

AN ASSESSMENT OF PRINCE COLLIERY EFFLUENTS AND THEIR TREATMENT

Final Report

prepared by:

Margarete Kalin

under subcontract to:

Dearborn Environmental Consulting Group

August 1992

TABLE OF CONTENTS

1	Introc	luction
2	Metho	ods2
3	Resul	ts and Discussion
	3.1	The underground mine water4
	3.2	The waste rock piles
	3.3	Jim MacDonald's Brook and Morrison's Pond
	3.4	The Bootleg or the East Tunnel discharge
4	Concl	usions and Recommendations 20
Apper	ndix 1	
Apper	ndix 2	

LIST OF MAPS

Map 1:	Prince Colliery, Location Map	23
Map 2:	Prince Colliery, Water Sampling Location Map	24
Map 3:	Prince Colliery, Drainage Basins	25

LIST OF TABLES

Table 1:	Underground Water Samples	26
Table 2:	Underground Water Sample Site Description	27

Table 3:	Flows, pH, Conductivity, Temperature at all Water Sampling Stations . 28
Table 4:	Water Samples around New Waste Rock Pile
Table 5:	Seepage Receiving Ditch
Table 5a:	Low Acidity Waters
Table 6:	Drainages around Morrison's Pond
Table 7:	East Tunnel Water Quality 33
Table 8:	Drainages into Coal Hollow Brook 34
Table 9:	QA/QC Calculations for Whole Water Samples
Table 10:	Contaminant Loadings to Ocean

LIST OF FIGURES

Figure 1a:	Prince Mine Water Titration, Sampled on March 3rd, 1992 37
Figure 1b:	Prince Mine Water Titration, Sampled on March 3rd, 1992
Figure 2:	Prince Mine, N.S., Cumulative Discharge
Figure 3a:	Point Aconi Drainage Basin, Acidity in Surface Water
Figure 3b:	Point Aconi Drainage Basin, Acidity in Surface Water
Figure 4:	Elemental Comparison of Waste Rock and Coal Seam Discharges 40

LIST OF PLATES

Plate 1: View Downstream from Seepage Station A3 of the New Waste Rock Pile	41
Plate 2: View towards Morrison's Pond from Station A12	41
Plate 3: Morrsion's Pond	42

Plate 6: Abandoned Coal Pit above	Station B5 on Coal Hollow Brook	43

,

1. Introduction

In operation since 1975 by the Cape Breton Development Corporation, the Prince Mine is located on Cape Breton Island at Point Aconi (Map 1). The mine site is surrounded by the ocean which receives discharges via two drainage basins, Coal Hollow Brook and Jim MacDonald's Brook. A third discharge from the site is the underground mine water which is pumped to the surface directly at Point Aconi.

Dearborn Environmental Group was retained by Devco to develop treatment options for these three discharges. Boojum Research Limited assessed the site under subcontract to Dearborn to determine whether Ecological Engineering measures could be used to improve the site conditions.

In order to select the most suitable treatment option to meet the regulatory requirements, the environmental conditions of the site and the discharge characteristics had first to be determined and appreciated. Treatment options must address environmental considerations not only during operation of the mine site, but also at the time of shut down of the mine.

2. Methods

Boojum Research carried out two field trips. One sampling campaign addressed the underground workings to determine the characteristics and origin of the mine discharge water. The underground samples were collected on March 3, 1992.

All available historical water quality data and mine working records were used to assess mine water composition and potential changes in its quality with time. The BALANCE program of geochemical calculations was used to determine the probable mixing ratios of sea water/fresh water.

A second sampling campaign addressed surface water from contaminant sources and water discharging to the ocean from all major drainage basins. Water was collected for metal analysis and determination of acidity and alkalinity. Water sampling included the determination of location flows. This field trip was carried out on May 11, 1992. Flows were determined with a Monteray Whitney velocity meter. The cross sections were measured at intervals of 10 cm in width and 5 to 10 cm in depths.

All surface water samples were analyzed for their elemental composition and the nutrient content unfiltered by Dearborn Environmental Services. The underground water samples were filtered through 0.45 um and acidified with nitric acid prior to chemical analysis and were analyzed by XRAL laboratory. Anion/cation balances were used as a QA\QC check

on the analytical results as unfiltered samples frequently produce erroneous results due to the presence of particulates. Acidities and alkalinities were determined in the Boojum laboratory using a Brinkmann autotitrator TITRINO.

Ŀ

3. Results and Discussion

As there are essentially three different discharges from the Prince Mine operations, several treatment perspectives could be explored. Dearborn Environmental has considered the option of collecting all three discharges together and providing one central treatment plant, using lime neutralization. Those findings are reported under separate cover.

Large effluent volumes require space for settling ponds and storage for sludge. Space for such retention structures is sparse in the vicinity of the Prince Mine waste rock pile, either for conventional treatment or for Ecological Engineering. Biological processes require a full season's water retention in either a single large containment or several large areas where various retention structures can function in sequence.

To assess the viability of biological treatment, we therefore addressed the contaminant sources separately, reducing the effluent volume for each location.

The acid mine drainage from the waste rock pile reports to a collector ditch through bush. The collector ditch is located adjacent to the sewage lagoon. Here, it was decided to seek a solution by reducing the seepage volume reaching the collector ditch.

The East Tunnel effluent (also referred to as the Water Level), is located directly behind a dwelling. At this location, it was thought that treatment options could be applied directly into the bootleg workings. For the mine water, treatment in the underground workings prior to discharge to the ocean seemed to be the reasonable choice.

3.1 The underground mine water

In Map 2, the water sampling locations covered the area underground around the central sump and other seepage collection points and the inactive workings. In Table 1, the elements listed are present in concentrations above the analytical detection limit, namely 0.01 mg/L. The complete analytical results are enclosed in Appendix 1. In Table 2, the sample site description is given for all of the underground samples taken on March 3, 1992, including intake and outflow water from the East Tunnel.

When the elemental composition of the mine discharge water is compared to that of the samples collected in different locations underground, one notes large differences in the concentrations of aluminum which is 2 x higher in Sample #3 collected in the East low Main, representing running water compared to the discharge. On the other hand,

aluminum concentrations in Samples #7 and #8 are 3 to 6 times lower in aluminum concentrations than the mine discharge. Sample #7 was collected from inactive workings in the West bottom of the mine and Sample #8 originated from the sump below 10 West top. In Sample #5, a large difference exists for iron. The discharge concentrations are around 200 mg/l and Sample #5 has only around 50 mg/l of iron. All other underground samples display concentrations higher than 100, but not more than the discharge concentration.

These differences in iron concentrations are due to precipitation processes. Ferric iron hydroxide precipitates at a pH range from 2 to 3. Therefore, if iron precipitation is allowed to proceed underground, lower concentrations can be expected in the mine water discharge. The differences in the concentrations of aluminum are not clear.

In Figures 1a and 1b, the behaviour of the water samples is displayed as they are neutralized with 0.01 N NaOH. These curves represent the amount of hydroxyl ion consumed as the pH is raised in the sample. A significant difference can be noted for Sample #5, where 0.7 mL of 0.01N NaOH brought the sample to pH 7 as compared to 1.4 ml of 0.01 N NaOH which was required to reach the same pH for Sample #6 (Figure 1a). This sample contained much higher concentrations of reduced iron. Reduction in iron concentrations is achieved through iron oxidation, but pH is lowered at the same time.

The electrical conductivities in the underground water range from 60,000 to 29,500 umhos/cm (Table 1). It is clear that along with the concentrations of chloride, the acid mine drainage is mixed with sea water. Sea water or water entering the mine is represented by Sample #4, which has a pH of 6.8 and no acidity (Table 1 and Figure 1a), as indicated by the titration curve of Sample #4.

Sampling sites were determined based on pH and conductivity measurements as the crew walked through the mine workings. Two observations are interesting. At Stations X and X1, (Map 2), the pH values were 5.0 and 4.9, respectively. In retrospect, it was noted that in these locations where the pH was high, field notes indicated the presence of lime dust in the vicinity of the observation points.

In hindsight, it is unfortunate that water samples were not collected at these locations. Water quality may be significantly improved through the application of fire suppressant. Since the application of dolomitic limestone is a regular activity, it should be possible to make use of the lime application distribution system throughout the inactive workings. This would result in better mine water discharge. For the flooded levels where large volumes of water have accumulated behind a bulkhead, it may be possible to use a drip tank of caustic treatment.

In Figure 1b, the titration curves are shown for Sample #8 which, on arrival in the laboratory, had a pH value of 5, an increase from the measured underground pH of 3.9.

The consumption of 0.01 N NaOH, compared to that of the water from the East Tunnel, suggests that only one-third of lime consumption could be expected.

Assuming that the dolomitic limestone applied underground for fire suppression is the cause for the increase in pH values (5.0 and 4.9) observed in sampling locations X and X1, the same may be true for Sample #8. The dolomitic limestone may react slowly, but a significant improvement in water quality might be achieved.

If the water could be retained underground for a longer period to facilitate iron oxidation and hydroxide precipitation, one could expect a stable sludge. This might be achieved through installation of additional storage tanks connected to the existing sumps.

When considering underground treatment, the difficulty of steadily increasing effluent volumes to be expected from the mine must be taken into account. As more void space is created underground, the volume of mine discharge will increase. Figure 2 gives the mine discharge in litres per day since the mine started operating. The details on the manner in which the curves were derived is given in Appendix 2. If it is assumed that the freshwater intake to the mine is to stay at the same ratio as that required during operations, then a progressive increase in mine discharge volume due to the increase in underground void space can be expected. For example, it is reasonable to expect that discharge will increase from 730,000 m³ in 1990 to just over 1,000,000 m³ in 1993 (based on mine flow volume available for September 28, 1990 at 1.35 million US gal/week).

The "water making" capacity of the mine workings itself is plotted in Figure 2. Three curves are presented: one representing operating conditions where fresh water and the sea water together make up the flow. The second and third curves represent different ratios of fresh water and sea water, being the flow at the time of decommissioning. The higher percentage of 54% is based on geochemical calculations carried out with the mine discharge water collected on September 28, 1990. Details of the calculations are found in Appendix 2. The lower mixing ratio of 32% fresh water is based on discussions with Prince Mine operators (personal communication Gerrard Shaw, Devco).

Not only will the volume of discharge increase, but its characteristics can be expected to change as the mixing ratio of sea water from unmined areas changes. If the sea water contribution is higher, given its desirable quality (see Sample #4 on Figure 1a and Appendix 1) a better effluent will be apparent. A treatment facility would have to be designed which is capable of handling not only the seasonal differences in effluent volume, but its steady increase as well.

The onset of acid generation is not known. However, from the titration curves (Figures 1a and 1b), the underground oxidation process is occurring slowly. Nearly all underground samples still contain reduced iron which only precipitates around pH 5 to 7. If this water is treated without prior oxidation of iron, the precipitated ferrous hydroxide will continue to oxidize. The oxidation of the ferrous hydroxide proceeds according to the following reaction:

$$4Fe(OH)_2 + 2H_2O + O_2 = 4Fe(OH)_3$$

An unstable sludge, either in a pond on the surface or discharged to the ocean, is less desirable than underground production and storage. Bringing the water to the surface will allow more oxidation to take place, resulting in more acid generation. The oxidation of ferrous iron hydroxide to ferric iron hydroxide is non-acid generating.

If reduced iron is allowed to oxidize, oxidation proceeds according to the following formula:

$$4Fe^{+2} + 10H_2O + O_2 = 4Fe(OH)_3 + 8H^+$$

Although this will result in a reduction of iron concentration due to ferric hydroxide precipitation, it will also decrease the pH. The lower pH AMD will further increase the dissolution of more contaminants. Other elements which contribute to the acidity of the water and hence pH changes are AI and Mn.

At the time of decommissioning, the fresh water contribution to the mine will cease and the volume of potential acid mine drainage water generated underground will be reduced. The flooding of the workings will reduce the acid generation rate, as lower oxygen concentrations prevail in flooded mine workings.

It may be possible to pursue treatment and precipitation of iron underground through installation of additional storage in the vicinity of the existing sumps, accompanied with treatment by either dust suppressant or caustic of the flooded inactive workings.

3.2 The waste rock piles

In Table 3, all flows for the surface water samples are given along with the pH, electrical conductivity and the temperature of the water measured in the field. The time of the field trip in mid-May could be considered the tail end of the 1992 spring run-off. Therefore, it is reasonable to assume that all significant seepages existing on the site were detected during the field investigation.

A survey of the foot of the old waste rock pile failed to identify any sources of acidic seepages or any other seepages. It was therefore concluded that the old waste rock pile is not producing acid mine drainage to the surface water. This is not the case, however, for the new waste rock pile. A total of 4 seeps were discovered, 3 of which seem to be contaminated (A2, A3 and A4). Their respective flows are of 0.18 l/sec, 6.49 l/sec and 0.04 l/sec. Seepage from A4 is essentially a puddle which might dry up completely during the summer. Plate 1 presents the view downstream from B3 and the iron hydroxide precipitation is evident.

In Table 4, the elemental concentrations of those elements above the analytical detection limit are given for the four water samples from the foot of the new waste rock pile. Water at Station A1 appears to be clean water but presents with a flow of 2.6 l/sec (Table 3), one- third of the flow of Station A3 which is downstream. The pH of the water at A1 is 5.5, with a low electrical conductivity of 78 umhos/cm. It clearly dilutes the acid mine drainage generated in its path through the waste rock pile, which produces a pH of 3.3 with elevated zinc, iron and aluminum concentrations at Station A2. The most contaminated seep is Station A4, however, which has the lowest flow with 0.04 l/sec and is essentially a puddle. It can be expected to dry up entirely during the summer.

The conditions of the seeps from the new waste rock pile strongly suggest that diversion of the fresh water source at A1 should be undertaken. This will result in a reduction of the seepage volumes and thus the contaminant loadings to the receiving ditch system at locations A6 to A9 (Map 3). In fact, if the old waste rock pile can serve as an example, no visible acid seepage is created if it is kept dry.

Table 5 gives the elemental composition of the AMD in the collector ditches. The final sampling point for the drainage basin containing the waste rock pile is location A10. After this point, the creek joins Jim MacDonald's Brook which reaches the ocean through Morrison's pond. This sampling Station A10 represents the joint quality of the effluents from the sewage lagoon and the AMD, either seeping through the bush below the New waste rock pile or being collected in the ditches parallel to the sewage lagoon.

Samples A 6 and A 8 are clearly significantly contaminated which may not only be due to receiving waste rock seepage, but also to the coal debris in the collector ditch.

A comparison of the water quality and the flows between Stations A9 and A10 should show whether other contaminant loadings emerge from the drainage basin containing the waste rock pile. All reported elemental concentrations are essentially the same (Table 5) between these two stations and the flows represent a slight increase, from 14.7 l/sec to 20 l/sec. This suggests that no other significant seepages enter from the bush into the creek.

From the titration curves presented in Figures 3a and 3b, three types of surface water exist. They represent different degrees of dilution with fresh water. (Note the difference in scale between Figure 3a and 3b).

The flow path of all the surface waters in this drainage basin is as follows. Run-off during the spring from A11 enters a ditch which flows via station A5 to join up with A6 in one stream. This stream then receives effluent from the sewage lagoon at Station A7 and, on the other side, is joined by A8. These combined streams result in the water of A9.

In Table 5a, acidity and alkalinity are summarized from all those samples which have very low acidities and also have alkalinities. It is noted that water from A11 has a very low acidity. When the field and laboratory pH's are compared, they rise from 3.89 (Table 3)

in the field to 5.5 in the laboratory (Table 5a). Such changes can be expected in carbonate rich waters. The highest value of this group of low acidity water is B2, which represents the yard run-off from the Prince Mine pit, entering the East Tunnel.

The water has a higher pH similar to the drainage from drainage basin C1 on the East side of the Point Aconi peninsula (Map 3). The low acidity samples are arranged in Table 5a by decreasing acidity. Alkalinity in these waters can generally be expected from either carbonate or ammonia. It is suggested, therefore, that the ditching system be altered.

The flow during spring run-off should go into the East Tunnel which would reduce the flows during spring run-off to Station A9, thereby eliminating any flow in the ditch with Station A5. As these ditches are loaded with coal, it would reduce the production of contaminated water. The water from A11 originates from the bush outside of the Prince Mine pit. Further improvement could be achieved by diverting A1, the fresh water input to the waste rock pile, as discussed above.

1

14

3.3 Jim MacDonald's Brook and Morrison's Pond

The drainage basin in which the waste rock piles is located is about 47 ha and is a subdrainage which is located within a much larger drainage basin of MacDonald's Brook, covering an area of approximately 190 ha (Ao and A, Map 3). At Station A12, the brook represents all of the drainage entering Morrison's Pond. The view towards Morrison's Pond from Station A12 on the road above the culvert, is given in Plate 2. It is evident from the country-side that it is impossible to define a good channel to determine flow. The measured flow of 17 l/sec (Table 3) will, therefore, only represent part of the flow.

Morrison's Pond is depicted in Plate 3. It is populated by submerged semi-aquatic vegetation, dominated by Riverbank Quillwort (Isoetes riparia ex. A. Brown). Although it appears that Jim MacDonald's Brook is the main source of water to Morrison's Pond, it could be said that the discharge from Station A10 represents the main contaminant source to the pond. However, at least 2 other main flows enter Morrison's Pond on the east side, designated as Stations A14 and A15. In order to improve the final discharge to the ocean or the conditions in Morrison's Pond, the relative improvement which could be achieved through improvement of the water leaving the waste rock pile drainage basin at Station A10 should be evaluated.

Table 6 presents a summary of those elements which were present in significant concentrations. The complete analytical results are included in Appendix 1. A

comparison of the concentrations of iron and sulfur in A13 and A14 to A12 (representing those concentrations entering Morrison's Pond from Jim MacDonald's Brook and the effluents from the Prince Mine waste rock pile) suggests that A12 has generally lower concentrations than the outflow of Morrison's Pond. In fact, the concentrations of most elements present are in the same or higher range (Figure 4).

Figure 4 includes the elemental concentrations of Station A10 and it is clear that these waters are quite similar. The concentrations of A10 are generally in the middle range of concentrations of A15 and A16.

In Plate 4, seepage A16 is depicted, entering the ocean some 100 meters to the north of the outflow of Morrison's Pond (A15). The seep emerges directly out of the cliff. Given that the flows from these stations is not insignificant, with 27.5 l/sec and 6.5 l/sec, respectively, they should be treated if treatment is required for Station A9. With the recommended rerouting of the surface waters, it can be expected that Station A9 will improve, but only a slight improvement can be expected for Morrison's Pond and, therefore, to the discharge to the ocean.

It is likely that a coal seam is the source of the seepage, and this may'or may not be mined. At this point however, it is not possible to connect these contaminant sources to the Prince Mine. Generally, it is expected that during spring run-off, acid water is not only due to the coal seams, but could also be due to atmospheric fall-out, i.e. acid rain and

coal dust which is probably dispersed. In Plate 5, snow is depicted in the pit of the Prince Mine, suggesting that coal dust might indeed be quite mobile. Dust control measures in the Prince Mine pit should be considered to reduce coal dust loading to the drainage basins.

3.4 The Water Level or the East Tunnel discharge

In Table 7, the water characteristics for the outlet from the East Tunnel (B3) and the inlet (B2 and B1) are presented for all dates where data are available. With the exception of the water collected on May 11 in the inlet (B2, Map 3), the elemental concentrations of Iron, Cl, Al, Mn, Mg as well as S and Zn are changing over this short time period sampled.

The May 11 sample likely represents dilution by yard run-off. However, although the sample set is small, seasonal changes in this effluent can be expected as the contribution from the Prince Mine pit will depend on rain, whereas the AMD generated in the Tunnel will be constant. B1 sampling station is located about 100 m into the Tunnel. The flow measurement at that location and on the outflow (B3) indicate that the Turnel is " making water", increasing at the outflow to 5.5 l/sec from 1.2 l/sec inside the Tunnel (Table 3).

It appears that sea water is a minor contributor, as indicated by the relatively low electrical conductivities and the low sodium chloride concentrations. It is suggested that the water contributions is infiltrations from the fields above the Tunnel. Evidence for infiltrating water from the surface is also given by the ammonia concentrations noted in B1 and B3 which are compared to B2, the run-off from the Prince Mine Pit 0.44 mg/L; 0.46 mg/L and 0.08 mg/L, respectively.

Given the presence of dwellings in the area around the Tunnel discharge, this is not surprising. The selection of water treatment options for the East Tunnel should be based on a complete sampling throughout all seasons. As the volume of discharge can also be expected to fluctuate, both the water quality of the effluent and the volume discharged should be monitored prior to the selection to the treatment options.

In Figure 3a, the titration curves for the East Tunnel have been presented in comparison to those of the A drainage basin, containing the waste rock seepage. It is evident that the water from the East tunnel is lower in neutralization requirements compared to the A4 seepage from the waste rock pile (A2 and A4). Compared to all other surface waters however, East Tunnel AMD is stronger than most A waters.

In Table 8, the East Tunnel water samples are presented, together with those samples collected downstream in the drainage basin and those from other drainage basins

discharging to the ocean from the Point Aconi peninsula. The sampling locations for the drainage basins are given in Map 3.

An abandoned coal pit, associated with a small waste rock pile is located just slightly above the East Tunnel discharge. In Plate 6, the abandoned workings are shown, below which seepage at B5 was collected. B4 water represents the water of Coal Hollow Brook, above both the East Tunnel discharge and discharge of B5 to the brook. B6 is that water quality entering the ocean. The samples collected at the end of three drainage basins, C, D and E, (considered "background drainage basins") can be compared to the water sampled directly below the Prince Mine discharge at the shore (O5). Drainage basin C does contain reclaimed old mine workings, indicated by the high sulfur concentrations and the higher Fe and Mg concentration.

In effect, the definition of background concentrations is difficult. It is possible that D1 drainage and B4 water represent undisturbed fresh water conditions.

If improvement in the East Tunnel drainage can be achieved through the addition of A11 run-off, particularly during spring and fall, the contaminant loading and environmental impact on Coal Hollow Brook might be reduced. However, this can only be determined with a complete sampling program covering an entire year and with the A11 diversion in place.

The results and recommendations given in this paper arise from one sampling campaign. The surface water samples were analyzed unfiltered to represent prevailing conditions in the stream. Although these values represent the environmental conditions and the true discharge, whole samples can frequently produce unusually high numbers for some elements, due to particulate matter. QA\QC evaluations can be carried out through a complete cation/ anion balance, which is presented in Table 9. The largest errors are noted in the relatively clean waters and more so in those which have some alkalinity. On the other hand, the clean water samples are also those where error contribution is greatest, due to the analytical detection limit. The errors presented in Table 9 indicate that although only one surface sample campaign is used to arrive at the recommendations, the analytical results are very reliable.

As a final evaluation of the relativity of the environmental impact of the Prince Mine discharge from all three contaminant discharges, loadings to the ocean from all the brooks and creeks from the Point Aconi peninsula have been derived for those elements which might be of environmental concern. Table 10 presents the results.

From an environmental point of view, it is immediately evident that the loadings from the Mine Discharge are high for aluminum, iron, sulfur, magnesium and manganese when compared to the loadings of the other drainage basins. Average metal concentrations from all samples reported in Table 1 were used with the flow of 750,000 l/day, reported for September 28, 1990 for the calculation of the mine discharge loadings. The loadings

for the other drainage basins were calculated using the concentrations determined and the flows reported in Table 3. The contaminant loadings from A15 and A16 are similar to B6 but they are lower than those from the drainage basin in which open cast mining is carried out.

4. Conclusions and Recommendations

The results from the surface water and underground water examination lead to the conclusion that the only significant effluent is the mine water discharge. Dilution in the ocean is great and immediate as indicated by Sample 05 (Table 8) which was collected on the shore below the discharge point. The treatment options selected should be based on the impact of the discharge of the same tonnages in the form of sludge and evaluated against the impact of the dilution which takes place in the ocean.

It should be noted that although some elements represent a significant load to the environment, metal loadings, the main cause of concern, are relatively low. The environmentally best solution would clearly be underground treatment.

It is recommended that tests be carried out with lime applications in the same fashion as fire suppressant. The neutralization for the seepages emerging from inactive flooded workings should be considered. This would result in immediate improvement of the mine water discharge. The conditions at the foot of the new waste rock pile lead to the conclusion that, through the diversion of the fresh water away from the pile, the seepage from the pile can be significantly reduced. This would result in improved conditions at Station A10. The old waste rock pile serves as an example. There are no water sources in the vicinity of the pile and hence no seepage is evident.

The data collected with respect to the East Tunnel are insufficient for the selection of a treatment option, since the flows and the seasonal variation in AMD characteristics are not known. However, it can be concluded that although phosphate rock was considered, based on bench scale work presented in the proposal, most of the iron in the Tunnel is reduced, which makes phosphate rock ineffective as an option. Even at the point of discharge into the ocean, iron oxidation has not progressed. The most environmentally effective option therefore, would be to consider neutralization in the East Tunnel. As it is recommended to divert the clean water run-off from location A11 into the East Tunnel, this measure should be taken as a first step. A slight improvement might be noted, at least as long as A11 water is available. Some iron and aluminum can be expected to precipitate in the Tunnel due to the mixing of the flows. This would result in improvements during periods of high flows. Monitoring of the effluent characteristics and the flows should be carried out over one full year.

Ecological Engineering measures for the site are not suggested at this point since significant improvements in the effluent are to be expected through the diversion of the

water and reduction of seepages, and they are not suitable for the underground and the East Tunnel discharges.

.

Devco	Dearborn	Dearborn	Boojum	Boojum	Boojum	Boojum	Boojum	Boojum
	Discharge	Discharge	#1	#2	#3	#5	#6	#7
	#1	#1	3633	3634	3635	3637	3638	3639
	composite	grab						
2.7	2.6	2.8	3.13	3.15	3.2	2.96	3.52	4.02
29500	33800	36200	37300	30300	36600	38100	33700	60000
8340	12000	12600	12100	12500	13000	13600	17350	25900
19.4	24.3	19.6	26.2	11.8	43.2	21	14.7	7.6
	<0.069	< 0.069	< 0.03	< 0.03	< 0.03	0.1	< 0.03	< 0.03
1160	1600	1660	1620	1720	1700	1650	1980	3710
< 0.1	0.573	0.673	0.67	0.55	1.31	0.42	0.96	1.15
0.05	0.09	0.011	0.2	0.1	0.11	0.07	0.03	0.02
107	203	206	173	133	131	51.6	209	153
< 0.5	0.08	0.04	0.35	0.17	0.12	0.26	0.25	0.28
550	671	720	650	658	745	538	902	135
28	27.6	26.9	35.9	36.1	47.1	24.5	36	46
< 0.2	1.23	1.28	1.73	1.3	2.45	0.97	2.45	2.67
< 0.01	< 0.03	< 0.3	0.2	0.2	0.2	0.1	0.2	0.4
59	80.9	103	78	87.6	80.6	83.7	147	226
4520	5510	5940	5180	5380	5440	6050	7050	9370
			600	577	713	483	603	490
	22.6	23.2	25.8	28.4	26.4	27.1	32	63.3
3.86	3.76	2.56	3.21	7.72	7.22	6.26	2.98	3.43
	Devco 2.7 29500 8340 19.4 1160 <0.1 0.05 107 <0.5 550 28 <0.2 <0.01 59 4520 3.86	Devco Dearborn Discharge #1 composite 2.7 2.7 2.6 29500 33800 8340 12000 19.4 24.3 <0.069	Devco Dearborn Dearborn Discharge #1 #1 composite grab 2.7 2.6 2.8 29500 33800 36200 8340 12000 12600 19.4 24.3 19.6 <0.069	Devco Dearborn Dearborn Boojum Discharge Discharge Jischarge #1 #1 #1 3633 composite grab 3633 2.7 2.6 2.8 3.13 29500 33800 36200 37300 8340 12000 12600 12100 19.4 24.3 19.6 26.2 <0.069	Devco Dearborn Dearborn Boojum Boojum Discharge Discharge Jischarge	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Devco Dearborn Boojum	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Table 1: Underground Water Samples

Conductivity in umhos/cm, elements in mg/L

Boojum

#8

3640

3.94

46700

15200

2.8

0.08

1970

0.81

0.02

100

0.1

775 27.6

1.78 0.2

148

6350

497

34.6

2.79

Sample	Description	рН	Conduct.	Temperat.
#			umhos/cm	C
1	Last sump	3.13	37300	10.5
2	6th slope below East Low Main	3.15	30300	10.5
	sump below tanks			
3	East Low Main, 200 feet in	3.2	36600	8.6
	past sump towards Exploratory			
	flowing water			
4	Drop sample from ceiling	6.8	(**)	(*) 17
	with no working above			
5	Sump on 2nd 5th slope above	2.96	38100	12.2
	to Exploratory			
6	6th West bottom, flooded level	3.5	33700	11.5
7	West bottom, closed workings	4.02	60000	14.4
8	Sump below 10 West Top	3.94	46700	13.6
9	East Tunnel, water level intake (Bootleg)	2.9	2980	(*) 18
10	East Tunnel, outflow (Bootleg)	2.9	2240	18

1

Table 2: Underground Water Sample Site Description

(*) - measured in laboratory 24h after sampling(**) - volume of sample to small for measurement

Location	Flow		рH	Cond	Temp	
	l/sec	l/min		umhos/cm	С	
A 1	2.64	158.4	5.54	78	11.3	
A 2	0.18	10.8	3.33	3270	11.7	
A 3	6.49	389.4	4.81	273	9.5	
A 4	0.04	2.4	2.68	7070	15.2	
A 5	6.15	369.0	5.28	172	13.3	
A 6	4.38	262.8	2.68	2300	13.5	
A 7	3.42	205.2	7.47	270	13.2	
A 8	8.60	516.0	3.15	799	7.5	
A 9	14.70	882.0	3.59	486	12.7	
A 10	20.64	1238.4	3.5	453	13.3	
A11	10.00	600.0	3.89	136	10.1	
A12	16.92	1015.2	4.2	170	6.5	
A13	2.63	157.8	2.9	911	7.5	
A14	4.12	247.2	2.5	1040	6.5	
A15	27.57	1654.2	3.41	347	7.9	
A 16	6.47	388.2	2.7	906	5.8	
B 1	1.21	72.6	2.91	3280	13.9	
B 2	0.11	6.6	5.77	1600	15.7	
В 3	5.46	327.6	3.02	2920	13.4	
B 4	90.97	5458.2	5.82	1153	11.7	
B 5	0.18	10.8	4.16	530	13.2	
B 6	27.90	1674.0	4.1	280	15.9	
C 1	0.80	48.0	5.6	2080	15.7	
D 1	6.09	365.4	6.3	148	14.9	
E 1	22.90	1374.0	6.6	400	14.7	

,

Table 3:Flows, pH, Conductivity, Temperature
at all Water Sampling Stations

Source	Boojum	Boojum	Boojum	Boojum
	A-1	A-2	A-3	A-4
Sample ID	3737	3738	3739	3740
pН	5.54	3.33	4.81	2.68
Conductivity	78	3270	273	7070
Chloride (Cl)	7.8	33	5.4	188
Aluminum (Al)	0.43	∖ 46.3 ⟩	2.61	2.75
Arsenic (As)	< 0.069	<0.069	< 0.069	< 0.069
Calcium (Ca)	6.71	130	10.2	410
Cobalt (Co)	< 0.009	0.522	0.024	3.273
Copper (Cu)	< 0.006	0.061	0.007	1.67
Iron (Fe)	0.765	300	21.6	310
Lead (Pb)	< 0.039	< 0.039	<0.039	0.086
Magnesium (Mg)	1.4	82.6	4.47	380
Manganese (Mn)	0.241	72.5	3.84	230
Nickel (Ni)	0.02	0.99	0.05	6.1
Phosphorus (P)	< 0.3	< 0.3	< 0.3	< 0.3
Pottasium (K)	1.5	4.87	1	0.826
Sodium (Na)	6.01	41.1	5.2	245
Sulphur (S)	3.7	747	30.9	1963
Strontium (Sr)				
Zinc (Zn)	0.032	0.818	0.063	23

1

Table 4: Water Samples around New Waste Rock Pile

Conductivity in umhos/cm, elements in mg/L

Table 5: Seepage Receiving Ditch

SAMPLE DATE	11-May-92						
SAMPLE VOLUME	100	100	100	100	100	100	100
ASSAYERS CODE	3741	3742	3743	3744	3745	3746	3747
SAMPLING LOCAT.	PRINCE						
	DB-A						
	A-5	A-6	A-7	A-8	A-9	A-10	A-11
	stream						
Processing code	WH						
pН	5.28	2.68	7.47	3.15	3.59	3.5	3.89
Cond. (umhos/cm)	172	2300	270	799	486	453	135.9
IA	2.48	46.7	1.15	12.3	6.05	6.07	0.2
Ca	10.1	109	20.4	31.3	27.7	23.3	2.54
Fe	5.22	160	1.92	6.77	3.42	3.68	0.147
K	1.18	5.18	4.61	1.18	1.45	1.35	5.1
Mg	2.91	51.1	4.62	17	11.8	10	1.01
Mn	0.878	20.3	1.5	11	6.89	6	0.324
Na	9.52	32.4	23.1	11.4	15.4	12.5	6.33
S	7.7	380	8.3	107	61.3	52.3	4
Zn	0.122	2.77	0.092	1.09	0.576	0.494	0.029
Chloride (Cl)	13	24	27	8.8	16	12	10
TDS	110	1640	180	390	330	280	80
Nitrate (NO3)	<0.1	<5	1.2	<0.1	0.2	0.1	<0.1
Ammonia (NH3)	0.04	0.11	0.09	0.07	0.08	0.12	<0.01
SO4	23	1140	25	320	184	157	12

	pH	Acidity	Alkalinity	
B2	6.8	62.5	4	
C1	7.25	52.5	9	
B6	4.8	34	N.A.	
B5	4	31	N.A.	
O5	7.3	20	10	
A12	4.8	19	0.2	
E1	5	16	N.A.	
A11	5.7	12.5	0.35	
A1	6.9	10.5	4	
A7	7.9	7 7		
D1	7.9	3	2	

Table 5a: Low Acidity Waters (in mg/L CaCO3)

N.A. - not applicable

1

,

SAMPLE DATE	11-May-92	11-May-92	11-May-92	11-May-92	11-May-92
SAMPLE VOLUME	100	100	100	100	100
ASSAYERS CODE	3748	3749	3750	3751	3752
SAMPLING LOCAT.	PRINCE	PRINCE	PRINCE	PRINCE	PRINCE
	DB-A	DB-A	DB-A	DB-A	DB-A
	A-12	A-13	A-14	A-15	A-16
	stream	stream	stream	stream	seepage
Processing code	WH	WH	WH	WH	WH
pН	4.2	2.9	2.5	3.41	2.7
Cond. (umhos/cm)	170	911	1040	347	90.6
Al	1.66	7.67	7.8	2.58	6.68
Ca	8.5	19.4	24.1	10.5	23.8
Fe	0.993	10.6	14.1	2.74	19.4
К	1.44	0.55	3.7	1.88	0.66
Mg	3.52	7.93	10.6	4.5	10.1
Mn	1.75	2.84	3.99	1.94	3.75
Na	9.24	9.36	11.8	10.3	12.7
S	16	76	85.7	28	84
Zn	0.161	0.24	0.361	0.162	0.336
Chloride (Cl)	12	12	16	15	15
TDS	130	360	390	160	380
Nitrate (NO3)	0.1	0.2	0.2	0.1	0.1
Ammonia (NH3)	0.12	0.07	0.15	0.01	0.13
SO4	48	228	257	84	252

,

Table 6: Drainages around Morrison's Pond
Source	Devco	Dearborn	Boojum	Boojum	Boojum	Boojum	Boojum
	Outlet	Outlet	Inlet	Outlet	Inlet	Between	Outlet
Sample ID			3641	3642	3754	3753	3755
	5-Jun-91	Feb-92	3-Mar-92	3-Mar-92	11-May-92	11-May-92	11-May-92
pН	2.6	2.7	2.91	2.94	5.77	2.91	3.02
Conductivity	3070	2570	2980	2240	1600	3280	2920
Chloride (Cl)	145	190	350	420	105	165	165
Aluminum (Al)	65.46	21.9	34.3	48.6	1.14	43.3	47.3
Arsenic (As)	1.09	< 0.069	0.13	0.07	< 0.069	0.194	< 0.069
Calcium (Ca)	227.7	105	217	203	192	208	164
Cobalt (Co)	0.32	0.119	0.25	0.23	0.048	0.301	0.244
Copper (Cu)	0.03	0.022	0.13	0.1	0.007	0.108	0.049
Iron (Fe)	269.9	83.6	299	282	25.4	300	160
Lead (Pb)	0.38	< 0.039	0.15	0.16	< 0.039	0.119	< 0.039
Magnesium (Mg)	85.51	30.5	60.8	62	35.1	69.8	55.8
Manganese (Mn)	30.34	10.3	24.2	22	6.73	29.3	22.8
Nickel (Ni)	0.76	0.24	0.61	0.58	0.1	0.67	0.56
Phosphorus (P)		< 0.3	0.6	0.6	<0.3	1.1	< 0.3
Pottasium (K)		3.44	13.9	9.4	5.72	7.35	4.91
Sodium (Na)		402	257	136	73.3	14.1	120
Sulphur (S)			520	517	214	603	473
Strontium (Sr)		0.334	0.82	0.69			
Zinc (Zn)	2.24	0.966	1.69	1.93	0.271	2.01	1.91

Table 7: East Tunnel Water Quality

Conductivity in umhos/cm, elements in mg/L

SAMPLE DATE	12-May-92									
SAMPLE VOLUME	100	100	100	100	100	100	100	100	100	100
ASSAYERS CODE	3753	3754	3755	3756	3757	3758	3759	3760	3761	3762
SAMPLING LOCAT.	PRINCE									
	Tunnel	DB-B	DB-B	DB-B	DB-B	DB-B	DB-C	DB-D	DB-E	Ocean
	B-1	B-2	B-3	B-4	B-5	B-6	C-1	D-1	E-1	O-5
	stream	stream	stream	stream	seepage	stream	seepage	stream	stream	shore
Processing code	WH									
рH	2.91	5.77	3.02	5.82	4.16	4.1	5.6	6.3	6.6	7.2
Cond. (umhos/cm)	3280	1600	2920	115.3	530	280	2080	148	400	
AI	43.3	1.14	47.3	0.45	1.32	1.82	0.057	0.39	1.25	5.76
Ca	208	192	164	7.83	32.6	13.1	256	8.92	26.7	310
Fe	300	25.4	160	1.32	2.3	6.69	13.3	1.07	2.49	14.1
к	7.35	5.72	4.91	1.13	1.64	0.94	13.5	1.41	1.76	310
Mg	69.8	35.1	55.8	2.31	8.37	4.15	131	2.81	10.2	950
Mn	29.3	6.73	22,8	0.253	7.01	1.08	47.3	0.36	7.57	0.759
Na	14.1	73.3	120	9,98	25.8	14.3	20.5	12.1	9.28	7900
S	603	214	473	7.7	47.7	24.7	407	5.7	44.7	678
Zn	2.01	0.271	1.91	0.024	0.118	0.085	0.159	0.012	0.154	0.134
Chloride (Cl)	165	105	165	16	50	21	14	17	12	15400
TDS	2640	1230	2300	88	310	180	1900	110	240	41600
Nitrate (NO3)	、 <5	<5	<5	<0,1	1.1	<0.1	<5	< 0.5	0.2	<25
Ammonia (NH3)	0.44	0.08	0.46	0.01	0.36	0.05	0.52	0.03	0.31	0.28
SO4	1810	643	1420	23	143	74	1220	17	134	2034

Table 8: Drainages into Coal Hollow Brook

Station	Cation	Anion	Diff.	Ratio	Error%
·	+charge	-charge			
A-1	0.85	0.49	0.37	1.8	27.3
A-2	39.14	47.71	-8.57	0.8	-9.9
A-3	2.72	2.12	0.61	1.3	12.6
A-4	119.06	128.06	-9.00	0.9	-3.6
A-5	1.79	0.88	0.91	2.0	33.9
A-6	25.86	24.46	1.39	1.1	2.8
A-7	2.82	1.39	1.43	2.0	33.9
A-8	5.67	6.95	-1.28	0.8	-10.1
A-9	4.20	4.37	-0.17	1.0	-1.9
A-10	3.68	3.66	0.03	1.0	0.4
A-11	0.66	0.57	0.10	1.2	7.8
A-12	1.47	1.38	0.08	1.1	3.0
A-13	3.58	5.13	-1.54	0.7	-17.7
A-14	4.47	5.84	-1.37	0.8	-13.3
A-15	1.91	2.21	-0.31	0.9	-7.5
A-16	4.53	5.71	-1.18	0.8	-11.5
B-1	44.52	42.50	2.02	1.0	2.3
B-2	17.57	16.39	1.18	1.1	3.5
B-3	32.88	34.27	-1.39	1.0	-2.1
B-4	1.18	0.97	0.21	1.2	9.7
B-5	4.02	4.43	-0.41	0.9	-4.8
B-6	2.25	2.17	0.08	1.0	1.8
C-1	27.28	25.85	1.43	1.1	2.7
D-1	1.36	0.87	0.49	1.6	21.8
E-1	3.18	3.17	0.02	1.0	0.3
O-5	446.52	477.41	-30.89	0.9	-3.3

Table 9: QA/QC Calculations for Whole Water Samples

Location	Al	As	Со	Cu	Fe	Mg	Mn	Ni	S	Zn
A-15	2.24	< 0.06	0.018	0.01	2.38	3.91	1.69	0.052	24.34	0.141
A-16	1.36	< 0.01	0.01	0.003	3.96	2.06	0.77	0.024	17.14	0.069
8-6	1.60	< 0.06	< 0.01	< 0.001	5.89	3.65	0.95	0.026	21.73	0.075
C-1	0.001	< 0.002	0.004	< 0.001	0.34	3.30	1.19	0.005	10.27	0.004
D-1	0.07	< 0.01	< 0.002	< 0.001	0.21	0.54	0.07	0.004	1.09	0.002
E-1	0.90	< 0.05	0.038	0.005	1.80	7.37	5.47	0.072	32.28	0.111
Mine	5.08	0.005	0.190	0.019	39.08	169.05	8.95	0.423	150.86	1.167
Discharge										

Table 10: Contaminant Loadings to Ocean (tonnes/year)

.

Plate 1: View Downstream from Seepage Station A3 of the New Waste Rock Pile

Plate 2: View towards Morrison's Pond from Station A12

Plate 3: Morrsion's Pond

Plate 4: Station A16 beside Morrison's Pond Outflow

Plate 5: Snow with Coal Dust in the Prince Mine Pit

Plate 6: Abandoned Coal Pit above Station B5 on Coal Hollow Brook

APPENDIX 1

.

PM0392.WKg [25.1] XRAL 18-03-92 027214.WK1 mg/L

4	5
-	<u> </u>

======================================	===========	============	=======================================				========			
SAMPLE DATE SAMPLE VOLUME	3-Mar-9 2 100	3-M ar-92 100	3-Mar-92 100	3-Mar-92 20	3-Mar-92 100	3-Mar-92 100	3-Mar-9 2 100	3-Mar-92 100	3-Маг-92 100	3-Mar-92 100
ASSAYERS CODE	3633	3634	3635	3636	3637	3638	3639	3640	3641	3642
SAMPLING LOCATION	PRINCE M.	PRINCE M. 2	PRINCE M.	PRINCE M. 4	PRINCE M. 5	PRINCE M.	PRINCE M. 7	PRINCE M. 8	PRINCE M. 9	PRINCE M. 10
	Last	Sump bet.	East Low	Unmined	Slope	Flooded	West bott	Sump on	WaterLeve	lWaterLeve
Processing code	Sump	Tanks	Mine	Coal	FA	Level	Seal	2 Slope	Intake	Discharge
			rx ==========	га ========;	78 =========	ΓΑ ==========	гл ==========	ra =============	FA ==========	۲۸ =======
** FIELD **										
Temp. (C)	10.5	10.5	8.6		12.2	11.5	14.4	13.6		
Fond (unhos/cm)	3.13	5.15	3.2		2.96	3.52	4.02	3.94		
Eh (mV)	31300	0000	30000		20100	22100	00000	407.00		
Acidity (mg/l)										
Alkalinity (mg/l)										
Ferrous (Fe2+)										
	• • • • • • • • • • • • • •									
** L A B **	47	40	4.0	47	**	4.5			4.5	
1 iemp.(U) N	17 2.84	18 3 08	18 3 4	٦٢ ٨ ٨١	18	18 200 ¢	18 2.01	18 2 71	18 201	18 2 0/
Cond. (umhos/cm)	23000	20000	21000	0.01	20500	21500	30000	25000	2980	2240
Eh (mV)	395	373	328	241	426	379	239	176	389	387
Acidity (mg/l)										
Ferric (Fe3+)										
Ferrous (Fe2+)										į
	••••••••••••••••••••••••••••••••••••••		========= - 10 0				n not			0.005
AL AL	26.2	11.8	43.2 <	0.5	21	14.7	7.6	2.8	34.3	48.6
As <	0.03 <	: 0.03 <	0.03	1	0.1 <	0.03 <	0.03	0.08	0.13	0.07
B	0.22	0.2	0.2	1.5	0.22	0.2	0.22	0.23	0.06	0.05
Be	0.02 <	0.14	0.04	0.05	0.12	0.05	0.15	0.12	0.01 <	0.01
Bi <	0.05 <	0.05 <	0.05 <	0.25 <	0.05 <	0.05 <	0.05 <	0.05 <	0.05 <	0.05
C	4/70	1700	4700	4005		4000				
La Col <	0.01 <	1720 0.01 <	0.01 <	1895	1650	1980	3710 0.01 <	1970 0.01 <	217	203
Ce <	0.01 <	0.01	0.02 <	0.05 <	0.01	0.01	0.03 <	0.01	0.02	0.04
Co	0.67	0.55	1.31 <	0.05	0.42	0.96	1.15	0.81	0.25	0.23
Cr <	0.01 <	0.01 <	0.01 <	0.05 <	0.01 <	0.01 <	0.01 <	0.01 <	0.01 <	0.01
Fe	173	133	131	6.5	51.6	209	153	100	299	282
Kg										
K	78	87.6	80.6	402	83.7	147	226	148	13.9	9.4
La Ma	650	658	745	530	538	902	1350	775	60.00 60.8	62
Mn	35.9	36.1	47.1	3.65	24.5	36	46	27.6	24.2	22
Mo <	0.01 <	0.01 <	0.01 <	0.05 <	0.01 <	0.01 <	0.01 <	0.01 <	0.01 <	0.01
Na Nh	0 06 0 06	5580 0.06	5440 0.08	12700 0 4	6050 0.07	7050 0.08	9370 0 00	6350 0.04	257	136
Ni	1.73	1.3	2.45	1.75	0.97	2.45	2.67	1.78	0.61	0.58
Р	0.2	0.2	0.2 <	0.5	0.1	0.2	0.4	0.2	0.6	0.6
Pb	U.35 KOO	0.17 577	0,12	1.75	0.26	0.25	0.28	0.1	0.15	0.16
sp <	0.05 <	0.05	0.06 <	0.25 <	ده» 0.05 <	0.05 <	490 0.05 <	477 0.05 <	520 0.05 <	0,05
Se <	0.1 <	0.1 <	0,1 <	0.5 <	0.1 <	0.1 <	0.1 <	0.1 <	0.1 <	0.1
Si	12.8	8.9	16.8	10	16.7	8.5	6.2	7.4	17.3	19
sn < Sr	25.8	28.4	26.4	U.S < 40	27.1	U.1 < 32	U.1 < 63 3	U.1 < 36 K	0.1 <	0.69
Te <	0.1 <	0.1 <	0.1 <	0.5 <	0.1 <	0.1 <	0.1 <	0.1 <	0.1 <	0.1
⊺h < 	0.01 <	0.01 <	0.01 <	0.05 <	0.01 <	0.01 <	0.01 <	0.01 <	0.01 <	0.01
∏1 < H Z	0.1 <	0.1 <	0.1 <	0.5 <	0.1 <	0.1 <	0.1 <	0.1 <	0.1 <	0.1
v	0.02 <	0.02	0.03 <	0.1 <	0.02	0,03 <	× 2 > 0,02 <	0,02	0.04	0.04
¥ <	0.1 <	0.1 <	0.1 <	0.5 <	0.1 <	0.1 <	0.1 <	0.1 <	0.1 <	0.1
Y 7-	0.08	0.05	0.08 <	0.05	0.05	0.09	0.08	0.03	0.08	0.07
נח 7 ג	3.21 0.01 <	7.72 0.01 <	/.22 0.01 /	0.25 0.05 -	6.26 0.01 /	2.98 0.01 -	5.43 0.01 /	2,79 0.01	1.69 0.01 -	1.93
					•••••		·····	0.01		
Chloride	12100	12500	13000	23500	13600	17350	25900	15200	3 50	420
	===========									=======[

PM1191.WKQ [25.1]	XRAL 10-Ap	r-92 02732	2.WK1 ppm	
SAMPLE DATE SAMPLE VOLUME ASSAYERS CODE	15-Nov-91 100 3653	15-Nov-91 100 3654	15-Nov-91 100 3655	15-Nov-91 100 3656
SAMPLING LOCATION	PRINCE M. 1 Coase waste pile runoff	PRINCE M. Surface runoff	PRINCE M. PM-1 mine discharge	PRINCE M. Water lev tunell discharge
Processing code	FA	FA	FA	FA
** FIELD **	F 0			
Cond. (umhos/cm) Eh (mV) Acidity (mg/l)	2.72 3860	2.72 2730	2.69 27300	2.9 2550
Ferric (Fe3+)				
** L A B ** Temp. (C) H Cond. (umhos/cm)				
Acidity (mg/l) Alkalinity (mg/l) Ferric (Fe3+) Ferrous (Fe2+)	1550	800	700	775
ELEMENTS Ag	<pre></pre>	1 <	1 <	1 1
AL As	135 < 1 <	40 1 <	48 1 <	47
B Ba	< 1 < < 1 <	1 < 1 <	1 <	1
Be Bi D	< 1 < < 1 <	1 < 1 <	1 < 1 <	1
Ca Cd	244 < 1 <	215 1 <	1310 1 <	206 1
Ce Co	< 1 < 1 <	1 < 1 <	1 < 1 <	1
	< 1 < < 1 <	1 <	1 <	1
Fe Hg	99	96	60	87
K ta	< 1 <	5 1 <	57	5 1
Mg Mn	156 73	62 23	503 40	68 20
Mo Na	< 1 < 77	1 < 62	1 < 3600	1
Nb	< 1 < 3 c	1 <	1 <	1
1 P .	< 1 <	1 <	1 <	1
PD · S	< 1 < 911	520	721	1 483
Sb- Se-	< 1 < < < < < < < < < < < < < < < < < <	1 < 1 <	1 <	1
Si Si	21	18	20	16
ון Sn י גר Sr י	< 1<	1	20	1
Te· Th·	< 1 < < < < < < < < < < < < < < < < < <	1 < 2 <	1 < 2 <	1
Ti -	< 1 <	1 <	1 <	1
l v	1 <	1 <	1 <	1
W· Y·	< 1 < 1 <	1 < 1 <	1 <	1 1
Zn Zr・	12 1 <	2 1 <	6 1 <	2 1
Chloride	50	72	9400	
=====================================		=======================================		========

PM0592.WKQ [25.1] Dearborn 3-06-92 mg/L typein from fax to DEAR0592.WKQ

ļ

			*********				.============		=========
SAMPLE DATE	11-May-92	11-May-92	11-May-92	11-May-92	11-May-92	11-May-92	11-May-92	11-May-92	11-May-92
SAMPLE VOLUME	100	100	100	100	100	100	100	100	100
ASSAYERS CODE	3737	3738	3739	3740	3741	3742	3743	3744	3745
			2222222222						32322223
SAMPLING EOCATION	PRINCE	PRINCE	PRINCE	PRINCE	PRINCE	PRINCE	PRINCE	PRINCE	PRINCE
	00-A	08-7	UB-A	OB-A	D8-A	DR-Y	DR-V	DR-A	DR-V
	A-I streem	A-2	A-3	A-4	A-3	A-0	A-1	A-0	¥-7
Processing code	UH	acchage MM	SLICONN LUU	Sechaãe	SUEGHI	UL	SUIEANN	SUICANII UNI	SURGAR
	**********		*********			#11 2322222222		**********	
** FIELD **									
Temp. (C)	11.3	11.7	9.5	15.2	13.3	13.5	13.2	7.5	12.7
PH	5.54	3.33	4.81	2.68	5.28	2.68	7.47	3.15	3.59
Cond. (umhos/cm)	78	3270	273	7070	172	2300	270	799	486
Eh (RV)									
ACIDITY (RG/()									
Ackacinity (mg/t)									
** LAB **									
Temp. (C)									
Ha	6.93	2.92	3.65	2.79	5.96	2.64	7.9	3.29	4.12
Cond. (umhos/cm)								/	
Eh (सV)									
Acidity (mg/l)	11	1505	52.5	3375		660	6.25	143.5	57.5
Alkalinity (mg/l)	4.25				1		6.75		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$			C 000				EIIIIIIIII
Ag Ag	• 0.000 • • • • • •	<u></u>	0.000 * 2 K1	275	0.000 < 2 / 9	× 0,000 < ۲۲ ۲	1 15	17 2	0.000 4 nr
	0.069 <	: 0.049 <	0 0.60	. 0.040 <	0 040	40.7 0 126 e	0 060 <	0.060 2	0.05
B	0.024	0.294	0.013	0.056	0.019	0.01	0.033	0.007	0.189
Ba	0.009 <	0.003	0.01 <	0.003	0.049	0.126	0.048	0.016	0.143
Be <	0.003	0.018 <	0.003	0.129 <	0.003	0.014 <	0.003	0.004 <	0.003
Bi <	0.04 <	0.04 <	0.04 <	0.04 <	0.04 <	0.04 <	0.04 <	0.04 <	0.04
C	< 	474							
Ca Cala	0./1	150	10.2	410	10.1	109	20.4	31.3	27.7
	0.004	0.011 \$	0.004	0.006 <	0.004 <	0.004 <	0.004 <	0.004 <	0.004
Co <	0.009	0.522	0.024	3 273 <	0 000	0 423	0.011	0 142	0.08
Сг <	0.007 <	0.007 <	0.007	0.225 <	0.007	0.925		0.142	0.00
Cu <	0.006	0.061	0.007	1.67	0.021	0.378	0_017	0.071	0.033
Fe	0.765	300	21.6	310	5.22	160	1.92	6.77	3.42
Hg <	0.061 <	0.061 <	0.061 <	0.061 <	0.061 <	0.061 <	0.061 <	0.061 <	0.061
ĸ	1.5	4.87	1	0.826	1.18	5.18	4.61	1.18	1.45
La		/							
Mg	1.4	82.6	4.47	380	2.91	51.1	4.62	17	11.8
MO Ka d	0.241	/2.5	3.84	230	0.878	20.5	1.5	11	6.89
MO S	4 01/ <	0.017 <	0.01/ <	0.017 <	0.017 <	0.01/ <	0.017 <	0.017 <	0.017
Nb	5.01	41.1	2.6	243	9.52	32.4	23.1	11.4	12.4
Nī	0.02	0.99	0.05	6.1	0.04	0.86	0.04	0.27	0.17
Р <	0.3 <	0.3 <	0.3 <	0.3 <	0.3 <	0.3	1 <	0.3 <	0.3
Pb <	0.039 <	0.039 <	0.039	0.086 <	0.039	0.084 <	0.039 <	0.039 <	0.039
S	3.7	747	30.9	1963	7.7	380	8.3	107	61.3
Sb <	0.03 <	0.03 <	0.03 <	0.03 <	0.03 <	0.03 <	0.03 <	0.03 <	0.03
Se <	0.08 <	0.08 <	0.08 <	0.08 <	0.08 <	0.08 <	0.08 <	0.08 <	0.08
Si									
sn Sn									
31 Te									
Th <	0.031 <	0 031 2	0.031	012	0.031 <	0 031 <	0 071 -	10.071 -	0.031
Ti	0.004 <	0.003	0.005 <	0.003	0.051 <	0.031 \	0.031 <	0.031 \	0.031
Ű			01003	0.005	0.031	0.119	0.011 4	0.005	0.015
V <	0.024 <	0.024 <	0.024 <	0.024 <	0,024 <	0.024 <	0.024 <	0.024 <	0.024
Ŵ									
Y			_						
Zn	0.032	0.818	0.063	23	0.122	2.77	0.092	1.09	0.576
Zr	0.012 <	0.002 <	0.002	0.045	0.003	0.006 <	0.002 <	0.002 <	0.002
Chloride (CL)	7.8	37	5 4	188	17	2/		φ.Ω.	44
TDS	, .0	3500	170	0700	110	24 1640	120	200	10 770
Nitrate (NO3) <	0.1 <	5	0.2 <	10 <	0.1 <	5	1 2 -	1 1	0 2 0 2
Ammonia (NH3)	0.01	0.3	0.04	0.33	0.04	0.11	0.09	0.07	0.08
S04	11	2240	93	5890	23	1140	25	320	184
	===========		*******						

PM0592.WKQ [25.1]

▏▎ゝヱ╒ॹड़⋨⋩⋩⋤⋤⋤⋤⋤⋤⋶⋶⋵⋭⋍⋾	(2932222222)	522222222			.====\$====		***********	===========	\$22××222×3
SAMPLE DATE	11-May-92	11-May-92	11-May-92	11-May-92	11-May-92	11-May-92	11-May-92	12-May-92	12-May-92
SAMPLE VOLUME	100	100	100	100	100	100	100	100	100
ASSAYERS CODE	3746	3747	3748	3749	3750	3751	3752	3753	3754
	=======================================			21 77 22222222		=======			
SAMPLING LOCATION	PRINCE	DRINCE	DRINCE	DRINCE	DRINCE	DRINCE	DRINCS	DRINCE	DRINCE
SAPE LING LOCATION	DR.o	PRINGE	PRINCE	PRINCE	PRINCE	PRINCE	FRIALC	Timmel	PRINCE
]	08-8	U8-A	DR-Y	DB-A	DR-Y	DR-Y	DR-4	Tunnet	DR-R
	A-10	A-11	A-12	A-13	A-14	A-15	A-16	B-1	B-2
-	stream	stream	stream	stream	stream	stream	seepage	stream	stream
Processing code	KW	WH	WH	WH	WH	WH	ŴH	WH	₩H
=======================================	**********			********			**********		*========
** FIFID **									
Temp (C)	13 3	10.1	4 5	75	4 5	7 0	5 9	17.0	15 7
	7.5	7 00	0.7	7.5	0.5		3.0	13.7	13.7
pr.	2.2	3.84	4.2	2.9	2.2	3.41	2.7	2.91	2.((
Cond. (umhos/cm)	453	135.9	170	911	1040	347	90.6	3280	1600
Eh (m-V)									
Acidity (mg/l)									
Alkalinity (mg/l)									
** !									
lemp.(C)									
pH pH	3.88	5.55	4.79	2,92	2.86	3.57	2.97	2.69	6.72
Cond. (umhos/cm)									-
Eh (mV)									
Acidity (ma/l)	54	12	18 5	165	191 5		180 5	045	40
Alkalimian (mg/l)	20	0.05	10.3	122	101.2	43	107.7	707	00
ALKALINICY (HIG/L)		0.25							4.25
	==S223=====	**********	202222222	222322522	******		*******	:3932222#### -	
ELEMENTS Ag	< 0.008 <	< 0.008 <	: 0.008 <	< 0.008 <	: 0.008 ·	< 0.008 <	< 0.008 <	• 800.0 ·	c 0.008
AL	6.07	0.2	1.66	7.67	7.8	2.58	6.68	43.3	1.14
As	< 0.069 <	0.069 <	0_069 <	0.069 <	0.069 •	< 0.069 <	0.069	0.194 <	0.069
B	0.061	0 031	0 030	0 018	0 013	0 033	0 01	0 072	0 010
	0.000	0.000	0.037	0.010	0.013	0.000	0.01	0.012	0.019
08	0.028	0.009	0.042	0.01	0.005	0.021	0.006	0-056	0.046
ве	< 0.003 <	< 0.003 <	0.003 <	0.003 <	0.003	< 0.003 <	0.003	0.011 <	< 0.003
8i	< 0.04 <	: 0.04 <	: 0.04 <	: 0.04 <	0.04 •	< 0.04 <	: 0.04 <	: 0.04 <	< 0.04
C C									
Ca	23.3	2.54	8.5	19.4	24.1	10.5	23.8	208	102
rd.	< 0.00% <		0.00%	0.00%	0.00%		0 00%	0 002	0 002
	. 0.004	0.004 4	0.004 \	0.004 \	0.004	0.004	. 0.004 .	0.004	0,004
Le	0.07								
Lo	0.07 <	0.009	0.02	0.039	0.056	0.021	0.049	0.301	0.048
Cr Cr	< 0.007 <	: 0.007 <	0.007 <	0.007 <	0.007 <	< 0.007 <	: 0.007 <	0.007 <	0.007
L Cu	0,029 <	0.006	0.013	0.03	0.028	0.011	0.016	0.108	0.007
Fe	3.68	0.147	0 003	10 6	14 1	2 74	10 4	300	25 4
Ha	< 0.061 /	0.041 -	0.041 /	0.041 ~	0.061	0 041	0.041 -	0.041	0.041
ng r	· 0.001 ·		0.001 \	0.001 \			0.001 4		0.001
	1.35	5.1	7.44	0.55	3.7	1.88	0.00	7.55	5.72
La									
Mg	10	1.01	3.52	7.93	10.6	4.5	10.1	69.8	35.1
Mo	6	0.324	1.75	2.84	3.99	1.94	3.75	29.3	6.73
Ho	< 0.017 <	0 017 <	0 017 <	0 017 <	0 017	0 017	0 017 <	0 017 /	0 017
No	12.5	4 77	0.2/	0.74	14 8	40.7	10.011 \	1/ 1	77 7
	12.3	0.33	7.24	7.30	11.0	10.5	12.7	14.1	(3.3
ND	A 47	a		• • •				•	
I Nî	0.13	0.02	0.04	0.12	0.14	0.06	0.12	0.67	0.1
ј Р·	< 0.3 <	0.3 <	0.3 <	0.3 <	0.3 <	× 0.3 «	0.3	1.1 <	0.3
Pb	< 0.039 <	0.039 <	0.039 <	0.039 <	0.039 <	• 0.039 <	0.039	0.119 <	0.039
2 1	52.3	4	16	76	85.7	28	84	603	214
sh.	< 0.07 -	- דה ה	- 20 0	0 02 -	0 07 -	(0 ÅŽ -	0.07 -	ກັກຊັ -	0.07
50	0.00	0.00	0.00 -	0.02 -	0.00		0.03	0.03	
se	< U.UQ <	0.08 <	0.08 <	0.08 <	0.08 <	. U.US <	0.08 <	0.08 <	0.08
្រុះស្រុ									
l Su									
Sr Sr									
Te									
і ть.	< 0.031 -	0 031 -	0.071 -	0 021 -	0 071 -	0 071 -	<u>∩</u> ∩z4 →	10 071 -	0.071
		0.001 1	0.031 \	× 160.0	0.000		0.031 <	0.031 <	
	0.024 <	0.005	u.004 <	v.005 <	0.005 <	• ••••• <	0.005	0.095	0.016
į u		_							
V·	< 0.024 <	0.024 <	0.024 <	0.024 <	0.024 <	0.024 <	0.024 <	0.024 <	0.024
(v									
l Ŷ									
-	0 404	0.000	0 144	0.97	0 744	0 1/2	0 77/	3 64	0 374
	V	0.029	0.101	V.24	0.301	0.102	0.530	2.01	0.2/1
25.	< 0.002 <	0.002 <	0.002 <	0.002 <	0.002 <	0.002 <	0.002	V.005 <	0.002
Chloride (Cl)	12	10	12	12	16	15	15	165	105
TDS	280	80	130	360	390	160	380	2640	1230
Nitrate (NO3)	0_1 <	<u>n</u> 1	0 1	0.2	0.2	0 1	01-		5
	0 12	0.01	0 42	0.07	0.45	0 01	0 17	`	0.00
	457	0.01	0.12	0.07	0.15	0.01	0.13	0.44	0.08
504	157	12	48	228	257	84	252	1810	643
=====================================				********					

PM0592.WK0 [25.1] SAMPLE DATE 12-May-92 12-May-92 12-May-92 12-May-92 12-May-92 12-May-92 12-May-92 12-May-92 12-May-92 100 100 SAMPLE VOLUME 100 100 100 100 100 100 3759 ASSAYERS CODE 3755 3756 3757 3758 3760 3761 3762 SAMPLING LOCATION PRINCE PRINCE PRINCE PRINCE PRINCE PRINCE PRINCE PRINCE DB-B DB-B D8-8 DB-B DB-C DB-D D8-E Ocean E-1 0-5 8-3 B-4 8-5 B-6 C-1 D-1 stream stream seepage stream seepage stream stream shore Processing code LIN UK. ЦΗ UH. UH **WH** UH. LIH ╶╶╶**╴╴╴╴╴╴╴** FIELD ** Temp. (C) 13.4 11.7 13.2 15.9 15.7 14.9 14.7 рН 3.02 5.82 4.16 4.1 5.6 6.3 6.6 2080 400 Cond. (umhos/cm) 2920 115.3 530 280 148 Eh (m∀) Acidity (mg/l) Alkalinity (mg/l) ** LAB ** Temp. (C) 2.89 рН 8.25 4.07 4.83 7.15 7.87 5.03 7.24 Cond. (umhos/cm) Eh (mV) Acidity (mg/l) 932.5 31 34 54 3 15.5 23 Alkalinity (mg/l) 1 8.5 1.75 0 0.008 < 0.008 < 0.008 < 0.008 ELEMENTS Ag < 0.008 < 0.008 < 0.008 < 0.008 < 0.39 47.3 0.45 1.32 1.82 0,057 1.25 5.76 AL As < 0.069 < 0.069 < 0.069 < 0.069 < 0.069 < 0.069 < 0.069 < 0.069 0.034 0.027 0.026 0.018 B 0.017 0.022 0.01 2.13 8a 0.007 0.013 0.021 0.014 0.012 0.015 0.015 0.027 0.01 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 Be 0.04 < 8i < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 < 0.04 C 8.92 7.83 310 Ca 164 32.6 13.1 256 26.7 Cd < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 Ce 0.169 < 0.053 0.016 Со 0.244 < 0.009 0.035 < 0.009 0.009 Cr < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 < 0.007 0.049 < 0.006 < 0.006 0.014 0.006 < 0.006 < 0,006 < 0.007 Cu Fe 160 1.32 2.3 6.69 13.3 1.07 2.49 14.1 0.061 < 0.061 < 0.061 < 0.061 < 0.061 < 0.061 < 0.061 < 0.061 Hg < 4.91 1.64 0.94 13.5 1.41 1.76 310 K 1.13 La 10.2 Mg 55.8 2.31 8.37 4.15 131 2.81 950 0.253 7.01 1.08 47.3 0.759 Mn 22.8 0.36 7.57 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 < 0.017 Mo < Na 120 9.98 . . . 25.8 14.3 20.5 12.1 9.28 7900 Nb 0.56 < 0.02 0.06 0.03 0.19 0.02 0.1 0.04 Ni 0.3 < Р < 0.3 < 0.3 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.039 < 0.039 < 0.039 < 0.039 < 0.039 < 0.039 < 0.039 < 0.039 Pb < 7.7 47.7 24.7 407 5.7 44.7 473 678 S Sb < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 0.08 < 0.08 < 0.08 < > 80.0 > 80.0 0.08 < 0.08 < 0.08 Se < Si Şn Sr Te 0.031 < 0.031 < '0.031 0.031 < 0.031 < 0.031 < 0.031 < 0.031 <Th < 0.003 < 0.003 < 0.003 < 0.003 0.004 0.007 Ti < 0.003 <0.085 U V < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 < 0.024 v Y Zn 1.91 0.024 0.118 0.085 0,159 0.012 0.154 0.134 Zr < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 0.004 Chloride (Cl) 165 16 50 21 14 17 15400 12 TDS 2300 88 310 180 1900 110 240 41600 5 < 0.1 Nitrate (NO3) < 0.1 < 5 < 0.2 < 25 1.1 < 0.5 Ammonia (NH3) 0.46 0.01 0.05 0.52 0.03 0.31 0.28 0.36 S04 1420 74 1220 2034 23 143 17 134

APPENDIX 2

R.O. VAN EVERDINGEN RESEARCH SPECIALTIES LIMITED 2712 Chalice Road N.W., Calgary, Alberta T2L 1C8 Telephone (403) 289-6823

PRINCE MINE, POINT ACONI, N.S.

(CAPE BRETON DEVELOPMENT CORPORATION)

PRELIMINARY HYDROLOGICAL AND HYDROCHEMICAL DATA

12 March 1992

PRINCE MINE, POINT ACONI, N.S. PRELIMINARY HYDROLOGICAL AND HYDROCHEMICAL DATA

WEATHER DATA

The nearest weather station for the area of the Prince Mine is the station at the Sydney Airport. Available data at present include "Climate Normals" of precipitation and temperature for the period 1951-1980, and daily weather data for the period 1978-1991 (data for May 1991 are missing and should be added to the data file when they become available).

Precipitation

Table 1 presents data on monthly rainfall, snowfall, total precipitation and meandaily temperature for the years 1978-1991, and Climate Normals for the period 1951-1980. Calculated 10-year averages for precipitation and mean-daily temperature for the period 1981-1991 are included in the table.

Figure 1 shows that there was a wide range of variation in monthly precipitation during the 1981-1991 period, from about 23 mm (May 1989) to almost 315 mm (December 1990). Highest amounts commonly fall in November, December, January and April, and lowest amounts in May, June, July and August.

Figure 2 shows the variation in annual rainfall, snowfall and total precipitation during the 1981-1991 period. Total precipitation ranged from 1247 mm (1989) to 1913 mm (1983).

Figure 3 shows the monthly averages for rainfall, snowfall and total precipitation for the period 1981-1991; Figure 4 shows the precipitation "Normals" for the 1951-1980 period. Comparison of Figures 3 and 4 indicates higher rainfall for the 1981-1991 period, but little difference in snowfall.

The ranges in monthly precipitation during the 1981-1991 period are further illustrated by Figure 5. The graph for mean monthly precipitation in Figure 5 corresponds to the graph for total precipitation in Figure 4.

24-hour precipitation extremes for individual months range from 56.1 mm (April) to 97.3 mm (November).

Values for mean annual evaporation, evapotranspiration, and runoff (Table 1) have been obtained from the Hydrologic Atlas of Canada; these values are approximate.

<u>Temperature</u>

Temperature "Normals" for the period 1951-1980 are shown in Figure 6. Monthly mean temperatures for the period 1981-1991, added to this plot, indicate only minor differences in monthly mean temperatures between the two periods.

CONTAMINATED DISCHARGES

Mine Water: DISCHARGE #1

Mine-production data for the period 1975-1987, and available maps of the underground workings have been used to estimate the progressive increase in the area covered by the workings ("blocks" in Table 2) and mine tunnels ("deeps", "slopes", and "declines" in Table 2). In Table 2A, mined areas were calculated from the production data; mined areas for the period 1975-1980 (Table 2B) were measured on the maps. As a reasonable agreement was found between the values in the two tables for the cumulative mined area at the end of 1980 (3,065,110 sqft in Table 2A, and 3,090,875 sqft in Table 2B), the annual area values from Table 2A have been used for the period 1975-1980. For the period 1980-1990, areas and completion dates were taken from the maps. For individual blocks, average depths below sealevel or below ground surface were estimated from elevation contours on the maps.

Only one value is available for the rate of discharge from the Prince Mine. It is presumed that this value represents discharge on 28 September 1990. This value of 1.35 million US gallon per week (730,041 L/day) was used, together with the information on mined areas, to calculate approximate values for the progressive increase in mine discharge from 1975 to 1990, and estimates for the next 3 years (Table 2C).

Figure 7 shows a plot of discharge <u>vs</u>. mined area. The steep initial portion of the curve represents the early development stage at relatively shallow depth; the subsequent decrease in the slope of the curve reflects progressive expansion of the mine at gradually increasing depth (below either land or sea). Figure 8 shows the time Of addition of individual mined blocks, as well as the estimated increase in .

mined area and corresponding mine-water discharge <u>vs</u>, time. Both figures suggest that mine-water discharge may increase from about 730 m³ in late 1990 to just over 1000 m³ by the end of 1993.

Periodic measurements of the mine-water discharge rate would have to be made to detect any seasonal variation or long-term trend in the rate.

It is certain that the above estimating process has led to inaccuracies. Any significant inaccuracies, as well as significant new information should be brought to our attention as soon as possible, to enable improvement of the estimates and, where necessary, re-interpretation.

East Tunnel: DISCHARGE #2

A flow rate of 39.7 L/min was apparently measured on 5 June 1991 at the East Tunnel outlet. There is as yet no indication whether this represents a minimum, average or maximum discharge. No indication has been received sofar whether or not any discharge from the underground workings contributes to the discharge from the East Tunnel. Flow rates may vary widely, particularly if a large portion of the discharge represents surface runoff from precipitation.

A preliminary outline of the surface area that may contribute to this flow is indicated on a separate map.

Rock Dump(s) and Sewage Lagoon: DISCHAREG #3

No data are available on the rates of discharge from the Rock Dump(s) and the Sewage Lagoon, or on the flow rate in the receiving creek above its confluence with the Rock-Dump and Sewage-Lagoon discharges. Flow rates will likely vary widely, as these discharges represent surface runoff from precipitation.

A preliminary outline of the surface area that may contribute to this flow is indicated on a separate map.

WATER CHEMISTRY

<u>Water Analyses</u>

Available water analyses for the Prince Mine, listed in Table 3, represent 9 samples

of mine discharge; 2 samples of discharge from the East Tunnel; 3 samples of drainage from the Rock Dump(s); a sample of discharge from the Sewage Lagoon; and a sample from the brook that receives the combined rock-dump and sewagelagoon discharge. As the mine discharge shows the characteristics of diluted seawater, a seawater analysis is also listed in Table 3. Included in Table 3 are calculated ratios of K/Na, Na/Cl, Fe/SO4, and Ca/SO4 for each of the samples.

For the <u>mine-water</u> samples, all the K/Na ratios, and all but one of the Na/Cl ratios are smaller than those for seawater. All Fe/SO₄ and Ca/SO₄ ratios for the minewater samples are larger or much larger than those for seawater (representing Fe and SO₄ from pyrite oxidation, and subsequent dissolution of carbonate and some precipitation of secondary Fe-minerals). Elevated concentrations of Al, Fe, Mn and Zn may make treatment of the mine water necessary.

The analytical results are illustrated by Figure 9, showing variations in selected elemental concentrations in the mine water with time; and by Figure 10, showing variations in the four elemental ratios for the mine water with time. The double arrows in Figures 9 and 10 indicate the elemental concentrations and ratios, respectively, for seawater. It is suspected that the low value for [Fe] for the 15 November 1989 sample of mine water represents a transcription error, because none of the other elements show a corresponding decrease in concentration.

Also listed in Table 3, and illustrated by Figure 11, are ratios of [Ca], [SO₄], [Cl], [Na], and [K], and the milimole sum of dissolved solids, for individual samples compared to seawater. As expected, the ratios for [Ca] and [SO₄] are larger than 100%, reflecting the additions of calcium and sulfate, presumably through pyriteoxidation and related processes. The ratios for Cl range from 27.2 to 66.3 percent. As Cl is one of the most conservative elements in solution, it may be assumed that the Cl ratios reflect different degrees of dilution of seawater seepage (into the off-shore or sub-sea portion of the mine), with relatively fresh water, containing little or no Cl. This relatively fresh water could represent seepage into the onshore portion of the mine.

Periodic sample collection for analysis, and measurements of the mine-water discharge rate would have to be carried out to determine the probably varying proportions of seawater (from the sub-sea portion of the mine) and other water in

the mine discharge.

Discharges from the <u>East Tunnel</u> and from the <u>Rock Dump(s)</u> are higher in Al, Fe, Mn, and Zn than the mine discharge, but lower in Ca and K, and much lower in Na and Cl. Mixing of the Rock-Dump discharge with the discharge from the Sewage Lagoon and the surface runoff in the creek reduces all concentrations through dilution and, in the case of Fe, probably through precipitation of Fe-hydroxide. Manganese appears to persist in the creek water at a concentration close to 2 mg/L.

Periodic sample collection for analysis, and measurements of the discharge rates from the East Tunnel, the Rock Dump(s), the Sewage Lagoon, and the creek would have to be carried out to determine the severity and seasonal variation of the metal-contamination.

Geochemical Calculations

A preliminary test, using the BALANCE program, was run to investigate the probable seawater/freshwater mixing ratio and the mineral dissolution/ precipitation represented by the mine water. The results of this test, for the 28 September 1990 sample of mine water (presumed to be a mixture of seawater and "fresh" water), are presented in Table 4.

A mixing ratio of 46 percent seawater with 54 percent "fresh" water would require dissolution (somewhere in the paths of the two waters) of calcite, pyrite, some pyrolusite (or a similar Mn mineral), and some alum (or a similar Al mineral); exchange of Na ions from seawater for Ca ions from clays or shales; and precipitation of jarosite, dolomite, and some gypsum.

The saturation indices for the mine-water with respect to the above minerals should eventually be checked using the PHREEQE program, when complete analyses (including Total Inorganic Carbon), and corresponding field measurements of temperature, pH and Eh become available for the mine water.

Robert O. van Everdingen 12 March 1992

STATION:	SYDNEY, RAIN mm	Nova Sco	tia	Location:		46*10'8	60*03'Я		Elevatio	n:	62 m		
HONTE	JAN	FEB	MAR	APR	MAY	JUN	1 0 ľ	X OG	SZP	OCT	NOV	DEC	Ye
- 1978	165.0	31.0	66.8	94.7	39.5	133.1	41.5	41.5	127.3	122.0	45.9	49.5	95
1979	117.2	89.2	131.7	66.5	121.4	42.0	143.0	117.7	75.8	219.7	130.1	172.6	142
1980	56.0	0.5	114.4	160.7	109.6	77.6	91.5	97.3	123.4	147.2	147.2	132.9	125
1981	57.3	60.9	75.8	63.4	181.3	74.4	115.5	156.2	133.6	193.4	135.5	151.0	139
1982	127.6	90.0	67.2	170.0	138.0	153 4	40 4	74 6	95.2	87.8	117.6	81.7	124
102	152 6	19.0	188 4	191 2	133.6	199.1 59 K	210.3	142.0	169 6	103.0	170 0	122 3	166
1000	141 5	90.2	100.1	175 7	123.0	30.0 77 C	50.9	192.0	100.0	103.0	07 2	72 0	100
1707	113.3	03.0 16.0	(1.1	10.0	114.0	101.0	JU./	103.7	110.1	01.0	3/.J 02 0	F J . J	111
1900	120.0	47.7	09.3	90.0 152 (100.0	102.0	19.0	30.0	42.3	07.0	03.0	30.1	73
1986	128.0	3,0	28.0	133.0	55.1	101.5	115.8	16.0	130.4	81.3	116.9	30.2	100
1987	46.0	41.2	25.4	153.2	15.8	147.2	17.9	55.0	180.8	193.5	166.0	78.3	112
1988	51.4	161.8	91.8	230.8	95.0	100.1	143.4	119.7	69.6	196.8	173.0	22.0	145
1989	56.4	58.5	34.6	62.8	22.6	99.2	12.7	61.2	119.6	134.0	150.2	20.2	86
1990	65.0	54.1	29.8	161.8	189.7	93.1	48.4	62.5	153.0	177.2	113.2	299.2	- 144
1991	52.2	54.9	109.4	39.1		33.4	93.0	112.5	167.0	179.3	186.6	52.6	108
10-Y AVC.	84.5	64.6	69.7	130.8	103.7	101.6	87.7	103.6	125.5	137.2	137.3	89.8	122
*********	SNOW. cm	=========			1122222	================			******				
NONTH	JAN	PEB	MAR	APR	MYA	JUN	JQL	X UG	SEP	OCT	NOV	DEC	Y E
1978	82.5	67.0	69.2	45.5	0.2	0.0	0.0	0.0	0.0	0.0	30.3	65.5	36
1979	30.9	29.5	31.2	27.6	0.4	0.0	0.0	0.0	0.0	0.0	5.4	43.8	16
1980	49.0	68.1	24.3	0.0	2.2	0.0	0.0	0.0	0.0	0.0	25.6	69.4	23
1981	105.0	10.2	19.7	38.2	0.0	0.0	0.0	0.0	0.0	0.0	7.4	71.7	25
1982	121 6	83.5	35 8	22 0	0.0	0.0	0.0	0.0	0.0	0.2	8 8	48 7	32
1001	15 1	159 0	33.0	1 1	0.0	0.0	0.0 0.0	0.0	6.0	6 A	1 9	100 6	13
1007	4J.J 60 1	110.1	40 A	1.1	1.0	v.v 0 0	0.0	0.0	0.0	10	12 4	100.0	10
101	00.J EA A	11.0	00.V	20.0	1.1	V.V A A	0.0	0.0	0.0	2.0	19.1	110	20
1983	39.9	00.Z	36.9	20.5	10,4	0.0	0.0	0.0	0.0	1.2	20.3	113.4	20
1986	JZ.4	121.2	80.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	42.4	32.9	30
1987	119.6	\$5.1	101.9	10.0	0.0	0.0	0.0	0.0	0.0	0.0	2.8	130.7	41
1988	67.1	30.6	54.2	36.6	D,4	0.0	D.0	0.0	0.0	1.0	19.0	55.5	26
1989	68.9	92.5	101.2	38.4	0,0	0.0	0.0	0.0	0.0	0.4	58.2	41.8	40
1990	87.1	61.3	25.6	7.4	13.2	0.0	0.0	0.0	0.0	0.2	17.2	15.5	22
1991	58.2	25.5	55.1	12.1		0.0	0.0	0.0	0.0	4.4	1.6	79.3	23
10-Y AVG.	77.6	67.7	58.1	20.1	3.1	0.0	0.0	0.0	0.0	1.5	18.3	67.1	31
	TOTAL PRI	========= ECIPI7ATI	:::::::: [{]} mm		=======								
MONTE	JAN	FEB	MAR	APR	NYA	JON	JOL	λŪĠ	SZP	OCT	NOV	DEC	YE
1978	245.9	96.4	136.9	147.1	39.7	133.1	41.5	41.5	127.3	122.0	71.9	112.1	131
1979	145.9	117.9	162.4	93.5	121.4	42.0	143.0	117.7	75.8	219.7	135.1	213.4	158
1980	107.1	67.1	139.7	160.7	111.8	77.6	91.5	97.3	123.4	147.1	171.8	200.6	149
1981	160.1	70.3	95.5	104.3	181.3	74.4	115.5	156.2	133.6	193.4	144.5	220.0	164
1982	240.2	171.7	98.0	192.0	138.9	153.4	40.4	74.6	95.2	88 D	125.8	128.9	154
1983	195.2	143.3	203 2	185.6	123 6	58 6	218 0	142 0	168 6	103 0	173 0	199.6	191
1084	205 8	100 4	107 0	201 1	116 0	73 K	50.7	181 0	120.0	£0.0	100.0	117 3	145
170%	102 3	117 C	117 0	1. FV3. 1 7	112 V	103 0	JV./ 76 A	0C C	120.1	07.0 N2 0	107./	140 C	100
1700	175 N	119.3	11/.7	04./ 166 m	111'A	0.101 101 7	13.V 115 A	13.0 96 A	12.3	70.0	103./	133.0 133.0	120
1986	1/2.8	120.2	114.3	130.2	55.1	101.5	112.8	fb.U	130.4	81.5	120.4	2,10	122
1987	159.0	99.9	124.7	163.2	45.8	147.2	17.9	55.0	180,5	193.5	168.6	207.7	120
1988	118.5	191.6	140.6	267.2	95.4	100.1	143.4	119.7	69.6	197.8	191.4	74.5	170
1989	124.1	149.4	135.4	92.4	22.6	99.2	42.7	61.2	119.6	134.4	207.2	58.8	124
1990	148.5	112.1	54.8	169.2	202.9	93.1	48.4	62.5	153.0	177.4	130.4	314.7	166
1991	108.8	80.4	164.5	51.2		33.4	93.0	112.5	167.0	183.7	188.2	129.7	131

1000 -

10

··· ·

-96

STATION:	SYDNEY, N MEAN DAIL	iova Scot Y TEHPER	ia ATURE.	Location: degree C		16*10'BI	50≭03'¥	ł	Elevation:	6	2 m		
YEAR	JAN	PEB	HAR	APR	KVA	JUN	JOT	YOC	SEP	OCT	NOV	DEC	ANNUAL
1978	-4.5	-6.4	-3.8	0.8	8.0	13.7	17.9	17.9	11.0	7.8	0.7	-3.2	5.0
1979	-3.2	-8.3	0.3	2.3	9.4	14.5	18.0	16.9	12.9	8.8	5.5	-1.4	6.3
1980	-5.6	-7.1	3.3	2.7	6.2	12.4	16.7	16.8	12.7	1.1	2.6	-4.4	5.3
1981	-6.8	-2.5	-0.1	3.2	9.4	13.5	16.9	17.1	13.6	7.9	4.3	1.1	δ.5
1982	-7.0	-7.4	-4.0	2.9	6.7	10.4	18.1	16.0	14.0	7.5	5.0	-0.8	5.1
1983	-3.2	-4.5	-1.0	4.3	8.0	14.3	17.4	16.8	14.8	9.4	4.1	-2.0	6.5
1984	-5.7	-2.7	-3,2	1.8	9.1	12.7	19.4	19.9	12.6	7.4	3.5	-1.1	6.1
1985	-8.2	-6.5	-4.4	0.5	7.1	12.1	18.9	17.4	13.5	7.5	2.3	-4.2	4.7
1986	-3.9	-7.9	-4.4	2.7	7.5	11.8	15.1	16.8	11.1	7.0	1.6	-3.0	4.5
1987	-5.4	-7.4	-3.8	3.1	7.8	12.1	18.1	16.9	13.5	9.0	2.8	-1.9	5.4
1988	-5.7	-5.3	-2.9	1.9	9.9	12.4	17.6	18.1	12.3	7.7	4.2	-3.6	5.6
1989	-5.4	-8.1	-5.2	2.9	10.3	13.2	16.5	19.0	13.8	7.6	3.1	-7.0	5.1
1990	-4.3	-9.1	-4.6	2.8	5.9	14.7	18.0	19.8	13.7	8.4	3.9	-0.3	5.7
1991	-8.8	-5.8	-1.0	1.9		12.7	17.6	17.6	13.3	9.2	5.0	-3.0	5.3
14-Y AVG.	-5.6	-6.4	-2.5	2.4	8.1	12.9	17.6	17.6	13.1	8.1	3.5	-2.5	5.5

• - 2 -

CLINATE NORMALS 1951-1980

.

j,

ł

Month	JYX	PEB	MAR	APR	ЖЛҮ	JUN	JOL	YOG	SEP	0CT	NON	DEC	YEAR
Precipitati	ion and	rain in	nn; snow	ia cm				<u></u>			<u></u>		
RAINFALL	76.0	57.0	66.6	74.5	89.4	82.0	81.4	101.3	87.2	120.0	148.1	99.0	1082.5
SNOWPALL	74.5	68.6	63.9	25.4	5.3	0.0	0.0	0.0	0.0	2.6	12.0	65.6	317.9
TOTAL	149.0	123.6	131.4	102.0	95.2	82.1	81.4	101.3	87.2	122.7	160.4	163.6	1399.9
ST.DEV.	49.7	{ 1.3	42.3	40.7	45.5	41.4	42.5	47.2	37.8	52.1	67.1	50.1	143.7
Nean Temper	atures	in degro	ee C										
DAILY MAX.	-0.8	-1.6	1.4	6.0	12.5	18.9	23.1	22.6	18.5	12.7	7.3	1.7	10.2
DAILY MIN.	-8.5	-10.1	-6.3	-2.1	2.3	7.5	12.3	12.6	8.5	4.1	0.3	-5.2	1.3
DAILY MEAN	-4.7	-5.9	-2.5	2.0	7.4	13.2	17.7	17.6	13.5	8.4	3.8	-1.8	5.7
ST.DEY.	2.3	2.6	1.5	1.4	1.4	1.2	1.5	1.1	1.2	1.0	1.5	2.1	0.8
Freezing In	idex:		-144.2	degree-da	 1 7								
Thaving Ind	leı:		2559.1	degree-da	1 y								
		PRECIPIT	NTION EX	TRENES -	24 HOURS	(39-40	years)						
Konth	JAN	PEB	MAR	APR	KAY	JUN	JOL	AUG	SEP	001	NON	DEC	YEAR
RAIN, mm	57.2	58.4	52.8	56.1	93.5	72.1	63.8	62.2	90.9	58.9	97.3	94.0	97.3
SNOW, cm	44.5	45.2	37.3	29.2	24.9	1.0	0.0	0.0	0.0	15.7	21.6	58.7	58.7
TOTAL, mm	57.2	58.7	67.1	56.1	93.5	72.1	63.8	62.2	90.9	58.9	97.3	95.0	97.3
Kean Annual	Precip	itation:		1400 m	<u>ــــــــــــــــــــــــــــــــــــ</u>			•	_	· · · ·			
Mean Annual	Lake E	vaporati	01:	550 r	าสเ								
Mean Annual	Evapot	ranspira	tion:	510 m	ın								
Hean Annual	Runoff	:		900 π	าซา								

FIGURE 2. SYDNEY AIRPORT ANNUAL PRECIPITATION 1981-1991

- RAIN - - SNOW - TOTAL

FIGURE 4. SYDNEY AIRPORT

FIGURE 5. SYDNEY AIRPORT MONTHLY PRECIPITATION RANGES 1981-1991

YEAR	PRODUCTION TONNES	ESTIMATED VOLUME cu.ft	AVERAGE THICKNESS ft	AREA) sq.ft	CUMULATIVE AREA sq.ft
1975	48,084	849,035	4,92	172,524	172,524
1976	202,293	3,571,955	4.92	725,821	898,345
1977	167,596	2,959,298	4.92	601,329	1,499,675
1978	121,142	2,139,045	4.92	434,654	1,934,329
1979	108,879	1,922,513	4.92	390,655	2,324,983
1980	206,280	3,642,355	4.92	740,126	3,065,110
1981	449,580	7,938,384	4.92	1,613,080	4,678,189
1982	473,707	8,364,402	4.92	1,699,647	6,377,836
1983	735,425	12,985,644	4.92	2,638,683	9,016,519
1984	947,536	16,730,959	4.92	3,399,731	12,416,250
1985	993,758	17,547,116	4.92	3,565,574	15,981,824
1986	1,097,346	19,376,204	4.92	3,937,245	19,919,068
1987	1,189,203	20,998,154	4.92	4,266,825	24,185,893

Table 2. PRINCE MINE - POI**S2** ACONI, N.S. A. MINED AREAS from PRODUCTION RECORD

11-Mar-92

	WIDTH ft	LENGTH ft	AREA sq.ft	CUMULATIVE AREA sq.ft	AVERAGE ELEVATION ft	AVERAGE GRND.ELEV. ft
BLOCKS				······································	*****	
A	->	->	212,500	212,500	-40	118
В	->	->	230,000	442,500	-40	105
С	->	->	1,080,000	1,522,500	-75	95
D	->	->	39,375	1,561,875	-115	9 5
Е	->	->	835,000	2,396,875	-120	65
F	->	->	120,000	2,516,875	-220	75
"DEEPS"						
1	20	3250	65,000	65,000	-175	100
2	20	6400	128,000	193,000	-175	100
3	20	6300	126,000	319,000	-175	100
4	20	6150	123,000	442,000	-175	100
5	20	4450	89,000	531,000	-175	100
6	20	2150	43,000	574,000	-175	100
			TOTAL:	3,090,875		

Table 2. PRINCE MINE - POINT ACONI, N.S. B. "OLD" MINED AREAS from MAPS

Table 2. PRINCE MINE - POINT ACONI, N.S. C. DISCHARGE

63 HINED AREAS

START 218158 MIDTE ELECTE INDUTIONAL CUMPLATIVE AND. DETA VI. 1375 Ann. Prod. 75-12-31 (see Table LA) 172,524 -1156 11,558 1375 Ann. Prod. 75-12-31 (see Table LA) 172,524 -145. 11,558 1376 Ann. Prod. 77-12-31 (see Table LA) 601,223 1433,435 -146. 1377 Ann. Prod. 79-12-31 (see Table LA) 300,655 -170 31,551 102,337 13976 Ann. Prod. 79-12-31 (see Table LA) 300,655 -125. 12,666 186,765 1500C Rassmedl 30-651 2,060 330,655 12,650 10,866 196,625 1500C R 80-05-14 20 6,2200 1,244,000 3,391,110 -550. 12,060 10,050 1500C R 80-05-14 20 2,850 5,750,00 4,771,10 -591.0 12,902 12,902 12,902 12,902 12,902 12,902 12,902 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>RSTIMATED</th> <th>INDIVIDUAL</th> <th>CUNDLATIVE</th>							RSTIMATED	INDIVIDUAL	CUNDLATIVE
AB22 DATE DATE ft ft st, ft 1000 <td>STA</td> <td>.RT PINISH</td> <td>WIDTH</td> <td>LENGTH</td> <td>INDIVIDUAL</td> <td>CUMULATIVE</td> <td>AVG.DEPTH</td> <td>DISCHARGE</td> <td>DISCHARCE</td>	STA	.RT PINISH	WIDTH	LENGTH	INDIVIDUAL	CUMULATIVE	AVG.DEPTH	DISCHARGE	DISCHARCE
1975 (Ann. Prod.) 75-12-31 (see Table 1A) 172,524 -175,524 -175,524 -155 11,558<	AREA DA	TE DATE	ft	ft	sa.ft	sg.ft)	ft a.s.l.	L/day	L/day
1975 (Ann. Prod.) 75-12-31 (see Table 1A) 172,524 , 172,524 - 158 1.588 11,588 1976 (Ann. Prod.) 75-12-31 (see Table 1A) 601,229 1,439,455 - 145 53,156 44,766 1971 (Ann. Prod.) 77-12-31 (see Table 1A) 444,654 1,534,329 - 120 21,844 124,521 1979 (Ann. Prod.) 77-12-31 (see Table 1A) 300,125 2,1439,675 - 178 37,571 102,337 1978 (Ann. Prod.) 77-12-31 (see Table 1A) 300,125 2,1439,343 - 185 22,429 146,155 1979 (Ann. Prod.) 79-12-31 (see Table 1A) 300,125 2,1439,310 - 552 2,52,100 184,737 1979 (Ann. Prod.) 79-12-31 (see Table 1A) 300,126 (see 5,55,110 - 575.0 1,1866 158,633 1970 (Ann. Prod.) 79-12-31 (see Table 1A) 300,126 (see 5,55,110 - 550.0 9,365 194,042 1800CR 1W 80-05-14 (see 786 12,17 200 2,650 (see 6,50.0 5,52,110 - 550.0 12,902 219,010 1800CR 28 41-65-23 (see 12-17 215 3,300 728,850 (scol 5,52,960 - 557.0 14,959 233,963 1800CR 28 43-02-03 38 4-02-16 360 2,870 1,033,200 9,455,160 - 657.0 44,572 234,593 1800CR 48 3-04-13 84-02-16 360 2,870 1,033,200 9,455,160 - 657.0 42,572 324,593 1800CR 48 5-04-12 84-12-07 335 6,760 2,175,000 11,525,160 - 657.5 41,517 33,375 (30,967) 1800CR 48 5-04-12 84-12-17 335 6,760 1,755,7160 1,760 - 657.5 41,237 460,103 1800CR 48 5-04-12 84-12-11 370 7,370 2,726,900 1,377,500 - 717.5 29,516 507,407 1800CR 78 84-11-19 88-66-3 375 4,850 1,818,750 21,009,100 - 717.5 29,516 502,407 1800CR 78 84-11-19 88-66-3 375 4,850 1,818,750 21,009,100 - 717.5 29,516 502,407 1800CR 78 84-11-					-1	1		-1 . 4	-11
1976 [Abs. 2red.] 7:1-12-31 [see Table 1A] 775 821 - 1985 [A45145 53.168 64,766 1977 [Abs. 2red.] 7:1-2-31 [see Table 1A] 601.329 1,499,675176 33.571 102,333 1978 [Abs. 2red.] 7:1-2-31 [see Table 1A] 330,655 2,324,983185 22,429 145,750 1990 [Abs. 2red.] 7:1-2-31 [see Table 1A] 330,655 2,324,983185 22,429 145,750 1990 [Abs. 2red.] 7:1-2-31 [see Table 1A] 330,655 2,324,983185 22,429 145,750 1990 [Abs. 2red.] 7:1-2-31 [see Table 1A] 330,655 2,324,983185 22,429 145,750 1990 [Abs. 2red.] 7:1-2-31 [see Table 1A] 300,0124 2,655 (see 1.575.51 12,066 206,100 1990 [Abs. 2red.] 7:1-2-31 [see Table 1A] 300,0124 2,656 (see 1.575.51 12,066 206,100 1000 [SLOCK 18 30-12-00 81-05-11 200 2,850 [sto.] 0.000 4,379,110 - 557.5 12,066 206,100 14,959 233,950 1000 [SLOCK 28 1-05-21 84-12-17 215 3,000 [sto.] 0.3,700 9,055,160 - 655.0 12,969 233,700 14,959 233,950 1000 [SLOCK 28 3-12-0-18 4-12-47 325 [sto.] 0.3,700 9,055,160 - 655.0 19,571,960 14,959 233,703 1000 [SLOCK 48 53-12-0-18 4-12 325 [sto.] 1,71,500 11,352,160 [sto.] 1,537,960 - 657.0 [sto.] 33,77 480,900 1000 [SLOCK 48 53-12-03 375 5,260 [sto.] 1,71,500 [sto.] 1,750 [sto.] 33,77 480,900 1000 [SLOCK 48 53-10-23 375 5,260 [sto.] 1,751,900 [sto.] 1,750 [sto.] 1,730 [sto.] 1,750 1000 [SLOCK 48 53-10-13 30 [sto.] 1,750 [sto.] 1,750 [sto.] 1,750 [sto.] 1,730	1975 (Ann.Pro	d.) 75-12-31	(see Table	e 1A)	172,524	172,524	-158	11,598	11,598
1977 [Ann.Prod.] 77-12-31 [see Table 1A] 601 339 1,493,433 -110 37,511 102,333 1978 [Ann.Prod.] 78-12-31 [see Table 1A] 330,655 2,24,833 -125 21,941 124,321 1979 [Ann.Prod.] 78-12-31 [see Table 1A] 330,655 2,24,833 -125 21,941 124,321 1979 [Ann.Prod.] 78-12-31 [see Table 1A] 330,655 2,24,833 -125 22,142 146,750 1970 [Ann.Prod.] 78-12-31 [see Table 1A] 330,655 2,24,833 -125 25,100 146,750 1900 [Ann.Prod.] 78-12-31 [see Table 1A] 330,125 2,555,110 -525 11.566 565,510 -555 14,656 1800CK 1E 80-12-09 81-05-11 200 2,850 510,000 4,879,110 -557.51 14,667 565 565,750 14,595 235,805 575,000 4,275,610 675,85 245,910 530,800 452,900 -555,80 525,850 575,750 14,595 235,857,930 786,800 11,252,160 -605,750 14,595 235,879,930 786,870,876 786,870,876 786,870,876 <td>1976 (Ann.Pro</td> <td>d.) 76-12-31</td> <td>(see Table</td> <td>= 1A)</td> <td>725,821</td> <td>- 898, 345</td> <td>-145</td> <td>53,168</td> <td>64,766</td>	1976 (Ann.Pro	d.) 76-12-31	(see Table	= 1A)	725,821	- 898, 345	-145	53,168	64,766
1978 (Am. Prod.) 78-12-31 (see Table 1A) 343 (54 1, 334, 329 -210 71, 94 124, 212 1979 (Am. Prod.) 79-12-31 (see Table 1A) 300 (55 2, 324, 983 -185 22, 429 146, 750 1980 (Am. Prod.) 80-66-14 (see Table 1A) 300 (55 2, 324, 983 -185 22, 429 146, 750 1980 (Am. Prod.) 80-66-14 (see Table 1A) 300 (55 2, 324, 983 -185 22, 429 146, 750 SLOCZ H1 80-66-14 20 62200 1, 244, 000 0, 30, 90, 110 -520.0 9, 305 194, 642 SLOCZ H2 81-05-25 81-12-17 215 3, 300 645, 000 5, 524, 110 -590.0 11, 950 218, 600 12, 966 -605.0 34, 800 12, 966 219, 021 219, 000 8, 721, 960 -605.0 34, 800 12, 960 -515.0 14, 950 323, 663 610.0 373, 803 9, 525 81, 750 13, 937, 528 510.0 61.0 375, 52, 20, 19, 750 131, 937, 528 50, 606 52, 50 15, 50 15, 35, 50 52, 50 15, 37, 53 40, 600 375 5, 2	1977 (Ann.Pro	d.) 77-12-31	(see Table	e 18)	601,329	1,499,675	-170	37,571	102,337
1979 (hon.Prod.) 73-12-31 (see Table lA) 350 (55 2, 324, 983 -185 122, 429 146, 518 SLOPE 11-5(seemed) 80-06-14 80-05-14 (see Table lA) 330, 126 2, 555, 119 -255 11, 86 156, 553 SLOPE 11-5(seemed) 80-06-14 80-06-12 200 2, 650 410, 000 4, 309, 110 -522, 52 51, 100 184, 137 SLOPE 11-5(seemed) 81-06-12 200 2, 650 500, 004 4, 309, 110 -527, 51 12, 066 206, 100 SLOCK 12 81-05-25 81-12-17 215 3, 000 645, 000 5, 524, 110 -590, 0 12, 902 11, 515 238, 650 552, 560, 0 12, 902 11, 515 238, 515 14, 515 238, 510 14, 515 238, 510 153, 510 14, 515 238, 510 153, 510 153, 513 14, 515 238, 510 153, 516 153, 516 153, 516 153, 516 153, 516 153, 516 153, 516 153, 516 153, 516 153, 516 153, 516 153, 516 153, 516	1978 (Ann.Pro	d.) 78-12-31	(see Table	e 18)	434.654	1.934.329	-210	21.984	124,321
1940 (hon.Prod.) 80-65-14 (see Table 1A) 330,126 2,655,110 -235 11,886 158,636 SLOPE A1-5(assumed) 80-66-14 20 62200 1,244,000 3,893,110 -520.5 25,100 14,932 SLOCE IX 80-15-14 20.06 2,056 40,000 4,803,110 -520.0 9,305 194,042 SLOCE IX 80-27-09 81-95-11 200 2,850 570,000 4,873,110 -557.5 12,066 215,00 12,902 219,010 SLOCE IX 81-20-20 82-19-10 215 3,300 728,850 572,060 -573.5 12,068 287,933 SLOCE IX 82-09-10 215 3,300 728,850 572,060 -575.10 14,1559 233,650 SLOCE IX 83-10-25 83-10-25 216 6,100 1,763,000 10,252,160 -637.5 40,672 238,659 SLOCE X8 84-09-07 85-90-99 360 6,710 2,415,600 13,537,60 -51.5 2,51,50 71,373 71,500 71,500 71,500 71,75 71,60	1979 (Ann.Pro	d.) 79-12-31	(see Table	e 1A)	390.655	2.324.983	-185	22.429	146.750
SLOPE H1-5{assumed} 80-06-14 20 62200 1,244,000 3,839,110 -562.5 26,100 184,723 SLOPE H1 80-05-14 80-06-14 20 2,850 410,000 4,309,110 -520.0 9,305 194,022 SLOPE H1 80-05-25 81-12-17 215 3,300 645,000 5,524,110 -590.0 12,902 219,010 SLOCK XE 81-02-25 81-12-17 215 3,300 645,000 5,524,110 -590.0 12,902 219,010 SLOCK XE 82-09-13 83-10-25 290 6,100 1,759,000 80,150 -623.0 13,510 2724,559 SLOCK XE 84-09-07 85-09-09 350 6,710 2,415,600 13,657,760 -670.0 42,554 371,520 SLOCK KE 86-08-12 86-10-21 355 5,260 1,972,500 17,017.60 -657.5 34,503 13,997 228,659 SLOCK KE 86-02-127 86-10-13 375 5,260 1,927,510 11,030 7,850 2,927,160 -652.5 1,214 40,90	1980 (Ann.Pro	d.) 80-05-14	(see Table	= 1A)	330,126	2.655.110	-295	11.886	158,636
BLOCK 14 80-05-14 80-08-27 200 2,050 410,000 4,309,110 -520.0 9,305 194,042 BLOCK 12 80-12-09 81-05-11 200 2,850 570,000 4,879,110 -557.5 17,066 206,100 BLOCK 28 82-09-13 83-10-217 215 3,300 728,850 6,252,960 -575.0 14,959 233,969 BLOCK 38 82-09-13 83-10-25 90 6,100 1,769,000 8,013,960 -605.0 34,508 268,477 BLOCK 48 83-12-01 84-12-07 325 6,760 2,137,000 11,252,160 -637.5 4(),572 228,650 BLOCK 48 8-12-90-70 85-09-19 360 6,710 2,415,600 13,657,760 -615.0 26,319 397,528 BLOCK 48 8-09-07 85-09-09 350 6,710 2,415,600 13,657,760 -615.0 26,319 397,528 BLOCK 48 8-09-07 85-09-09 350 6,710 2,415,600 13,575,560 -652.5 23,197 460,100 BLOCK 48 8-09-12 86-10-23 375 5,260 1,972,500 17,011,760 -657.5 33,375 430,902 BLOCK 48 87-04-24 87-12-11 370 1,880 655,600 19,272,160 -652.5 23,197 460,100 BLOCK 48 87-04-24 87-12-11 370 1,880 655,600 18,272,160 -652.5 12,311 472,401 BLOCK 48 87-04-24 87-12-11 370 7,735 0,253,317,810 -777.5 47,593 550,263 BLOCK 48 81-10-95 88-12-19 375 4,450 1,818,750 21,000,910 -717.5 29,916 550,263,973 BLOCK 48 87-04-24 87-12-11 370 7,735 0,2904,500 28,274,810 -707.5 44,850 623,973 BLOCK 48 87-04-24 87-12-11 370 7,850 2,904,500 28,274,810 -707.5 44,850 623,973 BLOCK 48 87-04-24 87-12-11 370 7,850 2,904,500 28,274,810 -707.5 44,850 623,973 BLOCK 18 87-10-05 88-12-19 375 4,140 1,552,500 25,310,310 -742.5 24,576 574,373 BLOCK 18 87-10-05 80-12-11 470 7,775 3,654,250 35,030,660 -760.0 56,745 730,051 BLOCK 18 87-10-19 90-05-23 370 7,800 3,918,750 3,943,410 -707.5 47,928 473,900 BLOCK 18 87-10-01 470 7,780 3,918,750 3,943,410 -727.5 47,928 473,900 BLOCK 18 87-10-19 50-05-23 370 7,800 3,918,700 36,600 -760.0 56,745 730,055 SLOCK 18 85-10-19 90-05-23 370 7,800 3,918,700 36,600 -760.0 56,745 730,055 SLOCK 18 85-10-19 00-05-23 370 7,800 3,918,750 3,943,410 -727.5 47,818 473 BLOCK 18 85-10-19 00-05-23 370 7,800 3,918,700 36,600 -760.0 56,745 730,055 SLOCK 18 85-10-10 20 7,900 138,000 36,600 -562.5 3,315 3,105 SLOCK 18 85-10-10 20 7,900 138,000 36,600 -562.5 3,315 3,105 SLOCK 198 estimated 90-	SLOPE 11-5(assumed	80-06-14	20	67700	1,244,000	3,899,110	-562.5	26,100	184.737
BLOCK 1E 88-12-09 81-05-51 200 2,850 570,000 4,879,110 -557.5 12,062 205,100 BLOCK 1E 80-105-25 81-12-17 215 3,300 645,000 5,524,110 -590.0 11,952 213,902 213,902 BLOCK 3E 82-09-13 83-10-25 290 6,100 1,769,000 8,021,960 -605.0 34,568 268,477 BLOCK 3E 82-09-13 83-10-25 290 6,100 1,759,000 8,021,960 -605.0 34,568 268,477 BLOCK 3E 84-09-07 85-09-09 360 6,710 2,415,600 13,657,760 -670.0 42,550 371,203 140,579,500 -671.5 40,572 31,375 460,100 18,076,560 -632.5 23,197 460,100 BLOCK 4W 85-08-11 370 7,370 2,726,900 3,817,810 -672.5 47,544 554,401 BLOCK 7W 88-11-03 89-12-11 370 7,800 2,915,600 313,74.110 -772.5	BLOCK IN 80-05-	14 80-08-27	200	2 050	410 000	4 309 110	-520 0	9 305	194 042
BLOCK 22 81-05-25 81-12-17 215 3,000 645,000 5,524,110 -590.0 17,902 215,020 BLOCK 28 82-09-10 82-10-25 25 6,100 1,769,00 8,712,960 -575.0 14,559 233,950 BLOCK 38 83-08-19 84-02-16 360 2,870 1,769,00 8,071,960 -625.0 19,510 287,987 BLOCK 48 83-12-01 84-12-07 325 6,760 2,157,000 11,525,160 -637.5 40,572 322,655 BLOCK 44 85-08-12 86-04-21 325 4,220 1,371,500 15,039,260 -615.0 26,319 397,528 BLOCK 44 85-08-12 86-04-21 325 4,220 1,571,500 17,011,760 -652.5 23,317 409,010 -717.5 23,916 50,025,317,310 -612.5 23,916 50,025,317,317,310 -742.5 24,676 574,937 BLOCK 444 87-10-3 89-12-11 370 7,800 2,916,500 317,913,100 -7	BLOCK 1E 80-12-	09 81-05-11	200	2 850	570 000	4 879 110	-557 5	12 066	206 108
BLOCK 2W 82-02-03 82-09-10 215 3,390 728,850 6,252,960 -575.0 14,959 233,943 BLOCK 3W 82-09-13 83-10-25 290 6,100 1,769,000 8,021,960 -605.0 34,588 266,477 BLOCK 4W 83-12-01 84-12-07 325 6,700 2,137,400 13,637,600 -605.0 46,672 328,659 BLOCK 4W 83-12-01 84-12-07 325 6,700 2,137,500 15,037,560 -615.0 72,193 31,50 30,902 BLOCK 4W 85-08-01-23 86-10-03 375 5,260 1,972,500 17,011,760 -697.5 31,375 40,000 BLOCK 5W 86-04-21 87-05-11 300 7,370 1,818,750 19,72,150 -662.5 12,311,400 BLOCK 6W 87-14-05 88-12-13 370 7,370 2,72,690 2,317,131 -77.5 4,72,54 550,261 BLOCK 6W 87-14-03 89-12-11 370 7,370 2,72,690	BLOCK 2E 81-05-	25 81-12-17	215	3.000	645,000	5.524.110	-590.0	12,902	219,010
LOCK 32 B2-09-13 B3-10-25 219 6,100 1,759,000 8,021,900 -605.0 34,500 267,03 BLOCK 38 B3-08-13 B4-02-16 360 2,870 1,033,200 9,055,160 -625.0 34,500 237,967 BLOCK 48 B3-10-21 B4-12-07 35 6,760 2,197,000 11,252,160 -637.5 40,672 328,653 BLOCK 48 B3-08-12 86-04-21 35 6,760 1,917,500 -615.0 25,197 460,100 BLOCK 58 86-03-11 87-05-11 320 4,890 1,514,800 15,515,500 -612.5 12,917 460,100 BLOCK 58 86-03-11 87-05-13 370 7,370 2,726,900 3,317,810 -672.5 17,351 450,500 12,917 140,155 10,203,100 -717.5 2,913 460,100 10,317,410 -717.5 2,913 460,100 12,914,100 -672.5 17,454 550,261 550,203 51,600,31,716,410 717.55 5,74,537 50,	RLOCK 2W 82-02-	09 82-09-10	215	3 290	778 850	6 252 960	-575 0	14 959	232 969
LCCK 3K 83-08-13 84-02-16 350 2,700 1,033,200 9,055,160 -623.0 13,750 227,453 BLOCK 4K 83-12-01 84-12-07 325 6,760 2,137,500 15,150 -637.5 40,672 322,659 BLOCK 4K 85-04-27 86-10-03 375 5,260 1,972,500 15,015,60 -642.5 12,314,500 33,75 430,900 BLOCK 4K 85-04-27 86-10-03 375 5,260 1,972,500 17,017,60 -647.5 33,375 430,900 BLOCK 4K 85-04-27 86-10-03 375 4,800 1,818,750 13,91,700 -642.5 12,311,730 1,800 655,600 13,72,100 -642.5 12,311,730 1,800 655,600 33,75 430,900 BLOCK 4K 86-10-19 88-60-3 375 4,480 1,818,750 23,914,74,810 -707.5 47,654 550,261 BLOCK 5K 86-10-13 375 4,400 1,552,500 53,103,53,100 -742.5 74,660 <td>BLOCK 3P 82-09-</td> <td>13 83-10-25</td> <td>213</td> <td>6 100</td> <td>1 769 000</td> <td>8 021 960</td> <td>- 605 0</td> <td>34 508</td> <td>255,505</td>	BLOCK 3P 82-09-	13 83-10-25	213	6 100	1 769 000	8 021 960	- 605 0	34 508	255,505
Date: Display: Di	BLOCK 32 83-08-	10 84-02-16	360	2 810	1,707,000	0,021,300	-625 0	10 510	200,177
BLOCK 16 05 04 04 05 05 07 07 05 05 05 07	BLOCK JR 93-10-		205	6 760	1,000,200	11 252 160	-637 6	10,510	207,501
LAUCK 4K 85-08-12 86-04-21 325 4,202 1,371,500 15,035,206 -615.0 25,319 377,528 BLOCK 4K 85-08-12 7 66-10-03 375 5,260 1,972,500 17,011,760 -697.5 33,375 430,902 BLOCK 5K 86-08-11 87-05-11 320 4,890 1,564,800 18,756,560 -652.5 29,197 460,100 BLOCK 7K 86-08-11 87-04-24 87-12-11 370 1,806 695,500 19,272,160 -662.5 12,391 477,491 BLOCK 7K 86-11-19 88-06-03 375 4,850 1,818,750 21,090,910 -717.5 29,916 502,407 BLOCK 5K 87-10-05 88-12-19 370 7,370 2,776,900 23,817,810 -672.5 47,854 550,261 BLOCK 5K 87-10-05 88-12-11 370 7,850 2,904,500 28,274,810 -707.5 44,450 623,587 BLOCK 5K 87-10-05 88-12-11 370 7,850 2,904,500 28,274,810 -707.5 4,456 574,937 BLOCK 5K 87-10-19 90-06-01 20 9,300 186,000 28,460,810 -837.5 2,621 625,000 BLOCK 5K 88-10-19 90-01-01 20 9,300 186,000 28,460,810 -837.5 2,621 625,000 BLOCK 5K 90-07-03 90-11-21 470 7,75 3,554,250 35,030,660 -760.6 56,745 730,051 AFTER 21 K0V. 1990: 90-11-21 470 7,75 3,554,250 35,030,660 -760.5 5,745 730,051 AFTER 21 K0V. 1990: 90-11-21 470 7,890 3,708,300 46,614,460 -872.5 50,160 894,300 BLOCK 10W estimated 92-01-01 475 8,330 3,956,750 42,946,160 -872.5 50,160 894,300 BLOCK 11W estimated 92-06-01 470 7,890 3,708,300 46,614,460 -872.5 50,160 894,500 SLOCK 11W estimated 92-06-01 470 7,890 3,708,300 46,614,460 -872.5 50,160 894,500 SLOCK 11W estimated 93-06-01 470 7,890 3,708,300 46,614,460 -872.5 50,160 894,500 SLOCK 11W estimated 93-06-01 470 7,890 3,708,300 50,522,760 -902.5 48,492 942,801 BLOCK 11W estimated 93-06-01 20 7,400 148,000 148,000 -562.5 3,315 6,420 SLOCK 11W estimated 93-06-01 20 7,400 148,000 148,000 -562.5 4,826 11,246 SLOCK 11W estimated 94-01-01 470 7,900 3,713,000 50,524,840 -970.0 45,175 1,020,608 SLOCK 11W estimated 94-01-01 20 7,400 148,000 1,006,000 -562.5 4,826 11,246 SLOCK 11W estimated 80-05-01 20 11,500 230,000 766,000 -562.5 4,826 11,246 SLOCK 11W estimated 80-05-01 20 11,500 230,000 1,244,000 -562.5 4,826 11,246 SLOCK 11W estimated 80-05-01 20 11,500 230,000 1,244,000 -562.5 4,826 11,246 SLOCK 11W estimated 80-05-01 20 1,	BLOCK SE BALOG	01 04 12 07	360	6 716	2,137,000	11,252,100	- 637.3	10,012	371 300
BLOCK M 65 -01-27 66 -01-27 66 -01-27 66 -01-27 66 -01-27 66 -01-27 66 -01-27 66 -01-27 66 -01-27 66 -01-27 66 -01-27 66 -01-27 66 -01-27 86 -05 -01 375 5, 260 1,972, 500 1,972, 160 -662.5 12, 31 31, 31, 31 31, 31, 31 31, 31, 31 31, 31, 31 31, 31, 31 31, 31, 31 31, 31, 31 31, 31, 31 31, 31, 31 31, 31, 31 31, 31, 31 31, 31, 31 31, 31, 31 31, 31, 31, 31, 31, 31 31, 31, 31, 31, 31, 31 31, 31, 31, 31, 31, 31 31, 31, 31, 31, 31, 31 31, 31, 31, 31, 31 31, 31, 31, 31, 31 31, 31, 31, 31, 31, 31 31, 31, 31, 31, 31, 31 31, 31, 31, 31, 31, 31 31, 31, 31, 31, 31, 31 31, 31, 31, 31, 31, 31 31, 31, 31, 31, 31 31, 31, 31, 31, 31 31, 31, 31, 31, 31, 31 31, 31, 31, 31, 31, 31 31, 31, 31, 31, 31, 31 31, 31, 31, 31, 31, 31 31, 31, 31, 31, 31 31, 31, 31, 31, 31 31, 31, 31, 31, 31, 31 31, 31, 31, 31, 31, 31 31, 31, 31, 31, 31, 31 31, 31, 31, 31, 31, 31, 31, 31, 31, 31,		10 05 03 03 10 05-04-01	200	4 110	1 271 500	15,007,700	-010.0	16 210	207 510
DUCL NE 6 6:03-11 8:0-10-03 3:13 3:20 4:490 1,55(4:80 18,55(6;560 -53:2. 32,373 4:30,902 BLOCK XA 8:0-03 3:15 4:490 1,55(4:80 18,55(6;560 -53:2. 32,313 4:30,902 BLOCK XE 8:0-11 9:88-05-03 3:15 4:490 1,818,750 21,090,910 -717.5 29,916 5:02,407 BLOCK XE 8:7-10-05 88-12-19 3:70 7,870 7,725,900 23,817,810 -672.5 47,853 BLOCK XE 8:7-10-05 88-12-13 3:70 7,850 2,904,250 25,310,310 -742.5 24,676 6:74,833 BLOCK XE 8:7-10-3 89-12-11 3:70 7,850 2,904,500 28,274,810 -707.5 48,450 6:23,387 BLOCK XE 8:7-10-3 89-12-11 3:70 7,850 2,904,500 28,274,810 -707.5 48,450 6:23,387 BLOCK XE 8:7-10-3 89-12-11 3:70 7,753 6,560 -1,500 28,274,810 -707.5 48,450 6:23,387 BLOCK YE 8:7-10-3 89-12-11 3:70 7,775 3,654,250 35,030,660 -760.0 56,745 7:30,051 BLOCK WE 38-10-19 90-65-23 3:70 7,780 2,918,750 38,949,410 -795.0 58,174 788,225 BLOCK YE 990-07-03 90-11-21 BLOCK 1W estimated 91-06-10 475 8,250 3,918,750 38,949,410 -795.0 58,174 788,225 BLOCK 1W estimated 92-01-01 470 7,890 3,708,300 46,614,460 -872.5 50,160 894,300 BLOCK 1W estimated 92-05-01 20 7,400 148,000 148,000 -562.5 3,315 6,420 SLOCK 1W estimated 92-05-01 20 7,400 155,000 536,000 -562.5 4,826 11,246 SLOCK 1W estimated 90-05-01 20 11,500 230,000 56,604 -806 -970.0 45,175 1,020,608 SLOCK 1W estimated 90-05-01 20 11,500 230,000 56,600 -562.5 4,826 11,246 SLOCK 1W estimated 90-05-01 20 11,500 230,000 56,600 -562.5 4,826 11,246 SLOPES: 3,100		12 00-04-21	323	1,220	1,371,300	13,033,200	0.010-	20,017	371,320
BLOCK AW B*0-11 B*0-11 BUCK AW A*0-24 B*1-12-11 BUCK AW A*0-42 B*1-12-11 BUCK AW A*0-42 B*1-12-11 BUCK AW A*0-42 B*1-12-11 BUCK AW BUCK AW BUCK AW B*1-12-11 BUCK AW B*1-12-11 BUCK AW A*0-24 B*1-21-13 BUCK A B*1-21-13 BUCK A B*1-21-13 B*1-21-14 B*1-21-14 B*1-21-14 B*1-21-14 B*1-21-13 B*1-21-14	DECON DE CO-UI-	21 00-10-03	313	5,200	1,912,000	11,011,700	-091.0	33,373	400,902
ALUC. NAM 6*04-24 8*-12*-11 30 1,880 8*3,800 19,272,180 **82.5 1,391 472,491 BLOCK 7E 86*-11-19 88*0-6*03 375 4,160 1,552,500 23,317,810 **72.5 47,854 550,261 BLOCK 82 7 89*05-19 375 4,160 1,552,500 23,317,810 **72.5 47,854 550,261 BLOCK 82 7 89*05-19 375 4,160 1,552,500 23,274,810 **70.5 48,450 623,387 BLOCK 7H 88*11-03 89*12*11 370 7,850 2,904,500 28,274,810 **70.5 48,450 623,387 BLOCK 7H 88*11-03 89*01*01 20 9,300 185,000 28,460,810 **83.5 2,621 667,000 BLOCK 84 89*00*10 90*01*01 20 9,300 185,000 28,460,810 **83.5 2,621 667,000 BLOCK 84 89*00*10 90*01*01 20 9,300 185,000 28,460,810 **72.5 47,298 673,306 BLOCK 84 89*00*70 90*11*21 BLOCK 10W estimated 91*06*01 475 8,250 3,918,750 38,949,410 **795.0 58,174 788,225 BLOCK 11W estimated 91*06*01 475 8,330 3,955,750 42,906,160 **83.5 55,924 844,149 BLOCK 11W estimated 91*06*01 470 7,890 3,708,300 46,614,460 **83.5 55,924 844,149 BLOCK 12W estimated 91*06*01 470 7,890 3,708,300 46,614,460 **81.5 5,608 943,309 BLOCK 13W estimated 91*06*01 470 7,800 3,713,000 56,634,860 **970.0 45,175 1,020,608 BLOCK 14W estimated 91*06*01 470 7,900 3,713,000 56,634,860 **970.0 45,175 1,020,608 BLOCK 15W estimated 90*05*01 20 7,400 148,000 148,000 **562.5 3,315 6,420 BLOCK 15W estimated 90*05*01 20 11,500 230,000 356,000 **562.5 3,315 6,420 BLOCK 15W estimated 80*05*01 20 11,500 230,000 356,000 **562.5 4,826 11,246 BS3 assumed 80*05*01 20 11,500 230,000 756,000 **562.5 4,826 11,246 BS3 assumed 80*05*01 20 11,500 230,000 756,000 **562.5 4,826 11,246 BS4 assumed 80*05*01 20 11,500 230,000 756,000 **562.5 4,826 11,246 BS4 assumed 80*05*01 20 11,500 230,000 756,000 **562.5 4,826 11,246 BS5 assumed 80*05*01 20 11,500 230,000 756,000 **562.5 4,826 11,246 BS5 assumed 80*05*01 20 11,500 230,000 756,000 **562.5 4,826 11,246 BS5 assumed 80*05*01 20 11,500 230,000 756,000 **562.5 4,826 11,246 BS5 assumed 90*01*01 20 3,100 62,000 124,000 **837.5 874 874 BC4 BLCLLES: BLOCK 1555 BL/561 42,000 124,000 **837.5 874 874 BC4 BLCLESE BL/561 4 (calculated) **59.67 ft a.s.1. ARPTER D150ERARCE for 1 ft 07KR	DLUCK JM 00-00-	11 8/-93-11	320	4,890	1,204,800	10,070,000	-032.3	29,197	400,100
BLOCK 12 60-11-17 86-00-03 375 4, 350 1, 312, 730 21, 090, 910 -717.5 2, 91, 16 302, 407 BLOCK 68 87-10-05 88-12-19 370 7, 370 2, 726, 900 23, 817, 810 -717.5 48, 450 623, 387 BLOCK 78 88-10-13 89-12-11 370 7, 850 2, 904, 500 28, 274, 810 -707.5 48, 450 623, 387 BLOCK 78 88-10-13 90-06-23 370 7, 850 2, 904, 500 28, 274, 810 -707.5 48, 450 623, 387 BLOCK 79 90-07-03 90-11-21 470 7, 775 3, 654, 250 31, 376, 410 -727.5 47, 288 673, 306 BLOCK 89 90-07-03 90-11-21 470 7, 775 3, 654, 250 35, 033, 660 -760.0 55, 745 730, 051 BLOCK 10W estimated 91-06-01 475 8, 330 3, 955, 750 42, 906, 160 -835.0 55, 924 844, 149 BLOCK 10W estimated 92-06-01 475 8, 330 3, 708, 300 46, 614, 460 -872.5 50, 160 894, 309 BLOCK 11W estimated 92-06-01 470 7, 890 3, 708, 300 46, 614, 460 -872.5 50, 160 894, 309 BLOCK 11W estimated 92-06-01 470 7, 890 3, 708, 300 50, 322, 760 -902.5 48, 492 942, 801 BLOCK 11W estimated 93-01-01 470 7, 890 3, 708, 300 50, 522, 716 -902.5 48, 492 942, 801 BLOCK 11W estimated 93-06-01 470 5, 530 2, 599, 100 52, 921, 860 -940.0 32, 632 975, 433 BLOCK 11W estimated 94-01-01 470 7, 900 3, 713, 000 56, 634, 860 -970.0 45, 175 1, 020, 608 BLOCK 11W estimated 94-01-01 470 7, 900 1158,000 306,000 -562.5 3, 315 6, 420 S1A assumed 80-05-01 20 7, 400 148,000 120,000 -562.5 3, 315 6, 420 S2 assumed 80-05-01 20 11, 500 230,000 536,000 -562.5 3, 315 6, 420 S2 assumed 80-05-01 20 11, 500 230,000 766,000 -562.5 4, 826 11, 246 S3 assumed 80-05-01 20 11, 900 238,000 1, 244,000 -562.5 4, 926 16, 071 S4 assumed 80-05-01 20 11, 900 238,000 1, 244,000 -562.5 4, 933 26, 100 DECLINES: D1 assumed 90-01-01 20 3, 100 62,000 120,000 -837.5 874 2, 621 MIED AREA 35,030,660 sq.ft AVERAOE BLEVATION (calculated) -509,67 ft a.s.1. ARTER DISCHARCE for 1 tOVERBINCEN 10.621559 1, 597,750	BLUCK 4AN 8/-U4-		510	1,880	1 010 750	19,272,160	-002.5	12,391	4/2,491
BLOCK NM 87-10-03 88-12-13 3.0 7,370 2,722,500 23,317,810 -722.5 24,7353 530,261 BLOCK NM 82-11-03 89-12-11 3.0 7,850 2,904,500 28,274,810 -707.5 44,856 623,387 DECLIME \$1-3{assumed} 90-01-01 20 9,300 186,000 28,460,810 -837.5 2,621 626,008 BLOCK NM 83-10-19 90-06-23 3.70 7,880 2,915,600 31,376,410 -727.5 47,298 673,305 BLOCK NM 83-10-19 90-06-23 3.70 7,775 3,564,250 35,030,660 -760.0 56,745 730,051 AFTER 21 MOV. 1990: 90-11-21 470 7,775 3,654,250 35,030,660 -760.0 56,745 730,051 BLOCK NM 81-12 91-06-01 475 8,330 3,956,750 42,906,160 -835.0 55,924 844,149 BLOCK 10W estimated 91-06-01 475 8,330 3,956,750 42,906,160 -835.0 55,924 844,149 BLOCK 11W estimated 92-01-01 470 7,890 3,708,300 46,614,460 -872.5 50,160 894,309 BLOCK 11W estimated 93-01-01 470 7,890 3,708,300 46,03,27,760 -902.5 48,492 942,801 BLOCK 12W estimated 93-06-01 470 5,530 2,599,100 52,921,860 -940.0 33,632 975,433 BLOCK 15W estimated 93-06-01 470 7,900 158,000 306,000 -562.5 3,315 6,420 SLOPES: SLOPES		17 88-00-03	373	4,830	1,818,750	21,090,910	-111.5	23,910	302,407
BLOCK 8E ? 89-10-19 375 4,140 1,552,300 25,370,310 -742.5 24,676 574,937 BLOCK 7W 88-11-03 89-12-11 370 7,850 2,904,500 28,274,810 -707.5 48,450 623,387 BLOCK 7W 88-11-19 90-06-23 370 7,880 2,915,600 31,376,410 -727.5 47,298 673,306 BLOCK 8W 89-10-19 90-06-23 370 7,880 2,915,600 31,376,410 -727.5 47,298 673,306 BLOCK 19W 90-07-03 90-11-21 470 7,775 3,654,250 35,030,660 -760.0 56,745 730,051 APTER 21 NOV. 1990: 90-11-21 470 7,775 8,949,410 -795.0 58,174 788,225 BLOCK 11W estimated 92-01-01 475 8,330 3,956,750 42,906,160 -835.0 55,924 844,149 BLOCK 12W estimated 93-01-01 470 7,890 3,708,300 50,322,760 -902.5 48,492 942,801 BLOCK 13W estimated 93-01-01 470 7,900	BLUCK DN BI-IU-	05 88-12-19	370	1,370	2,726,900	23,817,810	-672.5	47,854	550,261
BLOCK 1W 88-11-03 89-12-11 370 7,850 2,904,500 28,274,810 -707.5 48,450 623,387 DECLIME #1-3(assumed) 90-01-01 20 9,300 186,000 28,460,810 -837.5 2,621 626,008 BLOCK 8W 90-07-03 90-11-21 470 7,775 3,654,250 35,030,660 -760.0 56,745 730,051 AFTER 21 NOV. 1990: 90-11-21 BLOCK 10W estimated 91-06-01 475 8,250 3,918,750 38,949,410 -795.0 58,174 788,225 BLOCK 11W estimated 92-01-01 475 8,330 3,956,750 42,906,160 -835.0 55,924 844,149 BLOCK 12W estimated 93-06-01 470 7,890 3,708,300 45,614,460 -872.5 50,160 834,309 BLOCK 13W estimated 93-06-01 470 7,890 3,708,300 50,322,760 -902.5 48,492 942,801 BLOCK 14W estimated 93-06-01 470 7,890 3,708,300 50,322,760 -902.5 48,492 942,801 BLOCK 15W estimated 93-06-01 470 7,900 3,713,000 56,634,860 -970.0 45,175 1,020,608 HOCK 15W estimated 94-01-01 470 7,900 3,713,000 56,634,860 -970.0 45,175 1,020,608 HOCK 15W estimated 80-05-01 20 7,900 158,000 306,000 -562.5 3,105 3,105 SLOPES: SLA assumed 80-05-01 20 7,900 158,000 366,000 -562.5 4,826 11,246 CSLOPES: SLA assumed 80-05-01 20 11,500 230,000 766,000 -562.5 4,826 11,246 CSLOPES: SLA assumed 80-05-01 20 11,500 230,000 766,000 -562.5 4,826 11,246 SLA assumed 80-05-01 20 11,500 230,000 766,000 -562.5 4,826 11,246 CSLOPES: SLA assumed 80-05-01 20 11,500 230,000 1,244,000 -562.5 4,826 11,246 SLA assumed 80-05-01 20 11,500 230,000 1,060,000 -562.5 4,826 11,246 DL assumed 80-05-01 20 12,000 240,000 1,006,000 -562.5 4,826 11,246 DL assumed 80-05-01 20 12,000 240,000 1,006,000 -562.5 4,826 11,246 DL assumed 90-01-01 20 3,100 62,000 62,000 -837.5 874 1,747 D3 assumed 90-01-01 20 3,100 62,000 124,000 -837.5 874 2,621 GRAND TOTAL: 33,979,750 MINED AREA 35,030,660 sq.ft AVERACE ELEVATION (calculated) -509.67 ft a.s.1. HATER DISCHARCE for 1 KOVERBURDEN 0.02084 L/sqt{/day} MIT DISCHARCE for 140 VERBURDEN 0.02084 L/sqt{/day} MIT DISCHARCE for VERBURDEN 0.02084 L/sqt{/day}	BLOCK BE ?	89-05-19	375	4,140	1,552,500	25,370,310	-742.5	24,675	574,937
DECLINE FI-3(assumed) 90-01-01 20 9,300 188,000 28,660,810 -837.5 2,621 626,008 BLOCK 8W 89-10-19 90-06-23 370 7,880 2,915,600 31,376,410 -727.5 47,298 673,306 BLOCK 9W 90-07-03 90-11-21 470 7,775 3,654,250 35,030,660 -760.0 56,745 730,051 AFTER 21 NOV. 1990: 90-11-21 BLOCK 10W estinated 91-06-01 475 8,250 3,918,750 38,949,410 -795.0 58,174 788,225 BLOCK 11W estinated 92-01-01 475 8,330 3,956,750 42,906,160 -835.0 55,924 844,149 BLOCK 12W estinated 92-06-01 470 7,890 3,708,300 46,614,460 -872.5 50,160 894,309 BLOCK 12W estinated 93-01-01 470 7,890 3,708,300 50,322,760 -902.5 48,492 942,801 BLOCK 14W estinated 93-06-01 470 5,530 2,599,100 52,921,860 -940.0 32,632 975,433 BLOCK 15W estinated 94-01-01 470 7,900 3,713,000 56,634,860 -970.0 45,175 1,020,608 ELOPES: SIA assumed 80-05-01 20 7,400 148,000 148,000 -562.5 3,105 3,105 S1 assumed 80-05-01 20 7,900 158,000 306,000 -562.5 3,315 6,420 S2 assumed 80-05-01 20 11,500 230,000 56,000 -562.5 4,826 16,071 S4 assumed 80-05-01 20 11,500 230,000 56,000 -562.5 4,826 16,071 S4 assumed 80-05-01 20 11,500 230,000 1,006,000 -562.5 4,826 16,071 S4 assumed 80-05-01 20 11,900 238,000 1,244,000 -562.5 4,826 16,071 S5 assumed 80-05-01 20 11,900 238,000 1,244,000 -562.5 4,826 16,071 S4 assumed 80-05-01 20 11,900 238,000 1,244,000 -562.5 4,826 16,071 S4 assumed 80-05-01 20 11,900 238,000 1,244,000 -562.5 4,826 16,071 S5 assumed 90-01-01 20 3,100 62,000 62,000 -837.5 874 874 D2 assumed 90-01-01 20 3,100 62,000 124,000 -837.5 874 874 D3 assumed 90-01-01 20 3,100 62,000 124,000 -837.5 874 2,621 MINED AREA 35,030,660 sq.ft AVERACE ELEVATION (calculated) -509.67 ft a.s.1. ARTER DISCHARCE 1,350,000 USg1n/wk = 730,041 L/day UNIT DISCHARCE for 1 ft OVERBURDEN 0.02084 L/sqtf/day	BLOCK /W 88-11-	03 89-12-11	370	7,850	2,904,500	28,274,810	-707.5	48,450	623,387
BLOCK 8W 89-10-19 90-06-23 370 7,880 2,915,600 31,376,410 -727.5 47,298 673,306 BLOCK 9W 90-07-03 90-11-21 BLOCK 10W estimated 91-06-01 470 7,775 3,654,250 35,030,660 -760.0 56,745 730,051 ATTER 21 80V. 1990: 90-11-21 BLOCK 11W estimated 91-06-01 475 8,330 3,956,750 42,906,160 -835.0 55,924 844,149 BLOCK 12W estimated 92-01-01 470 7,890 3,708,300 46,614,460 -872.5 50,160 894,309 BLOCK 13W estimated 93-06-01 470 7,890 3,708,300 50,322,760 -902.5 48,492 942,801 BLOCK 13W estimated 94-01-01 470 7,900 3,713,000 56,634,860 -970.0 45,175 1,020,608 SLOCK 15W estimated 94-01-01 470 7,900 158,000 306,000 -562.5 3,105 3,105 SLOCK 15W estimated 80-05-01 20 7,400 148,000 148,000 -562.5 3,105 3,105 SLOCK 23 assumed 80-05-01 20 1,500 230,000 536,000 -562.5 4,826 11,246 S3 assumed 80-05-01 20 11,500 230,000 536,000 -562.5 4,826 11,246 S3 assumed 80-05-01 20 11,500 230,000 766,000 -562.5 4,826 11,246 S3 assumed 80-05-01 20 11,500 230,000 766,000 -562.5 4,826 11,246 S3 assumed 80-05-01 20 11,500 230,000 766,000 -562.5 4,826 16,071 S4 assumed 80-05-01 20 11,500 230,000 766,000 -562.5 4,826 16,071 S4 assumed 80-05-01 20 11,500 230,000 766,000 -562.5 4,826 16,071 S4 assumed 80-05-01 20 11,500 230,000 766,000 -562.5 4,826 16,071 S4 assumed 80-05-01 20 11,500 230,000 766,000 -562.5 4,826 16,071 S4 assumed 80-05-01 20 12,000 240,000 1,006,000 -562.5 4,826 16,071 S4 assumed 90-01-01 20 3,100 62,000 1,244,000 -837.5 874 874 D2 assumed 90-01-01 20 3,100 62,000 124,000 -837.5 874 1,747 D3 assumed 90-01-01 20 3,000 62,000 186,000 -837.5 874 2,621 GRAND TOTAL: 533,979,750 MINED AREA 35,030,660 sq.ft AVERACE ELEVATION (calculated) -509.67 ft a.s.1. MATER DISCHARGE 1,350,000 USg1n/wk = 730,041 L/day UHIT DISCHARGE for 1 ft OVERBURDEN 0.02084 L/sqtf/day	DECLINE 11-3(assum	ed) 90-01-01	20	9,300	186,000	28,460,810	-837.5	2,621	626,008
BLOCK 99 90-07-03 90-11-21 470 7,775 3,654,250 35,030,660 -760.0 56,745 730,051 APTER 21 MOV. 1990: 90-11-21 8,250 3,918,750 38,949,410 -795.0 58,174 788,225 BLOCK 10W estimated 91-06-01 475 8,230 3,918,750 38,949,410 -795.0 58,174 788,225 BLOCK 12W estimated 92-06-01 470 7,890 3,708,300 46,614,460 -872.5 50,160 894,309 BLOCK 13W estimated 93-01-01 470 7,890 3,708,300 50,322,760 -902.5 48,492 942,801 BLOCK 15W estimated 93-01-01 470 7,900 3,713,000 56,634,860 -970.0 45,175 1,020,608 SLOPES: SIA assumed 80-05-01 20 7,400 148,000 148,000 -562.5 3,105 3,105 SLOPES: SIA assumed 80-05-01 20 11,500 230,000 56,000 -562.5 4,826 11,246 SIA assumed </td <td>BLOCK 8W 89-10-</td> <td>19 90-06-23</td> <td>370</td> <td>7,880</td> <td>2,915,600</td> <td>31,376,410</td> <td>-727.5</td> <td>47,298</td> <td>673,306</td>	BLOCK 8W 89-10-	19 90-06-23	370	7,880	2,915,600	31,376,410	-727.5	47,298	673,306
AFTER 21 KOV. 1990: 90-11-21 BLOCK 10W estimated 91-06-01 475 8,250 3,918,750 38,949,410 -795.0 58,174 788,225 BLOCK 11W estimated 92-01-01 475 8,330 3,956,750 42,906,160 -835.0 55,924 844,149 BLOCK 11W estimated 92-06-01 470 7,890 3,708,300 46,614,460 -872.5 50,166 843,309 BLOCK 13W estimated 93-01-01 470 7,890 3,708,300 50,322,760 -902.5 48,492 942,801 BLOCK 14W estimated 93-06-01 470 7,890 3,713,000 56,634,860 -970.0 45,175 1,020,608 SLOPES: SIA assumed 80-05-01 20 7,400 148,000 148,000 -562.5 3,105 3,105 SLOPES: SIA assumed 80-05-01 20 7,900 158,000 306,000 -562.5 3,315 6,420 SIA assumed 80-05-01 20 11,500 230,000 766,000 -562.5 4,826 11,246 SIA </td <td>BLOCK 9W 90-07-</td> <td>03 90-11-21</td> <td>470</td> <td>1,115</td> <td>3,654,250</td> <td>35,030,660</td> <td>-760.0</td> <td>56,745</td> <td>730,051</td>	BLOCK 9W 90-07-	03 90-11-21	470	1,115	3,654,250	35,030,660	-760.0	56,745	730,051
BLOCK 10W estimated 91-06-01 475 8,250 3,918,750 38,949,410 -795.0 58,174 788,225 BLOCK 11W estimated 92-01-01 475 8,330 3,956,750 42,906,160 -835.0 55,924 844,149 BLOCK 12W estimated 93-06-01 470 7,890 3,708,300 45,614,460 -872.5 50,160 894,309 BLOCK 13W estimated 93-06-01 470 7,890 3,708,300 50,322,760 -902.5 48,492 942,801 BLOCK 14W estimated 93-06-01 470 5,530 2,599,100 52,921,860 -940.0 32,532 975,433 BLOCK 15W estimated 94-01-01 470 7,900 3,713,000 56,634,860 -970.0 45,175 1,020,608 SLOPES: SIA assumed 80-05-01 20 7,400 148,000 148,000 -562.5 3,105 3,105 S1 assumed 80-05-01 20 7,900 158,000 306,000 -562.5 3,315 6,420 S2 assumed 80-05-01 20 11,500 230,000 536,000 -562.5 4,826 11,246 S3 assumed 80-05-01 20 11,500 230,000 766,000 -562.5 4,826 16,071 S4 assumed 80-05-01 20 11,900 238,000 1,006,000 -562.5 4,826 16,071 S5 assumed 80-05-01 20 11,900 238,000 1,244,000 -562.5 4,876 16,071 S4 assumed 80-05-01 20 11,900 238,000 1,244,000 -562.5 4,876 16,071 S4 assumed 80-05-01 20 11,900 238,000 1,244,000 -562.5 4,793 26,100 DECLINES: D1 assumed 90-01-01 20 3,100 62,000 62,000 -837.5 874 874 D2 assumed 90-01-01 20 3,100 62,000 124,000 -837.5 874 2,621 GRAND TOTAL: 53,979,750 HINED AREA 35,030,660 sq.ft AVERAOZ ELEVATION (calculated) -509.67 ft a.s.1. WATER DISCHARGE 1,350,000 USG]n/wk = 730,041 L/day UNIT DISCHARGE for average OVERBURDEN 0.02084 L/sqft/day	AFTER 21 NOV. 1990	: 90-11-21							
BLOCK 11W estimated 92-01-01 475 8,330 3,956,750 42,906,160 -835.0 55,924 844,149 BLOCK 12W estimated 92-06-01 470 7,890 3,708,300 46,614,460 -872.5 50,160 894,309 BLOCK 13W estimated 93-06-01 470 7,890 3,708,300 50,232,760 -902.5 48,492 942,801 BLOCK 14W estimated 93-06-01 470 5,530 2,599,100 52,921,860 -940.0 32,632 975,433 BLOCK 15W estimated 94-01-01 470 7,900 3,713,000 56,634,860 -970.0 45,175 1,020,608 SLOPES:	BLOCK 10W estimat	ed 91-06-01	475	8,250	3,918,750	38,949,410	-795.0	58,174	788,225
BLOCK 12W estimated 92-06-01 470 7,890 3,708,300 46,614,460 -872.5 50,160 894,309 BLOCK 13W estimated 93-01-01 470 7,890 3,708,300 50,322,760 -902.5 48,492 942,801 BLOCK 14W estimated 93-06-01 470 5,530 2,599,100 52,921,860 -940.0 32,632 975,433 BLOCK 15W estimated 94-01-01 470 7,900 3,713,000 56,634,860 -970.0 45,175 1,020,608 SLOPES: SIA assumed 80-05-01 20 7,400 148,000 148,000 -562.5 3,105 3,105 SLOPES: SIA assumed 80-05-01 20 11,500 230,000 536,000 -562.5 4,826 11,246 S2 assumed 80-05-01 20 11,500 230,000 766,000 -562.5 5,035 21,107 S4 assumed 80-05-01 20 11,000 238,000 1,244,000 -562.5 4,979 26,100 DECLINES:	BLOCK 11W estimat	ed 92-01-01	475	8,330	3,956,750	42,906,160	-835.0	55,924	844,149
BLOCK 13W estimated 93-01-01 470 7,890 3,708,300 50,322,760 -902.5 48,492 942,801 BLOCK 14W estimated 93-06-01 470 5,530 2,599,100 52,921,860 -940.0 32,632 975,433 BLOCK 15W estimated 94-01-01 470 7,900 3,713,000 56,634,860 -970.0 45,175 1,020,608 SLOPES: SLOPES: SLA assumed 80-05-01 20 7,400 148,000 148,000 -562.5 3,105 3,105 S1 assumed 80-05-01 20 7,900 158,000 306,000 -562.5 3,315 6,420 S2 assumed 80-05-01 20 11,500 230,000 536,000 -562.5 4,826 11,246 S3 assumed 80-05-01 20 11,500 230,000 766,000 -562.5 4,826 11,246 S3 assumed 80-05-01 20 12,000 240,000 1,006,000 -562.5 4,826 16,071 S4 assumed 80-05-01 20 11,900 238,000 1,244,000 -562.5 4,923 26,100 DECLINES: D1 assumed 90-01-01 20 3,100 62,000 62,000 -837.5 874 874 D2 assumed 90-01-01 20 3,100 62,000 124,000 -837.5 874 1,747 D3 assumed 90-01-01 20 3,100 62,000 186,000 -837.5 874 2,621 MINED AREA 35,030,660 sq.ft AVERAGE BLEVATION (calculated) -509.67 ft a.s.1. ATTER DISCHARGE 1,350,000 USgln/wk = 730,041 L/day UNIT DISCHARGE for 1 ft OVERBURDEN 0.02084 L/sqft/day UNIT DISCHARGE for 1 ft OVERBURDEN 10.621559 L/sqft/day	BLOCK 12W estimat	ed 92-06-01	470	7,890	3,708,300	46,614,460	-872.5	50,160	894,309
BLOCK 14W estimated 93-06-01 470 5,530 2,599,100 52,921,860 -940.0 32,632 975,433 BLOCK 15W estimated 94-01-01 470 7,900 3,713,000 56,634,860 -970.0 45,175 1,020,608 SLOPES: SLA assumed 80-05-01 20 7,400 148,000 148,000 -562.5 3,105 3,105 SLOPES: SL assumed 80-05-01 20 7,900 158,000 306,000 -562.5 3,315 6,420 SL assumed 80-05-01 20 11,500 230,000 536,000 -562.5 4,826 11,246 S3 assumed 80-05-01 20 12,000 240,000 1,006,000 -562.5 4,825 16,071 S4 assumed 80-05-01 20 11,900 238,000 1,244,000 -562.5 5,035 21,107 S5 assumed 80-05-01 20 11,900 238,000 1,244,000 -562.5 4,933 26,100 DECLINES: D1 assumed 90-01-01	BLOCK 13W estimat	ed 93-01-01	470	7,890	3,708,300	50,322,760	-902.5	48,492	942,801
BLOCK 15W estimated 94-01-01 470 7,900 3,713,000 56,634,860 -970.0 45,175 1,020,608 SLOPES: SIA assumed 80-05-01 20 7,400 148,000 148,000 -562.5 3,105 3,105 SLOPES: SIA assumed 80-05-01 20 7,900 158,000 306,000 -562.5 3,315 6,420 SIA assumed 80-05-01 20 11,500 230,000 536,000 -562.5 4,826 11,246 SIA assumed 80-05-01 20 11,500 230,000 766,000 -562.5 5,035 21,107 SIA assumed 80-05-01 20 12,000 240,000 1,006,000 -562.5 5,035 21,107 SIA assumed 80-05-01 20 11,900 238,000 1,244,000 -562.5 5,035 21,107 SIA assumed 90-01-01 20 3,100 62,000 124,000 -837.5 874 1,747 D1 assumed 90-01-01 20 3	BLOCK 14W estimat	ed 93-06-01	470	5,530	2,599,100	52,921,860	-940.0	32,632	975,433
SLOPES: SLOPES: SIA assumed 80-05-01 20 7,400 148,000 -562.5 3,105 3,105 SIA assumed 80-05-01 20 7,900 158,000 306,000 -562.5 3,315 6,420 S1 assumed 80-05-01 20 11,500 230,000 536,000 -562.5 4,826 11,246 S3 assumed 80-05-01 20 11,500 230,000 766,000 -562.5 4,826 16,071 S4 assumed 80-05-01 20 12,000 240,000 1,006,000 -562.5 5,035 21,107 S5 assumed 80-05-01 20 11,900 238,000 1,244,000 -562.5 4,973 26,100 DECLINES: D1 assumed 80-05-01 20 11,900 238,000 1,244,000 -562.5 8,74 874 D1 assumed 90-01-01 20 3,100 62,000 62,000 -837.5 874 1,747 D3 assumed 90-01-01 20	BLOCK 15W estimat	ed 94-01-01	470	7,900	3,713,000	56,634,860	-970.0	45,175	1,020,608
SIA assumed 80-05-01 20 7,400 148,000 148,000 -562.5 3,105 3,105 SI assumed 80-05-01 20 7,900 158,000 306,000 -562.5 3,315 6,420 S2 assumed 80-05-01 20 11,500 230,000 536,000 -562.5 4,826 11,246 S3 assumed 80-05-01 20 11,500 230,000 766,000 -562.5 4,826 16,071 S4 assumed 80-05-01 20 12,000 240,000 1,006,000 -562.5 5,035 21,107 S5 assumed 80-05-01 20 11,900 238,000 1,244,000 -562.5 4,9'93 26,100 DECLINES:	SLOPES :					·			
S1 assumed 80-05-01 20 7,900 158,000 306,000 -562.5 3,315 6,420 S2 assumed 80-05-01 20 11,500 230,000 536,000 -562.5 4,826 11,246 S3 assumed 80-05-01 20 11,500 230,000 766,000 -562.5 4,826 16,071 S4 assumed 80-05-01 20 12,000 240,000 1,006,000 -562.5 5,035 21,107 S5 assumed 80-05-01 20 11,900 238,000 1,244,000 -562.5 4,993 26,100 DECLINES:	SIA assum	ed 80-05-01	20	7,400	148,000	148,000	-562.5	3,105	3,105
S2 assumed 80-05-01 20 11,500 230,000 536,000 -562.5 4,826 11,246 S3 assumed 80-05-01 20 11,500 230,000 766,000 -562.5 4,826 16,071 S4 assumed 80-05-01 20 12,000 240,000 1,006,000 -562.5 5,035 21,107 S5 assumed 80-05-01 20 11,900 238,000 1,244,000 -562.5 4,9793 26,100 DECLINES:	Sl assum	ed 80-05-01	20	7,900	158,000	306,000	-562.5	3,315	6,420
S3 assumed 80-05-01 20 11,500 230,000 766,000 -562.5 4,826 16,071 S4 assumed 80-05-01 20 12,000 240,000 1,006,000 -562.5 5,035 21,107 S5 assumed 80-05-01 20 11,900 238,000 1,244,000 -562.5 4,993 26,100 DECLINES:	S2 assum	ed 80-05-01	20	11,500	230,000	536,000	-562.5	4,826	11,246
S4 assumed 80-05-01 20 12,000 240,000 1,006,000 -562.5 5,035 21,107 S5 assumed 80-05-01 20 11,900 238,000 1,244,000 -562.5 4,993 26,100 DECLINES:	S3 assum	ed 80-05-01	20	11,500	230,000	766,000	-562.5	4,826	16,071
S5 assumed 80-05-01 20 11,900 238,000 1,244,000 -562.5 4,993 26,100 DECLINES: D1 assumed 90-01-01 20 3,100 62,000 62,000 -837.5 874 874 D2 assumed 90-01-01 20 3,100 62,000 124,000 -837.5 874 1,747 D3 assumed 90-01-01 20 3,100 62,000 186,000 -837.5 874 2,621 GRAND TOTAL: 53,979,750 MINED AREA 35,030,660 sq.ft AVERAGE ELEVATION (calculated) -509.67 ft a.s.l. NATER DISCHARGE 1,350,000 USgln/wk = 730,041 L/day UNIT DISCHARGE for average OVERBURDEN 0.02084 L/sqft/day UNIT DISCHARGE for 1 ft OVERBURDEN 10.621559 L/sqft/day	S4 assum	ed 80-05-01	20	12,000	240,000	1,006,000	-562.5	5,035	21,107
DECLINES: 01 assumed 90-01-01 20 3,100 62,000 62,000 -837.5 874 874 D2 assumed 90-01-01 20 3,100 62,000 124,000 -837.5 874 1,747 D3 assumed 90-01-01 20 3,100 62,000 186,000 -837.5 874 2,621 GRAND TOTAL: S3,979,750 MINED AREA 35,030,660 sq.ft AVERAGE ELEVATION (calculated) -509.67 ft a.s.l. MINED AREE MINED AREE J35,030,660 sq.ft AVERAGE ELEVATION (calculated) -509.67 ft a.s.l. WATER DISCHARGE UNIT DISCHARGE for average OVERBURDEN 0.02084 L/sqft/day UNIT DISCHARGE for 1 ft OVERBURDEN UNIT DISCHARGE for 1 ft OVERBURDEN	S5 assum	ed 80-05-01	20	11,900	238,000	1,244,000	-562.5	4,993	26,100
D1 assumed 90-01-01 20 3,100 62,000 62,000 -837.5 874 874 D2 assumed 90-01-01 20 3,100 62,000 124,000 -837.5 874 1,747 D3 assumed 90-01-01 20 3,100 62,000 186,000 -837.5 874 2,621 GRAND TOTAL: S3,979,750 MINED AREA 35,030,660 sq.ft AVERAGE ELEVATION (calculated) -509.67 ft a.s.l. NATER DISCHARGE 1,350,000 USgln/wk = 730,041 L/day UNIT DISCHARGE for average OVERBURDEN 0.02084 L/sqft/day 0.02084 L/sqft/day UNIT DISCHARGE for 1 ft OVERBURDEN 10.621559 L/sqft/day 10.621559 L/sqft/day	DECLINES:	-							
D2 assumed 90-01-01 20 3,100 62,000 124,000 -837.5 874 1,747 D3 assumed 90-01-01 20 3,100 62,000 186,000 -837.5 874 2,621 GRAND TOTAL: 53,979,750 MINED AREA 35,030,660 sq.ft AVERAGE ELEVATION (calculated) -509.67 ft a.s.l. NATER DISCHARGE 1,350,000 USgln/wk = 730,041 L/day UNIT DISCHARGE for average OVERBURDEN 0.02084 L/sqft/day 0.02084 L/sqft/day UNIT DISCHARGE for 1 ft OVERBURDEN 10.621559 L/sqft/day 10.621559 L/sqft/day	Dl assum	ed 90-01-01	20	3,100	62,000	62,000	-837.5	874	874
D3 assumed 90-01-01 20 3,100 62,000 186,000 -837.5 874 2,621 GRAND TOTAL: 53,979,750 MINED AREA 35,030,660 sq.ft AVERAGE ELEVATION (calculated) -509.67 ft a.s.l. MATER DISCHARGE 0.02084 L/sqft/day UNIT DISCHARGE for average OVERBURDEN 0.02084 L/sqft/day UNIT DISCHARGE for 1 ft OVERBURDEN 0.02084 L/sqft/day	D2 assum	ed 90-01-01	20	3,100	62,000	124,000	-837,5	874	1,747
GRAND TOTAL:53,979,750MINED AREA35,030,660 sq.ftAVERAGE ELEVATION (calculated)-509.67 ft a.s.l.WATER DISCHARGE1,350,000 USgln/wk =UNIT DISCHARGE for average OVERBURDEN0.02084 L/sqft/dayUNIT DISCHARGE for 1 ft OVERBURDEN10.621559 L/sqft/day	D3 assum	ed 90-01-01	20	3,100	62,000	186,000	-837.5	874	2,621
MINED AREA 35,030,660 sq.ft AVERAGE ELEVATION (calculated) -509.67 ft a.s.l. RATER DISCHARGE 1,350,000 USgln/wk = 730,041 L/day UNIT DISCHARGE for average OVERBURDEN 0.02084 L/sqft/day UNIT DISCHARGE for 1 ft OVERBURDEN 10.621559 L/sqft/day			GRAND TOTAL:		53,979,750	-			
MINED AREA 35,030,660 sq.ft AVERAGE ELEVATION (calculated) -509.67 ft a.s.l. WATER DISCHARGE 1,350,000 USgln/wk = 730,041 L/day UNIT DISCHARGE for average OVERBURDEN 0.02084 L/sqft/day UNIT DISCHARGE for 1 ft OVERBURDEN 10.621559 L/sqft/day				: :: :::::					
AVERAGE ELEVATION (calculated) -509.67 ft a.s.l. WATER DISCHARGE 1,350,000 USglm/wk = 730,041 L/day UNIT DISCHARGE for average OVERBURDEN 0.02084 L/Sqft/day UNIT DISCHARGE for 1 ft OVERBURDEN 10.621559 L/Sqft/day	MINED AREA		35,	030,660	sq.ft				
WATER DISCHARGE 1,350,000 USglm/wk = 730,041 L/day UNIT DISCHARGE for average OVERBURDEN 0.02084 L/sqft/day UNIT DISCHARGE for 1 ft OVERBURDEN 10.621559 L/sqft/day	AVERAGE ELEVATION	(calculated) .	-509.67	ft a.s.l.				
UNIT DISCHARGE for average OVERBURDEN 0.02084 L/sqft/day UNIT DISCHARGE for 1 ft OVERBURDEN 10.621559 L/sqft/day	WATER DISCHARGE	1,350,000	USgln/wk =	730,041	L/day				
UNIT DISCHARGE for 1 Et OVERBURDEN 10.621559 L/sqft/day	UNIT DISCHARGE for	average OVERB	URDEN	0.02084	L/sqft/day				
	UNIT DISCHARGE for	1 Et OVERBURD	EN 10	.621559	L/sqft/day				

FIGURE 7. PRINCE MINE, N.S. DISCHARGE vs. MINED AREA (Nov '90)

SAMPLE DATE Assayers code			21-Sep-89 ?	18-0ct-89 ?	23-Oct-89 ?	15-Nov-89 ?	18-Dec-89 ?	26-Jan-90 ?	26-Peb-90 ?	09-Har-90 ?
SAMPLING LOCATION		SEAWATER	Prince M. Discharge	Prince M. Discharge ‡ 1	Prince M. Discharge #1	Prince M. Discharge #1	Prince M. Discharge	Prince M. Discharge	Prince M. Discharge	Prince H. Discharge
FLOW, L/min ****						*-		•-		••
Temp. (C)										
рĦ		8.2	2.9	2.9	2.7	2.8	3.1	3.1	2.7	2.7
Cond. (umhos/cm)		40000	37100	41400	27800	40500	41700	49400	46200	43100
Acidity (mg/l)			582	445	530	544	482	480	552	482
Alkalinity (mg/l)	. 16 17-66 -									
1	• AE.NGDL = 26 9815	••••••••••••••••••••••••••••••••••••••	21	19	15 1	2222222222 95		 76	1111111111111 9Q	11
li: As	20.7013	0.003	11	10	13.1	13		20	23	71
8		4.6								
Ba		0.03								
Be		6E-07								
B1	40.00	100	1164	1100	1100	1150	1100	1646	1710	1520
Cd.	10.00	0 00011	1104	1200	1130	1200	1100	1040	1120	1330
Ce		9.00011								
Co		0,0005								
Cr		5E-05								
Cu		0.003								
Fe	55.847	0.01	220	120	105	0.5	150	110	167	160
K. Fa	39.0983	380	12	50		12	88	32	53	11
Da Xo	24.305	1350	673	520	465	530	522	618	617	640
Kn	54.938	0.002	- 39	28.1	21.5	36	32	29	30	41
Na	22.9898	10500	4000	4500	3900	4850	5100	5600	4900	4800
Ni		0.002								
P		0.07 28.45								
rd S	32 06	CV-3C 102 aas	467 25	530 66	552 16	580 72	630 79	534 00	610 76	63.4 10
sb	51.00	0.0005	101.25	330.00	552.50	500.72	030.77	331.00	010.70	011.10
Si		3								
Sr										
¥		0.002								
Ĭ T-	CE 20	A A1								
20 % T	03.30	¥,VI								
Cl	35.453	19000	9600	9830	5170	9490	10100	12600	11200	10300
S04	96.06	885	1400	1590	1655	1740	1890	1600	1830	1840
N03/N02		0.3						,		
KH4		0.07	••							
SUM. mmole/L		1.077	523	547	384	553	584	688	623	590
K/Na		0.013	0.006	0.004		0.005	0.006	0.006	0.006	0.006
Na/Cl		1.31	0.99	1.09	1.79	1.22	1.20	1.06	1.04	1.11
Pe/SO4		0.00003	0.46	0.22	0.19	0.0009	0.23	0.20	0.27	0.26
Ca/SO4		2.60	4.73	4.55	4.13	4.13	3.59	5.89	5.40	4.78
Ca/Ca(seawater)		100.0%	288,58 169 15	515.0%	297.58	312.5%	295,03	410.0%	430.03 206.93	382.51 207 09
CI/CI(seawater)		100.0%	50.5%	1/3./6 51 79	107.01 ጋፓ ጋፄ	120.08 19.08	213.08 23.08	100.03 100.03	200.08 58.9%	54.2%
Sum/Sum, seawater		100.0%	48,6%	50.8%	35.7%	51.4%	54.2%	63.9%	57.9%	54.78
Na/Na(seawater)		100.0%	38.1%	42.9%	37.1%	46.28	48.68	53.3%	46.78	45.71
K/K(seawater)		100.0%	18.9%	13.28		18.98	23.28	25.0%	21.8%	20.3%
		=======================						==============		=============

Page	2
------	---

SANPLE DATE Assayers code	28-Sep-90 ?	6-Nov-90 ?	5-June-91 ?	66 4-June-91 ?	20-Aug-91 ?	20-Aug-91 ?	4-June-91 ?	4-June-91 ?
SAMPLING LOCATION	Prince H. Discharge	East Tunnel	East Tunnel 12	Rock Dump	PN	PN+0 #3	Sewage Lagoon	Brook
PLOW, L/min ****	506.97		39.7					
Temp. (C)								
PH	2.7	2.6	2.6	2.6	3	3	8.5	6.5
Cond. (umhos/cm) Naidity (mg/l)	29500	25900	30700X	8.97 ??	10400	6310	0.433 ??	0.248 ??
Alkalinity (mg/l)	JIZ	000	510	9100			110	0,0 3.6
	 19 A	54 7				 71 7		
. At	17.4	0.82	03.40	550 13 57	111	11.1	0.01	0.03
B	1.1	0.02	1.07	10101	0.14	0.1		
Ba	0.18				0.22	0.028		
Be					0.044	0.031		
81	1160	162.6	337 7	(20	950	166	21 65	16 7
cd.	1100	0.03	0.04	420 0.23	233	100	21.02	10.7
Ce		0.05	0.01	4.24				
Co		0.25	0.32	6.78				
Cr								
Cu	0.05	0.09	0.03	3.19	0.87	0.5		
re r	107	265.9	269.9	507.8	208	101	0.33	Q.36
r La	33				3	2.1		
Χα	550	60.74	85.51	788	164	104	7.88	6.56
Kn	28	20.14	30.34	385.6	87.1	55	0.67	1.91
Na	4520				150	102		
Ni		0.69	0.76	14.24	2.41	1.55		
r Dh		0 00	A 20	2 50		0.06		
r D S	760 95	534 00	0.30 647 47	3804 75	881 10	564 04	16 42	20 29
Sb	100.70	331.00	0.51	4.23	001,10	JUT.VT	14,17	24.17
Si	19				53.5	39.2		
Sr								
Ÿ			0.08	0.27	0,06 .	0.03		
I Tn	3 86	1 84	2.24	26 7A	10	5 63		A A1
La La	2.00	7.01			10	5.05		0,01
C1	8340	75	145	45.6	126	86.1	48.5	31
S04	2280	1600	1940	11400	2640	1690	49.2	60.8
X03/N02	• •				A (1)			'
884	2.1				0.61	U.62		
SUX, mmole/L	512	32	41	214	60	39	3	2
K/Na	0.005				0.007	0.009		
Na/Cl	1.29				2.83	2.82		
Fe/S04	0.14	0.49	0.41	0.13	0.23	0.18	0.02	0.02
CalCalcapuator)	2.92 200 03	20.55	U.b/ 56.09	0.21 105 03	0.52	0.56	3.63	1.58
SO4/SO4(seawater)	250.08	30.41 180_8	j 30.91 j 219_21	105.08	27.01 298 31	41.38 191 AL	1.88 5 69	ዓ.23 ፍ ዓን
Cl/Cl(seawater)	43.98	0.41	0.8	0.28	0.71	0.5%	0.3%	0.2%
Sum/Sum, seawater	47.58						••••	
Na/Na(seawater)	43.0%				1.43	1.0%		
K/K(seawater)	15.5%		=======================================		0.8	0.7%		

-	Na	+	CI	-ж-	Ca
- 0 -	SO4	≁	Fe		AI

FIGURE 10. PRINCE MINE, N.S. MINE WATER - ELEMENT RATIOS

■- K/Na → Na/Cl → Fe/SO4 → Ca/SO4

لمر

- - - - Cl - - + - SUM - - K - - - - - SO4 - → - Na - - K
NINE SEA BROOK WATER HATER WATER CaCO1 CaHg(CO3) MnO₂ PeS₂ $Na \leftrightarrow Ca$ KFe₁(SO₄)₂ CaSO4 KAl(SO₄)₂ .000 .000 .000 1.000 ٨l .719 .000 .003 .000 .000 .000 .000 28.942 1.000 1.000 .000 .000 1.000 .000 1.000 .000 Ca 9.980 .417 .000 .000 .000 1.916 .000 1.000 .000 3.000 l e .000 .006 .000 1.000 .000 .000 .000 .000 1.000 .000 K 1.509 9.719 .000 .000 .000 Mg 22.629 55.544 .270 .000 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .510 .000 1.000 ,000 .000 Hn .000 .035 .000 .000 196.610 56.720 .633 .000 .000 .000 .000 -2.000 .000 .000 Na 2.000 23.735 .000 2.000 .000 2.000 1.000 SO4 9.213 .633 .000 .000 12.000 55.278 3.798 4.000 .000 .000 21.000 6.000 RS 142.410 4.000 8.000 1.000 1.000 .000 .000 .000 .000 .000 .000 .000 ,000 XIX 1,000

TABLE 4. POTENTIAL ORIGIN OF PRINCE MINE WATER (sample of 28 September 1990)

MIXING RATIO

•

Seawater fraction	:	.4604
Preshwater fraction	:	.5396

MINERAL DISSOLUTION & PRECIPITATION

CALCITE	:	21.0449 millimole/L dissolved	
DOLOMITE	:	-3.0898 millimole/L precipitated	
PIROLUSITE	:	.4909 millimole.£ dissolved	
PYRITE	:	12.9607 millimole/L dissolved	
ION EXCHANGE	:	7.0054 millimole/L Na exchanged for Ca	
JAROSITE	:	-3.6828 millimole/L precipitated	
GYPSUN	:	8383 millimole/L precipitated	
YFON	:	.7170 millimole/L dissolved	

1