pH, low moisture, and 

low nutrient availability in the Technosols. Overall the high organic Technosol appears more 

suitable for reclamation, and green alders are a good choice for initial planting.  

 

Keywords: Technosol; mine reclamation; pedogenesis; revegetation; water chemistry   
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Chapter 1. Technosols and reclamation  

Introduction 

Mining and land reclamation  

The expanding range and variety of human-impacted land and the increasing global 

awareness over past decades of the value of natural ecosystems (Brandt, Flannigan, Maynard, 

Thompson, & Volney, 2013) has lead to an increase in research and regulation aiming to 

mitigate damage and return land to a more natural state. Mining companies typically chose to 

reach this more natural state through reclamation, which establishes a self-sustaining ecosystem 

on the land. This is in contrast to restoration, which returns land to an ecosystem resembling the 

one which was originally present (Bradshaw, 1997; SER, 2004). Reclaimed ecosystems are often 

designed with specific goals in terms of ecosystem function, vegetation assemblage, and future 

land use (SER, 2004).  

Mining, particularly surface mining, can severely disturb large areas through the 

deposition of waste materials such as tailings and mine rock, and by the associated removal of 

vegetation, topsoil, and geological materials (Turcotte, Quideau, & Oh, 2009). This impact 

effectively returns the land to a state where primary succession may occur (MacKenzie & 

Quideau, 2010). In the past mine sites in Canada could simply be abandoned once mining had 

finished (Bradshaw, 1997) but today there are specific legislative requirements mandating their 

reclamation. In Ontario, mine sites are not considered closed out until a self-sustaining 

vegetation cover is established, and monitoring of sites must continue until this point (Mine 

Rehabilitation Code of Ontario, 2012).  

In order for most sites to be successfully revegetated, a soil cover must first be added to 

the site (Macdonald et al., 2015). Soils are a crucial component of ecosystems; not only do they 
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support vegetation, they are highly complex systems which regulate energy and water storage 

and mediate the activity of organisms responsible for ecosystem functions such as nutrient 

cycling and productivity (Voroney & Heck, 2015). Mining companies often stockpile the topsoil 

they remove before starting operations to use as their soil cover (Gaster, Karst, & Landhäusser, 

2015; Sorenson, Quideau, MacKenzie, Landhäusser, & Oh, 2011) or they may construct a soil 

from a combination of stockpiled overburden materials and organic materials such as peat 

(MacKenzie & Quideau, 2010). Soils can also be constructed from tailings material with 

additions of organic material, often in combination with inorganic fertilizers (Young, Renault, & 

Markham, 2015).  

Unlike natural soils, these manufactured soils are likely to have few active soil organisms 

and unusual physical and chemical characteristics, along with potential toxicity problems 

(Leguédois et al., 2016). Because manufactured soils are heavily human-influenced, they are 

classified separately from natural soils in the World Reference Base for Soil Resources 

(WRBSR)vas Technosols (IUSS Working Group WRB, 2014). Technosols can be found in all 

types of human-altered environments, not simply mines (Huot, Simonnot, & Morel, 2015); 

however, their presence on mine sites means that Technosols formed from mining activities have 

been the focus of a large portion of research, and this will likely continue (Capra, Ganga, Grilli, 

Vacca, & Buondonno, 2015). As their properties can be very different depending on their parent 

materials (Huot, Simonnot, et al., 2015), an examination of the literature provides a preliminary 

understanding of common themes in their development and characteristics.  

Technosols  

A Technosol is a soil which 1) contains more than 20% by volume of artefacts, which are 

substances created, modified, or moved by human activity, in either the upper 100 cm of soil or 
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to a continuous rock layer or technic hard material, and without a layer which qualifies as 

another soil or a continuous rock or cemented layer within 10 cm of the surface; or 2) has a 

continuous impervious or semi-impervious geomembrane within 100 cm of the soil surface; or 3) 

has a technic hard material such as asphalt or concrete within 5 cm of the surface (IUSS Working 

Group WRB, 2014). The Technosol Reference Soil Group was originally added to the WRBSR 

in 2006 as a result of the expanding global range of human-altered soils; they can be found in 

urban areas, roads, landfills, mine sites, and military sites, among others (IUSS Working Group 

WRB, 2006). Technosol research has increased in the past few decades, with many studies 

looking at their physical-chemical properties and evolution (Capra et al., 2015). Most Technosols 

can be considered young soils, geologically speaking, but in many cases they appear to develop 

rapidly (Leguédois et al., 2016), meaning early pedogenic trends are observable and some 

projections can be made about future evolution.   

Pedogenesis of natural soils is controlled by the five soil-forming factors of parent 

materials, climate, organisms, relief/topography, and time (Jenny, 1941). The interaction of the 

first four factors through time and over varying spatial scales determines the nature of the soil 

that is present in a given area (Bockheim, Gennadiyev, Hammer, & Tandarich, 2005).  Human 

activity, including the anthropogenic origin of the parent materials, the placement of the 

materials, the disturbances they experience, and management activities, is considered a sixth soil 

forming factor in the pedogenesis of Technosols (Leguédois et al., 2016).  

The accumulation of parent materials is the first step in soil genesis (Simonson, 1959). 

The soil parent materials are very important in determining the characteristics a soil can have and 

are particularly important at the regional scale (Bockheim et al., 2005). A soil can be expected to 

inherit basic physical and chemical properties from parent materials, influencing properties such 
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as soil texture and pH (Brady & Weil, 2010). As Technosol parent materials consist of artefacts, 

substances either strongly altered by humans or taken from one environment to another where 

they would not naturally occur, they may have unusual characteristics such as very high or low 

pH, high levels of contamination with metals or organic compounds (Leguédois et al., 2016), or 

minerals with different compositions than is usual for soils under the same conditions (Huot, 

Simonnot, et al., 2015).   

Climate controls the weathering of the parent materials; high temperatures and levels of 

precipitation accelerate pedochemical weathering by increasing leaching and runoff, and 

promoting higher levels of microbial activity and plant growth (Brady & Weil, 2010). 

Technosols are associated with populated areas by their very nature, which means they are often 

in climates which are relatively warm and moist, subjecting them to higher levels of weathering 

(Leguédois et al., 2016).  

The presence of organisms, both vegetation and microorganisms, also influences the 

weathering of soils, as well as controlling the input and cycling of nutrients and organic matter in 

the soil (Brady & Weil, 2010). Initially Technosols have very little biological activity, however 

once there is activity accumulation and humification of organic matter begins (Huot, Simonnot, 

et al., 2015) and changes in soil dynamics and structure can be seen (Leguédois et al., 2016). 

Climate and vegetation effects operate on large, continental scales, but the effects of organisms 

on soil formation are also seen on the microscopic level (Bockheim et al., 2005).  

The topography of a site influences soil formation at a landscape level (Bockheim et al., 

2005) and can change the magnitude of the effects of climate and vegetation. For example, soils 

at the base of a slope receive increased water inputs while soils on slopes erode more easily 

(Brady & Weil, 2010). The influence of topography on Technosols is typically weak, however, 



5 

due to the leveling and filling which often occurs when the initial materials are placed on a site 

(Leguédois et al., 2016).  

In terms of time, as has been stated above, Technosols are recent soils. This, along with 

their presence in generally favourable climates and the fact that their parent materials are not yet 

in equilibrium with their environment, suggests they could have rapid initial pedogenic 

development (Leguédois et al., 2016).  

In all soils, the five soil-forming factors govern processes within the soils which control 

horizon differentiation, the second step in soil genesis (Simonson, 1959). Horizon differentiation 

happens through the addition, removal, transfer, and transformation of materials, such as organic 

matter, clay minerals, carbonates, sesquioxides, and soluble salts, within the soil system 

(Simonson, 1959). These four major processes operate through a variety of simpler processes, 

including hydration, leaching, precipitation, and dissolution (Simonson, 1959). The relative 

importance and balance of processes determines the nature of the soil (Simonson, 1959).  

Typically the first processes which occur in Technosols are leaching of soluble 

compounds, mineral transformations, and organic matter accumulation (Huot, Simonnot, et al., 

2015), though the specifics vary with the Technosol conditions. For example, in a ten-year old 

Technosol formed from excavated Callovo-Oxfordian claystone Na+ and K+ were already 

leaching out of the upper 80 cm, while gypsum formation was detected in the lower layers of the 

Technosol (Scholtus et al., 2015). These and other processes observed were evidence of rapid 

weathering of the parent material, bringing the Technosol profile closer to natural profiles in the 

region formed from similar material (Scholtus et al., 2015). Scalenghe and Ferraris (2009) found 

increased biological activity, organic carbon, aggregation, and structure, as well as lower pH, in 

the upper layers of earthy material deposited behind crib walls four years after installation. A 
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forty-year old Technosol designed in the same manner had developed further, with six 

observable horizons (O/A/AB/Bw/BC/C) (Scalenghe & Ferraris, 2009). Séré et al. (2010) 

observed the rapid development of additional horizons in their constructed soils, as well as 

dramatic changes in compaction and weathering of soluble minerals, over the course of their 

three-year study. On the other hand, Huot et al. (2013) found slower evolution in Technosols 

developing on blast furnace sludge, attributed in part to the vertical heterogeneity of the soil 

resulting from multiple dumping events, with high water retention preventing transfers and 

interactions between the layers. High levels of metal contamination and toxicity can slow the 

development of Technosols, possibly by reducing rates of colonization by vegetation and soil 

fauna (Ciarkowska, Gargiulo, & Mele, 2016).  

Deliberate amendment additions can help improve the physical and chemical properties 

of the Technosol and add nutrients commonly not present in the mineral components (Rokia et 

al., 2014). Using amendments, Technosols can be designed for specific purposes and areas, such 

as urban landscaping (Koolen & Rossignol, 1998) and reclaiming mine- and industry-impacted 

areas (e.g. Sanborn, Bulmer, & Coopersmith, 2004; Séré et al., 2010).  

Technosol use in mine reclamation 

Although Technosols formed from mine waste material without the addition of organic 

material have been seen to support vegetation (Ciarkowska et al., 2016) and to perform 

ecosystem services such as water regulation (Huot, Séré, Charbonnier, Simonnot, & Morel, 

2015), the sites examined in these studies have been abandoned for 70 – 400 years, too great a 

period for modern mining companies. The addition of organic material can speed the process 

considerably and thus make it a viable option for reclamation; in fact, this method is being used 

in the Alberta oil sands (e.g. Sloan, Uscola, & Jacobs, 2016; Sorenson et al., 2011; Turcotte et 
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al., 2009). Chosen amendments typically have local origins to keep costs low, and include 

vegetation and peat removed during site opening (MacKenzie & Quideau, 2010). When these are 

unavailable or not present in large enough quantities for the entire site, industry waste products 

such as paper mill sludge and wood chips (Young et al., 2015) or sewage sludge (Bradshaw, 

1997) are also used.  

Organic amendments not only add nutrients and organic material, they can improve bulk 

density (Sanborn et al., 2004), aeration and water retention/infiltration (Young et al., 2015), 

aggregation and structure (Larney & Angers, 2012), and reduce the mobility of toxic compounds 

(Hattab, Motelica-Heino, Faure, & Bouchardon, 2015). However, amendments must be carefully 

selected if the objective is to reduce contamination issues, as they have also been shown to 

increase leaching of dissolved or colloidal materials in some cases (Hattab et al., 2015; Yao et 

al., 2009) and sometimes can contain contaminants (Elkhatib & Moharem, 2015). Even without 

toxicity problems it can take many years for soil microbial communities in Technosols to 

resemble those of natural soils, and the amendments used to create the soil have an important 

influence on their development (Dimitriu, Prescott, Quideau, & Grayston, 2010; Larney & 

Angers, 2012). The speed at which nutrients are available for plant and microbial use varies and 

depends on the quality and origins of the organic amendment used. Treatments received by 

amendments before being incorporated into the Technosol also have an effect on nutrient 

availability (Larney & Angers, 2012). Commercial fertilizers are often added alongside 

amendments for several years to meet initial nutrient requirements to boost vegetation 

establishment and growth (Sloan et al., 2016) and combinations of amendments are frequently 

required (Larney & Angers, 2012). In addition to consideration of amendment physical and 
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chemical properties, transport costs and availability often dictate what can be used, particularly 

in remote mines sites.   

Consideration must also go into the vegetation species selected for establishment on the 

Technosol. Often a fast-growing cover of annual grasses and forbs is quickly established on 

reclamation sites to stabilize soils, retain nutrients, and provide organic matter input (Macdonald 

et al., 2015). However, if non-native plants are used for the cover they may be very difficult to 

remove and replace with native vegetation later in the reclamation process (Pinno & Hawkes, 

2015; Young et al., 2015). Legumes and other nitrogen-fixing species such as alder are often 

planted to add nitrogen to the soils (Bradshaw, 1997; Macdonald et al., 2015), and drought-

susceptible Technosols may require species which can tolerate dry periods (Bradshaw, 1997). 

Other physical barriers may also be present, such as high bulk density and low porosity due to 

compaction, which can prevent root growth (Stumpf, Pauletto, & Pinto, 2016). Chemical 

restrictions such as pH extremes may mean species should be chosen based on tolerance limits, 

such as acid-tolerant species for sulphidic mine wastes (Yang, Liao, Yang, Chai, & Li, 2016).  

If contaminants are present in the Technosol, their effects on plant growth must be 

considered. Plants are continually exposed to contaminants in soil through their root systems, 

which is where the highest concentrations will be found (Wanat, Joussein, Soubrand, & Lenain, 

2014). Although some common metal contaminants are essential micronutrients, such as copper, 

in high concentrations symptoms of toxicity are seen (Nagajyoti, Lee, & Sreekanth, 2010). Some 

soluble metal and metalloid contaminants are toxic to most plants at low levels, like chromium. 

For others such as arsenic, some plants have evolved systems to suppress uptake and transform it 

into less toxic forms (Nagajyoti et al., 2010).  
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Apart from direct problems arising from toxicity, the effects of vegetation on 

contaminant concentrations can vary. Some studies have found that grass covers reduce the 

leaching of contaminants, while others have seen no effect and still others have found increases 

in the leaching of organic contaminants such as β-endosulfan (Dousset, Ondo Zue Abaga, & 

Billet, 2016). Different plants uptake contaminants at different concentrations. In one study on 

contaminated gold tailings, the uptake of arsenic, antimony, and lead by Graminea spp. was 

higher than found in the birch, horsetail, or fern species tested (Wanat et al., 2014). The location 

of the contaminant within the plant tissue can also be a concern; for example, though Festuca 

pratensis successfully produced a dense cover on a Technosol developed from steel mill wastes, 

the concentration of molybdenum in its shoots was higher than permitted maximum levels for 

forage, making exposure through herbivory possible (Oustriere et al., 2016). Sometimes plants 

can be harvested to prevent the return of contaminants to the soil after senescence. This approach 

has been done with wetland plants such as Typha latifolia to completely remove contaminants 

from the site after they have been sequestered by the plants (Jeke, Zvomuya, Cicek, Ross, & 

Badiou, 2015). However, this may require a degree of management that is difficult to maintain in 

remote mine sites after closure.   

All these considerations aside, vegetation can survive and ecosystem development can 

occur on Technosols associated with mining activities. With careful planning of the materials 

used in construction and the vegetation chosen for planting, the use of Technosols remains a 

good option for mine reclamation.  
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Using Technosols to reclaim a gold mine  

Rationale  

Despite the increasing use of Technosols in mine reclamation there are still many 

questions that are yet to be answered. Studies examining Technosols which have developed on 

mine wastes without intervention (e.g. Ciarkowska et al., 2016; Huot, Séré, et al., 2015) often 

miss their early development. Many studies focus on the fate of contaminants in the system, 

whether it be by looking at stabilization (e.g. Fang, Tsang, Zhou, Zhang, & Qiu, 2016), leaching 

and through-flow (e.g. Jordán et al., 2017), or vegetation uptake (e.g. Oustriere et al., 2016). 

Studies in the Alberta Oil Sands have less of a focus on contamination and look more at 

microbial and vegetation community development (MacKenzie & Quideau, 2010; Pinno & 

Hawkes, 2015), but as they are all examining Technosols with the same parent materials in the 

same region results may not be applicable to all Technosols. Therefore, long-term studies with 

continuous monitoring must be conducted on Technosols of various types to provide a more 

complete understanding of their behaviour and effectiveness.  

The current study was designed to provide the opportunity to monitor the development of 

Technosols designed for mine reclamation from construction onwards. Using local mine and 

forest industrial waste products, the goal was to observe conditions important for reclamation, 

such as trace metal concentrations in through-flow and vegetation growth, and Technosol profile 

development through time.  

Study site  

The study was conducted on a gold mine in northern Ontario, specifically Barrick Gold’s 

Williams Mine in Hemlo, Ontario. This mine consists of both an open pit and underground mine, 
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which has resulted in the generation of a large pile of mine rock; the need to revegetate this pile 

was the original driver of the study.  

The mine is located in the Canadian Shield, in the eastern part of the Schreiber-Hemlo 

greenstone belt of the Wawa subprovince, part of Archean Superior province (Muir, 2002). The 

deposit has experienced large amounts of deformation and metamorphism and is unusual for an 

Archean deposit in that it has no mafic volcanic rocks and lacks major quartz and carbonate 

veins in the mine sequence (Muir, 2002), although there are locally present carbonate-rich ores in 

the main orebody and western extension (Pan & Fleet, 1995). There is a significant amount of 

molybdenite throughout the deposit and pyrite is also common (Pan & Fleet, 1995). The 

metasedimentary and intermediate volcanic rocks which form a large part of the rock pile are 

considered non-acid generating; they have a large neutralization potential due to the presence of 

carbonate minerals.  

As part of the boreal forest ecosystem, the forest is dominated by a mixture of coniferous 

species including black spruce (Picea mariana (Mill.) B.S.P.), jack pine (Pinus banksiana 

Lamb.), tamarack (Larix laricina (Du Roi) Koch), and balsam fir (Abies balsamea (L.) Mill.), 

with deciduous hardwoods such as trembling aspen (Populus tremuloides Michx.), white birch 

(Betula papyrifera Marsh.), willow (Salix sp.), and alder (Alnus sp.)  (Sims, Baldwin, Kershaw, 

& Wang, 1996; Zoladeski & Maycock, 1990). Podzols are the dominant soil type in the region, 

characterized by a reddish illuvial spodic (Bhf/Bf) horizon rich in Fe/Al overlain by a bleached 

eluvial (Ae) horizon from which these elements were leached (IUSS Working Group WRB, 

2014).  Mean monthly temperatures range from 15°C in July and August to -14°C in January; 

precipitation varies from 122 mm in September to 47 mm in February (Environment Canada, 

2017). 
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Study design  

Initial research determining which combinations of mine rock and local organic 

amendments were most able to support plant growth was done by Watkinson, Lock, Beckett, & 

Spiers (2016). Using crushed non-acid generating intermediate volcanic or metasedimentary 

rocks from the Williams mine rock pile in combination with woody residuals from the former 

Domtar White River Sawmill (White River, ON) or primary paper sludge from Tembec Pulp Inc. 

(Marathon, ON), a series of Technosols with varying organic contents were created. A 10-week 

growth chamber study with annual ryegrass was conducted on the various Technosols, with the 

results suggesting Technosols made from the mine rock combined with the woody residuals were 

the best option for use at the mine scale studies (Watkinson et al., 2016).  

Based off these results, two Technosols were constructed in summer 2012 using woody 

residuals combined with the crushed, non-acid generating intermediate volcanic and 

metasedimentary rocks in either an 80:20 or 40:60 ratio by volume, giving high organic and low 

organic Technosols. These Technosols were then placed on test lysimeters constructed in the 

following manner: an impermeable geomembrane-lined berm was covered with a layer of coarse 

mine rock followed by a layer of crushed mine rock, then capped with either 30 cm or 60 cm of 

one of the Technosols. The surface area of the plots once the Technosol was placed was 

approximately 4 m x 4 m, with each Technosol-depth combination replicated three times for a 

total of twelve plots. At the base of each lysimeter a drainage tube was attached to the 

geomembrane and connected to a large holding vessel designed to collect water samples 

representative of the through-flow from the plot (Watkinson, 2014).  

Within the Technosol layer of each system a series of sensors was installed three weeks 

after plot construction at multiple depths to monitor soil microclimate conditions. 5TM soil 

temperature/moisture sensors (Decagon Devices) were initially installed at 10 cm, 30 cm, and, in 
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the thick treatments, 60 cm depths. In July 2014 5TM sensors were added at 5 cm depths in nine 

of the plots; the remaining three had 5 cm sensors added in July 2015. One MPS-2 water 

dielectric potential/temperature sensor (Decagon Devices) was installed in each plot at either 30 

cm or 60 cm, depending on the treatment thickness. There was also a soil leachate sampling plate 

made of porous borosilicate glass (UMS, SPG120 Leachate Sampling Plate) installed in each 

plot approximately 5 cm above the Technosol/mine rock interface to sample plant root-available 

water held in the Technosol (Watkinson, 2014). The leachate sampling plates were connected via 

tubes to 1 L bottles stored in boxes below ground-level. There were three sample bottles plus one 

empty bottle per box, and they were connected to a single system which allows the bottles to be 

placed under a vacuum to draw water out of the plots into the bottles. Three rainwater collectors 

were also present on site.  

In summer 2014 two comparison soil sites were selected for sensor installation to provide 

a comparison to the plot microclimate measurements. The first of these was the field 

immediately behind the plots; this field was once covered with infrastructure including buildings 

and parking as part of the Newmont Golden Giant Mine, but has since been reclaimed using a 

combination of stockpiled soil, fertilizer, and MTO grass and legume seed mix. This site is 

referred to as the successional field, and has 5TM sensors installed at 5 cm, 10 cm, 15 cm, 30 

cm, and 60 cm depths. The second site is a little over 1 km from the site, in an upland secondary 

forest stand. 5TM sensors were installed here at 5 cm, 10 cm, 15 cm, 20 cm, and 25 cm, just 

above where the soil meets bedrock. A climate station was also installed in summer 2014, 

located between the centre two plots, to record air temperature and relative humidity at 2 m (VP-

3 Humidity/Temperature sensor, Decagon Devices) and precipitation (ECRN-100 Precipitation 

sensor, Decagon Devices). 
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Sixteen green alders (Alnus viridis subsp. crispa (Aiton) Turrill) were planted on two of 

the three replicates of each treatment in 2013, and more were planted in 2015 to bring the total 

number of surviving alders on each vegetated plot to nine. Green alders were selected because 

they are native nitrogen fixers capable of growing on disturbed sites (Lefrançois et al., 2010). 

They were obtained from roadsides in the area. Also in 2015, twelve bearberry plants 

(Arctostaphylos uva-ursi (L.) Spreng.) were planted on each of the vegetated plots. Bearberries 

are a low-growing shrub which forms a ground cover on dry soils low in nutrients (Krpata et al., 

2007); they are also native to the area. Bearberry plants were purchased from Connon Nurseries, 

Waterdown, ON.  

Previous findings 

Work on the Technosol plots was conducted in 2013 and 2014, focusing on the soil 

moisture and temperature regimes of the four Technosol plots types, as well as initial vegetation 

survival rates. The results indicated that though none of the plot moisture contents dropped 

below the permanent wilting point, there may not be sufficient moisture for long-term 

successional growth, particularly on in the low organic Technosol plots (Watkinson, 2014). The 

high organic content and 60 cm Technosols covers also showed more of an insulating effect 

against temperature extremes, though all Technosols still dropped below 0°C in winter 

(Watkinson, 2014).  

Alder survival rates were low after the 2013 planting; by the end of that summer the 

highest mean survival rate in a Technosol treatment was 43% in the 80% organic, 30 cm plots. 

The 40% organic, 60 cm plots had the lowest mean survival rate (13%). The differences in the 

plots appeared to have been due to the differences in the soil moisture content; plots with higher 

moisture particularly at 10 cm depth had higher survival rates. The timing of the planting 
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(August) and the method of transplant (bare root) were also though to have contributed to the 

low alder survival rates (Watkinson, 2014). Only 18 of these original alders survived to 2015, a 

survival rate of 14%. 

Objectives of this study  

The objectives of this study were to continue the evaluation of the ability of a Technosol 

constructed from local mine rock and woody residuals to be used in the revegetation of that 

mine, and to monitor biopedochemical development through time. Chapter 2 of this thesis 

focuses on the dynamics of chemistry of the Technosol plots, monitoring the changes in 

chemical parameters such as pH and concentrations of trace elements in soil porewater and 

gravity through-flow over four years. Results are contrasted to the initial soil chemistry of the 

Technosols. In Chapter 3, changes in the Technosol profiles with depth are examined. 

Observations of the profile development, the soil temperature and moisture through time, and the 

microbial functional diversity within the profiles are documented. Chapter 4 describes the health 

and survival of the green alders and bearberries planted on the Technosol plots, and includes an 

analysis of the nutrient concentrations present in the leaves of the two species.   
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Chapter 2. Chemistry of a mine rock Technosol in the Boreal Shield  

Introduction 

Technosols are defined as soils which are heavily influenced by human activity, typically 

having parent materials which have been created, modified, or brought to the surface by 

industrial activities such as mineral extraction (IUSS Working Group WRB, 2014). Technosols 

can be formed from mine waste materials such as tailings (Santini & Fey, 2016) and waste rock 

(Ciarkowska et al., 2016), or stockpiled soil, vegetation, and geologic materials removed during 

site establishment. The transformation of these materials can occur slowly through natural 

pedogenic processes (Ciarkowska et al., 2016; Huot et al., 2013) or be facilitated through human 

intervention. Intentionally constructed Technosols frequently contain organic amendments such 

as peat (Audet, Pinno, & Thiffault, 2015), wood chips or paper mill sludge (Young et al., 2015), 

and sewage sludge (Asensio, Covelo, & Kandeler, 2013) to improve soil conditions for 

vegetation growth. They often play a large role in mine reclamation, as part of the reclamation 

process involves returning soil material to sites which have been stripped of overlaying 

vegetation, soil, and geological materials prior to site revegetation (MacKenzie & Quideau, 

2010). 

 Due to their industrial origins, Technosols can contain metals and other contaminants in 

concentrations which are harmful to both human health and the environment (Huot, Séré, et al., 

2015; Yao et al., 2009). In addition to the elements within the mine waste itself, the effect of the 

organic amendments on the mobility and release of toxic trace elements is not straightforward 

and depends on the amendment used. Additions of chipped wood have been seen to decrease 

trace element mobility while composted sewage sludge decreased the mobility of some elements 

and increased others (Hattab et al., 2015). Sewage sludge has been found to increase the leaching 

of Cu and Zn, as well as other metals depending on chemical characteristics such as pH, 
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electrical conductivity, and redox conditions; the sludge treatment process has also been seen to 

have an impact (Yao et al., 2009). Biochar can act as a metal immobilizer (Puga, Melo, de 

Abreu, Coscione, & Paz-Ferreiro, 2016) but again the source of the organic material used to 

create the biochar has an impact on its chemical and physical properties (Fang et al., 2016).  

With these considerations in mind, site-specific studies must be conducted on Technosols 

constructed from mine rock with organic amendments intended for use in mine reclamation. The 

current study was conducted on Technosols consisting of mine rock from a gold mine in northern 

Ontario, combined with wood waste from a local lumber mill. Assessments of the total and 

bioavailable content of elements within the Technosol were done not only provide information 

about the potential environmental risks, but give information on the nutrient status of the 

Technosol, a potentially limiting factor to plant growth on these soils (Young et al., 2015). Water 

through-flow samples were examined to document element leaching profiles from the Technosol 

into surrounding surface or groundwater. Soil pore water samples were taken to determine the 

chemical composition of water in direct contact with plant roots (Concas, Ardau, Di Bonito, 

Lattanzi, & Vacca, 2015).  

Methods 

Study area 

The Williams Mine is a gold mine owned by the Barrick Gold Corporation and located in 

Hemlo, ON, north of Lake Superior and approximately 350 km east of Thunder Bay. It consists 

of both an open pit and underground mine. The mine is situated in the Canadian Shield, in the 

eastern part of the Schreiber-Hemlo greenstone belt of the Wawa subprovince, part of Archean 

Superior province (Muir, 2002). There is a diverse set of metals including antimony, arsenic, 
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barium, mercury, molybdenum, and vanadium present in the Hemlo deposit, with no mafic 

volcanic rocks and a lack of major quartz and carbonate veins (Muir, 2002).  

The soils of the area are typically Podzols, having a reddish illuvial (Bhf/Bf) horizon rich 

in iron and aluminum that has been leached from the overlying grey eluvial (Ae) horizon (IUSS 

Working Group WRB, 2014). As part of the boreal forest ecosystem, the dominant trees of the 

region include black spruce (Picea mariana (Mill.) B.S.P), jack pine (Pinus banksia Lamb.), 

balsam fir (Abies balsamea (L.) Mill.), trembling aspen (Populus tremuloides Michx.), and white 

birch (Betula papyrifera March.) (Sims et al., 1996; Zoladeski & Maycock, 1990).  

Site design 

 Two Technosols were manufactured in summer 2012 by combining woody residuals and 

crushed non-acid generating mine rock in fixed ratios (40:60 and 80:20 by volume).  The 

residuals included sawdust, bark, and off-cuttings of boreal coniferous trees, and were produced 

by the White River Forest Products sawmill which is approximately 60 km east of the mine site 

(Watkinson, 2014). These Technosols were then placed on test lysimeters in the following 

manner: an impermeable geomembrane-lined berm was covered with a layer of coarse mine rock 

followed by a layer of crushed mine rock, then capped with either 30 cm or 60 cm of one of the 

Technosols. Each Technosol-depth combination was replicated three times for a total of twelve 

plots (Watkinson, 2014); the area of the plots was approximately 4 m x 4 m.   

 Attached to the geomembrane at the base of the lysimeter was a drainage tube connected 

to a large holding vessel designed to collect water samples representative of the through-flow 

from the plot. Water samples taken from these barrels are referred to as gravity through-flow. 

There was also a soil leachate sampling plate made of porous borosilicate glass (UMS, SPG120 

Leachate Sampling Plate) installed in each plot approximately 5 cm above the Technosol/mine 
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rock interface to sample plant root-available water (soil pore water) held in the Technosol. These 

samples are referred to as tension water. The leachate sampling plates were connected via tubes 

to 1 L bottles stored in boxes below ground-level. There were three sample bottles plus one 

vacuum bottle per box, and they were connected to a single vacuum system for sample 

collection. Three rainwater collectors were also present on site.  

 Green alders (Alnus viridis subsp. crispa) were planted on eight of the twelve plots in 

2013 and again in 2015 to bring the number on each up to at least nine. At this time twelve 

bearberries (Arctostaphylos uva-ursi) were also planted on each of the vegetated plots. 

 Near the research plots were mine rock weathering test cells operated by the Williams 

Mine. These cells were set up in a similar manner to the Laurentian ones, but lack soil cover. 

They were designed to monitor the release of elements from the uncovered mine rock piles 

through time.  

Soil sampling and analysis  

 Samples were collected from all plots following construction in July 2012 and analysed 

for moisture, CNS, and total and bioavailable ions. Samples were sent to the Forest Resources & 

Soils Testing Laboratory (Lakehead University) for CNS analysis (Elementar Vario EL Cube). 

Samples measured for total ions were sieved and the 2 mm portion ground to ensure 

homogenization. 0.5 g of sample was weighed into 50 mL Teflon™ tubes and run through a 4-

step digestion process:  

1) 10 mL of 9:1 concentrated HF: concentrated HCl added; samples cooked for 210 min at 

112°C until dry 

2) Step 1 repeated  
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3) 7.5 mL concentrated trace HCl and 7.5 mL concentrated trace HNO3 added; samples 

cooked for 250 min at 112°C until dry 

4) 0.5 mL concentrated HF, 2 mL concentrated trace HCl, and 10 mL concentrated HNO3 

added; samples cooked for 60 min at 112°C 

Samples were allowed to cool before being diluted to 50 mL with 18 MΩ deionized water.  

 To measure bioavailable ions, 3 g of the 2 mm portion of sieved soil was weighed into 

Falcon™ tubes and 30 mL of 0.01 M LiNO3 was added. Samples were placed on the shaker 

overnight at 200 rpm and centrifuged the next day at 2000 rpm until most particulates were 

removed from the supernatant. Samples were then gravity-filtered through Whatman® 42 filter 

paper and the supernatant collected and stored at 4°C until analysis.  

 Both total and bioavailable samples were quantified by quadrupole ICP-MS (Varian 810) 

using normal sensitivity mode optimized to maximize the signal-to-noise ratio. To correct for mass 

bias and calibration drift an internal standard solution containing 10 μg/L of Be, Re, Ru, was bled 

into the sample uptake line using a glass T-shaped mixing chamber (Glass ExpansionTM). Spikes, 

duplicates, and certified reference materials (TILL-1, LKSD-2 (NRCan); Montana II Soil NIST® 

SRM® 2711a) were included for quality control.   

Elements monitored throughout the study include the macronutrients calcium, magnesium, 

potassium, and phosphorus; the micronutrients boron, copper, iron, manganese, molybdenum, 

nickel, and zinc; and the trace elements arsenic, antimony, and cadmium. These last three are 

elements of interest to the mine (along with molybdenum) due to the presence of molybdenite, 

arsenopyrite, realgar, and stibnite in the deposit (Muir, 2002). 

Statistical analysis was performed using R 3.3.2 (R Core Team, 2016). Moisture, CNS, 

and bioavailable nutrient results were compared between treatments and organic content levels 

using analysis of variance and independent t-tests. When calculating mean bioavailable values, 
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samples below detection limit were excluded from the calculations; elements with means where 

this occurred are noted in the text.  

Water sampling and analysis 

 Water samples were collected once in October 2012 (where available) after the initial site 

set-up was completed. Water sampling trips were then made three times between the months of 

May and October for 2013, 2014, and 2015. In 2016 sampling trips were made once monthly 

from May to November.  

 Two gravity through-flow samples were collected in 500 mL jars from each barrel during 

sampling trips. Water samples were also collected when possible from the Williams mine rock 

cells in the same manner as for the gravity through-flow samples. Tension water samples were 

obtained by pressurizing the bottles with a hand pump to -0.5 PSI and leaving the bottles to 

collect water overnight. In 2016, bottles were pressurized to -0.75 PSI with a vacuum pump 

(UMS, VacuPorter) before being left overnight. Rainwater samples were collected each trip and 

the collectors emptied. In 2013 natural water samples were taken from the White River, a rain 

gauge in White River, and the Aubrey Falls ‘public spout’ on Highway 129.  Samples were 

refrigerated and transported to Laurentian University for filtering and subsequent analysis.  

 The pH and electrical conductivity of the unfiltered water samples were analyzed with a pH 

combination electrode (Accumet) and a conductivity probe (Accumet) attached to an Accumet 

(AB15) meter and Accumet (AB30) meter, respectively. Quality control included a duplicate analysis 

and recalibration of pH, EC, and Eh instruments approximately every 20 samples.  

 Water samples were analyzed for the anions Cl-, NO3
-, and SO4

2- after being filtered 

through 0.45 µm filters by ion chromatography (DX-120, 0.5 M/0.5 M Na2CO3/NaHCO3 eluent). 
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Quality control samples consisted of a blank, duplicate, spike, and certified reference material 

(QCSPEX-AI, Fisher Scientific) approximately every 20 samples. 

Dissolved organic carbon water samples were filtered and acidified to 2% with trace metal 

grade HCl. DOC was then quantified by the non-purgeable organic carbon (NPOC) method on a 

Shimadzu TOC-5000A/5050A TOC-analyser. Quality control included method blanks, duplicates, 

and internal standards.  

The concentration of dissolved ions was analysed by ICP-MS, as described above. Water 

samples were filtered through 0.45 µm filters and acidified with trace metal grade HNO3 to 2% 

acid prior to analysis. Quality control samples consisted of a blank, duplicates, two spiked 

samples, and certified reference water material (TMDA 51.3). The same elements examined in 

the soil samples were chosen for the water chemistry (Ca, K, Mg, P; B, Cu, Fe, Mn, Mo, Ni, Zn; 

As, Cd, Sb). 

Results 

Soil chemistry 

Soil organics  

The moisture content of the Technosol treatments reflected the organic content, and to a 

lesser extent the depth, of the treatments (Figure 1). Though there were large variations in 

moisture present in the replicates for each treatment, particularly in the 80% organic, 60 cm 

treatment, overall the trend was increasing moisture with increasing organics and depth. A one-

way ANOVA did not find the differences in treatment significant (F(3, 8) = 3.09, p = 0.090); 

however, when the treatments were grouped by organic content the difference in moisture 

between the 80% organic Technosol and the 40% organic Technosol was significant (t(10) = 

3.05, p = 0.012).  
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Figure 1. Percent moisture content of Technosol treatments.  

 

Because depth has no influence upon the CNS content of the Technosols, results are 

reported for the two levels of organics only (Table 1). These results were consistent with 

expectations: the 80% organic Technosol had significantly higher %C and %N content than the 

40% organic Technosol (t(10) = 12.96, p < 0.0001; t(10) = 8.10, p < 0.0001). However, the C/N 

ratio between the two Technosols was not significantly different (t(10) = 0.74, p = 0.476). 

Though the 80% organic Technosol appeared to have slightly higher %S, this difference also was 

not significant (t(10) = 1.23, p = 0.247). 

 

Table 1. Mean (± SD) percentages of C, N, and S with C/N ratios in low organic and high organic 

Technosols. Letters indicate significant differences within columns.  

Technosol C% N% S% C/N 

Low organic 

(40%) 

4.37 a  

± 0.56 

0.05 a  

± 0.01 

0.38 a  

± 0.13 

81.7 a  

± 24.0 

High organic 

(80%) 

15.48 b 

± 2.01 

0.17 b  

± 0.03 

0.47 a  

± 0.12 

92.4 a  

± 10.3 
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Total and bioavailable ions  

Differences in total and bioavailable ions were examined between the high and low 

organic Technosols, but not between treatments with different depths as that should have no 

impact upon the concentrations within samples, but simply increases the overall quantity present 

in the plots. Mean concentrations (± SD) of total ions including macronutrients (Ca, K, Mg, P), 

micronutrients (B, Cu, Fe, Mn, Mo, Ni, Zn), and elements of interest (As, Cd, Sb) are presented 

in Table 2 and 3. The mean bioavailable concentrations of the same elements (when above 

detection limits) are shown in Table 4.  

Where possible, t-tests were performed to determine whether there were significant 

differences in bioavailable concentrations with changing organic content (Table 4). The 80% 

organic Technosol contained significantly higher concentrations of bioavailable macronutrients 

(Ca, K, Mg, and P) as well as Mn. The high organic Technosol also contained significantly lower 

concentrations of bioavailable Mo. There was no significant difference in concentrations of As, 

B, Cu, or Fe. Differences in Cd could not be tested as all 80% organic samples were below 

detection limits. All bioavailable concentrations of Ni, Sb, and Zn were below detection limits.  

The percentage of the total concentration which was bioavailable was below 1% for all 

elements where comparison was possible apart from arsenic. In the 40% organic Technosol, 

2.79% of the total As was potentially bioavailable, while 1.55% was bioavailable in the 80% 

Technosol.  
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Table 2. Total concentrations of nutrients in low and high organic Technosols (mean ± SD, n = 6) 

Technosol 
B 

mg/kg 

Ca 

mg/kg 

Cu 

mg/kg 

Fe 

mg/kg 

K 

mg/kg 

Mg 

mg/kg 

Mn 

mg/kg 

Mo 

mg/kg 

Ni 

mg/kg 

P 

mg/kg 

Zn 

mg/kg 

Low org 

(40%) 

25  

± 4 

33800  

± 2503 

26  

± 4 

21400  

± 2626 

16650  

± 596 

12567  

± 1097 

408  

± 38 

56  

± 14 

23  

± 3 

487  

± 46 

105  

± 5 

High org 

(80%) 

27  

± 9 

28916.7 

± 1797 

25 

± 11 

18233  

± 1751 

15667 

± 771 

11500 

± 1022 

392 

 ± 31 

47 

 ± 10 

18  

± 2 

452  

± 30 

115 

 ± 25 

 

Table 3. Total concentrations of elements of environmental interest in low and high organic Technosols (mean ± SD, n = 6) 

Technosol 
As 

mg/kg 

Cd 

mg/kg 

Sb 

mg/kg 

Low org 

(40%) 

6.06  

± 0.40 

0.29  

± 0.01 

0.42  

± 0.07 

High org 

(80%) 

5.37  

± 1.00 

0.36  

± 0.10 

0.33 

± 0.03 

 

Table 4. Bioavailable concentrations of nutrients and elements of interest in low and high organic Technosols (mean ± SD, n = 6*) 

Technosol 
As B Ca Cd Cu Fe K Mg Mn Mo P 

mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 

DL 0.002 0.004 0.009 0.0003 0.001 0.001 0.002 0.0008 0.0004 0.0008 0.002 

Low org 

(40%) 

0.17 a 

± 0.10 

0.19 a 

± 0.16 

130 a 

± 12 

0.0027 

± 0.0007 

0.04 a 

± 0.05 

0.38 a 

± 0.21 

49 a 

± 4 

18 a 

± 2 

0.57 a 

± 0.19 

0.20 a 

± 0.04 

0.22 a 

± 0.15 

High org 

(80%) 

0.08 a 

± 0.04 

0.09 a 

± 0.08 

189 b 

± 15 
<DL 

0.02 a 

± 0.01 

0.26 a 

± 0.17 

59 b 

± 4 

27 b 

± 4 

1.61 b 

± 0.20 

0.08 b 

± 0.03 

1.33 b 

± 0.55 

* Means ± SD in italics represent mean concentrations of samples above the detection limit (at least one sample < DL excluded from calculations)  

All Ni, Sb, and Zn concentrations were below detection limits (0.0003 mg/kg, 0.018 mg/kg, and 0.001 mg/kg respectively) 

Letters indicate significant differences between means with a column (p < 0.05) 
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Other elements where a decreasing proportion was bioavailable with higher organic 

content were B, Cu, Fe, and Mo. The change in Fe was small (0.00018% to 0.00014%), while Cu 

availability decreased by half (0.08% from 0.16% bioavailable). Boron availability went from 

0.76% to 0.32%. Molybdenum, which is an element of environmental interest as well as a 

micronutrient, decreased 0.19% from 0.35% availability in the low organic Technosol to 0.16% 

in the high organic.  

Higher percentages of macronutrients (Ca, K, Mg, P) and Mn were bioavailable in the 

80% Technosol, with increases ranging from 0.08% in K to 0.27% in Ca and Mn. Phosphorus 

availability increased 0.25%, from 0.04% in the low organic to 0.29%.  Magnesium availability 

went from 0.14% to 0.24%, an increase of 0.1%.  

In the low organic Technosol 0.94% of Cd was bioavailable; as the high organic samples 

were all below the detection limit no further comparison was possible. Again, Ni, Sb, and Zn 

could not be analysed due to all bioavailable concentrations being below detection limits.  

Water chemistry  

Basic chemistry  

 The pH of both the gravity through-flow and the tension water samples was neutral to 

alkaline in all years, typically between 7 and 8.5, and no different from the pH of the uncovered 

Williams mine rock water samples (Figure 2). There was no difference observed between the 

high and low organic Technosols, or between the 30 cm and 60 cm thick covers.  
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Figure 2. pH of Technosol gravity through-flow (GT), Technosol tension water (TW), and Williams mine 

rock test cell (MR) water samples from Oct 2012 to Nov 2016 with loess curve and 95% CI.  

 

There were clear differences in electrical conductivity (μS/cm) between gravity through-

flow, tension water, Williams mine rock, and rainwater samples (Figure 3). However, there were 

no treatment differences observed between low and high organic soils, or thick and thin covers. 

The conductivity of the gravity through-flow samples averaged 700 to 1000 μS/cm, with a high 

value of 2090 μS/cm from the 60 cm high organic treatment in November 2016. This was 

noticeably higher than the tension water samples which are typically between 400 – 500 μS/cm, 

though values as high as 1000 μS/cm were seen in 2012 and 2013. Below the Technosol plot 

samples are the Williams mine rock water samples, which are around 100 – 300 μS/cm. The 

rainwater samples have the lowest conductivity, at less than 100 μS/cm. Natural water DOC 

concentrations measured in 2013 were similar to rainwater concentrations.  
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Figure 3. Electrical conductivity (μS/cm) of Technosol gravity through-flow (GT), Technosol tension 

water (TW), and Williams mine rock test cell (MR) water samples from Oct 2012 to Nov 2016 with loess 

curve and 95% CI. 

 

Concentrations of sulphate showed a similar pattern to electrical conductivity: though 

there were no differences observed between Technosol treatments, the concentration based on 

sample type was highest in gravity through-flow, then very similar between tension water and 

Williams mine rock water (Figure 4). Gravity through-flow varied between 100 – 1400 mg/L, 

while the average fluctuated from 400 to 600 mg/L between years. Tension water and Williams 

mine rock water samples both had an average concentration of approximately 100 mg/L, though 

tension water samples had a larger range up to around 300 mg/L, occasionally being over 600 

mg/L. The rainwater sulphate concentrations were low, under 10 mg/L for all.  
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Figure 4. Concentrations of SO4

2- (mg/L) from Technosol gravity through-flow (GT), Technosol tension 

water (TW), and Williams mine rock test cell (MR) water samples from July 2013 to Nov 2016 with loess 

curve and 95% CI. 1 sample < DL (0.1 mg/L).  

 

The chloride concentrations within the Technosol plots showed no difference between 

high and low organic thick and thin cover treatments. There was also no difference visible 

between the Technosol chloride concentrations and the Williams mine rock or rainwater samples 

from 2014 to 2016: all chloride concentrations were below 10 mg/L (excepting a single sample 

at 23 mg/L). However, in the summer of 2013, one year after the plots were established, larger 

fluxes of chloride were seen in several of the low organic Technosol plots (from 30 – 55 mg/L).  

Nitrate concentrations were below 10 mg/L in all samples, and apart from the May 2014 

sampling period remained below 5 mg/L. Gravity through-flow samples had higher 

concentrations than tension water samples, about 70% of which were below the detection limit of 
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0.01 mg/L (126 of 189 TW samples). Williams mine rock water samples had similar nitrate 

levels to the gravity through-flow samples, while rainwater samples were typically below the 

detection limit or very low. There was no difference in nitrate concentrations in water samples 

taken from vegetated and unvegetated Technosol plots.  

All Technosol plots had higher concentrations of DOC than the Williams mine rock 

water samples, which were extremely low, and the rainwater samples, which were slightly 

higher. There was no difference between gravity through-flow and tension water samples, but 

there was a clear difference between high and low organic Technosols (Figure 5). The high 

organic 60 cm cover had the highest concentrations of DOC (average 40 – 70 mg/L), followed 

by the high organic 30 cm, the low organic cover 60 cm, and the low organic 30 cm covers 

(average 20 – 30 mg/L). Concentrations were highest in 2013, where there was a difference 

visible in the low organic covers, but decreased and stabilized with time and by 2016 no 

difference between the low organic Technosol covers was visible.  
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Figure 5. DOC (mg/L) of Technosol treatment water samples and rainwater samples from July 2013 to 

Nov 2016 with loess curve and 95% CI. 

 

Macronutrients  

Concentrations of calcium and magnesium followed the same pattern, though Ca 

concentrations were approximately an order of magnitude higher (up to 500 mg/L compared to 

up to 40 mg/L; Figure 6). Gravity through-flow samples had higher concentrations than tension 

water samples, particularly in terms of Ca, with an approximate range of 100 – 400 mg/L 

compared to a range of 30 – 100 mg/L. Williams mine rock water had concentrations equivalent 

to the lower half of the tension water range, while natural water and rainwater samples were 

below 20 mg Ca/L and 2 mg Mg/L. Though there was no clear treatment effect, the low organic 

Technosol samples tended give the highest concentrations in both gravity through-flow and 

tension water samples.  
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Potassium levels were comparable to magnesium levels, but unlike calcium and 

magnesium there was no clear differences in gravity through-flow and tension water samples. 

Tension water samples in 2013 were typically higher than gravity through-flow (30 – 70 mg/L 

vs. 10 – 40 mg/L) but the difference lessened with time and by 2016 concentration ranges were 

identical (approximately 10 – 50 mg/L). Williams mine rock water samples were below 20 mg/L 

in all cases, and were higher than the natural water and rainwater samples, which were under 5 

mg/L apart from two samples (12 and 7 mg/L).   

Phosphorus showed a decreasing trend with time; initially gravity through-flow 

concentrations were between 50 – 100 µg/L, but samples in 2015 were below 30 µg/L and in 

2016 below 10 µg/L. Tension water samples followed the same trend, though concentrations in 

2013 started below 50 µg/L in general. No difference in treatments was observed. However, 

approximately half of all samples were below the detection limit of 0.45 µg/L (334 out of 579); 

these low phosphorus samples were found in all sample types across all years. Concentrations in 

Williams mine rock water was typically very low, while rainwater samples were equal to or 

substantially higher than Technosol waters. Only one of the natural water samples had detectable 

levels of phosphorus (61.4 µg/L).  
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Figure 6. Concentrations (mg/kg) of a) Ca and b) Mg in Technosol gravity through-flow (GT) and tension 

water (TW), Williams mine rock test cell water (MR), natural water (NW), and rainwater (RW) samples 

from July 2013 to Nov 2016. 1 sample Ca < DL (20 µg/L); 1 sample Mg < DL (1 µg/L).  

 

a) 

b) 
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Micronutrients  

Boron concentrations in tension water were highly variable, ranging from 300 – 21700 

µg/L (Figure 7a). They also increased with time, from approximately 600 – 5000 µg/L in 2013 to 

the full range in 2016. There was no difference between treatment for tension water samples; 

however, in gravity through-flow samples it appeared that the low organic Technosols had higher 

B concentrations than the high organic Technosols (Figure 7b). These samples ranged in 

concentration from around 20 – 200 µg/L and did not exhibit the same trend in increase as the 

tension water samples; instead levels appeared consistent. Williams mine rock and rainwater 

samples had low levels of B, and natural waters were below the detection limit of 0.06 µg/L.  

Copper was fairly consistent across all sampling periods. Most samples were under 30 

µg/L and gravity through-flow samples were generally higher than tension water, while Williams 

mine rock, rainwater, and natural water were similarly low. The high organic Technosol 

treatments appeared to have slightly higher gravity through-flow values than the low organic 

Technosol, but this trend was not always visible.  

Iron levels were high in gravity through-flow samples throughout 2013, with the highest 

values being found in the 60 cm low organic treatment (up to 21900 µg/L; Figure 8a). 

Concentrations were dramatically in lower 2014, with only four tension water samples higher 

than 150 µg/L (2000 – 3000 µg/L) and 60 samples below the 1 µg/L detection limit. This trend 

continued into 2015 and 2016, with concentrations in 95 samples below the detection limit and 

all others below 125 µg/L (Figure 8b). There was no trend with treatment seen after 2013. In 

2013 and 2014 seven Williams mine rock samples had concentrations between 1000 – 3000 

µg/L; in 2015 and 2016 all were below 125 µg/L. Rainwater samples were consistently low, 

generally under 30 µg/L, and natural water samples ranged from 62.7 – 672 µg/L.  
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Figure 7. Boron concentrations of a) Technosol gravity through-flow (GT), Technosol tension water 

(TW), and Williams mine rock test cell (MR) water samples and b) without TW from July 2013 to Nov 

2016. Treatments are 1: 40% organic, 30 cm; 2: 80% organic, 30 cm; 3: 40% organic, 60 cm; 4: 80% 

organic, 60 cm. 23 samples <DL (0.06 µg/L). 

a) 

b) 
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Figure 8. Iron concentrations of a) all samples and b) samples below 125 µg/L; samples are Technosol 

gravity through-flow (GT) and tension water (TW), Williams mine rock test cell water (MR), natural 

water (NW), and rainwater (RW) from July 2013 to Nov 2016. 155 samples < DL (1 µg/L).  

 

a) 

b) 
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Manganese followed the same trend of decrease as iron, but the initial concentrations 

were below 40 µg/L and a larger portion were below the 0.1 µg/L detection limit. Gravity 

through-flow concentrations were typically higher than tension water samples, which were 

higher than Williams mine rock and natural water samples. Though there were no obvious 

treatment differences, the low organic 30 cm treatment appeared to have lower concentrations in 

general than the high organic treatments and the thick cover low organic.  

Nickel concentrations showed an increase from 2013 to 2015, peaking in October 2015 

with values from 75 – 100 µg/L, mostly in gravity through-flow samples. However, in 2016 all 

samples had concentrations below 10 µg/L and there was no difference between tension water 

and gravity through-flow samples, though rainwater and Williams mine rock water samples were 

still most often the lowest concentrations.   

Zinc levels were typically 50 µg/L or less in tension water samples, but were as high as 

400 µg/L in several gravity through-flow samples. There appears to be a trend of slight decrease 

from 2013 to 2016. The 60 cm low organic Technosol treatment generally had the highest 

values, though the 30 cm high organic treatment was occasionally equal or higher. Williams 

mine rock samples had low values, with the exception of two in May 2014 which were 

approximately 125 µg/L.   

 

Molybdenum  

Molybdenum concentrations in Technosol samples were lower than in Williams mine 

rock test cells of intermediate volcanic and quartz eye muscovite schist rock (Figure 9a). Gravity 

through-flow samples had slightly higher concentrations than tension water on average, but the 

difference was small (Figure 9b). The low organic Technosol treatments also tended to have 
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slightly higher concentrations, particularly in the tension water, where the high organic 

Technosol samples were under 40 µg/L. Low organic Technosol tension water samples ranged 

from approximately 40 – 600 µg/L, the same range as gravity through-flow samples.   

 

Elements of environmental interest 

Cadmium had a similar trend to Mo with regards to the Williams mine rock samples; the 

concentrations of Cd in the intermediate volcanics and quartz eye muscovite schist test cells was 

noticeably higher than the Technosol gravity through-flow and tension water (up to around 20 

µg/L). There were no differences in tension water and gravity through-flow concentrations, 

which ranged from below the detection limit of 0.03 µg/L to 4.8 µg/L. Concentrations increased 

from 2014 to 2015 but decreased in 2016 to 2014 levels, with most samples under 2 µg/L.  

Arsenic was present in higher concentrations in tension water than gravity through-flow, 

from approximately 5 – 15 µg/L (Figure 10a). With the exception of the October 2013 sampling 

period, all gravity through-flow samples were below 5 µg/L. This was equal to or lower than the 

Williams mine rock water levels but higher than the natural waters.  

Antimony levels from Technosol gravity through-flow and tension water appeared 

consistent with Williams mine rock test cell water concentrations (Figure 10b). There was no 

difference between treatments or sample types, and most were below 10 µg/L. There was also no 

trend of increase or decrease visible.  
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Figure 9. Mo concentrations (µg/L) of a) all samples including Williams mine rock test cell water (MR) 

and b) Technosol gravity through-flow (GT), Technosol tension water (TW), natural water (NW), and 

rainwater (RW) from July 2013 to Nov 2016. 8 samples < DL (0.13 µg/L).  

 

b) 

a) 



40 

 
Figure 10. Concentrations of a) As and b) Sb in Technosol gravity through-flow (GT) and tension water 

(TW), Williams mine rock test cell water (MR), natural water (NW), and rainwater (RW) samples from 

July 2013 to Nov 2016. 64 samples As < DL (0.35 µg/L); 1 sample Sb < DL (0.01 µg/L).  

 

a) 

b) 
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Discussion  

Effects of increasing soil organics     

The soil moisture content was significantly higher in the 80% organic Technosols than 

the 40% organic Technosols, which was expected as organic matter often is capable of holding 

more water than the mineral components of a soil (Larney & Angers, 2012). However, it should 

be noted that this is a single measurement providing a snapshot of soil conditions shortly after 

plot construction in 2012, prior to the establishment of vegetation on the plots. Although 

increasing organic content has been seen increasing water retention, particularly in coarse 

textured soils such as these (Rawls, Pachepsky, Ritchie, Sobecki, & Bloodworth, 2003), it would 

be difficult to make such an inference in this situation without the long-term moisture monitoring 

data in Chapter 3, which indicates that the trend of the high organic Technosol containing more 

moisture generally continues in the following years.   

Differences in organic content also significantly influenced the total C and N contents, 

both of which tripled from the 40% to 80% organic Technosols. Again, this is to be expected as 

higher levels of organic matter necessarily mean higher levels of carbon and nitrogen. On the 

other hand, sulphur was not significantly different between the two Technosols. The S content of 

the metasedimentary rocks and woody residuals used to construct the Technosols was measured 

as 0.003 and 0.03%, respectively (Watkinson et al., 2016). This means the majority of the 

sulphur in the Technosol came from the intermediate volcanics, which had a S content of 0.41. 

The lack of difference between the two Technosols despite the large difference in mine rock 

content implies that the increasing contribution of sulphur from the increasing organic content 

was enough when combined with the presence of intermediate volcanics in the rock to maintain 

the sulphur content around 0.4%.  
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The C/N ratios of the Technosols were very high, above 80, and did not significantly 

change between the two organic levels. A high C/N ratio is often thought to limit decomposition 

rates by limiting bacterial growth  (Enríquez, Duarte, & Sand-Jensen, 1993), though there is also 

evidence which suggests that it is respiration rates and ATP content which control differences in 

rates of nitrogen immobilization and mineralization (Bengtsson, Bengtson, & Månsson, 2003). 

Regardless, the quantity of nitrogen in both Technosols was low, particularly in the 40% organic, 

which at 0.017% had levels comparable to those of subsoils (Barker & Pilbeam, 2007). These 

levels could limit the growth of plants upon the Technosols.  

There was also a clear link between the amount of woody residuals on a plot and the 

amount of DOC in the water samples from that plot. Again, this was likely due to the increasing 

amount of carbon available; the thick, high organic plots simply had more overall carbon than 

the thin high organic plots or either of the low organic plots. The initial flush of DOC in 2013 

was likely due to the system equilibrating, as the following three years showed consistent levels 

of DOC leaving the Technosols. DOC in the high organic Technosol waters was high compared 

to levels in natural lakes; in a review of global DOC content, 0.4% of lakes had concentrations 

above 40 mg/L, and 4.2% had 20 – 40 mg/L, which is what was found in the low organic 

Technosol waters (Sobek, Tranvik, Prairie, Kortelainen, & Cole, 2007). DOC can have a large 

effect on the bioavailability and toxicity of metal compounds; higher concentrations of DOC are 

linked to lower bioavailability (Merrington, Peters, & Schlekat, 2016). The high levels we saw 

coming out of the Technosol plots may have limited the bioavailability of metals for plant and 

microbial uptake. However, as these were measurements taken from through-flow samples, it 

can also be assumed that large areas covered by the Technosols would result in large amounts of 

DOC entering surface waters. Many boreal lakes have much lower concentrations of DOC, under 
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10 mg/L, so large increases could affect not only metals and nutrients, but also transparency, 

stratification, pH and alkalinity, microbial production, and UV penetration (Hudson, Dillon, & 

Somers, 2003).  

Chemical parameters of water samples  

The pH of the water samples was surprisingly alkaline; most samples were above pH 7. 

This was not expected because, although the pH of both mine rock types was around 8.8, the pH 

of the woody residuals was 6.5, consistent with them being mostly composed of boreal 

coniferous trees (Watkinson et al., 2016). Particularly in the high organic Technosol, which only 

contained 20% by volume of mine rock, it was thought a larger influence on the pH by the 

organics would be seen. It is possible that the lysimeter design and sampling routine contributed 

to the high pH values seen; because sampling occurred a maximum of once a month, water often 

sat for weeks prior to removal. In the case of gravity through-flow samples, this means the water 

either remained in the barrel or at the base of the geomembrane, among the large mine rocks 

used for construction. Tension water would have been held within the Technosol, where it may 

have continued interacting with the mine rock in the Technosol matrix.  

Both the intermediate volcanic and metasedimentary rocks from the mine are known to 

have high neutralization potential due to the presence of carbonate minerals; it is possible their 

buffering capacity was high enough to neutralize any acids from the organics and still raise the 

pH above 7, even with low volumes of rock within the soil. For example, in the intermediate 

volcanics the sulphur content was 0.41% while the carbon content was 1.16% (Watkinson et al., 

2016). This means the carbonate content in these rocks was likely high enough to compensate for 

any acidity due to sulphur compounds.  



44 

The high pH of water samples, while potentially problematic for boreal vegetation, is 

good in the sense that it means acid generation in the mine rock did not increase when the 

Technosol cover was used. Increased acid generation would have raised concerns about the 

consequences of covering a large area of the mine rock pile with the Technosols, as large 

amounts of acidic runoff would be damaging to the surface and groundwater in the area.  

The electrical conductivity (EC), a proxy for the number of dissolved ions in solution, 

was higher in the Technosol water samples than the Williams mine rock water samples. 

Substances released from the organic material may have contributed to greater weathering in the 

Technosol than the mine rock plots; increases in EC have been seen in other cases after organics 

have been added, including chipped wood (Hattab et al., 2015). Some of the difference could 

have been due to the fact the mine rock in the Technosol was crushed and therefore much finer 

than the mine rock used in the Williams mine rock test cells, making it more reactive. The higher 

EC in the gravity through-flow samples compared to the tension water samples indicated that a 

larger amount of these ions were washed out, rather than remaining in the soil pore water. Again, 

this could be partially due to lysimeter design; the tension water samples were taken directly 

from the Technosol but the gravity through-flow samples travelled through an additional layer of 

crushed and coarse mine rock before meeting the geomembrane and going into the collection 

barrels. This may have given the water more time to react with the mine rock and pick up 

additional ions on its way.  

As for the identity of these ions, a look at the anions present in the samples revealed 

sulphate had a similar pattern to EC and was present in high amounts, meaning it was likely to be 

a large contributor. Nitrate and chloride, the other anions measured, had much lower 

concentrations than sulphate and therefore contribute less. In terms of cations, calcium and 
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magnesium had the same pattern, and along with potassium had high concentrations, particularly 

calcium. This means they are probably also important in determining EC.  

Nutrients and trace elements  

Macronutrients  

The total macronutrient content was higher in the low organic Technosol, but the 

bioavailable macronutrient content was significantly higher in the high organic Technosol. We 

know more organic compounds are released by the high organic Technosol, as the DOC 

concentrations are higher. This could mean that there was increased weathering and freeing of 

nutrients in the 80% organic Technosol due to the increased amount of organic compounds 

released. It could also have been because of the increased proportion of macronutrients held in 

the woody residuals. Though total Ca and P content was similar between the parent materials and 

total Mg and K were lower in the woody residuals than in the mine rocks (Watkinson et al., 

2016), these elements may have been more easily available through decomposition from the 

wood than through rock weathering.  

Calcium, Mg, and K were all present in the water samples at high levels, particularly Ca 

which was present in higher concentrations in the Technosols. Phosphorus levels were much 

lower, probably due to lower concentrations within the soil itself. The large number of samples 

below detection limit and the apparent decrease in P in water over time means there would be 

few eutrophication concerns associated with the runoff of P into surface water from these 

Technosols if they were used as an extensive soil cover; however, the low concentrations 

especially in tension water may make it difficult for plants to obtain the P they require. From 

these results it seems that of the measured macronutrients, only P may have acted as a limiting 

nutrient to plant growth.  
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Micronutrients  

Mn in the Technosols showed the same pattern as macronutrients: a significantly higher 

amount was bioavailable in the 80% organic Technosol despite it containing slightly less Mn in 

total. The increased availability could be due to the higher level of Mn in the woody residuals 

than the mine rock; like with the macronutrients, more Mn from the organics may be in a 

bioavailable form than the Mn released from the rock.  

Of the other micronutrients, Ni and Zn bioavailable levels were below detection limits 

and so no inferences can be made other than the fact that their bioavailable concentrations are 

quite low (below 0.0003 and 0.001 mg/L). For B and Cu no significant difference was observed 

in total or bioavailable concentrations. Bioavailable Fe was lower in the high organic Technosol 

but the difference was not significant. The bioavailability of these elements is controlled more by 

their content in the soil than by their interactions with organic material, as least at this stage in 

the Technosol development. Therefore, the lower total amounts of B, Cu, and Fe in the high 

organic Technosol meant lower bioavailable amounts as well.  

In water, Fe and Mn concentrations were highest in the first year after plot installation 

and decreased to summer 2015, where they appear to have levelled off in the past two years. The 

initial high levels were mostly found in the gravity through-flow samples; although tension water 

Fe concentrations decreased with time, the Mn concentrations remained fairly constant. This 

initial flush was probably due to the Technosols equilibrating, and the less tightly-bound 

compounds being released. The Fe concentrations were so elevated during the first year, much 

higher than the Provincial Water Quality Objectives (PWQO) of 300 µg/L and exceeding the 

monthly average concentration limit of 1.0 mg/L under the Metal Mining Effluent Regulations 
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(MMER) and Municipal Industrial Strategy for Abatement (MISA), that large quantities could be 

initially released if the Technosol was used for a cover. However, it appears that after the first 

year the amount would no longer be a concern, at least in terms of regulatory requirements, as all 

through-flow samples were below 120 µg/L.   

Boron concentrations in tension water samples were very high, much higher than the 

gravity through-flow samples. Boron in the Technosol is present in fairly low amounts; what is 

there is likely from the presence of tourmaline, a boron-rich mineral which has a wide 

distribution over the area (Muir, 2002). Though there is no difference in the tension water 

samples by treatment, in the gravity through-flow it appears the low organics contain more, 

possibly due to a longer interaction with the Technosol. Organics may slowly react with boron to 

form water-soluble compounds, but that these compounds are then held in the soil pore water 

rather than leaching out. The increase in B in tension water through time adds support to the idea 

of slow weathering and water-soluble compounds trapped in by soil particles in the pore water.  

Cu and Zn in water were similar; both were generally higher in gravity through-flow with 

the exception of some samples in summer 2014, and both appeared to be stable through time. Cu 

concentrations were generally above the PWQO of 5 µg/L and Zn was above the 20 µg/L 

PWQO, so it is possible the amount of these elements in runoff could be a concern in time. 

However, both were below the required compliance levels of MMER and MISA.  

The dramatic increase in Ni in gravity through-flow in 2015, followed by the dramatic 

decrease in 2016, was unexpected. It could be there was a large amount of soluble Ni that took 

several years to flush through the Technosols; it could be that all easily weathered Ni in the 

Technosol was removed in 2015. 2015 was not a wet year; it experienced periods of dryness 

particularly around mid-July. It is possible that prolonged dryness followed by heavy rain 
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resulted in large system flushes, removing all the less tightly held Ni from the system. 

Regardless, it would be interesting to see if Ni remained low in following years, or if increases 

were again seen.   

 

Molybdenum  

Molybdenum is one of the main elements of concern on the Hemlo site because there are 

significant amounts of molybdenite present throughout the deposit (Pan & Fleet, 1995), 

therefore, knowledge about its behaviour in the Technosols is important. There was a significant 

decrease in the bioavailable Mo from the low to high organic Technosol. While there was also 

less total Mo in the high organic Technosol, a look at the percent of the total which is 

bioavailable showed that there was 0.35% bioavailability in the 40% organic, twice as much as 

in the 80% organic which was 0.16% bioavailable. Interactions between Mo and organic 

compounds within the soil could have limited its bioavailability, and these interactions would 

have increased as the organic content increased.  

Molybdenum concentrations in Technosol gravity through-flow and tension water 

samples were lower than in the intermediate volcanic and quartz eye muscovite schist mine rock 

weathering test cell plots. Intermediate volcanics were one of the parent materials of the 

Technosols, so the difference between the two implies something occurred within the Technosol 

plots to lower Mo release. Fewer intermediate volcanic rocks may have been present, simply 

because the Technosol plots also contain metasedimentary rocks and woody residuals, unlike the 

mine rock test cells. Interactions between organic compounds and Mo in the Technosols could 

also have reduced the mobility of Mo. Generally the gravity through-flow samples had higher 

concentrations than tension water samples, likely because they were exposed to more 
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intermediate volcanic rocks as they travelled through the mine rock layers of the lysimeter. The 

fact they still had much lower levels of Mo than samples from the pure test cells supports the 

idea the organics in the Technosols reduced the mobility of Mo. The increase in Mo in tension 

water in 2016 could mean that as time passes more Mo was being held in the pore water.  

Samples exceeded the PWQO of 40 µg/L, some by quite a lot. However, they were below 

the monthly average of 1.0 mg/L required by MMER/MISA. It is possible that the Mo in the 

water was not bioavailable. This is supported by the fact that wood chips have been seen to 

decrease the mobility of Mo in other studies (Hattab et al., 2015), and by the Mo content in the 

plant leaves grown on the Technosol (Chapter 4). Mo is also a micronutrient, particularly 

important for nitrogen-fixing plants (Barker & Pilbeam, 2007), and therefore the presence of 

some available Mo is beneficial.  

 

Elements of environmental interest  

As, Cd, and Sb are elements of environmental interest on the mine site, along with Mo, 

because they are present in the deposit in minerals such as arsenopyrite, realgar, and stibnite 

(Muir, 2002). Total concentrations of Cd and Sb in both Technosols were under 0.5 mg/L; there 

was no bioavailable Sb detected in either, and bioavailable Cd was found in only two of the six 

40% organic Technosol plots. Cadmium in Technosol water samples was noticeably lower than 

from the intermediate volcanic Williams mine test cells. All but two Technosol water samples 

had less than 3 µg/L Cd, above the Ontario PWQO of 0.2 µg/L. Most Sb concentrations were 

under 10 µg/L, below the 20 µg/L PWQO. Both elements had concentrations below the 

maximum monthly average of 1.0 mg/L specified by MMER and MISA.  
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Arsenic totals in the Technosols were also relatively low. There was no significant 

difference in the bioavailable concentrations between the two Technosols, but the percentage 

which was bioavailable was almost twice as high in the 40% organic Technosol. This could 

mean that the higher organics were binding a larger percentage of the As into forms available for 

plant uptake. Though no significant difference was seen here, if large amounts of the Technosol 

were used the 1% decrease in bioavailability could become important, particularly as As 

concentrations were higher in the tension water samples than the gravity through-flow. All As 

concentrations were well below the MMER/MISA requirement of 1.0 mg/L per day and the 

current PWQO of 100 µg/L, but most of the tension water samples were above the interim 

PWQO of 5 µg/L. This means that there may fewer risks associated with As leaching from the 

Technosols into the environment, but more opportunity for plants to take it up. One form of As, 

arsenate, is an analog of phosphate and can compete for the same uptake mechanisms (Nagajyoti 

et al., 2010). If the arsenate ion was the dominant form in the tension water, it could have 

negative impacts on plant growth. However, though we did not examine the speciation of 

elements in this study, in Chapter 4 of this thesis the concentration of elements in plant leaves 

grown on the Technosol was measured. Arsenic in leaves was below 1 mg/kg in all detectable 

leaf samples, and comparable to samples taken from reference plants. This suggests that the As 

in the water samples was not in a highly bioavailable form.  

Conclusion 

The 80% organic Technosol had significantly higher total C and N, and bioavailable Ca, 

Mg, K, P, and Mn concentrations than the 40% organic Technosol. Higher organic content also 

significantly decreased the amount of bioavailable Mo and resulted in undetectable levels of Cd. 

High DOC levels were measured in Technosol water samples, particularly those from 80% 
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organic plots. Water samples from both Technosols had high pH (7 – 8), probably due to the 

high pH of the mine rock used in Technosol construction. Concentrations of Mo and Cd in 

gravity through-flow samples exceeded PQWO limits, though they were lower than the plots 

constructed purely of mine rock. Arsenic in tension water samples exceeded interim PWQO 

limits, but As in through-flow samples rarely did. This means monitoring of the through-flow 

from the Technosols, particularly for Mo and Cd, would be required.   
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Chapter 3. Early profile development of a four-year-old mine rock Technosol 

Introduction  

 Humans have become the major driving force of environmental change in the world, 

affecting all aspects of the biosphere including soils (Leguédois et al., 2016). Activities like 

mineral and energy extraction, urbanization, and agriculture have resulted in heavily altered soils 

(Leguédois et al., 2016). In response to the growing distribution of human-altered soils, the 2006 

World Reference Base for Soil Resources added Technosols as a Reference Soil Group (IUSS 

Working Group WRB, 2006). In essence, they are soils which contain more than 20% by volume 

of artefacts (substances created, modified, or moved by human activity), a constructed 

geomembrane, or technic hard material such as asphalt (IUSS Working Group WRB, 2014).  

 There has been a noticeable increase in the number of studies on Technosols in the last 

few decades, with particular emphasis on their physical-chemical properties and evolution 

(Capra et al., 2015). In natural soils, the soil-forming factors climate, parent materials, 

organisms, relief, and time are accepted as controlling evolution (Bockheim et al., 2005), and 

these factors control the development of Technosols as well, with the addition of whatever 

human activity resulted in their original formation (Leguédois et al., 2016). However, due to the 

often unusual physical and chemical properties of Technosols, a consequence of their human 

origins, their development can exhibit large differences from those of natural soils as well as 

occur on much shorter timescales (Huot, Simonnot, et al., 2015). For this reason monitoring the 

early profile development of Technosols can provide valuable information, particularly when 

they are constructed for a specific purpose.  

Development can be seen in the physical, chemical, and biological properties of soil, and 

all aspects should be studied for a more complete understanding of Technosol pedogenesis 

(Leguédois et al., 2016). Soil pH and electrical conductivity are two important variables which 
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have a large impact on many physical, chemical, and biological processes, such as metal 

speciation, vegetation growth and survival, and microbial community structure (Brady & Weil, 

2010). They are also important in classification of natural soils (IUSS Working Group WRB, 

2014).  The leaching of soluble compounds and oxidation of minerals such as sulphides from the 

upper layers of the soil are commonly among the first changes to occur in the soil (Huot, 

Simonnot, et al., 2015), so the measurement of pH and conductivity can also provide some 

indication of weathering within the profile.  

Soil moisture and temperature are also important in many soil processes. They influence 

decomposition rates, nutrient availability, plant growth and distribution, erosion, and runoff 

generation (Özkan & Gökbulak, 2017). The capacity of a soil to hold moisture will change with 

its aggregation and porosity, both physical properties of soil that change with time (Ciarkowska 

et al., 2016).  Though the structure of Technosols is typically weak, increased aggregation has 

been seen in Technosols when vegetation is present (Huot, Simonnot, et al., 2015). Thus, 

changes in the Technosol temperature and moisture regimes might reasonably be expected as 

time passes, particularly under vegetation coverage.  

The soil microbial community has increasingly been recognized as a critical part of 

biogeochemical cycling within the soil, responsible for the decomposition of complex organic 

molecules and therefore important in nutrient cycling (Stefanowicz, 2006). Microbial 

communities of Technosols can be quite different from those in natural soils and they are often 

left out of studies on Technosol properties (Dimitriu et al., 2010). However, even initially sterile 

parent materials can be quickly colonized and become biologically active soils (Leguédois et al., 

2016), so the inclusion of some sort of measure of microbial diversity is a good policy. Microbial 

communities vary between seasons and years (MacKenzie & Quideau, 2010) and with 
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temperature, humidity, composition of organic matter, vegetation type, and soil properties 

(Stefanowicz, 2006), meaning that a single measurement is likely not representative of the entire 

soil profile.    

Using these parameters, a description of four Technosol profiles was undertaken, 

examining changes within the profiles four years after they were manufactured from mine rock 

and woody residuals and placed on site in Canada’s boreal shield.  

Methods 

Study site 

The Williams Mine is in Hemlo, ON and operated by the Barrick Gold Corporation. This 

area is within the Canadian Shield, specifically in the eastern part of the Schreiber-Hemlo 

greenstone belt of the Wawa subprovince, part of Archean Superior province (Muir, 2002). The 

deposit is characterized by a lack of major quartz and carbonate veins, no mafic volcanic rocks in 

the mine sequence, and a diverse set of metals (Muir, 2002). The most common soils are 

Podzols, which have a reddish illuvial spodic (Bhf/Bf) horizon rich in Fe/Al overlain by a 

bleached eluvial (Ae) horizon from which these elements were leached (IUSS Working Group 

WRB, 2014). Mean monthly temperatures of the region range from 15°C in July and August to -

14°C in January; precipitation varies from 122 mm in September to 47 mm in February 

(Environment Canada, 2017). The area is part of the boreal forest ecosystem and as such is 

dominated by black spruce (Picea mariana (Mill.) B.S.P), jack pine (Pinus banksia Lamb.), 

balsam fir (Abies balsamea (L.) Mill.), trembling aspen (Populus tremuloides Michx.), and white 

birch (Betula papyrifera March.) (Sims et al., 1996; Zoladeski & Maycock, 1990).  

 

  



55 

Plot set-up 

 In summer 2012 crushed, non-acid generating metasedimentary and intermediate 

volcanic rocks removed during mining operations were combined with boreal coniferous woody 

residuals from the White River Forest Products Sawmill, located 60 km east of the mine, to 

create two Technosols. The first of these consists of 40% woody residuals and 60% mine rock by 

volume; this is referred to as the low organic Technosol. The second, high organic Technosol 

was formed with a ratio of 80% woody residuals to 20% mine rock. The Technosols were placed 

in 30 cm or 60 cm layers upon a lysimeter constructed with a layer of crushed mine rock over a 

base of coarse mine rock on an impermeable geomembrane. Each treatment was then replicated 

three times to give a total of twelve plots (Watkinson, 2014). Green alders (Alnus viridis subsp. 

crispa) were planted on eight of the twelve plots in 2013 and again in 2015 to bring the number 

on each up to at least nine. At this time twelve bearberries (Arctostaphylos uva-ursi) were also 

planted on each of the vegetated plots. In April 2016 a mixture of annual and perennial ryegrass 

seed (Home Gardener Overseed Premium Grass Seed Mix with Kickstart™ Technology) was 

spread over the vegetated plots in an attempt to establish a nurse crop to promote and protect the 

bearberries.  

 Within each plot sensors were installed in 2012 three weeks after plot construction at 

multiple depths to monitor soil microclimate conditions. 5TM soil temperature/moisture sensors 

(Decagon Devices) were initially installed at 10 cm, 30 cm, and, in the thick treatments, 60 cm 

depths. In July 2014 5TM sensors were added at 5 cm depths in nine of the plots; the remaining 

three had 5 cm sensors added in July 2015. One MPS-2 water dielectric potential/temperature 

sensor (Decagon Devices) is also present in each plot at either 30 cm or 60 cm, depending on the 

treatment thickness. Sensors were connected to EM50 series data loggers (Decagon Devices) and 

measurements were taken at varying intervals, ranging from every 5 minutes for portions of the 
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summer to every 60 minutes throughout the winter. Data was retrieved from the loggers using 

the ECH2O software from Decagon Devices.  

 In summer 2014 two comparison soil sites were selected for sensor installation to provide 

a comparison to the plot microclimate measurements. The first of these was in the field 

immediately behind the plots; this field was once covered with infrastructure including buildings 

and parking as part of the Newmont Golden Giant Mine, but has since been reclaimed using a 

combination of stockpiled soil, fertilizer, and MTO grass and legume seed mix. This site is 

referred to as the successional field, and has 5TM sensors installed at 5 cm, 10 cm, 15 cm, 30 

cm, and 60 cm depths. The second site was just over 1 km from the plots, in an upland secondary 

forest stand. 5TM sensors were installed here at 5 cm, 10 cm, 15 cm, 20 cm, and 25 cm, just 

above where the soil meets bedrock. A climate station was also installed in summer 2014, 

located between the centre two plots to measure air temperature and relative humidity at 2 m 

(VP-3 Humidity/Temperature sensor, Decagon Devices) and precipitation (ECRN-100 

Precipitation sensor, Decagon Devices).  

 Data from all loggers was collected multiple times per summer and compiled using R 

3.3.2 (R Core Team, 2016). Daily averages were calculated for the temperature and moisture 

measurements in all plots and comparison locations; for precipitation the daily sum was 

calculated.  Despite batteries dying and several sensors and one logger failing on separate 

occasions and requiring replacement, the plot replication ensured that a continuous soil 

temperature series was obtained for each treatment. The soil moisture series were also 

continuous, with the caveat that any data obtained when the temperature was below 0°C could 

not be used, as the sensors cannot read soil moisture when water is in a solid state. Therefore, all 

data from December 1 to May 1 each year was removed, as well as any moisture readings 
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obtained when the soil temperature at the same depth was below 1°C to ensure that all 

measurements could be trusted. Water potential measurements were handled in the same way. 

For comparison purposes, the forest soil temperature and moisture at 25 cm was used as a proxy 

for 30 cm depth measurements.  

Soil profile sampling  

On September 27 and 28, 2016, profile sampling was done on four of the treatment plots 

as well as in the successional field and forest to examine profile development and collect 

samples for analysis. The treatments selected were the 40% organic, 60 cm thick and 80% 

organic, 60 cm thick plots; the thick plots were chosen over the thin as the development in the 

upper layers was expected to be similar to the thin plots, while the development at depth could be 

more fully examined in the thick plots. Two of each were chosen, one with vegetation and one 

without. Pits were dug on the back right corner of plots to avoid interfering with sensors, which 

are located near the plot centre. On vegetated plots, pit locations were governed by vegetation: 

while we wanted to be near enough to roots, particularly alder roots, to be able to determine what 

influence the vegetation was having on soil development, we wanted to avoid extensive damage 

to root systems. In keeping with the wish to minimize disturbance to plots, soil pits were kept as 

small as possible (approximately 45 cm wide; Figure 11). Profiles were dug to the base of the 

Technosol layer, where the Technosol meets crushed mine rock. Once digging was complete, a 

brief description of the profile was done prior to sample collection.  
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Figure 11. Soil pit on vegetated, 40% organic plot.  

 

Samples were taken continuously from the surface down in the following increments: 2 

cm from 0 – 20, 5 cm from 20 – 30, and 10 cm from 30 – 60 or the base of the profile. These 

were chosen because more rapid changes were expected in the top 20 cm than at the base of the 

profile. This resulted in 15 samples per profile. Samples were removed from top down using a 

tile setter trowel and a finishing trowel. Because part of the intended analysis was an assessment 

of microbial functional diversity, gloves were worn, tools were wiped down with 90% ethanol 

between each sample, and samples were immediately placed in a cooler after removal.  

Samples were taken in the field and forest in the same manner but the profiles were 

shorter; we were only able to reach 42 cm in the field, and hit bedrock after 30 cm in the forest.  

For an estimate of microbial community, 1 g of soil was removed from each sample prior 

to any other analysis. Of the remaining portion, 5 g of soil in 20 mL of deionized water was used 

to determine the pH (pHw) and electrical conductivity of the sample; the sample equilibrated for 
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at least 30 min before being measured by a pH combination electrode and a conductivity probe 

(Accumet) attached to an Accumet (AB15) meter and Accumet (AB30) meter, respectively. The 

pH of the soil was also determined using a solution of 0.01 M CaCl2 in the same manner (pHCa).  

Additional chemical analyses can be found in Appendix D.  

Measuring microbial functional diversity  

Changes in the microbial functional diversity with depth and location were examined 

with the Biolog EcoPlate™, which is a plate of 96 microwells containing three each of 31 

different sole-carbon sources selected for environmental analysis, plus three control water wells 

(Biolog Inc.). Sources fall into one of the following groups of chemical compounds: amines, 

amino acids, carbohydrates, carboxylic acids, polymers, or phenolic compounds.  

The EcoPlate™ is a redox system which contains tetrazolium dye along with the sole-

carbon source substrate (Biolog Inc.). The colourless tetrazolium dye is reduced to violet 

formazan by microorganisms as they oxidize the substrate (Stefanowicz, 2006). Specifically, 

electrons from the NADPH which is formed as the cells metabolize the substrate are passed to 

the tetrazolium dye, reducing it to formazan (Mauchline & Keevil, 1991). Optical density at 590 

nm is then measured to determine substrate usage. However, it should be noted that fungi do not 

metabolize the tetrazolium dye used in the EcoPlate™ well, and therefore fungal activity is not 

measured by this technique (Preston-Mafham, Boddy, & Randerson, 2002).   

As mentioned previously, 1 g of soil was removed from each of the soil profile samples 

(40% organic, vegetated and not; 80% organic, vegetated and not; successional field; forest) for 

this analysis. The soil was suspended in 99 mL of sterile deionized water and placed on a 

Benchmark Incu-Shaker Mini at 100 rpm for 20 min. The samples were then placed in a 

refrigerator for 30 min to allow soil particles to settle. EcoPlates™ were inoculated with 150 µL 
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of the soil solution and the optical density at 590 nm was immediately read using a Synergy H1 

Microplate Reader (BioTek). Plates were wrapped in aluminum foil and incubated at room 

temperature (approx. 25°C). Readings were done 0, 3, 6, 12, 24, 48, 72, and 96 hours after 

inoculation. The multiple readings ensured that colour development could be examined in all 

wells, as lag times can vary (Preston-Mafham et al., 2002).  

Once all readings were completed, the average well colour development (AWCD) for 

each sample was calculated for each time point, with the control water well values first 

subtracted from the substrate well values. The time point with the largest mean AWCD (0.1 or 

greater) and the smallest range between samples was selected at the comparison time, to ensure 

that colour development was occurring in most or all substrate wells and AWCD was 

approximately the same for each sample. Accordingly, the point 48h was selected, with an 

AWCD of 0.29 and a range of 0.7. This large range is due to the large differences between the 

four Technosol sites, which ranged from around 0.15 to 0.35, and the forest site, which had very 

low AWCD in most samples taken from below 10 cm in depth. AWCD has been found to be 

correlated with inoculum density, suggesting colour production is linked to the growth of 

bacteria within the wells rather than simply the respiration of the existing community (Garland & 

Mills, 1991). Although in some cases it has been suggested that readings with similar AWCD be 

chosen for all samples regardless of the actual incubation time it takes to reach this development 

in order to limit the effect of inoculum density (Stefanowicz, 2006), in this case our aim was to 

compare the actual microbial functional differences between sites and depths. As a result we did 

not wish to perform any sort of manipulation to reduce the effect of inoculum density, as that in 

fact could be the main difference between sites (Preston-Mafham et al., 2002).  



61 

The same time point, 48h, was chosen for a comparison of the richness and evenness of 

the response of each sample (Frąc, Oszust, & Lipiec, 2012), with an OD of 0.1 selected as the 

threshold for positive response to remove weak false positives (Garland, 1997). Species richness 

(R), is the number of oxidized substrates, while the Shannon-Weaver index (H), is calculated as:   

𝐻 =  − ∑ 𝑝𝑖  ln 𝑝𝑖

𝑁

𝑖=1

  

Where pi is the proportion of microbial activity on substrate i and N is the number of substrates 

on the plate (Stefanowicz, 2006). Evenness (E) could then be calculated as:  

    𝐸 =  
𝐻

log 𝑆
 

Where S is the number of species. Two-way ANOVAs with Tukey HSD were used to determine 

whether significant differences exist between sites and depths in terms of AWCD, R, H, and E.  

Principal component analyses (PCAs) were performed to further evaluate the relative 

similarity of the responses at 48 h among the samples (Garland, 1997). PCAs were done on all 

samples, on Technosol and field samples, and on only Technosol samples in order to try and 

improve the separation of samples. The same three PCAs were then performed again using only 

samples which had an AWCD > 0.1. As no differences were observed between the six PCAs, the 

original including all samples was selected for further analysis.  

From the PCA including all samples, six substrates were selected based on their 

correlation with multiple other substrates and with PC1 or PC2 for graphical representation of 

the colour development through time. The substrates chosen were the amine putrescine, the 

carbohydrates D-mannitol and β-methyl-D-glucoside, the carboxylic acids α-ketobutyric acid 

and D-glucosaminic acid, and the phenolic compound 4-hydroxybenzoic acid. All statistical 

analyses were performed using R 3.3.2 (R Core Team, 2016).   
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Results 

Profile descriptions 

Profiles were initially a homogenous mixture of 2 mm – 1 cm diameter mine rock with 

woody residuals which are on average 0.2 mm – 3 cm in length. However, though an attempt 

was made to remove the largest pieces of wood (i.e. firewood sized logs), some large pieces still 

made it into the Technosols and are particularly likely to be found in the 80% organic.  

After one year, a pavement-like crust was observed on the surface of the Technosols. The 

crust was thin, 0.2 – 0.3 cm in thickness, and hard enough to prevent footprints from being left 

on the plot surface. There was a thin lag deposit on the surface of the crust, mainly composed of 

woody residuals with the fines removed. The crust disappeared by July 2015.  

The 40% organic plot with no vegetation had a 59 cm thick profile and several large 

wood pieces were removed during excavation. The surface layer was slightly lighter in colour 

and coarser in texture than the lower layers, but overall there was little variation with depth 

observed. The soil structure was massive and fine granular. The soil was quite wet due to rain 

starting during the sampling, which also prevented us obtaining an image.  

The 40% organic vegetated plot was similar to the unvegetated plot in that there was little 

variation observed with depth in terms of structure and colour (Figure 12). However, overall the 

soil had more structure than the unvegetated plot and could be classified as granular. There were 

numerous fine ryegrass roots present at the surface of the pit which held the top layers of soil 

together much more than was observed in the unvegetated profile, despite the grass being by this 

time almost completely dead. Alder roots were also visible throughout the profile; most were 

fine, but medium roots were also visible. The roots in the top 20 cm were primarily vertical, 

while lower down some horizontal roots were seen. There were few roots present under 50 cm 

depth.  
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Figure 12. 40% organic, 60 cm deep, vegetated Technosol profile. Fine roots visible in upper layers of 

profile; little colour or structure variation seen with depth.  

 

The 80% organic unvegetated plot had a 58 cm profile and little variation with depth, 

though the lower layers were slightly darker than the top (Figure 13). The top 0 – 2 cm contained 

the least fines and was mainly composed of larger pieces of rock and wood. The structure was 

similar to the 40% organic unvegetated plot, being massive and fine granular. There were many 

larger pieces of wood removed during pit excavation.  
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Figure 13. 80% organic, 60 cm deep, non-vegetated Technosol profile. Little variation in colour or 

structure seen with depth.  

 

The vegetated 80% organic plot had more roots present than the 40% organic vegetated 

plot, again with a large number being fine vertical roots in the top 20 cm, many from the ryegrass 

(Figure 14). Medium roots were observed lower down in the profile, though few were present 

under 50 cm. The variation with depth was like that of the other profiles: the top was slightly 

lighter in colour than the bottom and contained fewer fines. The granular structure was more 

pronounced in this profile than any of the other Technosol profiles. Large wood pieces were 

removed from this profile, including one which approached 60 cm in length.  



65 

 

 
Figure 14. 80% organic, 60 cm deep, vegetated Technosol profile. Many fine roots visible; little colour or 

structure variation with depth.  

 

The field pit was dug under tamarack, willow, and birch; the ground was covered by 

grass and moss. The profile was only able to be dug to 42 cm due to numerous large rocks at the 

base (Figure 15); many rocks were also removed during the digging of the pit. In general the soil 

was quite compact and rocky, with an overall sandy texture. As this soil is composed entirely of 

materials moved to the site by human activity during the reclamation process, it too is considered 

a Technosol.    

There was a thin LFH layer at the top of the profile mainly composed of decomposing 

moss and grasses. There was a sharp boundary between the LFH horizon and the dark brown Ahj 
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horizon below, which varied from about 2 – 4 cm in thickness. The Ahj horizon was granular 

and dominated by fine sand sized particles. There were many fine vertical and subvertical roots 

present, along with some horizontal roots near the top of the horizon. Coarse vertical roots were 

also observed.  

The Ahj was separated from the underlying Bm horizon by another sharp boundary. The 

Bm horizon was a lighter brown-yellow colour than the above, and consisted of fine- to medium-

sized sand particles with some silt. Pebbles were common throughout. Many fine roots were 

present, running vertical to subvertical. The Bm horizon averaged about 8 cm in thickness and 

had a subhorizontal boundary with the B horizon, which was 19 cm in thickness and was a 

darker colour than the Bm but had the same brown-yellow tone. Mottles were seen in this 

horizon, and pebbles were again common. The B horizon was coarser than the Bm, being mostly 

sand with a small amount of silt. More horizontal coarse roots were present in this horizon, 

though few fine roots were still observed.  

The B horizon shared a distinct boundary with the C horizon, which was a light 

brownish-grey colour and had few roots within it. It had a finer silty sand texture than the B 

horizon, but not as fine as the Bm horizon. It had a subangular blocky structure and 8 cm of it 

was visible in the pit dug.  
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Figure 15. Successional field soil profile, with Ah and Bm horizons visible.  

 

The forest soil is a Podzol, and the profile was 30 cm deep over bedrock (Figure 16). 

There was a 4 cm thick LF horizon overlaying a 2 cm thick H horizon which was dark in colour 

and high in organics. There were many fine to coarse roots in this horizon, mostly horizontal to 

subhorizontal, and fungal hyphae were also visible. The H horizon was granular and had a fine 

sand texture.  

A sharp wavy boundary separated the H and Ae horizons. The Ae horizon was around 11 

cm thick on average, and was bleached a light- to medium-grey colour. It was composed of a 

mixture of sand- and silt-sized particles. Many fine roots were observed, as were some coarse 

and medium roots, again in a mostly horizontal to subhorizontal pattern.  
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The Bf horizon lay directly on the bedrock and was separated from the Ae horizon by a 

sharp subhorizontal boundary. It was a reddish-brown colour and had a medium-to-fine 

subangular blocky structure. The particles varied from coarse sand to silt. Medium subvertical 

roots were seen in this horizon.   

 
Figure 16. Shallow podzolic profile formed in till over bedrock. Ae and Bf horizons visible.  

  

Profile chemistry  

When mixed with deionized water, the pH of the intermediate volcanic and 

metasedimentary rocks used to create the Technosols was 8.83 and 8.88, respectively, while the 

pH of the woody residuals was 6.53. Four years later, the high pH of the mine rock was reflected 

in the pH of the Technosol profiles, which was above 7 at all depths (Figure 17). The pH of the 
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80% organic Technosol was approximately an order of magnitude less than the 40% organic (8.0 

vs. 9.4). Vegetated plot pH was higher at the surface in both the 40% and 80% Technosols, but 

became lower at 4 – 6 cm in the 40% Technosol and 18 – 20 cm in the 80%.  The forest soil 

behaved as expected of a Podzol, starting at 6.2 in the LFH horizon before dropping to around 

4.7 at lower depths. The field soil pH was more similar to the our younger Technosols; in the 

upper layers it was around 7 before increasing to over 9 at depth.  

 
Figure 17. pHw of 40% and 80% organic Technosol profiles, successional field, and forest profiles.  

 

The pHCa of the parent materials was an order of magnitude lower than the pHw for both 

rock types: 7.51 for intermediate volcanics and 7.44 for metasedimentary. The woody residuals 

were slightly lower as well, at 6.31. Profile pH measurements were also consistently lower, as is 

common when comparing pHCa to pHw. Again, the forest soil had a much lower pH than the field 

or any of the Technosol profiles (Figure 18). The 40% organic vegetated and non-vegetated 
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profiles had similar pH and were consistent throughout the profiles. The 80% organic profiles 

had a slightly lower pH on average than the 40%, but also contained a high peak over 9 at 16 – 

18 cm in the vegetated plot and 25 – 30 cm in the non-vegetated. The field pH is similar to the 

80% organic, with a smaller peak at 16 – 18 cm, and another peak at the base of the profile.  

 
Figure 18. pHCa of 40% and 80% organic Technosol profiles, successional field, and forest profiles.  

 

Electrical conductivity in the 40% organic Technosol profiles was on average about 40 

µS/cm higher than in the 80% organic Technosol, around 100 µS/cm (Figure 19). There was little 

difference between the vegetated and non-vegetated profiles; the non-vegetated high organic 

typically had slightly higher EC but there was no clear pattern between the two low organic 

profiles. Both forest and field had high EC in the 0 – 2 cm layer, but quickly dropped to below 

the Technosol levels by 6 cm in the forest soil and even with the 80% organic by 8 cm in the 

field.  Unlike the forest and the field profiles, the EC was consistent throughout the Technosols. 
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Figure 19. Electrical conductivity of 40% and 80% organic Technosol profiles, successional field, and 

forest profiles. 

 

Soil temperature  

Soil temperatures in Technosol plots were measured from Sept 20, 2012 to Nov 4, 2016. 

Comparisons between the two vegetated and one non-vegetated plot for each treatment showed 

minimal differences between the two at all depths, therefore the three were averaged into one 

daily temperature reading per treatment. The difference between the 30 cm and 60 cm plots was 

also minimal for both the high and low organic Technosols, so it was decided to display only the 

60 cm thick plot temperatures to see the full range in depths.  

The largest differences in temperature with depth are seen in the 80% organic soil (Figure 

20). There is much greater variation in the shallow depths than at 60 cm, and the temperature is 

more extreme. In all Technosol plots it appears that the winter temperatures are increasing with 
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time while the summer temperatures remain consistent. The plots also all had a ‘shoulder’ at 60 

cm and to a lesser extent at 30 cm during spring: temperatures were flat around zero and then 

sharply increased until summer temperatures are reached. This was seen in the field and forest 

soils as well; however, it was visible at all depths although it was most pronounced at the base of 

the profiles.  

Differences were seen between the two levels of organic content, particularly at 60 cm 

during the winter (Figure 21). The 40% organic Technosol froze earlier and was a few degrees 

colder than the 80% organic. It also thawed earlier and was a few degrees warmer throughout the 

summer. Both showed similar summer temperatures to the field soil at this depth, but were 

noticeably colder in the winter; the field soil remained several degrees above freezing while the 

Technosols dropped to 0°C and below for the duration of the winter.   

The temperature of all four soils (Technosols, field, and forest) became more variable at 

shallower depths and reaches greater extremes. This was most evident at 5 cm, but was also 

visible at 10 cm (Figure 22), where daily temperatures in the Technosol plots during the summer 

were approximately equal to the air temperature. The difference between the two organic 

contents was minimal at these shallow depths but there was a large difference in the winter 

temperatures of the Technosols and the comparison soils. Again, the field soil remained several 

degrees above freezing while the forest soil remained at or slightly below 0°C, in contrast to the 

Technosols which in 2015 reached -10°C. In summer, the Technosols were around the same 

temperature as the field soil but with more variation. However, they are 5°C warmer on average 

than the forest soil.  
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Figure 20. Mean daily soil temperature in 80% organic, 60 cm deep Technosol plots from Sept 20, 2012 to Nov 4, 2016 (n = 3). 
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Figure 21. Mean daily soil temperature at 60 cm depth in 40% and 80% organic 60 cm plots (n = 3) and successional field from Aug 1, 2014 – 

Nov 4, 2016. Air temperature at 2 m is also shown.   
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Figure 22. Mean daily soil temperature at 10 cm depth in 40% and 80% organic 60 cm plots (n = 3), successional field, and forest soil from Aug 1, 

2014 – Nov 4, 2016. Air temperature at 2 m is also shown. 
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Soil moisture 

Soil moisture was measured as volumetric water content (m3/m3) within the plots over the 

same period as the soil temperature (Sept 20, 2012 – Nov 4, 2016), though only data from May 1 

to Dec 1 each year was kept, as moisture cannot be measured when water is in a solid state. The 

moisture was typically higher in the plots with vegetation than the plots without, though the 

magnitude of the difference varied. The only exceptions occurred at 10 cm in the 40% organic 

plots; in both the 30 cm and the 60 cm plots the moisture was higher in the non-vegetated plots, 

though the difference was greater in the thin plot. The 40% organic, 30 cm plot also showed no 

difference between vegetated and non-vegetated plot moisture at 30 cm, unlike the other three 

treatments which had higher moisture in the vegetated plots.  

In the 40% Technosol plots, the moisture in the thin plot at 5 cm was lower than the thick 

plot, but higher at 30 cm. The opposite trend was seen in the 80% organic plots over the same 

period. For both 40% and 80% organic Technosols at 10 cm, the moisture was initially higher in 

the thin plots but around July 2014 it was equal in the thick plots, and by 2015 the moisture at 30 

cm was higher in the thick plots.  

In terms of differences between the two organic contents, in plots of either depth the 

higher organic Technosol had higher moisture content at 5 and 10 cm, but lower or equal at 30 

cm and 60 cm.  

Overall the moisture at 5 cm was the most variable and lowest, except for the 80% 

organic 30 cm plots where it was largely overlapping the other depths. In the thick plots the 

moisture was highest at 60 cm and either the same or higher at 10 cm than at 30 cm (Figure 23). 

The moisture in the plots roughly tracked precipitation, with factors such as temperature and 

wind speed likely the cause of the differences observed.  
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The soil moisture in the field was consistently higher than either the low or high organic 

Technosol at all depths other than 60 cm, where it was approximately the same.  Field moisture 

was more variable than the moisture in the test plots, though not as variable as the moisture in 

the forest. Forest soil moisture initially started higher than the Technosol plots, around the same 

as the field, but dropped throughout the first several months of the growing season until it was 

lower than the Technosol soil moisture at 5, 10, and 30 cm in August. Forest moisture then rose 

until it reached levels similar to the Technosols by the end of November (Figure 24). The forest 

moisture reaches field levels by the end of the season, noticeably higher than the moisture of the 

Technosols.
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Figure 23. Mean daily volumetric water content in 40% organic, 60 cm deep Technosol plots from Sept 20, 2012 to Nov 4, 2016 (n = 3) with total 

daily precipitation. Data from winter months (Dec 1 – May 1) excluded.  
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Figure 24. Mean daily volumetric water content at 5 cm depth in 40% and 80% organic 60 cm plots (n = 3), successional field, and forest soil with 

total daily precipitation from Aug 1, 2014 – Nov 4, 2016. Data from winter months (Dec 1 – May 1) excluded. 
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Microbial functional diversity   

The average well colour development (AWCD) of most depths in all profiles showed an 

initial lag phase from inoculation to 24h; between 24h and 72h there was a sudden increase in 

OD590, with a tapering off observed from 72h to 96h. In Technosol profiles the maximum 

absorbance was just over 1.00, while in the comparison forest and field profiles the top layers in 

the profile had absorbances over 1.50. The comparison forest profile had the most variation in 

AWCD with depth, with some of the middle layers of the profile having absorbances less than 

0.50 after 96h. The field profile showed less variation, and had a general pattern of higher 

AWCD in the upper soil layers (Figure 25). The high organic profiles had least variation and no 

pattern with depth. The unvegetated high organic profile had an OD590 between 0.75 and 1.00 at 

96h in all depths. The low organic Technosol profiles had more variation and lower AWCD in 

the top layer of soil. This is particularly clear in the vegetated plot, which had very little colour 

development in the top 8 cm of soil (OD590 < 0.25; Figure 26).   

ANOVAs comparing the AWCD, richness (R), evenness (E), and Shannon diversity (H) 

at 48h between profiles and depths revealed that while there were no depth differences for any of 

the four variables, there were significant differences between profiles. The AWCD was 

significantly higher in the successional field than the vegetated low organic Technosol and forest 

profiles. R was significantly higher in the field and non-vegetated, high organic Technosol plots 

than in the vegetated low organic Technosol and forest profiles (Figure 27). The forest profile 

also had significantly lower R than the non-vegetated low organic and vegetated high organic 

Technosol profiles. H was significantly lower in the vegetated high organic Technosol than the 

unvegetated low organic one. E was not significantly different between any of the six profiles.   
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Figure 25. Average well colour development (AWCD; 590 nm) of the successional field profile over 96 

hours post-inoculation.  

 

  

Figure 26. Average well colour development (AWCD; 590 nm) of the 40% organic vegetated Technosol 

profile over 96 hours post-inoculation. 
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Figure 27. Richness (R) of soil profiles at 48h measured as number of substrates with OD590 > 0.1; letters 

indicate significant differences as determined by Tukey HSD. Profiles are 3A: low organic, unvegetated; 

3C: low organic, vegetated; 4B: high organic, unvegetated; 4C: high organic, vegetated; FI: field; FO: 

forest. 

 

In total six PCAs were performed using colour development at 48 h (all samples, no 

forest samples, no forest or field, samples with AWCD > 0.1, samples with AWCD > 0.1 and no 

forest, samples with AWCD > 0.1 and no forest or field) with the aim of increasing the 

separation between explanatory variables and seeing site differences. However, there was no 

substantial difference between the PCA with all samples and any of the PCAs lacking samples, 

so only the full PCA will be discussed.  

PC1 and PC2 explained 38.4% and 15.7% of the variance respectively. The forest profile 

samples separated out with only a slight overlap with some of the vegetated low organic 

Technosol samples (Figure 28). The Technosol profiles were largely overlapping, and while 

some of the successional field samples separated, most were in the same area as the Technosols.   
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Figure 28. Principal component analysis (PCA) for all soil profile samples at 48h post-inoculation with 95% confidence ellipses. Profiles include 

40% organic Technosols with and without vegetation, 80% organic Technosols with and without vegetation, the successional field, and forest soil.   
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The majority of substrates were positively correlated with PC1 while about half were 

with PC2. Seven of the ten highest-loading substrates on PC2 were carbohydrates while the 

highest loaded onto PC1 were more diverse, including three carbohydrates, three amino acids, 

two amines, and one each of phenolic compounds and carboxylic acids (Table 5). N-acetyl-D-

glucosamine, putrescine, and L-arginine had loadings with a magnitude > 0.2 on both PC1 and 

PC2. In general substrates were positively correlated with PC1, while on PC2 about half of the 

substrates had a negative correlation.  

  

Table 5. Substrates with the ten highest magnitude loadings on PC1 and PC2 from the soil profile 

comparison PCA.   

 Substrate Guild Loading 

PC1 D-Mannitol Carbohydrate 0.256 

 4-Hydroxybenzoic Acid Phenolic compound 0.252 

 L-Asparagine Amino acid 0.248 

 L-Serine Amino acid 0.248 

 D-Galacturonic Acid Carboxylic acid 0.236 

 Putrescine Amine 0.232 

 D-Galactonic Acid-γ- 

        Lactone 

Carbohydrate 0.228 

 L-Arginine Amino acid 0.228 

 Phenylethyl-amine Amine 0.202 

 N-Acetyl-D-Glucosamine Carbohydrate 0.200 

    

    

PC2 β-Methyl-D-Glucoside Carbohydrate -0.332 

 D-Cellobiose Carbohydrate -0.318 

 D-Xylose Carbohydrate -0.295 

 i-Erythritol Carbohydrate -0.268 

 Glucose-1-Phosphate Carbohydrate -0.259 

 D-Glucosaminic Acid Carboxylic acid -0.257 

 N-Acetyl-D-Glucosamine Carbohydrate -0.236 

 α-D-Lactose Carbohydrate -0.236 

 

 Putrescine Amine 0.232 

 L-Arginine Amino acid 0.216 
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Six substrates were selected for an examination of their colour development with time: 

the amine putrescine, the carbohydrates D-mannitol and β-methyl-D-glucoside, the carboxylic 

acids α-ketobutyric acid and D-glucosaminic acid, and the phenolic compound 4-

hydroxybenzoic acid. The development of 4-hydroxybenzoic acid, D-mannitol, and D-

glucosaminic acid in the six profiles was similar to the average well colour development, with 

increases beginning between 24 and 48 hours post-inoculation for most samples and the forest 

profile having the most spread. Putrescine was also similar until 72h, after which there was a 

levelling off in most samples.  4-hydroxybenzoic acid, D-mannitol, and putrescine were over 

65% correlated with each other, while D-mannitol and D-glucosaminic acid are 68% correlated.  

β-methyl-D-glucoside was also correlated with D-mannitol (54%) but had a very 

different pattern of colour development. In the Technosol profiles most of the samples remained 

at or below an absorbance of 0.05, while in the field and forest a few samples, typically those 

from shallow depths, reached absorbances around 0.1 or greater. The trend in α-ketobutyric acid, 

which was not highly correlated with any other substrates, was similar in that many samples 

remained below 0.1 in the Technosol profiles, with only a few increasing from 72 to 96 hours, 

and with the forest and field having more samples which increased to between 0.2 and 0.4 in the 

same time period.  

Discussion  

Profile development      

Unlike the comparison forest and reclaimed successional field profiles, there was little to 

no evidence of horizon development within any of the four Technosol pits. Between the 40% and 

80% organic Technosols the main difference was unsurprisingly the amount of woody debris and 

the colour of the soil; the 40% organic Technosol was a greyish colour while the 80% was more 
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a brown-grey. The surface of the Technosols was different as well; though both types had a 

coarse layer at the top with the fines washed out to several cm below, the remaining coarse 

fraction on the 40% organic was mostly mine rocks, while on the 80% organic it was mostly 

wood chips.  

The abundance of roots in the vegetated Technosols, particularly the numerous fine roots 

in the upper 20 cm, was an immediate obvious difference between vegetated and unvegetated 

plots. Upper layers in vegetated plots with ryegrass roots held together better while the profiles 

were dug than the unvegetated plots lacking these roots. Roots are known to form dense 

networks and stabilize profiles (Angers & Caron, 1998), so this result was expected. The fact that 

effects were seen though the ryegrass lived only a few months is also not surprising; grasses 

typically have been seen to have a rapid stabilization effect (Angers & Caron, 1998).  

Closer inspection revealed that the vegetated Technosols also had more structure, being 

granular rather than fine granular. These findings indicate that the vegetation sped the Technosol 

development. Plant roots are known to improve aggregation by directly binding smaller particles 

with fine roots or by the release of organic compounds which act as binding agents (Angers & 

Caron, 1998), and this was probably the cause of the change seen in the vegetated plots. Plant 

roots also affect soil porosity; the compressive and shear stresses roots apply to the soil result in 

pores being created and enlarged, increasing the conductivity of the soil (Angers & Caron, 

1998). This becomes more pronounced when plant roots decay and leave pore space behind, 

increasing infiltration (Angers & Caron, 1998). Because the ryegrass roots were so numerous 

throughout the upper 20 cm and because none survived the first year, it is possible these 

decaying roots might have a large effect on the infiltration rate in the top layers of the vegetated 

Technosols.  
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The accumulation of organic material at the surface is often one of the earliest processes 

which occurs during Technosol pedogenesis (Huot, Simonnot, et al., 2015), but no evidence of 

an organic layer forming was found on the vegetated Technosols. However, at the end of the 

growing season litter accumulation was observed under large alders on all vegetated plots 

(Chapter 4), so it is possible that a re-examination of the profiles in several years would reveal 

the beginnings of an LFH horizon. It is also possible that if the profiles had been dug closer to 

the alders, more changes to both soil structure and horizon development would have been seen. 

However, in this instance the preservation of the alders was important for other aspects of the 

study and therefore the areas immediately under the alders was not dug, meaning that any very 

local effects would have been missed by this assessment.  

pH changes in the upper profile layers are also typically present in the early stages of 

Technosol pedogenesis (Scholtus et al., 2015). However, our analysis of pH and conductivity 

through the Technosol profiles did not show a clear pattern of change in either direction for any. 

The pH of the soil throughout the profiles was quite high, averaging around 8 for high organic 

Technosols and 9.5 for the low organic when measured in water. While these results are 

somewhat consistent with the pH of the water samples collected from the Technosols over the 

past four years, which ranged from 7 – 8.3 (Chapter 2), it is quite high in comparison to most 

soils, particularly those in the boreal shield. Similar soil pH results have been found on sites in 

Alberta, where the natural soil pH is normally below 6.0 but on reclaimed oil sand sites can 

exceed 8.0 (Calvo-Polanco, Zhang, Macdonald, Señorans, & Zwiazek, 2017), likely due to 

calcareous parent material.  Local natural soils, such as the forest soil used as a comparison in 

this study, are mainly podzols and have a pH typically closer to 4 – 5 than 8 – 9. As discussed in 

Chapter 2, the mine rocks used to manufacture the Technosol have a high acid neutralization 
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potential which was clearly enough to raise the pH despite the addition of large amounts of 

boreal coniferous woody residuals with a pH of 6.5. The fact the pH of the 80% organic 

Technosol was approximately an order of magnitude lower than the 40% organic Technosol 

means the increasing organics did have an effect on the pH, but not a large enough one to bring it 

down to slightly acidic or even neutral levels. This may pose problems as it could exceed the pH 

limits of native boreal vegetation, many of which are not well known (Calvo-Polanco et al., 

2017). High pH may change the nutrient accumulation and growth patterns of plants on the 

Technosols (Calvo-Polanco et al., 2017). It could also result in microbial communities which are 

very different from those in the surrounding natural soils, which again could influence the 

vegetation as well as nutrient cycling within the Technosols.  

The pH at the surface of the vegetated plots unexpectedly appeared to have increased 

compared to the unvegetated plots, a result possibly due to natural variation in pH through the 

Technosols. The litter of green alders is known to decrease surface pH, as was seen a study on 

succession in Alaska where pH decreased from 8 to 5 under alder litter. However, the sites in this 

study were 35 – 50 years old (Crocker & Major, 1955), unlike our four-year-old Technosols. The 

Technosols may not have been mature enough for the alder to have had a large influence on the 

soil pH. Many of our alders were also fairly small, so the observed litter accumulation (Chapter 

4) probably had a very limited area of influence.  

pHCa is generally considered a more consistent measurement than pHw because it is less 

affected by the soil electrolyte concentration (Minasny, McBratney, Brough, & Jacquier, 2011). 

In this study, the difference between mean pHw and pHCa was 1.2 in 80% organic Technosols (8 

to 6.8) and 2 in 40% organic (9.5 to 7.5). The differences between the two are due to soil 

exchangeable cation concentrations, as the Ca2+ exchange with H+ and Al3+ on soil particles 
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reduces the pH of the solution (Minasny et al., 2011). The drop in pH is less as electrical 

conductivity (EC) increases (Minasny et al., 2011). The relative low EC throughout the profiles, 

under 150 µS/cm, can therefore explain the large differences between the two.  

EC is an indirect measurement of the total dissolved ion concentration or ionic strength of 

the soil solution (Brady & Weil, 2010), thus the low values in this study make sense considering 

the high amount of organics in the Technosols. The effect of increasing organics induces the 

approximately 40 µS/cm drop from the 40% organic Technosol profiles to the 80% organic 

Technosol profiles, from 100 µS/cm to 60 µS/cm; the decreasing mineral content results in 

decreased ion content in the soil solution.  

In Chapter 2 the conductivity of the water percolating through the plots and equilibrated 

at the base of the Technosol layer within the plots was measured. The values obtained were 

substantially higher than the EC values found in the soil water extract solutions, particularly in 

the gravity through-flow samples which frequently reached an EC of 1000 µS/cm. These higher 

values were likely due to the transmission of the water, which first flowed through the 

Technosols, then through a layer of crushed mine rock, then coarse mine rock before entering the 

collection barrel. This flow path exposed the water to a much larger amount of rock and new 

sources of ions, allowing dissolution of larger concentrations of dissolved ions.  

The tension water also had noticeably higher EC than the 1:4 (m/v) equilibrium water, 

typically 400 – 500 μS/cm. Unlike the through-flow, this is water that remained within the 

Technosol pedonmatrix. The higher values here were probably due to the length of time the 

water was held in the Technosol between sampling periods. Tension water was sampled 

approximately once a month during the growing season, giving the water ample time to 

equilibrate with the Technosols and react with the surrounding material, accumulating more 
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dissolved ions than the soil profile samples which were equilibrated only for 30 min – 1 hour 

before being read.  

Soil microclimate  

Continuous monitoring of temperature and moisture within all Technosol plots from 2012 

to 2016 gave an understanding of the year-to-year temporal variability of the soil microclimate at 

various depths as a response to changing environmental conditions, as well as changes due to 

maturation of the Technosols. There is a noticeable difference in the extent of temperature 

variation at the different depths in all Technosol plots, with lower depths exhibiting far fewer 

peaks and lesser extremes. The 60 cm depth in particular does not show the diurnal temperature 

spikes observed in the 5 and 10 cm temperature data. This observation suggests the insulating 

effect of soil material increased with depth.    

The increased moisture in lower depths of the Technosol is also consistent with the initial 

hypotheses. The 60 cm plots were constructed to test the hypothesis that thicker plots would have 

increased moisture at depth (Watkinson, 2014), and the recorded data generally indicated this in 

both Technosols. There was a general relationship between precipitation and soil moisture 

content, particularly in the 5 cm layer. The increases or decreases in moisture did not always 

directly correlate, likely due to temperature. The decreased temperature in the fall resulted in 

decreased water loss, so despite no increases in precipitation the soil moisture could increase, 

particularly in the upper soil layers. The lower layers also display less moisture content 

variability, similar to soil temperatures.  

There is large seasonal variability in the Technosol soil temperatures, with the upper 

layers being over 20 °C in summer and decreasing nearly to -20 °C the first two winters. Soil 

temperatures in the following two winters were not so low, with around -10 °C being the 
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minimum. The weather station on site was not installed until 2015, so the air temperature 

comparison at the site does not show whether the difference was due to increasing insulating 

effects of the soil as the Technosols mature, or whether the first winters were simply colder than 

the previous two. However, the winter of 2015-2016 was not as cold as 2014-2015, explaining 

some of the difference in soil temperature. Summer soil temperatures over the monitoring period 

are relatively stable, with maxima between 20 – 25 °C. This trend of increasing winter soil 

temperatures and unchanging summer ones was observed in all plots regardless of which 

Technosol was used to build them, though the higher organic content of the 80% organic 

Technosol did appear to have a moderating effect on the soil temperatures. This was particularly 

noticeable at the 60 cm depth sensor: in summer, the 80% organic tended to be a couple degrees 

cooler at 60 cm and a couple degrees warmer through most of the winter.  

Large differences in the winter temperatures between the comparison field and forest and 

the Technosol plots were obvious. The field soil matrix remained above 0 °C at all times, while 

the forest soil was at or just below 0 °C. The difference in soil temperatures was probably due in 

part to the increased exposure of the Technosols plots, which may prevent the formation of a 

large insulating snow pack on the plots. The raised structure may also have left parts of the sides 

exposed, allowing colder air to enter laterally at lower depths, something not possible in soil 

forming the ground surface.  

Technosol summer soil temperatures are much warmer than the forest soil temperatures, 

probably simply due to the amount of solar radiation the Technosols receive compared to the 

solum in th shaded forest site. The Technosols are similar to the successional field site, which is 

covered mainly with grasses and herbaceous plants in the vicinity of the sensors and scattered 

immature spruce, poplar, and tamarack further back. Field soil temperature peaks did not quite 
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reach the maxima of Technosol peaks, but were typically one or two degrees lower. The 

temperature data implied summer soil temperatures at least should not prevent the growth of 

vegetation on the Technosols, though the freezing winter temperatures may pose more of a 

challenge for the survival of plant roots. The cold winter temperatures could also impact the 

microbial community present within the Technosols. As the natural soils in the region never go 

below freezing, the low thermal regime of the Technosols may contribute to differences between 

their microbial communities and those typical of the natural soils of the area.  

Previous research determined the field capacity of the 40% organic Technosol was 0.14 

m3/m3, while the 80% organic was 0.17 m3/m3 (Watkinson, 2014).  The moisture in the high 

organic Technosol plots was therefore expected to be higher throughout all depths (Watkinson, 

2014). Monitoring over the four years revealed this was partially true. Moisture content of the 

high and low organic Technosols is similar, with the high organic having higher moisture at 5 

cm, 10 cm, and about half the time at 30 cm. However, at 60 cm the low organic matrix appeared 

to have higher moisture. The lower moisture at 60 cm in the 80% organic could be due to more 

water being retained in the upper layers of the soil, with less percolation reaching the base of the 

Technosol layer.  

Both Technosols have lower moisture than the successional field, and they do not 

experience the high spikes that are seen at various times at 5 cm in the field soil which are likely 

caused by runoff after heavy or repeated rain events. The forest soil has a very different pattern 

from either the Technosols or the field; though it starts at comparable moisture levels to the field, 

by mid-summer it has dropped below the Technosols and only begins to climb again in fall. This 

is probably due to uptake and transpiration by the surrounding trees; the trees in the forest are 

more mature and much closer to the sensors than the trees in the successional field.  
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The effects of vegetation establishment on the Technosol microclimate were also 

examined as part of the monitoring plan. No differences were seen in the soil temperature of 

unvegetated and vegetated plots, which is not surprising as the vegetation cover on the plots is 

still sparse and large areas are not shaded during the summer, or covered with insulating litter in 

the winter. Many of the plants are also still small, so large drifts and piles of snow cannot be 

accumulated around them, and they will not prevent snow from reaching the ground in fall or 

from melting in the spring.  

The effect of vegetation on moisture is more interesting. In all treatments, moisture was 

increased at 5 cm by the presence of vegetation, particularly after summer 2015 when bearberries 

and additional green alders were planted. As previously discussed, plant roots can increase the 

conductivity and infiltration of the soil (Angers & Caron, 1998) and it seems likely that is the 

cause of the increased moisture. Higher moisture levels in vegetated plots were seen at all depths 

in the 80% organic Technosols, though the difference was small at 30 cm in the 60 cm thick plot. 

This suggests that despite the water being removed from the soil by transpiration, the increased 

infiltration from roots and increased holding capacity due to high levels of organics is enough to 

keep the volumetric water content of vegetated plots higher than unvegetated.    

In the 40% organic, 30 cm Technosol plots, vegetated plots had higher moisture at 5 cm, 

lower moisture at 10 cm, and equal moisture at 30 cm. The 60 cm plots had higher moisture in 

vegetated plots at all depths except 10 cm, where unvegetated were higher. The 10 cm sensor is 

within the main rooting zone of the plants and this is likely the depth where they remove the 

most water. The lower holding capacity of this Technosol could mean that it is unable hold 

enough water for the increased infiltration into vegetated plots to mask the effects of increased 

water loss from evapotranspiration at this depth.   
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The permanent wilting points of the Technosols were previously found to be 0.03 m3/m3 

soil moisture for the 40% organic and 0.05 m3/m3 soil moisture for the 80% organic (Watkinson, 

2014). In all plots, only the 5 cm layer ever approaches or falls below these levels. This means 

that vegetation with mainly shallow roots may struggle to obtain adequate moisture, particularly 

during summer months. However, plants with deeper roots should be able to survive these drier 

periods.  

Microbial functional diversity  

Differences between the Technosol plot microbial communities and the two comparison 

soil communities are expected based on the differences in properties observed above and 

differences in the age of the soils. The Technosols on the plots are thought to have had little to no 

biological activity after their initial construction four years ago, with other researchers 

documenting that soil microbial community development in manufactured soils can take many 

years to reach levels resembling those of natural communities (Dimitriu et al., 2010). Soil 

microbial communities are affected by the mineral composition and the quality and quantity of 

organic material in the soils (Ditterich et al., 2016). In the case of the current Technosols there 

were clearly differences in the amount and distribution of organic material throughout the 

profiles when compared to that observed in the natural forest profile. The mineral composition 

may also have been different, as the Technosols were composed of crushed rock which would 

usually only have provided available nutrients through the slow weathering of bedrock 

underlying the soil. This low nutrient supply rate was in addition to the differences in pH, EC, 

and soil microclimate observed earlier in this chapter, which are also likely to impact community 

composition.  
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The average well colour development (AWCD) of the six profiles shows large 

differences between the Technosols and the comparison sites. Technosol plot profiles all had 

similar AWCD and had the highest AWCD in the lower depths, while the field Technosol profile 

AWCD was highest in the surface layers. The forest profile had much more variation in AWCD 

between depths than all other profiles. The fact that the Technosol plots had similar AWCD 

patterns means they probably have communities and quantities of microorganisms more similar 

to each other than to the comparison communities. This suggestion fits with the differences 

observed between the Technosol properties and those of the more natural soils, specifically pH 

and microclimate. Soil matrix pH is known to affect microbial community structure in the boreal 

forest, as does the concentration of nutrients and contaminants within the soil (Pennanen, 2001). 

These changes can alter the proportions of bacteria and fungi within the soil profiles (Pennanen, 

2001), which would influence the results of the Biolog® procedure. As fungi are not able to 

reduce the dye used on the plates, any shifts in their abundance or diversity will not be detected 

using this method (Preston-Mafham et al., 2002). This could explain why the forest depths had 

such low AWCD, as fungi are an important part of the boreal forest ecosystem and form 

mycorrhizal associations, particularly with conifers (Price et al., 2013). In any event, this 

preliminary examination of the microbial community functional diversity can confirm that there 

are differences between communities in natural soils and communities in the Technosols, even if 

the nature of those differences cannot be described in detail.   

ANOVA results for AWCD confirmed the visual impression of differences between 

profiles, as the forest soil horizon samples had significantly lower AWCD than the field 

Technosol profile.  The forest pedon samples also had significantly different richness (R) and 

evenness (E) from all other profiles except for the vegetated 40% organic Technosol pedon. This 
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pedon was the one most similar the forest pedon. The low colour development in the top 10 cm 

of the vegetated 40% organic Technosol profile resembled the low colour development at many 

depths in the forest profile. This low colour development could be due to the sample collection 

and storage procedures; with transport and storage causing lower viability in the bacterial 

communities. However, since the samples were not all processed in the same batch the 

possibility an inoculation error occurred on three separate occasions is low.  

Richness (R) was significantly lower in the forest profile than in all other profiles except 

the vegetated low organic Technosol, the same as the AWCD. This indicates that fewer 

substrates were used in the forest and vegetated low organic Technosol profiles, possibly because 

of increased fungal activity, which is not measured by EcoPlates™. Only the vegetated high 

organic and non-vegetated low organic profiles had significant differences in Shannon Diversity 

(H): substrate usage was significantly less diverse in the vegetated high organic Technosol 

profile. The higher content of woody organics may have meant an abundance of certain 

substrates in this Technosol, promoting the growth of bacteria specialized in their consumption 

and leaving the community function skewed towards the metabolizing of those types of carbon 

sources. Vegetation can also impact microbial communities, and again may have promoted the 

growth of a set of bacteria specializing in a less diverse set of substrates. There were no 

significant differences in the evenness (E) of the six profiles. In this case, E is measuring whether 

the activity levels in the substrates which were utilized by the microbial communities were 

approximately equal (utilization being defined as an OD590 > 0.1). All of the six profiles in this 

study had even substrate usage 48 hours after inoculation, as all had E close to 1.    

The separation of the forest profile from the Technosol profiles in the PCA provided 

further evidence of differences between the natural microbial communities and the Technosol 
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communities. The successional field Technosol profile overlapped with the plot Technosol 

profiles to a much greater extent, though it did extend further along the PC1 axis than the plot 

Technosols. This Technosol is older than the plot Technosols and may not contain mine rock, but 

rather is composed of stockpiled soil. Few differences were seen between it and the plot 

Technosol profiles, consistent with the fact that chemical properties of this profile such as pH 

and EC were similar to those of our plot Technosols. The largest difference between the pedons 

was in the soil microclimate data; unlike the Technosol plots, the successional field pedon 

temperatures remained above 0 °C at all times and the soil moisture was consistently greater. 

However, overall it appears that the young age of the successional field Technosol and its similar 

chemical properties to our mine rock-based Technosols have resulted in the development of 

similar microbial communities.  

PC1 had a diversity of substrates with positive loadings, including amino acids, 

carbohydrates, amines, a carboxylic acid, and a phenolic compound. Other studies have found 

that PC1 reflects variation in inoculum density (Glimm, Heuer, Engelen, Smalla, & Backhaus, 

1997; Lawley & Bell, 1998), which could explain the separation of the forest profile from the 

other profiles on the PC1 axis. The substrates that are more highly loaded on PC1 are those with 

higher colour development, suggestive of greater utilization by the community present, therefore 

inoculum density has a higher impact. In contrast, PC2 had negative loadings of carbohydrates 

and positive loadings of nitrogen-containing compounds. Carbohydrates are typically considered 

energy storage compounds, so their preferential metabolization suggests the bacteria are taking 

advantage of the available nutrients and experiencing a period of rapid growth. Research has 

suggested that EcoPlates™ favour fast growing bacteria that thrive under high nutrient 

conditions (Preston-Mafham et al., 2002). The differences in communities along PC2 may 
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indicate population size variability of the generalists able to take advantage of the high nutrient 

conditions.  

4-hydroxybenzoic acid, D-mannitol, and D-glucosaminic acid all had the same pattern of 

colour development. 4-hydroxybenzoic acid is a phenolic derivative of benzoic acid, and among 

other things is formed during ubiquinone synthesis in Gram-negative bacteria. D-mannitol is one 

of the most common energy and carbon storage molecules, and D-glucosaminic acid is a 

component of bacterial lipopolysaccharides, which are found in the cell membrane of Gram-

negative bacteria. The other compound which follows a similar utilization pattern over 72 h is 

putrescine, an amine formed during decomposition by the breakdown of amino acids. The fact 

that these compounds are all commonly produced by bacterial metabolic processes could indicate 

that the microbial communities in the Technosols are dominated more by bacteria than other 

microorganisms such as fungi, and are therefore more able to degrade these compounds.  

β-methyl-D-glucoside, a monosaccharide derived from glucose, and α-ketobutyric acid, a 

carboxylic acid product of cystathionine lysis and threonine degradation, had little colour 

development in the Technosol profiles in comparison to the field and forest profiles. This 

utilization profile indicates differences in the capacities of the microbial communities to 

metabolize these compounds, although the nature of these differences is not known.  

Conclusion 

An examination of the Technosol profiles revealed few signs of early pedogenesis four 

years after construction. Increased aggregation was observed in the vegetated profiles, but little 

variation in colour, pH, or EC was seen with depth. Organic matter accumulation is occurring 

immediately beneath the large alders on the vegetated plots, but the area of influence remains 

quite small. Comparisons of the soil microclimate between the high organic and low organic 
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Technosols showed the high organic system had less extreme temperatures and higher moisture 

content overall, particularly at 60 cm in the thick plots. Vegetated plots appeared to have 

increased infiltration in the top 5 cm of both Technosols. Finally, differences between the 

Technosol soil microbial functional diversity and the natural forest soil community were 

observed, though the nature of these differences remains uncertain. These results indicate that 

development of the Technosol profiles is occurring slowly, and that increased vegetation 

establishment on the Technosols would likely contribute to an increasing rate of pedogenesis.  
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Chapter 4. Vegetation growth on Technosols designed for mine reclamation in the Boreal 

Shield  

Introduction 

 Revegetation is a crucial component of mine reclamation and is important for long-term 

ecosystem stability (MacKenzie & Quideau, 2010). Vegetation establishment prevents site 

erosion, improves soil properties such as organic matter content, accelerates soil formation, 

increases nutrient cycling, promotes fungal and microbial community development, and 

improves aesthetics (Mukhopadhyay et al., 2016). As mining involves the removal of the natural 

soils and vegetation of an area along with the subsurface geologic material, revegetation often 

requires first an addition of soil materials to the site. As importing and spreading topsoil is an 

expensive option for remote mines in the Boreal Shield, the soil materials used are often the 

stockpiled soils and overburden materials removed during mine construction (MacKenzie & 

Quideau, 2010). These materials are often low in organic matter and nutrients, making the 

addition of amendments necessary to ensure successful plant growth (Young et al., 2015).  

Often the preference is to use amendments with a local origin, such as peat salvaged from 

initial construction phase (MacKenzie & Quideau, 2010; Pinno & Hawkes, 2015). To reduce 

costs, when organic material from the site is not available, local industry waste products can also 

be used as amendments, including paper mill sludge and wood chips (Young et al., 2015) or 

sewage sludge (Bradshaw, 1997).  

 The resulting manufactured soils, classified as Technosols under the World Reference 

Base for Soil Resources (IUSS Working Group WRB, 2014), can have properties which limit 

plant growth such as compaction (Young et al., 2015), coarse textures and low moisture retention 

(Macdonald et al., 2015), and unfavourable chemical conditions  (Mukhopadhyay et al., 2016). A 

common industry practice is to further modify the Technosols through the addition of 
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commercial fertilizers in order to improve their properties, another process which can be both 

economically and environmentally costly (Sloan et al., 2016).   

Although there are numerous studies on the reclamation of sites in the Alberta oil sands 

region using Technosols manufactured from local waste products (e.g. Pinno & Hawkes, 2015; 

Sorenson, Quideau, MacKenzie, Landhäusser, & Oh, 2011), there are fewer studies on the 

reclamation of other types of mine sites with Technosols. Knowledge of how well native 

vegetation will establish and grow upon Technosols on the Boreal Shield would be beneficial, 

particularly as mining development in the north is likely to increase. To this end, a field study 

was conducted on a gold mine in Northern Ontario designed to assess the ability of Technosols 

of different depths and organic matter contents to support vegetation, and more specifically the 

survival, growth, overall health, and nutrient status of the selected species.   

Methods 

Site description 

 The study site was located at Barrick Gold Corporation’s Williams Mine in Hemlo ON, 

north of Lake Superior and approximately 350 km east of Thunder Bay. This site is on the 

Canadian Shield, within the boreal forest ecosystem. Mean monthly temperatures range from 

15°C in July and August to -14°C in January; precipitation varies from 122 mm in September to 

47 mm in February (Environment Canada, 2017). The forest is dominated by a mixture of 

coniferous species including black spruce (Picea mariana (Mill.) B.S.P.), jack pine (Pinus 

banksiana Lamb.), tamarack (Larix laricina (Du Roi) Koch), and balsam fir (Abies balsamea 

(L.) Mill.), with deciduous hardwoods such as trembling aspen (Populus tremuloides Michx.), 

white birch (Betula papyrifera Marsh.), willow (Salix sp.), and alder (Alnus sp.)  (Sims et al., 

1996; Zoladeski & Maycock, 1990). Podzols, the most common soils in the region, have a 
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characteristic reddish illuvial (Bhf/Bf) horizon high in aluminum and iron often overlain by a 

grey eluvial (Ae) horizon from which these elements and soluble organic matter have been 

leached (IUSS Working Group WRB, 2014).   

Plot design 

 Technosols were constructed in summer 2012 using non-acid generating 

metasedimentary and intermediate volcanic rocks, which were excavated as part of the open pit 

mining operations at the Williams mine, in combination with woody residuals from the White 

River Forest Products sawmill. The mill is located approximately 60 km from the site in White 

River; the woody residuals are primarily boreal coniferous sawdust, bark, and off-cuttings 

(Watkinson, 2014).  

 The woody residuals were combined with the rock in either an 80:20 or 40:60 ratio by 

volume to obtain high organic and low organic Technosols.  These Technosols were layered in 

30 cm or 60 cm depths over lysimeters constructed from coarse mine rock and capped with 

crushed mine rock. Each Technosol-depth combination was replicated three times for a total of 

twelve plots (Watkinson, 2014). Plots were then left to equilibrate for one year before vegetation 

planting.   

Vegetation species  

Native vegetation species selected as candidates for establishment on the Technosol plots 

were early successional species considered capable of living on dry soils with low nutrients, as 

the Technosols were not expected to have high quantities of either available nitrogen or 

phosphorus, and the water holding capacities of the plots are expected to be limited at least 

initially due to exposure to sun and wind, as well as the lack of silt and clay sized particles within 

the soil matrix.  
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  The first species selected for establishment on the plots was green alder (Alnus viridus 

subsp. crispa (Aiton) Turrill). Green alders are native to the area and are an early successional 

species which can be found growing on disturbed sites under harsh conditions (Lefrançois et al., 

2010). Alders are capable of nitrogen fixation due to their symbiosis with nitrogen-fixing 

actinobacteria Frankia, and so have been used on many reclamation sites in the hope that they 

will increase the access of neighbouring plants to nitrogen through time (Densmore, 2005). 

Though alders have been found to at times inhibit natural seedling establishment, their presence 

can promote the growth of established seedlings by improving soil quality and acting as a nurse 

crop (Densmore, 2005).  

 The second species selected for planting was common bearberry (Arctostaphylos uva-ursi 

(L.) Spreng.), also native to the area. Bearberry is a low-growing evergreen shrub which forms a 

ground cover and is commonly found on dry soils low in nutrients (Krpata et al., 2007). The 

shrub has a high capacity to regrow after damage and colonize nearby areas (Salemaa & 

Sievänen, 2002), making it a good candidate for reclamation activities (Krpata et al., 2007).  

Vegetation planting 

 Green alders collected from a recently disturbed site along Highway 17 in August 2013 

had a mean height of 17 cm. The roots were cleaned of soil before planting. Sixteen alders were 

planted on two of the three replicates of each plot type. In August 2015, additional alder 

seedlings of approximately the same size were removed from a roadside within the mine 

property and soaked in water for several hours before being planted on the plots to bring the 

number on each up to at least nine. At this time twelve bearberry plants (Connon Nurseries, 

Waterdown, ON) were also planted on each of the vegetated plots.  
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In April 2016 a mixture of annual and perennial ryegrass seed (Home Gardener Overseed 

Premium Grass Seed Mix with Kickstart™ Technology) was hand seeded over the vegetated 

plots in an attempt to establish a nurse crop to promote and protect bearberry growth. 

Vegetation survival and health  

 Vegetation surveys were conducted approximately once per month throughout the 2016 

growing season (May to September) to assess the survival and health of the vegetation on the 

plots. Bearberry health was assessed by colour: green, a mixture of green and red or yellow, and 

red or black. Bearberry plants which was entirely black were considered dead. Alders were 

assessed by percent leaf cover: 100, 75, 50, 25, or 0 %; alders with a leaf cover of 0% were 

assumed to be no longer living. The ryegrass was assessed solely by colour and did not survive 

long enough for either sampling or other measurements to be taken.  

The final health survey of the year (September 2016) also included measurements of the 

maximum diameter and diameter at right angles to the maximum for bearberries, and the height 

and diameter for the alders. In addition, alder root development and nodulation was examined 

through the partial excavation of a large alder growing on a 30 cm thick, low organic Technosol 

plot.  

Two-way ANOVAs with Tukey HSD tests were performed to determine significance of 

organic content and depth. One-way ANOVAs with Tukey HSD were also performed to examine 

treatment differences. The nonparametric Kruskal Wallis test with Dunn’s post-hoc was used to 

examine alder height differences by treatment. Data were log-transformed when appropriate.   

Repeated measure ANOVAs were performed on the health survey data for both alders 

and bearberries using the ‘ez’ package in R (Lawrence, 2016). One- and two-way ANOVAs with 
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Tukey HSD were also performed to examine differences. All statistical analysis was performed 

using R 3.3.2 (R Core Team, 2016).   

Nutrient and trace element analysis 

 Samples were collected in September 2016 to assess the nutrient content of the 

vegetation.  One alder sample was composited from each vegetated plot, consisting of 3 leaves 

from each plant (when possible). In addition, four alder samples were composited from the 2015 

source site and three from nursery-stock green alder (St Williams Nursery & Ecology Centre, St 

Williams, ON) for comparison. One root sample was also taken from the partially excavated 

alder described above.  

 One bearberry sample was collected from each plot, consisting of one runner from each 

plant (when possible). For comparison, two bearberry samples were taken from a healthy stand 

in the same manner from alongside an old logging road off Highway 17, east of Hemlo.  

 Vegetation samples were dried overnight at 60°C and ground using a Thomas Wiley® 

Mini-Mill Cutting Mill. Samples (0.5 g) were weighed into 50 mL Teflon™ tubes, followed by 

the addition of 7.5 mL of trace metal grade HNO3 and 2.5 mL of trace metal grade HCl for 

digestion at 110° for 240 minutes. Cooled samples were diluted with deionized water to 50 mL 

prior to analysis by ICP-MS. The QA/QC protocol included Certified Reference Materials, 

method blanks, and sample duplicates.   

Fourteen elements were selected for examination: the macronutrients phosphorus, 

potassium, magnesium, and calcium, and the micronutrients boron, copper, iron, manganese, 

molybdenum, nickel, and zinc. Arsenic, antimony, and cadmium, which along with molybdenum 

are elements of environmental interest to the mine due to the presence of molybdenite, 

arsenopyrite, realgar, and stibnite in the deposit (Muir, 2002), were also quantified.  
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Results 

Mortality 

Mortality in the initial alder planting in 2013 was high, with a maximum survival rate of 

50.0% at the end of the summer and a minimum survival rate of 6.25% per vegetated plot 

(Watkinson, 2014). Only 18 of these alders survived to 2015. Mortality after the 2015 planting 

was much lower; the lowest survival rate observed was 66.7%, while five of the eight plots had 

100% survival. It should be noted that these survival numbers include both the alders planted in 

2015 and the remaining alders planted in 2013.  

The survival rate of bearberry planted in 2015 was also high: five plots had 100% 

survival, and the lowest survival rate was 83.3%. Plots 4A, 2B, 2C, and 1C had 100% survival of 

both bearberry and alder.  

The ryegrass planted in April was on average 5 cm high in June, and germination 

appeared to have been in the previous week following a large rain event. The shoots were thin 

but green and healthy in appearance. However, by July the shoots were reddening, with no 

further growth observed. By the end of the season the ryegrass had completely died off, without 

further growth.  

Plant size 

 Alder height and diameter were highly variable across the four treatments, particularly in 

the 30 cm, 40% organic treatment (Figure 29). A visual assessment indicated lower median 

values of both height and diameter for the low organic (40%) soils; this was confirmed by the 

two-way ANOVA results (height: F(1, 63) = 11.62, p = 0.001; diameter: F(1, 63) = 6.00, p = 

0.017). Depth also had a significant effect on diameter (F(1, 63) = 4.89, p = 0.031).  
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 The Tukey HSD test following one-way ANOVAs comparing treatments revealed that 

the 60 cm, 40% organic treatment was significantly different from both the high organic 

treatments (p = 0.007 & p = 0.005). The only significant difference between treatments for 

diameter was between the 30 cm, 80% organic and 60 cm, 40% organic treatments (p = 0.008).  

 

 
Figure 29. (a) Height and (b) diameter of green alders on the Technosol plots in Sept 2016 (n = 19, 17, 16, 

15).  
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 Bearberry maximum diameters and diameters at 90° from maximum showed few 

treatment differences (Figure 30). No significant differences were found through the two-way 

ANOVAs of organic content and depth or the one-way ANOVAs of treatment for either of the 

bearberry size measurements.  

 

 
Figure 30. (a) Maximum diameter and (b) diameter at 90° from maximum of bearberries on the 

Technosol plots in Sept 2016 (n = 22, 24, 24, 24).  
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 The root development of a large alder on a low organic, 30 cm Technosol plot was 

examined through partial excavation of the alder. The roots were numerous and extensive 

throughout the surrounding soil, with nitrogen-fixing nodules clearly visible (Figure 31). At the 

end of the growing season leaf litter accumulation was observed under the large alders on all 

plots (Figure 32). 

 
Figure 31. (Left) Partially excavated alder from low organic, 30 cm thick Technosol plot with root 

structure visible. (Right) Green alder root with nitrogen fixing nodules.  
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Figure 32. Litter build-up under alders (November 2016).  

Health 

 Alder health appeared to vary with treatment; the alders growing on the thick, low 

organic Technosol plots had noticeably fewer with full leaf coverage than those growing on other 

plots (Figure 33). The percentage of alder with full leaf coverage increased slowly throughout the 

growing season for all treatments. The 30 cm, high organic treatment had no alders without leaf 

coverage by the end of the season, and the highest percentage with full coverage.   

A repeated measures ANOVA on the percentage of alders with full leaf coverage found 

significant differences between months (F(3, 12) = 7.68, p = 0.004), and Tukey’s HSD following 

the fitting of a linear mixed effect model revealed the differences were between June/July and 

August/September. ANOVAs by month revealed that for full leaf coverage, organic content was 

barely significant in September (p = 0.049).  
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 For partial leaf coverage, both month and organic content were significant. Organic 

content was significant every month, while the difference in months was again between 

June/July and August/September.  There was no significance found in the repeated measures 

ANOVA for alders with no leaf coverage.  

 

Figure 33. Percentage of alders with each leaf coverage measure on each Technosol treatment throughout 

the summer of 2016. Treatments are 1: 40% organic, 30 cm; 2: 80% organic, 30 cm; 3: 40% organic, 60 

cm; 4: 80%, 60 cm. 

 

Bearberry health was unlike alder health as it had an obvious time-of-year dependence 

(Figure 34). There were no significant differences found between organic content or depths for 

bearberry plants of any colour, but the percentage of green bearberry in June was significantly 

higher than in any other month, while the percentage of plants which were both green and 

another colour was significantly less in April and June than in July, August, or September. 

Finally, red or black bearberry were significantly more common in April than in June, July, or 

August.    
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Figure 34. Percentage of bearberries within each colour category on each Technosol treatment throughout 

the summer of 2016. Treatments are 1: 40% organic, 30 cm; 2: 80% organic, 30 cm; 3: 40% organic, 60 

cm; 4: 80%, 60 cm. 

Nutrients and trace elements  

Macronutrients  

 The macronutrient content of the alders and bearberries grown on the Technosol plots 

appeared similar to those of the reference alder and bearberry plants. Phosphorus levels in the 

Technosol plot alder were lower than in the source site alder but close to nursery alder leaf 

concentrations, though some of the low organic Technosol samples contained less (Figure 35 

upper left). The bearberry had a similar trend, with some of the low organic plots having lower P 

content than the comparison site bearberry. Potassium levels of both plot alder and bearberry 

were close to those of the reference vegetation (Figure 35 upper right).  

Alder Ca concentrations in the Technosol plots were lower than the nursery alder, 

excluding the root sample, but approximately the same as in the alder source site samples. The 

bearberry Ca levels were generally higher on the plots than for the comparison site, with the 
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exception of two of the low organic Technosol plots (Figure 35 bottom left). Magnesium alder 

content was much higher in the root and nursery alder samples than in either the plot or source 

site alder samples, which had similar values (Figure 35 bottom right). The bearberry Mg was 

higher in the Technosol plots than the comparison site.  

 

  

   

Figure 35. Macronutrient concentrations (phosphorus, potassium, calcium, magnesium) in vegetation 

samples. Source sites are Technosol plots (1: 40% organic, 30 cm; 2: 80% organic, 30 cm; 3: 40% 

organic, 60 cm; 4: 80% organic, 60 cm) and comparison vegetation (AN: nursery alder, AR: alder root, 

AS: source alder; BC: comparison bearberry).  
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Micronutrients 

 Concentrations of B in the Technosol plot alder leaves ranged from 17 mg/kg in two of 

the high organic plots to 35 mg/kg in a low organic plot. This was comparable to the B content of 

the nursery alders (25 mg/kg) but higher than measured in the source alders, which ranged from 

3 to 13 mg/kg. Bearberry concentrations on the Technosol plots averaged around 14 mg/kg, 

which was slightly higher than the comparison site, at around 8 mg/kg.  

 Copper content in Technosol plot alders was around 3 – 6 mg/kg, similar to the nursery 

alder concentrations but slightly lower than source site alder concentrations, which were around 

10 mg/kg. The alder root sample had a higher Cu level of 18 mg/kg, while all bearberry samples 

contained approximately 1 – 3 mg/kg, including the comparison bearberry.  

 The Fe content in the alder root sample was substantially higher than any of the leaf 

samples, being 7540 mg/kg. Technosol plot alder Fe concentrations ranged from 83 to 385 

mg/kg, with the low organic Technosol plots typically having the higher concentrations. The 

nursery alder had concentrations equal to the lower end of this range, while the source site alder 

had concentrations similar to those of the higher end (up to 345 mg/kg). The bearberry Fe 

concentrations from the Technosol plots are much higher than in the comparison bearberry; plot 

concentrations range from around 75 – 100 mg/kg in the high organic Technosols to 200 mg/kg 

in the low organic Technosols, while the comparison bearberries have an Fe content of only 3 – 

17 mg/kg.  

Manganese concentrations were much higher in Technosol alder than nursery alder 

(approx. 100 – 200 mg/kg compared to 25 mg/kg), and also higher than most of the source alder 

samples (average 70 mg/kg). The high organic Technosols had lower concentrations than the low 

organic Technosols, more comparable to the source site alders. Root alder concentrations were 
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equal to the leaf concentrations in the low organic plots and one of the 30 cm high organic plots 

(over 150 mg/kg). Bearberry had much lower concentrations of Mn and appeared quite similar to 

reference bearberries, with an average of 20 mg/kg.  

Nickel concentrations were much higher in the alder root sample than the leaf samples, at 

20 mg/kg. Leaf concentrations appeared similar to comparison samples for both bearberry and 

alder, and in all cases are below 5 mg/kg.  

The Zn content of the bearberries in the treatments was 100 – 140 mg/kg, higher than in 

alder leaves, which ranged from 40 to 60 mg/kg, and slightly higher than the alder root which 

was 90 mg/kg. Zinc in Technosol plot bearberry was substantially higher than the Zn in the 

comparison bearberry, which is around 30 mg/kg.  

 

Molybdenum 

 Molybdenum was present in all alder samples but only on two bearberry samples from 

low organic Technosol plots at approx. 3.3 mg/kg (Figure 36), with all other samples being below 

the detection limit of 3 mg/kg. In alders, the root sample had noticeably higher Mo 

concentrations than the leaf samples (60.3 mg/kg). Alder leaves from the source site had higher 

concentrations than nursery alders. Alders from the high organic Technosol plots had lower 

concentrations than those in the low organic Technosol plots, which had concentrations 

comparable to the source site. High organic Technosol alders were close to or below nursery 

alder levels.  
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Figure 36. Molybdenum concentrations in vegetation samples. Source sites are Technosol plots (1: 40% 

organic, 30 cm; 2: 80% organic, 30 cm; 3: 40% organic, 60 cm; 4: 80% organic, 60 cm) and comparison 

vegetation (AN: nursery alder, AR: alder root, AS: source alder; BC: comparison bearberry). 

 

Elements of environmental interest 

 Arsenic was found only in the alder samples; all bearberry samples were below the 

detection limit of 0.2 mg/kg. There was no As detectable in the nursery alder samples, though it 

was seen in the alder samples from the source site at approximately 0.3 mg/kg. The alder from 

the high organic Technosol plots had As concentrations similar to those in the source alders, 

while the low organic Technosol samples were slightly higher (approx. 0.6 mg/kg). All alder leaf 

samples from both the plots and the source sites were below 1 mg/kg As, while the alder root 

sample contained 3.2 mg/kg.  
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Antimony was detected only in the alder root sample, at a concentration of 0.368 mg/kg; 

it was below the 0.07 mg/kg detection limit in all of the alder and bearberry leaf samples either 

from the Technosol plots or from the comparison vegetation.  

 Cadmium was not detected in any of the vegetation samples on the Technosol plots other 

than the alder root sample, at a concentration of 0.402 mg/kg. Cadmium was also found in two of 

the alder source samples, at concentrations of 0.0512 and 0.053 mg/kg, just above the detection 

limit (0.05 mg/kg).   

Discussion  

Mortality 

The bare root transplant method, high August temperatures, and low moisture were 

thought to be the cause of the high mortality rates of green alder from the August 2013 planting 

(Watkinson, 2014). The planting method was therefore modified slightly for the 2015 planting,  

although planting still occurred in August. The soil was not deliberately removed from the roots 

in the hope this would preserve more of the fine root system. The alders were also soaked in 

water for several hours before planting to reduce wilting and stress to the plant while waiting for 

transplant. Once planted they were thoroughly watered again to provide easily accessible water 

to sustain them while their root systems became established in the soil. These measures appear to 

have been successful in reducing mortality, as 100% of the alders survived to the next spring on 

five of the eight vegetated plots. Therefore, if planting during spring when moisture is higher and 

temperatures are lower is not possible, survival can be dramatically increased by soaking and one 

watering event after transplanting. The bearberry also had high transplant survival rates with 

watering after planting; the only difference in methods was the bearberry were planted with the 

potting soil intact around their roots. Complete survival of alder and bearberry was seen in both 
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the thin 80% organic plots, as well as one thick 80% organic and one thin 40% organic plot. 

These success rates are also reflected in the size and health of plants; the thin 80% organic plots 

consistently had the best scores in terms of plant health.  

The annual ryegrass had a good germination success rate with the April planting and light 

raking into the soil. The complete die-off of the ryegrass which occurred several months later 

appeared to be due to problems with moisture or nutrient deficiencies in the soil rather than the 

seeding method.  

Plant size   

The highly variable alder sizes, particularly on the thin 40% organic plots, were due in 

part to the presence of alder of different ages on the plots. Many of the 18 alders surviving since 

2013 had grown fairly large by 2016, much larger than those planted in 2015. The new alders 

tended to die back during the months following transplant, losing leaves likely due to the sudden 

increase in exposure they experienced on the plots. Alder seedlings that survived the winter grew 

back with stronger stems and smaller leaves. Some alders appeared to die back, being only a few 

cm in size in April 2016. However, by the end of the season growth was observed on almost all 

of them.  

Alders were significantly larger on the high organic Technosol plots. The high organic 

Technosol typically has higher moisture than the low organic, specifically in the upper 30 cm of 

the soil (Chapter 3). As this area of soil also has the largest number of roots (Chapter 3), it can be 

assumed that the vegetation is obtaining a large amount of its moisture requirements from these 

depths and therefore the increased amount available in the high organic could be the cause of the 

increased growth.  
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The depth of the plot was also important for the diameter of the alder; however, in this 

case it appears that thicker plots had alders with smaller diameters. This is contrary to 

expectations, as thicker plots were thought to hold more moisture and therefore promote growth 

(Chapter 3). The smaller sizes could have been due to the increased exposure of the thick plots. 

The extra 30 cm of Technosol on these plots raises them above the thin plots, which then have 

the extra benefit of increased shelter from the wind. The thinner plots do have higher moisture 

than the thick ones at 5 cm, though this changes at 10 cm (Chapter 3). The moisture difference 

could be the cause of the decreasing diameters, as the alders may need to develop a more 

extensive root system before they can take advantage of the higher moisture at lower depths.  

The bearberry did not show any differences in growth habit. The lack of difference could 

indicate that the bearberries had not sufficiently established for the treatment differences to have 

affected their growth, but what is more likely is that the bearberry were already struggling on the 

Technosol plots and so very little growth was occurring.  

The partial excavation of one of the large alders on a thin, low organic plot confirmed the 

roots were extensive throughout the 30 cm layer of the Technosol. It also confirmed what was 

suspected due to the deep green leaves and general health of the alders: nitrogen fixation nodules 

were plentiful on the root system. The nitrogen-fixing abilities of alders were one of the reasons 

they were chosen for the plots, in the hope that they would be able to survive the low nutrients 

and over time improve the soil quality, so the confirmed presence of nodules is encouraging.  

The other effect of the large size of some of the alders was the build-up of fresh and 

decomposing leaf litter at the end of the growing season. As the alders grew, it was hoped they 

would break the wind over the plots to help promote the growth of other vegetation and allow the 
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accumulation of organic matter and snow. These litter mounds hopefully represent the beginning 

of humus form development critical for nutrient cycling. 

Health   

There were significantly fewer alders with full leaf coverage the thick, low organic 

Technosol plots than the other three plot types. Both time in the season and organic content of 

the Technosol influenced the number of alders with only partial leaf coverage, as alders 

continued to grow and leaf coverage increased throughout the growing season.  

The high organic Technosol tended to have higher levels of moisture in the upper layers 

of soil where the roots are more concentrated. This Technosol also had a slightly narrower range 

between minimum and maximum temperatures (Chapter 3). Finally, concentrations of 

bioavailable macronutrients in the high organic Technosol were significantly higher than in the 

low organic Technosol. The high organic Technosol also had lower bioavailable Mo and Cd 

(Chapter 2) and a lower percentage of As which was bioavailable (Chapter 2). The more 

favourable nutrient conditions and lower amounts of potentially harmful elements may also have 

been a factor in the improved plant health on the high organic Technosol.   

The reason the thin, low organic Technosol plots had comparable plant health results to 

the high organic plots is likely because these plots were less exposed to weather than either of 

the thick plots. Although the moisture in the top 10 cm was lower than any of the other plots, the 

moisture at 30 cm was higher (Chapter 3), a property which seems to indicate that the low 

organic Technosol could hold sufficient moisture for plants with deeper roots to thrive as long as 

the soil was not highly exposed. When exposure increases, as in the thick low organic plots, the 

soil appeared to be unable to hold enough moisture to compensate for the increased evaporation 

resulting from increased wind, and plant growth suffers as a result.  
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Bearberry again showed no differences between treatments, but season had a strong 

effect. At the end of April a large number of bearberry were in the red or black health category, 

which would normally be thought to indicate the plant was struggling. However, as bearberry is 

an evergreen shrub whose leaves turn a red colour during winter (USDA NRCS Plant Materials 

Program, 2006), the bearberry were probably still emerging from winter dormancy. In June 75% 

of bearberry plants were green, but that number decreased dramatically in the following three 

months. From July on, most bearberry had leaves which were partially yellow or red. Only 11 of 

the 98 bearberries showing signs of life by August 2017.This high mortality could be a 

consequence of an unsuitable soil habitat, or a result of poor growing conditions in the latter part 

of the growth season. As alder did well, the cause of poor bearberry growth is probably the 

nature of the soil matrix.  

In the first case, the most obvious factor which could cause difficulties is moisture. 

Although we have seen the lower levels of the soil never fall below the permanent wilting point, 

the 5 cm layers may have done so during dry periods (Chapter 3). The bearberry rooting system 

also may not have been as extensive as the alders, preventing the roots from reaching the 

moisture zone at depth within the plots. The bearberry plants were also planted with their 

original potting soil intact around their roots in the hope this would increase their survival by 

providing a soil richer in nutrients and moisture during establishment. However, retention of the 

potting soil may have prevented the bearberries from sending out large numbers of roots into the 

less favourable Technosol surrounding them. This would in turn inhibit their ability to obtain the 

moisture required. Excavation of several bearberries in summer 2017 revealed that there were 

some roots leaving the potting soil ball, and that the roots were more extensive in the high 

organic Technosol. Overall though the bearberry root system appeared less well developed than 
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the alder root system, indicating that the bearberry may have had more difficulty obtaining water 

than alders. The lack of moisture at times during the summer and fall may have stressed the 

bearberries to the point where they could not survive the freezing temperatures of winter, causing 

the large die-off seen in 2017. The difficulty with this theory is that bearberry are known to 

survive on dry sites (Krpata et al., 2007), one of the reasons they were chosen as a reclamation 

species. The bearberry plants were nursery-stock grown in southern Ontario, with the genotype 

being less adapted to dry conditions and northern temperatures. The use of local bearberry could 

remove this possibility, however, bearberry germination success rates are low and cuttings may 

require additional treatment before they can be planted successfully (Smreciu, Gould, & Wood, 

2013; USDA NRCS Plant Materials Program, 2006).  

The second scenario is that environmental conditions were not the problem, but rather the 

chemical and nutrient conditions of the Technosols themselves. The nutrient status of the 

bearberries will be discussed in more detail in the next section, but generally the Technosols are 

not nutrient rich and thus nutrient deficiencies possibly contributed to the bearberry mortality. 

Bearberry are typically able to survive in low nutrient soils (Krpata et al., 2007), so it would be 

expected that any deficiencies resulting in plant death would be fairly obvious, which was not the 

case. It also appears that toxicity from the elements of environmental interest (Mo, As, Cd, Sb) 

was not a likely cause of bearberry mortality.  

The high pH of the Technosols is a potential issue for plant growth. With a pH of 8.0 – 

9.4, the Technosols are strongly alkaline, and the pH tolerance limits of bearberry are not well 

defined. Plant guides suggest bearberry require acid soils with pH limits such as 4.0 – 6.0 

(Prairie Nusery, 2017), under 6.8 (Wildflower Centre, 2013), or with a 5.5 to 8.0 range (Smreciu 

et al., 2013). One study documented high mortality at pH 7.3 – 7.7 (Howat, 2000). An in-depth 
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study of the effects of pH on boreal plants found that bearberry shoot:root ratio and transpiration 

rates declined slightly as pH increased, but that overall bearberry were not highly responsive to 

pH and could be a good candidate for revegetation on sites with a wide range in pH (Calvo-

Polanco et al., 2017). However, this was a only short-term study, and that foliar concentrations of 

some nutrients decreased with increasing pH (Calvo-Polanco et al., 2017). This study suggests 

long-term exposure to high pH may still be a contributor to the die-off observed. The pH of the 

tension water samples taken from the base of the Technosol soil layer was typically 7 – 8.5 

(Chapter 2). Though this water may be below the reach of the bearberry root zone, particularly in 

the 60 cm thick plots, this is still an indicator of the pH of the pore water available to the plants.   

The EC is less of a concern than the pH for the plant survival. Bearberry EC limits have 

been reported as < 730 µS/cm, much higher than the values < 200 µS/cm reported in the 

Technosol profiles (Chapter 3), and also higher than most of the tension water samples from the 

plots, which were typically 500 µS/cm or lower (Chapter 2).  

Ryegrass survived only one month before turning red and dying off. Like bearberry, this 

could reflect a lack of moisture, nutrients, or problems with other soil chemistry variables.  

Nutrients   

The macronutrient concentrations within the plant leaves suggested that only P could be 

potentially limiting, as K, Ca, and Mg concentrations in plants from Technosol plots were 

generally consistent with comparison vegetation samples analyzed during this study. Phosphorus 

deficiencies are typically associated with red or purple colours developing on plant stems and 

leaves (Barker & Pilbeam, 2007). Stunting, resulting in small, dark green leaves and short, 

slender stems, and chlorosis have also been observed (Barker & Pilbeam, 2007). Both the 

general appearance of the alder and the levels of P measured in leaves indicate that P is likely not 
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limiting alder growth. However, the bearberries did redden and very little growth was seen over 

the 2016 growing season, suggestive of a P deficiency. The ryegrass also turned red and died 

about a month after its germination, which was also suggestive of a P deficiency.  

Data on P requirements for bearberry is extremely limited; other than the general 

statement that the species nutrient requirements are low. The closest related species in many 

cases was high bush blueberry (Vaccinium corymbosum L.), with documented sufficiency ranges 

of 0.10 – 0.32% dry weight (Barker & Pilbeam, 2007) or 0.20 – 0.50% (Jones Jr., Wolf, & Mills, 

1991). Blueberry is also a member of Ericaceae and grows on dry, sandy, nutrient-poor soils with 

a similar documented pH tolerance (Calvo-Polanco et al., 2017). If we accept blueberry as a 

proxy for bearberry requirements, the Technosol bearberry leaves fell into or just below the low 

end of the blueberry sufficiency ranges discussed above. Overall, with only three samples having 

foliar P concentrations noticeably lower than the comparison plants, a P deficiency was probably 

not the prime factor which caused the bearberry die-off.  

Micronutrient concentrations indicated no deficiency issues in the alders, with ranges 

similar to either the reference source site or nursery alders. This observation indicates that the 

Technosols were likely able to meet the nutritional requirements of the alders and the species is a 

good choice for reclamation with the Technosols. The generally healthy appearance and growth 

of the alder support this assertion.  

Micronutrient deficiencies were also not likely to be affecting the bearberry, as B, Cu, 

Mn, and Ni foliar concentrations were similar for both the Technosol bearberry and the 

comparison bearberry. Of note, Fe and Zn were both higher in the Technosol bearberry than in 

the reference bearberry by at least 100 mg/kg.   
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In high bush blueberry, elevated levels of Fe are > 200 mg/kg (Jones Jr. et al., 1991). The 

bearberry samples from the Technosols ranged from about 75 mg/kg in the high organic 

Technosols to 200 mg/kg in the low organic Technosols, falling just below the blueberry range. 

Iron toxicity is typically only seen in flooded conditions when Fe3+ is reduced to Fe2+ (Nagajyoti 

et al., 2010). Iron can accumulate in plants to several hundred mg/kg without toxicity occurring  

(Jones Jr. et al., 1991), indicating Fe levels are an unlikely cause of the mortality observed.   

In blueberry, Zn is variously reported as being high when > 100 mg/kg (Jones Jr. et al., 

1991), or with > 80 mg/kg causing toxicity symptoms (Barker & Pilbeam, 2007). Levels of Zn in 

the range of 100 – 140 mg/kg were reported in the Technosol plot bearberry, higher than both 

reported limits for the blueberry. Zinc toxicity can limit the growth of roots and shoots as well as 

cause chlorosis (Nagajyoti et al., 2010; Rout & Das, 2009). Chlorosis is sometimes caused by a 

Zn-induced Fe deficiency (Nagajyoti et al., 2010) but Fe concentrations in young chlorotic 

leaves have also been measured at much higher levels than usually required, over 100 mg/kg 

(Foy, Chaney, & White, 1978; Rout & Das, 2009). Zinc can inhibit nutrient transfer within the 

plant, causing Cu and Mn deficiencies in leaves (Nagajyoti et al., 2010) and accumulation of Zn, 

Fe, Mg, K, P, and Ca in roots (Rout & Das, 2009). A purplish-red colour in leaves is also 

reported as a possible symptom of Zn toxicity (Nagajyoti et al., 2010), as is Zn-induced P 

deficiency (Foy et al., 1978).  

In the Technosol bearberry leaf samples all nutrients appeared to be present in sufficient 

concentrations to support healthy growth, with the possible exception of P, which does not 

support the theory of Zn toxicity. While the high Fe levels and reddening of leaves were partially 

consistent with Zn toxicity, increases in Fe could just as easily have been caused by higher 

bioavailability of Fe in the soil allowing more uptake. The reddening of bearberry leaves could 
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have been due to low P levels or an early senescence caused by other factors such as low 

moisture and high pH. Thus the suggestion that Zn toxicity was a problem for the bearberries 

cannot be confirmed or refuted without more research data.  

It should be noted that nitrogen content in the leaves was not measured as part of this 

analysis; therefore it is possible that the health of the bearberries was adversely affected by a 

nitrogen deficiency. However, bearberry normally thrive in N-poor sandy soils of Boreal regions.  

Elements of environmental interest   

Molybdenum is the primary element of concern on the site, being present throughout the 

deposit (Pan & Fleet, 1995). Mo is also an essential micronutrient because of its crucial role in 

nitrate reduction and in symbiotic nitrogen fixation (Barker & Pilbeam, 2007). Molybdenum a 

cofactor in two proteins found in nearly all nitrogenases, enzymes responsible for N2 reduction 

(Barker & Pilbeam, 2007). Molybdenum levels are thus particularly important for alders, which 

form a symbiotic relationship with the actinobacteria Frankia and as a result have additional Mo 

requirements to sustain the nitrogenase enzyme within the bacteria (Bélanger, Bellenger, & Roy, 

2013). This symbiosis can provide a significant advantage to alders when N is limiting, as 

Frankia can meet up to 90% of the N demand of the plant (Bélanger et al., 2013).  

Our data revealed that Mo concentrations in alder were higher than in the bearberry 

grown on the same treatment. Molybdenum was detected in all alder samples but was only 

detected in bearberry on two of the low organic Technosol plots. Both of these samples had Mo 

concentrations of 3.3 mg/kg, which is slightly higher than the commonly found value of 0.1 – 2 

mg/kg (Oustriere et al., 2016). The higher concentrations in alder, averaging 18 mg/kg in leaves, 

are consistent with their increased need for the element but still less than reported for stressed 

plants (Oustriere et al., 2016). The alder root sample contained more Mo than the leaves (60 
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mg/kg); alder roots have been found to contain more Mo than shoots because the nodules where 

N-fixation occurs act as a Mo sink (Bélanger et al., 2013).  These concentrations were consistent 

with the comparison alders and are likely quite safe for the plants, particularly as Mo has a 

relatively low toxicity for plants (Bélanger et al., 2013).  

None of the additional elements of environmental concern (As, Cd, and Sb), having low 

bioavailability, appeared to be present in the vegetation in sufficient quantities to decrease 

growth. All three elements were below the detection limit in bearberry, and though all were 

found in small quantities in the alder root, only As was detectable in the leaves of alders from the 

Technosol plots. This indicates that little uptake of these elements is occurring. The amount of 

bioavailable Cd and Sb in the Technosols was low. Cadmium was detected in only two 40% 

organic plots and Sb was below detection limit in all (Chapter 2), so the low concentrations in 

the vegetation were unsurprising.  

Arsenic was more bioavailable, a potential concern as the arsenate ion, AsO4
3-, is an 

analog for phosphate and can therefore be taken up in its place (Nagajyoti et al., 2010). 

Uncontaminated terrestrial plants typically report 0.2 – 0.4 mg/kg of arsenic (Cullen & Reimer, 

1989). The alder leaves on the high organic Technosol had As concentrations within this range 

and alders on low organic Technosols were slightly higher, with a maximum of 0.7 mg/kg 

observed. Similar results have been seen in Alnus incana leaves from As-contaminated soils; leaf 

As concentrations were measured at 0.4 mg/kg (Kuehnelt, Lintschinger, & Goessler, 2000). This 

suggests the alders do not accumulate large amounts of As, and that the As that is contained 

within the leaves is not present in high enough concentrations to harm the plants.  
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None of the elements of environmental interest are likely to be harmful to vegetation 

growth on the Technosols, and none of the four appear responsible for the lack of success with 

bearberry or ryegrass grown on the Technosol plots.  

Conclusion  

Green alders appeared to thrive on the Technosol plots, particularly on the high organic 

plots which provided more moisture and higher levels of bioavailable nutrients. Low rates of 

mortality and large amounts of growth were observed on many of the test plots, indicating that 

green alders are a good choice of species for initial revegetation on the Technosols.  

Bearberries were not successful on the Technosols, struggling throughout the growing 

season. A combination of factors, including low moisture in upper soil layers, less extensive root 

systems, high soil pH, low phosphorus, and possibly zinc toxicity, probably contributed to their 

decline. If bearberry were to be used on these Technosols, amendments would need to be added 

to increase survival rates, or local varieties tolerant of neutral to alkaline pH must be selected. 

Otherwise an alternative species needs to be selected for revegetation to be successful on the 

Technosols.  
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Chapter 5. Summary, Implications, and Recommendations  

Summary and Implications  

This study was designed to test whether a Technosol constructed from local waste 

products, specifically mine rock and lumber mill woody residuals, is an effective medium for use 

in site reclamation. The study was located at Barrick Gold’s Hemlo Operations, which are just 

north of Lake Superior and consist of an underground and open pit mine. Though the original 

soil material removed when operations began was stockpiled and saved, the mine rock pile 

generated by the open pit is so large that alternative material will be needed to complete 

reclamation and revegetation. Using local waste products such as the mine rock and woody 

residuals reduces operational costs and the carbon footprint associated with transporting large 

amounts of alternative materials from long distances.  

Due to the varied nature of Technosols formed either intentionally or not from mine 

wastes, studying the development of one specifically designed for reclamation purposes was one 

of the main objectives of this study, as was assessing the elemental content of water samples 

released from the Technosols and flowing over mine rock. Their ability to support native 

vegetation was also critical. The Technosols were manufactured and placed into plots in summer 

2012, providing four years to develop in situ as the study continued. Two Technosols were 

created, one with 40% woody residuals and one with 80% woody residuals, to examine the 

effects of higher organic content on the physical and chemical properties of the Technosol and its 

ability to support vegetation. Finally, two depths of Technosol application (30 cm and 60 cm) 

were compared to see whether a thicker layer of soil would provide a better environment for 

plant growth.  

The first thing examined was the initial soil chemistry and the water chemistry over the 

four years since the plots were constructed (Chapter 2). The higher organic Technosol was found 
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to have significantly more C and N, as well as Ca, Mg, K, P, and Mn, available for plant uptake. 

Of interest, the high organic Technosol also had significantly lower amounts of bioavailable Mo. 

Water samples from all Technosols, particularly the high organic Technosols, had high 

concentrations of DOC, much higher than concentrations in most natural waters in the region, 

throughout the four years they were measured.  The pH of both pore and through-flow water 

samples from both Technosols was 7 – 8, with the alkalinity attributed to the presence of 

carbonates within the mine rock. Electrical conductivity was lower in the soil pore water than in 

the through-flow samples, with chemical analysis these water samples indicating this 

conductivity may be due to SO4
2-, Ca2+, K+, and Mg2+ concentrations.  

There are several elements of environmental interest on the Hemlo site, namely Mo, As, 

Cd, and Sb. Analysis of water samples indicated that Mo and Cd exceeded PWQO on occasion, 

though Cd did not exceed by a large amount. Antimony concentrations were never above 

PWQO, and As concentrations were below the PWQO but above the interim PWQO in many 

pore water samples, though not in through-flow samples. This means that ongoing monitoring of 

the through-flow from the Technosols, particularly for Mo and Cd, will likely be required.   

The development of the Technosol profiles and the variations in their properties with 

depth was examined in Chapter 3. Little profile development, in terms of variations in colour, 

pH, EC, and structure, appears to have occurred in the four years the Technosols have been in 

place. Vegetated plots were found to have a more granular structure than non-vegetated ones. 

When soil microclimates were compared, vegetated plots were found to have higher levels of 

moisture in the upper layers of soil, likely due to root-induced structure and porosity 

development increasing infiltration.  
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The pH of around 8 in the high organic Technosol profiles and 9.5 in the low organic 

profiles, was much higher than the natural soils of the area and may impact successful 

establishment of some vegetation species. The EC of the profiles was low throughout, under 150 

µS/cm, likely as a result of the high percentage of organics within the Technosols.  

In terms of the soil microclimate, the high organic Technosols had less extreme 

temperatures in both summer and winter, though the surface layers of soil still reached above 20 

°C in summer and below -10 °C in winter. There was less variation in both temperature and 

moisture the lower layers of the Technosols, particularly at 60 cm depth, with moisture levels at 

lower depths always higher overall than the upper layers. The high organic Technosols had more 

moisture in the upper 30 cm of soil, but less at 60 cm, possibly due to the increased retention and 

slow percolation through the upper layers. Occasionally the surface 5 cm of soil fell below the 

permanent wilting point of the Technosols, so for plants to survive dry periods deeper root 

systems would be required.  

A basic comparison of the microbial functional diversity of the Technosols to the 

comparison forest and successional field soils revealed differences between the communities do 

exist. Using EcoPlates™, richness and diversity were compared. The forest soil had significantly 

lower richness than the Technosol profiles, and exhibited lower average well colour 

development, a measure of substrate usage. Substrates common in bacterial metabolisms were 

more actively utilized and displayed a more steady colour increase than others, indicating that 

the community may have contained more bacteria than fungi or other microorganisms.  

The survival and health of vegetation on the Technosols was the last area of study 

(Chapter 4). When green alders and bearberries were planted on the Technosols in 2015 after 

being soaked and were then watered once, survival rates in 2016 were high, unlike the low 
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survival following bare-root transplants in 2013. Alders continued to thrive on the Technosols 

through 2016; the vibrant green colour and nodulation observed during the excavation of an alder 

root system indicate that nitrogen fixation is occurring. Alders on the low organic, 60 cm thick 

plots were significantly smaller than alders on any other plots, probably due to increased 

exposure and lower moisture in these plots.  

The bearberries did not survive as well as the alders; despite an initial low mortality, 

almost complete mortality was observed in 2017. Throughout 2016 bearberries showed signs of 

distress, with red and yellow leaves appearing in early July and very little evidence of extension 

measured. No differences in size or health were seen between the low and high organic 

Technosols, or the thick and thin plots. An examination of the nutrient and trace elements of 

interest in the vegetation leaves revealed that, while alders appear to have sufficiency in all 

circumstances, bearberries could potentially be experiencing either a P deficiency or Zn toxicity, 

or both. Nitrogen deficiency is another possibility which should be investigated, as are a lack of 

moisture in the upper soil layers where the bearberry roots are and high soil pH.  

The overall conclusions of this study are that the Technosols can be used to reclaim the 

mine rock pile. The high organic Technosol is recommended, due to higher nutrient content, 

reduced availability of elements of environmental interest such as Mo and Cd, less extreme soil 

temperatures, increased soil moisture, and reduced soil pH. Green alders are an ideal species for 

use on the Technosol and appeared to be thriving several years after planting. However, 

bearberries should not be used unless amendments are added to make the Technosol more 

suitable for their growth or local bearberry varieties are used. Finally, monitoring of water 

percolating through the Technosol will be needed to ensure concentrations of elements such as 

Mo and Cd do not exceed regulatory limits. 
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Recommendations for future work  

The high pH of the soil is one of the main concerns for vegetation survival, but at the 

same time it is a good sign for the mining company in terms of the acid generation potential of 

the Technosol on the mine rock pile. Acidity will not be a major concern when the Technosols 

are in place. As a result, vegetation species with a broad range in pH tolerance will have to be 

chosen for revegetation unless some amendment such as sulphur prills or crushed acid generating 

mine rock is added to lower the pH. This may limit the species available, as most boreal soils are 

acidic and therefore most vegetation may be adapted for lower pH conditions. Species like green 

alder, which gradually acidify soils, may slowly change surface soil conditions and provide 

habitats for these native species as their influence on the soil increases.  

The low nutrient content of the soil is another potential issue for vegetation growth, as it 

is a possible factor in the failure of the bearberries. While P content was measured in plant leaves 

and found to be a potential limiting nutrient, N in leaves was not measured. In future studies, an 

examination of the N content of the leaves of vegetation such as bearberries on the Technosol 

will be critical for determining whether N or P are limiting nutrients.  

The shallower observed root systems of the bearberries preventing access to the higher 

moisture held deeper in the soil is another potential problem for growth. The planting with their 

potting soil intact may have slowed their root expansion into the less hospitable environment of 

the Technosols, limiting their potential for moisture uptake. Bearberries transplanted without the 

potting soil buffer could be monitored to learn which did better or worse in the Technosol. The 

performance of locally sourced bearberry should be investigated as they may grow better than 

nursery stock, being already adapted to the climate of the region. Though bearberry can be 

difficult to germinate, the use of local cuttings may also have more successful growth if such 

cuttings were obtained.  



134 

The monitoring of the microclimate on the surface of the plots should be more precisely 

measured to see what the bare soil conditions are so that the impacts of vegetation establishment 

can be described. Although we have soil temperature and moisture throughout the plot, a more 

in-depth examination of the surface and the upper 20 cm where the majority of rooting occurs 

would be interesting. Samples of soil pore water from 10 cm rather than from 30 or 60 cm, as is 

currently obtained, would give a better idea of the quantity and content of the water and nutrients 

the plants are most exposed to. Plot surface temperatures and wind conditions would give more 

information on the amount of exposure the plants are experiencing, and how that is changing as 

the alders increase in size. Further studies on the infiltration rates and bulk density of the soil 

would give insight into the porosity and water storage of in the Technosols. Measurements of 

transpiration rates would also be valuable, as they would provide more information about the 

water cycling and requirements on the plot, particularly as plant size and number increases. 

The completion of the soil profile chemistry, including how nutrient and trace element 

concentrations and bioavailability change with depth, will give further insight into how the 

Technosols have changed over the four years since their creation and whether the nutrients plants 

require are present in the areas of the soil where they are able to access them.  

Finally, looking at other vegetation species on the Technosol will be beneficial and 

critical. Though bearberry and ryegrass did not succeed, other species such as field strawberry 

have been observed colonizing the Technosol materials with some success. Trials with seeding 

tickle grass in 2013 were unsuccessful (Watkinson, 2014) but these occurred when a hardened 

crust was observed on the surface of the plots, something no longer present by 2015 when the 

Technosols had matured more. Tickle grass would now possibly be able to germinate and grow 

on the plots.   
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Appendix A: Supplemental Figures for Chapter 2 

Soil chemistry  

Soil organics 

Table A6. Moisture content (% w/w) of all Technosol soil samples; letters indicate replicates.    

Plot %MC   Plot %MC 

40% organic, 30 cm  80% organic, 30 cm 

1A 0.28  2A 0.59 

1B 0.04  2B 0.20 

1C 0.06  2C 0.54 

Mean 0.13  Mean 0.44 

± SD 0.14  ± SD 0.21 

     
40% organic, 60 cm  80% organic, 60 cm 

3A 0.19  4A 0.94 

3B 0.34  4B 0.52 

3C 0.08  4C 0.32 

Mean 0.20  Mean 0.59 

± SD 0.13   ± SD 0.32 
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Table A7. CNS results (% w/w), C/N, and C/S ratios for all Technosol soil samples (air and bone dry). Ratios calculated from bone dry samples.   

  Air dry    Bone dry    

Plota C% N% S%  C% N% S% C/N C/S 

1A 3.77 0.038 0.237  3.80 0.05 0.24 75.4 15.9 

1B 3.88 0.054 0.534  3.90 0.07 0.53 55.4 7.3 

1C 5.19 0.046 0.356  5.20 0.06 0.36 86.5 14.6 

Mean 4.28 0.046 0.376  4.30 0.06 0.377 72.4 12.6 

± SD ± 0.79 ± 0.008 ± 0.149  ± 0.78 ± 0.01 ± 0.146 ± 15.8 ± 4.6 

          

2A 14.35 0.131 0.360  14.4 0.17 0.36 84.4 39.9 

2B 18.42 0.169 0.685  18.5 0.22 0.69 83.7 26.9 

2C 13.92 0.123 0.439  14.0 0.16 0.44 87.0 31.7 

Mean 15.56 0.141 0.495  15.6 0.18 0.50 85.0 32.8 

± SD ± 2.48 ± 0.025 ± 0.170  ± 2.5 ± 0.03 ± 0.17 ± 1.7 ± 6.6 

          

3A 4.26 0.046 0.221  4.30 0.06 0.22 71.0 19.3 

3B 4.86 0.031 0.516  4.90 0.04 0.52 121.5 9.4 

3C 4.19 0.031 0.393  4.20 0.04 0.39 104.6 10.7 

Mean 4.44 0.036 0.377  4.47 0.05 0.38 99.0 13.1 

± SD ± 0.37 ± 0.009 ± 0.149  ± 0.38 ± 0.01 ± 0.15 ± 25.7 ± 5.4 

          

4A 17.20 0.138 0.361  17.4 0.18 0.36 95.6 47.6 

4B 15.21 0.108 0.426  15.3 0.14 0.43 108.7 35.7 

4C 13.31 0.100 0.526  13.4 0.13 0.53 102.4 25.3 

Mean 15.24 0.115 0.438  15.4 0.15 0.44 102.2 36.2 

± SD ± 1.95 ± 0.020 ± 0.083  ± 2.0 ± 0.03 ± 0.09 ± 6.6 ± 11.2 
a 1: 40% organic, 30 cm; 2: 80% organic, 30 cm; 3: 40% organic, 60 cm; 4: 80% organic, 60 cm; letters indicate replicates  
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Total and bioavailable ions  

Table A8. Total soil macro and micronutrient concentrations in all Technosol samples.  

Plota B 

mg/kg 

Ca 

mg/kg 

Cu 

mg/kg 

Fe 

mg/kg 

K 

mg/kg 

Mg 

mg/kg 

Mn 

mg/kg 

Mo 

mg/kg 

Ni 

mg/kg 

P 

mg/kg 

Zn 

mg/kg 

            

1A 19.8 30800 30.6 17800 17200 14500 353 53.1 19.3 427 106 

1B 26.3 33500 31.0 21100 15900 12900 403 47.6 21.6 482 100 

1C 23.2 37900 25.7 25500 16000 11800 455 84.0 26.9 566 107 

Mean  

± SD 

23.1  

± 3.3 

34066.7 

± 3583.8 

29.1  

± 3.0 

21466.7  

± 3863.1 

16367.7  

± 723.4 

13066.7  

± 1357.7 

403.7  

± 51.0 

61.6 

± 19.6 

22.6 

± 3.9 

491.7  

± 70.0 

104.3 

± 3.8 

            

2A 40.7 29900 45.8 20500 16300 12900 388 50.8 19.3 432 113 

2B 35.6 30200 21.8 16500 16200 12600 406 45.2 17.3 494 164 

2C 21.2 31300 19.0 19700 14900 11300 436 45.9 16.5 486 105 

Mean  

± SD 

32.5  

± 10.1 

30466.7 

± 737.1 

28.9 

± 14.7 

18900.0 

± 2116.6 

15800.0  

± 781.0 

12266.7 

± 850.5 

410.0  

± 24.2 

47.3 

± 3.1 

17.7 

± 1.4 

470.7 

± 33.7 

127.3 

± 32.0 

            

3A 24.3 32600 19.4 19700 16600 12800 378 51.8 18.7 464 112 

3B 25.6 35400 24.6 21600 16900 11600 420 45.6 25.1 495 98.2 

3C 32.2 32600 26.0 22700 17300 11800 436 56.5 23.6 487 105 

Mean  

± SD 

27.4 

± 4.2 

33533.3 

± 1616.6 

23.3 

± 3.5 

21333.3  

± 1517.7 

16933.3 

± 351.2 

12066.7 

± 642.9 

411.3 

± 30.0 

51.3 

± 5.5 

22.5 

± 3.3 

482.0 

± 16.1 

105.1 

± 6.9 

            

4A 19.9 26900 19.4 16500 15400 11100 408 43.2 15.8 427 103 

4B 19.7 27200 22.2 17100 14700 10400 355 33.5 17.0 433 98 

4C 21.9 28000 19.2 19100 16500 10700 360 64.8 19.3 439 105 

Mean  

± SD 

20.5 

± 1.2 

27366.7 

± 568.6 

20.3 

± 1.7 

17566.7  

± 1361.4 

15533.3 

± 907.4 

10733.3 

± 351.2 

374.3 

± 29.3 

47.2 

± 16.0 

17.4 

± 1.8 

433.0 

± 6.0 

102.0 

± 3.6 

 a 1: 40% organic, 30 cm; 2: 80% organic, 30 cm; 3: 40% organic, 60 cm; 4: 80% organic, 60 cm; letters indicate replicates  
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Table A9. Total soil concentrations of elements of environmental interest in all Technosol samples.  

Plota 
As 

mg/kg 

Cd 

mg/kg 

Sb 

mg/kg 

    

1A 6.34 0.284 0.484 

1B 5.80 0.291 0.385 

1C 6.64 0.308 0.426 

Mean 

± SD 

6.26 

± 0.43 

0.294 

± 0.012 

0.432 

± 0.050 

    

2A 6.77 0.371 0.35 

2B 4.38 0.533 0.368 

2C 4.68 0.297 0.305 

Mean 

± SD 

5.27 

± 1.30 

0.400 

± 0.121 

0.341 

± 0.032 

    

3A 5.40 0.295 0.511 

3B 6.04 0.290 0.363 

3C 6.11 0.288 0.352 

Mean 

± SD 

5.85 

± 0.39 

0.291 

± 0.004 

0.409 

± 0.089 

    

4A 6.53 0.334 0.333 

4B 4.51 0.313 0.341 

4C 5.35 0.320 0.296 

Mean 

± SD 

5.46 

± 1.01 

0.322 

± 0.011 

0.323 

± 0.024 
a 1: 40% organic, 30 cm; 2: 80% organic, 30 cm; 3: 40% organic, 60 cm; 4: 80% organic, 60 cm; letters indicate replicates  
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Table A10. Concentrations of bioavailable soil nutrients and elements of environmental concern in all plotsa 

Plotb 

 

As 

mg/kg 

B 

mg/kg 

Ca 

mg/kg 

Cd 

mg/kg 

Cu 

mg/kg 

Fe 

mg/kg 

K 

mg/kg 

Mg 

mg/kg 

Mn 

mg/kg 

Mo 

mg/kg 

P 

mg/kg 

DL 0.002 0.004 0.009 0.0003 0.001 0.001 0.002 0.0008 0.0004 0.0008 0.002 

            

1A 0.288 0.339 126 <DL 0.0524 0.243 43.1 18.2 <DL 0.2 0.195 

1B 0.0995 0.0224 121 0.00223 0.00413 0.12 45.1 16.9 <DL 0.161 0.376 

1C <DL <DL 137 <DL 0.122 0.725 49.2 21.4 0.759 0.187 <DL 

Meanc 

± SD 

0.194  

± 0.13 

0.181  

± 0.22 

128.0  

± 8.2 
0.00223 

0.0595  

± 0.06 

0.363  

± 0.32 

45.8  

± 3.1 

18.83  

± 2.3 
0.759 

0.183  

± 0.02 

0.286  

± 0.13 
            

2A 0.0466 0.211 167 <DL 0.00621 0.0726 55.6 23.2 <DL 0.0825 1.08 

2B <DL 0.0523 204 <DL 0.0335 0.297 57.2 28.6 1.75 0.067 2.01 

2C 0.0925 <DL 174 <DL <DL 0.476 58.8 26.9 1.47 0.1 0.545 

Meanc 

± SD 

0.070 

± 0.03 

0.132 

 ± 0.11 

181.7 

± 19.7 
<DL 

0.0199 

± 0.02 

0.282 

± 0.20 

57.2 

± 1.6 

26.23 

± 2.8 

1.61 

± 0.2 

0.083 

± 0.02 

1.212 

± 0.74 
            

3A <DL 0.213 124 <DL <DL 0.315 51.3 15.1 0.412 0.267 0.0831 

3B <DL <DL 118 0.00323 0.00519 0.391 51.5 15.4 0.412 0.193 <DL 

3C 0.119 <DL 151 <DL 0.0279 0.49 51.5 19.4 0.708 0.163 <DL 

Meanc 

± SD 
0.119 0.213 

131.0 

± 17.6 
0.00323 

0.0165 

± 0.02 

0.399 

± 0.09 

51.4 

± 0.1 

16.63 

± 2.4 

0.51 

± 0.2 

0.208 

± 0.05 
0.0831 

            

4A 0.141 0.0422 191 <DL <DL 0.13 54.8 25.2 <DL 0.0354 1.43 

4B 0.0535 0.0354 201 <DL <DL 0.433 61.5 35 <DL 0.0648 1.85 

4C <DL <DL 195 <DL 0.0177 0.145 63.7 24 <DL 0.107 1.04 

Meanc 

± SD 

0.097 

± 0.06 

0.039 

± 0.004 

195.7 

± 5.0 
<DL 0.0177 

0.236 

± 0.17 

60.0 

± 4.6 

28.07 

± 6.0 
<DL 

0.069 

± 0.04 

1.440 

± 0.41 
a All Ni, Sb, and Zn concentrations below detection limits (0.0003 mg/L, 0.018 mg/L, and 0.001 mg/L respectively)  
b 1: 40% organic, 30 cm; 2: 80% organic, 30 cm; 3: 40% organic, 60 cm; 4: 80% organic, 60 cm; letters indicate replicates  
c Means and SD were calculated using only samples above detection limits 
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Table A11. Results of bioavailable ion t-tests comparing 40% and 80% organic Technosols 

 As B Ca Cu Fe K Mg Mn Mo P 

d. f. 5 5 10 6 10 10 10 4 10 7 

t -1.518 -1.159 7.469 -0.783 -1.104 4.855 4.658 6.316 -6.428 3.330 

p 0.189 0.299 2.14 e-5 * 0.464 0.296 6.66 e-4 * 8.98 e-4 * 0.003* 9.53 e-5 * 0.013* 

* Significant (α = 0.05) 

 

 
Table A12. Percentage of total element concentration which is bioavailable for low and high organic Technosols 

Technosol As B Ca Cd Cu Fe K Mg Mn Mo P 

Low org 

(40%) 
2.79 0.76 0.38 0.94 0.16 0.0018 0.29 0.14 0.14 0.35 0.04 

High org 

(80%) 
1.55 0.32 0.65 N/A 0.08 0.0014 0.37 0.24 0.41 0.16 0.29 
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Water chemistry  

Basic chemistry  

 

 
Figure A37. Redox potential (rel mV) of Technosol gravity through-flow (GT) and tension water (TW), 

and Williams mine rock test cell (MR) water samples from Oct 2012 to Nov 2016 with loess curve and 

95% CI.  
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Figure A38. Concentrations of Cl- (mg/L) from Technosol gravity through-flow (GT), Technosol tension 

water (TW), and Williams mine rock test cell (MR) water samples from July 2013 to Nov 2016. 12 

samples < DL (0.03 mg/L). 

 

 
Figure A39. Concentrations of NO3

- (mg/L) from Technosol gravity through-flow (GT) and tension water 

(TW), Williams mine rock test cell water (MR), natural water (NW), and rainwater (RW) samples from 

July 2013 to Nov 2016. 197 samples < DL (0.01 mg/L), 126 of which are TW samples.  
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Macronutrients  

 
Figure A40. Concentrations (mg/L) of K in Technosol gravity through-flow (GT) and tension water 

(TW), Williams mine rock test cell water (MR), natural water (NW), and rainwater (RW) samples from 

July 2013 to Nov 2016. 1 sample < DL (13.5 µg/L). 

 

 
Figure A41. Concentrations (µg/L) of P in Technosol gravity through-flow (GT) and tension water (TW), 

Williams mine rock test cell water (MR), natural water (NW), and rainwater (RW) samples from July 

2013 to Nov 2016. 334 samples < DL (0.45 µg/L). 
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Micronutrients  

 
Figure A42. Concentrations of Cu (µg/L) in Technosol gravity through-flow (GT) and tension water 

(TW), Williams mine rock test cell water (MR), natural water (NW), and rainwater (RW) samples from 

July 2013 to Nov 2016. 20 samples < DL (0.01 µg/L). 

 

 
Figure A43. Concentrations (µg/L) of Mn in Technosol gravity through-flow (GT) and tension water 

(TW), Williams mine rock test cell water (MR), natural water (NW), and rainwater (RW) samples from 

July 2013 to Nov 2016. 18 samples < DL (0.1 µg/L). 
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Figure A44. Concentrations (µg/L) of Ni in Technosol gravity through-flow (GT) and tension water 

(TW), Williams mine rock test cell water (MR), natural water (NW), and rainwater (RW) samples from 

July 2013 to Nov 2016. 45 samples < DL (0.15 µg/L). 

 

 
Figure A45. Concentrations (µg/L) of Zn in Technosol gravity through-flow (GT) and tension water 

(TW), Williams mine rock test cell water (MR), natural water (NW), and rainwater (RW) samples from 

July 2013 to Nov 2016. 7 samples < DL (0.2 µg/L). 
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Elements of environmental interest  

 

  
Figure 46. Cd concentrations (µg/L) of a) all samples including Williams mine rock test cell water (MR) 

and b) Technosol gravity through-flow (GT), Technosol tension water (TW), natural water (NW), and 

rainwater (RW) from July 2013 to Nov 2016. 58 samples < DL (0.03 µg/L). 

  

b) 

a) 
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Table A13. Number and % of water samples with concentrations below detection limit for each measured 

element by year.  

Element 

(DL, µg/L) 

2013 

(158 obs.) 

2014 

(106 obs.) 

2015 

(83 obs.) 

2016 

(232 obs.) 

Total <DL 

(579 obs.) 

As  

(0.35) 

10 

6.3 % 

 

4 

3.8 % 

7 

8.4 % 

43 

18.5 % 

64 

11.1 % 

B  

(0.06) 

7 

4.4 % 

 

18 

17.0 % 

6 

7.2 % 

10 

4.3 % 

41 

7.1% 

Ca  

(20) 

1 

0.6 % 

 

0 

– 

0 

– 

0 

–  

1 

0.2 % 

Cd  

(0.03) 

15 

9.5 % 

 

11 

10.4 % 

5 

6.0 % 

27 

11.6 % 

58 

10.0 % 

Cu  

(0.01) 

0 

– 

 

11 

10.4 % 

0 

– 

9 

3.9 % 

20 

3.5 % 

Fe  

(1) 

0 

– 

 

60 

56.6 % 

28 

33.7 % 

67 

28.9 % 

155 

26.8 % 

K  

(13.5) 

 

1 

0.6 % 

0 

– 

0 

– 

0 

– 

1 

0.2 % 

Mg  

(1) 

 

1 

0.6 % 

0 

– 

0 

– 

0 

– 

1 

0.2 % 

Mn  

(0.1) 

 

1 

0.6% 

0 

– 

13 

15.7 % 

4 

1.7 % 

18 

3.1 % 

Mo  

(0.13) 

 

6 

3.8 % 

0 

– 

1 

1.2 % 

1 

0.4 % 

8 

1.4 % 

Ni  

(0.15) 

 

0 

– 

34 

32.1 % 

1 

1.2 % 

10 

4.3 % 

45 

7.8 %  

P  

(0.45) 

 

92 

58.2 % 

86 

81.1 % 

33 

39.8 % 

123 

53.0 % 

334 

57.7 % 

Sb  

(0.01) 

 

1 

0.6 % 

0 

– 

0 

– 

0 

– 

1 

0.2 % 

Zn  

(0.01) 

7 

4.4 % 

0 

– 

0 

– 

0 

– 

7 

1.2 % 
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Appendix B: Supplemental figures for Chapter 3  

Profile chemistry  

 
Figure B47. pH of 40% organic Technosol profiles with and without vegetation.  
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Figure B48. pH of 80% organic Technosol profiles with and without vegetation. 

 

 
Figure B49. pH of successional field Technosol and forest Podzol reference sites. 
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Soil temperature 

 
Figure B50. Mean daily soil temperature in 40% organic, 30 cm deep Technosol plots from Sept 20, 2012 to Nov 4, 2016 (n = 3).  
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Figure B51. Mean daily soil temperature in 80% organic, 30 cm deep Technosol plots from Sept 20, 2012 to Nov 4, 2016 (n = 3).  
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Figure B52. Mean daily soil temperature in 40% organic, 60 cm deep Technosol plots from Sept 20, 2012 to Nov 4, 2016 (n = 3).  
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Figure B53. Mean daily soil temperature at 5 cm depth in 40% and 80% organic 60 cm plots (n = 3), successional field, and forest soil Aug 1, 

2014 – Nov 4, 2016. Air temperature at 2 m is also shown.   
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Figure B54. Mean daily soil temperature at 30 cm depth in 40% and 80% organic 60 cm plots (n = 3), successional field, and forest soil Aug 1, 

2014 – Nov 4, 2016. Air temperature at 2 m is also shown.   
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Soil moisture  

 
Figure B55. Mean daily volumetric water content in 40% organic, 30 cm deep Technosol plots from Sept 20, 2012 to Nov 4, 2016 (n = 3) with 

total daily precipitation. Data from winter months (Dec 1 – May 1) excluded. 
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Figure B56. Mean daily volumetric water content in 80% organic, 30 cm deep Technosol plots from Sept 20, 2012 to Nov 4, 2016 (n = 3) with 

total daily precipitation. Data from winter months (Dec 1 – May 1) excluded. 
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Figure 57. Mean daily volumetric water content in 80% organic, 60 cm deep Technosol plots from Sept 20, 2012 to Nov 4, 2016 (n = 3) with total 

daily precipitation. Data from winter months (Dec 1 – May 1) excluded. 
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Figure B58. Mean daily volumetric water content at 10 cm depth in 40% and 80% organic 60 cm plots (n = 3), successional field, and forest soil 

with total daily precipitation from Aug 1, 2014 – Nov 4, 2016. Data from winter months (Dec 1 – May 1) excluded. 
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Figure B59. Mean daily volumetric water content at 30 cm depth in 40% and 80% organic 60 cm plots (n = 3), successional field, and forest soil 

with total daily precipitation from Aug 1, 2014 – Nov 4, 2016. Data from winter months (Dec 1 – May 1) excluded. 
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Figure B60. Mean daily volumetric water content at 60 cm depth in 40% and 80% organic 60 cm plots (n = 3), successional field, and forest soil 

with total daily precipitation from Aug 1, 2014 – Nov 4, 2016. Data from winter months (Dec 1 – May 1) excluded. 
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Microbial functional diversity  

 

 
Figure B61. Average well colour development (AWCD) at 590 nm of 80% organic Technosols (no vegetation and vegetated), 40% organic 

Technosol, and reference forest profiles over 96h period after inoculation. 
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Table B14. Summary of two-way ANOVA results comparing average well colour development (AWCD), 

richness (R), Shannon-Weaver Index (H), and evenness (E) by profiles and minimum sample depth.  

  F df p 

AWCD Profile 3.648 5, 62 0.00588 

 Depth 0.856 16, 62 

 

0.620 

R Profile 5.333 5, 62 0.000386 

 Depth 0.503 16, 62 

 

0.936 

H Profile 2.658 5, 62 0.0306 

 Depth 0.629 16, 62 

 

0.847 

E Profile 3.178 5, 62 0.0129 

 Depth 0.570 16, 62 0.894 

 

 

Figure B62. Average well colour development (AWCD) of soil profiles at 48h post-inoculation; letters 

indicate significant differences as determined by Tukey HSD. Profiles are 3A: low organic, unvegetated; 

3C: low organic, vegetated; 4B: high organic, unvegetated; 4C: high organic, vegetated; FI: field; FO: 

forest. 
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Figure B63. Shannon-Weaver Index (H) of soil profiles at 48h calculated from substrates OD590 > 0.1; 

letters indicate significant differences as determined by Tukey HSD. Profiles are 3A: low organic, 

unvegetated; 3C: low organic, vegetated; 4B: high organic, unvegetated; 4C: high organic, vegetated; FI: 

field; FO: forest. 

 

 
Figure B64. Evenness (E) of soil profiles at 48h calculated with substrates OD590 > 0.1; letters indicate 

significant differences as determined by Tukey HSD. Profiles are 3A: low organic, unvegetated; 3C: low 

organic, vegetated; 4B: high organic, unvegetated; 4C: high organic, vegetated; FI: field; FO: forest.
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Appendix C: Supplemental Figures for Chapter 4 

Mortality  

 
 

 
Figure C65. Annual and perennial ryegrass blades upon Technosol plots in (top) June 2016 and (bottom) 

July 2016.  
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Health 

Table C15. Repeated measure ANOVA results comparing green alders in each leaf coverage category. 

Alder leaf 

coverage 
Effect d. f. num. d. f. denom. F p 

Full Organic content 1 4 4.819 0.093 

 Technosol depth 1 4 2.222 0.210 

 Month 3 12 7.682 0.004 * 

 Org: Depth 1 4 0.540 0.503 

 Org: Month 3 12 0.545 0.661 

 Depth: Month 3 12 0.146 0.930 

 Org: Depth: Month 3 12 0.187 0.903 

      

Partial Organic content 1 4 18.39 0.013 * 

 Technosol depth 1 4 2.235 0.209 

 Month 3 12 5.953 0.010 * 

 Org: Depth 1 4 3.446 0.137 

 Org: Month 3 12 0.573 0.644 

 Depth: Month 3 12 0.061 0.980 

 Org: Depth: Month 3 12 0.061 0.980 

      

None Organic content 1 4 0.005 0.949 

 Technosol depth 1 4 1.056 0.362 

 Month 3 12 1.571 0.248 

 Org: Depth 1 4 0.117 0.749 

 Org: Month 3 12 0.429 0.736 

 Depth: Month 3 12 0.429 0.736 

 Org: Depth: Month 3 12 1.571 0.248 

* Significant (α = 0.05) 
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Table C16. Repeated measure ANOVA results comparing bearberries in each health colour category.   

Bearberry 

colour 
Effect d. f. num. d. f. denom. F p 

Green Organic content 1 4 0.005 0.947 

 Technosol depth 1 4 0.005 0.947 

 Month 4 16 29.21 3.56 e-7 *  

 Org: Depth 1 4 0.234 0.654 

 Org: Month 4 16 0.452 0.770 

 Depth: Month 4 16 1.334 0.300 

 Org: Depth: Month 4 16 0.204 0.933 

      

Green  Organic content 1 4 0.163 0.707 

mixed Technosol depth 1 4 9.47 e-4 0.977 

 Month 4 16 15.74 2.10 e-5 * 

 Org: Depth 1 4 0.111 0.756 

 Org: Month 4 16 1.376 0.286 

 Depth: Month 4 16 0.779 0.555 

 Org: Depth: Month 4 16 0.304 0.871 

      

Red/Black Organic content 1 4 0.145 0.723 

 Technosol depth 1 4 0.005 0.948 

 Month 4 16 7.298 0.002 * 

 Org: Depth 1 4 1.278 0.322 

 Org: Month 4 16 1.894 0.161 

 Depth: Month 4 16 0.525 0.719 

 Org: Depth: Month 4 16 0.934 0.469 

* Significant (α = 0.05) 
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Nutrients and trace elements  

Macronutrients  

Table C17. % dry weight of macronutrients in green alder and bearberry samples from each vegetated 

Technosol plot and comparison vegetation.  

Samplea % dry weight 

  Ca K Mg P 

Alder 1A  1.37 1.12 0.113 0.0958 

Alder 1C 1.24 1.04 0.147 0.107 

Alder 2B 1.37 0.923 0.156 0.121 

Alder 2C 1.03 1.06 0.136 0.14 

Alder 3B 1.21 1.17 0.14 0.105 

Alder 3C 1.09 1.06 0.121 0.1 

Alder 4A 1.07 1.09 0.117 0.166 

Alder 4C 1.28 0.931 0.156 0.134 

Alder Root 1.93 0.775 0.791 0.103 

Nursery Alder 1 1.69 0.912 0.424 0.114 

Nursery Alder 2 1.78 1.09 0.409 0.135 

Alder Source 1 1.31 1.05 0.132 0.173 

Alder Source 2 1.5 1.03 0.136 0.165 

Alder Source 3 1.16 0.917 0.148 0.176 

Alder Source 4 1.21 0.988 0.12 0.182 

 

Bearberry 1A 1.22 0.587 0.22 0.127 

Bearberry 1C 0.893 0.449 0.202 0.0916 

Bearberry 2B 0.976 0.525 0.211 0.11 

Bearberry 2C 1.08 0.444 0.218 0.102 

Bearberry 3B 1.09 0.516 0.211 0.105 

Bearberry 3C 0.887 0.411 0.173 0.0902 

Bearberry 4A 1.07 0.442 0.203 0.0913 

Bearberry 4C 0.954 0.537 0.23 0.169 

Bearberry Comp 1 0.892 0.471 0.134 0.133 

Bearberry Comp 2 0.876 0.528 0.116 0.112 
a 1: 40% organic, 30 cm; 2: 80% organic, 30 cm; 3: 40% organic, 60 cm; 4: 80% organic, 60 cm; letters 

indicate replicates 
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Micronutrients  

 
Figure C66. Concentrations of B (mg/kg) in vegetation samples. Source sites are Technosol plots (1: 40% 

organic, 30 cm; 2: 80% organic, 30 cm; 3: 40% organic, 60 cm; 4: 80% organic, 60 cm) and comparison 

vegetation (AN: nursery alder, AR: alder root, AS: source alder; BC: comparison bearberry).  

 

  
Figure C67. Concentrations of Cu in vegetation samples. Source sites are Technosol plots (1: 40% 

organic, 30 cm; 2: 80% organic, 30 cm; 3: 40% organic, 60 cm; 4: 80% organic, 60 cm) and comparison 

vegetation (AN: nursery alder, AR: alder root, AS: source alder; BC: comparison bearberry).  
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Figure C68. Concentrations of Fe (mg/kg) in vegetation samples with alder root sample excluded (7540 

mg/kg Fe). Source sites are Technosol plots (1: 40% organic, 30 cm; 2: 80% organic, 30 cm; 3: 40% 

organic, 60 cm; 4: 80% organic, 60 cm) and comparison vegetation (AN: nursery alder, AR: alder root, 

AS: source alder; BC: comparison bearberry). 

 

 
Figure C69. Concentrations of Mn (mg/kg) in vegetation samples. Source sites are Technosol plots (1: 

40% organic, 30 cm; 2: 80% organic, 30 cm; 3: 40% organic, 60 cm; 4: 80% organic, 60 cm) and 

comparison vegetation (AN: nursery alder, AR: alder root, AS: source alder; BC: comparison bearberry). 
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Figure C70. Concentrations of Ni (mg/kg) in vegetation samples. Source sites are Technosol plots (1: 

40% organic, 30 cm; 2: 80% organic, 30 cm; 3: 40% organic, 60 cm; 4: 80% organic, 60 cm) and 

comparison vegetation (AN: nursery alder, AR: alder root, AS: source alder; BC: comparison bearberry).1 

alder Technosol sample < DL (0.2 mg/kg).  

 

 
Figure C71. Concentrations of Zn (mg/kg) in vegetation samples. Source sites are Technosol plots (1: 

40% organic, 30 cm; 2: 80% organic, 30 cm; 3: 40% organic, 60 cm; 4: 80% organic, 60 cm) and 

comparison vegetation (AN: nursery alder, AR: alder root, AS: source alder; BC: comparison bearberry). 
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Elements of environmental interest  

 

Figure C72. Concentrations of As (mg/kg) in vegetation samples. Source sites are Technosol plots (1: 

40% organic, 30 cm; 2: 80% organic, 30 cm; 3: 40% organic, 60 cm; 4: 80% organic, 60 cm) and 

comparison vegetation (AN: nursery alder, AR: alder root, AS: source alder; BC: comparison bearberry). 

 
Figure C73. Concentrations of Sb (mg/kg) in vegetation samples. Source sites are Technosol plots (1: 

40% organic, 30 cm; 2: 80% organic, 30 cm; 3: 40% organic, 60 cm; 4: 80% organic, 60 cm) and 

comparison vegetation (AN: nursery alder, AR: alder root, AS: source alder; BC: comparison bearberry). 
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Figure C74. Concentrations of Cd (mg/kg) in vegetation samples. Source sites are Technosol plots (1: 

40% organic, 30 cm; 2: 80% organic, 30 cm; 3: 40% organic, 60 cm; 4: 80% organic, 60 cm) and 

comparison vegetation (AN: nursery alder, AR: alder root, AS: source alder; BC: comparison bearberry).
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Table C18. Concentrations (mg/kg) of nutrients and select trace elements in vegetation from Technosol plots and reference vegetation.  

Source As B Ca Cd Cu Fe K Mg Mn Mo Ni P Sb Zn 

DL 0.2 1 5 0.05 0.05 1 6 0.1 0.02 3 0.2 1 0.07 0.06 

Alder               

1A 0.704 31.3 13700 <DL 4.72 207 11200 1130 189 26.9 3.13 958 <DL 52.5 

1C 0.613 26.3 12400 <DL 3.77 216 10400 1470 176 25.2 0.654 1070 <DL 39.2 

2B 0.375 27.6 13700 <DL 6.23 163 9230 1560 178 16.8 0.922 1210 <DL 82 

2C 0.201 18.2 10300 <DL 5.19 114 10600 1360 97.6 8.15 0.593 1400 <DL 47.9 

3B 0.415 34.7 12100 <DL 5.06 385 11700 1400 159 31.5 0.621 1050 <DL 55.5 

3C 0.565 31.7 10900 <DL 4.76 290 10600 1210 189 24.2 2.06 1000 <DL 45.8 

4A <DL 26.1 10700 <DL 8.22 83.6 10900 1170 105 3.99 <DL 1660 <DL 48.7 

4C 0.244 17.8 12800 <DL 5.31 202 9310 1560 88.1 8.23 0.533 1340 <DL 61.2 

Root 3.2 12.6 19300 0.402 18.1 7540 7750 7910 162 60.3 19.9 1030 0.368 91.1 

Nursery 1 <DL 23.8 16900 <DL 2.47 92.3 9120 4240 25.2 10.8 1.01 1140 <DL 18.1 

Nursery 2 <DL 25.7 17800 <DL 2.37 83.2 10900 4090 23.8 13.2 1.57 1350 <DL 20.3 

Source 1 0.297 13.4 13100 0.0512 11 302 10500 1320 104 33.9 2.5 1730 <DL 43.3 

Source 2 0.259 11 15000 0.053 11 345 10300 1360 69.2 31.5 1.11 1650 <DL 45.2 

Source 3 <DL 4.87 11600 <DL 9.1 195 9170 1480 44.1 21 1.04 1760 <DL 20.3 

Source 4 <DL 3.35 12100 <DL 10.6 211 9880 1200 68.4 25.7 1.89 1820 <DL 32.2 

 

Bearberry 
              

1A <DL 15.2 12200 <DL 2.4 200 5870 2200 27.8 3.3 0.8 1270 <DL 143 

1C <DL 12.9 8930 <DL 1.43 121 4490 2020 20.2 <DL 0.57 916 <DL 131 

2B <DL 14.4 9760 <DL 1.23 75.8 5250 2110 19.6 <DL 0.484 1100 <DL 121 

2C <DL 12.4 10800 <DL 0.957 75.2 4440 2180 18.2 <DL 0.478 1020 <DL 117 

3B <DL 16.8 10900 <DL 1.72 184 5160 2110 23.6 3.24 0.905 1050 <DL 120 

3C <DL 12.4 8870 <DL 1.43 201 4110 1730 24.5 <DL 0.853 902 <DL 123 

4A <DL 11.8 10700 <DL 1.19 87.1 4420 2030 26.1 <DL 0.563 913 <DL 118 

4C <DL 14.3 9540 <DL 2.06 97.3 5370 2300 19.8 <DL 0.366 1690 <DL 101 

Comp. 1 <DL 8.75 8920 <DL 3.28 3.69 4710 1340 17.9 <DL 0.477 1330 <DL 37.8 

Comp. 2 <DL 9.71 8760 <DL 2.65 17.9 5280 1160 14.8 <DL 0.466 1120 <DL 24.5 

Technosol treatments are 1: 40% organic, 30 cm; 2: 80% organic, 30 cm; 3: 40% organic, 60 cm; 4: 80% organic, 60 cm; reference vegetation is Nursery 

alder, Source alder, and Comparison bearberry; letters (A, B, C) indicate replicates 
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Appendix D. Soil profile chemistry  

 
Figure D75. % moisture of soil profile samples collected Sept 27th and 28th, 2017 from Technosol and 

comparison profiles. 
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Figure D76. The % organic matter in the fraction of soil < 2 mm as determined by LOI (650°C, < 12 h) 

 

 
Figure D77. Concentrations of sulphate in Technosol and comparison soil profiles (Sept 2017). 
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Table D19. Total concentrations of nutrients and elements of environmental interest in Technosol and comparison soil profiles. 

Profile Depth As B Ca Cd Cu Fe K Mg Mn Mo Ni P Sb Zn 
 (cm from mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg 

DL surface) 0.2 1 5 0.05 0.05 1 6 0.1 0.02 3 0.2 1 0.07 0.06 

40% organic 

Technosol, 

unvegetated 

0 - 2 15.6 68.3 1650 1.23 100 37300 42900 753 549 109 45.5 1060 1.47 374 

2 - 4 17.8 64.5 3040 1.96 68.6 37800 49900 57 676 142 46.4 1170 1.45 492 

4 - 6 23.7 55.5 26400 1.46 102 65800 70800 1510 1090 153 78.1 1560 1.9 507 

6 - 8 15.7 76.6 3350 1.22 97.9 36400 45600 1370 589 197 49.4 867 1.72 327 

8 - 10 17.9 59.4 2940 1.23 90.5 40400 52500 89.7 732 151 51.2 1190 2.05 417 

10 - 12 21.1 52.3 5610 0.914 97.3 48900 58700 349 819 130 71.1 1170 1.46 438 

12 - 14 18.4 64.3 7500 1.02 91.2 47000 54700 409 876 153 73.4 1250 1.46 444 

14 - 16 19.1 50.3 7470 <DL 96.1 43100 50300 355 863 138 70.3 1080 1.49 410 

16 - 18 23.8 81.8 7570 1.18 107 54200 64300 481 996 246 81.9 1390 1.49 723 

18 - 20 35.2 49.2 5200 0.991 76.5 47600 53400 404 847 148 74.2 1140 1.56 426 

20 - 25 21.6 77.9 5160 0.618 97.5 49100 54900 1640 671 182 71.9 1190 1.73 446 

25 - 30 17.9 61.2 4510 0.645 112 45400 52600 324 812 121 65.5 1230 1.35 466 

30 - 40 16.9 77.4 4560 <DL 86.1 40800 57600 308 802 121 63 1230 1.38 530 

40 - 50 20.5 71.6 6490 1.26 92.6 49200 62600 419 1020 206 72.8 1450 1.66 734 

50 - 60 

 

24.5 

 

70.4 

 

5730 

 

0.347 

 

104 

 

52600 

 

62300 

 

402 

 

1040 

 

144 

 

77.9 

 

1520 

 

1.85 

 

575 

 

40% organic 

Technosol, 

vegetated 

0 - 2 21 73.9 3860 1.31 90 47400 52200 287 925 123 68.4 1570 1.68 516 

2 - 4 21.9 60.2 7210 0.415 117 58500 61700 476 1180 130 80.1 1700 1.55 623 

4 - 6 24.3 76.2 9490 0.689 110 58100 64500 452 1210 128 82.1 1620 1.69 554 

6 - 8 23.7 64.9 10300 1.12 106 57600 64700 595 1130 176 76.4 1720 1.66 566 

8 - 10 28.4 75.9 8040 2.04 175 62600 63400 503 1150 169 90.1 1890 1.94 768 

10 - 12 29.6 78.8 4520 0.717 110 51100 62400 1030 843 136 77.8 1530 1.8 483 

12 - 14 15.4 32.2 10500 0.631 68.7 41800 39000 593 938 88.6 57.3 848 0.816 374 

14 - 16 11.5 22.2 7800 <DL 204 36700 31300 782 739 88.3 54.6 576 0.683 382 

16 - 18 10.2 31.3 3340 <DL 64.5 35200 32200 299 698 103 48.1 773 0.81 291 

18 - 20 14.8 29.7 1250 1.37 63.8 33300 31300 368 577 78.4 46 732 0.757 418 

20 - 25 14.1 28.6 1150 1.01 68.4 45000 34700 525 586 67.2 46.8 849 0.805 453 

25 - 30 14.4 36.9 916 0.427 79.9 42400 40300 349 586 103 54.5 1030 0.884 301 

30 - 40 12.9 32.9 6410 0.345 79 36500 34200 618 632 107 50.4 988 0.837 278 

40 - 50 10.3 28.2 669 0.849 54.3 32400 29400 274 526 88.5 39.8 717 0.677 255 

50 - 60 12.4 27.6 3030 0.655 79.8 38500 34000 340 684 80.2 51.4 888 0.764 326 
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Profile Depth As B Ca Cd Cu Fe K Mg Mn Mo Ni P Sb Zn 
 (cm from mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg 

DL surface) 0.2 1 5 0.05 0.05 1 6 0.1 0.02 3 0.2 1 0.07 0.06 

80% organic 

Technosol, 

unvegetated 

0 - 2 18.5 56.2 1870 2.24 103 48700 51100 37.1 1140 128 60.4 1530 1.98 600 

2 - 4 16.8 62.3 2450 1.81 97.9 49400 54900 63.8 1070 128 61.5 1490 1.82 558 

4 - 6 21.1 79.6 3310 1.21 86.6 48600 57400 118 1120 124 61.6 1790 1.79 566 

6 - 8 16.5 57.6 3210 1.68 82.1 43000 54800 145 1020 108 50.9 1560 1.76 543 

8 - 10 17.7 64.7 1490 1.52 81.4 42000 56400 114 915 146 50.5 1540 1.58 505 

10 - 12 17.8 68.7 4910 1.74 111 47500 54200 230 1240 114 62.3 1700 1.8 574 

12 - 14 18.7 79.9 2460 1.89 81.9 42900 57100 1010 833 123 56.8 1550 1.77 477 

14 - 16 30.4 74.7 2190 3.87 196 45800 53500 65.2 1070 625 58.4 1540 1.82 530 

16 - 18 37.7 66 1190 1.88 150 42100 51600 28.3 975 106 51.8 1350 2.54 481 

18 - 20 16.3 67.9 7250 1.84 87.8 39600 51700 98 1220 105 51.8 1730 1.63 540 

20 - 25 17.2 104 3330 3.07 108 49400 64800 96.2 1480 185 69.5 2270 2.13 797 

25 - 30 16.5 52.9 10100 1.68 91.7 39800 52100 92.4 1140 128 58.4 1450 1.62 510 

30 - 40 16.5 45.7 1550 1.49 78 42500 50000 84 1030 111 54.1 1280 2.07 478 

40 - 50 16.7 98.6 1940 1.51 68.3 36800 50700 820 768 110 54.5 1130 1.58 393 

50 - 60 

 

16.6 

 

67.5 

 

1550 

 

1.49 

 

88.7 

 

41200 

 

52600 

 

546 

 

759 

 

157 

 

56.3 

 

1190 

 

1.95 

 

521 

 

80% organic 

Technosol, 

vegetated 

0 - 2 16.9 86.1 2170 1.78 100 51500 51300 1120 832 193 63.2 1230 1.41 499 

2 - 4 17 117 2460 2.17 132 48400 53100 932 824 194 63.4 1240 1.52 536 

4 - 6 19.6 58.8 17100 1.17 89.1 52700 53100 1490 879 182 62.9 1060 1.57 568 

6 - 8 25.5 76.4 20600 0.473 76.4 50400 49600 2910 920 183 61.6 1020 1.89 609 

8 - 10 14.9 48 22800 2.16 80.7 39800 46900 2720 759 326 47 758 1.46 361 

10 - 12 15 54.2 2020 0.808 68.7 39000 47500 304 743 141 44.2 818 1.33 372 

12 - 14 7.81 40.2 1250 0.89 54.2 28500 26100 35.9 599 93.3 23.9 390 0.694 266 

14 - 16 13.9 62.6 877 1.81 68.7 38900 42400 45.9 776 227 45.2 848 1.35 417 

16 - 18 14.6 59.5 598 1.33 69.2 43500 41600 127 801 190 41.5 847 1.25 425 

18 - 20 31.1 63.3 2760 0.95 72 43800 49600 121 819 159 49.9 1120 1.29 460 

20 - 25 14.4 53.2 2850 1.85 92.9 42400 45400 106 849 185 45 1130 1.32 467 

25 - 30 14.3 63.8 2590 1.34 95.4 49400 48800 130 965 137 49.7 1380 1.35 515 

30 - 40 13.9 52.2 1510 2.4 87.3 40100 41800 121 885 159 44.3 1250 1.4 602 

40 - 50 11.9 75.9 3570 2.01 68.3 36700 39100 81.3 843 163 39.9 1180 1.07 497 

50 - 60 11 62.7 243 1.47 90.9 37200 43000 <DL 687 107 38.8 1210 1.6 426 
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Profile Depth As B Ca Cd Cu Fe K Mg Mn Mo Ni P Sb Zn 
 (cm from mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg 

DL surface) 0.2 1 5 0.05 0.05 1 6 0.1 0.02 3 0.2 1 0.07 0.06 

Field 

0 - 2 50.5 146 1170 1.6 1790 67900 54200 583 469 385 104 2810 24.1 562 

2 - 4 44.7 116 1030 0.699 1350 71400 43000 375 511 255 95 2110 20.3 497 

4 - 6 22.1 152 1660 0.69 552 76300 43900 895 388 77.5 114 2360 13.1 451 

6 - 8 15.3 131 618 0.667 202 76700 40100 203 602 34.7 99.5 2120 10.9 455 

8 - 10 14.5 124 95.7 0.839 161 69800 40200 43.6 539 14.6 103 2030 7.02 416 

10 - 12 11.8 120 1310 0.398 141 80400 44800 73.7 805 12.3 105 2160 5.95 426 

12 - 14 9 97.8 1630 <DL 107 58500 47200 43.3 669 <DL 76.7 1880 4.54 362 

14 - 16 9.63 78.2 2900 0.217 88.6 46600 47800 88.8 645 <DL 65.4 1760 2.66 318 

16 - 18 21.2 116 3430 0.343 142 61800 48600 516 726 <DL 97.8 2190 2.91 462 

18 - 20 16.7 153 4250 <DL 144 74300 51300 1310 866 <DL 116 2150 2.63 500 

20 - 26 14.8 135 713 0.793 154 77900 49900 66.3 693 <DL 122 2220 1.38 520 

26 - 32 25.6 145 1610 0.974 183 96200 57600 129 1100 <DL 146 2760 0.553 613 

32 - 40 

 

5.04 

 

59.2 

 

72300 

 

1.1 

 

55.1 

 

32800 

 

54900 

 

1220 

 

780 

 

<DL 

 

41.1 

 

1750 

 

0.286 

 

280 

 

Forest  

0 - 2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

2 - 4 5.52 9.28 3610 0.944 13.5 8560 7600 1610 255 31.8 8.13 558 8.9 139 

4 - 6 3.85 14.3 1110 0.744 22.2 11800 17100 330 156 <DL 9.29 197 2.74 120 

6 - 8 1.81 18.6 128 <DL 26.3 25300 32000 140 203 <DL 14.4 208 0.691 214 

8 - 10 0.886 11.8 95.2 <DL 18 16200 31200 129 120 <DL 8.62 123 0.322 158 

10 - 12 <DL 5.69 <DL <DL 11.3 10300 24300 118 66.9 <DL 4.15 79.3 <DL 96.3 

12 - 14 1.58 8.8 58.4 0.228 18 19700 34400 130 91.6 <DL 7.85 160 <DL 183 

14 - 16 1.34 <DL <DL 0.248 14.1 16600 24300 121 73.4 <DL 6.97 124 <DL 140 

16 - 18 2.61 6.54 <DL <DL 23.7 29500 25500 145 151 <DL 15.1 324 <DL 223 

18 - 20 2.27 11.1 <DL <DL 24.8 33500 22900 141 126 <DL 18.9 355 <DL 205 

20 - 30 3.25 5.74 28.9 <DL 22.5 38400 14600 197 161 <DL 42 662 <DL 154 

  



188 

Table D20. Water extractable concentrations of nutrients and elements of environmental interest in Technosol and comparison soil profiles. 

Profile Depth As B Ca Cd Cu Fe K Mg Mn Mo Ni P Sb Zn 
 (cm from mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg 

DL surface) 0.2 1 5 0.05 0.05 1 6 0.1 0.02 3 0.2 1 0.07 0.06 

40% organic 

Technosol, 

unvegetated 

0 - 2 0.015 0.026 109 <DL 0.0009 2.82 33 3.63 0.013 0.296 <DL <DL 0.0015 0.081 

2 - 4 0.017 0.044 69.4 0.0014 <DL 1.2 28.8 3.13 0.008 0.239 <DL <DL 0.0013 0.078 

4 - 6 0.019 0.015 65.3 <DL 0.0003 0.801 29.1 3.33 <DL 0.176 <DL <DL 0.0012 0.059 

6 - 8 0.024 0.02 61.1 <DL <DL 0.783 29.4 3.84 0.002 0.271 <DL <DL 0.0014 0.063 

8 - 10 0.027 0.034 74 <DL 0.0053 2.28 33.4 5.8 0.066 0.269 <DL <DL 0.0018 0.102 

10 - 12 0.035 0.02 56.2 <DL 0.0099 3.46 29.4 6.47 0.132 0.181 <DL <DL 0.0019 0.104 

12 - 14 0.029 0.024 55.7 <DL 0.0036 1.29 30.3 5.31 0.042 0.214 <DL <DL 0.0016 0.063 

14 - 16 0.034 0.027 62.9 <DL 0.0055 3.11 29.8 7.69 0.121 0.199 <DL <DL 0.0021 0.107 

16 - 18 0.033 0.023 52.7 <DL 0.0048 2.87 28.3 6.98 0.113 0.187 <DL <DL 0.0015 0.1 

18 - 20 0.032 0.026 54 <DL 0.0039 2.91 29.8 7.38 0.123 0.178 <DL <DL 0.0016 0.093 

20 - 25 0.031 0.027 55.4 <DL 0.0011 1.08 30.5 6.17 0.031 0.188 <DL <DL 0.0014 0.062 

25 - 30 0.034 0.036 59.2 <DL 0.0034 2.82 31.3 7.74 0.121 0.239 <DL <DL 0.0017 0.101 

30 - 40 0.037 0.029 55.8 <DL 0.0062 2.92 33 8.04 0.111 0.225 <DL <DL 0.0017 0.094 

40 - 50 0.038 0.043 66.7 <DL 0.007 3.42 34.7 9.31 0.125 0.275 <DL <DL 0.0021 0.113 

50 - 60 

 

0.042 

 

0.048 

 

67.8 

 

0.0003 

 

0.0074 

 

2.97 

 

46 

 

8.56 

 

0.053 

 

0.253 

 

<DL 

 

<DL 

 

0.0016 

 

0.069 

 

40% organic 

Technosol, 

vegetated 

0 - 2 0.016 0.056 107 <DL 0.0061 3.63 39.3 5.96 0.026 0.229 <DL <DL 0.0011 0.089 

2 - 4 0.022 0.061 80.4 0.0003 0.0057 2.44 48.1 6.53 0.016 0.347 <DL <DL 0.0015 0.064 

4 - 6 0.023 0.095 87.5 0.0002 0.0107 4.38 50.4 8.8 0.092 0.224 <DL <DL 0.0019 0.102 

6 - 8 0.033 0.098 99.1 0.0005 0.0143 6.41 51.8 11.8 0.169 0.287 <DL <DL 0.0016 0.166 

8 - 10 0.032 0.16 99.7 0.0004 0.0108 6.1 54.8 12.2 0.154 0.282 <DL <DL 0.0016 0.151 

10 - 12 0.032 0.069 85.7 0.0004 0.0101 5.56 51.4 11.7 0.16 0.294 <DL <DL 0.0017 0.13 

12 - 14 0.027 0.071 83.7 0.0005 0.0049 2.36 54.9 9.36 0.015 0.351 <DL <DL 0.0016 0.073 

14 - 16 0.035 0.096 100 0.0007 0.0077 3.77 59 12.5 0.048 0.363 <DL <DL 0.0019 0.121 

16 - 18 0.025 0.07 87.2 0.0002 0.0082 5.58 53.5 11.9 0.148 0.237 <DL <DL 0.0019 0.129 

18 - 20 0.025 0.055 89.3 <DL 0.0047 2.61 54.6 10.1 0.018 0.19 <DL <DL 0.0018 0.076 

20 - 25 0.023 0.076 93.8 0.0003 0.0052 3.28 55.4 10.9 0.052 0.264 <DL <DL 0.0014 0.074 

25 - 30 0.02 0.068 107 0.0003 0.0043 3.29 59.1 11.7 0.022 0.266 <DL <DL 0.0018 0.065 

30 - 40 0.031 0.071 87.4 0.0003 0.008 4.09 55.9 10.7 0.083 0.268 <DL <DL 0.0018 0.134 

40 - 50 0.026 0.082 90.7 <DL 0.0055 2.59 59 10.5 0.015 0.236 <DL <DL 0.0016 0.069 

50 - 60 0.029 0.059 79.4 <DL 0.005 2.14 56.3 9.38 0.011 0.122 <DL <DL 0.0015 0.057 
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Profile Depth As B Ca Cd Cu Fe K Mg Mn Mo Ni P Sb Zn 
 (cm from mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg 

DL surface) 0.2 1 5 0.05 0.05 1 6 0.1 0.02 3 0.2 1 0.07 0.06 

80% organic 

Technosol, 

unvegetated 

0 - 2 0.012 0.045 141 <DL 0.0194 6.54 27.5 9.48 0.438 0.026 <DL <DL 0.0009 0.117 

2 - 4 0.023 0.05 93.3 <DL 0.0072 4.69 27.5 10.6 0.342 0.041 <DL <DL 0.0008 0.127 

4 - 6 0.026 0.051 89 <DL 0.0068 5.47 29.6 13.2 0.407 0.051 <DL <DL 0.0007 0.171 

6 - 8 0.025 0.044 91.8 <DL 0.0038 4.72 30.7 12.7 0.309 0.054 <DL <DL 0.0007 0.131 

8 - 10 0.029 0.04 87.1 <DL 0.0037 4.43 31.2 12.5 0.291 0.049 <DL <DL 0.0006 0.12 

10 - 12 0.026 0.045 91.3 <DL 0.0048 5.02 32.3 13.6 0.41 0.051 <DL <DL 0.0006 0.152 

12 - 14 0.026 0.054 98.4 <DL 0.0054 4.5 36.2 13.8 0.365 0.056 <DL <DL 0.0006 0.136 

14 - 16 0.028 0.047 92.2 <DL 0.0153 5.19 32.8 13.2 0.386 0.066 <DL <DL 0.0007 0.131 

16 - 18 0.03 0.053 94.9 <DL 0.0033 4.59 35.1 13.3 0.49 0.093 <DL <DL 0.0006 0.14 

18 - 20 0.026 0.049 90.3 <DL 0.0029 4.76 32.4 13.4 0.378 0.053 <DL <DL 0.0005 0.132 

20 - 25 0.023 0.048 92.4 <DL 0.002 4.35 28.8 12.3 0.363 0.038 <DL <DL <DL 0.117 

25 - 30 0.026 0.05 96.4 <DL 0.0042 4.83 37.8 13.5 0.391 0.074 <DL <DL 0.0008 0.128 

30 - 40 0.031 0.048 90.5 <DL 0.0433 5.11 37 13.7 0.383 0.062 <DL <DL 0.0006 0.169 

40 - 50 0.03 0.077 94.8 0.003 0.0115 4.3 43.1 13.8 0.296 0.052 <DL <DL 0.0007 0.31 

50 - 60 

 

0.032 

 

0.053 

 

91.6 

 

<DL 

 

0.0136 

 

4.12 

 

40.1 

 

13.8 

 

0.318 

 

0.053 

 

<DL 

 

<DL 

 

0.0006 

 

0.116 

 

80% organic 

Technosol, 

vegetated 

0 - 2 0.018 0.036 98.8 <DL 0.0276 5.19 27.9 8 0.481 0.047 <DL <DL 0.0008 0.124 

2 - 4 0.017 0.046 111 <DL 0.0205 3.31 27.1 9.4 0.089 0.102 <DL <DL 0.0005 0.058 

4 - 6 0.024 0.041 102 <DL 0.0135 5.18 30.7 11.8 0.39 0.095 <DL <DL 0.0006 0.117 

6 - 8 0.027 0.039 86.7 <DL 0.0088 5.67 28 12 0.389 0.068 <DL <DL 0.0005 0.143 

8 - 10 0.025 0.037 83 <DL 0.0035 2.88 30.1 10.1 0.13 0.084 <DL <DL 0.0004 0.075 

10 - 12 0.025 0.035 76.6 <DL 0.0018 2.52 29.5 9.53 0.085 0.07 <DL <DL 0.0004 0.074 

12 - 14 0.029 0.049 95.8 <DL 0.0043 4.75 35.7 12.8 0.395 0.088 <DL <DL 0.0004 0.122 

14 - 16 0.031 0.049 89.8 <DL 0.0034 5.01 34.6 12.6 0.409 0.071 <DL <DL 0.0003 0.144 

16 - 18 0.022 0.04 82.6 <DL 0.0017 2.87 36.3 10.3 0.098 0.077 <DL <DL 0.0003 0.07 

18 - 20 0.031 0.046 88.9 <DL 0.0033 5.06 39.5 12.7 0.39 0.069 <DL <DL 0.0003 0.13 

20 - 25 0.025 0.046 94.1 <DL 0.0039 5.31 42.3 13.2 0.375 0.071 <DL <DL 0.0005 0.145 

25 - 30 0.028 0.052 91.9 <DL 0.0033 5.36 46.7 13.1 0.346 0.097 <DL <DL 0.0005 0.121 

30 - 40 0.024 0.026 63.5 <DL 0.0019 4.49 25.7 9.09 0.236 0.043 <DL <DL <DL 0.117 

40 - 50 0.024 0.046 85.4 <DL <DL 2.54 56.6 10.3 0.111 0.036 <DL <DL <DL 0.069 

50 - 60 0.038 0.047 79.7 <DL 0.007 6.08 45.6 12.6 0.415 0.078 <DL <DL 0.0004 0.169 
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Profile Depth As B Ca Cd Cu Fe K Mg Mn Mo Ni P Sb Zn 
 (cm from mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg 

DL surface) 0.2 1 5 0.05 0.05 1 6 0.1 0.02 3 0.2 1 0.07 0.06 

Field  

0 - 2 0.043 0.093 211 <DL 0.059 17.2 109 51.3 0.177 0.056 <DL 0.971 0.0199 0.304 

2 - 4 0.02 0.101 179 0.0084 0.0617 11.6 47.1 37.9 0.117 0.297 <DL <DL 0.04 0.671 

4 - 6 0.011 0.008 77.8 <DL 0.0267 3.72 24.3 16.7 0.027 0.1 <DL <DL 0.0211 0.083 

6 - 8 0.013 0.006 88.4 <DL 0.0784 15.8 24.3 18.3 0.17 0.078 <DL <DL 0.0279 0.156 

8 - 10 0.015 0.004 75.2 <DL 0.139 21.6 19 15.1 0.258 0.054 0.026 <DL 0.0256 0.191 

10 - 12 0.008 <DL 51.9 <DL 0.0679 6.92 15 8.32 0.095 0.049 <DL <DL 0.0175 0.093 

12 - 14 0.015 <DL 59.1 <DL 0.18 24.5 13.8 11.2 0.46 0.034 0.05 <DL 0.0203 0.178 

14 - 16 0.01 <DL 70.9 <DL 0.116 15.2 11.6 9.98 0.414 0.044 0.015 <DL 0.0183 0.126 

16 - 18 0.013 <DL 60 <DL 0.176 22 12 10.4 0.525 0.036 0.065 <DL 0.0165 0.243 

18 - 20 0.004 <DL 46.3 <DL 0.04 3.72 14 5.76 0.066 0.053 <DL <DL 0.0101 0.082 

20 - 26 0.004 <DL 45.7 <DL 0.0291 2.2 14.9 4.49 0.026 0.063 <DL <DL 0.0046 0.058 

26 - 32 0.006 <DL 48.9 <DL 0.0383 4.39 15.1 4.83 0.054 0.092 <DL <DL 0.0008 0.099 

32 - 40 

 

0.003 

 

<DL 

 

46 

 

<DL 

 

0.0131 

 

3.48 

 

6.33 

 

4.09 

 

0.057 

 

0.031 

 

<DL 

 

<DL 

 

<DL 

 

0.064 

 

Forest 

0 - 2 0.012 0.103 78.3 0.0011 0.0243 3.78 76.7 15.3 0.071 <DL <DL 2.61 0.0024 0.469 

2 - 4 0.042 <DL 46.1 <DL 0.0443 2.79 54.8 14.6 1.65 <DL <DL <DL 0.0186 0.942 

4 - 6 0.023 0.018 27.9 0.0016 0.0169 2.31 8.78 7.88 0.274 <DL <DL 0.061 0.0074 0.269 

6 - 8 0.007 0.016 3.07 0.0002 0.0088 3.17 2.79 1.44 0.043 <DL <DL 0.741 0.0014 0.138 

8 - 10 0.004 0.01 1.63 <DL 0.0052 0.976 3.11 0.929 0.025 <DL <DL 0.29 0.0006 0.126 

10 - 12 0.003 0.011 1.18 <DL 0.0092 1.23 2.24 0.908 0.029 <DL <DL 0.116 0.0004 0.097 

12 - 14 0.003 0.05 2.65 <DL 0.0086 3.72 3.26 2.03 0.032 <DL <DL <DL <DL 0.104 

14 - 16 0.003 0.006 1.66 <DL 0.0114 14.9 3.5 2.9 0.054 <DL <DL <DL <DL 0.194 

16 - 18 0.003 0.063 3.23 0.0002 0.01 10.9 3.94 3.4 0.04 <DL <DL <DL <DL 0.111 

18 - 20 0.002 0.512 30.7 0.0009 0.003 2.82 6.03 13.5 0.111 <DL <DL <DL <DL 0.448 

20 - 30 <DL 0.184 23 <DL 0.0019 1.44 3.79 7.39 0.018 <DL <DL <DL <DL 0.139 
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Appendix E: Plot design and site layout  

 
Figure E78. Internal structure of the thick Technosol plots, including sensor and leachate sampling plate placement. In thin Technosol plots, the 

leachate sampling plate and MPS-2 sensor are located at the 30 cm depth, and there is no 60 cm 5TM sensor. 
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Figure E79. Layout of the Technosol plot study site at Barrick Hemlo. Plot treatments are 1: 40% organic, 30 cm; 2: 80% organic, 30 cm; 3: 40% 

organic, 60 cm; 4: 80% organic, 60 cm. Plots without vegetation are 2A, 3A, 4B, and 1B.  


