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EXECUTIVE SUMMARY 

Biological polishing is one of the natural processes used in the Ecological Engineering 
approach to decommissioning mine sites. An application model to determine the metal 
removal capacity of the process, surface area required for periphyton growth, nutrient 
additions, pond size and retention time, was developed based on three years of data 
collection. 

In 1990 and 1991, the nature of the contaminant removal process and periphyton 
growth quantification methods were developed. Attached periphyton remove metals 
from waste water by: providing nucleation/precipitation sites for metals; serving as a 
negatively-charged surface for adsorption of cations; and providing extracellular 
polysaccharides for “sieving” of suspended solids. 

Biological polishing design parameters were derived in circum-neutral effluents from a 
flooded pit of the Buchans mine in central Newfoundland. Six experimental pools were 
constructed to determine the ratio of substrate surface area to pond volume, periphyton 
biomass production on the surfaces and the effects of fertilizer applications. These 
parameters were tested over a period of two years. Zinc sequestration between 
inorganic and organic components of the biomass, along with the removal from the 
water, was quantified. 

Biological polishing was quantified as part of the decommissioning for the South Bay 
mine and tailings area, a cooper-zinc concentrator which operated for ten years in 
northwestern Ontario. Periphyton growth was quantified on brush cuttings in a lake 
which had become acidic from tailings seeps. Inert demolition material was used as 
periphyton growth surfaces in the Decant Pond on the tailings, which previously 
received lime. 

Indigenous periphyton were abundant in both the circum-neutral and acidic sites where 
the process was quantified. In a seepage from the Selminco coal waste dump in Cape 
Breton, periphyton populations were limited in distribution to very distinct areas. The 
incorporation of this site into the study added information on growth-limiting factors in 
acidic effluents with a high reduced iron content. Biological polishing cannot be 
implemented in the waste stream, until iron oxidation is largely complete. 

Growth rates in the laboratory were determined for all populations used in the field. 
These studies quantified periphyton growth in the absence of inorganic accumulations 
which were present on periphyton under field conditions. 

Site-specific models were developed for the application of the process at each field site. 
At Buchans, the model is being used to predict the performance of a 320 m3 polishing 
pond. At South Bay, the model is being used to estimate reductions in contaminant 
loadings, which might be achieved by biological polishing in Mill Pond and in an acidic 
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lake, given an increased surface area for growth. At Selminco, the model is used to 
assess the possibility of utilizing the process to remove aluminum from the waste water. 

A general application model, written in a spreadsheet format (Quattro Pro), utilizes 
observed periphyton growth rates and contaminant accumulations in the biomass and 
derives the dimensions of polishing ponds and substrate surface area required for 
contaminant removal. The model does not address the geochemistry of effluents and 
cannot be used without site-specific data on periphyton growth conditions and annual 
contaminant loadings. Contaminant removal was calculated by multiplying the 
concentrations of metals associated with the periphyton by the amount of periphyton 
growth. The output of the model determines the size of the polishing pond and the 
surface area required to remove specific contaminants. The contaminants addressed 
within the site-specific models are iron, zinc and aluminum. 

Since the application model represents a simplified view of the biological polishing 
process, e.g. chemical/biological interactions are not defined, it was considered prudent 
to use conservative input parameters for the model to avoid producing false 
expectations by the users of the model. The site-specific models therefore give a range 
of expected performance, reflecting minimum and enhanced removal. 

Laboratory measurements produced high growth estimates, which were used to 
calculate the high end of the growth rate range. Actual growth measurements in waste 
water in the field were used to represent the low end of the growth rate range. These 
field rates were used in the scale-up calculations. 

The output of the site-specific models enable the use of a quantitative, rather than 
qualitative assessment of the rates of contaminant removal by biological processes, 
within the framework of an Ecological Engineering decommissioning technology. 

Baojum Research Limited 
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Le polissage biologique est fun des procedes naturels utilises dans I’approche du genie 
ecologique afin de decommissionner les chantiers miniers. Un modele d’application afin 
de determiner la capacite d’elimination des metaux du procede, la superficie necessaire 
a la croissance des periphytons, les ajouts de nutriments, la dimension des bassins et 
le temps de retention, a ete mis au point en fonction de trois annees de collecte de 
donnees. 

En 1990 et 1991, la nature du procede d’elimination des contaminants et les methodes 
de quantification de la croissance des periphytons ont ete mises au point. Les 
periphytons fixes eliminent les metaux des eaux u&es en fournissant des sites de 
nucleation/precipitation pour les metaux, en servant de surface negativement chargee 
pour I’absorption des cations, et en fournissant des polysaccharides extracellulaires 
pour le cctamisage,) des solides en suspension. 

Les parametres de la conception du polissage biologique ont ete puises dans des 
effluents circum-neutres a partir d’un chantier inonde de la mine Buchans au centre de 
Terre-Neuve. Six mares experimentales ont ete construites afin de determiner le 
coefficient de la superficie des substrats par rapport au volume du bassin, la production 
de la biomasse des periphytons sur les surfaces et les effets des applications de 
fertilisants. Ces parametres ont ete testes sur une periode de deux annees. La 
sequestration de zinc entre les composants inorganiques et organiques de la biomasse 
a ete quantifiee, en m&me temps que I’enlevement a partir de I’eau. 

Le polissage biologique a ete quantifie comme partie du decommissionnement de la 
mine de South Bay et de l’aire des residus, un concentrateur de cuivre-zinc qui a 
fonctionne pendant dix annees dans le nord-ouest de I’Ontario. La croissance des 
periphytons a ete quantifiee sur des coupes de broussailles dans un lac qui etait devenu 
acide par les infiltrations des residus. Les materiaux de demolition inertes ont ete utilises 
comme surfaces de croissance dans le Decant Pond sur les residus, qui recevait 
precedemment de la chaux. 

Les periphytons indigenes etaient abondants tant dans les sites circum-neutres que les 
sites acides oti le pro&de a ete quantifie. Dans un suintement a partir du depotoir des 
dechets du charbon de Selminco, au Cap Breton, la distribution des populations de 
periphytons se limitait a des zones tres distinctes. L’integration de ce site dans I’etude 
a ajoute des informations sur les facteurs limitant la croissance dans les effluents 
acides a teneur en fer grandement reduite. Le polissage biologique ne peut pas etre 
mis en place dans le courant des dechets, avant que I’oxydation du fer ne soit 
largement ache&e. 
Les taux de croissance en laboratoire ont ete determines pour toutes les populations 
utilisees sur le terrain. Ces etudes ont quantifie la croissance des periphytons en 
I’absence d’accumulations inorganiques qui etaient presentes sur les periphytons dans 
les conditions sur le terrain. 



Les modeles specifiques aux sites ont ete mis au point pour I’application du pro&de 
dans chaque site de terrain. A Buchans, on utilise le modele afin de p&dire la 
performance d’un bassin de polissage de 320 m3. A South Bay, on utilise le modele 
pour estimer les reductions des chargements des contaminants, ce qu’on peut realiser 
par le polissage biologique effectue dans Mill Pond et dans un lac acide, dans le cas 
d’une superficie augmentee pour la croissance. A Selminco, le modele est utilise afin 
d’evaluer la possibilite d’utiliser le procede pour enlever I’aluminium des eaux u&es. 

Un modele d’application g&&ale, redige sous forme de tableau electronique (Quattro 
Pro), utilise les taux de croissance des periphytons et des accumulations de 
contaminants observes dans la biomasse et tire les dimensions des bassins de 
polissage et de la superficie des substrats necessaires a I’enlevement des contaminants. 
Le modele n’aborde pas la geochimie des effluents et ne peut etre utilise sans des 
donnees specifiques aux sites sur les conditions de croissance des periphytons et des 
chargements annuels de contaminants. L’enlevement des contaminants a ete calcule 
en multipliant les concentrations des metaux associees aux periphytons par la quantite 
de la croissance des periphytons. Le rendement du modele determine la taille du bassin 
de polissage et la superficie necessaire a I’enlevement des contaminants specifiques. 
Les contaminants abordes au sein des modeles specifiques aux sites sont le fer, le zinc 
et I’aluminium. 

Comme le modele d’application represente une vue simplifiee du procede de polissage 
biologique, par exemple, les interactions chimiqueslbiologiques ne sont pas definies, 
on a pen& qu’il etait prudent d’utiliser des parametres d’entree conservateurs pour le 
modele, afin d’eviter de susciter de faux espoirs chez les utilisateurs du modele. Les 
modeles specifiques aux sites donnent, par consequent, une gamme des rendements 
esperes, refletant I’enlevement minimal et I’enlevement augment& 

Les mesures en laboratoire ont produit des estimations de croissance elevee, qu’on a 
utilisees pour calculer le haut de la gamme des taux de croissance. On a utilise les 
mesures de la croissance reelle dans les eaux u&es sur le terrain afin de rep&enter 
le bas de la gamme des taux de croissance. On a utilise ces taux sur le terrain dans 
les calculs d’augmentation proportionnelle. 

Le rendement des modeles specifiques aux sites permet d’utiliser une evaluation 
quantitative plutot que qualitative des taux d’enlevement des contaminants par les 
procedes biologiques, dans le cadre dune technologie de decommissionnement du 
genie ecologique. 
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1. INTRODUCTION 

Decommissioning of inactive mine sites presents an economic and environmental 

challenge. Ecological Engineering processes are being developed to assist the mining 

industry in finding solutions to the decommissioning challenge. Biological polishing, 

one of the Ecological Engineering processes, has been quantified with data collection 

in three different acid generating mine sites, an abandoned coal seepage in Cape 

Breton, at the Buchans Mine in Central Newfoundland and in effluents from acid- 

generating tailings at South Bay in northwestern Ontario. 

Biological polishing can assist in the improvement of AMD seepages by the following 

processes: 

Provide nucleation/precipitation sites for metals on periphyton surfaces, 

Provide living covers over metal-laden sediments, 

Provide extracellular polysaccharides to complex metals. 

The work was funded jointly by Industry and CANMET Biotechnology. The program 

started in 1990 with a literature review on periphyton growth conditions and 

geochemical considerations of the contaminant removal process. In 1991, the study 

proceeded with field data collection at the three sites (Kalin and Wheeler 1992a,b,c). 

In 1992, periphyton growth rates were determined in the laboratory, and field 

collections were carried out to confirm the growth rates obtained in 1991. 

The literature review carried out in 1990 indicated that biological polishing could be 

developed, if the basis of the contaminant removal process were understood (Kalin et 

al. 1991). Therefore, in 1991, periphyton biomass, which had accumulated on 

various suspended substrates, was collected several times during the growing season. 

Growth or accumulation rates of biomass were determined through destructive 

sampling of substrates colonized by biomass. Experiments with slow-release fertilizer 

were carried out at three locations to increase growth rates or establish growth. 

Baojum Research Limited 
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A large data set was amassed (about 1000 biomass/ periphytonl precipitate samples) 

during the first stage of investigation in 1991, of which only a fraction were analyzed 

for elemental composition. More samples were subjected to chemical analysis in 

1992 and, together with those collected during the 1992 field season, form the input 

parameters for an application model. 

The first two years of results suggested that there were several factors controlling the 

growth of periphyton at different mining sites. Many of these factors were common 

to all sites. It was proposed to develop an application model for biological polishing 

to provide a framework for the evaluation of pond size, retention time and expected 

contaminant removal. 

The characteristics of the waste waters in which the periphyton were studied is 

shown in Table 1. Table 2 gives the elemental composition of the periphyton 

populations growing in the waste waters. 

Table 1: Description of Waste Water Sites and Periphyton 
Mine Site Habitat Main Taxa PH PI WI PI 

mg/L mg/L mg/L 
South Bay Lake Ulothrix sp. 3.2-3.5 7-l 1 2.1 4.5 
Buchans Pond Microspora/Ulothrix sp. 6.5-7.5 4-18 4-6 2 
Selminco Seep Ulothrix sp. 4 0.1-0.3 24-95 100-l 50 

Table 2: Summary Table PPC Composition 

(n) is the number of periphyton analyses from each site in 199111992. 

L.O.I. is Loss on Ignition, or 100 -the % ash after burning at 500 C. 
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In order to develop the general application parameters, confirmation of the 1991 

contaminant removal rates measured during the summer were needed and minimum 

rates for the winter time were required. An understanding of the factors controlling 

the removal process and the conditions under which biological polishing can be applied 

were needed. In order to achieve this goal, four objectives were addressed. 

1. Periphyton biomass was collected from peritraps after the winter period to 

obtain values for the winter season. Collections were also made at the end of 

the growing season in 1992 to confirm 1991 accumulation rates. 

2. Sedimentation traps were installed at several locations to determine 

sedimentation rates without periphyton growth. Contaminants can precipitate 

in waste water if geochemical conditions allow, and can control the 

effectiveness of the biological polishing process. 

3. Data collected during the summer of 1991 were analyzed and summarized with 

respect to physical and chemical factors which may be important to the overall 

process of contaminant removal, rather than site-specific factors already 

identified. 

4. Periphyton investigated in the 1991 season were collected again in 1992, and 

brought into the laboratory for measurement of growth under less stressful 

conditions. The objective here was to determine optimum periphyton growth 

affected by light and by additions of fertilizers. 

This report is divided into sections which detail aspects of site-specific application 

models. In Section 2, the laboratory growth rate experiments are discussed. The 

results from these experiments are used to provide the upper boundary on periphyton 

field growth rates. In Section 3, general aspects of application modelling and 

biological polishing are discussed. Sections 4, 5, and 6 discuss site-specific biological 



polishing models. Supporting data for the input parameters are described. Section 

7 describes those parameters which are in common between all sites, and uses this 

information in a simple biological polishing application model. 



2. LAB GROWTH STUDIES 

2.1 Periohvton Descriptions 

Periphyton from each of the study sites (Buchans, South Bay and Selminco) were 

selected from locations, where periphyton were relatively free of precipitate. The 

waste waters from which these “clean” populations were derived were similar to 

those in the field study sites, but generally contained less iron. 

The taxonomic grouping of the periphyton at all three sites was similar, consisting of 

a mixture of Ulofhrix sp. and Microspora sp., with a few Oscillatoria sp. and small 

diatoms at Buchans. A Ulorhrix sp. dominated the periphyton community at South 

Bay. In the coal seepage, Ulothrix sp. dominated the population, but, 

Temnogametum sp. was also present in large numbers. 

2.2 Periphvton Sample Preparation 

Reference samples, preserved in Lugols fixative, were kept for species identification. 

The biomass was cleaned of debris, dried, powdered, and sent for elemental analysis 

to a certified laboratory. There, subsamples were oxidized with a mixture of nitric and 

perchloric acids, and analyzed by Inductively Coupled Plasma Spectroscopy (ICP). 

Fresh weight was determined by blotting the cleaned biomass dry between paper 

towels. To determine fresh biomass to dry biomass weight samples were oven-dried 

at 60” C for 24 h. Another subsample was dried to a constant weight at 1 IO” C, and 

ashed in a muffle furnace at 500” C for 30 minutes. The difference between the oven 

dried (60 “C) weight and ashed weights gave the Loss On Ignition (LOI). LOI reflects 

the percentage organic versus inorganic in the PPC 

Boojum Research Limited Biological Polishing in AMD Seepages 
5 CANMET Final Report, March 1993 



Seepage or AMD water from the nearby study sites was also collected and used as 

a solution in which the growth experiments were carried out. The pH, Eh, 

conductivity and temperature were determined in the field, and tightly capped samples 

brought back to the lab. The samples were filtered through 0.45 pm cellulose acetate 

filters, acidified with nitric acid to a pH of 1, and analyzed by ICP. 

2.3 Methods - Hiqh Densitv 

In the laboratory, plant material was manually cleaned of debris and 2 g of fresh 

weight were placed in 500 mL of field-collected water. Some of the cultures were 

supplemented with phosphate (0.2 g waste phosphate rock) and/or 0.2 g nitrate 

(Osmocote, KNO,), placed under fluorescent lights (270 /JE rn~’ s’) with (12:12) 

photoperiod, and bubbled with air. 

Periphyton were maintained under these conditions for 5-10 days. This was 

considered the adaptation phase and the periphyton under these conditions were 

further separated from sediments, debris, and dead material which could not be 

washed off manually. 

After the adaptation phase, the periphyton were filtered through paper coffee filters 

in a Buchner funnel. Material was collected from the filters, blotted dry, and weighed. 

New jars were set up (1 L jars with 500 mL of field-collected water), with the 

following conditions. 

3 Full Light 270 ,oE rn-’ s-’ 
3 1 Nitex screen 126 ,uE rn-* 5’ 
3 2 Nitex screens 60 /JE rn-’ s’ 
3 3 Nitex screens 27 ,oE mm2 so’ 

lrradiance was measured with a Biospherical Instruments QSL-100 quantum meter. 

All lrradiance jars contained 0.2 g KNO, slow-release fertilizer and 0.2 g waste natural 

phosphate rock. 



2 Full Light with only KNO, 
2 Full Light with only phosphate rock 
2 Full Light controls with no added nutrients. 

Jars were continuously bubbled, ensuring that periphyton were well mixed. The pH 

and water temperature were recorded before and after the experiment. Experiments 

ran for 15 days, long enough to give significant growth. The experiment was 

terminated when plant material was filtered through coffee filters in a Btichner funnel, 

blotted dry, and weighed. 

2.4 Methods Low Density 

Periphyton culture densities of 0.1 gfw (grams fresh weight) in 500 mL water were 

achieved when 1 .O gfw of newly-collected periphyton material was blended for 1 

minute at high speed in a Waring blender in a solution of 100 mL of tap water. A 10 

mL aliquot of homogenized periphyton slurry was pipetted into each treatment jar 

containing 500 mL of mine waste water. Three 10 mL aliquots were filtered through 

glass-fibre filters and dried. These were used to determine the beginning weight of 

each aliquot. 

Growth jars were continuously aerated and lighting was provided by high intensity 

cool-white fluorescent lamps on a 12:12 light cycle. Experiments ran for 

approximately 7 days. 

At the end of the experiment, periphytic material was washed from the culture jars 

through a glass-fibre filter and dried. The dried periphyton before and after the 

experiment were used to determine the relative growth rate (RGR; In(W, W;l t-‘). 

In some cases, the filter papers were further analyzed by Inductively Coupled Plasma 

Spectroscopy after wet oxidation with a mixture of nitric and perchloric acids to 

determine elemental composition. 



2.5 Results - Hiah Density Experiments 

High density growth rate experiments were performed on periphyton from Buchans 

and Selminco but not for South Bay (Boomerang Lake). In Figure 1, the RGRs are 

plotted against light intensity. The RGRs under high light, with added nutrients, 

produced similar results for the two sites. Both populations grew well in water from 

the original site, achieving rates between 1 .5 and 1 .S % do’ (doubling time = 42 to 

36 days) 

Fig. 1: Buchans and Selminco 
RGR for High Density Cultures 

--c Selminco --tf Buchans 

Selminco periphyton (W) were much more light dependent than Buchans periphyton 

(0). Buchans periphyton produced positive growth at the lowest light intensity, while 

the Selminco population lost weight. 

Both populations responded to nutrient additions, where growth under high light and 

nutrients was significantly higher than controls, with only high light. High light 

conditions in these experiments (270 PE rn-’ s-‘) were approximately l/6 full sunlight. 
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Thus, it can be expected that in the field, where periphyton are generally found in high 

density, growth rates would be similar or higher. 

In these laboratory experiments, biomass density was high (1.5-2 gfw L-‘), with no 

water turnover. As periphyton are normally found in a slow-flowing streams, water 

turnover occurs continuously. It is reasonable to assume that in the high density 

experiments, the nutrient supply might have been limiting, thus slowing growth rates. 

However, these high densities were more representative of densities found in field 

populations, and may therefore have better represented the growth rates occurring in 

the waste waters. 

2.6 Results Low Density Experiments 

Low density cultures were carried out with Ulofhrix from South Bay (in Boomerang 

Lake water) and from Selminco (in Sl water). The growth rates achieved in 

Boomerang Lake water ranged from 2.7 to 5.1, depending on the strain of Ulothrix 

used, giving doubling times from 26 to 14 days (Table 3). Growth rates of Ulothrix 

from Selminco averaged 7 % do’ (doubling time of 10 days), when grown in 

phosphate-treated Selminco Sl water. However, when grown in water from 

Boomerang Lake, the growth rate was only 2.6 % d-’ (doubling time 27 days). This 

suggests that the periphyton populations are adapted to growing in waste water. 

These results emphasize that indigenous periphyton populations should be used in the 

biological polishing process. 

Table 3: Laboratory Derived Relative Growth Rates for Low Density Cultures 
Description Origin Water Water W2 

(24 

RGR 

PH W4 (Oh/d) 
Ulothrix Selminco Selminco Sl 4.3 0.0338 0.02085 6.9 
Ulothrix Selminco Selminco Sl 4.2 0.035 0.02085 7.4 
Ulothrix Selminco Boomerang Lake 3.5 0.02503 0.02085 2.7 
Ulothrix S. Bay Boomerang Lake 3.5 0.03654 0.02142 5.1 



In summary, periphyton from a number of mining sites seem to be adapted to grow 

in mine waters with elevated metal content and low pH. Growth rates of periphyton 

in these effluents are surprisingly high and are affected by the initial periphyton 

density used in the cultures. Low density experiments provided conditions which 

produced the highest growth rates. 

For the biological polishing process these results suggest that, in the beginning of the 

season, when biomass densities are lower in polishing ponds, higher growth rates will 

prevail. As the population increases over the summer season, growth rates will 

become more affected by the adsorption of contaminants and inorganic precipitate 

formation and sieving. 

Average growth rates achieved with the different methods (high and low density, 

nutrients, and irradiance) are similar to those found in the field. Therefore, it is 

realistic to use high growth rates as input parameters for the model. The experiments 

also suggest, that biological polishing rates can be increased through fertilizer 

additions. 
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3. APPLICATION MODELLING 

Ecological models are generally a quantitative description of relationships between 

biological processes and the environmental factors that affect them. A biological 

polishing model is not a model which describes the effect of environmental factors on 

periphyton growth. It takes the observed growth rates and contaminant 

accumulations in the biomass in the waste water and derives the dimensions of the 

ponds and substrate surface area for required for growth. 

In Schematic 1, the major components for such a model are shown. On the left side 

are the factors which play a role in biological polishing process. The effluent 

(contaminant) characteristics are determined by the hydrological conditions (rain) 

which represent the transport medium of the contaminants generated in the waste 

material. The hydrological conditions, together with the rates at which the waste 

material generates contaminants, will result in the metal and acid loadings to the 

effluent stream. Periphyton populations grow in the resulting water. Their ability to 

remove contaminants is related to the quantity of precipitate which is formed 

chemically in the waste water, and must be “sieved”, and the amount of 

contaminants which remain dissolved. and must be bio-adsorbed. 

After death, periphyton biomass is relegated to the sediments in the polishing pond. 

In the waste stream, some precipitates are formed geochemically. These also settle 

to the sediments. The organic material provided by periphyton provides nutrition 

necessary to maintain reducing conditions in the sediments. In these reducing 

sediments, microbes transform adsorbed and precipitated metals into more stable 

precipitates. The microbial communities which do this transformation also generate 

alkalinity (ARUM; Acid Reduction Using Microbiology). The aim of the biological 

polishing process is to optimize the above described aspects within the polishing pond 

to minimize the amounts of precipitate and dissolved metals which leave the site to 

the environment. 
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Field and laboratory data were collected from several sites in which biological 

polishing is being scaled-up to remove contaminant loadings. These data have been 

used to provide the input parameters for an application model of biological polishing. 

The key non-biological parameters which can be manipulated in the field are: 1) the 

contaminant loadings, and 2) the retention time needed in the pond. Together, these 

parameters define the size of the pond needed, given the flow rates of the site. The 

key growth production parameters which can be manipulated in the field are nutrient 

(carbon, nitrogen and phosphorus) level and tree density (Schematic 1). 

Site-specific investigations provided input parameters to the application model for 

scale-up of the biological polishing process. However, similar approaches were taken 

at each site. The first step was to define the contaminant loading to the water body 

in which biological polishing was to be utilized. This was done through an assessment 

of the base flow in the drainage basin areas, the contaminant concentrations in the 

waste stream and the hydrological precipitation rates (rain). 

The second step was to calculate or measure the distribution of precipitated metals 

and dissolved metals. Periphyton are good “sieves” and can remove particulates. The 

concentrations of dissolved and precipitated contaminants determined how much 

biomass was needed for sieving and adsorption. This was followed by an assessment 

of the available substrate surface area, and pond volume. The growth rates or the 

biological polishing capacity was then derived from the number of trees in the ponds. 

Projections for complete contaminant removal increased the tree density in the 

polishing pond so that periphyton growth (and contaminant removal) matched 

contaminant loadings. 



4. APPLICATION MODEL - BUCHANS 

The site-specific model to scale-up the biological polishing process at Buchans is 

derived from a set of experimental pools, into which alder brush was placed. A brief 

description of the site and the origins of the effluent to be treated with biological 

polishing are given below. 

4.1 Site Descriotion 

The Buchans mine site is located in central Newfoundland. Buchans was a base metal 

mine, with a number open pits (gloryholes) associated with the underground workings. 

After completion of the mine, several of the gloryholes, including the Oriental East 

were flooded. The effluent is a combination of contaminated water from the 

underground workings and clean highly alkaline ground water. In the pit, below the 

chemocline (oxic/anoxic zone), the water contains 60 mg Fe Lo’, which produces 

extensive ferric hydroxide precipitate in the outflow, when ferrous iron is oxidized and 

hydrolysed in the surface waters. 

The effluent from the Oriental East Pit (OEP) is circum-neutral, with 20 mg Zn Lo’. In 

June of 1989, six ponds were excavated in the First Meadow below the OEP outflow, 

to act as experimental biological polishing ponds (MAP I). Water was diverted from 

the main OEP outflow stream through the 6 ponds, in series. Between August and 

September 1989, 110 alder cuttings were placed in each of the pools (130 in pond 

6) to act as surface area on which periphyton could grow. The ponds were, on 

average, about 0.6 m deep, with a diameter of 9.2 m. Pond volumes ranged from 24 

m-3 (pond 5) to 54 m~3 (pond 2). The average volume was 40 m~3. 

Throughout 1991, flows through the polishing ponds varied from 0.035 L s-’ in July 

to 0.174 L 5~’ in August. The average flow was 0.122 L so’. Calculated turnover 
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times varied from 80 days (July) to 16 days (August). The average turnover time for 

the summer was 23 days. 

Water passing through the ponds has been sampled and analyzed a number of times 

each year since the alders were added (Figure 2). On each sampling date, the zinc 

concentration in each pond, or in ponds 1 and 6, were measured along with flow 

rates. The flow rates when divided into the total pond volume (240 m3) gave the 

residence of time of water in the ponds. These data indicate that zinc is being 

removed from the waste stream as it passes through the ponds. 

The removal started several months after the cuttings were added to the ponds. 

Towards the end of 1989, significa,nt biological polishing started as evidenced by a 

40 % removal of zinc between pond 1 and 6 (November 1989). In 1990, the best 

removal was 86 % of the zinc (September), and in July 1991, over 90 % of the zinc 

was removed from water flowing through the 6 ponds. The increase in zinc removal 

was paralleled by the growth of periphyton populations (Kalin and Wheeler 1992a). 

Fig. 2: Buchans Polishing Ponds 
Zinc Reductions vs. Residence Time 
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4.2 The Application Model 

The following model description provides the necessary scale-up parameters. The 

model was written in the form of spreadsheet (Quattro Pro 4), in which each line is 

calculated based on preceding information. By changing the initial conditions, the 

output of the spreadsheet is changed. The final lines of the spreadsheet calculate the 

performance of the system and the parameters which require improvement. 

A model has been developed in order to determine the size of polishing pond 

necessary to accommodate the entire zinc loading leaving the OEP. The model utilizes 

the characteristics of the existing polishing ponds and the growth rates of the 

periphyton to predict the amount of zinc which could be removed from the waste 

stream, if biological polishing were scaled-up (Table 4a,b). This model uses both 

monitoring and derived growth data from both field and lab studies. 

Line 1 of the model describes the dry to fresh weight ratio used in converting between 

dry biomass and wet biomass. This number was derived from OEP PPC collections 

in 1992. Periphyton cleaned of precipitates generally had dry to fresh weight ratios 

around 0.2 to 0.3. If periphyton had substantial fractions of precipitates, the ratio 

rose, to 0.61 gdw gfw~’ (or 0.61 kgdw kgfw-‘). Periphyton with high precipitate 

fractions were common, due to the high iron precipitates in the OEP outflow water. 

Line 2 of the model describes PPC density in the polishing ponds. This was estimated 

by extrapolating the PPC mass measured on alder twigs to the amount of alder in the 

ponds. Alders placed in the pools, averaged 0.96 kgdw in mass, with 350 gdw of 

branches, fruits and leaves. PPC were measurements made on branches, fruits, and 

leaves. Therefore, the average tree mass used to quantify PPC growth was 350 gdw. 

PPC densities ranged from 0.37 to 4.1 gdw gdwB~’ (gdwB = grams dry weight of 

branches; Table 5; page 19). The average PPC mass during the last 2 years was 2.4 

gdw gdwB-1. 
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Table 4a: Buchans Polishing Pond Extrapolations 
(Residence Time - 14 days, OEP [Zn] 20 mg/L) 

1 Drv to fresh weiqht 0.61 kqdwikgfw 
2 Density of PPC ‘A lab and field 
3 Growth rate 
4 Average PPC Zn (1992) 
5 Volume of Pond 10 
6 Minimum required residence time 

7a OEPflow 
7b OEP Zn concentration 
7c OEP Zn loading (1992) 
7d OEP Zn loading (1992) 

8 Periphyton Zn removal capacity 
9 Periphyton Zn removal from system 

10 Periphyton Zn removal from system 

3.8 k&/m; 
8 gdw/m2/d 

62 g/kg 
320 m^3 

14 d 
12.875 Us 

20 g/m3 
8121 kg/a 
22.2 Kg/d 

1149.7 g Zn/m3 of pond/d 
279383.9 g Znlsystemid 

50289.1 kg Znlsystemla 

11 Average Zn loading Pool l-6 (1992) 
12 Average Zn leaving Pool l-6 (1992) 
13 Average Zn remaining in Pools l-6 (1992) 
14 Zinc removal rate 
15 Zinc removal rate 
16 Trees required to remove Zn load 
17 Projected pond volume 
18 Projected pond area 

166.7 kg/a 
88.8 kg/a 
77.9 kg/a 

320.4 g Znlm3ia 
114.5 g Znitreeia 

25,342 m^3 
42,236 m-2 

19 Maximum flow into pond 0.3 L/s 
20 Maximum Zn loading to Pond 10 0.4 kg Zn/d 
21 Maximum Zn loading to Pond 10 150 kg Znla 
22 Percentage of total flow treated 1.8 % of total flow 
23 Pond IO Zn removal 102.5 kg Zn removed/a 
24 Percentage of Pond 10 Zn load 68.36 % of loading 

Table 4b: Buchans Polishing Pond 10 Fertilizer Requirements 
(Residence Time 14 days, OEP [Zn] 20 mg/L) 

=ERTILIZER REQUIREMENTS: PLANT-BASED 
25 Biomass production to remove load 6.7 kgdwid 
26 Healthy plants require approx. 0.5% P 0.005 g P/gdw 
27 Phosphorus requirement for biomass 33.28 g P/d 
28 P content of nutricote (19:6:12) 0.06 P 
29 Fertilizer requirement 99.84 kg fertilizer over 180 d 

growing season 

-ERTILIZER REQUIREMENTS: WATER-BASED 
30 Flow through Pond 10 
31 Need about 4 mg/Lfor eutrophic pond 
32 Using a 6% P fertilizer 
33 Fertilizer requirement 

15.9 Urnin 
30.5 g P/d 

507.9 g fertilizer/d 
91.4 kg fertilizer over 180 d 

nrnwinn season 
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‘able 5: Buchans PPC Mass on Branc 
~dwB) 1991 

I Pond 
1 
2 
3 
4 
5 
6 

Avg 

May 
1.14 
1.15 
1.00 
1.82 
0.66 

- 
gdw/g 
July 
3.06 
1.49 
4.82 
3.86 
2.94 
3.24 

Aug 
6.50 
3.42 
4.35 
3.10 
5.12 
2.40 

act 
3.66 
1.53 
2.00 
3.28 
4.10 
1.36 

3.24 

:ht 5 in Poli 
1992 (! 

ishing - 
@v/c 
Aug 
1.77 
1.72 
1.21 
1.03 
1.24 
1 .Ol 

onds - 
NB) 
Sep 
3.64 
3.50 
1.79 
4.06 
2.39 
2.60 
3.00 

When the average density is multiplied by the mass of branches per tree (350 gdw), 

the number of trees per pond (1 IO), and divided by the volume of pond (40 m3), a 

value of 2.3 kgdw me3 is produced. If this number is further divided by the dry/fresh 

weight ratio (0.61), a value of 3.8 kgfw m-3 is produced. 

The periphyton growth rate used in the model is shown on Line 3. Growth rates of 

PPCs were difficult to measure. There are several ways to estimate growth, all of 

which produced widely spaced estimates. Growth was calculated both in the 

laboratory (see Section 2) and in the field (see Kalin and Wheeler 1992a). With 

peritraps, a linear estimation of growth was obtained, as opposed to the relative 

growth rates (RGR) obtained in the laboratory or from periphyton colonization of alder 

twigs in the polishing ponds. 

Typically, growth was measured as a function of substrate surface area (sub; 

substrate) or weight of substrate (gdwB). If biomass was measured both before and 

after a given time interval, then growth was calculated using RGR (as in laboratory 

studies), which calculated growth logarithmically (e.g. RGR = 1 OO*ln(W, W;‘)t-‘). 

Periphyton growth rates measured in the lab produced estimates which were high. 

Peritraps, which were cleaned every few months, produced a conservative growth 

estimate. Mass accumulations by PPCs over the summer period, produced a third 

estimate, which resulted in an intermediate growth rate. 
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On the high end of the growth measurement range were the lab results (1.9 % do’; 

Figure 1). At this rate, periphytic biomass would double in about 36 days. Such 

biomass growth estimates, however, might be an overestimate of field growth rates. 

When multiplied by the average density of PPCs in the ponds (2.3 kgdw m~3), this 

growth rate extrapolated to a biomass production of 44 gdw m~3 d-‘. By multiplying 

the RGR (0.019 d-‘) by the PPC mass per branch (2.4 gdw gdwB-‘) and dividing by the 

surface area to mass ratio for branches (0.00272 mz gdwB-‘), this RGR can be 

converted to a growth rate on a substrate surface area basis (16.8 gdw rn~’ (sub) do’). 

Growth rates were also calculated using peritrap PPC accumulations. Peritraps are 

artificial substrates, consisting of a buoyant wooden frame covered in plastic netting. 

The netting enclosed several alder branch “substrates”. A plastic bag was hooked 

below the frame to catch any biomass which “sloughed” off the net and substrates. 

Peritraps were placed in the OEP and the polishing ponds in June of 1991. Traps 

were removed at different times throughout 1991 and 1992, and the accumulated 

PPCs, removed, dried and weighed. The average biomass accumulation rate by 

peritraps in pools 1-6 over the winter and spring of 1991-l 992 was 0.5 gdw m~‘(sub) 

d-’ (Figure 3). Between July and September of 1992, the rate increased to 2.2 gdw 

rn-‘(sub) d-‘. These data represent the average total growth on peritraps, based on 

net, substrate, and bag biomass changes. Also shown in Figure 3 are the individual 

components of the growth, i.e. growth on nets and branches. 

Growth rates were also calculated from the increase in the PPC biomass found on 

branches in the polishing pools. Average PPC mass increased from 1.24 in May, to 

1.33 in August 1991, to 3.00 gdw gdwB~’ in late September 1991 (Table 5). If the 

RGR formula is applied to these data, the growth rates varied from 0.08 % d-’ for the 

period May through August, and 1.9 % d-’ for the period from August to the end of 

September. The translated rates were 0.7 gdw rn-* (sub) d-’ to 16.6 gdw rn-’ (sub) 

do’). It is interesting to note that field growth rates during the latter part of the 



Fig. 3: Buchans Peritraps 
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summer were the same as measured in the laboratory in 1992, suggesting that ideal 

conditions can be found in the field during at least part of the year. 

To summarize, lab studies produced growth rates of about 1.9 % d-‘, as did summer 

1991 field data (16.8 gdw rn-’ (sub) d-‘). PPCs on peritraps grew at winter/spring 

rates of 0.5 gdw rn-’ d-’ and summer rates of 2.2 gdw rn-’ d-‘. PPC accumulation 

rates on alder branches varied between, an early summer low of 0.7 gdw rn~’ do’ and 

a late summer high of 16.6 gdw rn-’ d-‘. Thus, winter/early summer values of 0.5 

gdw rn-’ d-’ were considered conservative, while good summer rates were probably 

at least 50 % of the max, i.e. 8 gdw rn~’ do’. A summary of the growth rates obtained 

is given in Table 6. 



Table 6: Buchans Growth Rate Estimates 
Description 

Lab High Density 
Peritraps: Winter/Spring - 

Summer 
PPC/Alder: Early Spring 

Late Summer 

4.3 Metal Removal 

Line 4 of the model describes the zinc content of the PPCs measured over the summer 

of 1992. The average zinc concentration in PPCs in May was 4.9 % of dry weight 

(Table 2). In August, the percentage climbed to 7.9. In 1991, the % of zinc in PPCs 

rose from 5.9% in May to 10.9% in August. The concentrations used in the model 

are the average of 12 samples from 1992, giving 6.2 % zinc, or 62000 pug gdw-‘, or 

62 g Zn kgdw~‘. This is slightly lower than the average for the last 2 years shown in 

Table 2. 

Line 5 of the model sets the volume of the expanded polishing pond. Since physical 

conditions of the areas below the outflow dictate the size of the next scale-up pond, 

the volume of the pond was fixed at 320 cubic meters, which is the size of the new 

polishing pond 10. 

In line 6 of the model, the minimum residence time for water in the pool is entered. 

The minimum residence time was based on an assessment of measured residence 

times, and was defined as the time required to remove 112 of the zinc from the 

system (Figure 4). 
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Fig. 4: Buchans Polishing Ponds 
Residence Times 

This minimum residence time varied depending on the time of year. It was shortest 

in mid summer (August; 8 days) and longest in winter (90 days; Figure 4). For most 

of the summer, therefore, the residence time was quite low. For purposes of this 

model, a minimum residence time of 14 daYs was chosen. 

Lines 7a-7d are the inputs for the zinc loading to the polishing ponds. This number 

can either be the current yearly average, 19.8 g Zn m-3 or a lower number, if other 

removal mechanisms are employed upstream of the polishing pond. 

Lines, 8, 9 and 10 compute the biomass production, and zinc sequestration by the 

biomass production, on both a daily and yearly basis. 

To make these calculations, all 6 ponds were added together. Thus, the volume of 

the “system” was 243 cubic meters, and the total number of alders placed in the 

ponds was 680. During the winter, the ponds are frozen over and therefore little flow 

enters the pools and the residence time is high. To estimate annual growth a growing 
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season of 180 days (6 mo.) was used, over which time, the growth rate in Line 3 of 

8 gdw rn-’ d-’ was in effect. 

Lines 1 l-l 5 approach the zinc removal capacity from the measured zinc reductions 

in the water as it passes through all six pools. In 1992, intensive water sampling was 

carried out, and thus a good data set exists. The calculations were broken up into 

estimating the average zinc loading to the pools and the average zinc “loading” leaving 

the pools. 

The difference between Lines 11 and 12 gives the mass of zinc which actually 

remained in the pools, both from biological sequestration and chemical precipitation. 

The mass of zinc removed in all six ponds, over the year gave an annual biological and 

chemical removal rate. 

The zinc removal rate extrapolated from the actual zinc concentrations and flows 

should be reasonably close to the zinc removal rates extrapolated from the zinc found 

in the PPCs and their growth rate. In 1991, in August, PPCs accounted for 40 % of 

the zinc removal. These calculations indicated that the current year’s removal would 

be higher. 

4.4 Bioloqical Polishing Scale-Up 

Using these zinc removal estimates, it is possible to extrapolate from the pools to 

encompass the entire outflow loading of the OEP. To remove all of the zinc from the 

OEP outflow would require a much bigger pond, with more substrate surface area. 

The number of trees needed (Line 16), the projected pond volume (Line 17) and the 

projected pond area (Line 18) are calculated using straight line extrapolations. The 

pond area was based on an assumed water depth of 0.6 m. 
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4.4.1 Pond 10 Extrapolations 

The first step in expanding biological polishing in the First Meadow was to build an 

expanded retention pond. Pond IO was constructed to have a volume of 320 m3. 

If a residence time limitation of 14 days is imposed, then the volume entering Pond 

10 must be equal to or less than 0.3 L s’ (Line 19). At this flow, the zinc loading can 

be calculated, and is shown in Lines 20-21. The percentage of the total OEP outflow 

being treated in given in Line 22. 

Multiplying the zinc removal rate per cubic meter of pond by the volume of Pond 10 

gives the number of kilograms of zinc removed by the bigger pond. This can also be 

expressed as the percentage of the zinc loading removed (Line 24). It is worth noting 

that Pond IO has a volume that is only 1.3 x larger than the existing pools. 

4.5 Fertilizer Reauirements 

Laboratory investigations with periphyton suggest that better growth rates require 

both nitrogen and phosphorus (Figure I). Calculating the addition of fertilizers to the 

waste water is difficult, because the phosphate in the fertilizer reacts with metals in 

the water, forming metal phosphates. Furthermore, in a flow-through system, slow 

release formulations had to be found and tested, as single applications of quickly 

dissolving fertilizer would be diluted and lost from the system. 

Based on the literature, a healthy plant requires about 0.5 % of its dry weight as 

phosphorus. One way to calculate the fertilizer requirement, then, is to calculate how 

much phosphorus is required to bring all PPCs up to the 0.5 % level (based on dry 

weight; Line 26; Table 4b). For Pond 10, the total biomass required is calculated by 

multiplying the growth rate in Line 3 by the ratio of branch area to pond volume (2.6 
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m* m~3), resulting in a biomass production rate (20.8 gdw m-3 d-‘). When this number 

is further multiplied by the volume of Pond 10 (320 m3), the daily biomass production 

estimate for Pond 10 is calculated (6.7 kgdw d-‘; Line 25). If the periphyton biomass 

has to have a phosphorus concentration of 0.5 %, then the total amount of 

phosphorus required is 33.3 g phosphorus d-’ (Line 27), and the weight of the fertilizer 

is 555 g fert. d-‘, or 99.9 kg of fertilizer per growing season. 

A second way to calculate the fertilizer requirement is to provide hyper-eutrophic 

nutrient conditions in the pools, by adding enough phosphorus to the water to bring 

phosphate concentration up to about 4 mg Lo’. If the 4 mg phosphate L-’ level can be 

maintained, periphyton will be able to take up enough phosphorus for optimum 

growth. Any excess phosphorus will also be available for precipitation with zinc and 

iron. Line 30 shows the flow through Pond 10. This is the same number as shown 

in Line 19. By multiplying the 4 mg phosphate L-’ times the flow and the number of 

minutes in a day, the amount of phosphate per day can be estimated (91.6 g 

phosphate d-l ). When divided by 3, to convert phosphate to phosphorus, the amount 

of phosphorus per day is calculated (30.5 g P d-‘1. If a 19:6: 12 fertilizer is used, then 

the amount of fertilizer is: 508 g fertilizer d-‘. When this is multiplied over the 180 

day growing season, the amount of fertilizer becomes: 91.5 kg fertilizer per year 

(growing season). 

The two calculation approaches should result in a similar requirements, since both are 

based on ecological factors, either healthy plant content or nutrient-rich water. 

Boojum Research Limifed Biological Polishing in AMD Seepages 
26 CANMET Final Report, March 1993 



5.0 APPLICATION MODEL - SOUTH BAY 

5.1 Site Description 

The South Bay mine site is located in northwestern Ontario (49” N, 94” W). A copper/ 

zinc concentrator operated at the site from 1971 to 1981. After the mine closed 

down, ground water plumes and seepage paths were intercepted, both from the mine 

site and from the tailings, and directed to Boomerang Lake. Boomerang Lake was 

relegated to the role of main polishing pond or treatment area (Map 2). 

By 1986, the pH in Boomerang Lake had dropped gradually for 10 years from a pH of 

about 7 to a pH of 4. Attached periphyton, which contained high iron and high zinc 

concentrations, were found growing on tree branches suspended in the lake. It was 

proposed that, by increasing the growing surface area for periphyton, biological 

polishing could remove enough zinc to maintain the zinc concentration at constant 

level, and, as the population increased with time, even reduce the zinc concentrations 

in the lake. 

For Boomerang Lake, the contaminants come from 3 primary sources; Mill Pond, the 

tailings, and Backfill Raise. There may be further contributions from some tailings spill 

areas, but contaminant loadings from these could not be quantified. Boomerang Lake 

is 1.2 km long and 400 m wide, along its widest transect. The lake is shallow, the 

maximum depth is about 5.2 m near station B4. The lake has a mean depth of about 

4 m (Map 2). 
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5.2 The Application Model 

The model is written in the form of a spreadsheet (Quattro Pro 4), in which each line 

is calculated based on preceding information. By changing the initial conditions, the 

output of the spreadsheet is changed (2nd copy of model at back cover). 

In Table 7a, the starting conditions (dimensions) of Boomerang Lake are given. These 

form the basis for the model calculations. The lake has a volume of just over 1 million 

m3 and a surface area of 24 ha (Lines 1,3). Because the lake is shallow, the water 

is well mixed through-out the ice-free season. The annual base flow from the 

drainage basin to Boomerang Lake is estimated at approximately 344,000 m3 a-’ 

which results in a retention time of approximately 3 years (Line 2). 

Contaminant loadings were derived from hydrogeological studies and water sampling 

in piezometers. Within Boomerang Lake, at suspected points of contaminant entry, 

log booms were constructed to restrain the spruce brush cuttings which were used 

as substrate for biological polishing in the lake. The areas for these are given in Lines 

4 to 7. Only 3.5 % of the lake area is currently being used for biological polishing. 

5.3 Contaminant Loadinqs to Boomeranq Lake 

At South Bay, the application of biological polishing is quite different than at Buchans. 

At Buchans, contaminants came from the OEP effluent, a point source. The effluent 

is treated in a series of ponds. In South Bay, biological polishing is used to reduce 

contaminant loadings to Boomerang Lake, and to remove the annual contaminant 

loadings coming from the tailings and several other sites. Thus, the contaminant 

loadings are diffuse. Therefore, to model the biological polishing capacity of 

Boomerang Lake, the loadings must first be quantified. Since the sources are diffuse, 

this is a complex task. A brief description of South Bay sites is given below. 
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Table 7a: Boomerang Lake Starting Conditions 
BOOMERANG LAKE STARTING POSITIONS 

1 Lake volume 1,043,419 m3 
2 Base flow 342,854 m3ia 
3 Lakearea 238,861 m2 

4 Bll boomed area 2,837 m2 
5 87 boomed area 486 m2 
6 B8 boomed area 1,000 m2 
7 B2 boomed area 4,050 m2 
8 Total boomed area 8,373 m2 
9 % boomed to lake 3.5 

10 Zinc concentration 7.49 mg/L 
ii Aluminium concentration 1.46 mg/L 
12 Iron concentration 1.56 mg/L 
13 Copper concentration 0.13 mg/L 
14 Sulphur concentration 73.9 mg/L 
15 Sodium concentration 1.92 mg/L 
16 pH 3.5 

Table 7b: Boomerang Lake Contaminant Loadings Mill Pond 

MILL POND 
17 Zinc concentration 50 mg/L 
18 Aluminium concentration 6 mg/L 
19 Iron concentration 1 q/L 
20 Copper concentration 1 q/L 
21 Sulphur concentration 109 mg/L 
22 Sodium concentration 4 mg/L 
23 pH 4.26 

24 Base flow 65,526 m3ia 

25 Zinc loading 3,276 kg/a 
26 Aluminum loading 393 kg/a 
27 Iron loading 66 kg/a 
28 Copper loading 66 kg/a 
29 Sulphur loading 7,142 kg/a 
30 Sodium loading 262 kg/a 
31 H+ loading 5,948 mol/a 



Table 7c: Boomerang Lake Contaminant Loadings -Tailings 
II TAILINGS 

32 Zinc concentration 227 mg/L 
33 Aluminium concentration 53 mg/L 
34 Iron concentration 2,064 mg/L 
35 Copper concentration 7.2 mg/L 
36 Sulphur concentration 2,072 mg/L 
37 Sodium concentration 8.6 mg/L 
38 pH 3.0 

II 39 Base flow 1,200 m3/a 

40 Zinc loading 272.4 kg/a 
41 Aluminum loading 63.6 kg/a 
42 Iron loading 2,476.8 kg/a 
43 Copper loading 8.64 kg/a 
44 Sulphur loading 2,487 kgla 
45 Sodium loading 10.32 kg/a 

Table 7d: Boomerang Lake Contaminant Loadings - Backfill Raise 

I BACKFILL RAISE 
47 Zinc concentration 6.9 mg/L 
48 Aluminium concentration 3.2 mg/L 
49 Iron concentration 2.9 mg/L 
50 Copper concentration 1 q/L 
51 Sulphur concentration 49.3 mg/L 
52 Sodium concentration 2.34 mg/L 
53 pH 3.87 

54 Base flow 34,788 m3ia 

55 Zinc loading 240 kg/a 
56 Aluminum loading 111 kg/a 
57 Iron loading 101 kg/a 
58 Copper loading 35 kg/a 
59 Sulphur loading 1,715 kg/a 
60 Sodium loading 81 kg/a 
61 H+ loading 8,306 mol/a 



Table 7e: Boomerang Lake Contaminant Loadings Clean Water 
CLEAN WATER LOADINGS 

62 Zinc concentration 0.29 mg/L 
63 Aluminum concentration 0.03 mg/L 
64 Iron concentration 0.03 mg/L 
65 Copper concentration 0 mg/L 
66 Sulphur concentration 2.22 mg/L 
67 Sodium concentration 0.84 mg/L 
68 pH 6.33 

69 Base flow 242,089 m3/a 

70 Zinc loading 70.2 kg/a 
71 Aluminum loading 7.3 kg/a 
72 Iron loading 7.3 kg/a 
73 Copper loading 0.0 kg/a 
74 Sulphur loading 537.4 kg/a 
75 Sodium loading 203.4 kg/a 

able 7f: Boomerang Lake Contaminant Loadings-Summary 
TOTAL LOADING INPUT 

77 Zinc loading 3,859 kg/a 
78 Aluminum loading 575 kg/a 
79 Iron Loading 2,650 kg/a 
80 Copper loading 109 kg/a 
81 Sulphur loading 11,882 kg/a 
82 Sodium loading 557 kgia 
83 H+ loading 104,642 mol/a 

TOTAL LOADING OUTPUT 
84 Zinc loading 2,566 kg/a 
85 Aluminum loading 501 kg/a 
86 Iron Loading 535 kg/a 
87 Copper loading 45 kg/a 
88 Sulphur loading 17,652 kg/a 
89 Sodium loading 658 kg/a 
90 H+ loading 108,420 mol/a 

TOTAL LOADING REMAINING 
91 Zinc loading 1,291 kg/a 
92 Aluminum loading 75 kg/a 
93 Iron Loading 2,116 kg/a 
94 Copper loading 64 kg/a 
95 Sulphur loading -5770 kg/a 
96 Sodium loading -101 kg/a 
97 H+ loading -3778 molla 



Table 79: Boomerang Lake Biological Polishing 
BIOLOGICAL POLISHING 

98 Current algal % of PPC 20 % 
99 PPC dry to fresh weight 0.61 gdwigfw 

100 Area per unit branch 0.0089 mZ/gdwB 
101 Mass per spruce branch 200 g 
102 Spruce branches per tree 200 

103 Usable mass/spruce tree 40,000 g 
104 Growth area per tree 356 m2 
105 # trees in lake 4,000 

GROWTH RATES PPC 

107 Peritraps -summers only 1.43 gdw/m2(sub)/d 
106 Peritraps - data slope 0.35 gdw/m2(sub)/d 
109 Lab GR w/field density 0.03 gdwPPClgdwB/d 
110 Peritraps -summers only 0.0127 gdwPPClgdwB/d 
111 Peritraps data slope 0.0031 gdwPPClgdwB/d 
112 Peritraps best guess 0.0127 gdwPPC/gdwB/d 

Table 7h: Boomerang Lake Biological Polishing 
PRODUCTIVITY 

113 Current production I .9 gdwPPCigdwBla 
114 Current production 76.2 kgdwPPC/tree/a 
115 Enhanced production 160 kgdwPPC/tree/a 
116 Current production/current trees 305 tonnesPPC/lake/a 

117 Enhanced production/current trees 720 tonnesPPC/lake/a 
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Table 7i: Boomerang Lake Metal Removal 
METAL REMOVAL 

Metal Content of PPC 
118 Zn 473 uglgdw 
119 cu 243 ug/gdw 
120 Fe 270,556 ugigdw 
121 Al 1,353 ugigdw 

122 Zn 6.0 ug Znlgdwbid 
123 Cu 3.1 ug Culgdwbid 
124 Fe 3,436 ug Fe/gdwb/d 
125 Al 17.2 ug Al/gdwb/d 

126 Zn 901 .l ug Znigdwbla 
127 Cu 462.9 ug Cu/gdwb/a 
128 Fe 515,409.2 ug Felgdwbia 
129 Al 2,577.5 ug Al/gdwb/a 

Mass Based 
130 Zn 36.0 g Zn/tree/a 
131 cu 18.5 g Cu/tree/a 
132 Fe 20,616.4 g Fe/tree/a 
133 Al 103.1 g Al/tree/a 

134 Zn 144.2 kg Zn/lake/a 
135 cu 74.1 kg &/lake/a 
136 Fe 82,465.5 kg Fe/lake/a 
137 Al 412.4 kg Al/lake/a 

138 Zn loading in PPCs 144.2 kg/a 
139 Zn loading in PPTs 395.2 kg/a 

140 Cu loading in PPCs 74.1 kg/a 
141 Cu loading in PPT 39.8 

140 Fe loading in PPCs 82,465 kg/a 
141 Fe loading in PPT 11,927 kg/a 

142 Al loading in PPCs 412.4 kg/a 
143 Al loading in PPT 248 kg/a 

144 Fe concentration of PPT 177,666 ugigdw 
145 Zn concentration of PPT 5,887 ugigdw 
146 Cu concentration of PPT 593 uglgdw 
147 Al concentration of PPT 3,687 ugigdw 



Table 7j: Boomerang Lake Tree and Fertilizer Requirements 
148 # trees required using current 

GR to remove total Zn load 71,248 

149 #trees required using enhanced 30,i 62 
GR to remove Zn leaving lake 

150 Average P in PPCs 939 ug/gdw 
151 1992 unfertilized P level 630 ugigdw 
152 Necessary P for good growth 5,000 uglgdw 

153 Periphyton as % of PPC 20 

154 Necessary PPC amount for removal 5,429 t PPCsilakeia 
155 Necessary annual P for lake 2,009 kg P 
156 Necessary annual PO4 for lake 6,026 kg PO4 
157 Concentration in water 6 mg/L PO4 
158 Necessary annual nitrogen 6,026 kg N 
159 Necessary annual potassium 4,018 kgK 

Mill Pond Drainaqe Basin: Table 7b describes the starting conditions for Mill Pond. 

Mill Pond sits in a drainage basin which occupies 24.2 ha. In the drainage basin, 

three dams were constructed below Mill Pond, creating polishing ponds. In Lines 17. 

22 the concentrations of contaminants in the second of the three dams, just before 

water enters Boomerang Lake, are given. Line 23 gives the pH of the water at the 

second dam. Based on precipitation, the drainage basin has a base flow of 65,526 

cubic meters per annum (Line 24). The resulting loadings are listed in Lines 25-31. 

Tailings: In Table 7c the contaminant loadings to Boomerang Lake, from the tailings, 

are given. Ground water, from the tailings, enters Boomerang Lake in the region of 

B9 (Map 2). Loadings from the tailings were calculated, based on the metal 

concentrations in, and hydraulic conductivity of, piezometers along the Boomerang 

Lake shore. Contaminant concentrations used in Lines 32-38 were produced from 

average concentrations in piezometers along the lake shore, measured between 1989 

and 1992. A base flow of 1,200 m3 a-’ was estimated (Line 39), which resulted in 

an average annual zinc loading of 0.27 t of zinc (Line 40), 2.5 t of iron (Line 42), and 

2.5 t of sulphur (Line 44), along with a loading of 90 kg of hydrogen ions (Line 46) 

from the tailings to Boomerang Lake. 

Boojum Research Limited Biological Polishing in *MD Seepages 
35 CANMET Final Report, March 1993 



Backfill Raise Drainaoe Basin: The Backfill Raise ditch drains part of the mine site 

along with some of the contaminants generated by the mine development rock. The 

diversion ditch was enlarged in 1992 to capture surface seepages from the 

underground workings, which were flowing because of the unusually high water levels 

in 1992. The base flow was calculated from the drainage basin and precipitation 

records. This annual base flow (Line 54) was multiplied by the concentrations of 

contaminants found in the most recent samples from the diversion ditch, prior to 

construction of the extended ditch. The calculated loadings are shown in Table 7d 

(Lines 55-61). 

Clean Water Drainaoe Basin: Essentially all contaminant sources to Boomerang Lake 

are located on the west side, while the east side contributes clean base flow. The 

concentration of elements in Confederation Lake was used to represent the clean 

water. The estimated contribution to the lake is given in Table 7e, following the same 

logic as used in the contaminated areas. The concentrations in the water are given 

in Lines 62 to 68, which are multiplied by the base flow (Line 69) to arrive at the 

loadings (Lines 70 to 76). 

The Sum of the Loadinos: In Table 7f the total calculated loadings from all four 

sources are shown in Lines 77-83, and represent 3,860 kg Zn, 575 kg Al, 2,650 kg 

Fe, and 109 kg Cu per annum. 

At this point, it is possible to project what the lake contaminant concentrations would 

be, given these loadings. The degree to which these projected concentrations match 

the actual concentrations measured, provides an assessment of the accuracy of the 

loadings. Thus, by dividing these loadings by the total base flow for Boomerang Lake 

(Line 2), the concentrations of contaminants in the lake can be calculated. The lake 

should contain 11 .3 mg Lo’ zinc, 1 .7 mg Al L-‘, 7.7 mg Fe Lo’, and 0.3 mg Cu L-‘, if 

loadings are correct. The concentrations are in reasonable agreement with the lake 

concentrations. 
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Using five water samples from 1992 the following were the average concentrations 

of aluminum, copper, iron, and zinc leaving Boomerang Lake: Al 1.5 mg L-‘; Cu - 0.1 

mg L-‘; Fe - 1.6 mg Lo’; and Zn 7.5 mg L-‘. The measured concentrations were used 

to calculate the annual outflow of contaminants from Boomerang Lake. The base flow 

multiplied by the concentrations results in the “loadings” leaving Boomerang Lake: 

501 kg Al a-‘; 45 kg Cu a-‘; 535 kg Fe a-‘; 2,568 kg Zn a~’ (Lines 84-90). 

The end result is that 1291 kg of zinc per annum remain in Boomerang Lake (Line 91), 

along with 2091 kg of iron and 181 kg of copper (Lines 93,94). The aluminum 

loading remaining in the lake was 75 kg a~’ (Line 92). If the contaminant 

concentrations in the lake were rising each year due to the remaining loading, then 

this fraction would be targeted by biological polishing. However, the major 

contaminant concentrations in the lake are not increasing (data not shown). 

Therefore, the loadings that remain are those that are already being removed by 

biological polishing and other removal mechanisms. Since it is the aim of Ecological 

Engineering to set up a self-sustaining ecosystem which will remove annual loadings 

of contaminants, it appears that major steps have already been taken toward that end. 

5.4 Growth Rate Calculations 

The most difficult parameter to derive in a biological polishing model is the relationship 

between brush surface area and periphyton. The complex geometry of natural 

surfaces, and the deciduousness of leaves, needles and bark makes calculating 

surface areas difficult. Nevertheless, a number of spruce branches were carefully 

analyzed for surface area and mass, including needles. Lines 100-l 02 (Table 7g) 

detail the surface area and mass relationships found for black spruce (avg. mass 40 

kg; avg. surface area 356 m’). 
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PPCs on peritraps (biomass on nets, branches, and in bags) grew at rates ranging from 

a high of 3.6 gdw rn-’ (sub) do’ during July 1991, to a minimum of 0.4 gdw rn-’ (sub) 

de’ over the winter of 1991 /I 992 (Figure 5). The average of all PPC growth rates for 

the two years was 1.43 gdw rn-’ (sub) d-’ (Line 107). The average growth over the 

winter and part of the summer of 1991 /I 992 was 0.47 gdw PPC rn-’ (sub) do’. 

Fig. 5: Boomerang Lake Peritraps 
PPC Growth 

Growth Period 

10 Unfeltilized m NPR-fertilized m NPK-fertilized 1 

Another way to calculate a minimum, year-round growth is to plot the mass of PPCs 

accumulated on the peritraps (and in the bags) against submergence time. The results 

are presented in Figure 6. The regression line through these points suggests that 

overall growth rates were around 0.35 gdw PPC rn~’ (sub) d-’ (Line 108). 

The upside growth rate calculation can be made using the laboratory growth rate of 

5.1 % d-’ (Table 3). If this rate is multiplied by the average density of PPCs on 

branches (0.4 gdw gdwB-‘; Figure 71, a rate of 0.03 gdw gdwB-’ d-’ is calculated (Line 

109). Growth rates, thus, vary between 0.03 and 0.0031 gdw gdwB-’ d-‘. The 

growth of PPCs on peritraps over the summer (Line 1 IO) seemed to be the most 

reasonable of the calculations, and was used in further extrapolations (Line 1 12). 



Fig. 6: Boomerang Lake Peritraps 
PPC Mass vs. Submergence Time 

Fig. 7: Boomerang Lake PPCs 
Mass vs. Submergence Time 
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The data in Lines 110 and 111 are the same data as Lines 107 and 108, but 

converted to different units. All growth data were converted to equivalent mass per 

branch weight per day, so that the scale-up per tree would be more meaningful. 

In Table 7h, the growth rates are used to calculate biomass production in Boomerang 

lake on the placed brush. The growing season at South Bay is approximately 150 

days. Thus, by multiplying the daily production rate by the number of growing days 

per year, an annual primary productivity figure can be calculated (Line 113). If the 

mass of branches per tree (Lines 101,102) is multiplied by the per branch data, the 

primary production per tree per year can be calculated (Line 1 14). 

When these primary production estimates are multiplied by the current estimate of the 

number of brush/trees in the lake (4000; Line 1051, then approximately 300 tonnes 

of PPCs have been produced in Boomerang Lake on an annual basis (Line 116). If the 

growth rates of PPCs in Boomerang Lake could be enhanced to the point where they 

produced at rates measured in the laboratory (Line 109), then the annual primary 

productivity would climb to 180 kgdw PPC tree-’ a-’ (line 115). Using the enhanced 

growth rate estimate, this annual production climbs to 720 tonnes of PPCs. 

5.5 Metal Removal Calculations 

At this point, the stage has been reached where the biological polishing capacity of 

the periphyton on branches in the lake can be estimated (Table 7i). Lines 1 18-l 21 

detail the elemental composition of peritrap and other PPCs collected and processed 

during the summer of 1992. Although all elements which are of interest are 

presented in Table 7i, detailed discussion is provided for only two elements, namely 

iron and zinc. Zinc concentrations averaged only 473 pug gdw~’ (Line 1 18), while iron 

made up almost 27% of the mass, at 270,556 pg gdw~’ (Line 120). 



To calculate the metal removal abilities of the periphyton, the concentration of iron 

in the PPCs was multiplied by the growth rate of the PPCs. This gave the result in 

Line 124, 3,436 pug Fe gdwB-’ d-‘. If this result is multiplied by 150 days per growing 

season per year, the result is that shown in Line 128 (0.52 g Fe gdwB-’ a-‘). 

Multiplying the mass of brush/tree by the amount of PPCs per branch gives the mass 

of Fe removed per tree. The result is shown in Line 132 (20.6 kg Fe trees’ a~‘). 

If the estimated number of brush/trees already in the lake is multiplied by the mass of 

iron per tree per year, the result is the annual mass of iron accounted for by the PPCs 

in Boomerang Lake. This result is 82.4 tonnes of Fe per year (Line 136). 

The amount of iron presently being “fixed” by PPCs is roughly 41x the amount of iron 

which remains in the lake based on loading calculations (Line 93). Clearly, these 

biological polishing estimates for iron require some explanation. 

In oxidizing conditions, iron precipitates, and with time, forms a relatively hard crust 

on any submerged surface. With time, then, periphyton biomass becomes 

incorporated in iron crusts, becoming less likely to slough off at the end of the 

growing season. The amount of iron associated with the periphyton, then, increases 

with time as shown in Figure 8. In this figure, the iron concentration in the PPCs (pg 

gdw~‘) is plotted against submergence time. It is evident that the total amount of iron 

in the biomass is increasing from year to year. The concentration used in the model 

(Line 1 ZO), then, is far too high, and represents the accumulation of iron over at least 

five years. A more reasonable annual estimate for iron removal, therefore, would be 

to take the number in Line 136 (82.4 t lake-’ a-‘) and divide it by 5 (minimum number 

of years iron has been accumulating). 



Fig. 8: Boomerang Lake Peritraps 
Iron Concentrations vs. Time 

In Section 5.5.1, sedimentation rates of iron are discussed in detail. Sedimentation 

traps were found to account for about 11.9 tonnes of iron (Line 141), suggesting that 

iron in the sediments is being resuspended. However, resuspension, at this point, has 

not been quantified. These observations suggest that the geochemistry of sediments 

and the hydrology of the lake are important components of modelling the biological 

polishing process, at least in Boomerang Lake. It further emphasizes that an 

underwater meadow covering the sediments, as originally envisaged for Boomerang 

Lake, is essential for the achievement of an effective biological polishing system, 

particularly with respect to iron. 

The same calculations, as were carried out for iron, can be performed for zinc. Here, 

Line 122 calculates the amount of zinc sequestered per gram of branch per day (6.0 

pug Zn gdwB-’ d-‘). Line 126 calculates this on an annual basis (901 pg Zn gdwB~’ a~‘). 

The amount of zinc sequestered per tree per year is extrapolated in Line 130 (36 g Zn 

tree-’ a~‘). Finally, based on the number of brush/trees estimated to be in the lake, 

about 144 kg Zn lake-’ a-‘, is sequestered (Line 134). 



5.5.1 Sediment Trap Iron and Zinc Data 

It became apparent in the second year of data collection, that iron concentrations in 

the periphyton and the iron loadings estimated to the Lake were orders of magnitude 

apart. Therefore, another mechanism must exist, which either, increases the iron 

loadings to the lake, or enhances the amount of iron on the periphyton. 

In 1991 and 1992, 3-4 sediment traps collected sediment (precipitate) in the lake at 

4 locations. Traps were placed at B2, near the boom, at Bl 1, near the boom, at B4 

in the deepest part of the lake (trap lost mid summer 1991, replaced midsummer 

1992); and in the narrows near B5 (Map 2). 

Over the summer of 1991, the winter of 199111992, and the summer of 1992, these 

traps collected sediment at the following rates: B2- 1.2 g rn? d-‘; Bl 1 - 1.2 g rn~’ d-‘; 

B4 - 5.1 g mm2 d-‘; and B5 1.9 g m-2 d-’ (Figure 9). The time-averaged rate for the 

two years of data was 0.77 g rn~* d-‘. The time averaged rate was lower than 

summer means, due to the low overwinter rates. 

Fig. 9: Boomerang Lake 
Sedimentation Rates 
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Since this time-averaged rate included overwinter data, the daily rate was multiplied 

by 365 days to give an annual sedimentation rate of 281 g rn-’ a-‘. ICP data show 

that the sediments caught in the traps had an average iron concentration of 0.17 g 

gdw~‘. When this average is multiplied by the annual sediment /precipitate loading, 

an iron loading of 50 g rn-’ a-’ is calculated. When this is further multiplied by the 

area of the lake (Line 3), 1 1.9 tonnes of iron are projected to sediment/precipitate in 

Boomerang Lake each year. This is 4 times the iron loading calculated entering from 

the contaminant sources previously. 

Because the lake is shallow and long, it is quite possible that lake sediments, 

especially those at the north end of the lake could be resuspended, allowing the 

sediment traps to pick up more than the calculated loading. The highest 

sedimentation rates were found in B4 and B6 sediment traps in the north and west 

end of the lake. Prevailing winds are from the north and west. Such wind-driven 

resuspension of sediments is common in shallow lakes (Ten Hulscher et al. 1992). 

The same calculation can be applied to zinc in the precipitate. In this case, the zinc 

content of the sediment/precipitate (5887 pug Zn gdw-‘) was multiplied by the mass 

of sediment in the traps over 1 year and lake area. The result is a removal of 395 kg 

Zn per annum with sediment/precipitates in the lake. 

In summary, the amount of iron collected in the sediment traps is about 4 x the 

amount of iron that is thought to enter the lake. Most of the iron enters the lake in 

ground water from the tailings. This iron is probably in the ferrous form. Oxidation 

of the iron in Boomerang Lake, depresses the pH of the lake, and causes the 

precipitation of iron hydroxide. Since very little iron leaves the lake, it is probable that 

most of the iron has oxidized and precipitated. This is also evidenced by the high 

concentration of iron in the sediments around B9. 

The iron hydroxide that is formed at the upper end of the lake can adsorblco- 



precipitate zinc and copper. About 60 % of the zinc and 33 % of the copper are 

found associated with the sediment/precipitate. 

The evaluation of biological polishing is based on several parameters, where large 

measurement variables can be introduced. Two of the most important variables are 

the estimate of surface area and the methods used to measure PPC growth. These 

two variables will be discussed below. 

5.6 Bioloqical Polishinq Scale-Up 

In order to remove a significant fraction of the incoming zinc loading, more substrate 

surface area is required. This can be provided by adding more brush/trees or some 

other suitable surface area such as netting. The current model, however, uses the 

standard tree for scale-up. Table 7j uses previous data to calculate the required 

number of trees. If the total zinc loading leaving the lake is divided by the total zinc 

accumulated by PPCs, and the growth rate per tree, the total number of trees required 

is calculated 71,250 (Line 148). If the growth rate of the PPCs were enhanced 

with the use of fertilizers, the number of trees required would drop to 30,160 (Line 

149). These scale up estimates are 1 O-20 times the number of trees which are in the 

lake at present, estimated at 4000 trees. 

Zinc concentrations in Boomerang Lake have not increased in the last 4 years (data 

not shown), as would have been expected, if biological polishing utilized at the 

present rate with 4000 trees would not have been effective. These 4000 trees have 

been placed into a small fraction of the lake (3.5 % of the lake surface area). Based 

on the substrate surface area required for full scale-up, only about 6.2 % of the 

surface area of the lake needs to be used for biological polishing. In general, it can 

be concluded that a better surface area estimate per cut brush tree is required and 

possibly more effective surface areas for periphyton growth should be used. 



The model calculations used 1992 field data. A second approach to estimating 

biological polishing capacity, not pursued to date, is to calculate the difference 

between lake concentrations both with, and without, Ecological Engineering. The 

projected concentrations without E.E. can be extrapolated from the rate of increase 

in contaminant concentration (e.g. zinc), over the 5 year period before E.E. measures 

were implemented. The difference between the two lake concentrations would give 

a credible estimate of the capacity of periphyton on 4000 trees in Boomerang Lake 

and in Mill Pond to biologically polish contaminants. 

5.7 Fertilizer Requirements 

To achieve these enhanced growth rates, the plants must be fertilized. The average 

phosphorus concentration in the PPCs from Boomerang Lake was only 939 /Jg gdw-’ 

(Table 7j; Line 150), although the 1992 average was only 630 pg P gdw-’ (Line 151). 

Since the periphyton in Boomerang Lake are only about 20 % of the mass of the PPC 

(Line 153), the periphyton fraction had a phosphorus content of only about 188 pg 

P gdw~’ Healthy periphyton have a phosphorus content of about 5OOOpg gdw-’ (Line 

152; Hutchinson 1975). The amount of periphyton (PPC) necessary to remove all 

zinc, would require about 5400 tonnes (Line 154). The amount of phosphorus needed 

to keep this amount of PPC healthy, would require about 2 tonnes of phosphorus (Line 

155). To convert this to phosphate, Line 153 is multiplied by 3 (Line 156). This 

corresponds to a concentration of 6 mg L-’ (Line 157), which is slightly higher than 

the eutrophic concentrations used for estimating the fertilizer requirements for 

Buchans. 

Phosphate may be the limiting nutrient, but on such a scale, nitrogen and potassium 

must also be added to the lake. The usual ratio of N:P:K is 3:1:2 (or 19:6:12). Thus, 

the N and K amounts are calculated in Lines 158 and 159. The total quantity of 

fertilizer would depend on the choice of the NPK mixture. 



6. APPLICATION MODEL - SELMINCO 

At the previous two sites, the data for the biological polishing process were derived 

from on-site collections. At the third site, biological polishing has not been initiated, 

but the hydrological, geochemical and biological criteria necessary for biological 

polishing are known. Indigenous periphyton have been collected from the site, and 

their presence and absence have been studied in detail (Kalin and Wheeler 1992c). 

The primary question which an application model can answer, is: If biological polishing 

were implemented, what effluent quality can be expected? To provide the appropriate 

background, the activities which have been carried out under the project to implement 

Ecological Engineering are briefly described below. 

6.1 Site Description and Project Historv 

Selminco Summit is an abandoned coal waste dump on Cape Breton Island in Nova 

Scotia. AMD seeps from the toe of the dump. In 1989, an ecologically engineered 

treatment system was implemented at the site. The treatment system consisted of 

a series of precipitation ponds, followed by two ponds in which biological water 

cleansing processes would be developed (Map 3). Two biological processes were 

envisaged for the system, ARUM (Acid Reduction Using Microbiology) and biological 

polishing. ARUM is a sediment-based process in which microbes, under reducing 

redox conditions, generate alkalinity and precipitate metals. 

In 1991, Boojum Research, with the aid of Cape Breton Development Corp. and 

CANMET, studied the conditions necessary to initiate the growth of periphyton in the 

E.E. system (Kalin and Wheeler 1992c). The primary criteria for the establishment of 

periphyton populations were: 1) an elevation of pH above 3.5, and 2) a reduction in 

iron content of the water. 
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The high iron content and oxidizing conditions in the ditches and system, provided the 

conditions necessary for rapid changes in the redox state of the water. The rapid 

oxidation of the iron, precipitated any available phosphorus, and dropped pH below 

the tolerance limit. 

Seepage water emerges from the waste rock pile at station Al 1, and several other 

points as the AMD travels down a drainage ditch (Map 3). The water enters the 

system at station Sl (weir 5). The system consists of three cells designed to provide 

surface area and retention time for the oxidization and precipitation of iron hydroxide. 

With the establishment of phosphate rock berms in the system in 1992, and the 

proposed implementation of more phosphate treatment in other parts of the system, 

not only has the iron concentration in the system significantly decreased, but acidity 

has decreased as well. With these implementations, it is likely that periphyton can be 

established in areas that have been treated with phosphate rock. 

6.2 Aoolication Model 

In order to determine the steps necessary to scale-up biological polishing of the 

effluent, a model was developed using the hydrology and geochemistry of the site and 

biological data from Selminco and other biological polishing sites (Table 8). The model 

is written in the same format as the models for the two previous sites. 

The dimensions of the ecologically engineered system are shown in the first box. 

These dimensions are required for model calculations. The estimated volume of the 

seepage ditch is given in line 1. The volumes of the cells are shown in Lines 2-5. The 

biological treatment area “bog” has a volume of about 4000 m3. The surface areas 

of the component parts of the system are shown in Lines 7-12. 
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Table 8: Selminco Biological Polishing of Aluminum and Iron 
TIONS 

1 All ditch 12 m3 
2 Cell 1 1,142 m3 
3 Cell 2 1,075 m3 
4 Cell 3 693 m3 
5 System volume 2,910 m3 
6 Bog volume 3,968 m3 

7 All ditch 120 m2 
8 Cell 1 1,730 m2 
9 Cell 2 1,344 m2 

10 Cell 3 866 m2 
11 System area 3,940 m2 
12 Bog area 3,968 m2 

WtlH 5 (Sl) 
13 Aluminium concentration 48.2 mg/L 
14 Iron concentration 120.9 mg/L 

15 Seepage flow 85,084 m3ia 

16 Aluminum loading 4,548 kg/a 
17 Iron Loading 10,287 kg/a 

18 P’Pc: dry to fresh weight 0.61 gWg~ 
19 Area per unit branch 0.0089 m2igdw 
20 Mass per spruce branch 200 g 
21 Spruce branches per tree 200 g 

22 Usable spruce mass 1 9 
23 Usable maSS/SprUCe tree 40,000 g 
24 Growth area per tree 356 m2 

GROWTH RATES - PPC 

25 Peritraps - Summers only 1.43 gdw/m2(sub)/d 
26 Density in Al 1 ditch 199 g/m2 
27 Lab low density 14.7 gdw/m2(sub)ld 
28 Lab high density 3.0 gdw/m2(sub)/d 

Mt I AL RtMOVAL 
29 Al 13,336 ug/gdw 
30 Fe 361,991 ugigdw 

31 Al 19.1 mg Al/m2 (sub)/d 
32 Fe 518 mg Fe/m2 (sub)/c 

33 Al 3.4 g Al/m2 (sub)/a 
34 Fe 93.2 g Fe/m2 (sub)/a 

Tree Based 
35 Al 1.2 kg Al/tree/a 
36 Fe 33.2 kg Fe/tree/a 

37 Al 3,722 # of trees 
38 Fe 310 # of trees 

39 Al 0.5 trees/m3 
40 Fe 0.05 trees/m3 
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The two major contaminants emerging from the seep are aluminum and iron. Average 

aluminum and iron concentrations from 1992 were 48.2 mg Al L-’ and 121 mg Fe L-’ 

(Lines 13 and 14). These are based both on Boojum and CBDC data. This application 

model uses these two elements, rather than zinc, to calculate scale-up factors. 

6.3 Contaminant Loadinqs 

The seepage flow rates, measured at station Sl , are shown in Figure 10. These data 

were compiled over a period of 3 years, and excluded any periods of high flow caused 

by run-off. As the run-off events in Cape Breton can produce very high flows, a 

storm diversion ditch was installed, to prevent structural stability problems. 

The regression lines through these data points were used to extrapolate the annual 

flows. The area under the curve in Figure 10 was used to compute the annual 

seepage flow (Line 15). When multiplied by the annual seepage flow, annual 

aluminum and iron loadings can be estimated. These loadings are shown in Lines 16 

and 17, and graphed in Figure 11. 

Fig. 10: Selminco Summit 
Flows at Sl 

,.,.. 

40 
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Fig. 11: Selminco Summit 
Aluminum Loading at Si 

Day of Year 

6.4 Growth Rate Calculations 

Once the metal loadings have been estimated, the biomass necessary to significantly 

reduce these loadings can also be calculated. Since field growth rates of periphyton 

were not measured at Selminco, field growth measurements from Buchans were used. 

There, peritraps produced summer PPC growth rates of 1.4 gdw rn-’ (sub) d-’ (Line 

25). Laboratory growth measurements suggest that growth rates of Selminco 

periphyton as high as 7.4 % d-l are possible under the proper conditions (Table 3). 

If this maximum rate is multiplied by the density of periphyton found in the Al 1 ditch 

(Line 26; Table 9), then a maximum growth rate of 14.7 gdw rn-’ d-’ is calculated 

(Line 27). From high density cultures in the lab, growth rates of 1.5 % d-’ are 

possible (Figure I). Multiplying this through with average densities in the Al 1 ditch, 

produces a growth rate of 3.0 gdw rn-’ d-l (Line 28). Thus, to be on the conservative 

side, the Buchans field growth rate of 1.4 gdw rn~’ d-’ was used for further 

calculations. 
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The area around Selminco is forested with spruce and aider. However, since the 

surface area of the spruce is greater, it was used in the scale-up calculations. The 

spruce tree data are shown in Lines 19-24. 

Table 9: Selminco Al 1 Ditch 
Periphyton Density 

m 

6.5 Metal Removal Calculations 

The concentrations of metals in PPCs from the Al 1 ditch indicate that both aluminum 

and iron are accumulated by PPCs above water concentrations. Boojum Assay #3473 

and 3474 were used as the basis for removal calculations. Thus, PPCs from the 

Selminco Al 1 ditch accumulated 13.3 mg Al gdw~’ and 362 mg Fe gdw-’ (Lines 

19,20). 

If the metal in the PPCs is multiplied by the growth rate (1.4 gdw rn-’ d-‘; Line 25), 

the aluminum removal rate can be calculated, 19.1 mg Al rn-’ (sub) do’ (Line 31). 

Again, if a 180 day growing season is imposed on biological polishing, the annual 

removal rate becomes 3.4 g Al rn-’ (sub) d-’ and 93.2 g Fe rn~* (sub) d-’ (Lines 33,341. 

When the conversions from substrate area to trees are used (Lines 19.21), biological 

polishing via periphyton can be expected to remove 1.2 kg Al tree-’ a-’ and 33.2 kg 

Fe tree-’ a-’ (Lines 35,361. 
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6.6 Biolooical Polishino Scale-up 

Lines 37-40 scale-up the above calculations to remove all of the aluminum and iron 

loadings. Thus, to remove all of the zinc loading to the system, 3722 trees would 

have be added to the precipitation cells and bog. This would give about 0.5 trees per 

cubic meter. If the high growth rates from the lab were used in scale-up calculations, 

the number of trees necessary would drop to 361. 

With the appropriate phosphate rock added to the system, and fully-functional ARUM 

sediments, further alkalinity will be generated, and dissolved metals precipitated. It 

is not possible, yet, to assess the contribution of these other processes. The net 

result, however, would be a significant decrease in the contaminant loadings. This 

decrease would mean that fewer trees and lower periphyton biomass would have to 

used to clean the effluent. 



7.0 GENERAL APPLICATIONS MODEL 

The biological polishing models developed for each site serve as a tool to scale up the 

process for a given site or project or allow an assessment of expected performance 

if the process is implemented. The site specific models, however, are of little use to 

a more general application, where, for example, a mining company would like to apply 

biological polishing to their effluent or waste management areas. A general 

spreadsheet was developed which requires only a few parameters. The output of 

which gives a rough estimate of the potential usefulness of the process. The output, 

which calculates the removal of zinc per cubic meter of waste water, can only be 

regarded as an estimate, accurate only to the given order of magnitude. 

The general model, presented below, can only be used to assess the potential 

usefulness of the process. Under no circumstances is the model to be interpreted to 

mean that, through the addition of x number of trees and some quantity of fertilizer, 

the process can be implemented. That may well be the case in some circumstances, 

but it can not be considered as a general rule. The model has not been developed to 

the stage that periphyton growth conditions and the interactions between periphyton, 

effluent, and fertilizer can be generalized. The model output is a tool, which indicates 

whether or not a feasibility study might be appropriate. 

7.1 What Miqht Be Exoected From the Use of Bioloqical Polishinq? 

A spreadsheet has been developed which incorporates many of the features described 

above for the specific sites. The spreadsheet was written in Quattro Pro 4, and was 

designed to calculate periphyton biomass production after answering a few basic 

questions (see enclosed diskette). It will be amplified as time and resources permit. 
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Line 1 of the model asks the user to input the pH of the waste water under 

consideration. The waste water is either acidic, or neutral to alkaline. If the pH is 

above 6.5, then zinc will precipitate geochemically. In this case, the periphyton act 

more as “sieves” and can sequester large quantities of zinc. For this scenario, the 

sequestration abilities of periphyton from Buchans were used. If the water body is 

acidic, then zinc removal occurs by adsorption. For this scenario, South Bay 

(Boomerang Lake) data were used. 

Line 2 of the model asks the user to input the growth rate of the periphyton. 

Biological data gathered in the field from both northwestern Ontario and 

Newfoundland are very similar. Growth rates of periphyton were compared between 

sites with a circum-neutral pH and found to be similar (Kalin and Wheeler 1992a,b). 

Growth rates measured between acidic sites (e.g. Boomerang Lake vs. OWP), seemed 

to be more related to acidity than metal content. Those sites with low acidity (e.g. 

Boomerang Lake) had growth rates similar to more circum-neutral sites (OEP outflow). 

For example, peritraps in Buchans OEP ponds produced an overwinter/spring growth 

rate of 0.5 gdw rn~’ (sub) d-’ and a summer rate of 2.2 gdw rn-’ (sub) d-‘. Using 

similar peritraps, periphyton in Boomerang Lake grew at an overwinter/spring rate of 

0.4 gdw rn-’ d-’ and a summer rate of 1.4 gdw rn-’ (sub) d-‘. It is not unreasonable, 

therefore, to assume that the Ulothrix -dominated periphyton populations were 

growing at relatively similar rates, regardless of water pH. For modelling purposes, 

then, a standard growth rate can probably be applied. However, growth rates have 

been shown to be improved, in both field and lab experiments, with fertilizer. 

Line 3 of the model asks the user to input the length of the growing season. The 

number of days in the ice-free season gives the outer boundary on the growing season 

for periphyton growth. Due to storms, and other adverse conditions, the program 

takes the number of ice-free days, and subtracts 30. The growing season is then set 

at ice-free minus 30 days. 
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Line 4 asks the user to input the brush type. Currently, there are only two choices; 

either alder or spruce. Both are commonly found at most of the Canadian mine sites. 

In the Buchans polishing ponds, alder trees were used. In Boomerang Lake, spruce 

trees have been used to add surface area. Alder produces a surface area to mass of 

0.0027 m* gdwB.l, and spruce provides approximately 0.0089 m2 gdwB-‘. Because 

of the spruce needles, then, the surface area provided by spruce is about 3.3 x the 

surface area of the alder. 

The last line of the question section asks the user to input the brush density. Since 

the tree type and density together provide the total amount of surface area; this is an 

important parameter. In the Buchans polishing ponds, 1 IO alders were placed in 

ponds with an average volume of 40 m3, thus providing about 2.6 m2 of surface area 

per m3 of pond. In Boomerang Lake, the scale-up process has just begun, and the 

surface area to volume ratio in Boomerang Lake is about 1.36 m2 m-3. 

As the user inputs data, the lower, projection, section automatically changes. This 

allows the user to ask “what if” questions. The removal rates indicated in Lines 9 and 

10 can be used to determine how large the polishing pond must be, and with which 

density the periphyton must be grown. 

This model has been developed for use in mining waste water where periphyton are 

already growing. The idea is to enhance the growth of existing populations to the 

point where they can remove significant amounts of contaminants. If periphyton are 

not growing in a particular waste water, then establishment of the population may 

require special consideration. For example, in the Selminco system, periphyton were 

found growing in seeps, but absent from locations further downstream. It was 

discovered that oxidation/reduction reactions on or near the periphyton were 

precipitating iron on the periphyton which inhibited growth. To apply the model to 

Selminco, therefore, the location of application of the process will be changed, or the 

effluent will be improved using other Ecological Engineering measures. 
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