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It is to be understood that Boojum Research Limited has attended at the Joint Venture 

Group at Buchans, Newfoundland ASARCO Inc., and Abitibi-Price Inc., for the sole 

purpose of conducting environmental work at the request of Joint Venture Group at 

Buchans, Newfoundland - ASARCO Inc., and Abitibi-Price Inc. During the time 

(January 1, 1996 to December 31, 1996) that Boojum Research Limited or its agents 

conducted environmental work they at no time had the charge, management or control 

of the property and at no time did Boojum Research Limited have possession, 

occupation or direct control of any source of contaminant that may have been present 

on the subject property/site while undertaking to carry out the instructions of the Joint 

Venture Group at Buchans, Newfoundland - ASARCO Inc., and Abitibi-Price inc. to 

conduct environmental work. Further, as a result of conducting environmental work, 

Boojum Research Limited is not to be considered a “person responsible” as defined 

under the Environmental Protection Act, R.S.O. 1980, c. 141, as amended. 
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Summary 

The 1996 objectives, addressing the winter problem, represented collectively one of 

the most complex years spent addressing decommissioning of the Buchans unit. The 

approach taken to solving the winter problem was two fold. One avenue was to 

define and quantify the pathway of zinc during the summer. The second avenue was 

to review the entire site with the knowledge gained during the years of investigation. 

Had we missed something, or were some aspects of the process misinterpreted? 

In Schematic 3 (Section 91, an overview of the different aspects of science are given, 

including all players which can interfere or contribute to the winter problem, a 

phenomenon overall controlled by temperature. Firstly, the monitoring data were 

reviewed for Buchans with respect to seasonal trends relating to temperature (Section 

I). It was evident that carbon dioxide-bicarbonate-gcarbonate chemistry is producing 

changes in pH in all monitoring data which result in changes in zinc concentration. 

Secondly, a mass balance of the groundwater distribution using chloride for the 

Drainage Tunnel OEP - OWP suggests that clean groundwater is entering the OEP, 

contrary to what was previously postulated (Section 2). These findings suggested 

that the proposed gradual decrease in zinc concentrations in the OEP had to be due 

to additional causes other than the depletion of zinc released from the sludge in the 

underground workings. 

The iron mass balance in the system suggested that more iron is being collected in 

the sedimentation traps than could be accounted for in the ground water. The iron 

mass balance for the polishing ponds also suggested iron cycling. Iron oxidation and 

reduction have therefore set up a recycling of iron, increasing the material collected 

in the sedimentation traps. This was further supported by the results of the iron 

oxidation experiments carried out this year (Section 3.2). While iron oxidation is 

controlled by the temperature and oxygen supply, it is not related to the removal of 



zinc from the solution. Zinc removal is independent of the iron oxidation process and, 

contrary to the earlier proposal, not directly related to the formation of iron hydroxide, 

a reportedly very good adsorbent of zinc. 

The SEM-EDX investigations of the particles collected in the sedimentation traps and 

the biological material supported further the elusive nature of the iron Ill hydroxide 

adsorption process. Zinc was not associated with the surface of the sedimentation 

trap material at magnifications of 200 - 2000 x. It was found predominantly in the 

biological material in Polishing Pond 17, where particle surfaces reporting up to 40 % 

zinc, likely a zinc carbonate. Magnification of the sedimentation material at 20,000 

x revealed that crystals are surrounding the iron particles, and up to 3 % zinc was 

found on these surfaces. If the proposed zinc adsorption was indeed taking place, 

these findings did not support this zinc removal process. Connecting this with the 

oxidation experimental results, which suggested that iron precipitation and zinc 

removal was not related, further refutes the importance of the process of zinc 

adsorption onto iron hydroxide at this specific site. 

Through a review of the old work (for example, the inorganic chemistry section in the 

1991 report and the field data prior to construction of the polishing ponds), it was 

evident that zinc removal and iron Ill hydroxide formation were not related. Where did 

all the iron in the algae/ moss in the polishing ponds originate, given that most iron 

remained in the OEP during the ice-free season. 7 On the other hand, during the 

summer, zinc was effectively removed by the polishing ponds ( Section 3.0). 

The laboratory and field fertilization experiments, the latter carefully planned according 

to flow and retention time, did not result in increased zinc removal. However, in the 

small-scale field experiment, zinc did drop out along with the phosphate added in 

fertilizer. Because the experiment was conducted for less than 24 hours, the large- 

scale field application of fertilizer in the polishing ponds for zinc removal produced 

negative results (Section 3.7). 

Boojum Research Limited 1996 Final Report 
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The large scale experiment was also carefully planned. The flow in the ponds was 

modelled, along with the dosage of fertilizer related to the growth rates of the algae 

derived from the laboratory experiments. No zinc removal was noted. A filter paper 

collecting the particles from the small scale field experiment (mini limnocorral), carried 

out in July preceding the scaled up fertilization effort, was submitted for chemical 

analysis. There indeed was phosphate, as well as iron, zinc and, in addition, 

reasonable amounts of Mg. Zinc was precipitating in some other form, but not 

adsorbed onto iron- hydroxide. 

The answer had to be found in the areas of particle formation, surface charges of 

particles and colloid formation. This was definitely supported by the experiments 

where bentonite and sand (rich in iron oxide) did not result in zinc removal. Thus, the 

surface charges of the zinc were not positive, as would be predicted if zinc has 

actually adsorbed onto the negatively charged bentonite. The literature on formation 

of environmental particles reports that iron hydroxides are smaller than 0.45 pm 

(Section 3.8). These smaller particles have difficulties settling, and must aggregate 

into particles large enough for gravity to overcome hydrodynamic forces. The major 

difference between the large scale fertilization experiment and the mini-limnocorral 

experiment was that the latter provided less turbulent conditions, allowing smaller 

particles to settle. 

The formation of particles in winter in OEP is hindered, since the larger particles of Fe 

Ill hydroxide do not form, and no nucleation sites are provided to collect the zinc 

precipitates. Interesting support for the strong hydrodynamic forces on the particles 

was obtained from the phytoplankton enumerations (Section 3.5). Phytoplankton 

productivity in OEP is virtually nil, despite apparently suitable chemical and nutritional 

conditions for periphyton. Physical factors, such as light limitation, the presence of 

the thermocline associated with a chemocline and a change in redox, may collectively 

prevent the growth of algae with a free-floating growth habit. While the 

hydrodynamic conditions of OEP are only slightly different from OWP, these 



differences result in relatively sterile pit water. The picoplankton results, when 

available, will indicate whether living organisms smaller than 2pm are present in OEP; 

these organisms may have lower light requirements than phytoplankton. If these 

minute organisms are present, this may indicate that organisms in this size range are 

too small to aggregate precipitates and settle. 

All evidence suggests that particle formation in the OEP is hindered by the 

hydrodynamics of the OEP water column, rather than its chemistry. The question, 

then, is what could be done to overcome the difference in hydrodynamics in the OEP 

between summer and winter, a classical problem of flotation, or possibly 

microflotation. The degassing of the CO, in the open bottle treatments of the 

oxidation experiments is the most likely explanation for the observed decreases in the 

zinc at 20” C, since a precipitate could form as a result of CO, leaving the bottle. 

The current strategy for solving the winter problem is to form a zinc precipitate 

particles which are relativelyindependentof thecarbondioxide-bicarbonate-carbonate 

chemical reactions and are large enough to effectively settle in OEP. Phosphate was 

an old candidate, discussed in detail in the 1991 report in connection with the Long 

Harbour sand. The 1996 fertilization experiments suggested some involvement of zinc 

removal with phosphate. Since iron is predominantly in the reduced form in pit bottom 

water, it should not complete with cations, such as zinc, calcium and magnesium, for 

phosphate if added to the bottom of OEP in molar proportions which promote the 

formation of calcium, magnesium and zinc phosphate. Competition for phosphate by 

iron was observed when fertilizer was added to the ponds to increase biological 

production of particle formation. 

In January, 1997, George Neary performed an experiment using water collected from 

beneath the ice of the OEP. The best zinc removal occurred in the treatment where 

enough phosphate was provided to combine with all zinc and magnesium present in 

OEP water. Upon addition of smaller or larger amounts of phosphate, less zinc was 

Boajum Research Limited 1996 Final Report 
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removed. Inadequate phosphate for zinc removal may have been provided in the low 

treatment, while interference by nitrate in the larger fertilizer treatment may explain 

lower zinc removal in the high application treatment. 

Since phosphate can interact with magnesium, this may in part affect the fraction of 

the zinc which precipitates in the pit and contributes to the annual zinc reductions at 

the outflow. The fraction of the settled zinc carbonate solids likely recycles each year, 

due to changes in solubility of this compound due to seasonal changes in inorganic 

carbon forms and concentrations present in the pit water column. To remove the zinc, 

clearly a particulate needs to be formed which can settle out, and remain as a solid 

at the pit bottom under the prevailing conditions. 

It is were assumed that no new zinc is currently being added to the pit, and zinc 

remobilization from precipitate deposits is responsible for the current zinc load at the 

outflow, the observed annual decrease could be due to dilution of the remobilized zinc 

by fresh water, and the slope of such a decrease should be quite even. It could, 

however, also be that a precipitate is formed which is stable and settles out in the 

bottom of the pit. If this is the case, magnesium concentrations for OEP should 

decrease similarly to those for zinc. The slope of both magnesium and zinc 

concentration decreases in the OEP pit (Figure 1; Section 3.8) for the years 1989 to 

1996 are convincingly similar, suggesting a similar removal process. 

If these observations can be confirmed, then practically it provides the following 

options. The zinc carbonate is recycling between shifts of carbonate and bicarbonate 

and only removed through formation of a more stable forms such as zinc phosphate. 

As fertilizer added more than just phosphate (e.g., nitrate, ammonia), the precipitates 

have to be analyzed and further experiments conducted to ascertain the possibility of 

forming a zinc precipitate other than the carbonate. 



Through changes in the hydrodynamics, we can bring about particle formation which 

should settle to the sediment. We could therefore form a stable zinc precipitate with 

a one-time application, as long as the application consists of the correct chemical 

addition. The formed precipitate will be collected by biological polishing The same 

approach can be taken for the Lucky Strike, resulting in reductions of zinc in the Valley 

Seeps, the Drainage Tunnel; essentially, the problem could be solved. The 

precipitation with hydroxide should also be evaluated in relation to the stability of the 

zinc precipitate formed. It is likely that, if the zinc is precipitated in the carbonate 

form, it will eventually remobilize from the sludge. 

In summary, the key breakthroughs from the investigation of the winter problem in 

1996 were: 

Zinc is precipitating independently from iron Ill hydroxide; iron is likely recycled 

in the pit. 

Zinc phosphates can be formed in the winter conditions of the OEP. 

The hydrodynamics of OEP hinder particle formation which are sufficiently large 

to settle in the pit. 

It is likely that a significant flow of clean groundwater enters OEP, in addition 

to the zinc and iron-contaminated groundwater emerging from the underground 

workings. 

The Old Buchans Valley seeps receive water from the Lucky Strike. 

The Lucky Strike is in many ways similar to the OWP, which raises concerns 

regarding the buffering capacity of the groundwater entering the pit, presently 

not suggested, as water is leaving the gloryhole, rather then entering it, which 
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was a similar situation in the OWP, prior to Drainage Tunnel additions. 

0 Biomass production in the OEP is limited hydrodynamics and light, but not in 

the OWP and the Polishing ponds. 

l * The below data report now needs to be interpreted, using all the newly 

assembled data, to confirm or refute tentative conclusions reached to date. A 

large amount of data accumulated since 1988 can be utilized to ascertain a firm 

understanding of the site. 
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1 .O MONITORING DATA 

The main objective in 1996 was to address the winter problems with the absence of 

zinc removal in the polishing ponds. The approach taken to view the monitoring data 

was different then in the years prior. Data were plotted with respect to seasonal 

variations in zinc concentrations. The zinc removal in the polishing ponds appeared to 

display curves which seasonally reflected the temperature, pH and to some degree 

also to conductivity changes, like being opposed or similar. 

The 1991 report (Section 3) dealt with the inorganic chemistry of Buchans waters on 

a non-site specific basis. It was concluded that Buchans waters are dominated by 

carbonate - bicarbonate couple. Therefore, the temperature would affect all formation 

of carbonaceous zinc species, due to the solubility of carbon dioxide. Zinc carbonate 

and zinc bicarbonate posess different behaviours, shifting from precipitating and 

settling to remaining dissolved. If this is the case, then pH should show similar trends 

seasonally in all monitoring points, which are relatively close to contaminant sources, 

such as the pits and the tailings. Higher concentrations should be evident both in the 

beginning and at the end of the year, and the lowest concentrations should be found 

in the summer time. The pH should be lower in the winter months and increasing 

slightly in the summer months. 

This pattern would suggest that the carbonate-bicarbonate couple dominates in the 

zinc removal process related to CO, solubility, which is related to the temperature. If 

this is the case in the monitoring data, then the behaviour of OEP is more pronounced, 

solely due to the degassing of CO, from the ground water. 

From this perspective, it also would follow that seasonal fluctuations should be 

essentially eliminated as the water is further away from the zinc source, i.e. either 

tailings or pits. Zinc removal through a precipitate would have settled out of the water 

column resulting in lower zinc concentrations and very flat shaped curves. 
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In Schematic 1, the sequence of water entering the Buchans River is given. The 

monitoring point, Buchans River at Highway Bridge should be flat, i.e. show not 

seasonal trends. In Figure 1 a and Figure 1 b, the zinc concentrations and the pH 

values are plotted. Essentially, since 1992, which was a year with large fluctuations, 

the zinc concentrations are around 0.1 mg/L and the pH displays a slight trend of 

lower pH with lower temperatures and high pH in the summer, generally ranging from 

6.2 to 7.4. The same applies for the station below the Hydro Plant (Figures 2a and 

2b). 

In Figures 3a and 3b, the zinc concentrations for Simms Brook show a trend with 

lower concentrations in the winter month increasing over the summer, but the pH 

values do not show a seasonal trend. 

In Figures 4a and 4b, the concentrations of zinc in TPI show an increase after the ice 

melts and climbing over the summer month from less than 1 mg/L to about 2 mg/L 

and the pH depression in the beginning of the year is pronounced. In Figures 5a and 

5b, the data from TP2, show that the ice cover releases some zinc from the beaches, 

but the pronounced drop in zinc at the end of the season is evident. 

The dramatic increase from about 1.5 mg/L to 4 mg/L in 1996 is due to raising the 

water level in TP2. The origin of zinc in this pond was identified previously as pore 

water in beach tailings, which is exemplified by the 1996 data (Figure 5a). The pH 

of TP2 decreases in winter and remains around neutral pH over the remainder of the 

year (Figure 5b). This would be expected, given that the solubility of carbon dioxide 

in the pond water is lower during the warm summer months. 

These trends are not new, and were previously interpreted as solely due to dilution 

taking place during spring run off, followed by concentration of zinc due to 

evaporation. Although this can not be excluded, the corresponding trends in pH 

values are more difficult to explain due to spring run-off dilution, and are likely related 

to the dominant bicarbonate couple. 
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The Drainage Tunnel should not show any seasonal trends, given that it is measured 

at the outflow, and is essentially degassed ground water. Figure 6a shows essentially 

a steady concentrations along with a steady pH value (Figure 6b). Average zinc 

concentrations for the year have increased for the Drainage Tunnel, particularly in 

1996 (Figure 6c) and the flow is higher in the last two years (Figure 6d). This was 

suggested in previous evaluations of the Lucky Strike flooding. 

The seasonal trends in the OWP are given in Figure 7a for the zinc concentrations. The 

trend was very evident in the years prior to Drainage Tunnel discharge to the OWP. 

Since 1995, seasonal variations in the Drainage Tunnel loading has diminished. 

However, the 1996 pH values (Figure 7b) increased by about 1 unit, when the system 

had stabilized. Overall, the OWP zinc concentrations are increasing as expected, 

reflecting input from the Drainage Tunnel (Figure 74. 

In the OEP, the 1996 annual decrease in zinc concentration is lower than the year 

before (Figure 8a). In Figure 8b, the seasonal variation in the water are displayed and 

magnified by changing the scale on the graph in Figure 8c. 

Finally, the Lucky Strike annual average zinc concentration continues to increase, but 

appears to level out with respect to the magnitude (Figure 9a). In 1996, the increase 

was only about 2 mg/L, in comparison to the previous year with a 6 mg/L increase. 

The seasonal behaviour of the Lucky Strike resembles that of the OWP with dilution 

or ground water input producing a significant decrease in the spring and increasing 

steadily as the water warms up and the pH decreases by typically 1 unit (Figure 9b 

and 9c). Given the similarity to the Orientals, it is therefore not surprising that the 

Lucky Strike also stratifies during the summer. Since an anchor was placed into the 

pit, the pit can be monitored and sampled also during the summer months (Figure IO). 

The water was sampled during the last field trip for titration (Table 1). The acidities 

are much lower than the OEP suggesting that there are very few metals in the water 
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up to about 25 m, where the values then approach those of the OEP (Figure 11 a). The 

acidities in the summer time in the OEP are below 50 mg/L and rise to about 160 mg/L 

in September, when the iron starts to remain in solution. This suggests that only the 

lower portion of the Lucky Strike pit receives or remains ground water containing iron. 

Comparing the alkalinities of the Lucky Strike and the OEP (Figure 1 1 b), little ground 

water appears to be added to Lucky Strike, since the alkalinities are very low at 20 

mg/L, compared to the OEP with alkalinities ranging from 200 to 300 mg/L. At 

present, the Lucky Strike water resembles more that of the old OWP with respect to 

buffer capacity, expressed by acidity/alkalinity values (Table 2). 
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Table 1: Lucky Strike Pit Water Chemistry With Depth, September 27, 1996. 

Field Field Field Lab Field Lab Field Lab Lab Lab Lab 
Depth O2 Temp pH pH Cond Cond Em Em Acidity Alkalinity Temp 

(m) mg.C ‘C t&cm-’ uS.cm-’ mV mV mg.C’ mg.L-’ ‘C 

Surface 12.5 10.6 6.64 6.61 520 295 139 69 59 22 6.2 
5 10.1 10.6 6.64 6.8 520 325 140 123 53 20 10.4 

10 10 10.5 6.64 6.81 510 350 145 126 52 21 12.1 
15 10.3 6.4 6.64 6.79 560 360 158 133 66 24 11.9 

20 9.3 5 6.77 6.76 670 390 171 145 81 32 12 
25 5.8 5.1 6.31 6.57 960 530 185 152 122 49 13 
33 5.6 6.29 6.4 770 560 129 138 52 7.6 



Table 2: Concentrations of Selected Elements in Oriental West Pit, 1988-l 996 
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Fig. 1 a: River at Highway Bridge 
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Fig. 2a: River below Hydro Plant 
Zinc Concentration, 1992-l 996 
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Fig. 4a: Tailing POnd 1 
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Fig. 5a: Tailing Pond 2 
Zinc Concentration, 1992-l 996 
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Fig. 6a: Drainage Tunnel 
Zinc Concentration, 1992-l 996 
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Fig. 9a: Lucky Strike Glory Hole 
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Fig. 9b: Lucky Strike Glory Hole 
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Fig. 9c: Lucky Strike Glory Hole 
pH, 1992-l 996 
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Fig. 1 la: Oriental East Pit 
Acidity by Depth, 1993-l 996 
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CHEMATIC LAY-OUT 
NOT TO SCALE 

Schematic 1: Generalized lay-out of sources of drainage to the Buchans River 
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2.9 GROUND WATER DISTRIBUTION IN THE SYSTEM 

2.1 Introduction 

. Until recently, the contributions of various surface and ground water flows to the 

OEP and OWP which make up the flow at OEP weir could not be confirmed, due 

to the lay-out of the system and the lack of appropriate monitoring data. 

. Sufficient information is now available to estimate the contributions of these 

various flows. 

2.2 

. 

. 

. 

. 

. 

Brief History 

Following completion of flooding of the OEP and OWP (August, 1987) the flow 

volume at the oufflow was approximately 10 Us, with slight variation due to high 

spring run-off and lower base flows during mid winter. 

No surface water inflow, other than local run-off during precipitation events, 

contributed to the flow volume at the OEP weir. 

Ground water containing elevated zinc and ferrous iron concentrations was 

essentially the only source of flow. 

The pH of OEP water was near neutral. 

Following flooding of the OWP, no surface inflow or outflow could be seen, while 

the water level remained relatively constant year-round. However, variation in 

zinc concentrations, particularly during spring run-off when surface water zinc 

concentrations temporarily decreases, suggested that clean water entered the 
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OWP and OWP water must have been displaced from the pit in spring in order 

to maintain the water levels at a constant elevation. This phenomenon is depicted 

in Figure 12 for 1995. This phenomenon did not occur in 1996, as shown in 

Figure 12. 

. Between 1987 and 1993, the pH of the OWP water column was low (pH 3.5) and 

the water column was clear and contained little suspended solids. Due to its high 

clarity, light penetrated the water column and thermal stratification did not 

establish during the ice-free season. This is shown for September 27,1992 in 

Figure 13. 

. The surface water of the OWP was joined to the OEP’s surface water by a culvert 

in September, 1993. Pumping of Drainage Tunnel water to the surface of OWP 

commenced in August, 1994. 

. Following joining of the two pits and lowering of the OWP water level by 

approximately 0.3 to 0.6 m, major changes in the OWP’s water column occurred 

and have since remained. The pH of the OWP water column increased to near 

neutral pH. while the OWP pit became and remains thermally stratified, as shown 

in Figure 13. OWP’s stratification is similar to that which has existed in OEP 

since flooding (Figure 14). 

. There is now a ground water source of ferrous iron source to the OWP, and 

ferrous iron oxidation and ferric hydroxide precipitation occurs in near surface 

strata of the pit. 

. Drainage tunnel water entering the OWP oxygenates the surface water. 

I 
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2.3 Flow Distribution Using Chloride Data 

. A summary of flows, chloride concentrations and mass balance is provided in 

Table 3. 

2.3.1 Oriental West Pit 

Prior to the joining of OWP and OEP surface waters, chloride concentrations in 

the OWP were low, ranging from 0.8 to 1.5 mg/L. 

Drainage Tunnel water, now pumped to the OWP, contains on average 12.7 mg/L 

chloride. 

However, OWP water now contains 35 mg/L Cl on average, a higher 

concentration than the Drainage Tunnel. 

Ground water entering OWP containing an elevated Cl concentration is likely the 

source of this extra chloride. 

Assuming that the ground water is from the same source as that entering OEP, 

then the Cl concentration in OEP 7 m samples (similar to the depth of the bottom 

of OWP) can be used to estimate the flow of ground water required to contribute 

that extra chloride present in OWP in addition to the Cl contributed by the 

Drainage Tunnel flow. 

(D.T. [Cl] x D.T. Flow) + (GW [Cl] x GW Flow) = (OWP [Cl] x OWP Out Flow) 

(12.7 mg/L x 8.3 Us) + (144 mg/L x X Us) = 35 mg/L x (X Us + 8.3 Us) 

Solving for X: Ground water flow is 1.7 Us. 
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. According to the chloride concentrations, approximately 10 Us (8.3 + 1.7 Us) of 

water leaves OWP and joins OEP surface water. 

2.3.2 Oriental East Pit 

. The contribution of ground waters to the OEP can be estimated based on the 

estimated flow and chloride load from OWP and the measured flow and chloride 

load leaving OEP at the weir. 

. The OWP contributes 354 mg of Cl per second, in 10 L/s of water, to the OEP via 

the culvert joining the two pits. 

. Based on monitoring data, approximately 1231 mg Cl leave OEP per second in 

a flow of 19.2 L/s. Therefore, by difference, the ground water is contributing 9.2 

L/s of water, and a Cl load of 877 mgls. 

. OEP bottom waters contain 149 mg/L chloride (1996 average). If all ground water 

entering the OEP contained this concentration of chloride, then the ground water 

chloride contribution to the chloride loading at OEP outflow would be 1371 mg/s, 

a load exceeding the above estimate (877 mgls) by 494 mg/s. 

A high chloride ground water flow of only 5.8 Us is required to add the 870 mgls 

to the chloride load at OEP oufflow. The remaining 3.4 Us (6.7 mg/s Cl) likely 

originates from a low chloride (2 mg/L: DDH 2367 groundwater sample) 

groundwater flow, perhaps emerging at the overburden-bedrock interface along 

the pit walls. 

9oojum Research Limifed 
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2.4 Verification of Estimates Using Sodium Concentration Data 
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. A mass balance for sodium in the OWP-OEP system is provided in Table 4. In 

this table, flows determined using chloride as a tracer were used, and sodium 

concentrations determined for equivalent locations from the same data set were 

used. 

. Chloride is typically the element of choice as a natural tracer of surface and 

ground water mass balance estimates, such as that performed above, since 

chloride compounds rarely form and chloride is not precipitating. 

. While more opportunities may exist for loss of sodium mass from a system, such 

as in jarosites, this element can be used to evaluated the assumption that NaCl 

is the source of chloride, as used in the geochemical simulations presented in 

Section 4. 

. The estimated Na load at OWP oufflow from Drainage Tunnel and groundwater 

is 22 % less than the measured Na load estimated by multiplying the OWP 

oufflow by the OWP surface sodium concentration. For OEP oufflow, the 

estimated Na load is only 1 % less than the measured Na load (Table 4). 

. These comparisons provide confidence that the flow volume estimates derived 

from the chloride mass balance exercise may adequately represent field 

conditions. Therefore, it can be assumed that clean ground water contributes 

about 3.4 L/s to OEP. 
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2.5 Application of Mass Balance Model to Zinc, Iron and Sulphate Loads 

2.51 Zinc 

. A mass balance for zinc in the OWP-OEP system is provided in Table 5. In this 

table, flows determined using chloride as a tracer were used, and zinc 

concentrations determined for equivalent locations from the same data set were 

used. 

. The estimated zinc load leaving OWP (162 mg/s) is 3% less than the measured 

zinc load leaving OWP (166 mgls). This indicates that zinc removal in OWP may 

be negligible. However, sedimentation of zinc-bearing compounds and algal 

uptake of zinc have been measured in the OWP. 

. The estimated zinc load leaving OEP is 10 % greater than the measured zinc load 

exiting OEP at the weir. This suggests that processes in OEP remove zinc prior 

to discharge here but not in the OWP. 

. According to these estimates, the Drainage Tunnel Input (135 mg/s) is a larger 

contributor of zinc (166 mg/s) to the OWP-OEP system than OEP (255162=93 

mg/s). 

2.5.2 Iron 

. A mass balance for iron in the OWP-OEP system is presented in Table 6. 

. According to this mass balance, 99 % of iron entering OWP remains in the pit as 

sedimented particles, while 91 % of the iron entering OEP remains in the pit as 

sedimented particles. While this is consistent with summer water quality data and 
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observations, significantly less iron removal occurs in the winter, when an ice 

layer covers OEP, blocking oxygen transport into OEP surface waters, which in 

turn slows ferrous iron oxidation and ferric hydroxide precipitation. 

2.53 Sulphate 

. A mass balance for sulphate is presented on Table 7 

. Using flows estimated from the chloride mass balance, 11 % of the sulphate 

entering OWP remains in the pit, while 2 % of the sulphate entering OEP remains 

in the pit. Sulphate removal in the pits appears to be minor. Some gypsum 

formation could be occurring. 

I 
I 2.6 

I 
. 

I . 

I 
I 
I . 
I 
I 

Areas, Volumes and Residence Times in OWP, OEP and Polishing Ponds 

In Table 8, the areas, water volumes and flows are used to estimate residence 

time of water in these water bodies. 

The theoretical residence of OWP is 77 days. However, Drainage Tunnel water 

(8.3 Us) joins the top 1 m of surface water of OWP, and likely exits OWP without 

mixing with the entire water volume. The 1.7 L/s groundwater flow also enters the 

top 1 m of surface water. Therefore, the residence time of the top 1 m of water 

may only be 5.4 days. 

The theoretical residence of OEP is 126 days. However, as in OWP, water enters 

OEP from OWP (10 Us) joining OEP surface water, and does not likely mix with 

the entire OEP volume before exiting OEP via the weir. Meanwhile, another 9.2 

L/s of groundwater joins the top 1 m of OEP surface water, and the flow through 

I 
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this layer totals 19.2 Us. Therefore, the residence time of the top 1 m of OEP 

surface water may be only 11.8 days. 

. The Polishing Ponds are relatively shallow, averaging only 0.46 m deep. The 

theoretical residence times of the PPI 0-PP13 and PP14-PP17 series of ponds are 

9 and 6 days, respectively. However, a large fraction of these ponds areas are 

virtually stagnant or above water, and actual residence times in these ponds are 

likely much shorter. 

2.7 Sedimentation Rates in OWP, OEP and the Polishing Ponds 

2.7.1 Sedimentation Data 

Measurements of sedimentation rates in OEP and OWP have been measured 

since 1990 and 1994, respectively. These data, in g.rn-*.d-‘, are presented in 

Table 9. 

Generally, the rates are consistent from year to year, with two exceptions where 

very high rates were determined: OEP 20 m and OWP 7 m, but in place between 

October 12, 1995 to July 10, 1996. These two data were not used in calculations, 

as they may have been due to improper placement of the traps or erosion of iron 

hydroxide into the traps from the pit walls into the traps. 

The sedimentation rate data were used to estimate the total weight of sediment 

settling to the bottom of OWP and OEP each year (Table 10). Since many 

sedimentation trap incubation periods span two chronological years (e.g., October 

18, 1991 to September 29, 1992), a proportional fraction of the measured 

sedimentation spanning two different years was allocated to the each of the two 

years (e.g. 21 % of the measured amount of sediment for October 18 to 
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December 31, 1991 and 79 % for January 1 to September 29, 1992). 

. Using OEP sedimentation rates, the estimated sedimentation in OEP ranges from 

41 t per year (1995) to 113 t per year (1992). The 1996 weight (27 t) is that 

amount up to September 26, and does not represent a full year. 

. Sedimentation in OWP ranges from 4 t to 9 t per year. Sedimentation traps were 

not installed in OWP until 1993, following joining of the two pits when it was 

observed that iron hydroxide was forming due to changes in OWP’s limnology. 

2.7.2 Comparison of Sedimentation Rate Data With Iron Load Estimates 

2.7.2.1 Oriental West Pit 

. In Table 11, estimated loads of iron to OWP is presented for the ice-free season 

(May 1 to November I), based on iron mass balance presented in Table 6. The 

estimated Fe load for the 183 day ice-free period is 1,700 kg. 

. The elemental composition of particulates captured by the sedimentation traps in 

the OEP and OWP sedimentation traps are presented in Table 13. 

. Estimates of total kg of iron sedimenting in OWP over the ice-free season, based 

on sedimentation rates and sediment iron assay data for 1994, 1995 and 1996 

are 1,163 kg, 817 kg and 439 kg, respectively. In 1995 and 1996, iron settling 

rates, based on sedimentation trap data, are lower than estimates of the iron load 

to OWP during the ice-free season. It is possible that the actual mass of iron 

entering the OWP is diminishing with time. Another possibility is that smaller 

particles are being formed in more recent years, and settling rates have 

diminished. 



I 
2.7.2.2 Oriental East Pit I 

. Estimated loads of iron to OEP are presented in Table 12 for the ice-free season, I 

for comparison to measured sedimentation of iron in particles according to 

sedimentation trap data. I 

. The estimated iron load to OEP between May 1 and October 31 is 4,759 kg for I 

the 183 day period. In 1995 and 1996, the sedimentation traps collected a 

similar amount of iron (7,758 and 8,038 kg) in this period. I 
. Using sedimentation trap data and sediment sample analytical data, between 7 I 

and 8 t of iron settle in OEP during the ice-free season. The iron load estimates 

are about half the mass of iron collected by the sedimentation traps for the same I 
period. Re-suspension of settled iron may account for higher Fe load captured 

by the sedimentation traps than indicated by the iron mass balance. 
I 
I 

2.7.3 Iron Loads to Polishing Ponds 
I 

. An estimate of the accumulation of iron by new algal biomass grown over the 183 I 
day ice-free season is given in Table 14. Data on pond areas, alder substrate 

surface areas, algal growth rates and iron content of algal biomass are available I 
in the 1995 Report (Tables 1 b, 2b and 5b). 

I 
. It is estimated that new algal biomass grown over 183 days captures 772 kg of 

iron. This suggests that the algal biomass may capture iron settled from previous I 
periods which has been resuspended from the pond sediments. In other words, 

iron is being recycled in the ponds. I 
. There is direct visual evidence of this process in the ponds. Slabs of algal I 

30 
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biomass covering the sediment and substrates periodically buoy to the surface 

due to an accumulation of air bubbles in the biomass. These floating slabs of 

algae are broken up by wave agitation or upon being carried over the weirs where 

they are smashed into smaller particles. Resuspended iron particles are likely 

recaptured by sieving by algal biomass. 

. The iron load to OEP was estimated in the Fe mass balance. A mass of 4,733 

kg of Fe enters the OEP in the 182 day ice-covered season. High iron 

concentrations in PP17 discharge water in winter suggest that little iron is 

removed from the Polishing Pond system, and that a large fraction of the 

discharge iron remains in the ferrous form. 

. The ice covers over the pits and polishing ponds serve to prevent ferrous iron 

oxidation and ferric hydroxide precipitation. 
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Table 3: Chloride Mass Balance for OWP, OEP System. 

CHLORIDE Flow P I Cl Load Removal 
us mg/L mg/s % 

Drainage Tunnel 6.3 12.7J 105 
OWP Contaminated Groundwater 1.7 144" 249 

OWP Surface Outflow IO 35.3q 354 
-s;a: 

OEP Surface Inflow 61s~ 35.3 -208339 
OEP Contaminated Groundwater 5.84 149 870 

OEP Clean Groundwater 3.36 2 6.7 
OEP Outflow 19.2 64.1 “1~2% a77 

Table 4: Sodium Mass Balance for OWP, OEP System Based on Flows 
Derived from Chloride Mass Balance 

ODIUM Flow PM Na Load Removal 
US mglL mgls % 

Drainage Tunnel a.3 10.2 

OWP Contaminated Groundwater 1.7 114 
OWP Surface Outflow 10 22 

;;; -Ts‘ 
81 22% 

OEP Surface Inflow 10 22 221 
OEP Contaminated Groundwater 5.8 120 701 

OEP Clean Groundwater 3.4 8 26.9 
a __ 

OEP Outflow 19.2 49 941 948 1% 

Table 5: Zinc Mass Balance for OWP, OEP System Based on Flows 
Derived from Chloride Mass Balance 

INC Flow [Znl Zn Load Removal 
L/S mglL mg/s % 

Drainage Tunnel a.3 16.3 
OWP Contaminated Groundwater 1.7 15.5 :“,” =y+ 

OWP Surface Outflow 10 16.6 166 162 -3% 
5, ,/‘,;i ,; ~, 

OEP Surface Inflow 10 16.6 166 
OEP Contaminated Groundwater 5.8 15.2 89 

OEP Clean Groundwater 3.4 0.01 0.03 
OEP Outflow 19.2 11.9 228 10% 
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Table 6: Iron Mass Balance for OWP, OEP System Based on Flows 
Derived from Chloride Mass Balance 

:ON Flow [Fe1 Fe Load Removal 
us mg/L mgls % 

Drainage Tunnel 8.3 0.131 
OWP Contaminated Groundwater 1.7 63.2 Ai: -+ 

OWP Surface Outflow 10 0.1065 1.1 110 99% 
3, 44.q !+ 

OEP Surface Inflow 10 0.1065 
OEP Contaminated Groundwater 5.0 51.27 

OEP Clean Groundwater 3.4 0.01 
OEP Outflow 19.2 1.46 91% 

Table 7: Sulphate Mass Balance for OWP, OEP System Based on Flows 
Derived from Chloride Mass Balance 

ULPHATE Flow P041 SO, Load Removal 
us mg/L mgls % 

Drainage Tunnel 8.3 120 998 
OWP Contaminated Groundwater 1.7 1080 1863 =+ 

OWP Surface Outflow 10 255 2552 2861 11% 

OEP Surface Inflow 10 255 2552 
OEP Contaminated Groundwater 5.8 1166 6812 

OEP Clean Groundwater 3.4 10 34 
OEP Outflow 19.2 479 9197 2% 
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Table 8: Areas, Volumes and Residence Times of Water in OWP, OEP 
and Polishing Ponds 

Whole Top 1 m Residence Residence 
Area Volume’ Volume Flow Time 

m* m3 m3 Us days 

Drainage Tunnel 8.3 

OWP 4,645 68,245 4,645 10.0 77 

OEP 19.510 208,197 19,510 19.2 126 

PPIO-13 (40% of OEP flow) 13016 5951 7.7 9.0 

PP14-17 (60 % of OEP flow) 13142 6009 11.5 6.0 

Table 9: Summary of Sedimentation Trap Data for OEP and OWP 

Sedimentation Rate 
OEP I 

Summe 
From To Days Period7 

20-Sew90 22-0~1-90 32 Yes 
20-Se;-90 28-May-91 250 
22-O&90 28-May-91 218 
28-May-91 18-Ott-91 143 Yes 
18-Ott-91 29-Sep-92 347 
14-Jun-93 30-Aug-93 77 Yes 
30-Aug-93 1 l-J&94 315 
1 I-Jul-94 07-Sep-94 58 Yes 

07-Sep-94 07-Jul-95 303 
07-Jul-95 12-Ott-95 97 Yes 
12-0~2-95 lo-Jul.96 272 
IO-Jul-96 29-Sep-96 81 Yes 

7 - 
11 m - 
E= 

3.2 
4.9 
4.5 
5.5 

Boojum Research Limited 
January ,997 34 

1996 Final Report 
For: ASARCO INC. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



Table 10: Sedimentation Rate Data and Calculations for OEP and OWP. 1990 to 1996 

Oriental East Pit (OEP) 

NO. Of *wage Sediment Cumulative for years Sediment Cumulatw Estimate 

!dimentation Traps Days in Sed. rate,kg.d’.pC’ Sedimentation in period to date 

Placed Retrieved Period 20 m 4m 11 m kg.d’.plt-’ kg.m-2.cf’ kg in period kg 

;;;;; ...~~ 

20&p-90 2%act-90 32 40 40.1 2.06 1,263 1,283 1.00 

22.Ott-90 Z&May-91 216 69 69.2 4.57 19.446 20,729 0.32 0.68 1991 54,775 

26-May-91 ,aoct-91 143 104 103.5 5.30 14,601 35.529 1.00 

,aact-91 2Ceep92 347 362 361.8 16.54 125,545 161,074 0.21 0.79 1992 113,144 

29-Se@2 14Jun-93 256 154.5 ff 39,673 200,947 0.36 0.64 1993 48,616 

14-Jun-93 3sAug-93 77 6.904 f 115 193 153.6 7.88 11,639 212,786 I.00 

30-Aug-93 1lJul-94 315 2,om - 99 88 93.3 4.76 29,393 242,179 0.39 0.61 1994 56,229 4,20: 

ll-.lUl-94 07-sep-94 58 415 414.6 21.25 24,047 266,226 1.00 28.9 6.22 1,676 1,676 

07-Sep94 07JU!-95 303 233 77 62 124.1 6.36 37,569 303,615 0.38 0.62 1995 40,513 22.7 4.63 6,676 6,554 9.291 

07-Jui-95 12-Oct.95 97 116 103 95 104.6 5.36 10,143 313.958 1.00 26.6 6.16 2,774 11,329 

12.o&s5 IO-Jul-96 272 1,162 ’ 66 86 66.1 4.52 23.963 337,921 0.29 0.71 ,996 27,205 196.3 * 6.07 @ 7,670 65,266 6,05! 

lo-J”f&n3 29-sep96 81 161 93 107 127.0 6.51 10,290 346,211 l.w 32.6 7.00 2,641 67.907 

equiv. to 6.0 years Avg = 164.5 (avg used for” above) 26.2 (avg used in @above) 

* High values likely due to sediment subsidence; Values not used in calculations 

*** proportion of total kg of sediment collected in sed trap for a period which spanned more than one year 



Table 11: Ice-free season (May 1 - Ott 31) Iron Load to OWP versus 
Measured Ice-free Season Sedimentation Rate. 

OWP IRON 1994 1995 1996 
kg in la3 kg in la3 kg in la3 

d?iYS days days 

OWP Fe Load in la3 davs, based on Fe Mass Balance 1,739 1,739 1,739 
(Table 6) 

Sed Trap Captured Iron Mass, May 1-Nov I, kg 
Using summer sedimentation rates; Fe content of sediment 

1,163 a17 439 

Table 12: Ice-free season (May 1 - Ott 31) Iron Load to OEP versus 
Measured Ice-free Season Sedimentation Rate. 

OEP Fe Load in 183 days, based on Fe Mass Balance 

, kgd!f?, kgdtf?, ‘“:%I 

, 
(Table 6) 

Sed Trap Captured iron Mass, May I-Nov 1. kg 
Using summer sedimentation rates; Fe content of sediment 

7.758 a.038 
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Table 13: Elemental Composition of Periphyton Grown on Alder Branches or Nylon Netting 
and Sedimentation Traps in OWP and OEP, 1994, 1995 and 1996. 

Assay No. 11 5737 

1995 w/g, Al 11 0.54 

Ba 0.073 
Cd 0.010 

CU 0.26 

Fe 24 
Mn 0.08 

Pb 0.16 

Zn 11 1.6 

w/g, Al 
Ba 
Cd 
cu 
Fe 

Mll 
Pb 
Zn 

N. total 
P, total 

Organic C 
Inorganic C 

zg 
lulk 599: 

0.29 
0.013 

0.006 

0.16 

7.4 

0.02 

0.07 

1.1 

3.1 

0.16 

39 

0.020 

0.48 0.38 

0.064 0.077 

0.012 0.003 

0.31 0.11 

28 16 

0.03 0.02 

0.17 0.17 

:il 
5989 

0.18 

0.007 

0.003 

0.11 

4 

0.01 

0.04 

0.6 

- 

5990 
1.15 

0.068 

0.001 

0.04 

7 

0.02 

0.16 

0.2 

5732 

0.16 

0.062 

0.013 

0.06 

30 

0.09 

0.03 

5.8 

- 
5726' 

0.10 

0.021 

0.003 

0.03 

41 

0.11 

0.02 

2.5 

- 

5988 

0.18 

0.016 

0.003 

0.03 

47 

0.10 

0.03 

1.8 
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Table 14: Iron accumulation in polishing ponds algal biomass over 183 d ice-free season. 
May 1 - Ott 31 

Alga Biomass 

In Period [Fe] in Fe Accum 

Pond Substrate a 1.8 g.m-‘.d Biomass in Algae 

Area, rn’ Area, m2 kg kg F&kg” in 183 d. kg 

‘IO 
w 
595 

C-4 
1153 

6) W 
386 0.157 61 

‘II 2490 4824 1615 0.040 64 

‘12 4041 7828 2620 0.021 54 

‘13 5890 11410 3619 0.050 190 

'15 3465 6713 2247 0.04 9” 

‘16 4036 7623 2618 0.0423 111 

‘17 3772.0 7307 2446 0.050 122 

366 403 

1 
v 

772 kg Fe accumulated by new algae over 193 ice-free season. 

Alga Biomass Fe 

In Period [Fe] in Mass 

Pond Substrate @ 1.8 g.m-‘.d- Biomass in Alga 

Area, m2 Area. m2 kg kg Fe.kg-’ kg 

(a) (‘4 w W 
‘14 1667 3617 1211 0.067 81 

Fe Load from OEP in ice-free season (163 d) 443 kg Fe (Fe Mass Balance, Fe Load at OEP Weir). 

Fe Load from OEP in winter (1962 d) 4733 kg Fe (Fe Mass Balance, Input to OEP from D.T. and GW) 

(a) Pond areas from Table 1 b. 1995 Report. 

(b) Alder substrate surface area of 60,430 m2 (Table 2b. 1995 Report) split among ponds proportional to pond areas. 

(c) Growth rate of 1,629 g.m-2.d.l for feftilized ponds from Table 2b of 1995 Report. 

(d) lton content ([CAP) of branch and netting algae collected in 1994 and 1995 used, from Table 5b of 1995 report. 
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Fig. 12: Oriental West Pit 
Zinc Concentration, 1995-l 996 
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Fig. 13: Oriental West Pit Centre 
Limnology, 1992-l 996 
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Fig. 14: Oriental East Pit Centre 
Limnology. 1992-l 996 
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3.0 IRON AND ZINC REMOVAL MECHANISMS 

3.1 Review of Zinc Removal Processes 

In the evaluation presented in the 1995 report, it is suggested that virtually no zinc is 

removed from the system during winter months. Adsorption of zinc on the iron oxides 

and hydroxides formed during the ice-free season was previously proposed as the 

removal mechanism. This mechanism is well known from the literature (M.Langen; 

Hobert and B.Hamacher; B.Muller and L.Sigg, 1990). It was therefore a natural choice 

for explaining the process of zinc removal in the OEP. 

This adsorption mechanism would include a significant role for oxygen in the process 

of zinc adsorption to the iron oxides and hydroxides. Therefore, a significant quantity 

of oxygen is required in the pit to oxidise ferrous iron dissolved in solution, which is 

followed by precipitation as ferric iron hydroxide/oxide. 

The process of iron oxidation is slow. The kinetics of oxidation were described by 

J.L.Liu and M.Kalin (1990) as an exponential curve with the varying coefficients, 

depending on the conditions of the AMD in which the oxidation takes place. The 

limitation of oxygen when the pits and ponds are covered by ice was used to explain 

the increase of the concentration of zinc in the outflow; there was not enough oxygen 

in the water to oxidize iron, preventing iron hydroxide formation and zinc adsorption. 

This was also a plausible explanation for observed zinc removal patterns. 

However, other experimental facts were collected and have to be examined. The 

scanning electron microscopy and X-ray microanalyses of sedimentation trap samples 

have shown that the samples from the OEP itself consist largely of Fe-rich grains with 

high oxygen signal. This means that there was enough oxygen to form iron 

oxides/hydroxides and, if the proposed zinc adsorption mechanism was adequate, zinc 

should have been detected in the samples. The SEM-EDX work showed that zinc could 
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only be detected at 20,000 x magnification. This suggested that the zinc removal 

mechanism may not be based on adsorption to iron precipitates. 

The SEM-EDX analyses detected microzones within polishing pond solid samples with 

very high concentrations of zinc, but comparatively little iron. This must be considered 

in light of 1991 observations; a lot of zinc was present in the upper part of the 

“meadows” close to the outflow of OEP. In this area, large amounts of ferrous iron 

were detected, while ferric iron was present in large quantities only in the lower part 

of the “meadows”. The fact that zinc was concentrated in areas with little ferric iron, 

while lower concentrations were present in areas with higher concentrations of ferric 

iron, contradicts the expected distribution of iron and zinc if zinc adsorption was the 

primary removal mechanism. However, the pattern of zinc removal can be explained 

in terms of zinc carbonate precipitation, suggested from the oxidation experiments 

discussed in Section 3.2 below. 

The ferrous iron oxidation-ferric hydroxide precipitation process and the zinc removal 

process do not appear to be directly related. The process of iron oxidation is not 

important for the removal of zinc, since this element was not adsorbed in large 

quantities when iron oxide/hydroxide particles are abundant, such as in OEP. The zinc 

removal process and iron oxidation/precipitation process take place simultaneously, 

but are likely independent. 

Another observation was presented in the 1995 Final Report (page 13); the zinc 

concentration dropped rapidly in April (ice melting) but increased again starting in 

August, when water temperatures began to decrease. The solubility of oxygen in 

water was therefore increasing as the water temperature decreased. Contrary to the 

observed zinc concentration increase, higher dissolved oxygen concentrations should 

have enhanced ferric iron oxidation, and zinc adsorption, if this were the major zinc 

removal mechanism. 
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This analysis of old data leads to the conclusion that it is necessary to examine 

whether the proposed mechanism of zinc adsorption on iron oxides, suggested in the 

literature, is a significant process removing this metal from OEP water. In the 1991 

report, it was determined that both zinc and iron enter the pit through the bottom 

primarily in the forms of soluble Zn(HCO,), (zinc bicarbonate) and Fe(HCO,), (ferrous 

bicarbonate). Ferrous bicarbonate hydrolyse to produce ferrous hydroxide and release 

carbon dioxide. 

Fe(HCO,), + 2H,O = Fe(OH), + 2H,O + 2C0, 

Taking this equation, it is possible than iron precipitates can form in the absence of 

oxygen, if carbon dioxide is removed from water (e.g. degassing). With zinc, the 

situation seems more difficult. There is the possibility that zinc bicarbonate 

decomposes to zinc carbonate, which in turn precipitates. This reaction is favoured 

if carbon dioxide were removed from solution by, for instance degassing as ground 

water rises to the pit surface. 

Zn(HCO,), = ZnCO, + H,O + CO, 

However, zinc carbonate settling through the water column and entering pit bottom 

water, supersaturated with carbon dioxide and bicarbonate (with respect to surface 

water), may redissolved into solution as zinc bicarbonate. 

ZnCO, + Hz0 + CO, = Zn(HCO,), 

The production of carbon dioxide by the formation of ferrous hydroxide may maintain 

high carbon dioxide concentrations in water, and suppress the formation of zinc 

carbonates. This may explain why relatively little zinc removal takes place in the pit. 

Zinc carbonate formation and precipitation may take place only after the removal of 

significant amounts of iron and loss of carbon dioxide from the system. This analysis 

suggests that the presence of oxygen may not be necessary for the removal of zinc. 
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However another factor(s), as yet not described, may also be very important, which 

is a reaction which is producing precipitating forms of zinc, a process which takes 

place only in the upper part of the pit (< 2 m) but not at depth. Some zinc removal 

occurs in the top layer of the OEP during the summer when surface water 

temperatures are high and exposed to sunlight. Sunlight could assist in iron oxidation 

and may also assist zinc removal. An experiment examining the effects of aeration 

and temperature upon zinc removal from OEP and OWP surface and bottom water 

samples is described in Section 3.2. 

3.2 The Precipitation of Iron and Zinc: The OWP, OEP Oxidation Experiments 

l An experiment was conducted examining changes in dissolved zinc and iron 

concentrations in samples collected from OWP and OEP surface and at depth 

according to time following collection and storage conditions (open bottles 

versus closed; 5” C, 15” C or 20” C storage temperatures). 

l All zinc and iron analyses presented were performed on whole samples using 

the Buchans Asarco AAS equipment. The results of these two experiment are 

presented in Figure 15 a-f (OEP Surface), 16 a-f (OEP Bottom), 17 a-f (OWP 

Surface) and 18 a-f (OWP Bottom). 

3.2.1 OEP Surface Water Samples 

0 OEP surface samples were collected and analyzed for iron and zinc within 24 

hours of collection. Three identical pairs of samples (open, closed bottle) were 

stored at room temperature (20” C), in the Asarco vault (- 12” C) and in a 

fridge (5” C). These samples’ zinc and iron concentrations were determined 4 

and 14 days after collection (Figure 15 a - f). 
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0 The dissolved iron concentration in these samples was less than 0.1 mg/L at 

the time of collection, and remained so over the 14 day experiment. The zinc 

concentration was 14.1 mg/L. 

l After 4 days of storage, zinc concentrations remained virtually the same in all 

treatments. A slight decrease in the zinc concentration in the 20” C bottle 

stored open was observed. 

l After 14 days, zinc concentrations decreased in the open bottle treatment 

stored at 20” C, but remained near original zinc concentrations in the remaining 

five treatments. 

0 In summary, zinc was removed from OEP surface water if the sample was 

stored at 20” C and open to aeration. Dissolved or suspended iron was not 

required for this process. 

3.2.2 OEP Bottom Water Samples 

l Six OEP bottom water samples were collected, stored and analyzed for zinc and 

iron in an identical manner as the OEP surface water samples (Figure 16 a - f). 

0 The iron concentration in the OEP bottom water was 64 mg/L. The initial zinc 

concentration was 16.9 mg/L. 

l After 4 days, the zinc concentration diminished in the sample stored at 20” C 

open to aeration. By 14 days, most of the zinc was removed from the solution. 

Zinc removal was not observed in the remaining five treatments by day 14. 

0 Upon storage for 4 days, iron concentrations decreased in samples stored at 
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20” and 12” C. Larger decreases in iron concentrations occurred at 20” C 

temperature, compared to 12” C. 

l By day 14, iron concentrations had dropped to undetectable concentrations at 

12” and 20” C in both open and closed bottles. Iron concentrations had also 

decreased in samples stored at 5” C, but to a lesser degree than at higher 

temperatures. 

l In summary, zinc was removed from OEP bottom water if the sample was 

stored at 20” C and open to aeration, as observed for the OEP surface water 

sample treatment stored open at 20” C. Iron oxidation, precipitation and 

settling did not enhance zinc removal in the remaining five treatments. Based 

on the observations of iron and zinc removal in OEP surface and bottom water 

in this experiment, zinc removal appears to be independent of iron removal. 

3.2.3 OWP Surface Water Samples 

0 Six OWP surface water samples were collected, stored and analyzed for zinc 

and iron in an identical manner as the OEP surface and bottom water samples 

(Figure 17 a - f). 

l The iron concentration in these samples was less than detection limit. The zinc 

concentration at collection 16.9 mg/L. 

l As observed for OEP samples, the zinc concentration in OWP surface water 

declined in the open sample stored at 20” C, but not in the remainder of 

treatments. Over 14 days, the zinc concentration diminished from 16.9 mg/L 

to 12.4 mg/L, a smaller decline than observed for OEP surface and bottom 

water samples. 
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3.2.4 OWP Bottom Water Samples 

a Six OWP bottom water samples were collected, stored and analyzed for zinc and 

iron in an identical manner as the other three sets of samples (Figure 18a-f). 

l The iron concentration in these samples was less than detection limit. The zinc 

concentration at collection 18 mg/L. 

0 The zinc concentration declined from 18 mg/L to 7 mg/L in the OWP bottom 

water sample open to aeration and stored at 20” C. This decline was much 

greater than observed in the same treatment of OWP surface water. 

In summary, zinc removal was observed in OEP and OWP surface and bottom 

water samples only if the samples were stored at 20” C and were left open to 

the atmosphere. Zinc removal appears to be unrelated to iron removal. 

Instead, zinc may be present in OEP and OWP bottom water a soluble zinc 

bicarbonate, coexisting with high bicarbonate and dissolved carbon dioxide. 

When these waters flow to the surface, the water warm in the epilimnion, and 

carbon dioxide solubility decreases. As CO, is degassed from solution, soluble 

zinc bicarbonate decomposes to zinc carbonate, CO, and water. 

In the equation below, CO, degassing from the right side of the equation 

favours the reaction from left to right. 

ZnfHCO,), + ZnCO, + H,O + co, p 

Idissolved (precipitate) 

0 In the experiment, high temperatures reduced the solubility of CO,. The open 

bottles favoured degassing, while the closed bottles prevented degassing. In 

the 12” C and 5” C treatments, enough dissolved CO, remained in solution, and 

zinc bicarbonate was not decomposed. This process was originally described 



3.3 

0 

a 

l 

in the December 1991 Final Boojum Report to Asarco (Section 3, pgs 3-3 to 3- 

10). 

Zinc Precipitation With Phosphate 

Permanent removal of zinc, presently in the form of bicarbonates and 

carbonates, from OEP water could be achieved by adding phosphate to form 

zinc phosphates. 

A precipitation experiment consisting of the addition of 1 O-52-1 0 fertilizer to 

four samples, 4 L in volume, of OEP water collected from a depth of 0.6 m 

below the ice cover. The experiment was set up on January 7, 1997 and run 

until January 20, 1997. 

Fertilizer was added to three samples, and the fourth was left as a control. To 

Treatment 1, 45 g were added, while to Treatment 2, 6.3 g, and to Treatment 

3,0.87 g were added. Treatment 4 was the control. The samples were stored 

in the laboratory at 20 ‘C. The amounts of fertilizer added were based on the 

molar phosphate equivalent of zinc, magnesium and calcium concentrations 

present in OEP bottom water. For instance, 45 g of 10-52-10 fertilizer added 

to 4 US gallons of OEP water contains the equivalent number of moles of 

phosphate as the sum of the moles of calcium, magnesium and zinc present in 

4 US gallons of OEP bottom water (Tables 15 - 17). 

Zinc concentrations were monitored regularly over the first 50 hours, then again 

after 190 and 320 hours (Figure 19 a - d). 

The zinc concentration in Treatment 1, the control, remained relatively constant 

over the first 50 hours of the experiment. Zinc concentrations declined over the 
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first 50 hours in Treatments 1 through 3 where fertilizer was added. 

l The greatest zinc removal was measured in Treatment 2, where 6.3 g of 10-52- 

10 fertilizer was added. After 13 days, the zinc concentration had declined by 

87 %, compared to the concentration 1 hour after set-up (Table 18). The high 

fertilizer addition, Treatment 1 (45 g/4 USG), removed less zinc (57 %I, 

comparable to Treatment 3 (73 %: 0.87 g/4 USG) after 13 days. 

l Unlike the earlier oxidation experiment, appreciable zinc removal in the control, 

Treatment 4, was not observed after 8 days, despite the fact this sample was 

stored open to aeration at room temperature. After 13 days, the control 

samples’s zinc concentration had begun to decrease. At this time, the zinc 

concentration was 10.6 mg/L, equivalent to a 43 % decrease, compared to the 

concentration 1 hour after set-up of the experiment. 

0 The delay in zinc removal in the control sample stored open at 2O”C, compared 

to the previous experiment’s 20” C, open treatments, may have been due to 

the larger sample size in this experiment (4 USG) compared to the previous 

experiment (0.25 L). Also, for this experiment, water samples were collected 

from OEP from beneath the ice in January, when any very fine zinc precipitates 

formed in the ice-free season would have been flushed out of the pit. These 

fine particles may serve as flocculation nuclei, accelerating the process of zinc 

removal through promoting larger particle formation and settling. 
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~ Table 15: Experimental Design of January 7-15, 1997 Fertilizer Experiment. 

OEPll Equiv. mg Equiv. g 

M.W. used Equiv. PO1 Of 10-52-10 Of 10-52-10 

9 mgiL mM/L mgiL Feti per L Fetl per 4 IJSG 

Ca 40.1 502 12.5 1190 2527 38 

Mg 24.3 44.5 1.8 174 369 5.6 

zn 65.4 16.2 0.2 24 51 0.76 (0.87 g added to #3) 

NO, 62 

NH4 18 

Table 16: Composition of Treatments Immediately Following Fertilizer Addition. 

Treatment 1 for Ca. Mg and Zinc 

Treatment 2 for Mg and Zinc 

Treatment 3 for Zinc only 

Treatmenf 4: Control 

ADDITION 

9 Of Equiv. 

10-52-10 Fert mM of PO* 

per4USG in 4 USG 

45 221 

6.3 31 

0.87 4.3 

0 0 

Equiv. Equiv. Equiv. Equiv. 

mM of Ca rnM Of Llg nlM Of Z” mM of NO, 

in 4 USG in 4 USG in4USG in 4 USG 

190 2s 3.8 26 

190 28 3.8 3,7 
190 28 3.8 0,51 

190 28 3.8 0 

Table 17: Mass Calculations for Elements Present in OEP and K3P04 equivalents. 

OEP 

M.W. Volume [I MSS Ma% Equiv. PO, EqW KjPO, 

9 L mg/L k! MOIS Mass. kg Mass, kg 

OEP 208.197.000 

zn 65 14.6 3,047 46,606 4.428 8,636 

Fe 56 47.0 9,785 175,212 16,645 32.468 

ca 40 390 81,197 2,025,869 192,458 375,406 

Mg 24 34.7 7.217 296,870 28,203 55.012 

M” 55 9.9 2.062 37,530 3,565 6,955 

PO4 95 

:sPOd 185 

Far Entire Pit 

3,ment 4: Control 

itment 3: Add K3P0, equiv, to Zn Mass in Pit 8,636 kg KaPOd 

merit 2: Add K,PO, equiv. to Zn and Mg Mass in Pit 63,646 kg K,POI 

enent 1: Add K,PO, equiv. to Zn, Mg and Ca Mass in Pit 439,054 kg K,POd 
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Table 18: Zinc Concentrations in 4 USG OEP (5’) Samples Treated 
with 1 O-52-1 0 Fertilizer. 

7-Jan-97 7-Jan-97 
PW,w/L Pl,mdL 

Treatment 1 hour 314 hours % 
Whole Whole Filtered Removal 

#1:45gper4USG 17.4 7.4 7.4 57 
#2: 6.3 g per 4 USG 17.6 2.8 2.4 87 
#3: 0.87 per 4 USG g 17.5 4.8 4.7 73 
#4:Control 17.5 10.6 9.9 43 
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Fig. 15a: OEP Surface 
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Fig. 17~1: OWP Surface 
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Fig. 19a: OEP Fertilizer 
Experiment: Control 
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4.0 SEM-EDX EXAMINATION OF PARTICLES 

The purpose of this work is to identify the chemical and physical nature of zinc 

present on particles formed in the OWP-OEP Polishing Pond system. This was done 

through SEM-EDX investigations on particles and through sequential extractions using 

material collected in sedimentation traps (chemical particles). 

Variation of concentration of zinc in OEP with depth in the summer shows that there 

is a zinc removal mechanism operating in the pit, and zinc-containing particles should 

collect in sedimentation traps. The EDX-SEM surface investigation of the particles in 

the sedimentation traps did not detect sufficient zinc on the surfaces of the particles 

to yield a zinc signal (0.1 %) from the surface when investigated at magnifications 

covering a range of 200 x to 2,000 x. The particle size in these magnifications was 

identified as submicron (< 1 ,um) size. 

The bulk samples, however, report, on average, about 1 .‘l to 2.5% Zn in 

sedimentation traps (Table 13, Section 2). These two findings suggest that the 

particles containing zinc which settle in the sedimentation traps are small, but they 

must be numerous, as the concentrations of zinc accumulated are relatively high. 

Samples collected in July, 1996 were examined at a magnification of 20,000 x (data 

presented at the end of this section under SEM-EDX, September 15, 1996 samples). 

Particles sizes ranged from 0.25 to 1 .O pm. The same samples were previously 

examined at 200 x to 2,000 x magnification to derive confirmation of the biological 

accumulation of zinc (data presented at the end of the section under EDX: Samples 

Collected July IO & 12, 1995). 

At the 20,000 x magnification, it could be confirmed that, indeed, these smaller 

particles are associated with zinc. It also was determined that there is a distinct layer 

of precipitate with a thickness of about 100 nm coating the larger particles. The 

coating was thinner on particles in samples from the bottom of the OEP (25 m deep). 
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The OWP had particles (at 20,000 x magnification) free of precipitate coatings, which 

was also the case for the particles in the Polishing Pond samples examined at this 

magnification. 

The observations of the coatings on precipitate particles suggests that a chemical 

mechanism is involved in the removal of zinc which is associated with the formation 

of larger particles, governed by colloid formation processes. It is well known from the 

chemical kinetics that large particles or aggregates can only be formed when small 

particles are present. 

The phytoplankton identified in the Buchans system cover a size range of 2,dm to 100 

pm. No populations were detected in the OEP. but they were present in the OWP and 

the Polishing Ponds. This finding also adds to the conclusion that physical forces 

must be overwhelming to phytoplankton in the OEP since the nutrient status should 

support phytoplankton growth, demonstrated by the growth of periphyton (attached 

algae) and cattails in OEP. Since chemical and biological factors inhibiting 

phytoplankton growth can be ruled out, the only other factors not considered to date, 

but relevant to particle formation, are hydrodynamical forces. 

The microscopic investigations counting phytoplankton (both in Germany and Canada) 

reported the presence of needle-like crystals in the single OEP sample collected close 

to the thermocline in September. Particles experience different hydrodynamical 

influences when the thermocline is deeper during the summer months. In the 

September samples, the needle-like form of particles suggests that particles of such 

shape can be formed only as a result of different hydrodynamic forces, compared to 

those which lead to round aggregates of colloidal particles. A needle-like crystal can 

be induced when the hydrodynamical forces are laminar and not turbulent, as would 

be the case when the thermocline deepens and dissipates towards the end of the ice- 

free season (Figure 14, Section 2). The gradual decrease in Polishing Pond 

performance may also be related to particle formation and settling, due to seasonal 
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changes in both temperature and pH. 

The observations to date can, in part, be explained in terms of those water flow 

patterns which influence those processes involved in the formation of zinc-bearing 

particles and the settling of these precipitates. After the formation of small particles 

of zinc carbonate, two simultaneous processes are taking place in the OEP to remove 

zinc via particle formation. 

a) the further growth and/or aggregation of particles. 

b) once the particle sizes is sufficiently large, then it is possible that they can 

settle. 

Ferric iron oxidation and iron hydroxide formation may provide sufficiently large 

particles to assist in the aggregation of particles containing zinc. 

Some zinc particle formation and settling occurs in OEP during the ice-free season, 

when ground water must enter and, prior to discharge from the pit, mix with the 

horizontally and vertically circulating epilimnion (I-2 m thick) covering the entire 

surface of the pit. Particulates borne in the circulating epilimnion are subjected to 

both zones of laminar (middle stratum of epilimnion) and turbulent (at epilimnion- 

thermocline interface) flow, and quiescent zones (pit perimeter). Particle aggregation 

and settling are possible in these months. However, in winter, gravity and 

hydrodynamics (dragging of particles with water) are, unfortunately, acting in 

opposite directions. 

For example, while small particles may be forming in winter along the flow paths 

between ground water input and the OEP outflow, these flow paths may be both 

relatively laminar and high velocity, such that particles can neither aggregate by 

turbulent mixing, nor settle out of the rapid flow path. Particles may remain in the 

moving volume of water until discharged from the pit. The association of zinc with 

the small particles also explains in part why the polishing ponds, where no dissolved 

iron is present, still remove zinc at better rates when periphyton growth rates are high, 
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through providing turbulent and quiescent zones for particle aggregation and settling 

by gravity. The SEM-EDX analyses revealed that a significant amount of zinc in 

precipitates is associated with algal biomass in the first polishing pond, located very 

close to the weir of OEP (data presented at the end of this section under EDX, 

Samples Collected July 10 & 12, 1995; .SEM/EDX, February 1996 with 1995 

Samples). 

The differences between the summer hydrodynamics suggest an opportunity for 

particle formation and removal of zinc by inducing changes in flow patterns in the 

OEP. Potentially, changes in the flow pattern may improve the current hydrodynamic 

conditions. An evaluation of the physical changes which are required can be carried 

out by evaluating the particles sizes present in the pit, and the orders of magnitude 

of changes required to augment the particle formation/precipitation process will be 

estimated. 
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SEMlEDX 

Febuary 1996 

with 1995 Samples 
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Spectrum file 8 NCE 
E 02/96 

ENERGY RES AREA 
5.2 79.52 37048 

TClTAL AREA= 51491 

1, LIVETIMEtspec. )= 50 

. . . . . . 
Peak at .50 keV omitted? ,.,, _, 
FIT INDEX= 1.92 

APP . CONC 
076 
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.415 
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.106 
401 

: 022 
.079 

ERROF ( WTX 1 
.074* < 2 Sigma* 
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. 079 
.055 
. 095 
.331 
,392 
: 082 125* < 2 Sigma* 

.076+ < 2 Sigma* 
. 076* < 2 Sigma* 

‘!AF CALCULATIONS 

. C 3 iterations3 

212. 00 kV TILT=lS.@B ELEV=iO.00 AZIM=lS.00 COSINE=1.000 

spectrum: E 02/96 + INITIAL START-UP * 

Al 1 elmts anal ysed 

ELMT ZAF XELMT +- Error ATOM. f 
‘5 I:: : 0 .712 < -148 +- .074 
i;‘uti: : 0 .634 < .471 +- .236 
5 i K : 0 . 542 2.138 +- . 146 14.251 
Nal:: : 0 .311 1.334 +- .178 10.863 
Cl t::: : 0 . 789 1.449 +- .121 7.652 
L’nii: : 0 .852 .784 +- .388 2.246 
Fet::: : 0 .953 16.897 +- .411 56.636 
rlt1K : 0 .925 <: .250 +- .12s 
A 1 K : 0 .439 .914 +- 188 6.339 
!: ii, tc: : 0 1.000 < .152 +- : 076 
ii t::: : 0 . 969 < .I52 +- .076 
m-m. 23.516 1#0.000 
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Spectrum file I NCW 
W 02196 

ENERGY RES AREA 
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TC)TAL AREA= 42109 
_..... 
i-,ea!+: at .S0 keV omitted? 
FIT INDEX= 1.48 

LIVETIME(spec.)= 50 

i_L.MT 
$2 ,:: : (21 
cut< : 0 
Sit:: : 0 
tuatx: : 0 
i 1 t:: : Id 
L li t:: : 0 
“‘& : ,jj 
I’i:;,:., : 0 
f-‘i 1 tr: : 0 
!:.;k:: : 0 
t;: t:: : 0 
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-.058 
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.087 
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.271* < 2 Sigma+ 
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.069* < 2 Sigma* 
.070+ < 2 Sigma* 

ZAF CALCULATIONS 

.L 3 iterations3 

:?:?.00 C-V TILT=ltS.00 ELEV=I0.00 AZIM=lS.00 COSINE=l.000 

Spectrum: W 02196 
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Spectrum file : NC13 
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I 
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I 
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* 069 I 
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.794 
. ?a34 
.S09 
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: 925 
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XELMT +- 
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2.408 +- 

< .009 +- 
< .390 +- 
< . 160 +- 
31.248 +- 
51.364 +- 

Error ATOM. 4: 
.041 

1.125 1.979 
.337 5.444 
.614 1.722 
.043 
* 195 
.084 

1.014 33.204 
1.302 52.423 
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I’ 
I 
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?;pectrum file : NC17 
!. 7 02/96 

ENERGY RES AREA 
6.3 75.99 35655 

TOTAL AREA= 8843 

LIVETIME (apec. )= s0 

. . . . . . 
I-IT INDEX= .54 

::Ii.FT AF’P. CONC 
;; k: : 0 .009 
pe,<: : 0 .391 
Aat;: : 0 .182 
cat:; : 0 .132 
!I1 t< : 0 -.016 
:! n b:: : 0 -.023 
MnE : 0 . #20 
;a 1 K : 0 1.3% 
.ji ;::: : jg 1.631 
~::: Y: : 0 .220 

‘!.A!= CALCULATIONS 

ERROR(WTX) 
.026* < 2 Sigma* 

095 
: 024 
.046 
.028* < 2 Sigma* 
.141* < 2 Sigma* 
.051+ < 2 Sigma+ 
.0?S 
. 066 
. 047 

. C 2 iterations1 

1111. 00 kV TILT=15.00 ELEVml0.00 AZIM=lS.00 COSINEal. 

‘jpectrurn: 17 02/96 + INITIAL START-UP * 

.!a11 slm’cs analysad,NORMALIGED 

~KL.rlT ZAF %ELi’lT +- Error ATOM. X 
,< ,< : 0 .516 < ,052 +- .026 
Frt:: : 0 .832 8.616 +- 2.092 4.555 
r4aK : 0 .833 4.013 +- ,536 s. 134 
cat< : 0 .I310 2.975 +- 1.051 2.191 
Cltc : 0 .597 < .057 +- .02B 
ZnK: : 0 -811 < . 281 +- 141 
rint: : 0 .804 < . 101 +- :03 
.ilt:: : 0 . 858 29.029 +- 1.607 31.771 
‘-; i 1:: : 0 .602 49.461 +- 2.001 51.994 
.::: 1: : 0 .803 5.009 +- 1.076 3.783 
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LIVETIME (spec. ) = 50 
spectrum file : NC175 
17H 02196 

ENERGY RES AREA 
5.9 81.05 40696 

TOTAL AREA= 94911 
. . . . . . 
Peak at 4.46 keV omitted7 
!‘lT INDEX= 4.13 

ELMT APP. CONC ERROR f WTX) 
‘-j k:: : ,9 
F&:0 - 

447 .095 
13.173 .412 

I\idK : 0 1.084 .065 
CaK : 0 1.934 153 
i: 1 ,:: : 0 -148 : 100* < 2 Sigma* 
znt::: : 0 7.998 .618 
y..t:: : 13 .654 200 
, >I i:: : 0 9.751 : 208 
‘:: i ,:: : 0 15.618 .205 
p i;: : 0 3.720 . 165 

LAF CALCULATIONS 

.  I  .  .  C 4 iterations3 

33.00 t:v TILT=15.00 ELEWl0.00 AZIM-15.00 c0SINE~1.000 

,:j;,fxtrum: 175 02/96 * INITIAL START-UP * 

Al 1 elmts analysed,NORMALISED 

ELMT 
s t<: : 0 
Fe}:: : 0 
NaK : 0 
CaK : 0 
ClY : 0 
i I? tc: : 0 
!‘Ii, t:;: : 0 
Al tc : 0 
SiK : 0 
i: i:: : 0 
TOTAL 

ZAF XELMT +- Error ATOM. % 
.S.56 .997 +- ,212 1.064 I 

.878 18.933 +- .592 11.606 

.520 2.632 +- .lSS 3.920 .855 2.854 +- .225 2.438 I 
.644 < .200 +- 100 
.835 12.095 +- 1935 6.334 

.846 .976 +- .299 608 
25: 836 

1 
.604 20.361 +- .434 
.558 3s. 363 +- .464 43.099 

. a54 5.499 +- ,244 4.815 99.711 100.000 I 
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Spectrum file : NCITC 
17jJ @Z/96 

ENERGY RES AREA 
5.8 88.06 39993 

TOTAL AREA= 13966% 

LIVETIME(spec. )= 513 

. . . . . . 
FIT INDEX= 3.95 

El-MT APP . CONC 
5: v 
,=& 

: @ .Zi27 
: @ 29.749 

i’lat:: : !?I . 838 
Cal” : 0 4.834 
Clt( : 0 .696 
2nK : 0 59.544 
MnK : !a 1.899 
R 1 tc: : (il 5.183 
S i 1:: : 0 18. E122 
i::. K: : 0 1.232 

i#= CALCULATIONS 

ERROR ( WTY 1 
.112 
.597 
.!a57 
.205 
. 128 

1.263 
.280 
. I59 
. 170 
. I67 

. . . C 3 iterations.1 

28.!J@ kV TILT=15.0la ELEV=‘I00,0li? AZIM=l5.88 COSlNE=i.@OB 

Spectrum: I7C 02/96 + INITIAL START-UP * 

all elmts analysed,NORMALISED 

ELMT ZAF XELMT +- Error ATOM. % 
SK:0 .6I5 .59& +- 126 847 
Fet:: t B .981 21.118 +- :424 17:214 
Nat: : !a .34@ 1.717 +- .118 3.4lm 
CaK : I3 .949 3.549 +- 151 4.031 
Clt:: : !3 .7!3!J .693 +- :127 890 
Znt: : 0 .89S 46.152 +- ,979 32: I41 
MnK : 0 .93s 1.415 +- 209 1.172 
;-i 1 t::: : 0 .396 8.975 +- : 280 15.144 
5i.i; : 0 .47r4 14.857 +- 253 24.870 
ti: t< : 18 .922 .931 +- :126 I.084 
TOTAL 1m.002 100. @0B 
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Figure 4 

Buchans OWP Bottom Sed Trap 1017195 
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Figure 6 

Buchans PP-10 Folating Mat Algae 1217195 
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Figure 9 

Buchans PP-14 Folating Algae 1217195 
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Figure 10 

Buchans PP-14 Filamentous Algae 1217195 
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September l&l996 

Report on analysis of Buchans sediment samples (1996) 

Sample preparation and analvsis 

i 

Sediment samples from Buchans (10 in all) were examined by high resolution scanning electron 
microscopy (SEM) and energy dispersive X-ray microanalysis (EDX). Samples fixed in 
glutaraldehyde were dehydrated by taking them through an ethanol series. The sediments were 
then dispersed on filter paper and allowed to air dry. All samples were carbon coated prior to 
examination, Imaging of the samples was carried out using an Hitachi S-4500 field emission SEM 
(N.B. All micrographs were recorded at a magnification of 20,000x.). Each sample was also 
analysed by EDX with an analyzed area of approx. 50pm x 50pm. A windowless detector was 
used allowing for the qualitative. detection of light elements including carbon and oxygen. 
Quantative results were obtained for elements in the range Na - U. 

Results & Discussion 

High Resolution SEM & EDX: 

All three OEP samples (13’, middle, bottom) have a grain size in the range 0.25-l.Opm. A close 
examination of the micrographs (Fig. la,2a,3a) reveals that the grains are uniformly coated 
with what appear to be precipitate particles. The particles arc largest in the OEP 13’ 
sample (approx. 1OOmn) and smallest in the OEP Bottom sample (approx. 25nm). 
The results from EDX analysis of the three samples are shown in fig.lb,2b,3b. All three of the 
samples have high Fe (40-70%) aad Si (15-30%) content. OEP 13’ also showed a significant 
amount of Zn (approx. 3%). 

An example of the morphology of the OWF’ sample is shown in figure 4a. The sample grain size 
falls in the range 0.25 -l.Opm. The grains are somewhat faceted and kee of any obvious surface 
coating. EDX of the sample (fig.4b) indicates that the grains are aluminosilicate in composition. 

The struchue of sample D.T. is illustrated in Fig.5a. Examination of the specimen by SEM 
revealed that the grain size was finer than the other samples ( in the range 0.25 - 0.5pm). 
Additionally, the grains appear to be coated with a smooth, essentially continuous coating. 
EDX (fig.5b) showed that the sample was Al/Si rich with significant amounts of Fe (20%) 
and Zn (4%). The coating is probably a thin adsorbed layer. Determination of the specific 
chemistry of this layer would require alternate analytical techniques. 

SEM images for PPll, PP12, PP14 (branch, float & bubble) are shown in figures 6a - 10a 
respectively. All samples have a grain size in the range 0.25 - l.Opm. There are no obvious signs 
of surface adsorption or precipitation. EDX of the samples (tig.6b - lob) indicate that the samples 
are essentially aluminosilicates with traces of Fe and no Zn. 
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5.0 PARTICLE FORMATION BY PHYTOPLANKTON AND PICOPLANKTON 

To purpose of this component is to identify the biological contribution of 

phytoplankton and picoplankton populations as initiators of particle formation. 

Picoplankton data we generated out of an independent contract and are arriving in 

time for the meeting. 

The enumeration of small organisms were carried out by flow cytometry and using 

autofluorescence of pigments in the algal groups. This was done through systematic 

sampling of phytoplankton (size greater than > 2 ,um) and picoplankton (< 2 pm). 

All phytoplankton and periphyton data are presented at the end of this section 

(“PHYTOPLANKTON AND PERIPHYTON TAXA IN 1996 BUCHANS SAMPLES AND 

BUCHANS CULTURING EXPERIMENT”). 

5.1 Phytoplankton Productivity and Diversity 

Samples from different locations at Buchans were analyzed for phytoplankton density, 

biomass and species diversity into different classes of algae during spring, summer 

and fall of 1996 (Table 19 and Table 20). As expected, cell density and biomass 

were very low in early May, and increased in general during the summer and fall. 

However, one can note very specific differences in these parameters for different 

locations. 

The Drainage Tunnel (DT) water had low cell density, biomass and species diversity 

at all times sampled. Phytoplankton in OWP increased its cell density, biomass and 

species diversity during fall and summer, while OEP supported exceptionally low cell 

densities and biomass at all times of the year (spring, summer and fall) as seen in 

Table 19. Interestingly, Tailings Pond 2 (TP2) had quite high phytoplankton population 

and biomass in early May. 

Boojum Research Limited 1996 Final Report 
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As expected, the polishing ponds (PP) supported considerable phytoplankton 

populations and biomass, and generally had high species diversity both in the spring 

and the fall. The qualitative assessment of species diversity shows high species 

diversity for the polishing ponds during the summer (Table 20). 

According to nutrient data available for Oriental East Pit (phosphate, nitrate and 

ammonium), one would have expected significant phytoplankton biomass to have 

developed. This did not take place at any time of the year. The data indicate that the 

system behaves as an exceptionally oligotrophic (nutrient-poor) aquatic ecosystem. 

There may be several reasons for this: 

(I) phosphate may not be available for uptake by the algae due to 

complexing with metals (e.g., zinc); 

(2) the low Secchi disc values (around 1.4 m) indicates low water 

transparency in spite of the very low phytoplankton biomass, indicating 

that light is rapidly lost due to scattering or absorption by abiotic 

particles; 

(3) the very shallow chemolthermocline (at about 1.5 m during most of the 

productive season). 

It is very likely that the unfavourable chemistry and establishment of a very shallow 

epilimnion, coupled with very low water transparency, inhibits development of a 

significant phytoplankton productivity and biomass. Only the top meter is strongly 

oxygenated, light is rapidly absorbed in the top l-2 meters and it appears likely that 

key nutrients, such as phosphorus, may not be available for algal transport system due 

to metal complexing. The conditions on Oriental West Pit appear to be much more 

favourable for phytoplankton productivity in addition to rapid development of aquatic 

mosses. 
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The experiments conducted in the laboratory (see Sections 6.1 and 6.2) and in the 

field suggest that: 

a) Results of laboratory experiments examining the effects of nutrients upon 

primary productivity cannot be related to the Polishing Pond ecosystem, 

due to interferences by zinc, iron and manganese present in the effluent 

in the field, but attenuated or eliminated in effluent samples shipped to 

the laboratory. 

b) Geochemical reactions precipitating phosphate in the pits and Polishing 

Ponds are potentially competing with the algal population for phosphate. 

c) N:P ratios in Polishing Pond algal biomass indicate that these plants have 

access to sufficient P for growth, and are not nutrient-starved. While 

a large fraction of added phosphate appears to be relegated to the 

sediments by precipitation reactions, remobilization of P from the 

sediments could supply adequate phosphate to the Polishing Pond 

ecosystem. Phosphorus cycling can be addressed in the field in 1997 

using a new radioactive isotope of phosphorus, 33P, a compound 

analogous to 14C in terms of acceptability by agencies regulating the 

application of this isotope in scientific field work. 
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Table 19: Phytoplankton density, biomass and percent distribution into different classes. 

Samples were collected spring, summer and fall of 1996 at different locations 

at Buchans, Newfoundland. 

Date Location’ Cell Density Biomass Diversity (%I2 

(xl OV’) (,ogC-‘) G D CY Chr 

’ DT=Drainage Tunnel; OWP=Oriental West Pit; OEP=Oriental East Pit; 
PP13 =Polishing Pond 13; PPI 7 =Polishing Pond 17; TP2 =Tailings Pond 2 

’ Diversity expresses as percent of total algae identified; G =Green algae; 
D=diatoms; Cy =cyanobacteria; Chr=chrysophytes 
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Table 20: Qualitative assessment of diversity of phytoplankton as distribution into 

different classes. Samples were collected during the summer 1996. 

Date Location’ Diversity (%) ’ 

G D cv Chr 

May5 1 OWP 1 30 1 70 

Jul 8 PP-In 40 20 20 20 

PP-Out 10 60 10 20 

Jul 11 PP-In 30 40 10 25 

PP-Out 45 35 15 5 

Jul 12 PPI 2 70 20 5 

PP14 60 25 10 

’ OWP=Oriental West Pit; PP-ln=intake water for Polishing Ponds; 
PP-Out =exit water from Polishing Ponds; PPI 2 =Palishing Pond 12; 
PP14 =Polishing Pond 14 

’ Diversity expresses as percent of total algae identified; G =Green algae; 
D=diatoms; Cy=cyanobacteria; Chr=chrysophytes 

I 
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PHYTOPLANKTON AND PERIPHYTON TAXA PRESENT 

IN 1996 BUCHANS SAMPLES 

AND 

BUCHANS CULTURING EXPERIMENT 
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OEP, May 13, 1996 .................. ........ 26 

PP13, May 13, 1996 ................. ........ 27 
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OWP, Filamentous Algae, July 12, 1996 .... ........ 31 
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List of Algal Taxon Codes for Boojum Research Samples - 1996 

Cyanbacteria (Bluegreen Algae) 

AN spp 1R 
BG fil 1R 

ME min 1E 

OS lim 1R 

OS sps 1R 
OS ten 1R 

UN bgf 1R 

UN blg 1E 

Anabaena spp. 

Undentified fialmentous bluegreen sp. 

Merismopedia minutus 

Oscillatoria limnetica 

Oscillatoria spp. (small spp.) 

Oscillatoria tenuis 

Unidentified bluegreen filament (small) 

Unidentified small spp. (e.g. Synechococcus, 

Merismopedia, Chroococcus, etc.) 

Chlorophyceae (Green Algae) 

AK fal 2R 

BO bra 2E 

CH spp 2E 

CL spp 2R 

CT spp 2E 

DT pul 2E 

MG spm 2R 

MO spn 2R 

MG spw 2R 

MT spp 2E 

00 spp 2E 

SC spp 2E 

SP sub 2E 

TM spp 2R 

UL spp 2R 

UN chl 2E 

Ankistrodesmus falcatus 

Botryococcus braunii 

Chlamydomonas spp. 

Chlorogonium sp. 
Carteria spp. 

Dictyospbaerium pulchellum 

Mougeotia sp. (medium width filament) 
Mougeotia sp. (narrow filaments) 

Mougeotia sp. (wide filaments) 

Mesotaenium sp. 

oocystis spp. 

Scenedesmus spp. 

Sphaerellopsis cylindrica 

Temnogametum spp. 

Ulothrix sp. 

Unidentified small spp. (e.g. Chlorella, 

Chlamydomonas, Chlorococcum, etc.) 

Buglenophyceae (Euglenoids) 

EG spp 3E Euglena spp. 

LP spp 3E Lepocinclis sp. 
TR spp 3E Trachelomonas sp. 
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Chrysophyceae (Chrysophytes) 

CK pla 4E 

CM spp 4E 

CS spp 4E 

DI man 4E 

DI ser 4E 

DI spp 4E 

EP spp 4E 
KP spp 4E 

OM spp 4E 

PK spp 4E 

UN chr 4E 

Chrysolykos planctonicus 
Chromulina spp. 

Chrysosphaerella sp. 

Dinobryon monads 

Dinobryon sertularia 
Dinobryon sp. 

Epipyxis sp. 

Kephyrion sp. 
Ochromonas spp. 

Pseudokephyrion spp. 

Unidentified small spp. (e.g. Chromulina, Ochromonas, 

etc.) 

Cryptophycaaa (Cryptophytes) 

CR era 5F 

CR ova 5F 
CR spp 5E 

RH min SE 
UN cry 5E 

Cryptomonas erosa 

Cryptomonas o-rata 

Cryptomonas spp. (small taxa) 

Rhodomonas minutus 

Unidentified spp. (e.g. Chroomonas, Cryptomonas, 

Rhodomonas, etc.) 

Dinophyeeae (Dinoflagellates) 

GM spp 6E Gymnodinium spp. 

PE inc 6E Peridinium inconspicuum 

Bacillariophyceae (Diatoms) 

MS is1 7R 

AC spp 7R 

AH spp 7R 

AS for 7R 
EU ssp 7R 

FR rhm 7D 

NV spp 7D 

Melosira islandica 

Acbnanthes spp. 

Achnanthes spp. (small taxa) 

Asterionella formosa 
Eunotia spp. (small) 

Frustulia rhomboides 
Navicula spp. 

” 



NZ spp 7R 

PN spm 7R 

PN spp 7R 

SY spl 7R 

SY spm 7R 

TA flc 7T 

TA fen 7T 
UN dia 7R 

Nitzschia spp. 
Pinnularia sp. (medium frustule) 

Pinnularia spp. 

Synedra spp. (large frustule) 

Synedra spp. (medium frustule) 

Tabellaria flocculosa 

Tabellaris fenestrata 

Unidentified spp. (e.g. Achnanthes, Cyclotella, 

Cymbella, Eunotia, Navicula, Pinnularia, 

etc.) 

vi 
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Buchans - Drainage Tunnel 

Sample File BR9617 
DATE ANALYSED...09-12-1996 

SUBSAMPLE VOLUME... 500.0 mLs 

3/05/96 (A96-17) 

Buchans - Drainage Tunnel 3/05/96 

PHYLUM TOT CELLS.L-' TOT BIOMASS.M-3 

CYANOBACTERIA 
CHLOROPHYTA 
EUGLENOPHYTA 
CHRYSOPHYTA 
CRYPTOPHYTA 
PYRROPHYTA 
DIATOMS 
RHODOPHYTA 

TOTAL ALGAE 

11404 0.004 
3117 0.148 

308 1.017 
1184 0.049 

252 0.248 
0 0.000 
0 0.000 
0 0.000 

.________-----------_______ 
16264 1.465 

SUMblARY: 
Cell Density: 1.52 x lo* cells/L 

Biomass Estimate: 1.47 fig/L 



Buchans - OWP (surface) g/07/96 (A96-30) 

(Sample File BR9630) 
DATE ANALYSED,..09-22-1996 

SUBSAMPLE VOLUME... 125.0 mLs 

Buchans - OWP (Surface) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

2 I 

g/07/96 (A96-30) 

PHYLUM TOT CELLS.L-1 TOT BIOM?+SS.M-' 

CYANOBACTERIA 233917 9.499 
CHLOROPHYTA 626777 65.586 
EUGLENOPHYTA 0 0.000 
CHRYSOPHYTA 758098 49.921 
CRYPTOPHYTA 0 0.000 
PYRROPHYTA 0 0.000 
DIATOMS 304470 43.061 
RHODOPHYTA 0 0.000 

TOTAL ALGAE 1923262 168.066 

SubQ4ARY: 
Cell Density: 1.92 x lo6 cells/L 

Biomass Estimate: 168.01 pg/L 
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Buchans - OEP - surface 10/07/96 (A96-31) 

Sample File BR9631 
DATE ANALYSED...09-26-1996 

SUBSAMPLE VOLUME... 26.3 mLs 

Buchans - OEP - surface 10/07/96 (A96-31) 

PHYLUM TOT CELLS.L-' TOT BIOM?+SS.Mm3 
________.-__-..-.-....-..-.~~~-.~-~--------- 
CYANOBACTERIA 0 0.000 
CHLOROPHYTA 22548 1.559 
EUGLENOPHYTA 0 0.000 
CHRYSOPHYTA 45097 2.278 
CRYPTOPHYTA 0 0.000 
PYRROPHYTA 0 0.000 
DIATOMS 8268 0.456 
RHODOPHYTA 0 0.000 

TOTAL ALGAE 75913 4.294 

SUMMARY: 
Cell Density: 7.59 x lo4 cells/L 

Biomass Estimate: 4.29 fig/L 

3 



Buchans - OEP 3/05/96 (A96-32) 

Sample File BR9632 
DATE ANALYSED...09-22-1996 

SUBSAMPLE VOLUME... 105.0 mLs 

Buchans - OEP 3/05/96 (A96-32) 

PHYLUM TOT CELLS.L-' TOT BIOMASS.M-' 
_________._....-.....--.-...-.~--~~~-------- 
CYANOBACTERIA 7892 0.019 
CHLOROPHYTA 24310 15.274 
EUGLENOPHYTA 0 0.000 
CHRYSOPHYTA 9583 0.498 
CRYPTOPHYTA 0 0.000 
PYRROPHYTA 0 0.000 
DIATOMS 18814 3.364 
RHODOPHYTA 0 0.000 

TOTAL ALGAE 60599 25.155 

mBQ.mRY: 
Cell Density: 6.06 X 104cells/L 

Biomass Estimate: 25.16 1"g/L 
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Buchans - Drainage !Punnel 

Sample Pile BR9633 
DATE ANALYSED...09-21-1996 

SUBSAMPLE VOLUME... 500.0 mLs 

3/05/96 (A96-33) 

Buchans - Drainage Tunnel 3/05/96 (A96-33) 

PHYLUM TOT CELLS.L-' TOT BIOMASS.M-3 

CYANOBACTERIA 
CHLOROPHYTA 
EUGLENOPHYTA 
CHRYSOPHYTA 
CRYPTOPHYTA 
PYRROPHYTA 
DIATOMS 
RHODOPHYTA 

3038 
2091 

0 
1539 

0 
0 
0 
0 

0.002 
0.145 
0.000 
0.029 
0.000 
0.000 
0.000 
0.000 

TOTAL ALGAE 6669 0.176 

SUMMARY: 
Cell Density: 6.67 X 10' Cells/L 

Biomass Estimate: 0.18 fig/L 

5 



Buchans - Tailings Pond 2 (TP-2) 3/05/96 (A96-34) 

Sample File BR9634 
DATE ANALYSED...09-22-1996 

SUBSAMPLE VOLUME... 105.0 mLS 

Buchans - Tailings Pond 2 (TP-2) 3/05/96 (A96-34) 

PHYLUM TOT CELLS.L-' TOT BI0MASS.M." 
---_____ 

CYANOBACTERIA 254796 11.245 
CHLOROPHYTA 134539 17.281 
EUGLENOPHYTA 0 0.000 
CHRYSOPHYTA 1295967 117.296 
CRYPTOPHYTA 0 0.000 
PYRROPHYTA 0 0.000 
DIATOMS 27622 10.209 
RHODOPHYTA 0 0.000 
___._.____---____.-..-----~~-..-.---------.. 
TOTAL ALGAE 1712923 156.032 

SUMMARY: 
Cell Density: 1.71 x lo6 cells/L 

Biomass Estimate: 156.03 pg/L 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



Buchans - Tailings Pond 2 (TP 2) 

Sample File BR9635 
DATE ANALYSED...OY-25-1996 

SUBSAMPLE VOLUME... 105.0 mLs 

3/05/96 (A96-35) 

Buchans - Tailings Pond 2 (TP 2) 3/05/96 (A96-35) 

PHYLUM TOT CELLS.L-1 TOT BIOMASS.M-3 

CYANOBACTERIA 214209 4.025 
CHLOROPHYTA 104779 15.463 
EUGLENOPHYTA 0 0.000 
CHRYSOPHYTA 1204082 143.087 
CRYPTOPHYTA 1691 0.000 
PYRROPHYTA 0 0.000 
DIATOMS 264379 152.006 
RHODOPHYTA 0 0.000 

TOTAL ALGAE 1789142 314.581 

SUMMARY: 
Cell Density: 1.78 x lo6 cells/L 

Biomass Estimate: 314.58 pg/L 

7 



Buchans - PO01 13 3/05/96 

I 
I 

(A96-36) 

I 
I 
I 
1 
I 
I 

Sample File BR9636 
DATE ANALYSED...OY-23-1996 

SUBSAMPLE VOLUME... 105.0 mLs 

Buchans - Pool 13 3/05/96 (A96-36) 

PHYLUM TOT CELLS.L-' TOT BIOMASS.Mm3 
_____-_----------_______________________~--- 
CYANOBACTERIA 37205 
CHLOROPHYTA 7.0763 
EUGLENOPHYTA 0 
CHRYSOPHYTA 29877 
CRYPTOPHYTA 0 
PYRROPHYTA 0 
DIATOMS 3946 
RHODOPHYTA 0 

4.835 
3.864 
0.000 
0.823 
0.000 
0.000 
0.558 
0.000 

TOTAL ALGAE 91791 10.080 

SUMblARY: 

1 
1 
I 
I 
I 
I 
I 
I 
I 
I 

8 
I 

Cell Density: 9.18 x lo' cells/~ 

Biomass Estimate: lo.08 pg/L 



Buchans - PO01 11 3/05/96 (A96-371 

Sample File BR9637 
DATE ANALYSED...09-24-1996 

SUBSAMPLE VOLUME... 105.0 mLs 

(W) (PM) (PM)? 

Buchans - Pool 17 3/05/96 (A96-37) 

PHYLUM TOT CELLS.L-1 TOT BI0MASS.M~" 
____________.___________________________---- 
CYANOBACTERIA 306658 12.568 
CHLOROPHYTA 140364 28.681 
EUGLENOPHYTA 1879 4.335 
CHRYSOPHYTA 242359 3.529 
CRYPTOPHYTA 141 0.407 
PYRROPHYTA 0 0.000 
DIATOMS 6060 3.627 
RHODOPHYTA 0 0.000 

TOTAL ALGAE 698059 59.147 

subQ.lARY: 

Cell Density: 6.98 X lo5 cells/L 

Biomass Estimate: 59.15 pg/L 

9 



Buchans - OWP 3/05/96 (A96-43) 

Sample File BR9643 
DATE ANALYSED...Ol-11-1997 

SLIBSAMPLE VOLUME... 52.5 mLs 

Buchans - OWP 3/05/96 (A96-43) 

PHYLUM TOT CELLS.L-1 TOT BIOMASS.Mm3 

CYANOBACTERIA 0 0.000 
CHLOROPHYTA 6765 0.255 
EUGLENOPHYTA 0 0.000 
CHRYSOPHYTA 0 0.000 
CRYPTOPHYTA 0 0.000 
PYRROPHYTA 0 0.000 
DIATOMS 6952 0.420 
RHODOPHYTA 0 0.000 

TOTAL ALGAE 13717 0.675 

SUMMARY: 
Cell Density: 1.37 x lo4 cells/L 

Biomass Estimate: 0.68 pg/L 

10 



Buchans - PP13 (regular) 29/09/96 (A96-99) 

Sample File BR9699 
DATE ANALYSED...ll-05-1996 

SUBSAMPLE VOLUME... 105.0 mLs 

TOT CWI 1512572 483.7218 3530 

Buchans - PP13 (regular - unconcentrated) 29/09/96 (A96-99) 

PHYLUM TOT CELLS.L-1 TOT BIOMASS .M-3 
__________________-_____________________--~~ 

CYANOBACTERIA 118520 10.447 
CHLOROPHYTA 1064987 274.780 
EUGLENOPHYTA 3100 24.083 
CHRYSOPHYTA 250850 12.630 
CRYPTOPHYTA 0737 3.497 
PYRROPHYTA 0 0.000 
DIATOMS 66377 158.285 
RHODOPHYTA 0 0.000 

TOTAL ALGAE 1512572 483.722 

SUMMARY: 
Cell Density: 1.51 x lo6 cells/L 

Biomass Estimate: 483.72 pg/L 

11 



Buchans - Drainage Tunnel (regular) 29/09/96 (A96-101) 

Sample File BR96Cl 
DATE ANALYSED...lO-12-1996 

SUBSAMPLE VOLUME... 105.0 mLs 

Buchans - Drainage Tunnel (regular-unconcentrated) 29/09/96 (A96-101) 

PHYLUM TOT CELLS.L-1 TOT BIOMASS.M-' 

CYANOBACTERIA 15220 0.036 
CHLOROPHYTA 189406 11.648 
EUGLENOPHYTA 0 0.000 
CHRYSOPHYTA 23676 0.444 
CRYPTOPHYTA 0 0.000 
PYRROPHYTA 0 0.000 
DIATOMS 63135 3.371 
RHODOPHYTA 0 0.000 
___---------____________________________~-~- 
TOTAL ALGAE 291437 15.499 

SUMMARY: 
Cell Density: 2.91 x lo6 cells/L 

Biomass Estimate: 15.5 fig/L 

12 



I 
I 
1 
I 
I 
1 
I 
I 

Buchans - OWP (regular) 29/09/96 (A96-103) 

Sample File BR96C3 
DATE ANALYSED...12-10-1996 

SUBSAMPLE VOLUME... 52.5 mLs 

Buchans - OWP (regular - unconcentrated) 29/09/96 (A96-103) 

PHYLUM TOT CELLS.L-' TOT BIOMASS.M-3 

CYANOBACTERIA 233188 34.683 
CHLOROPHYTA 348635 48.659 
EUGLENOPHYTA 752 2.626 
CHRYSOPHYTA 386704 17.735 
CRYPTOPHYTA 0 0.000 
PYRROPHYTA 0 0.000 
DIATOMS 93576 23.351 
RHODOPHYTA 0 0.000 

TOTAL ALGAE 1062854 127.054 

SUMMARY: 

Cell Density: 1.06 X lo6 cells/L 

Biomass Estimate: 127.05 fig/L 

13 



Buchans - PP 17 (regular) 

Sample File BR96C5 
DATE ANALYSED...ll-29-1996 

SUBSAMPLE VOLUME... 52.5 rnLS 

I 
I 

29/09/96 (A96-105) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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Buchans - PP 17 (regular-unconcentrated) 29/09/96 (A96-105) 

PHYLUM TOT CELLS.L-1 TOT BIOMASS.M-" 

2.537 
19.043 

0.000 
9.601 
0.000 
0.000 
6.585 
0.000 

37.826 

Cell Density: 5.76 x lo5 cells/L 

Biomass Estimate: 37.83 fig/L 

CYANOBACTERIA 
CHLOROPHYTA 
EUGLENOPHYTA 
CHRYSOPHYTA 
CRYPTOPHYTA 
PYRROPHYTA 
DIATOMS 
RHODOPHYTA 
___-___.__.-. 
TOTAL ALGAE 

183017 
160093 

0 
216464 

0 
0 

16348 
0 

575922 

SmRY: 



Buchans - OEP (regular) 

Sample File BR96C7 
DATE ANALYSED...lO-27-1996 

SUBSAMPLE VOLUME... 105.0 mLs 

29/09/96 (A96-107) 

Buchans - OEP (regular-unconcentrated) 29/09/96 (A96-107) 

PHYLUM TOT CELLS.L-' TOT BIOMASS.M-3 
____.-__.__-_.-. 
CYANOBACTERIA 
CHLOROPHYTA 
EUGLENOPHYTA 
CHRYSOPHYTA 
CRYPTOPHYTA 
PYRROPHYTA 
DIATOMS 
RHODOPHYTA 

0 0.000 
14750 0.781 

0 0.000 
75537 1.418 

0 0.000 
0 0.000 

1691 0.319 
0 0.000 

TOTAL ALGAE 91978 2.517 

SUMMARY: 
Cell Density: 9.2 x loa cells/L 

Biomass Estimate: 2.52 @g/L 

15 
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ALGATAX CONSULTING -ALGAL IDENTIFICATION REPORT 

SITE: Buchans 

Sample # Age-23 

Location: Buchans - PP In (00:56) 

Date: 8107196 

250 mLs concentrated to 20 mLs; settled 2.1 mLs for examination (at 200X and 400X) 

- some floe-like material and fine debris present; very little algal matter present 

Algal Taxa Present: 

CLASS 

Cyanobacteria 

Chlorophyceae 

Euglenophycaae 

Chrysophyceae 

Bacillariophycaae 

Cryptophyceae 

Dinophyceae 

TAXON Ranking 

Oscillatoria sp. (small filament) 1 

Chlamydomonas spp. 1 
Ulothrix sp. 1 
Unidentified small green spp. 2 

Ochromonas spp. 2 
Unidentified small chrysophytes 2 

Achnanthes sp. 2 
Eunotia fallax 2 

Note: - fungal hyphae evident in sample 

17 



ALGATAX CONSULTING -ALGAL IDENTIFICATION REPORT 

SITE: Buchans 

Sample # A96-24 

Location: Buchans - PP out (00:36) 

Date: 8107196 

- 250 mLs concentrated to 20 mLs; settled 2.1 mLs for examination (at 200X and 400X) 

very dilute sample with very little algal material present; some floe-like precipitate present 
- similar to sample A%-23 

Algal Taxa Present: 

CLASS 

Cyanobacteria 

Chlorophyceae 

Euglenophyceae 

Chrysophyceae 

Bacillariophyceae 

Cryptophyceae 

Dinophyceae 

TAXON Ranking 

Oscillatoria sp. (small filament) 2 

Unidentified small green spp. 3 

Ochromonas spp. 3 
Unidentified small chrysophytes 2 

Achnanthes sp. 1 
Eunotia fallax 2 
Fragilaria sp. 1 
Navicula sp. (small sp.) 1 

Note: - fungal hyphae evident in sample 

18 



ALGATAX CONSULTING -ALGAL IDENTIFICATION REPORT 

SITE: Buchans 

Sample # A96-38 

Location: Buchans - MLC - I (l&54) 

Date: 1 l/07/96 

250 mLs concentrated to 20 mLs; concentrated 10 mLs to 2.1 mLs for examination (at 200X and 400X) 

-very dilute sample with very little algal material present; also very linle debris present 

Algal Taxa Present: 

CLASS 

Cyanobacteria 

Chlorophyceae 

Euglenophyceae 

Chrysophyceae 

Bacillariophyceae 

Cryptophyceae 

Dinophyceae 

TAXON 

Scenedesmus acuminatus 
Selenastrum sp. 
Unidentified small green spp. 

19 

Ranking 

2 
2 
3 



ALGATAX CONSULTING -ALGAL IDENTIFICATION REPORT 

SITE: Buchans 

Sample # A96-39 

Location: Buchans - MLC - /I (17:21) 

Date: 11 I97196 

250 mLs concentrated to 20 mLs; concentrated 10 mLs to 2.1 mLs for examination (at 200X and 400X) 

-very dilute sample with very little algal material present; also very little debris present 

Algal Taxa Present: 

CLASS TAXON 

Cyanobacteria 

Chlorophyceae Selenastrum sp. 
Unidentified small green spp. 

Euglenophyceae 

Chrysophyceae 

Bacillariophyceae 

20 

Navicula sp. (small sp.) 

Cryptophyceae 

Dinophyceae 

I 
I 
I 
I 
I 
I 
I 
I 

Ranking 

I 
1 
2 I 

I 
I 
1 
I 
1 
I 
1 
I 
I 

1 



ALGATAX CONSULTING -ALGAL IDENTIFICATION REPOR 

SITE: Buchans 

Sample # A96-40 

Location: Buchans - MLC -III (17~41) 

Date: 1 l/07/96 

- 250 mLs concentrated to 20 mLs; concentrated 10 mLs to 2.1 mLs for examination (at 200X and 400X) 

- very dilute sample with very little algal material present; also very little debris present 

Algal Taxa Present: 

CLASS 

Cyanobacteria 

Chlorophyceae 

Unidentified bluegreen filament 1 

Scenedesmus acuminatus 1 
Selenastrum sp. 1 
Temnogametum sp. 3 
Ulothrix sp. 2 
Unidentified small green spp. 3 

Euglenophyceae 

Chrysophyceae 

Bacillariophyceae 

Cryptophyceae 

Achnanthes sp. 
Navicula sp. (small sp.) 

Dinophycaae 

21 

2 
3 



ALGATAX CONSULTING -ALGAL IDENTIFICATION REPORT 

SITE: Buchans 

Sample # A96-41 

Location: Buchans - PP - In (l&42) 

Date: 1 l/07/96 

- 250 mLs concentrated to 20 mLs; concentrated 10 mLs to 2.1 mLs for examination (at 200X and 400X) 

- dilute sample with very little debris present 

Algal Taxa Present: 

CLASS 

Cyanobacteria 

Chlorophyceae 

Euglenophyceae 

Chrysophyceae 

Bacillariophyceae 

TAXON Ranking 

Unidentified bluegreen filament 1 
Unidentified bluegreen spp. 2 

Chlamydomonas sp. 1 
Unidentified smell green spp. 3 

Euglena sp. 1 

Epipyxis sp. 1 
Ochromones spp. 3 
Unidentified small chrysophytes 2 

Achnanthes sp. 2 
Navicula spp. (small spp.) 2 
Nitzschia sp. 1 
Pinnularia sp. (small sp.) 1 

Cryptophyceae 

Dinophyceae 

Note: - amoeboid species also present 

22 



ALGATAX CONSULTING -ALGAL IDENTIFICATION REPORT 

SITE: Buchans 

Sample # A9642 

Location: Buchans - PP out (l&16) 

Date: 1 l/07/96 

- 250 mLs concentrated to 20 mLs; concentrated 10 mLs to 2.1 mLs for examination (at 200X and 400X) 

-dilute sample with very little algal material present 

Algal Taxa Present: 

CLASS 

Cyanobacteria Unidentified bluegreen filament 1 
Unidentified small bluegreens 2 

Chlorophyceae Chlamydomonas spp. 1 
Scenedesmus acuminatus 1 
Selenastfum sp. 1 
Temnogametum sp. 1 
Ulothrix sp. 1 
Unidentified small green spp. 3 

Euglenophyceae 

Chrysophyceae 

Bacillariophyceae 

Cryptophyceae 

Dinophyceae 

Euglens sp. 1 

Unidentified small chrysophytes 2 

Achnanthes sp. 1 
Navicula sp. (small sp.) 1 
NitZschia sp. 1 

Chroomonas sp. 1 

23 



ALGATAX CONSULTING -ALGAL IDENTIFICATION REPORT 

SITE: Buchans 

Sample # A96-43 

Location: Orlentel West Pit (OWP) 

Date: 3105196 

- 1000 mLs concentrated to 20 mLs; considerable amount of sediment and floclike precipitate present 

-too much sediment to permit enumeration; very little algae present 

Algal Taxa Present: 

CLASS 

Cyanobacteria 

Chlorophyceae 

TAXON 

Oocystis sp. 
Ulothrix sp. 

Euglenophyceae 

Chrysophyceae 

Bacillariophyceae Achnanthes sp. 
Eunotia fallax 
Navicula spp. 
Nitzschia spp. 
Pinnularia SD, 

24 

Ranking 

1 
2 



ALGATAX CONSULTING -ALGAL IDENTIFICATION REPORT 

SITE: Buchans 

Sample # A96-44 

Location: Oriental West Pit (OWP) 

Date: 13/05/96 

- 250 mLs concentrated to 20 mLs; considerable amount of sediment and floe-like precipitate present 

considerable amount of filamentous algae; many filaments coated with precipitate; 
also many filaments look ‘unhealthy’ with distorted cell shapes 

Algal Taxa Present: 

CLASS TAXON Ranking 

Cyanobacteria 

Chlorophyceae Microspora spp. 5 
Ulothrix sp. 2 

Euglenophyceae 

Chrysophyceae 

Bacillariophyceae 

Cryptophyceae 

Dinophywae 

I 
25 



ALGATAX CONSULTING -ALGAL IDENTIFICATION REPORT 

SITE: Buchans 

Sample # A96-45 

Location: Oriental East Plt (OEP) 

Date: 13105196 

- 250 mLs concentrated to 20 mls; considerable amount of floe-like precipitate present 

- cells appear healthy and greater algal diversity is evident 
- considerable amount of moss protonemata present (at least 2 distinct sizes); 

much of the protonemata is coated with floe-like precipitate 
- narrow fungal hyphae also present 

TAXON 

Bluegreen filament (small sp.) 

Temnogametum sp. 

Achnanthes sp. 
Niizschia spp. 
Pinnularia sp. (medium) 

I 
4 
3 
3 I 

I 
I 
I 
I 
I 

26 

I 

Ranking 
I 

3 I 
2 

I 

Algal Taxa Present: 

CLASS 

Cyanobacteria 

Chlorophyceae 

Euglenophyceae 

Chrysophyceae 

Bacillariophyceae 

Cryptophyceae 

Dinophyceae 

I 
I 
I 
1 
I 
I 
I 
I 



ALGATAX CONSULTING -ALGAL IDENTIFICATION REPORT 

SITE: Buchans 

Sample # A96-46 

Location: Pool 13 (PP 13) 

Date: 13/05/96 

250 mLs concentrated to 20 mLs; relatively little precipitate present 

- moss protonemata also common; not coated with precipitate in this sample 

Algal Taxa Present: 

CLASS 

Cyanobatieria 

Chlorophyceae 

TAXON Ranking 

Bluegreen filament (small spp.) 4 
(maybe Phormidium sp.) 

Temnogametum sp. 
(very healthy filaments) 

5 

Euglenophyceae 

Chrysophyceae 

Bacillariophyceae 

Cryptophyceae 

Dinophyceae 

Pinnularia sp. (medium) 2 



ALGATAX CONSULTING -ALGAL IDENTIFICATION REPORT 

SITE: Buchans 

Sample # A9647 

Location: Pool 17 (PP 17) 

Date: 13/05/96 

- 250 mLs concentrated to 20 mLs; considerable amount of sediment and floe-like precipitate present 

- moss protonemata co-dominant with filamentous algae 
- narrow fungal hyphae also common 

Algal Twa Present: 

CLASS 

Cyanobacteria 

Chlorophycese 

Euglenophyceae 

Chtysophyceae 

Bacillariophyceae 

Cryptophyceae 

Dinophyceae 

TAXON 

Bluegreen filament (small sp.) 

Temnogametum sp. 

Pinnularia sp. (medium) 
Pinnularia sp. (small) 

28 

Ranking 

3 

4 

1 
1 



ALGATAX CONSULTING -ALGAL IDENTIFICATION REPORT 

SITE: Buchans 

Sample # A96-55 

Location: Buchans - Polishing Pond (PP14) -Mat ‘Bubble’ (PH 6.93) 
(sample labelled A) 

Date: 12/07/96 

- 100 mLs “pureed” sample for Culturing Experiment 

- considerable amount of floe-like sediment present; let sample settle then examined algae in supematant 

sample dominated by moss protonemata (wide filament form) 

Algal Taxa Present: 

CLASS 

Cyanobacteria 

Chlorophyceae 

Euglenophyceae 

Chrysophyceae 

Bacillariophyceae 

Cryptophyceae 

Dinophyceae 

TAXON 

Oscillatoria sp. (small sp.) 

Microthamnion sp. 
Oocystis sp. 
UloGvix sp. 

Euglena gracilis 

Nitzschia spp. 

Ranking 

3 

NOTE: - numerous bacteria and heterotrophic flagellates also present 



ALGATAX CONSULTING -ALGAL IDENTIFICATION REPORT 

SITE: Buchans 

Sample # A96-66 

Location: Buchans Pollshlng Pond (PP 12) -Seep Algae 
(sample labelled B) 

Date: 12/07/96 

(pH 6.99) 

- 100 mLs “pureed” sample for Culturing Experiment 

-considerable amount of floe-like sediment present; let sample settle then examined algae in supernatant 
(sample similar to samples A96-55 and A96-58) 

- sample dominated by moss protonemata (both wide and narrow filament forms) 

Algal Taxa Present: 

CLASS 

Cyanobacteria 

Chlorophyceae 

Euglenophyceae 

Chrysophyceae 

Bacillarfophyceae 

Cryptophyceae 

Dinophyceae 

TAXON 

Chlamydomonas spp. 
Chlorella sp. 
Microthamnion sp. 
Oocystis sp. 
Ulothrix sp. 

Ranking 

I 
I 
I 

Euglena gracilis 

Nitzschia spp 

I 
I 

2 I 
I 
I 
I 
I 
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I 
I 
I 
I 
I 
I 
I 
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ALGATAX CONSULTING -ALGAL IDENTIFICATION REPORT 

SITE: Buchans 

Sample # A9657 

Location: Oriental West Plt (OWP) - Filamentous Algae 
(sample labelled C) 

Date: 12/07/96 

(pH 4.83) 

- 100 mLs “pureed” sample for Culturing Experiment 

- very little debris or sediment present; essentially ‘pure’ sample of Ulothrix sp. 

5 

Ranking TAXON 

Ulothrix sp. 

Algal Taxa Present: 

CLASS 

Cyanobacteria 

Chlorophyceae 

Euglenophyceae 

Chrysophyceae 

Bacillariophyceae 

Cryptophyceae 

Dinophyceae 

NOTE: - bacteria and fungal hyphae also noted 



ALGATAX CONSULTING - ALGAL IDENTIFICATION REPORT 

SITE: Buchans 

Sample # A96-56 

Location: Suchans Polishing Pond (PP 14) -“Floating Bubble’ (pH 6.96) 
(sampled labelled D) 

Date: 1 Z/07/96 

100 mLs “pureed” sample for Culturing Experiment 

- considerable amount of floe-like sediment present; let sample settle then examined algae in supernatant 
(sample similar to A96-55 and A96-56) 

sample dominated by moss protonemata (wide filament form) 

Algal Taxa Present: 

CLASS 

Cyanobacteria 

Chlorophyceae 

Euglenophyceae 

Chrysophyceae 

Bacillariophyceae 

Cryptophyceae 

Dinophyceae 

TAXON 

Chlamydomonas sp. 
Chlorella sp. 
Microthamnion sp. 
Oocystis sp. 
Ulothrix sp. 

Euglena gracilis 

Nitzschia spp, 

NOTE: - fungal hyphae also present in sample 

I 
2 

I 
2 I 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
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Summary of Macronutrients Present in Media Used for Culturing 
Buchans Algal Mat Samples and for Dictvosphaerium pulchellum 

Ammonium (NH,‘) 
Calcium (Cz?‘) 
Magnesium (MS) 
Potassium (K+) 

c Sodium (Nat) 

Carbonate (CO%) 
Chlaide W) 
Nitrate (NW 
Phosphate (PO,? 
Silicate (SiO,‘J 
Slllphate (SO:) 

MEDIA TYPES 
(concentrations given in mm&r and mg/L) 

Regular and Modified Chu-1 0 
Regular (lo:1 N to P) Reduced Silica Content 

mM mg/L mM mg/L 

- -- - -_ 

0.17 6.81 0.17 6.81 
0.1 2.43 0.1 2.43 

0.11 4.3 0.11 4.3 
0.55 12.6 0.39 8.97 

0.19 11.4 0.19 11.4 0.19 11.4 
0.0089 0.32 0.0089 0.32 0.0089 0.32 

0.34 21.08 0.34 21.08 0.17 10.54 
0.057 5.41 0.057 5.41 0.23 21.84 
0.088 6.89 0.0088 0.669 0.0088 0.669 

0.1 9.8 0.1 9.6 0.1 9.6 

Field Levels (1:l N to P) 

mM mg/L 

- - 

0.085 3.41 
0.1 2.43 

0.46 4.3 
0.55 12.6 



Summary of Macronutrients Present in Media Used for Culturing 
Buchans Algal Mat Samples and for Dictyosphaerium pulchellum 

MEDIA TYPES 
(concentrations given in mmolar and mg/L) 

Inorganic Macronutrients 

Ammonium (NH,‘) 
Calcium (Gas+) 
Magnesium (Mgz*) 
Potassium w+) 

2 Sodium (Na+) 

B.B.M. 
Bold’s Basal Medium 

mM wR 

- - 

0.17 6.81 
0.3 7.29 
2.7 105.56 

3.37 77.48 

B.G.-I I 
Blue-Green-11 Medium 

mM mgfl 

0.25 10.02 
0.3 7.29 

0.34 13.29 
18.03 414.51 

Carbonate (COz2-) 

Chloride (W 
Nitrate (NOz-) 

Phosphate (PO.,%) 
Silicate (SiOs*-) 

Sulphate (SO:) 

-__ --- 0.19 11.4 
0.77 27.3 0.49 17.37 
2.94 182.28 17.65 1094.3 
1.72 117.27 0.17 16.15 

-- --__ --- -- 

0.34 32.66 0.3 28.82 



BUCHAN’S CULTURING EXPERIMENT- Sampling Day 31 

Identification of Major Taxa Found in Four Different Types of Freshwater Media 

Ranking System Used: 
5 = most abundant, found dominating most 

fields of view 
4 = vary abundant 

lnnoculum Taken From Sampling Container Marked: 
C - OWP fil.algae from 1217196 

3 = common 
2 = less common 
1 = rare 

REGULAR CHU 10 MEDIA 
CATEGORY GENERA 
Green algae Scenedesmus 
Filamentous greens Mougeotia 
Blue-Green filaments Phormidium 

Anabaena 
Diatoms Pinnularia 

Navicula 
Achnanthes 

Small Greens 

CHU IO WITH LESS SILICA 
CATEGORY 
Green algae 
Filamentous greens 
Blue-Green filaments 

Diatoms 

MOSS 
Small Greens 

GENERA 
Scenedesmus 
Mougeotia 

bwbYa 
Anabaena 
Phormidium 
Pinnularia 
Navicula 

BOLD’S BASAL MEDIUM (B.B.M.) 
CATEGORY GENERA 
Green algae Scenedesmus 
Filamentous greens Mougeotia 
Blue-Green filaments Phormidium 

Lywbya 
Diatoms 
MOSS 

Pinnularia 

BLUE - GREEN 11 (B.G.ll) 
CATEGORY GENERA 
Green algae Scenedesmus 
Blue-Green filaments Phormidium 

Lmbya 
Anabaena 
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RANK 
5 
5 
4 
1 
4 
2 
3 
1 

RANK 
5 
5 
4 
3 
1 
3 
2 
2 
2 

RANK 
5 
3 
4 
2 
2 
1 

RANK 
4 
4 
4 
3 
2 



BUCHAN’S CULTURING EXPERIMENT- Sampling Day 31 

Identification of Major Taxa Found in Four Different Types of Freshwater Media 

Ranking System Used: 
5 = most abundant, found dominating most 

fields of view 
4 = very abundant 

lnnoculum Taken From Sampling Container Marked: 
D - PP14 Float Bubble from 1117196 

3 = common 
2 = less common 
1 = rare 

REGULAR CHU IO MEDIA 
CATEGORY GENERA 
Green algae Scenedesmus 
Filamentous greens Mougeotia 

Ulothrtx 
Blue-Green filaments bwtbya 
Small Greens 

CHU 10 WITH LESS SILICA 
CATEGORY GENERA 
Green algae Scenedesmus 
Filamentous greens Mougeotia 

Ulothrix 
Small Greens 

BOLD’S BASAL MEDIUM (B.B.M.) 
CATEGORY GENERA 
Green algae Scenedesmus 
Filamentous greens Mougeotia 

Ulothrix 
Small Greens 

BLUE - GREEN 11 (B.G.ll) 
CATEGORY GENERA 
Green algae Scenedesmus 
Filamentous greens Mougeotia 

Ulothrix 
Small Greens 

RANK 
1 
1 
5 
3 
1 

RANK 
1 
3 
5 
4 

RANK 
4 
1 
5 
1 

RANK 
3 
4 
5 
2 

I 
I 
I 
I 
I 
I 
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I 
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I 
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I 
I 
I 
I 
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BUCHAN’S CULTURING EXPERIMENT- Sampling Day 31 

Identification of Major Taxa in Preserved Samples 

Ranking System Used: 
5 = most abundant, found dominating most 3 = common 

fields of view 
4 = very abundant 

SAMPLE 
VIAL 
Al 

CATEGORY 
Diatoms 

Blue-Green Filaments 
Moss 
Small Greens 
Rod and Coccoid Bacteria 

,A2 CATEGORY 
Diatoms 

Blue-Green Filaments 
Moss 
Small Greens 
Rod and Coccoid Bacteria 

A3 CATEGORY 
Diatoms 

Blue-Green Filaments 
Moss 
Small Greens 
Rod and Coccoid Bacteria 

GENERA 
Pinnularia 
Navicula 
Phormidium 

GENERA 
Pinnutaria 
Navtcula 
Phormidium 

GENERA 
Pinnularia 
Navicula 
Phormtdium 

2 q less common 
1 = rare 

RANK 
3 
3 
3 
5 
1 
5 

RANK 
2 
2 
4 
5 
1 
4 



CULTURING EXPERIMENT Continued 

SAMPLE 
VIAL 
Bl CATEGORY 

Filamentous Greens 

82 

B3 

Blue-Green Filaments 
Moss 
Small Greens 
Rod and Coccoid Bacteria 

CATEGORY 
Filamentous Greens 

Rod and Coccoid Bacteria 

CATEGORY 
Filamentous Greens 
Blue-Green Filaments 
Rod and Coccoid Bacteria 

GENERA 
Microspora 
Ulothrlx 
Pinnularia 
Navicula 
Phormidium 

I 
RANK 

5 
1 I 
1 
1 
4 I 
5 
1 
3 I 

RANK 
5 
1 I 
4 

RANK I 
5 
3 
4 I 

I 

GENERA 
Microspora 
Ulothrix 

GENERA 

Phormidium 
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CULTURING EXPERIMENT Continued 

SAMPLE 
VIAL 
Cl CATEGORY 

Green algae 
Filamentous Greens 
Blue-Green Filaments 
Diatoms 

Rod and Coccoid Bacteria 

c2 CATEGORY 
Green algae 
Filamentous Greens 
Blue-Green Filaments 
Diatoms 

Rod and Coccoid Bacteria 

c3 CATEGORY 
Green algae 
Filamentous Greens 
Blue-Green Filaments 

Diatoms 

Rod and Coccoid Bacteria 

GENERA 
Scenedesmus 
Microspora 
bwbw 
Achnanthes 
Pinnularia 
Nttzschia 
Navicula 

GENERA 
Scenedesmus 
Microspora 
Lwgbya 
Achnanthes 
Pinnularia 
Nitzschia 
Navicula 

GENERA 
Scenedesmus 
Microspora 
Lmbya 
Phormidium 
Achnanthes 
Pinnularia 
Nkschia 
Navicula 
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RANK 
1 
5 
5 
3 
3 
3 
3 
3 

RANK 
1 
5 
5 
3 
3 
3 
3 
3 

RANK 
2 
5 
4 
4 
3 
3 
3 
3 
4 



CULTURING EXPERIMENT Continued 

SAMPLE 
VIAL 
01 CATEGORY 

Blue-Green Filaments 

D2 

D3 

Rod and Coccoid Bacteria 
Moss 
Fungal Hyphae 

CATEGORY 
Blue-Green Filaments 
Diatoms 

Rod and Coccoid Bacteria 
Moss 
Fungal Hyphae 
Small Greens 

CATEGORY 
Green Algae 
Blue-Green Filaments 
Diatoms 

Rod and Coccoid Bacteria 
Moss 
Fungal Hyphae 

GENERA 
Lywbya 
Phormidium 
Navicula 
Pinnularia 

GENERA 
Lmbya 
Navicula 
Pinnularia 

GENERA 

Lywbya 
Navicula 
Pinnularia 

RANK 
2 
2 
3 
3 
5 
5 
5 

RANK 
2 
2 
2 
5 
5 
5 
1 

RANK 
1 
5 
3 
3 
4 
5 
5 
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CULTURING EXPERIMENT Continued 

SAMPLE 
VIAL 
El 

E2 

E3 

CATEGORY 
Filamentous Greens 
Diatoms 

Rod and Coccoid Bacteria 
Small Greens 

CATEGORY 
Filamentous Greens 
Diatoms 

Rod and Coccoid Bacteria 
Small Greens 

CATEGORY 
Filamentous Greens 
Diatoms 

Rod and Coccoid Bacteria 
Small Greens 
Fungal Hyphae 

GENERA 
Ulothrix 
Achnanthes 
Pinnularia 

GENERA 
Ulothrii 
Achnanthes 
Pinnularia 

GENERA 
Ulothrix 
Achnanthes 
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RANK 
5 
2 
2 
3 
I 

RANK 
5 
2 
2 
2 
1 

RANK 
5 
2 
2 
1 
1 
4 



CULTURING EXPERIMENT Continued 

SAMPLE 
VIAL 
Fl CATEGORY 

Filamentous Greens 

Blue-Green Filaments 

Rod and Coccoid Bacteria 
Small Greens 
Fungal Hyphae 
Moss 
Diatoms 

F2 CATEGORY 
Filamentous Greens 

F3 

Rod and Coccoid Bacteria 
Fungal Hyphae 
Moss 

CATEGORY 
Filamentous Greens 

Green algae 
Blue-Green Filaments 
Diatoms 

Rod and Coccoid Bacteria 
Fungal Hyphae 
Moss 

GENERA 
Ulothrtx 
Microspora 
Lyngba 
Phom-ridium 

Pinnularta 
Nitzschia 

GENERA 
Ulothrix 

Achnanthes 
Pinnularia 
Nitzschia 
Navicula 

GENERA 
Ulothrix 
Microspora 
Scenedesmus 
bw$w 
Achnanthes 
Pinnularia 
Nitzschia 
Navtcula 

RANK 
2 
2 
4 
2 
2 
1 
5 
5 
3 
3 
3 
3 

RANK 
4 
5 
4 
4 
4 
4 
3 
4 
5 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

RANK 
2 
2 I 
1 
3 
4 
4 I 
4 
4 
1 I 
2 
5 
5 I 

I 
I 
I 
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CULTURING EXPERIMENT Continued 

SAMPLE 
VIAL 
Gl CATEGORY 

Filamentous Greens 

Green algae 
Blue-Green Filaments 
Diatoms 

Rod and Coccoid Bacteria 
Fungal Hyphae 
Moss 

G2 CATEGORY 
Blue-Green Filaments 
Diatoms 

G3 

Rod and Coccoid Bacteria 
Fungal Hyphae 
Moss 

CATEGORY 
Filamentous Greens 
Green algae 
Blue-Green Filaments 
Diatoms 

Rod and Coccoid Bacteria 
Fungal Hyphae 
Moss 
Small Greens 

GENERA 
Ulothrk 
Microspora 

LYwbYa 
Achnanthes 
Pinnularia 
Ntzschia 
Navicula 
Eunotia 

GENERA 
Lyngbya 
Achnanthes 
Pinnularia 
Nttzschia 
Navicula 

GENERA 
Microspora 
Scenedesmus 
Lyngbya 
Achnanthes 
Pinnularia 
Nitzschia 
Navtcula 

43 

RANK 
1 
3 
1 
3 
2 
2 
2 
2 
1 
2 
5 
5 

RANK 
3 
3 
3 
3 
3 
3 
5 
5 

RANK 
2 
4 
4 
3 
3 
3 
3 
2 
5 
5 
1 
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6.0 PHOSPHATE: LIMITING NUTRIENT FOR PRIMARY PRODUCTIVITY 

Phosphate was identified as the limiting nutrient in the system, based on the water 

chemistry and previous studies. Fertilization of Polishing Pond water assisted in the 

productivity and growth of algae. It was inferred that this assisted zinc removal 

through providing more sites to collect particles. This was addressed through a series 

of lab and field experiments. 

6.1 Nutrient Availability: Lab Experiments 

6.1.1 Nitrogen and Phosphorus Solubility in Distilled and Boomerang Lake Water 

Laboratory studies were performed to determine the solubility of various fertilizer 

formulations in distilled water and in OEP and polishing pond water. 

A wide range of fertilizer formulations are available for supplying nutrients to plants 

and bacteria for agriculture and land reclamation. However, few fertilizers are 

marketed for application as a slow-release source of nutrients for aquatic 

environmental applications, such as supplying nitrogen and phosphorus to acidic water 

bodies to enhance primary productivity. 

Fertilizers are typically described according to their available nitrogen, phosphorus and 

potassium (N-P-K) content in percent. However, there is typically ambiguity whether 

the P content actually refers to, for instance, P, PO, or P,O,, while the form of 

nitrogen (e.g., ammonia, nitrate and/or urea) is not specified. ‘Slow-release’ refers to 

the dissolution rate in soil conditions; submerged in water, most slow release fertilizers 

rapidly dissolve. 

67 



The section reports on the dissolution behaviour of eleven types of fertilizer. and 

describes the release of nitrate, ammonia and phosphate to distilled water or acidic 

lake water in stirred conditions for up to 14 days. 

Methods and Materials 

Fertilizer Types: In total, eleven types of fertilizer were tested (see Table 21). For 

many of the types, the N, P and K content is given. However, whether a fertilizer 

contains 10% P,O, or 10 % P could not always be verified from manufacturers’ 

specifications provided on packaging. In Tables 21 and 22, manufacturers’ 

specifications are given under “Reported N:P:K”. while under “Amount of N/P added, 

mg/L” the best estimate of the actual amount of N or P present in the experimental 

solution is given. 

Types 1, 2 and 3 are resin-coated fertilizer granules, designed to slowly release 

nutrients even in saturated conditions (Osmocote, Grace; Nutricote, Plant Products).. 

According to the manufacturer, Type 1 contains potassium nitrate, while Type 3 

contains 21%-7%-7% N-P-K. Information on the composition of Type 2 is not 

available. 

Fertilizer Types 4 and 5 are liquid fertilizers containing 14-4-6 and 4-l 8-6 N-P-K, 

respectively. These fertilizers were designed as foliar fertilizers for supplementing the 

nutrient supply to citrus trees. These types are presumed to contain 14% and 4% N 

as specified. Without additional information, these types are presumed to contain 4% 

and 18% P. 

Type 6 fertilizer is molasses. While this is not specifically a fertilizer, molasses has 

been US@ to augment bacterial growth, and may be suitable for initiating remediation 

processes for AMD and groundwater. Therefore, information regarding the release of 

nitrate, ammonia and phosphate from molasses may be of utility. 
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Type 7 is calcium nitrate, in the form of soluble white crystals. The manufacturer 

specifications indicate that Type 7 is composed of 15.5-O-O N-P-K. Type 7 is 

presumed to contain 15.5% N. 

Fertilizer types 8 and 9 are two forms of ground natural phosphate rock, used as soil 

supplements in agriculture as long term sources of phosphate and alkalinity. Type 8 

is Code 30 phosphate rock, ground to a fine sand consistency, while Type 9 is Code 

31 phosphate rock ground finely to a flour-like powder. Phosphorus content (PI of 

these materials were determined by ICAP by Boojum. 

Fertilizer Types 10 and 1 1 are water soluble horticultural formulation which, according 

to the manufacturer, contains 15-30-l 5 and 1 O-52-1 0 N-P,O,-K, respectively. Type 

11 is exactly the same fertilizer used to supplement the Buchans polishing ponds with 

nutrients Converting P205 to P, Type 10 contains 13.1.7% P and Type 11 contains 

22.7 % P. 

Experiment Set-up: A 100 mg sample of each solid fertilizer was added to 1 I 

of distilled water or 1 L water sample from Boomerang Lake (an acidified water body). 

For fertilizer Type 3, 1000 mg were added, since this type was a blend of several 

solids types of different colours. For liquid fertilizers, 1 mL was added, and the 

equivalent dry weight was determined by drying down a 25 mL sample at 75°C. 

The 1 L samples were continuously stirred using a magnetic stirrer and stir bar at room 

temperature. Controls were set up, consisting of distilled water or Boomerang Lake 

water with no added fertilizer. 

The pH, conductivity and temperature were measured ‘I hour, 24 hours, 1 week, 11 

days and 2 weeks following set up. Nitrate, ammonium and phosphate concentrations 

were determined at these times using Hach reagents and hand-held calorimeters. 



Results 

The results of phosphate concentration determinations are expressed as P in 

Table 21, and nitrate and ammonium concentrations as N are presented in Table 

22. 

Measurable phosphate concentrations were detected in solutions of fertilizer 

types 1, 2, 3, 4, 5, 6, 8, 9, 10 and 11. as expected, phosphate was not 

released from type 7 (calcium nitrate). 

For types 1, 2 and 3, phosphate release to distilled water could be compared 

to release to Boomerang Lake water. More phosphate was measured in distilled 

water leachates, indicating that phosphate may be precipitated by iron and/or 

zinc present in Boomerang L. water. 

Actual phosphate release could be compared to the manufacturer’s specification 

on phosphate content for types 3, 4, 5, 8, 9, 10 and 11. With the exception 

of type 10 (15-l 3.1-I 51, all fertilizers released less phosphate than specified. 

Relatively little phosphate was released by types 1 and 2 resin-coated slow 

release fertilizers. However, up to 70 % of the phosphate content of type 3 

(resin coated) was released, indicating that the resin coating did not impede 

release in the stirred solutions. 

The fertilizer type used to provide nutrients to the Polishing Ponds (type 1 I) 

readily dissolved, providing 133 % of the specified phosphate content within 

1 hour of dissolving. 

Measurable nitrogen concentrations were detected in solutions of all fertilizer 

types, including the phosphate rock samples (ammonia: types 8 and 9). 
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For types 1, 2 and 3, nitrogen release to distilled water could be compared to 

release to Boomerang Lake water. Much more nitrogen was measured in 

Boomerang Lake water than in distilled water leachates, indicating that nitrogen 

compound dissolution may be enhanced by the low pH of Boomerang L. water. 

Actual nitrogen release could be compared to the manufacturer’s specification 

on nitrogen content for types 3, 4, 5, 7, 10 and 11. In many instances, 

fertilizers released more nitrogen than specified. 

Relatively little nitrogen was released by type 1 resin-coated slow release 

fertilizer. Type 2 released up to 93 mg/L N as ammonia in Boomerang L. water. 

However, up to 38 and 152 % of the nitrogen content of type 3 (resin coated) 

was released, indicating that the resin coating did not impede release in the 

stirred solutions. 

The fertilizer type used to provide nutrients to the Polishing Ponds (type 11) 

readily dissolved, providing 256 % of the specified nitrogen content within 1 

hour of dissolving. 

Discussion 

This experiment was required to determine whether one particular fertilizer was 

particularly suitable among the types available for experimentation. The type 11 

fertilizer, used in Buchans to date, appears to readily dissolved and release nutrients 

upon addition. 
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6.1.2 Manipulation of N and P Concentrations and Ratios 

Laboratory studies with OWP water and algae were performed to determine a 

fertilization rate based on the consumption rate of phosphate by the periphyton 

population in the Polishing Ponds. 

Background concentrations of nutrients in OWP water were determined using Hach 

reagents and a spectrophotometer. Phosphate and nitrate were then added to set up 

the following type of nutrient status: 

1) N:P ratio of lO:l, achieved by adding KNO, or K,HPO,. 

2) N concentration of 10 mg/L, by adding KNO,. 

3) N concentration of 10 mg/L and P concentration of 1 mg/L. 

The results indicated that some nitrate was taken up by the algae. Ammonia release 

occurred in some cultures. Phosphate was rapidly depleted from the solutions, and 

its concentration was less than detection limits, including control samples without 

algae Table 23). 

It was concluded that phosphate determinations are prone to interference, and 

meaningful results could not be obtained, unless phosphorus isotopes could be used 

and monitored. 

6.1.3 Periphyton Growth Study in Media 

Growth studies with the biological material growing in the ponds in chemically defined 

growth media to determine which biological group might be the dominant component 

of the biological activity and what differences are possibly related to the chemical 

composition, ie. nutrient limitation other than phosphate. 
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The results of this study indicated that upon transfer to laboratory conditions, those 

algal species dominant in the periphyton community in the field are replaced by 

species more suited for growth in the laboratory (see “PHYTOPLANKTON AND 

PERIPHYTON TAXA IN 1996 BUCHANS SAMPLES AND BUCHANS CULTURING 

EXPERIMENT”, Section 5). Without extensive further work, field conditions cannot 

be emulated in the lab. 

6.2 Periphyton Communities 

The periphyton in Polishing Pond system were characterized according to growth form. 

At the time of observations, periphyton in the polishing ponds consists primarily of 

aquatic moss, with some algal biomass, growing as ‘mat bubble algae’ over the 

bottom and as ‘branch algae’ on alder branches of the ponds. 

l As ‘mat bubble algae’ accumulate air bubbles (O,, CO,), slabs of this mat buoy 

up from the bottom, and become ‘float bubble algae’. Sand and gravel lifted 

from the bottom sifts out of the mat, while iron hydroxide accumulates on the 

underside of the floating mat. 

l ‘Float bubble algae’ is found as large mats in the ponds. Portions breaking 

away and passing over the weirs is pulverized and returns to the pond bottom, 

probably to reform as ‘mat bubble algae’. 

l In terms of nutrients, the existing mat and float bubble periphyton in the 

polishing ponds have nitrogen available primarily as ammonia (0.5 mg/L N as 

NH,), with a small amount of N as NO, (0.03 to 0.05 mg/L) and trace amounts 

of phosphate (0.1 mg/L PO,; see Table 24, PPl 1 In data). 
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0 Small populations of ‘seep algae’ remain along the upstream berm of Polishing 

Pond 12, in areas where water is seeping from the pond bottom from the Pond 

11 area. This periphyton is clearly a filamentous species with no moss present. 

Nutrient concentrations were not measured in the vicinity of the this algae. 

0 A special interest is the filamentous algae growing on the remaining section of 

the peribasket in OWP. Large tough ropes of filamentous algae up to 5 m long 

have grown in the area where the Drainage Tunnel inflow maintains a relatively 

constant flow pattern. This massive growth of periphyton in OWP is 

encouraging, as the new perigrid can now be anticipated to be readily colonized 

by this algae. 

l The OWP ‘rope periphyton’ is growing in the area of the drainage Tunnel input. 

This flow generally maintains a unidirectional flow, which may favour the 

growth of this form of periphyton. In addition, the primary form of N is nitrate, 

present at a concentration of 0.4 mg/L N as NO, 1. The ammonia concentration 

in the D.T. water was less than 0.1 mg/L as N (Hach, determined in field), while 

trace amounts of PO, was measured, as observed in the polishing ponds. 

Summary 

0 The field data on the periphyton biomass produced in the OWP and the results 

of the perigrid suggest that the OWP is a suitable area to focus on increasing 

biological productivity (Table 25, Schematic 2, Plates 1 and 2). 
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6.3 Nutrient Additions in Field 

6.3.1 Polishing Pond 11 Small-Scale Study 

With fertilizer additions based on the rates determined in the laboratory studies, both 

mini limnocorrals (96 L) and in Pond 11 with monitoring phosphate concentrations in 

the field. 

The nutrient concentrations and general water chemistry were measured for PPI 1 in 

and out on the morning of July 8, 1996. At noon, 3.7 kg of 10-52-I 0 fertilizer was 

added in a 20 L slurry. At noon on July 9, 3.7 kg were added, on July 10, 2.8 kg and 

on July 11, 3.7 kg. 

According to Plant Products (G.Neary, pc.) the 10% N in the 1 O-52-1 0 fertilizer is 7.8 

ammonia, 0.9 % nitrate and 1 .3 % urea. 

Phosphate, INI as nitrate and [N] as ammonia were determined at 2 to 4 hr intervals 

during daylight hours. Small amounts of precipitates regularly developed during the 

ammonia tests, while nitrate tests were frequently unsuccessful due to formation of 

yellow colour, instead of the expected pink colour formation. Overall, phosphate 

concentrations are likely the most reliable results. All PPI 1 fertilizer experiment data 

are presented in Table 24. 

The actual flows at PPI 1 in and out were measured once using a water collection 

system, a bucket and stopwatch. The water levels over these weirs were also 

periodically measured. These levels were used to estimate flow, using G. Neary’s 

equation relating head with flow. 

The changes in [phosphate], [N] as nitrate and [Nl as ammonia in PPI 1 in and PPI 1 

out are presented in Figures 20, 21 and 22. Water samples were saved in the event 
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that the Hach kit results can be compared to results produced by an analytical lab. 

In Figure 22, N concentrations as ammonia at the inflow and outflow of PPI 1 are 

presented. As expected, N as ammonia concentrations increased upon addition of 

ammonia-containing fertilizer just below the inflow of PPI 1. N as ammonia 

concentrations reached as high as 1.2 mg/L. The N as ammonia concentrations in the 

PPI 1 inflow at a location just upstream of additions remained relatively constant over 

the course of the experiment, ranging from 0.45 to 0.7 mg/L, and averaging about 0.5 

mg/L N. 

In Figure 20, phosphate concentrations in PPI 1 in and out are plotted. As observed 

for ammonia, measured phosphate concentrations also increased following addition 

of fertilizer to the PPI 1 inflow. Phosphate concentrations reached as high as 1.3 

mg/L as PO,. Background (PPI 1 Inflow) concentrations remained around < 1 to 0.3 

mg/L, averaging about 0.1 mg/L. 

The Hach nitrate tests were very unreliable during the experiment. Typically, following 

the three minute shaking period with the Nitraver 6 (Cadmium reduction step), transfer 

to clean tube and addition of the Nitraver 3 reagent, the sample turned a light to deep 

yellow, masking the pink to red colour indicative of the presence of nitrate. Addition 

of the Nitraver 3 alone also resulted in the yellow colour. However, occasionally the 

test worked and detectable nitrate could be measured. The results of the nitrate tests 

are shown in Figure 21. 

Nitrate concentrations, when detected, ranged from 0.03 to 0.1 mg/L N-NO, in the 

PPI 1 outflow samples. The test worked only once for the PPI 1 in samples, and a 

0.03 mg/L N-NO, was recorded. This suggests that upon addition of the 10-52-I 0 

fertilizer, nitrate concentrations increased in PPI 1. 

A model of the polishing ponds has been developed. This model simulates nutrient 
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concentrations in the polishing ponds, taking into account the volumes of the ceils, 

the flow volumes, the background concentrations and the additions of phosphate. 

The program repeats calculations in iterations of 1 hour. The program assumes 

complete mixing of a fertilizer addition with the receiving pond’s volume within an 

hour; in reality, the mixing process is probably not this rapid. 

The model was run for ammonia and phosphate. The expected N-NH, concentrations 

in PPIO, PPI 1, PP12 and PP13 are shown in Figure 23 upon addition of fertilizer 

(starting at hour 0) at the rate applied during the experiment, and at the flow volumes 

measured during the experiment. In addition, the actual concentrations measured in 

the field are also plotted in the graph. 

The model was started 456 hours (19 days) prior to the addition of the first lot of 

fertilizer, since ammonia was already present in the inflows to PPIO prior to the 

experiment, and the model needed these 19 days to reach equilibrium with respect to 

ammonia concentrations throughout the PPI 0-PPI 3 system. 

The match between predicted ammonia concentrations (red) and the measured 

ammonia concentrations determined during the field experiment (blue) is remarkable. 

Both the magnitude of ammonia concentrations match well, as well as undulations in 

concentrations due to the 24 hour time spans between successive additions of 

fertilizer. There appears from Figure 23 that the actual ammonia concentration 

increases were delayed, compared to the modeled concentration increases. This is 

likely due to actual mixing times exceeding modeled mixing times. 

Overall, it appears that PPI l’s behaviour is closely simulated by the model. Given 

that similar ammonia concentrations were measured as modeled, it appears that 

ammonia uptake by algae or ammonia adsorption onto organics during the field 

experiment may have been negligible. This also indicates that the ammonia was well 

mixed in the estimated pond volume. Finally, although some doubt remains regarding 
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the accuracy of the Hach ammonia kit (precipitate formation), it appears to be working 

adequately. 

The model was also run for phosphate in the system, for comparison to measured 

phosphate concentrations in PPI 1 during the field experiment (Figure 24). The 

measured phosphate concentrations (blue) were much lower than those predicted by 

the model (red), although undulations relating to the fertilizer additions, and delays due 

to mixing, can be seen in the curve. This suggest that a substantial fraction of the 

phosphate added to PPI 1 was lost by, for example, adsorption onto algae and/or 

precipitation with other compounds, such that the Hach phosphate kit did not detect 

the phosphate present in solution. 

Apparent loss of phosphate mass during the field experiment was anticipated. A 

second static field experiment was performed during the site visit in order to examine 

apparent losses of nutrients from the system. This results of the Mini-Limnocorral 

Experiment, is described in the next section. 

6.3.2 Fate of Nutrients: Mini-Limnocorral Experiment 

Mini-Limnocorrals (MLCs) were set up in PPl 1. These consisted of plastic bags 

containing 96 L of PPI 1 water added prior to addition of the large doses of fertilizer 

to PPI 1. All MLC fertilizer experimen data are presented in Table 26. 

MLC-i was set up as a control. This container did not receive any fertilizer, nor was 

periphyton added. A does of 0.797 g of 1 O-52-1 0 fertilizer was added to MLC-ii and 

MLC-iii. A sample of float bubble algae was carefully added to the surface of MLC-iii 

such that the mat remained afloat over the course of the experiment. Nutrient 

concentrations were periodically measured in each MLC. The entire algal sample was 

recovered at the end of the experiment in order that its dry weight could be 
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determined. 

The results of ammonia determinations in the MLCs are shown in Figure 25. In the 

control set-up, MLC-i, ammonia concentrations remained at background (0.5-0.6 mg/L 

N-NH,). In MLC-ii, where fertilizer was added, the ammonia concentration stayed 

relatively constant at 1.7 to 1.8 mg/L N-NH, over the course of the experiment. A 

slight decrease in the ammonia concentration, to 1.4 mg/L N-NH, was measured in 

MLC-iii, the set-up where a clump of float bubble algae was added. 

In a separate test (‘dose check’), an identical dose of the fertilizer was added to 

distilled water, and diluted to the correct fertilizer dose:96 L ratio. This sample 

contained 1 .2 mg/L N as ammonia. Since the background N (ammonia) concentration 

was 0.5 mg/L, the expected N as ammonia concentration in MLC-ii and MLC-iii was 

1.7 mg/L, a perfect match with measured concentrations. 

These results match the PPI 1 Fertilizer Experiment. Ammonia added to PPI 1 and the 

MLCs remained dissolved in the solutions. Despite formation of precipitates, the Hach 

ammonia test was functioning well. 

The ‘dose check’ test indicated that the fertilizer dose added to MLC-ii and MLC-iii 

should yield a final concentration of 3.8 mg/L PO,. In fact, PO, concentrations in 

MLC-ii and MLC-ii were 3.5 to 3.7 mg/L at the start of the experiment and after 20 

hours (Figure 26). However, the phosphate concentration decreased to 1.8 to 1.9 

mg/L after 55 hours, both in water only (MLC-ii) or in the presence of periphyton 

(MLC-iii). This indicates that the phosphate was initially present at the expected dose 

at the start of the MLC experiment, but was adsorbed by organics and was removed 

from the system, or had combined with compounds and was not detected by the Hach 

kit 35 hours later in the experiment (Table 27). 

The MLC experiment’s phosphate results also match well with the PPI 1 Fertilizer 
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experiment. A substantial fraction (-70 %) of the phosphate ‘disappeared’ (no longer 

detected by Hach test) in the MLC experiment between hours 20 and 55. In the Field 

Fertilizer experiment, the peak phosphate concentration was 1.3 mg/L, while the 

modeled (expected) concentration for that fertilizer dose was 4 mg/L, a difference 

where the measured concentration was 67 % lower than the exoected concentration. 

Unfortunately, the Hach nitrate test did not function properly for most attempts, 

including during measurements of the MLC experiment (Figure 27). Only one 

observation can be made from the very limited results, namely, that the final nitrate 

concentration in MLC-iii (with periphyton) was lower than the nitrate concentration in 

MLC-ii (no periphyton), suggesting measurable nitrate uptake by the periphyton in 

MLC-iii. 
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Table 21: Dissolution of Phosphorus from Various Fertilizer Types in Distilled Water and Boomerang Lake Water. 

Fertilizer Fertilizer Reported 
IPI PI IPI LPI 1 Am’t Fert. Amount of 

added to P added w#- mg/L mgR mglL mg/L %OfP II 
Desription 

Dearborn resin coated 
potassium nitrate pellet* 

Dearborn resin coated pellets 

N:P:K 

““know” 

Medium 

Distilled Water 
Emomerang L. 
Distilled Water 
R”nmcnnn I 

1 L, mg mg/L 1 Hour 24 Hours 1 Week 1, days 2Weeks Dissolved 

106 unknown 0.03 0.24 0.16 0.2 0.13 N.C. 
135 unknown 0.03 0.03 0.03 N.R. N.R. N.C. 
109 unknown 0.03 0.1 0.23 0.1 0.13 N.C. 
146 unknown 0.03 0.03 0.03 N.R. N.R. N.C. 

,044 73 51 29 29 29 29 7” I” 
321 22 7 8 8 N.R. N.R. 36 
462 18 12 12 13 N.R. N.R. 7, 
610 110 88 91 95 N.R. N.R. 66 

12w unknown 0.75 0.72 0.52 N.R. N.R. N.C. 
95 0 0.0, 0.01 0.012 N.R. N.R. NT: 

5 Harvest Plus liquid fertiliier 

6 Liquid molasses YllnllY”.II YI~LIIICY ,.a,s, 
7 Calcium nitrate crystalline 15.5-w Distilled Water 
8 Natural uhosphate rock 7-12.64 Distilled Water 106 14 0.62 1.2 1.3 1.1 N.R. ‘lo’ II 

Dearbarn reein coated pellets 21-7-7 Distilled Weter 
Baomerano Lo 

Distilled Weter 
Distilled Weter 
ni^lilln* buda. 

9 
Code30finesand 

Natural phosphate mck ?-,*.I-? Distilled ‘&der 69 1, 0.65 0.65 0.82 0.78 N.R. 8 II 
Code 3, powder 

10 Plant Products fertilizer, powder 1513.1-15 Distilled Mter 103 14 18 11 12 N.R. N.R. 133 
1, Plant Products fertilizer, pOwder 10-22.7-10 Distilled Water 104 24 16 16 16 N.R. N.R. 69 

Distilled Water (Control) Distilled Weta 0 0 0.07 0.1 0.1 N.R. N.R. N.A. 
l3oomeang Lake (Control) Boomerang L. 0 0 N.R. 0.03 0.03 N.R. N.R. N.A. 

New Boomerang lake (Control) Boomerang L. 0 0 N.R. 0.03 0.03 N.R. N.R. N.A. 



Table 22: Dissolution of Nitrogen from Various Fertilizer Types in Distilled Water and Boomerang Lake Water. 

Anit Fat AmO”“t Of IN1 WI WI WI IN1 
ltilizer Fertilizer Reported added to N @L mg/L mg/L mg/L mg/L % of N 
NIlpIe Desdption N:P:K Medium 1 L. mg added, mg/L 1 HOW 24 Hours 1 Week 11 days 2 Weeks Dissolved 

1 Dearborn resin coated unknown Distilled Water 108 unknown [NjasNO, < 0.02 < 0.02 0.90 1.7 1.7 N.C. 
potassium nitrate pellets [N] as NH, 0.19 0.19 0.56 0.37 0.37 

Boomerang L. 135 unknown [N]asNO, < 0.16 1.8 21 N.C. 
[N] as NH, 0.93 1.5 1.39 

2 Dea*rn resin coated pellets unknown Distilled Water 109 unknown [Nlas NO, < 0.02 0.045 < 0.02 1.1 1.4 NC. 
[N] as NH, 0.19 0.19 0.46 1.6 2.3 

Boomerang L. 148 unknown [N]asNO, < 0.12 0.14 9 NC. 
[N] as NH, 1.3 1.6 93 

3 Dearborn resin coated pellets 21-7-7 Distilled Water 1044 219 [N]asNO, 4 0.02 -c 0.02 c 0.02 < 0.02 c 0.02 38 
[N] as NH, 9 28 37 84 8s 

Boomerang L. 321 67 (N]asNO, < 0.12 0.13 0.17 152 
[N] as NH, 65 102 74 

4 Harvest Plus liquid fertilizer I‘++8 Distilled Water 462 85 [N]as NO, < 0 c 0.02 c 0.02 115 
[N] as NH, 37 46 74 

5 Harvest Plus liquid fertilizer 4186 Distilled Water 610 24 [N]asNO, < 0.02 < 0.02 -z 0.02 38 
[N] as NH4 9 9.3 9.29 

6 Liquid molasses unknown Distilled Water 1200 unknown [N]as NO% c 0.02 < 0.02 < 0.02 N.C. 
[N] as NH4 N.“. 9.3 9.29 

7 Calcium nitrate crystalline 15.5-O-O Distilled Water 95 15 [N] as NO, 11 10 13.17 101 
[N] as NH, 1.58 1.58 1.39 

8 Natural phosphate rock. ?-12.6-7 Distilled Water 106 unknown [N]asNO, < 0.02 c 0.02 < 0.02 c 0.02 N.C. 
Code 30. fine sand [N] as NH, 0.37 0.6 0.19 0.65 

9 Natural phosphate mck, ?-12.1-7 Distilled Water 89 unknown [N]as NO, c 0.02 c 0.02 c 0.02 < 0.02 N.C. 
Code 31, powder [NI as NH, 0.19 0.48 0.37 0.46 

10 Plant Products fertilizer, 15-13.1-15 Distilled Water 103 15 [N] as NO, 3.6 3.8 3.70 95 
powder [N] as NH, 10 9.3 10.84 

11 Plant Products fertilizer 10-22.7-10 Distilled Water to4 10 IN] as NOa 8.0 2.0 1.00 256 
powder [N] as NH, 19 9.3 9.29 

Distilled Water (Control) Distilled Water 0 0 [N] as NO, 0.08 0.10 0.09 N.C. 
IN] as NH, 0.46 0.37 0.37 

Boomerang Lake (Control) Boomerang L. 0 0 [N]as NO, < 0.11 0.13 0.08 N.C. 
[N] as NH, 1.2 1.5 1.11 

New Boomerang L.(Control) Boomerang L, 0 0 [N] as NO, 0.13 0.09 N.C. 
,N] as NH4 1.6 1.11 



Table 23: Treatments and Nutrient Concentrations in Buchans and South 

DATE STARTED: 2117196 

cullwe DESCRIPTION 

Al PP14 MAT BUBBLE 
A2 PP14 MAT BUBBLE 
A3 PPl4MATBUBBLE 

Cl PP12 SEEP ALGAE 
C2 PP12 SEEP ALGAE 
c3 PPl2 SEEP ALGAE 
Dl PP14 FLOAT BUBBLE 
D2 PP14 FLOAT BUBBLE 

D3 PP14 FLOAT BUBBLE 

Fl PP14 MAT BUBBLE PUREE 
F2 PP14 MAT BUBBLE PUREE 

F3 PP14 MAT BVBBLE PUREE 

Gl PP14 FLOAT BUBBLE PUREE 
G2 PP14 FLOAT BUBBLE PUREE 

G3 PP14 FLOAT BUBBLE PUREE 
81 OWP PER, 

82 OW PERI 

83 OWP PERI 

El BOOMERANG LAKE ALGAE 
E2 BOOMERANG LAKE ALGAE 
E3 

OWP-1 

BOOMERANG LAKE ALGAE 

ORIENTAL WEST PIT 

OWP-2 

OW-3 

BLI 

BL2 
BL3 

ORIENTAL WEST PIT 

ORIENTAL WEST PIT 
BOOMERANG LAKE 1 

BOOMERANG LAKE 2 
BOOMERANG LAKE 3 

tFORE ADDITION OF NUTRIENTS 

NO, OLD] [NH3 OLD] [PO, OLD 
mg.C’ mg.C mg.C 

1/8,1996 l/8/19% l/a/IQ% 

0.06 0.12 0.08 
0.13 0.13 0.08 
0.05 0.10 0.14 

0.05 0.10 0.11 

0.06 0.22 0.18 

0.05 0.11 0.14 

0.22 0.12 0.09 
0.32 0.12 0.10 

0.23 0.11 0.13 

0.05 0.10 0.25 
0.05 0.09 0.25 
0.05 0.11 0.24 
0.53 0.43 0.12 
1.30 0.22 0.13 
0.53 0.37 0.10 
0.38 0.70 0.14 
0.34 0.67 0.13 

0.53 0.68 0.29 

0.07 2.00 0.08 
0.05 2.00 0.08 
0.05 1.30 0.09 

0.47 0.10 0.08 
0.55 0.12 0.08 N. lOmg.L-1 N-NO, 9.88 10.22 0.09 0.06 
0.51 0.11 0.07 !],]P],lO. 1 mg.C’ N-NO,+P-PO, 9.89 2.21 10.22 0.08 0.55 

0.24 0.77 0.06 N:P IO:, P-PO, 0.24 0.17 0.25 0.56 0.17 
0.24 0.78 0.09 N, 10 mg.L-1 N-NO3 9.22 10.09 0.48 0.07 
0.24 0.73 0.07 l],[P],lO. 1 mg.L-’ N-NO,+P-PO, 9.27 2.21 7~71 0~52 311 

Cultures 

WITMENT ADDED TARGETED 

1: N:P IO:1 NUTRIENTS CONCENTRATIONS 

2: N, IO mg.L-1 m/1 996 [NO, NEW, [PO, NEW, 
[N],[P],lO, 1 mg.L’ 

N:P IO:1 

mg.C’ mg.C’ 7/&6 7/&6 718196 

N-NO3 0.22 0.05 0.07 0.07 

N. 10 mg.L-l N-NO, 9.86 

],[P].lO, 1 mg.C N-N03+P-PO, 9.89 2.21 

N:P IO:, N-NO, 0.39 

N, 10 mg.L-1 N-NO, 9.79 

lSW.10, 1 w.c’ N-NO,+P-PO, 9.89 2.21 

N:P 1O:l N-NO, 0.29 
N, 10 mg.L-1 N-NOS 9.88 

],[P],lO, 1 mg.C N-NOJ+P-PO, 9.89 2.21 

N:P IO:1 N-NO, 1.04 
N. lOmg.L-1 N-NO, 9.91 

],[P],lO. 1 mg.C’ N-N03+P-PO, 9.88 2.21 

N:P lo:, P-PO, 0.53 0.18 
N, 10 mg.L-1 N-NO, 9.77 

],[P],iO, 1 mg.C’ N-NO,+P-PO, 9.63 2.21 
N:P IO:, P-PO, 0.38 0.20 

N. 10 mg.L-l N-NO, 9.33 

],[P],lO, 1 mg.L-’ N-NO,+P-PO, 9.32 2.21 

N:P IO:1 P-PO. 0.07 0.33 

N. IO mg.L-1 N-NO, 8.00 
‘],[P],lO. 1 mg.C’ N-NO,+P-PO, 8.69 2.21 

N:P IO:1 P-PO, 0.47 0.11 

IEASURED CONCENTRATIONS 

[NO, NEW] [NH, NEW] [PO, NEW] 

mg.C’ md md 

6.39 

5.77 

0.04 
a.42 

5.27 

0.05 
8.63 

a.55 

0.04 

7.81 

3.09 

0.05 

9.09 

4.43 

0.36 

9.20 

10.94 

0.07 
6.55 

0.07 

0.07 

0.07 
0.08 

0.11 

0.08 

0.07 

0.07 

0.07 

0.07 

0.08 

0.07 

0.07 

3.55 

3.85 

3.65 

4.29 

5.02 

0.09 

0.12 

0.07 
0.08 

0.07 

0.07 
0.08 

0.11 

0.07 
0.07 

0.10 

0.07 

0.07 

0.06 

0.09 

0.11 

0.68 
0.11 

0.08 
8.11 4.34 0.11 

0.52 0.09 0.07 



Table 24: PPI 1 Nutrient Exp't Data. 

HOUS 
ate Days Hr Min after start 

08.Jul.96 0 9 6 -2.98 

08.Jul.96 0 9 16 -2.85 
O&J",-96 0 12 7 0 

08.Jul.96 0 12 27 0.33 

06.Jul.96 0 13 15 1.13 

OS-JUl.96 0 13 32 1.42 

06.Jul.96 0 15 2 2.92 

"B-JW96 0 16 55 4.80 
08.J"i-96 0 19 14 7.12 

08-J"l-96 0 22 20 10.22 

09.Jul.96 1 6 36 20.46 

39.Jul.96 1 6 53 20.77 

"9.Jul.96 1 9 0 20.68 

09.AA-96 1 9 15 21.13 

09.Jul.96 1 9 30 21.38 

09.Jul.96 1 11 3, 23.40 

09.Jul.96 1 11 43 23.60 

09.Jul.96 1 13 46 25.65 

09.Jul.96 1 16 18 26.16 

09.Jul.96 1 16 48 28.66 

09.Jul.96 1 21 35 33.47 
10-J&96 2 8 42 44.56 

IO-Jul.96 2 11 30 47.38 

lO.Jul-96 2 11 50 47.72 

1 O.Jul-96 2 11 52 47.75 
lO.Jui.96 2 15 18 51.18 

IO-J&96 2 18 43 64.60 

10.JUi-96 2 21 30 57.36 

I l-J",-96 3 6 54 68.76 

i 1.Jui-96 3 9 10 69.05 
! I-Jul.96 3 9 45 69.63 

1 I-Jul.96 3 10 5 69.97 
1 ?-Jut-96 3 12 11 72.07 

11.JuI.96 3 12 13 72.10 

1 i-Jul.96 3 12 28 72.35 

1 VJul-96 3 15 10 75.05 

i 1 .Jui-96 3 15 32 75.42 

1 I-Jul.96 3 16 54 76.76 
1 l-Jul-96 3 17 22 77.25 

1 l-Jul.96 3 17 44 77.62 

11.Jul.96 3 16 24 78.28 

1 ,-J&96 3 16 45 78.63 

1 Z-Jul-96 ‘I 11 40 95.55 

12.Jul.96 4 11 40 95.55 

12.Jul.96 4 19 30 103.38 

12.Jul.96 4 19 30 103.38 

12-J&96 4 19 30 103.38 

12.Jul.96 4 19 30 103.38 

1%Jul.96 5 12 0 119.86 

13.Jul.96 5 12 0 119.86 

1%Jul.96 5 12 0 119.88 

13.Jul.96 5 12 0 I 19.88 

0.1 N.M. 0.45 

0.1 NM. 0.45 6.7 18 1346 149 2.1 6.33 

2.2 6.78 

PPI 1 In W.L. Flow Kg Fert 

IPW WI [N] pH TC Cond Em [02] (CM) (l/S) Added 
as NO3 a8 NH4 

0.1 

0.1 < 0.01 Y 0.6 6.4 18 1365 110 8.04 

3.7 

2 5.68 

3.7 

2.615 

0.1 0.05 0.5 6.9 16 1209 143 2.5 8.22 

: 0.1 0.1 0.5 

0.2 < 0.01 Y 0.5 2.4 7.73 

6.9 17 ,303 136 

3.7 
0.1 < 0.01 0.5 

0.3 c 0.01 0.6 

2.3 7.25 

0.1 0.03 0.7 7.1 21 1307 109 2.2 6.78 
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Table 25: OWP Perigrid Zinc Removal Performance and Scale-up. 

Days installed (Jul 13-Sep 29) 78 days 
Area of perigrid netting 

Algal fresh biomass 
Wet volume of algae 

Periphyton dry weightwet volume 
Dry weight of algae 

Growth rate 
Zn content in periphyton 

Zn content of periphyton biomass 
If perigrid scaled up 19 x 

Potential Zinc removal rate 
OWP Zinc load from D.T. 

391 m2 
0.5 cm3 per cm* 

1.955 m3 
0.1 g.cm’3 

0.196 t 
6.41 g.m-’ netting& 

10,900 ug.g-’ (#5993) 
2.13 kg 
40.5 kg 
0.52 kg.d-’ 
11.4 kg.d” 

Zinc Removal 4.6 % of load 
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Table 26: PPf 1 Nutrient Exp't Data 

HOUW 
ate Days Hr Min after&a 

OS-Jul.96 0 9 8 -2.9f 
OSJul-96 0 9 16 -2& 
0%Jul.96 0 12 7 ( 

08.Jul.96 0 12 27 0.3: 
08.Jul.96 0 13 15 1.1: 
0%Jul-96 0 13 32 1.4: 
08.Jul.96 0 15 2 2.9: 

08.Jul.96 

0%Jul.96 
08.Jul.96 
09.J"I-96 
09.Jul.96 

09.Jul.96 
09.Jul.96 
09.Jul.96 
09.Jul.96 
09x,",-96 

09.Jul-96 
09.Jul.96 
09.Jul-96 
09.Jul-96 
tO.Jul-96 

tO.Jul-96 
10-J&96 
lO.Jul-96 
lO.Jul-96 

iO.Jul-96 
10-J&96 
11.Jul-96 

1 l.Jul-96 
1 l.Jul-96 
! l-J",-96 
! ?.Jul-96 

11-J&96 
1 l.J"l-96 
11.Jul.96 
ll-Jul.96 

1 f-Jul.96 
li.Jul-96 
ll-Jul.96 

ll-Jul.96 

Ii-Jul-96 
12-J&96 
I&Jul.96 

iZ.Jul-96 
12.Jul.96 
fZ.Jul-96 
12.Jul.96 
13.Jul-96 
13Jul.96 
13.J",-96 

0 16 55 4.8C 
0 19 14 7.1: 
0 22 20 10.2: 
1 B 36 20.4f 
1 6 53 20.7i 

1 9 0 20.m 
1 9 15 21.13 
1 9 30 21.3E 
1 11 31 23.4C 
1 11 43 23.6C 

1 13 46 25.65 

1 16 16 26.le 
1 16 46 26.6e 
1 21 35 33.47 
2 6 42 44x 

2 If 30 47.38 
2 11 50 47.72 
2 11 52 47.75 

2 15 16 51.18 
2 16 43 54.60 

2 21 30 57.38 
3 8 54 68.78 

3 9 10 69.05 
3 9 45 69.63 
3 IO 5 69.97 
3 12 11 72.07 
3 12 13 72.10 

3 12 28 72.35 
3 15 10 75.05 
3 15 32 75.42 
3 16 54 76.76 
3 17 22 77.25 
3 17 44 77.62 

3 18 24 78.26 

3 18 45 78.63 
4 11 40 95.55 
4 11 40 95.55 

4 19 30 103.38 
4 19 30 103.38 
4 19 30 103.38 
4 19 30 103.36 
5 12 0 119.88 
5 12 0 119.66 
5 12 0 119.88 

13.Jul-96 5 12 0 119.66 
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Table 27: Mini-Limnocorral iii Filter Paper Analysis 

# 5999 Eauiv. Eauiv. 
3ement M.W., g total ug on F.P. from 0.1 L sample mg/L &l/L 

Al 27 2.5 0.025 0.93 
Ba 137 2.4 0.024 0.17 
Ca 40 339 3.4 65 
Cd 112 6.6 0.066 0.59 
CO 59 0.3 so.003 co.05 
CU 64 3.1 0.031 0.49 
Fe 56 55.1 0.55 9.9 
Mg 24 4.6 0.046 1.9 
Mn 55 28.3 0.28 5.2 
Na 23 17.2 0.17 7.5 
P 31 544 5.4 176 
S 32 2.77 0.028 0.86 
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Fig. 20: PPl1 Phosphate 
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Fig. 22: PPll N as Ammonia 1.4 T , ,2 r- ._.__.. - .._........... 
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Fig. 24: [PO41 in PPIO - PP13 
Modelled vs. Measured 

Hours after addition 

Fig. 25: [N] as NH4 in Mini-Limnocorrals 
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Area of Perigrid Unit = 209 m2 
Netting Area = 391 m2 

Number Required to Cover OWP = 19 units 

Schematic 2: OWP Perigrid Construction and Possible Scale-up. 
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7.0 POLISHING POND PERFORMANCE AND SCALE-UP 

7.1 Fate of Nutrient Additions: Mass Balance Calculations 

The ammonia and phosphate data collected during the PPI 1 Fertilizer Experiment was 

used to estimate a mass balance of these nutrients during the experiment. Table 27 

presents the data and estimates made to perform the mass balance. Data is shaded 

in grey, while interpolated and calculated values are not shaded. 

In Figure 28, a mass balance for ammonia is presented. The cumulative mass of N as 

ammonia added to PPI 1 (PPI 1 In, ’ +‘) is plotted versus hours after the experiment 

was started. The cumulative mass of N as ammonia is constantly increasing, as 

ammonia was present in PPI 1 inflow water. Big jumps in the cumulative mass occur 

every 24 hours when fertilizer was added. 

The PPI 1 out cumulative mass of N as ammonia (squares) is based on measured N as 

ammonia concentrations at the outflow, multiplied by the flow measured leaving PPI 1. 

Overall, the slope of the expected mass of ammonia entering the pond closely parallels 

the measured mass of ammonia leaving PPl 1. The mass of ammonia leaving PPI 1 

is delayed with respect to the mass entering PPI 1. This is most likely due to the 

residence time of water in PPI 1. In 1995, the results of a Rhodamine tracer 

experiment conducted in PPI 1 suggested that the residence time of water in PPI 1 in 

18 hours. In Figure 28, the slope of the PPl 1 out ammonia mass is delayed by 

approximately 17 hours with respect to the PPl 1 In ammonia balance, again a very 

close match between data sets and projections. 

In Figure 29, the results of the phosphate mass balance for PPl 1 are presented. This 

presentation indicates that either phosphate is remaining in PPl 1, or that phosphate 

has reacted with other compounds in PPI 1 pond water such that the Hach phosphate 
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kit does not detect it. 

7.2 Large-Scale Study in Polishing Ponds 14 to 17 

A field study was conducted on August 21, 1996, between 8 am and 6 pm, 

examining zinc concentrations in Polishing Ponds 1 1 to 13 following addition of a large 

dose of fertilizer (Figure 30). Unfortunately, given the results of phosphate 

consumption by algal biomass in the laboratory experiments, the field experiment was 

not conducted over a sufficiently long period in order to detect zinc concentration 

changes induced by the phosphate addition. 

7.3 Drainage Tunnel-OWP-OEP-Polishing Pond Mass Balance Modelling 

The model is based on the mass equation. This model assumes that the added 

fertilizer dissolves and mixes immediately. For one time step (all simulations were 

made using 1 hour time step) for each “vessel” (OWP, OEP, PPIO, PPI 1, PP12, 

PPI 3), the mass and the new concentration is calculated. The mass consists of the 

following components: 

(1) existing mass = the concentration multiplied by the volume. 

(2) mass coming in = flow in multiplied by the concentration and by time 

step. 

(31 mass leaving the “vessel” = flow out multiplied by the concentration and 

by time step. 

(4) mass consumed by algae = rate multiplied by volume and by time step. 

Then the new mass is calculated: 

new mass = mass existing +mass in - mass out - mass eaten 

and new concentration in the “vessel” 

new concentration = new mass/volume 
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The program does this calculation for each “vessel” in this same time step and repeats 

so many time steps as required by user. 

As input data, the following parameters have to be prepared: 

a the initial concentration in each “vessel” 

0 rate of consumption of the nutrient (P or N) by algae 

l the volume of each “vessel” 

0 the flows between the “vessels” 

0 the time intervals and rates, when and how much fertilizer is added to 

each “vessel” 

The results (mass, concentration) are stored in ASCII format. The examples of the 

input parameters and output results are given below. 

Model#l - 1994 (Figure 31) 

Pool 10 - Pool 13 

June 24 - September 8 , PPlO addition of 350 g of fertilizer /day 

September 9 - September 26, PPI 3 addition of 350 g of fertilizer/day 

September 27 - October 31, PPI 2 addition of 350 g of fertilizer/day 

Model #5 (Figure 32) 

for 4 days addition of 3700 g of fertilizer/day to PPI 1 

According to Boojum’s Lab Experiment 

700 g of 10-52-10 fertilizer converts to 77.03 g of PO, or 25.12 g of P 

so: 

350g = 269.6gofP040r87.9gofP 

3700 g = 2850 g of PO, 
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P MODEL # 1 

Calculation time: 

Initial concentration: 

DT 
GW 
OWP 
OEP 
PPlO 
PPI 1 
PPI 2 
PP13 

1441 hours 

0.0 mg/L 
0.0 ground water 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

Rate of P consumption by algae: 0.018 mg/L/hour 

Volumes: OWP 23,225 m3 (area 4645 m* x 5 m thermocline) 

OEP 48,775 (area 19510 x 2.5) 
PPIO 272 
PPI 1 1,138 
PPI 2 1,848 
PP13 2,693 

Flows: DT 29.52 m3/h = 8.2 L/s 
GW 39.312 = 10.92 
OWP 29.52 = 8.2 
OEP 68.832 = 19.12 (8.2 + 10.92) 
PPIO 26.156 38 % of OEP flow, 62% goes to PP14 
PPl 1 26.156 
PPI 2 26.156 
PPI 3 26.156 

FROM LAB EXPERIMENT: 15% of 10-52-10 fertilizer converts to P 

Addition of P: 
OWP 
PP10 
PPI 1 
PPI 2 
PPI 3 

5000 g/day approx. 30 kg of fertilizer 
50 glday 0.3 

150 g/day 0.9 
250 g/day 1.5 
400 g/day 2.4 

Figure 33 shows the results for one day. All phosphate is used by algae, so the 
process repeats every day. 
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P MODEL# 2 

Calculation time: 1441 hours 

Initial concentration: 
DT 
GW 
OWP 
OEP 
PPI 0 
PPl 1 
PPI 2 
PPI 3 

0.0 mg/L 
0.0 ground water 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

Rate of P consumption by algae: 0.009 mg/L/hour 

Volumes: OWP 23225 m3 (area 4645 m2 x 5 m thermocline) 
OEP 48775 (area 19510 x 2.5) 
PPIO 272 
PPI 1 1138 
PPI 2 1848 
PPI 3 2693 

Flows: DT 
GW 
OWP 
OEP 
PPI 0 
PPll 
PPI 2 
PPI 3 

29.52 m3/h = 8.2 L/s 
39.312 = 10.92 
29.52 = 8.2 
68.832 = 19.12 (8.2 + 10.92) 
26.156 38 % of OEP flow, 62% goes to PP14 
26.156 
26.156 
26.156 

FROM LAB EXPERIMENT: 15% of 10-52-10 fertilizer converts to P 

Addition of P: 
OWP 
PPlO 
PPI 1 
PP12 
PPI 3 

5000 g/day approx. 30 kg of fertilizer 
50 glday 0.3 
150 g/day 0.9 
250 g/day 1.5 
400 glday 2.4 

Figure 34 shows the results for one day. All phosphate is used by algae, so the 
process repeats every day. 
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N MODEL# 1 

Calculation time: 1441 hours 

Initial concentration: 
DT 
GW 
OWP 
OEP 
PPIO 
PPll 
PPI 2 
PP13 

0.0 mg/L 
0.0 ground water 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

Rate of N consumption by algae: 0.041 mg/L/hour 

Volumes: OWP 23225 m3 (area 4645 mz x 5 m thermocline) 
OEP 48775 (area 19510 x 2.5) 
PPlO 272 
PPI a 1138 
PPI 2 1848 
PP13 2693 

Flows: DT 
GW 
OWP 
OEP 
PPIO 
PPll 
PP12 
PP13 

29.52 m3/h = 8.2 L/s 
39.312 = 10.92 
29.52 = 8.2 
68.832 = 19.12 (8.2 + 10.92) 
26.156 38 % of OEP flow, 62% goes to PP14 
26.156 
26.156 
26.156 

FROM LAB EXPERIMENT: 10% of 10-52-10 fertilizer converts to N 

Addition of N (Calculated from amount of fertilizer added in P models 1 & 2): 
OWP 3000 glday 
PPI 0 30 g/day 
PPI 1 90 g/day 
PP12 150 glday 
PPI 3 240 glday 

From Figure 35, it can be seen that all N is consumed in about 4-5 hours. 
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N MODEL# 2 

Calculation time: 1441 hours 

Initial concentration: 
DT 
GW 
OWP 
OEP 
PPIO 
PPI 1 
PP12 
PP13 

0.0 mg/L 
0.0 ground water 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

Rate of N consumption by algae: 0.002 mg/L/hour 

Volumes: OWP 23225 m3 (area 4645 mz x 5 m thermocline) 
OEP 48775 (area 19510 x 2.5) 
PPI 0 272 
PPI 1 1138 
PPI 2 1848 
PPI 3 2693 

Flows: DT 
GW 
OWP 
OEP 
PPlO 
PPI 1 
PPI 2 
PP13 

29.52 m3/h = 8.2 L/s 
39.312 = 10.92 
29.52 = a.2 
68.832 = 19.12 (a.2 + 10.92) 
26.156 38 % of OEP flow, 62% goes to PP14 
26.156 
26.156 
26.156 

FROM LAB EXPERIMENT: 10% of 10-52-10 fertilizer converts to N 

Addition of N (Calculated from amount of fertilizer added in P models 1 81 2): 
OWP 3000 g/day 
PPIO 30 g/day 
PPI 1 90 g/day 
PPI 2 150 g/day 
PP13 240 g/day 

From Figure 36, it can be seen that all N is consumed in about 4-5 hours. 

Soojum Research Limited 1996 Final Report 
January 1997 101 For: ASARCO INC. 



7.4 Polishing Pond System Performance - 1996 

Long term monitoring and performance data are presented in Figures 37 - 43 and 

Table 29 for the following: 

OEP weir and Polishing Pond system effluent seasonal zinc loads. 

PPI 0 and PPI 3 seasonal zinc loads. 

PP14 and PPI 7 seasonal zinc loads. 

Polishing Pond system seasonal zinc removal performance. 

OEP weir and Polishing Pond system final effluent seasonal pH. 

OEP weir and Polishing Pond system final effluent seasonal zinc concentrations. 

OEP weir and Polishing Pond final effluent seasonal zinc concentrations, by 

year. 

Iron and zinc concentrations in OEP with depth, 1993 to 1996. 
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Table 29: Water Quality Data for OEP Profile Water Samples, 1993 - 1996 

Depth 

weir 

2m 
3m 
4m 
6m 
8m 

10m 
12m 
14m 
16m 
18m 
20m 

Ppr 17,93 

18.4 

18.3 

22.7 
23.8 
24.9 
25.7 
21.1 
24.8 
26.9 
27.7 
28.1 

Ppr 12,95 

15.4 

19.5 

20.2 

O-W-) 
C h?t 10,95 - 

13.1 

16.7 

4 17.7 

19.2 - 

15.4 
15.4 
16.3 

16.6 

“” 18,9l 
- 

13.8 

15.7 

14.3 
14.8 
15.9 
16.6 

17.6 

4pr-17-93 

45.8 
41 .o 

29.2 
53.6 
54.7 
49.0 
59.8 
56.2 
70.9 
76.4 
188.0 

ipr-12-95 

3.9 

10.6 

6.4 

Iron 

@w/L) 
act-10-95 

0.1 

1.2 

7.4 

30.8 

lay 10,96 

ND 

43.3 
49.9 
51.9 

53.8 

“” l&9( - 
ND 

45.1 

51.3 
50.9 
53.1 
56.4 

58.4 
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Fig. 28: N-NH4 Mass Balance 
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Fig. 29: PO4 Mass Balance 

Hrs Following First Addition 

‘*’ indicates data, otherwise points interpolated between data 
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Fig 30: [Zn] - fertilizer experiment 
August 21 ,1996 
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Fig. 31: Model#l 
350g of fertilizer=269.6 g of PO4 
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Fig. 32: Model #5 
37009 of fertilizer=2850g of PO4 
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Fig. 33: P Model#l, Concentration of P 
OWP, PPI 0, PPll, PP12, PP13 

__._..__..._.._ - __... _..--- -----...- 

._..-.-~- .___-..--.-.. 

-- ___.. _,..... 

-_____.._. - ..,,.. 

hours after addition 

Fig. 34: P ModeW2, Concentration of P 
OWP, PPlO, PPII, PP12, PP13 

0.2 
-.- 0.009 mg/L/hour - rate of eating P by algae 

1-l _ _..- ._.._...._.... 
Addition of fett. 1 O-52-1 0 per day: _.-_...._ --_- _.._.... 

,_.. -..-.._- ..__._-- __-_____._ _... - - . 

- .__._...-- 

hours after addition 
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Fig. 35: N Model#l , Concentration of N 
OWP, PPl 0, PPl 1, PP12, PP13 

0.041 mg/Uhour - rate of eating N by algae - ..__ --.._-- --_-. 

__-_._- Addition of fert. 10-52-10 per day: 

hours after addition 

-m- OWP 1c PP10 8 PPI 1 

f PP12 -a- PPi3 

Fig. 36: N Model#2, Concentration of N 
OWP, PPlO, PPll, PP12, PP13 

0.002 mg/L/hour _ rate of eating N by algae _______.. 
Addition of fert. 1 O-52-1 0 per day: _______ --- _..~. 

OWP - 30 kg -- ___..-. 
PPlO - 0.3 kg 

----.-__ 
PPll _ 0.9 kg 

0 v 
0 1 2 3 4 5 6 7 8 9 10 

hours after addition 

* OWP * PPIO 8 PPIl 
f PP12 -If- PP13 
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Fig. 37: Zinc Load, 1995-l 996 
OEP Weir and Final Effluent 
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Fig. 38: Zinc Load, 1995-l 996 
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Fig. 39: Zinc Load, 19951996 
PP14 and PP17 

Day of Year 
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Fig. 40: Pond Performance 
1995 - 1996 
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Fig. 41: pH, 1995-l 996 
OEP Weir, Final Effluent, PP13, PP17 
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Fig. 42: Zinc Concentration, 1995-l 996 
OEP Weir and Final Effluent 
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Fig. 43: Zinc Concentration, 1995-l 996 
OEP Weir,Final Effluent, PP13 and PP17 
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8.0 GEOCHEMICAL ASSESSMENTS OF OLD BUCHANS VALLEY SEEPAGES 

The primary nutrient and chemistry data used in mass balance and nutrient status 

assessments are presented in the attached tables. 

A overview of the Buchans areas is presented in Map 1. Sampling locations in the Old 

Buchans Valley drainage area are presented in Map 2. 

The report by R.O. Van Everdingen (December 28, 1996). “ASARCO-Buchans. The 

Valley Seeps, 1995/l 996” is attached. The report by J. Gerits (January, 1997), 

“Valley Seepages at Buchans” is also attached. 
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Table 30: Pod, N as NO3 and N as NH, Concentrations in OWP, OEP and Polishing Ponds, July I, 1990 to August 13, 19%. 

Drainage Tunnel 

ow surface 

OVJP Bottom 

OEP surface 

OEP Middle 

OEP Bottom 

OEP oumow 

PPII I” 

PP13oul 

PP17 out 

Drainage Tunnel 

ow surface 

OVVP Bollam 

OEP surface 

OEP Middle 

OEP Bottom 

OEP outnow 

PPII I” 

PP13 out 

PP17 out 

PO, PO4 PO4 PO, PO, PO4 PO, PO4 % PO, 
mg.L:’ mg.L’ mg.L’ mg.C mg.L-’ mg.C’ mg.Lf mg.L~’ mg.C mg.C 

01-J”,-90 05.JUI-91 06.Apr.93 16.May-93 14-J”“-95 21-F&-96 09J”i-96 15-h-96 OQ-JUl-96 13~*“g-Q6 

Hach Hach 
EPL EPL EPL EPL MDS MDS Field Lab MDS MDS 

c3.1 CO.18 CO.18 <0.18 0.12 CO.1 CO.18 

a1 CO.18 CO.18 CO.1 CO.1 CO.18 co.31 

<0.18 CO.18 co.31 
a.03 CO.16 CO.1 <O.lS so.31 

CO.18 

CO.03 0.28 <CL18 a31 
a03 c3.1 4.18 <0.18 GO.1 <a,* 

4.16 0.1 co.1 <0.1* 

0.1 co.1 CO.18 

co.,* 0.16 co.1 CO.18 

N-NO, N-NO, N-NO3 N-NO, N-NO3 N-NO, N-NO, N-NO3 N-NO3 

mg.C’ mg.L-’ mg.C’ mg.L-’ mg.L-’ mg.C’ mg.C’ mg.C’ mg.C 

01-J”,-90 05.Jul-91 OS-&Jr-Q3 16.May-93 15-J”“.95 21.Feb.96 OQ-h-96 15..I”,-96 1%Aug.96 

Hach Hach 

EPL EPL EPL 

2.27 1.07 

EPL MIX 

0.94 

MDS 

0.8 

Field 

0.4 

Lab MDS 

0.5 

<0.05 CO.03 0.14 

CO.03 CO.03 

co.01 a03 

co.03 

10.01 CO.03 co.03 

SO.01 CO.05 0.35 0.23 

co.03 

0.11 

0.12 0.28 0.36 

co.05 

0.2 0.2 

co.05 

0.18 

co.01 0.16 

co.01 0.04 
007 ““4 

N-NH, 

mg.C 

09-J”,-96 

Hach 

Field 

co.1 

0.3 

N-NH, 

mg.C’ 

15.JUl-96 

Hach 

Lab 

0.2 

0.3 

0.4 

0.2 

0.6 0.5 

0.5 0.2 

0.5 0.2 



Table 31: Chemistry of OWP, OEP and Polishing Pond System Water Samples Collected July 1, 1990. 

Assay No. pH Cond. Acidity Alkalinity Diss. Zn Diss .Iron Diss. Mn Diss. Ca Diss. Mg Diss. Na 

uS.cm- mg.L-’ mg.L’ mg.L-’ mg.C’ mg.L-’ mg.L-’ mg.L-’ mg.C’ mg.C’ mg.C’ 

AAS ICAP AAS ICAP ICAP ICAP ICAP ICAP 
rainage Tunnel 
OWP Surface 

OWP7m 
OEP Surface 

OEP 11 m 1822 6.4 1400 20 1.1 6.5 240 30 111 
OEP bottom 1824 6.4 1400 24 8.6 8.3 292 37 149 
OEP outflow 1825 6.9 15 co.01 6.3 231 30 116 

PPII In 
PPII out 
PP13 out 
PP17 out 

TDS SO4 SiO, HCO, TOC Cl 

mg.C’ g.L’ mg.C’ mg.C’ mg.C mg.C’ 
ICAP 

3rainage Tunnel 
OWP Surface 

OWP7m 
OEP Surface 

OEPll m 732 8.1 170 232 
OEP bottom 900 9.4 186 256 
OEP outflow 726 6.6 157 128 

PPll In 
PPll out 
PP13 out 
Pm7 ml, 



Table 32: Chemistry of OWP, OEP and Polishing Pond System Water Samples Collected July 5, 1991 

Assay pti Cond. Acidity Alkalinity Diss. Zn Diss .Fe Diss. Mn Diss. Ca Diss Mg Diss. Na 
No uS.cm-’ mg.L-’ mg.L~’ mg.L ’ mg.L~’ mg.C’ mg.C’ mg.L-’ mg.L-’ mg.L-’ mg.C’ 

AAS ICAP AAS ICAP ICAP ICAP ICAP ICAP 
Drainage Tunnel 2914 5.61 483 17 <I Cl 37 5 13 

OWP Surface 2909 3.9 733 35 2 2 85 11 4 
OWP7m 

OEP Surface 
OEP 11 m 

OEP bottom 
OEP outflow 2910 6.47 2410 23 4 11 389 40 98 

PPII In 
PPII out 
PP13 out 
PP17 out 

TDS SO, SiO 2 HCOZ TOC Cl 

mg.C’ mg.C’ mg.L“ mg.C mg.L” mg.C’ 
ICAP 

Drainage Tunnel 
OWP Surface 

OWP7m 
OEP Surface 

OEP 11 m 
OEP bottom 
OEP outflow 

PPII In 
PPI 1 out 
PP13 out 
PPI 7 out 

106 17.1 4.88 16 
316 12.8 1.22 1.5 

907 17.1 25.93 123 



Table 33: Chemistry of OWP, OEP and Polishing Pond System Water Samples Collected April 6, 1993, 

Assay pH Cond. Acidity Alkalinity Diss. Zn Diss .Iron Diss. Mn Diss. Ca Diss. Mg Diss. Na 
NO. uS.cm.’ mg.L~’ mg.L~’ mg.L-’ mg.L-’ mg.L-’ mg.C mg.L’ mg.L-’ mg.C’ mg.C’ 

AAS ICAP AAS ICAP ICAP ICAP ICAP ICAP 
Drainage Tunnel 4413 5.72 450 54.5 29.5 23.9 0.006 0.267 43.2 5.76 12.6 

OWP Surface 4414 3.91 456 81.4 29 0.15 2 71.1 9.61 2.86 
OWP7m 4415 3.84 495 94.3 33.8 0.202 2.22 79 10.2 2.86 

OEP Surface 4416 6.02 1510 248.5 229.7 17.2 0.788 10.3 332 32.6 88.5 
OEP 11 m 

OEP bottom 4417 6.09 2040 397.8 340.6 24.2 3.97 14.6 508 45.9 127 
OEP outflow 

PPII In 
PPII out 
PP13 out 
Pm7 ,-Ill, 

TDS SO, SiO, HCOZ TOC Cl 

mg.C’ mg.C’ mg.C mg.C’ mg.C’ mg.C’ 
ICAP 

Drainage Tunnel 259 122 19.8 23 20.9 
OWP surface 390 267 12.8 co.1 1.54 

OWP7 m 447 310 13.8 co.1 1.54 
OEP Surface 1650 861 16.3 170 129 

OEP 11 m 
OEP bottom 2410 1260 18.9 220 196 
OEP outflow 

PPII In 
PP11 out 
PP13 out 
PP17 out 



Table 34: Chemistry of OWP, OEP and Polishing Pond System Water Samples Collected May 16, 1993. 

Assay QH Cond. Acidity Alkalinity Diss. Zn Diss .lron Diss. Mn Diss. Ca Diss. Mg Diss. Na 
No. uS.cm~’ mg.C mg.L-’ mg.L-’ mg.L.’ mg.C mg.L-’ mg.C’ mg.C’ mg.C’ mg.C 

AAS ICAP AAS ICAP ICAP ICAP ICAP ~. ICAP 
Drainage Tunnel 

OWP Surface 4418 4.24 315 40.3 
OWP7m 4419 4.04 700 101.5 

OEP Surface 
OEP 11 m 

OEP bottom 
OEP outflow 

PPll In 
PPll out 
PPI 3 out 
PPI 7 out 

TDS SO4 SiO, HCOS TOC Cl 

mg.C’ mg.C’ mg.C mg.L-’ mg.C mg.C 
ICAP 

lrainage Tunnel 
OWP Surface 182 125 6.2 co.1 0.83 

OWP7m 450 316 13.6 co.1 1.48 
OEP Surface 

OEP 11 m 
OEP bottom 
OEP outflow 

PPll In 
PPI 1 out 
PP13 out 
PP17 out 

13.2 0.69 0.834 32 4.16 1.36 
34.4 0.205 2.14 75.8 9.86 2.76 



Table 35: Chemistry of OWP, OEP and Polishing Pond System Water Samples Collected June 14, 1995 

Assay pH Cond. Acidity Alkalinity Diss. Zn Diss .Iron Diss. Mn Diss. Ca Diss. Mg Diss. Na 

NO. uS.cm” mg.L-’ mg.L~’ mg.L-’ mg.L~’ mg.L~’ mg.L-’ mg.L’ mg.L~’ mg.L-’ mg.L” 

AAS ICAP AAS ICAP ICAP ICAP ICAP ICAP 
Drainage Tunnel 5575 6.4 192 13 0.009 0.172 41.1 3.08 9.41 

OWP Surface 
OWP7m 

OEP Surface 
OEP 11 m 

OEP bottom 
OEP outflow 5576 7.1 1080 12.2 0.024 6.29 243 21.7 58.3 

PPII In 
PPI 1 out 
PP13 out 
PP17 out 

TDS SO, SiO, HCO, TOC Cl 

mg.C’ mg.L-’ mg.C’ mg.C’ mg.L-’ mg.C 
ICAP 

Drainage Tunnel 205 93.6 28 10.9 
OWP Surface 

OWP7m 
OEP Surface 

OEP 11 m 
OEP bottom 
OEP outflow 1070 535 114 70.5 

PPII In 
PPIl out 
PPI 3 out 
!D!a 7 nllt 



Table 36: Chemistry of OWP, OEP and Polishing Pond System Water Samples Collected February 21, 1996. 

Assay pH Cond. Acidity Alkalinity Diss. Zn Diss .Iron Diss. Mn Diss. Ca Diss. Mg Diss. Na 

NO. uS.cm~’ mgS’ mg.L-’ mg.C mg.C mg.L~’ mg.L’ mg.L ’ mg.L-’ mg.C’ mg.C’ 
AAS ICAP AAS ICAP ICAP ICAP ICAP ICAP 

Drainage Tunnel 5857 6.3 215 26.6 21.2 16.3 0.348 0.327 54.2 4.34 9.34 
OWP Surface 

OWP7m 
OEP Surface 

OEP 11 m 5853 6.4 2050 227 361 16.4 63.7 13.6 489 41.7 116 
OEP bottom 5852 6.4 2270 206.2 256.9 16.5 65.6 13.6 492 41.4 116 
OEP outflow 5854 6.2 900 43.5 73.6 10.5 4.26 4.21 150 13.3 34.8 

PPII In 
PPII out 5855 6.5 1292 49.8 132.3 11.9 7.93 9.1 265 23.3 62.8 
PP13 out 
PPl7 out 5856 6.6 1177 33.8 109.1 10.8 5.33 6.62 226 20 53.5 

TDS SO, SiO, HCOJ TOC Cl 

mg.C mg.L-’ mg.C’ mg.C’ mg.C’ mg.C’ 
ICAP 

Drainage Tunnel 254 125 17.1 26.3 3 11.6 
OWP Surface 

OWP7m 
OEP Surface 

OEPII m 2320 1160 15.8 255 8.9 154 
OEP bottom 2320 1160 15 249 16.9 157 
OEP outflow 716 363 10.8 84.9 2.8 46.5 

PPII In 
PPII out 1250 624 12 154 6 86.6 
PP13 out 
PP17 out 1060 534 11.4 128 5.3 73 



Table 37 Chemstry of OWP, OEP and Polishing Pond System Water Samples Collected July 9, 1996. 

Assay pH Cond. Acidity Alkalinity Diss. Zn Diss .Iron Diss. Mn Diss. Ca Diss. Mg Diss. N 

NO. us.cm- mg.C mg.L-’ mg.L~’ mg.L’ mg.L~’ mg.L-’ mg.C mg.C mg.C’ mg.L~’ 
AAS ICAP AAS ICAP ICAP ICAP ICAP ICAP 

Drainage Tunnel 5927 6.26 410 49.4 18.75 19.6 cd.1. 0.036 0.173 47 5.15 11.9 
OWP Surface 5928 6.6 624 44.8 16.8 16.8 <d.l. 0.193 1.22 03.4 8.56 19.4 

OWP 7 m 5935 6.26 983 18.26 18 cd.1. 0.634 2.43 132 12 24.1 
OEP Surface 5929 7.52 1331 49 14.15 13.1 <d.l. 0.197 5.01 224 20.3 52.8 

OEP 11 m 5936 6.59 2600 301 15 14.6 45.5 62.7 11.5 444 39.2 109 
OEP bottom 5937 6.47 3010 16.55 16.2 55.35 78.1 13.2 502 44.5 123 
OEP outflow 5938 7.24 1357 55.5 13.71 13 cd.1. 0.107 4.67 227 20.5 52.6 

PPll In 5932 6.64 1235 22.8 13.35 13.1 0.11 0.194 4.80 226 21.1 54.6 
PPll out 5933.34 6.53 1333 10.5 <d.i. 
PP13 out 5930 7.46 1284 8.6 4.65 3.8% <d.l. 0.044 1.46 222 19.8 50.8 
PP17 out 5931 7.22 1295 16.4 7.755 6.79 cd.1. 0.04 2.5 215 19.8 51.3 

so4 TDS SiO, HCO, TOC Cl 

mg.C’ mg.C’ mg.C’ mg.L-’ mg.L-’ mg.C 
ICAP 

Drainage Tunnel 142 300 16.3 24 2.3 15.5 
OWP Surface 223 482 14.8 45 4.1 39.4 

OWP 7m 327 14.8 
OEP Surface 527 1080 13.3 113 2.8 76 

OEPllm 999 2000 18.2 220 5.9 134 
OEP bottom 1167 19.4 
OEP outflow 539 1110 13.2 118 2.7 75.4 

PPll In 537 1320 13 163? 
PPll out 5.6,4 
PP13 out 524 1010 10.8 109 4.3 65.1 
PP17 out 510 1030 11.2 106 4.2 61 



Table 38: Chemistry of OWP. OEP and Polishing Pond System Water Samples Collected August 13, 1996. 

Assay pH Cond. Acidity Alkalinity Diss. Zn Diss .Iron Diss. Mn Diss. Ca Diss. Mg Diss. Na 

NO. uS.cm~’ mg.L-’ mg.L-’ mg.L-’ mg.L~’ mg.C mg.L~’ mg.L-’ mg.L~’ mg.C’ mg.L-’ 
PAS ICAP AAS ICAP ICAP ICAP ICAP ICAP 

Drainage Tunnel 
OWP Surface(5? 5977 6.49 748 32.9 63.5 16.3 co.02 2.03 112 10.3 24.2 

owp 7m 5978 5.73 962 171.3 42.8 29.9 <o.oz 3.88 168 15.2 23.1 
OEP Surface (5’) 5975 6.89 1235 44.6 112.9 13.4 <0.02 5.15 224 19.6 51.7 

OEP 11 m 
OEP bottom 5976 6.3 2410 71.5 301.3 13 10.1 13.2 505 41.2 116 
OEP outflow 

PPII In 
PPII out 
PP13 out 
PP17 out 

TDS SO, SiO, HCO, TOC Cl 

mg.C mg.C’ mg.L-’ mg.L-’ mg.C mg.C 
ICAP 

Drainage Tunnel 
)WP Surface(S) 548 286 61.9 31 .I 

OWP7m 763 452 41.4 25.8 
XP Surface (5’) 982 488 125 51.7 

OEPllm 
OEP bottom 2300 1170 285 141 
OEP outflow 

PPII in 
PP11 out 
PP13 out 
PP17 out 





Scale 1:3000 
100 0 100 200 300 

(feet) 
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ASARCO - BUCHANS 

THE VALLEY SEEPS, 1995/1996 

INTRODUCTION 

Information on discharge rates and chemical composition of the Valley Seeps at Buchans, 
measured during 1995 and 1996, was used to attempt the determination of a possible 
relationship between the seeps and the waterlevel in the Lucky Strike Pit. Because of time 
constraints the extent of the interpretation had to be limited in scope. 

BOOJUM has checked the assumptions and uncertainties and presents the answer as bold, 
italic text. 

DATA QUALITY 

The available information presented a few uncertainties, as follows (numbers mentioned 
below arc Assayer’s numbers). 

l- Sample point VS-3 could not be found on the map of “Old Buchans/Valley Drainage 
Area”, dated 11 September 1996. 
Plow through the pipe was discontinued in summer 1996. !l%is flow became part of 
flow at VS-4. Location VS-3 was added to Map 2. 

2- #5970: the listing of sample numbers and dates indicates this sample came from 
sample point VS-5; the analysis file BUO595.WQl indicated the sample represents 
“Total Valley S. Drainage at River”; the map suggests that the sample point likely 
was VS-6. 
Yes, this is location VS-6 called Total Valley South Drainage at River 

3- Values for SO, (or S) were not provided for three of the seep samples collected in 
May 1995. 
The samples were sent for ICP analysis. S is not a part of standard ICP. 

4- Some of the values for discharge rates were estimated rather than measured; 
Mr.Neary suggested that some of those values may be too high. 

ASSUMPTIONS 

Several assumptions had to be made because of inconsistencies in the designations of sample 
sources. 

l- #5572 and 5966 are from the same place, VS-1 on the map, called “Mucky Ditch at 
Culvert” (BU0595 and BU0896) 

1 
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2- #5574 and 5967 are from the same place, VS-2 on the map, called “4” Swimming 
Pool Pipe” (BU0595), and “Pipe Disch. Swimm. Pool” (BU0896) 

3- #5573 and 5970 are from the same place, VS-6 on the map, called “Mucky Ditch at 
River” (BU0595), and “Total Valley S. Drainage at River” (BU0896) 

4- #5569 and 5969 are from the same place, VS-5 on the map, called “Valley Seep 110’ 
S.of Tun. Pumph.” (BU0595), and “Valley Lower Seep” (BU0896) 

5- 

6- 

#5571 and 5968 are from the same place, VS-4 on the map, called “Valley Seep 370’ 
S.of Tun. Pumph.” (BU0595), and “Valley Combined Upper Seeps” (BU0896) 
#5570 is from VS-3, not on the map, called “Valley Seep 220’ S. of Tun. Pumph.” 
(BU0595) 

If any of the above assumptions is erroneous, you may have to change the X-axis data labels 
on Figures 17 and 18, showing chemical compositions for these samples. 

All of the above assumptions are correct. TBe seepages VS-1, VS-2, W-3, W-4, VS-5, 
VS-6, VW-l, VW-5 VW-3 are located on Map 2. 

DATA GRAPHS and INTERPRETATION 

Fig. 1 - amounts of precipitation from storms producing 20 mm or more water 
equivalent, vs. time. 
Melting of any snowpack has not been taken into account. 

Fig. 2 waterlevels in the Lucky Strike Pit (LSP) and the diamond drill holes 
(DDH’s), vs. time. 
The LSP seems to have been “overfilled” by early 1995, and the waterlevel 
appears to have dropped more or less continuously since June 1995. 
Waterlevels in the DDH’s that bad initially increased during filling of the LSP 
declined somewhat when the waterlevel in the LSP dropped; they showed 
minor fluctuations, probably in response to local precipitation. This behaviour 
can be expected to continue. It is unlikely that complete analyses of further 
samples from the DDH’s will provide any additional useful information. 

Fig. 3 - (Zn) and flow rates for the discharge from the Drainage Tunnel (DT), vs. 
time. 
No clear correlation between the two parameters. 

Fig. 4 - intervals between successive measurements of flow rates and (Zn) for sample 
points VS 1, 2, 3, 4, 5, and 6, vs. time. 
The intervals ranged from 7 to more than 110 days. The irregularity of the 
intervals and the fact that the sample points were not all measured and sampled 
on the same dates makes the interpretations considerably less reliable than they 
could have been. 

2 
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Fig. 5 - 

Fig. 6a - 

Fig. 6b - 

Fig. 6c - 

Fig. 7 - 

Fig. 8a - 

Fig. 8b - 

Fig. 8c - 

Fig. 9 - 

Fig. 10 - 

Fig.lla - 

Fig.llb - 

Fig.llc - 

Fig. 12 - 

Fig. 13a - 

Fig. 13b - 

Fig. 13c - 

Fig. 14 - 

Fig. 15a - 

(Zn) values and flow rates for VS-1, vs. time. 
In some instances (Zn) increases with increasing flow rate, in others (Zn) 
decreases with increasing flow rate. Short-term variations are too large to 
discern any clear long-term trend (see VS-6). 
(Zn) values vs. flow rates for VS-1 
No clear correlation between the two parameters. 
(Zn) values for VS-1 vs. LSP waterlevels 
No clear correlation between the two parameters. 
flowrates for VS-1 vs. LSP waterlevels 
No clear correlation between the two parameters. 

(Zn) values and flow rates for VS-2, vs. time. 
(Zn) appears to increase with decreasing flow rate and to decrease with 
increasing flow rate; no long-term trend. 
(Zn) values vs. flow rates for VS-2 
No clear correlation between the two parameters. 
(Zn) values for VS-2 vs. LSP waterlevels 
No clear correlation between the two parameters. 
flowrates for VS-2 vs. LSP waterlevels 
No clear correlation between the two parameters. 

(Zn) values and flow rates for VS-3, vs. time. 
The data record is insufficient to warrant interpretation. 

(Zn) values and flow rates for VS-4, vs. time. 
(Zn) appears to have increased somewhat with time (see VS-5). 
(Zn) values vs. flow rates for VS-4 
No clear correlation between the two parameters. 
(Zn) values for VS-4 vs. LSP waterlevels 
Negative correlation between the two parameters. 
flowrates for VS-4 vs. LSP waterlevels 
No clear correlation between the two parameters. 

(Zn) values and flow rates for VS-5, VS. time. 
(Zn) appears to have increased with time (see VW). 
(Zn) values vs. flow rates for VS-5 
Negative correlation between the two parameters. 
(Zn) values for VS-5 vs. LSP waterlevels 
Negative correlation between the two parameters. 
flowrates for VS-5 vs. LSP waterlevels 
Positive correlation between the two parameters. 

(Zn) values and flow rates for VS-6, vs. time. 
In some instances (Zn) increases with increasing flow rate, in others (Zn) 
decreases with increasing flow rate. Short-term variations are too large to 
discern any clear long-term trend (see VS-1). 
(Zn) values vs. flow rates for VS-6 
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Fig.lSb - 

Fig. 1% - 

Fig. 16 - 

Fig. 17 - 

Fig. 18 - 

Fig. 19 - 

Fig. 20 - 

No clear correlation between the two parameters. 
(Zn) values for VS-6 vs. LSP waterlevels 
No clear correlation between the two parameters. 
flowrates for VS-6 vs. ISP waterlevels 
No clear correlation between the two parameters. 

(Zn) values vs. time for VS-1, 2, 3, 4, 5, and 6 
VS-1 shows the widest range of variation of (Zn). VS.2 shows both the 
lowest (Zn) values and the smallest variations in (Zn). VS-3 and VS-4 appear 
to be related in both (Zn) values and flow rates (VS-3 record is too short to be 
sure). VS-4 and VS-5 show somewhat similar variations in (Zn) values and 
flow rates, although (Zn) values in VS.4 are almost double those in VS-5. 

Concentrations of selected elements (Ca, Cu, Mg, Mn, Zn, S) in samples from 
LSP and VS-1, 2, 3, 4, 5, and 6 collected on 28 May 1995 and a sample 
from DT collected on 14 June 1995 (see ASSUMPTIONS above). 
Metal concentrations in the LSP increased with depth; those in the DT 
discharge were lower than those in the near-surface LSP sample. Values for 
(S), (Ca), (Mg), and (Zn) indicate- that the samples from the LSP, DT and VS- 
1, 3, 4, 5, and 6 had a similar origin. Values for (Cu) and (Mn) varied more 
than those for the other metals (likely due to increased significance of 
analytical precision at low concentrations). Concentrations for each element in 
the VS samples were lower than those for the LSP bottom sample and higher 
than those for the DT sample. The sample from VS.2 appears to have had a 
different origin. 

Concentrations of selected elements (Ca, Cu, Mg, Mn, Zn, S) in samples from 
LSP, DT, and VS-1, 2, 3, 4, 5, and 6 collected on 13 August 1996 (see 
ASSUMPTIONS above). 
Metal concentrations in the LSP still increased with depth; those in the DT 
discharge (with the exception of (Cu)) were lower than those in the near- 
surface LSP sample. Values for (S), (Ca), (Mg), and (Zn) indicate that the 
samples from the LSP, DT and VS-1, 3, 4, 5, and 6 had a similar origin. 
Values for (Cu) and (Mn) varied more than those for the other metals (likely 
due to increased significance of analytical precision at low concentrations). 
Concentrations for each element in the VS samples were lower than those for 
the LSP bottom sample and (with the exception of the sample from VS-1) 
higher than those for the DT sample. The sample from VS-2 again appears to 
have had a different origin. 

(Zn) values and flow rates for VW-l, vs. time. 
(Zn) appears to increase with decreasing flow rate and to decrease with 
increasing flow rate; record too short to determine long-term trend. 

(Zn) values and flow rates for VW-2, vs. time. 
No clear correlation between the two parameters. 
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Fig. 21 - 

Fig.22a - 

Fig.22b 

Fig.22c - 

Fig. 23 - 

(Zn) values and flow rates for VW-3, vs. time. 
In some instances (Zn) increases with increasing flow rate, in others (Zn) 
decreases with increasing flow rate. Short-term variations are too large to 
discern any clear long-term trend. 
(Zn) values vs. flow rates for VW-3 
No clear correlation between the two parameters. 
(Zn) values for VW-3 vs. LSP waterlevels 
No clear correlation between the two parameters. 
flowrates for VW-3 vs. LSP waterlevels 
Minor positive correlation between the two parameters. 

Zn contents vs. time for VW-l, 2 and 3 
VW-3 shows the widest range of variation for (Zn). There appears to be some 
correlation between (Zn) for VW-l and VW2, but inconsistent sample dates 
make the relationship uncertain. 

The behaviour of the Zn concentrations in the discharge from the Valley Seeps can probably 
be explained in principle as follows. 

(1) After a prolonged dry period, increased infiltration from precipitation (or snowmelt) 
may push out water with higher metal concentrations, due to a preceding extended 
residence time, resulting in increased flow rates and increased metal concentrations. 

(2) 

(3) 

If infiltration continues, metal concentrations will gradually drop due to dilution, 

When infiltration stops, flow rates will gradually decrease, whereas metal 
concentrations will gradually increase due to lack of dilution, and longer residence 
times. 

It should be noted that the “monitoring data” for the Valley Seeps cannot be used to give a 
clear indication of the diluting effects of local precipitation, unless the concentration of at 
least one other metal (e.g. Ca or Mg) is also determined for each sample. If at all possible, 
discharge rates should be measured rather than estimated. 

The magnitude of the metal loadings from some of the Valley Seeps appears to have become 
sufficiently large to warrant continuing monitoring of the main seepages. 

Robert 0. van Everdingen 
28 December 1996 
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Fig. 6a: VALLEY SOUTH, VS-i 
[Zn] versus Flow 
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[zn] versus Flow 
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Fig. 1 lc: VALLEY SOUTH, VS-4 
Flow versus LS Waterlevel 
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Fig. 1%: VALLEY SOUTH, VS.5 
[Zn] versus Flow 
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Fig, 15s VALLEY SOUTH, VS-6 
[Zn] versus Flow 
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Fi ,l9: VALLEY WEST, VW-1 
B nl and Flow versus Time 
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Fi .21: VALLEY WEST, VW-3 
Et n] and Flow versus Time 
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1.0 INTRODUCTION 

After termination of the mining activities at Buchans in 1984, the mine workings were 

flooded. This resulted in a rise of the water levels in the Lucky Strike (LS), the Oriental West 

(OWP) and the Oriental East (OEP) pits. Initially the discharge from the Drainage Tunnel (DT) 

showed an increase with the rise of the water level in the Lucky Strike pit. After installation of 

a concrete plug in the Drainage Tunnel (1988) the discharge dropped to about 80% of the 

discharge before the installation of the plug. Pumping of the discharge from the Drainage Tunnel 

(DT) to the Oriental West pit (OWP) started on September 27, 1994. During the period between 

August 2, 1992 and November 18, 1994 water from Tailings Pond #l (TPl) was siphoned into 

the Lucky Strike pit. This caused a rapid rise of the water level in the Lucky Strike pit which 

finally approached a more ‘natural’ elevation (approx. 272.5 m) in July 1995. Associated with 

the flooding of the mine workings are a number seepages occurring East of the Lucky Strike pit. 

These seepages are the focus of this study. 

At present it is not clear if the seepages and their associated Zn loadings to the Buchans 

River, are mainly caused by flooding the Lucky Strike pit or if they are due to a combination of 

several factors, including changes in groundwater table elevations and groundwater flow patterns 

associated with the local geologic structure and aquifer characteristics. To investigate the origin 

or the source of the seepages, a separate hydrological and geochemical approach were chosen. 

This report represents the geochemical study approach. 

Since the beginning of 1995, discharge, pH, conductivity and Zn concentrations of several 

seepages (map location and elevation) have been monitored periodically (G.N. Neary). Three of 

the seepages occur in the sandtill deposits, NE of the Lucky Strike pit: VW1 (N66OO’/E7800’, 

252.7 m). the combined sandpit seeps; VW2 (N655O’/E8150’, 239.6 m). the seepage from the 

bank near the DT pumphouse; VW3 (N665O’/E8300’, 239.6 m), the total drainage from the West 

discharging into the Buchans River. 

Three other, isolated seepages occur SE of the Drainage Tunnel, at the bank close to the 

“swimming pool” road, S of the DT pumphouse: VS4 (N6193’/E8080’, 248.1 m), the combined 
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upper seeps; VS5 (N64OO’/E8200’, 243.8 m), the combined lower seeps; VS4-5, between VS4 

and VS5, 220’ S of the DT pumphouse. Seepage from the area E of the Mucky Ditch and the 

“swimming pool” road is sampled at VS2 (N6166’/E8246’, 249.6 m) at a pipe near the swimming 

pool pump box. 

The discharge from the Mucky Ditch is measured at VSl (N607O’E8130’, 255.7 m). The 

total drainage from the South is sampled at VS6 (N6448’/E8551’, 239.0 m), downstream from 

VSl in the Mucky Ditch near Buchans River. 

In addition to monitoring the valley seepages, water levels have been measured frequently 

(G.N. Neary) in the Lucky Strike pit and in several drill holes (DH) close to the flooded Lucky 

Strike pit: DH #3325 (N475O’E5500’, 239.0 m); DH #3341 (N5765’/E4500’, 284.1 m); DH 

#3342 (N625O’E4500’, 286.8 m); DH #3343 (N75OO’E4500’, 289.9 m) and DH #3344 

(N5270’/E3000’, 281.3 m). 

2.0 MONITORING DATA 

2.1 Hydrology 

A comparison between the water levels in several drill holes and the water levels in the 

LS pit is shown in Fig. 1 for the period between April 4, 1995 and September 23, 1996. The 

groundwater elevations in the drill holes increase linearly with the rise of the water level in the 

LS pit. This linear correlation appears to be better for DH #3325 compared to the other drill 

holes for which the data show considerably more variation. Considering this variation in data it 

is difficult to attribute any significance to differences in the slope of the linear correlation 

between water levels in the LS pit and the drill holes. Drill holes #3341, #3342 and #3343 are 

located at an increasing distance, N from the LS pit. Drill hole #3325 (SE) is located at a larger 

distance from the LS pit than drill hole #3341 (N). Apparently there is no simple relation between 

groundwater elevation and distance from the LS pit. Groundwater elevations in the drill holes are 

always higher than the water levels in the LS pit. 
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Daily precipitation at Buchans (Environment Canada) and water levels in the drill holes 

and the LS pit are plotted in Figs. 2A (rainfall) and 2B (rainfall + snowfall) for the period 

between January 1, 1995 and November 1, 1996. As expected, there exists no clear relation 

between the precipitation record and the fluctuations of the water levels in the drill holes and the 

LS pit. Even snowmelt runoff does not appear to have a significant effect on the water levels in 

the drill holes and LS pit. 

Similar to Figs. 2A and 2B, daily precipitation and periodically measured discharge rates 

(Q) from seepages are shown in Figs. 3A and 3B (VW1 and VW2), Figs. 4A and 4B (VS2 and 

VS4) and Figs. 5A and SB (VS4 and VS5). Despite the short monitoring period, the discharge 

from seepages in the sandfill deposits (Figs. 3) shows a rapid response to the daily precipitation. 

This close relation between precipitation and seepage rate (Q) may be attributed to the porous 

nature of the overburden. The discharge rates of the other seepages (Figs. 4 and Figs. 5) do not 

appear to be closely related to the daily precipitation record, even if one assumes a lag time in 

seepage response. A better relation, notably for VS4 in 1995, appears to exist between seepage 

rate and snowmelt runoff. However, this relation is less clear for the other seepages (VS2 and 

VS5) and during 1996. Obviously, the distinction of a pattern in seepage rate, related to 

precipitation and snowmelt events, also depends on the monitoring intensity of the seepages. 

Seepage rates (Q) and water levels in the drill holes and the LS pit is shown in Figs. 6A- 

E. From these figures it is evident that changes in seepage rates are much larger and more 

frequent than fluctuations in water levels. There appears to be no relation between water levels 

and seepage rates. 

The absence of any relation between seepage rates and water levels in the drill holes and 

the LS pit (Figs. 6) suggests that the seepages are largely fed by meteoric water (rainfall and 

snowmelt) rather than phreatic water. A somewhat better relation, although not evident at all 

seeps, exists between seepage rates and precipitation or snowmelt runoff (Figs. 3-5). The absence 

of a clear relation may be caused by a low monitoring intensity or differences in catchment size 

of the seeps. Presently, phreatic water (drill holes) seems to be the major source of the water in 

the LS pit. 
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2.2 Chemistry 

The Zn concentrations in the seepages which discharge into the Buchans River, are of 

major concern. The Zn concentrations in several seepages are shown in Fig. 7. Excluding the sites 

where total drainage is collected (VW3, VSl and VS6), the highest Zn concentrations occur in 

seepages at VS4 (40-70 ppm) and VS5 (20-40 ppm). The lowest Zn concentrations (1-5 ppb) 

occur in the seepages from the sandtill deposits (VW1 and VW2). The temporal variation in Zn 

loadings at site VS4 (Fig. 8) appears to be more pronounced but similar to the temporal variation 

in seepage rates (Figs. 5). The contrary applies to the temporal variation in Zn loadings at site 

VSS. This can be attributed to a dilution effect: the Zn concentrations in seepage at VS5 decline 

with increasing seepage rates (Fig. 9). The data of site VS4 show a considerable scatter and no 

correlation between Zn concentration and seepage rate. At all seepage sites, Zn loading increases 

linearly with seepage rate (Fig. 10). The rate of increase is largest for site VS4 and lowest for 

sites VS2, VW1 and VW2. This suggests that all seepage sites have a constant Zn soume but the 

contribution of that (same) source varies among the different seepage sites. The contribution of 

the Zn source to the seepages is largest at site VS4 (approx. 50 mg Zn per It seepage). 

The seepages could originate from the LS pit, phreatic or meteoric water. Baaed on the 

hydrological data discussed previously, meteoric water would be the major source of the seepages. 

Meteoric water would acquire Zn by reaction with waste rock or local ore deposits in the vadose 

zone. Larger contributions of meteoric water would produce larger seepage rates and squire more 

Zn (increased weathering rates ?) and result in larger Zn loadings (e.g. Fig. 10). A similar 

scenario could also apply to water from the LS pit and the drill holes (phreatic water) or mixtures 

of different waters. However, with the available hydrological and chemical monitoring data it is 

very difficult to determine the sources of the seepages. One approach to determine the sources 

of the seepages is to derive the chemical composition of the seepages by geochemical modelling 

using different potential sources of water in contact with the bedrock or overburden. This 

approach is demonstrated below. 
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3.0 GEOCHEMISTRY 

3.1 Water Analyses and Mineralogy 

Chemical analyses of selected water samples from drill holes, seepage sites, LS pit, DT, 

rain and the Sandtill Spring (SS) are listed in Tables 1 and 2. Except for the Sandfill Spring and 

rainwater, the analyses in Table 1 apply to samples collected in 1995 and 1996. The chemical 

analysis of rainwater (NW Atlantic) was taken from Table 3.1 in Berner and Berner (1996). The 

analyses of water samples from the drill holes (Table 2) date from 1991 and were published in 

a previous report (December 1991). Water samples from the LS pit were taken at three different 

depths (5, 65 and 94 feet). The following discussion of the chemical data from Tables 1 and 2 

will be concentrated on water samples from DH #2243a (closest balance of cations and anions), 

VS4, VS4-5 and VSS (most representative seepages), LS, DT and rain. 

Except for the water samples from the LS pit (LS5 and LS65) and DH #3342a, the 

concentration of chloride in rainwater (salt spray) is smaller than that in the other samples (LS94, 

DT, VS4, VS5 and VS4-5). Assuming that chloride behaves conservatively, this implies that only 

groundwater (DH #3342a) and water from the upper part of the LS pit can be derived from the 

reaction of rainwater (meteoric) with bedrock, ore deposit or overburden. The formation of all 

other waters from meteoric water requires addihmal evaporative concentration (of rainwater) to 

attain higher Cl concentrations since Cl containing minerals (e.g. halite) do not occur in the 

geologic formations and overburden at Buchans (Swanson et al., 1981). The same applies to the 

formation of seepage waters from water of the LS pit (LS5 or LS65) and groundwater (DH 

#3342a). Concentration of meteoric water or a mixture of phreatic and meteoric water often 

occurs as a result of capillary movement and evaporation during repeated wetting and drying of 

the vadose zone (e.g. Smith and Drever, 1976). 

The seepage waters (VS4, VS4-5 and VS5) and the deeper water in the LS pit are often 

characterized by a low pH, and high sulphate, iron and zinc concentrations caused by the 
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oxidation of sulfides in the ores (e.g. sphalerite and pyrite). Without farther evidence from 

geochemical modelling it is not clear if these high concentrations could also be due to evaporative 

concentration of the water. The concentrations of the same elements are much lower in the 

groundwater sampled in the drill holes (e.g. DH #3342a). 

The predominant minerals in the ore deposits at Buchans are sphalerite, galena and bar&e. 

Other abundant minerals include pyrite and chalcopyrite. Minor metal containing minerals are 

chalcocite, bornite, pyrrotite and cerussite. The most important rock-forming minerals at Buchans 

are K-feldspar, plagioclase, illite, montmorillonite, chlorite, quartz and calcite (Swanson et al., 

1981). 

3.2 Modelling Approach 

Waters or mixture of waters considered to be potential sources of the seepages include: 

water from the LS pit (three different depths), groundwater (DH #3342a) and rainwater. Using 

PHREEQC (Parkhurst, 1995), the composition of the potential source water (or mixture of 

source waters) was compared with that of the seepage waters and DT water by an ‘inverse 

modelling’ procedure (explained below). Assuming specific phase transformations of minerals and 

gases (required input), the model calculates the quantity of the suggested phase transformations, 

the mixing proportions and the evaporation that account for the differences in the composition 

between the seepage water and the source water(s). 

A detailed example of an ‘inverse modelling’ simulation run (input and output files) is 

shown in the Appendix. In the example the phase transformation, mixing proportions and amount 

of evaporation that account for the difference in chemical composition between an unknown 

mixture of rain and LS5 water (source) and seepage water (VS4), are determined. 

Considering that not all samples have anion/cation analysis, only 8 parameters were used 

to define the chemical composition of the water samples (solutions l-3). The uncertainty value 

defines the maximum fraction by which the input concentrations are allowed to vary during the 
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simulation run. Lower uncertainty values impose greater constraints. Next, the specific phase 

transformations are defined (dissolution or precipitation). Balances are specific uncertainty 

constraints applied to a particular input concentration. Here chloride is used and allowed to vary 

only by 10% from its specified input concentration. As chloride behaves conservatively the higher 

imposed constraint ‘steers’ the mixing and evaporation process. Finally, additional thermodynamic 

data are given for phases not defined in the thermodynamic database of the program. 

The output file shows first the calculated solution characteristics of each input solution. 

After this it lists the original (first column), the required adjustments (second column) and the 

adjusted (third column) analytical data for the three input solutions. The adjustments must be 

within the defined uncertainty and balances defined in the input file. Next, the calculated mixing 

proportions of the first two solutions (seepage water sources) are listed. Finally, the required mole 

transfers of the previously defined phases are listed: negative values indicate precipitation, 

positive values indicate dissolution. 

The program calculates first a model with a minimal number of phase transformations 

(minimal model) before it explores other models with more phase transformations. The number 

of models found is obviously constrained by the earlier defined uncertainty value and balances. 

3.3 Modelling Results 

Successful modelling results (minimal model) are shown in Table 3. Unsuccessful 

modelling results included runs with only one source water (LS, DH # 3342a and rain) and runs 

with water from DH #3342a (improper ion balance of input solution). 

The data in Table 3 show that the composition of seepage and DT waters (solution 3) 

can be simulated by different mixtures of rain and LS water subjected to various amounts of 

evaporation, degassing (CO, (g)) d/ an or calcite precipitation. Only two models involving DT 

water (1995) were unsuccessful; they are listed for completeness of the data set. 

The formation of seepage waters from rain and LS waters (minimal model) does not 

require any other mineral phase transformation than those listed in Table 3 ! Other models 

(results not shown in Table 3), involved only minor mineral transformations of mostly rock- 
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forming minerals (e.g. K-feldspar). This implies that the Zn loadings from the seepages are 

exclusively derived from the LS waters. The variation of the Zn concentrations in the seepages 

is mainly deterinined by the dilution of LS waters with rainwater (similar to a varying degree of 

evaporation of their mixture). This dilution effect increases from site VS4, to sites VS4-5 and 

VS5 and varies at different times (1995 and 1996). The dilution effect appears to be less for the 

DT water, however, the evaporation is also considerably less than that for the seepages. 

Considering the listed (minimum) values for the applied uncertainty (15-25%), the number 

of input solution parameters used (8) and the complexity of the simulation scenario (mixing and 

evaporation), the ‘inverse modelling’ results are very good. The mineral transformations are 

relatively simple and involve predominantly precipitation of calcite. 

4.0 CONCLUSIONS 

1. The chemical composition of waters from the seepages and the DT can be formed by mixing 

rainwater and LS waters, followed by evaporation, degassing and only calcite precipitation. 

2. The processes of mixing and evaporation of the different source waters for the seepages in the 

field is most likely due to capillary movement and evaporation during repeated wetting and 

drying of the vadose zone. 

3. The differences in the chemical composition of the water from the various seepage sites appear 

to be governed by dilution of LS water with meteoric water (rain or snowmelt runoff). This is 

confirmed by some of the patterns observed in the response of seepage rates to particular 

hydrological events (e.g. precipitation and snowmelt runoff). 

4. Differences in the chemical composition of the water from the various seepage sites (dilution) 

could also be related to differenc,es in soil or aquifer characteristics (e.g. porosity) and the size 

of the catchment area (meteoric water) of each seepage. 
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5. The dissolved Zn concentration in seepage and DT waters appears to be entirely derived from 

(concentrated) LS waters. No additional dissolution of sphalerite in the aquifer or vadose zone 

seems to be necessary. 

6. The composition of seepage and DT waters could not be simulated with a mixture of rain and 

groundwater (e.g. DH #3342). This is probably only due to the poor quality of the groundwater 

composition data. As the LS pit is largely fed by groundwater, it must be possible to ‘simulate’ 

the chemical composition of the LS water from that of the groundwater. Hence it is expected that 

the composition of the seepage and DT waters can also be ‘derived’ from a mixture of rain and 

groundwater. 
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Figure 2b: DDH332,5, l~Dl~~i341, DDH3342, DL)11.3343: Lucky Strike \Vatcr Ixwls and 

Daily Precipitation (RAINFALL.I~SNOWFALL) versus Time. January 1, 1995 - November 1, 1996 
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Figure 6a: DDH3325, DDH3341, DDH3342, DDH3343, Lucky Strike Water Levels and 

Disc,harge Rates from Seepage VW 1 versus Time, January 1, 1995 - November I. 1996 
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Table 1: Concentration of Selected Elements for Lucky Strike, Drainage Tunnel, 

Seepages VSI, VS2, VS4, VS5, VS6 and Sandfill Spring 



Table 2: Concentration of Selected Elements for DDH3325, DDH3341, DDH3342, 

DDH3344 and Sandfill Spring 
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Table 3: Modelling Results 
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Reading input data for simulation 1. 

TITLE 
--Inverse modeling of Rain + LS5 + evaporation --> Vs4 (1995) 
SOLUTION 1 Rain 

units w/L 
PH 4.9 
Ca 0.2 
W 0.3 
NEi 3.0 
K 0.2 
516) 1.2 
Cl 5.5 
C(4) 0.0 as HC03 
Zn 0.0 

SOLUTION 2 LS5 
units q/L 
PH 6.7 
C.3. 51.6 
4 5.4 
Na 4.0 
K 1.4 
S(6) 142.0 
Cl 3.2 
C(4) 16.0 as HC03 
ZII 14.1 

SOLUTION 3 vs4 

units W/L 
PH 4.7 
C%3. 76.1 
W 16.1 
Na 26.4 
K 2.6 
S(6) 288.0 
Cl 41.4 
C(4) 0.0 as HC03 
zn 46.3 

INVERSE-MODELING 
solutions 1 2 3 
uncertainties .25 
phases 

Sphalerite dis 
Pyrite 
Chalcopyrite 
H20 Pre 
Calcite Pre 
co2 (3) 
Plagioclase dis 
K-feldspar dis 
Illite P= 
Chlorite(l4A) Pre 
Ca-Montmorillonite Pre 
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balances 
Cl 0.10 

PHASES 
HZ0 

H20 = HZ0 

log-k 0.0 

chalcopyrite 
CuFeS2 + 2H+ = Cu+2 + Fe+2 + 2HS- 

log-k -35.27 
delta-h 35.48 kcal 

plagioclase 
Na0.62Ca0.37A11.3SSi2.625OS + 5.5 H+ + 2.5H20 = 0,62Na+ + 
0.37&+2 + 1.38Alc3 + 2.625H4Si04 
log-k 0.0 

END 

Beginning of initial solution CalculatiOns. 

Initial solution 1. Rain 

Elements Molality Moles 

ca 4.990e-06 4.990e-06 
Cl 1.551e-04 1.551e-04 
K 5.115e-06 5.115e-06 
MY 1.234e-05 1.234e-05 
Na 1.305e-04 1.305e-04 
S(6) 1.249e-05 1.249e-05 

PH 
Pe 

Activity of water 
Ionic strength 

Mass of water (kg) 
Total alkalinity (eq/kg) 

Total carbon (mol/kg) 
Total CO2 (mol/kg) 

Temperature (deg C) 
Electrical balance (eq) 

Iterations 
Total H 
Total 0 

Species Molality 

Hc 1.280e-05 
OH- a.ol37e-10 
H20 5.551e+01 

ca 4.990e-06 
ca+2 4.979e-06 
cas04 1.0soe-08 

4.900 

4.000 
1.000 
2.112e-04 
1.000e+00 

i -1.281e-05 
0.000e+00 
0.000e+00 

i 25.000 
2.959e-06 

= 3 
i 1.110124et02 
i 5,550627e+Ol 

Log LW 
Activity Molality Activity 

1.259e-05 -4.893 -4.900 
7.952e-10 -9.092 -9.100 
1.000e+00 0.000 0.000 

4.65Se-06 -5.303 -5.332 
1.0soe-08 -7.966 -7.966 
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LO9 
Gamma 

-0.007 

-0.007 

0.000 

-0.029 

0.000 



CaOH+ 
Cl 

Cl- 
H(O) 

H2 
K 

K+ 
KS04- 

KOH 
W 

Mg+Z 
MgS04 

MgOH+ 
Na 

Na+ 
N&04- 
NaOH 

O(O) 
02 

s (6) 
504-Z 
MgS04 
HS04- 
cas04 
N&04- 
KS04- 

Phase 

Anhydrite 
Gypsum 
HZ (9) 
H20 
02 (9) 

Initial solution 2. 

-5.91 -10.27 -4.36 C&04 
-5.69 -10.27 -4.58 CaS04:2H20 

-17.80 -17.80 0.00 H2 
0.00 0.00 0.00 H20 

-47.52 35.60 83.12 02 

LS5 

Elements Molality Moles 

C(4) 2.623e-04 2.623e-04 
Ca 1.2aEe-03 1.28ae-03 
Cl 9.02ee-05 9.02ee-05 
K 3.5a1e-05 3.5a1e-05 
W 2.222e-04 2.222e-04 
N.3 1.740e-04 1.740e-04 
S(6) 1.479.5-03 1.479e-03 
Zn 2.157e-04 2.157e-04 

6.244e-14 
1.551e-04 

1.551e-04 
2.244e-21 

1.122e-21 
5.115e-06 

5.114e-06 
4.209e-10 
1.3a5e-15 

1.234e-05 
1.231e-05 
3.13ee-08 
3.377e-12 

1.305e-04 
1.305e-04 
7.602e-09 
6.734e-14 

0.000e+00 
0.000e+00 

1.249e-05 

6.140e-14 -13.205 -13.212 

1.526e-04 -3.809 -3.817 

1.122e-21 -20.950 -20.950 

5.029e-06 -5.291 -5.298 
4.139e-10 -9.376 -9.383 
1.3a5e-15 -14.859 -14.859 

1.152e-05 
3.13ae-08 
3.321e-12 

-4.910 
-7.503 

-11.471 

-4.939 

-7.503 
-11.479 

1.283e-04 -3.884 -3.892 

7.476e-09 -8.119 -8.126 

6.734ez-14 -13.172 -13.172 

0.000e+00 -50.480 -50.480 

1.243e-05 l.l62e-05 
3.13se-08 3.13ae-08 
1.447e-08 1.423e-08 
1.oeoe-08 1.0aoe08 

7.602e-09 7.476ce-09 

4.209e-10 4.139e-10 

SI log IAP log KT 

-4.906 -4.935 
-7.503 -7.503 
-7.840 -7.847 
-7.966 -7.966 
-8.119 -8.126 
-9.376 -9.383 

pH = 6.700 
pe = 4.000 

Activity of water = 1.000 
Ionic strength = 5.793e-03 

Mass of water (kg) = 1.000e+00 
Total alkalinity (eq/kg) = 1.a92e-04 
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-0.007 

-0.007 

0.000 

-0.007 
-0.007 

0.000 

-0.029 
0.000 

-0.007 

-0.007 
-0.007 

0.000 

0.000 

-0.029 
0.000 

-0.007 
0.000 

-0.007 
-0.007 



Total CO.2 (mol/kg) = 2.623e-04 
Temperature (deg C) = 25.000 

Electrical balance (eq) = 4.246e-04 
Iterations = 8 

Total H = 1.110126e+02 
Total 0 = 5,551284e+Ol 

Species 

H+ 
OH- 
HZ0 

C(4) 
HC03- 
co2 
ZnHC03+ 
caIic03+ 
znc03 
MgHC03+ 
cac03 
CO3-2 
NaHC03 

Molality 

2.147e-07 
5.447e-08 
5.551e+01 

2.623e-04 
1.810e-04 
7.492e-05 
3.023e-06 
1.909e-06 
l.O37e-06 
2.976e-07 
5.452e-08 
5.389e-08 
1.501e-08 
5.253e-09 

NaC03- 
Zn(C03)2-2 

CFi 
ca+2 
cas04 
CaHC03t 
cac03 
CaOH+ 

Cl 
Cl- 
znc1+ 
znc12 
znc13- 
ZnC14-2 

H(O) 
H2 

K 
K+ 
KS04- 
KOH 

4 
Mg+2 
MgSOQ 
MgHC03+ 
MgC03 
MgOH+ 

N3 
Na+ 
N&04- 
NaHC03 

1.269e-10 
1.28Se-03 

1.207e-09 

1.134e-03 
1.517e-04 
1.909e-06 
5.452e-OS 
7.457e-10 

9.028e-05 
9.025e-05 
3.212e-08 
2.5?5e-12 
2.609e-16 
1.386e-20 

5.629e-25 
2.815e-25 

3.581e-05 
3.558e-05 
2.317e-07 
5.688e-13 

2.222e-04 
1.916e-04 
3.023e-05 
2.976e-07 
5.253e-09 
2.768e-09 

1.740e-04 
1.732e-04 
7.999e-07 
1.501e-08 

Activity 
Log 

Molality 
Log 

Activity 
LOCI 

Gamma 

1.995e-07 -6.668 -6.700 -0.032 
5.017e-08 -7.264 -7.300 -0.036 
9.999e-01 0.000 0.000 0.000 

1.672e-04 -3.742 -3.777 -0.034 
7.502e-05 -4.125 -4.125 0.001 
2.787e-06 -5.520 -5.555 -0.035 
1.764e-06 -5.719 -5.754 -0.034 
1.03Se-06 -5.984 -5.984 0.001 
2.744e-07 -6.526 -6.562 -0.035 
5.459e-08 -7.263 -7.263 0.001 
3.931e-08 -7.269 -7.406 -0.137 
1.503e-08 -7.824 -7.823 0.001 
5.260e-09 -8.280 -8.279 0.001 
8.724e-10 -8.918 -9.059 -0.141 
1.170e-10 -9.897 -9.932 -0.035 

8.267~~.04 -2.945 -3.083 -0.137 
1.519e-04 -3.819 -3.819 0.001 
1.764e-06 -5.719 -5.754 -0.034 
5.459e-08 -7.263 -7.263 0.001 
6.876e-10 -9.127 -9.163 -0.035 

e.313e-05 -4.045 -4.080 -0.036 
2.962e-08 -7.493 -7.528 -0.035 
2.579e-12 -11.589 -11.589 0.001 
2.405e-16 -15.584 -15.619 -0.035 
1.002e-20 -19.858 -19.999 -0.141 

2.818e-25 -24.551 -24.550 0.001 

3.278e-05 -4.449 -4.484 -0.036 
2.136e-07 -6.635 -6.670 -0.035 
5.695e-13 -12.245 -12.244 0.001 

1.402e-04 -3.718 -3.853 -0.136 
3.027e-05 -4.520 -4.519 0.001 
2.744e-07 -6.526 -6.562 -0.035 
5.260e-09 -8.280 -8.279 0.001 
2.552e-09 -8.558 -8.593 -0.035 

1.598e-04 -3.761 -3.796 -0.035 
7.376e-07 -6.097 -6.132 -0.035 
1.503e-08 -7.824 -7.823 0.001 

35 



NaC03 - 1.269e-10 
NaOH 5.285e-12 

O(O) 0.000.5+00 
02 0.000e+00 

S(6) 1.479e-03 
SO4-2 1.266e-03 
cas04 1.517e-04 
MgS04 3.023e-05 
ZrlSO4 2.853e-05 
N&04- 7.999e-07 
Zn(SO4)2-2 2.958e-07 
KS04- 2.317e-07 
HS04- 1.937e-08 

ZII 2.157e-04 
zn+2 
Z&04 
ZnHC03+ 
znc03 
ZnOH+ 
Zn(S04)2-2 
Zn(OHl2 
znc1+ 
Zn(C03)2-2 
znc12 
ZniOH)3- 
znc13- 
Zn(OH)4-2 
ZnC14-2 

Phase 

Anhydrite 
Aragonite 
Calcite 
co2cg1 
Dolomite 
Gypsum 
H2(g) 
HZ0 
02(g) 
Smithsonite 
Zn(OHi)2(e) 

Initial solution 3 

Elements 

CZi 
Cl 
K 
W 
Na 
S(6) 
Zn 

1.820e-04 
2.853e-05 
3.023e-06 
l.O37e-06 
7.889e-07 
2.958e-07 
4.180e-08 
3.212e-08 
1.207e-09 
2.575e-12 
7.194e-13 
2.609e-16 
7.289e-19 
1.386e-20 

1,17oe-10 -9.897 -9.932 -0.035 
5.292e-12 -11.277 -11.276 0.001 

0.000e+00 -43.281 -43.280 0.001 

9.207e-04 -2.897 -3.036 -0.138 
1.519e-04 -3.819 -3.819 0.001 
3.027e-05 -4.520 -4.519 0.001 
2.857e-05 -4.545 -4.544 0.001 
7.376e-07 -6.097 -6.132 -0.035 
2.138e-07 -6.529 -6.670 -0.141 
2.136e-07 -6.635 -6.670 -0.035 
1.786e-08 -7.713 -7.748 -0.035 

1.324e-04 -3.740 -3.878 -0.138 
2.857e-05 -4.545 -4.544 0.001 
2.787e-06 -5.520 -5.555 -0.035 
l.O38e-06 -5.984 -5.984 0.001 
7.274e-07 -6.103 -6.138 -0.035 
2.138e-07 -6.529 -6.670 -0.141 
4.186e-08 -7.379 -7.378 0.001 
2.962e-08 -7.493 -7.528 -0.035 
8.724e-10 -8.918 -9.059 -0.141 
2.579e-12 -11.589 -11.589 0.001 
6.633e-13 -12.143 -12.178 -0.035 
2.405e-16 -15.584 -15.619 -0.035 
5.269e-19 -18.137 -18.278 -0.141 
1.002e-20 -19.858 -19.999 -0.141 

SI log IAP log KT 

-1.76 -6.12 -4.36 cas04 
-2.15 -10.49 -8.34 CaC03 
-2.01 -10.49 -8.48 cac03 
-2.66 -20.81 -18.15 co2 
-4.66 -21.75 -17.09 CaMgfC03)2 
-1.54 -6.12 -4.58 CaS04:ZHZO 

-21.40 -21.40 0.00 HZ 
0.00 0.00 0.00 HZ0 

-40.32 42.80 83.12 02 
-1.28 -11.28 -10.00 znco3 
-1.98 9.52 11.50 2x1 (OH) 2 

vs4 

Molality Moles 

1.900e-03 1.900e-03 
1.168e-03 l.l68e-03 
6.653e-05 6.653e-05 
6.626e-04 6.626e-04 
1.149e-03 1.149e-03 
2.999e-03 2.999e-03 
7.086e-04 7.086e-04 
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PH 
Pe 

Activity of water 
Ionic strength 

Mass of water (kg) 
Total alkalinity (eq/kg) 

Total carbon (mol/kg) 
Total CO2 (mol/kg) 

Temperature (deg C) 
Electrical balance (eq) 

Iteratio& 
Total H 
Total 0 

Species 

II+ 
OH- 
H20 

CE3 

ca+2 

cas04 

Cz.OHf 

Cl 

Cl- 

znc1+ 

znc12 
znc13- 
ZnC14-2 

H(O) 
H2 

K 

K+ 

KS04- 

KOH 

9 
Plg+2 

MgS04 
MgOH+ 

Na 

NEi+ 
NaSO4- 
NaOH 

O(O) 
02 

s (6) 
504-2 
cas04 
also4 
MgS04 

N&04- 
HS04- 

Molality 

2.195e-05 

5.609e-10 

5.551e+01 

1.900e-03 

1.578e-03 

3.214e-04 

9.596e-12 

1.168e-03 

l.l67e-03 

1.164e-06 

1.138e-09 
1.492e-12 
l.O84e-15 

5.622e-21 

2.811e-21 

6.653e-05 

6.580e-05 

7.260e-07 

l.O20e-14 

6.626e-04 
5.339e-04 

1.287e-04 

7.153e-11 

1.149e-03 
1.140e-03 
8.933e-06 

3.379e-13 
0.000e+00 

0.000e+00 
2.999e-03 

2.395e-03 

3.214e-04 

1.356e-04 

1.287e-04 

8.933e-06 

3.379e-06 

Zn(SO4)2-2 2.672e-06 

4.700 
4.000 
1.000 
l.l36e-02 
1.000e+00 

i -2.530e-05 

0.000e+00 

0.000e+o0 

= 25.000 

6.151e-04 
4 

i 1.110125ec02 

i 5,551821e+Ol 

Activity 
Log 

Molality 
JGI 

Activity 
Log 

Gamma 

1.995e-05 -4.659 -4.700 -0.041 
5.017e-10 -9.251 -9.300 -0.049 
9.999e-01 0.000 0.000 0.000 

1.034e-03 -2.802 -2.985 -0.183 
3.223e-04 -3.493 -3.492 0.001 
8.602e-12 -11.018 -11.065 -0.047 

1.044e-03 -2.933 -2.981 -0.048 
1.044e-06 -5.934 -5.981 -0.047 
1.141e-09 -8.944 -8.943 0.001 
1.337e-12 -11.826 -11.874 -0.047 
6.999e-16 -14.965 -15.155 -0.190 

2.818e-21 -20.551 -20.550 0.001 

5.887e-05 -4.182 -4.230 -0.048 
6.508e-07 -6.139 -6.187 -0.047 
l.O23e-14 -13.991 -13.990 0.001 

3.524e-04 -3.273 -3.453 -0.180 
1.290e-04 -3.891 -3.889 0.001 
6.412e-11 -10.146 -10.193 -0.047 

l.O23e-03 -2.943 -2.990 -0.047 
8.008e-06 -5.049 -5.096 -0.047 
3.388e-13 -12.471 -12.470 0.001 

0.000e+00 -51.281 -51.280 0.001 

1.562e-03 -2.621 -2.806 -0.186 
3.223e-04 -3.493 -3.492 0.001 
1.360e-04 -3.868 -3.867 0.001 
1.290e-04 -3.891 -3.889 0.001 
8.008e-06 -5.049 -5.096 -0.047 
3.029e-06 -5.471 -5.519 -0.047 
1.726e-06 -5.573 -5.763 -0.190 
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KS04 - 7.260e-07 6.508e-07 -6.139 
zn 7.086e-04 

zn+2 5.692f?-04 3.714e-04 -3.245 
zns04 1.356e-04 1.360e-04 -3.868 
Zn(S04)2-2 2.672e-06 1.726e-06 -5.573 
znc1+ 1.164e-06 l.O44e-06 -5.934 
ZnOH+ 2.277e-08 2.041e-08 -7.643 
znc12 1.13ae-09 1.141e-09 -8.944 

Zn(OHI2 1.171e-11 1.174e-11 -10.931 
znc13- 1.49252-12 1.337e-12 -11.826 
ZnC14-2 l.O84e-15 6.999e-16 -14.965 
Zn(OH)3- 2.076e-18 1.861e-18 -17.683 
Zn(OH)4-2 2.288e-26 1.478e-26 -25.640 
Phase SI log IAP log KT 

Anhydrite -1.43 -5.79 -4.36 CaS04 
Gypsum -1.21 -5.79 -4.58 CaS04:2H20 
H2(!3) -17.40 -17.40 0.00 HZ 
H20 0.00 0.00 0.00 H20 
02 (9) -48.32 34.80 83.12 02 
Zn(OH)2(e) -5.53 5.97 11.50 Zn(OHj2 

Beginning of inverse modeling calculations. 

Solution 1: Rain 
PH 
Al 

Alkalinity 
cc-41 

C(4) 
C?,X 
Cl 

al(l) 
CU(2) 
Fe(2) 

n?(3) 

H(O) 
K 

% 
Na 

O(O) 
SC-2) 

S(6) 

Si 
zn 

Solution 2: LS5 
PH 
Al 

Alkalinity 
cc-4) 

4.900e+oo + 
0.000e+00 + 

-1.281e-05 + 

0.000e+00 + 

0.00oe+00 + 

4.990e-06 + 

1.551e-04 + 

0.000e+00 + 

0.000e+00 + 

0.000e+00 + 

0.000e+00 + 

0.000e+00 + 

5.115e-06 + 
1.234e-05 + 
1.305e-04 + 
0.00oe+00 + 
0.000e+00 + 
1.249e-05 + 

0.000e+00 + 

0.000e+00 + 

6.700e+oo + 
0.000e+00 + 
1.F392e-04 + 
0.000e+o0 + 

0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.00oe+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 

-2.959e-06 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 

0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 

-6.187 -0.047 

-3.430 -0.185 
-3.067 0.001 

-5.763 -0.190 
-5.981 -0.047 
-7.690 -0.047 
-8.943 0.001 

-10.930 0.001 

-11.874 -0.047 
-15.155 -0.190 

-17.730 -0.047 
-25.830 -0.190 

4.900e+oo 
0.000e+00 
1,28le-05 
0.000e+00 
0.000e+00 
4.990e-06 
1.551e-04 
0.000e+00 
0.000e+00 
0.000e+00 
0.000e+00 
0.000e+00 
5.115e-06 
1.234e-05 
1.275e-04 
0,000e+00 
0.000e+00 
1.249e-05 

0.000e+00 

0.000e+00 

6.700e+oo 
0.000e+00 
1.*92e-04 
0.000e+00 
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C(4) 
Ca 
Cl 

m(l) 
CU(Z) 
Fe(Z) 
Fe(3) 

H(O) 
K 

W 
Na 

O(O) 
SC-21 

S(6) 
Si 
zn 

Solution 3: Vs4 
PH 
Al 

Alkalinity 
cc-4) 

cc41 
Gil 
Cl 

CU(ll 
CU(2) 
Fe(S) 
Fe(31 

H(O) 
K 

Mg 
Na 

O(O) 
SC-21 

S(6) 
Si 
zn 

solution fractions: 
Solution 1 
Solution 2 
Solution 3 

2.623e-04 
1.288e-03 
9.028c+-05 
0.000e+00 
0.000e+00 
0.000e+00 
0.000e+00 
0.000e+00 
3.5e1e-05 
2.222e-04 
1.740e-04 
0.000e+00 
0.000e+00 
1.479e-03 
0.000e+00 
2.157e-04 

4.700e+00 
0.000e+00 

-2.530e-05 
0.000e+00 
0.000e+00 
1.900e-03 
1.16Se-03 
0.000e+00 
0.000e+00 
0.000e+00 
0.000e+00 
0.000e+00 
6.653e-05 
6.626e-04 
1.149e-03 
0.000e+o0 
0.000e+o0 
2.999e-03 
0.000e+00 
7.086r?-04 

5.909e+oo 

1.971e+oo 
1.000e+00 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

0.000e+00 = 

-2.569e-04 = 

0.000e+00 = 

0.000e+00 = 

0.000e+00 = 

0.000e+00 = 

0.000e+00 = 

0.000e+00 = 

-8.953e-06 = 

0.000e+00 = 

0.000e+00 = 

0.000e+00 = 

0.000e+00 = 

4.s04e-06 = 
0.000e+00 = 
5.394e-05 = 

0.000e+00 = 

0.000e+00 = 

0.000e+00 = 

0.000e+00 = 

0.000e+00 = 

0.000e+00 = 

-7.366e-05 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
1.663e-05 = 

-1.518e-04 = 

-5.230e-05 = 

0.000e+00 = 
0.000e+00 = 

-2.428e-06 = 

0.000e+00 = 
-1.772e-04 = 

Minimum 
0.000e+00 
0.000e+00 
0.000e+00 

Phase mole transfers: Minimum 
H20 -3.819ec02 0.000e+00 

Calcite -1.612e-04 0.000e+00 
co2 (g) -3.556e-04 0.000e+00 

sum of residuals: 
Maximum fractional error in element concentration 

Model contains minimum number of phases. 
__--_---====== 

2.623e-04 
1.031e-03 

T.O28e-05 

0.000e+00 
0.000e+00 

0.000e+00 

0.000e+00 

0,000e+00 

2.686e-05 

2.222e-04 

1.740e-04 

0.000e+00 

0.000e+00 
1.483e-03 

0.000e+00 

2.697e-04 

4.700e+oo 
0.000e+00 

-2.530e-05 
0.000e+00 
0.000e+00 
1.900e-03 
1.095e-03 
0.000e+00 
0.000e+00 
0.000e+00 
0.000e+00 
0,000e+00 
8.316e-05 
5.107e-04 
1.097e-03 
0.000e+00 
0.000e+00 
2.997e-03 
0.000e+00 
5.315e-04 

Maximum 

0.000e+00 
0.000e+00 
0.000e+00 

Maximum 

0.000e+00 HZ0 

0.000e+00 cac03 
0.000e+00 co2 

9.808e+OO 
2.500e-01 
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Solution 1: Rain 
PH 
Al 

Alkalinity 
cc-41 

C(4) 
(2.3 
Cl 

h(l) 
Cu(Z) 
FeC2) 
Fe(3) 

H(O) 
K 

Mg 
N.3 

O(O) 
SC-2) 

S(6) 
Si 
zn 

Solution 2: LS5 
PH 
Al 

Alkalinity 
cc-4) 

C(4) 
(33. 
Cl 

CU(l) 
ml(Z) 
FeC2) 
Fe(3) 

H(O) 
K 

W 
Na 

O(O) 
SC-21 

S(6) 
Si 
zn 

Solution 3: Vs4 
PH 
Al 

Alkalinity 
cc-4) 

cc41 
Ct3 
Cl 

al(l) 
CUi2) 

4.900e+oo + 
0.000e+00 + 

-1.281e-05 + 
0.000e+00 + 
0.000e+00 + 
4.990e-06 + 
1.55x!-04 + 
o.o00e+00 + 
0.000e+00 + 
0.000e+00 + 
0.000e+00 + 
0.000e+00 + 
5.115e-06 + 
1.234e-05 + 
1.305e-04 + 
0.000e+00 + 
0.000e+oo + 
1.249e-05 + 
0.000e+00 + 
0.000e+00 + 

6.700e+oo + 
0.000e+00 + 
1.892e-04 + 
0.000e+00 + 
2.623e-04 + 
1.288c?-03 + 
9.028e-05 + 
0.000e+00 + 
0.000e+00 + 
0.000e+00 + 
0.000e+00 + 
0.000e+00 + 
3.581c?-05 + 
2.222e-04 + 
1.740e-04 + 
0.000e+00 + 
0.000e+00 + 
l..479e-03 + 
0.000e+00 + 
2.157e-04 + 

4.700e+oo + 
0.000e+00 + 

-2.530e-05 + 
0.000e+00 + 
0.000e+00 + 
1.900e-03 + 
1.168e-03 + 
0,000e+00 + 
0.000e+00 + 

0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
2.959e-06 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 

0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
2.205e-04 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.00oe+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.00oe+00 = 
0.000e+00 = 
0.000e+o0 = 
8.214e-06 = 

0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+o0 = 
0.000e+00 = 
4.749e-04 = 
0.000e+00 = 
3.000e+00 = 
3.00oe+00 = 

40 

4.900e+oo 
0.000e+00 

-1.281e-05 
0.000e+00 
0.000e+00 
4.990e-06 
1.55l.e-04 
0.000e+00 
0.000e+00 
0.000e+00 
0.000e+00 
0.000e+00 
5.115e-06 
1.234e-05 
1.275e-04 
0.000e+00 
0.000e+00 
1.249e-05 
0.000e+00 
0.000e+00 

6.700e+oo 
0.000e+00 
1.892e-04 
0.000e+00 
2.623e-04 
l.O67e-03 
9.028e-05 
0.000e+00 
0.000e+00 
0.000e+o0 
0.000e+00 
0.000e+00 
3.5a1e-05 
2.222e-04 
1.740e-04 
0.000e+00 
0.000e+00 
1.479e-03 
0.000e+00 
2.240e-04 

4.700e+oo 
0.000e+00 

-2.530e-05 
0.000e+00 
0.000e+00 
2.375e-03 
l.l68e-03 
0.000e+00 
0.000e+00 



Fe(2) 
Fe(3) 

H(O) 
K 

W 
Na 

O(O) 
SC-21 

s (6) 
Si 
zn 

0.000e+00 
0.000e+00 

0.000e+00 

6.653e-05 
6.626e-04 
1.149e-03 
0.000e+00 
0.000e+00 
2.999e-03 
0.000e+00 
7.086e-04 

Solution fractions: 
Solution 1 6.150e+oo 
Solution 2 2.373e+OO 
Solution 3 1.000e+00 

Phase mole transfers: 
H20 -4.176e+02 

Calcite -2.184e-04 
co2 Ig) -4.040e-04 

plagioclase 8.018e-05 
K-feldspar -2.848e-05 

Illite -3.573e-05 
Sum of residuals: 

+ 

+ 
+ 
+ 

0.000e+00 

0.000e+00 

0.000e+00 

0.000e+00 

-6.839e-05 

9.e13e-05 

0.000e+00 

0.000e+00 

5.860e-04 
0.000e+00 

-1.772e-04 

Minimum 
0.000e+00 
0.000e+00 
0.000e+00 

Minimum 
0.000e+00 
0.000e+00 
0.000e+00 
0.000e+00 
0.000e+00 
0.000e+00 

0.000e+00 

0.000e+00 

0.000e+00 

6.653e-05 
5,942e-04 
1.247e-03 
0.000e+00 
0.000e+00 
3.5e5e-03 
0.000e+00 
5.315e-04 

Maximum 
0.000e+00 
0.000e+00 
0.000e+00 

Maximum 
0.000e+00 H20 
0.000e+o0 BC03 
0.000e+00 co2 
0.000e+00 
0.000e+00 KAlSi308 
0.000e+00 

6.081ecOO 
Maximum fractional error in element concentration: 2.500e-01 

Solution 1: Rain 
PH 
Al 

Alkalinity 
C(-4) 

C(4) 
Ca 
Cl 

ml(l) 
CU(2) 
Fe(2) 
Fe(3) 

H(O) 
K 

Mg 
Na 

O(O) 
SC-2) 

S(6) 
Si 
ZIl 

Solution 2: LS5 
PH 
Al 

Alkalinity 
Cl-41 

4.900e+oo + 

0.000e+00 + 

-1.281e-05 + 
0.000e+00 + 
0.000e+00 + 
4.990e-06 + 
1.551e-04 + 
0.000e+00 + 
0.000e+00 + 
0.000e+00 + 
0.000e+00 + 
0.000e+00 + 
5.115e-06 + 
1.234e-05 + 
1.305e-04 + 
0.000e+00 + 
0.000e+00 + 
1.249e-05 + 
0.000e+00 + 
0.000e+00 + 

6,700etOO + 
0.000e+00 + 
1.892e-04 + 
0.000e+00 + 

0.000e+00 = 

0.000e+00 = 

0.000e+00 = 
0.000e+00 = 

0.000e+00 = 

0.000e+00 = 
0.000e+00 = 

0.000e+00 = 

0.000e+00 = 
0.000e+00 = 

0.000e+00 = 

0.000e+00 = 

0.000e+00 = 

0.000e+00 = 

-2.959e-06 = 

0.000e+00 = 

0.000e+00 = 

0.000e+00 = 

0.000e+00 = 

0.000e+00 = 

0.000e+00 = 

0.000e+00 = 

0.000e+00 = 

0.000e+00 = 

41. 

4.900e+00 
0.000e+00 

-1.281e-05 
0.000e+00 
0.000e+00 
4.990e-06 
1.551e-04 
0.000e+00 
0.000e+00 
0.000e+00 
0.000e+00 
0.000e+00 
5.115e-06 
1.234e-05 
1.275e-04 
0.000e+00 
0.000e+00 
1.249e-05 
0.000e+00 
0.000e+00 

6.700e+OO 
0.000e+00 
1.892e-04 
0.000e+00 



C(4) 
C3. 
Cl 

ml(l) 
al(Z) 
Fe (2) 
Fe(3) 

H(O) 
K 

W 
Na 

O(O) 
SC-21 

S(6) 
Si 
zn 

solution 3: Vs4 
PH 
Al 

Alkalinity 

C(-4) 
C(4) 

C.3. 
Cl 

CU(l) 
CU(2) 
Fe(Z) 
h(3) 

H(O) 
K 

W 
Na 

O(O) 
SC-2) 

S(6) 
Si 
zn 

Solution fractions 
Solution 1 

solution 2 

solution 3 

2.623e-04 + 
1.288e-03 ,+ 
9.028e-05 + 
0.000e+o0 + 
0.000e+00 + 
0.00oe+00 + 
0.000e+00 + 
0.00oe+00 + 
3.581e-05 + 
2.222e-04 + 
1.740e-04 + 
0.000e+00 + 
0.000e+00 + 
1.479e-03 + 
0.000e+00 + 
2.157e-04 + 

4.700e+oo + 
0.000e+00 + 

-2.530e-05 + 
0.000e+00 + 
0.000e+00 + 
1.900e-03 + 
l.lSBe-03 + 
0.000e+00 + 
0.000e+00 + 
0.000e+00 + 
0.000e+00 + 
0.000e+00 + 
6.653e-05 + 
6.626e-04 + 
1.149e-03 + 
0.000e+00 + 
0.000e+00 + 
2.999e-03 + 
0.000e+00 + 
7.086e-04 + 

6.384e+OO 
1.971e+oo 
1.000e+00 

Phase mole transfers: 
H20 -4.OSZe+02 

Calcite -3.23w-04 
CO2(9) -1.931e-04 

plagioclase 3.014e-06 
Illite -3.345e-05 

Chlorite(l4A) 3.639e-05 

Sum of residuals: 6.539e+OO 
Maximum fractional error in element ConcentratiOn: 2.500e-01 

0.000e+00 = 

-1.762e-04 = 
0.000e+00 = 
0.000e+00 = 
0.000e+o0 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
9.001e-05 = 
0.000e+00 = 
5.394e-05 = 

0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0.000e+00 = 
0,000e+00 = 
0.000e+00 = 
1.663e-05 = 
2.765e-05 = 
l.O12e-05 = 
0.000e+00 = 
0.000e+00 = 
1.714e-04 = 
0.000e+00 = 

-1.772e-04 = 

Minimum 

0.000e+00 

0.000e+00 

0.000e+00 

Minimum 

0.000e+00 

0.000e+00 

0.000e+00 

0.000e+00 

0.000e+00 

0.000e+00 

2.623e-04 
l.l12e-03 
9.028e-05 
0.000e+00 
0.000e+00 
0.000e+00 
0,000e+00 
0,000e+00 
3,58le-05 
2.222e-04 
1.740e-04 
0,000e+00 
0.000e+00 
1.569e-03 
0.000e+00 
2.697e-04 

4.700e+oo 
0.000e+00 

-2,53Oe-05 
0.000e+00 
0.000e+00 
1.900e-03 
1.16Se03 
0.000e+00 
0.000e+00 
0.000e+00 
0.000e+00 
0.000e+00 
8.316e-05 
6.902e-04 
1.159e-03 
0.000e+00 
0.000e+00 
3.171e-03 
0.000e+00 
5.315e-04 

Maximum 
0.000e+00 
0.000e+00 
0.000e+00 

Maximum 
0.000e+00 H20 
0.000e+00 cac03 
0.000e+00 co2 
0.000e+00 
0.000e+00 
0.000e+00 
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summary of inverse modeling: 

Number of models found: 3 
Number of minimal models found: 1 
Number of infeasible sets of phases saved: 10 
Number Of calls to Cll: 269 

End of simulation. 

Reading input data for simulation 2. 

~..._...__. 
End of run. 
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9.0 CONCLUSIONS AND RECOMMENDATIONS 

9.1 Conclusions 

The marginal performance of the polishing ponds during the winter months and the 

repeated good zinc removal (Figures 37 to 43; Section 7) during summer months 

prompted a re-evaluation of the zinc removal process. The assumption was made that, 

if the removal process is understood, it can then be controlled or promoted. In 

Schematic 3, all disciplines utilized, or potential areas which may be affecting 

performance, are given. 

The nutrient limiting plant growth in the system, phosphate, has been identified. In 

April, 1996, geochemical simulations suggested that additions of phosphate would 

result in zinc phosphate formation, but the reactions are rather slow and biological 

activity could potentially remove the phosphate prior to any chemical reactions. This 

appeared to be confirmed by laboratory growth experiments where phosphate, added 

to periphyton cultures, was rapidly removed from solution. 

A small field trial in Polishing Pond 11 produced important results regarding the fate 

of phosphate following addition to the system. Concentrations of phosphate could be 

predicted based on the flow in the pond. In mini-limnocorrals, where a relatively large 

mass of periphyton was incubated in a closed volume of pond water over 3 days, 

most of the added phosphate was not detectable in this solution. This confirmed the 

results of the geochemical simulations which suggested that zinc-phosphate should 

slowly form and precipitate. The results of analysis of the filter paper used to filter 

the mini-limnocorral solution (Table 27, Section 6) confirms that a considerable 

quantity of zinc and phosphate had precipitated in this solution. 

If some phosphate remobilizes from zinc phosphate settled to the bottom of polishing 

ponds, primary productivity in these ponds should increase, as indicated by from the 
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results of phytoplankton counts for OWP and Polishing Pond 17 (Table 19 and 20; 

Section 5). These data on small-celled phytoplankton also revealed that virtually no 

phytoplankton growth is present the OEP, even though the TOC values were relatively 

high in OEP bottom water samples (Table 36; Section 8.1). This could be explained 

if picoplankton growth was present in this pit, information which are still outstanding 

at this time. It was concluded that, based on available phytoplankton data, physical 

factors in OEP inhibit growth, as these organisms are subjected to poor/ lethal growing 

conditions, including low light availability, variable water chemistry in surface water, 

and turbulent flow in the epilimnion as it mixes with hypolimnion water along the 

thermocline stratum in summer. Turbulent flow in summer months was suggested 

from observations of round/globular particles during the growing season but more 

elongated, crystalline particles towards the end of the growing season. 

If we assume that particle formation can be assisted by the production of 

phytoplankton particles and that zinc, adsorbed onto iron hydroxide particles, will be 

captured by periphyton biomass surfaces in the polishing ponds, then performance 

data for the polishing ponds during the summer can be reasonably well explained. 

However, the iron precipitation experiments, discussed in Section 3.0, clearly indicate 

that zinc precipitation and iron precipitation are independent processes. A review of 

the chemistry of the removal process, outlined in previous reports, suggested that zinc 

carbonate is formed. This has been confirmed by the assay data indicating zinc 

accumulation in polishing pond algae and moss biomass, and by the SEM/EDX 

observations on the material from the sedimentation traps (Section 4.0). 

The monitoring data were reanalyzed on the premise that, if there is an independent 

zinc removal process involving zinc carbonate precipitation, then variation in zinc 

removal with the seasons should be observed. This has been confirmed for effluents 

close to the waste source (Section 1 .O). With this new removal process in mind, the 

main objective was then to determine the specific mechanism of zinc carbonate 

formation and precipitation, particularly in relation to seasonal variations in 
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temperature, flow patterns and gas exchange between the water bodies and the 

atmosphere. 

The SEMlEDX clearly suggested that small crystals accumulate around the iron 

particles. Surface science parameters for particle formation and settling were 

reviewed. In Figure 44, the buoyancy and sedimentation coefficients are given for 

selected bio-organic and inorganic particles, including those species known to be 

present in the OEP or OWP water. 

A field experiment testing iron oxide-rich local sand, as well as bentonite, confirmed 

that zinc was not adsorbed, as the negatively-charged surface of the bentonite did not 

reduce zinc concentrations. Thus, additions of oxides and/or bentonite would not 

assist the settling of the particles. 

In Figure 44, the distribution of various major compounds, typically found in surface 

waters is presented according to particle size. This figure reveals that the arbitrary cut 

off size, 0.45 pm, typically used to distinguish dissolved compounds from particulate, 

is inappropriate for present purposes, since both iron hydroxide and inorganic 

precipitates of zinc carbonate can be less than 0.45 ,um in size. SEM examinations at 

20,000 x magnification suggested that the coat of zinc carbonate is about 100 nm on 

particles 0.25 to 1 pm in size. These size ranges also explained the last experiment 

(conducted in January by G. Neary), where fertilizer-treated OEP water samples, 

filtered through 0.45/fm filters contained similar zinc concentrations as whole samples 

(Table 18, Section 3). In this experiment, where fertilizer was added such that 

phosphate molar concentration was the same as the molar concentration of 

Ca + Mg + Zn, Mg + Zn or just Zn, 73 % to 87 % of the zinc was removed in the Zn 

or Mg +Zn treatments, respectively. These results suggested that indeed zinc 

phosphate may be formed. The precipitate is presently being subjected to SEM/EDX 

for determination of the composition of the particles/ precipitates. 
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Assuming that all the above observations solidly back zinc carbonate precipitation as 

the removal process, then a completely different picture emerges for the biological 

polishing approach. The biological components and the physical components of the 

system are integral to the zinc removal process, in that zinc carbonate can only form 

when CO, can degas from surfacing ground water, and particles can only settle when 

the hydrodynamic conditions permit, such as in the vicinity of periphyton biomass in 

quiet parts of the polishing ponds, and on iron hydroxide particles large enough to 

settle despite flow conditions. 

In Schematic 4, an overview of the ongoing processes are summarized, including the 

basics of the ‘iron wheel’ and the carbon dioxide-bicarbonate-carbonate reaction 

series. The findings of the geochemical simulations suggest that the Valley seeps are 

composed of Lucky Strike water which has evaporated and then degassed, again 

demonstrating the dominance of inorganic carbon species as a controlling factor in the 

precipitation zinc carbonate. The solubilities of carbon dioxide are given in Table 39, 

for connection of the behaviour of the biological polishing system to temperature and, 

in turn, to the formation of a zinc carbonate. In Figures 46, 47 and 48, other aspects 

of the carbon dioxide-bicarbonate-carbonate series, controlling the zinc removal 

process, are presented. Inorganic carbon chemistry has to be fully integrated before 

a complete understanding of the removal mechanism is reached. 

Since the Buchans water chemistry is dominated by the inorganic carbon reaction 

series, other elements competing with zinc for carbonate, as well as phosphate, will 

also come into play. The concentrations of Ca, Fe, Mg and Mn in OEP and OWP, all 

potential forming carbonates and phosphates, are plotted for the surface and bottom 

waters of both glory holes. All available ICP data for these elements, collected since 

decommissioning activities started, are presented. In OEP, a decrease in the Ca 

concentration over the years is noted in the surface water, but not for bottom water. 

Fe, Mn and Mg remained at relatively constant concentrations in both surface and 

bottom waters. However if the scale is changed, a subtle decrease in Mg 
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concentrations in the surface water since 1989 is noted for OEP (Fig 5Oc), from 40 

mg/L to 20 mg/L. In bottom water, the Mg concentration is constant at around 45 

mg/L. Iron concentration have been somewhat erratic over time. In the OWP, a 

similar decrease in Ca concentrations is noted (Figure 51a and 51 b) for the bottom 

water, but not surface water, while Fe, Mg and Mn have remained at constant 

concentrations. 

Although this type of analysis remains to be completed for other elements, these 

observations suggest that different sources of water are entering the gloryholes at 

different locations, and that some elements could be precipitating, as observed for 

zinc. In Figure 52, the comparison of the slope of the Zn curve to that of Mg 

suggests that, indeed, these two elements may be removed by the very similar 

processes. In Table 40, Ca, Fe, Mg and Mn concentration data in water and captured 

by filter papers are summarized for both OEP and OWP. Although this is a crude 

‘shotgun’ approach (the information drawn from Paradox database without 

quantification and verification of the conversion from concentrations on filter paper to 

amount filtered), given that the elements are reported in the filter paper analyses, 

these elements must be forming aggregates of particles larger than 0.45 pm. 

In Figure 49a and 49b, the same elements which are suspected to be part of the zinc 

precipitation process are plotted for the periphyton and sedimentation trap material. 

Data presented in this manner suggest that Mg and Zn are strongly associated in 

OWP. but this association is essentially absent in solids collected from the Polishing 

Ponds. Note that the data were only available for the Polishing Ponds 1 to 6, since 

analytical costs have been minimized since scale-up of the polishing pond system. 

From these preliminary analyses, it is suggested that, in different parts of the system, 

different elements play a role in controlling the zinc precipitation process. 

One further new aspect shedding additional light on long-term conditions in OEP is 

drawn from the conclusion of freshwater input to OEP, based on the mass balance 
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calculations for chloride (Section 2). The flow model developed for the polishing ponds 

(Section 7) was extended to be used for the Drainage Tunnel and the OEP. 

Preliminary model calculations are given in Figures 53 a to 53 d, each utilizing 

different zinc input concentrations/changes with time, with and without zinc removal 

by sedimentation, for comparison to the measured zinc concentration trend in OEP 

outflow water. 

In Figure 53~. the zinc concentration decreases calculated by the model and the 

measured decreases are in close agreement. In this scenario, zinc-containing solids, 

as captured in the sedimentation traps, is recycling or, as suggested in Figure 53d 

(Case 5), the initial concentrations was lower in the pit and the groundwater 

concentration is at 45 mg/L zinc. Although not all reasonable scenarios have been 

tested, it is likely that a considerable amounts of iron and zinc precipitating and 

settling in OEP are recycling. If recycling can be prevented, there may be an end to 

long-term treatment. 

Given these radical new findings, and the overwhelming amount of data available for 

confirmation of these key conclusions, further analysis of the compiled data in the 

present report will be required. However, there is no doubt that the zinc removal 

process was incorrectly identified as coprecipitation with iron hydroxide and that fresh 

water is entering the OEP. Freshwater input may even be responsible for the observed 

long-term decrease in zinc concentrations, in view of the fact that iron and zinc may 

be recycled. Although the magnitude of this recycled fraction is not known, and the 

data have to be analyzed in more detail, it provides a new treatment alternative which 

was not recognized before. 

The results of the phosphate addition experiments completed late January, 1997 using 

OEP water, as well as the particle size and hydrodynamic considerations, provide for 

the possibility of a one or two-time treatment with phosphate, and possible addition 

of organics as a sealant promoter of organic phosphate cycling. 
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If it can be confirmed that portions of zinc and iron are recycling in the OEP, that the 

contribution from the underground is diminishing, and that zinc-free fresh water is 

entering the OEP, then with a one time removal of the iron and zinc, in form of the 

iron phosphate/zinc phosphate, a final decommissioning solution would be provided. 

The particles have to be settled and chemoclines have to be destroyed. A healthy 

pond would replace the problem of the OEP, providing continuous polishing for the 

ground water zinc contribution. The elegant component of the 1996 results is the fact 

that, if this can be confirmed, the observations on the Valley seeps, the Lucky Strike 

and the Drainage Tunnel are all part of the same solution and would essentially solve 

the problems presented by all contaminant sources in the Buchans area. 

9.2 Recommendations 

I) Data Interpretation 

The 1996 work has resulted in a completely new view of the Buchans situation. 

These new scenarios have to be evaluated in detail. The present report is considered 

a data report, assembling all the information gathered this year, but also represents 

a review of previous years’ work. Normally, after all data are assembled, a systematic 

analysis and interpretation of the data is carried out. The 1996 objectives involved 

such an extensive scope of work that many aspects have not been analyzed yet and 

oversights of the seemingly contradictory behaviour of the chemistry cannot yet be 

eliminated. Therefore, Task 1 will confirm, using all available data, the new scenario. 

Furthermore, organization of the available data is urgently needed, as there are 1,195 

chemical analysis, of which there are 717 water chemistry analyses, 106 biomass 

sample analyses, 137 filter paper analyses and 235 solids analyses. 

Digitized maps of the Buchans area have been completed, which can be used to 

generate detailed site maps providing coordinates for any sampling point. 
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After the data are fully interpreted, the following activities can be identified: 

Final experiments and measurement to be done in winter, 1997. 

l Field Studies 

under ice experiments - phosphate reactions in ambient conditions 

Monitoring under ice - LS, OWP, OEP, Polishing Ponds: iron, zinc, 

phosphate. 

sourcing non-acidifying, non-Ca, Mg, Na fast release phosphate source, 

e.g. potassium phosphate. 

0 geochemical modelling of any changes or additions based on the existing model 

with 0,, CO, degassing; new PHEQUE version 

are carbonates truly formed? 

l Phosphate addition to OEP in winter - major considerations? 

l Phosphate addition to Drainage Tunnel pump house - a consideration? 

l Lucky Strike Gloryhole - Action plan? 

Organize the data and validate entry and units for all data points, analyze the data set 

for complete set of elements which are part of the precipitation process. Test the 

decreases (surface and bottom) for all water bodies and all elements, i.e. Drainage 

Tunnel, Lucky Strike, Valley Seeps, Tailings Ponds as well as OEP and OWP. 

Task 2: Phosphate Cycling in System 

To arrive at these new perspectives, Dr. Hellebust (Dept. of Botany, U of Toronto) was 

consulted. He had periodically contributed to the biological aspects of the site for the 

past 10 years ago. He has agreed to evaluate the possibility to use radioactive 

phosphate in tracing the fate of phosphate. This clearly is a key component in zinc 

removal and for the biological integrity of the polishing system. The picoplankton data 

which are coming, together with the identifications of the precipitates from the 
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January experiments, will be evaluated and biological productivities projected for each 

polishing area, taking the present physical /chemical limitations into account. 

The fate and stability of phosphate for zinc removal in the context of primary 

productivity in the Buchans waters. Development of a field test protocol to 

differentiate between biological and chemical phosphate fate. Sediment release of 

precipitated phosphate to provide long term phosphate fertilisation. 

To determine the long term fate of the particles, their biological components are being 

identified. This is proposed to be carried out as an M.Sc. thesis using epifluorescence 

microscopy, which can identify living forms on solids particles. It can be expected 

that phosphate particles will be microbially transformed in the long term, since it 

contains one of the key limiting nutrients. In the first year, the colonisation (coating 

observed in SEM investigation ) will be delineated. 

Task 3: Factors Controlling Particle Formation 

It is proposed that a surface scientist (Dr. Mikahailovski) should engaged. He has 

already provided perspectives on particle formation and particle sizes and their 

relevance in forming colloids, aggregates and hence their ability to settle out of the 

water column. During 1996, he has assisted in reviewing the Buchans data and has 

pointed out one of the key facts; only particles large enough to respond to 

gravitational forces would end up in the sedimentation traps. His insight into the 

physics and colloid chemistry added new dimensions to the sequential extractions of 

sedimentation trap materials (not discussed in this report; M.Sc. thesis, U of T) and 

oxygen availability in the OEP. A microelectrophoresis apparatus for the 

determination of particle sizes and charges has been located at the University of 

Toronto and zeta-potentials of various particles and their aggregates/colloids will be 

determined. With this information, the hydrodynamical changes required in the pits 

can be estimated. Upon this assessment, it will be possible to determine whether 

Boojum Research Limited t 9% Final Report 
January ,997 135 For: ASARCO INC. 



improvements in the particle settling characteristics can be achieved. 

Task 4: Inorganic Carbon Solution Chemistry; Partial Pressure and Degassing 

The new geochemist, using a version of PHREQUE which integrates gases, has 

provided insight into the processes which may be responsible for observed solution 

chemistry. Evaporation as a concentrating process for zinc in the overburden was 

identified. Based on chloride concentrations, using sea spray numbers and the drill 

hole water quality as background data, combined with degassing, produced Valley 

seep concentrations from Lucky strike water. The concentration process through 

evaporation has to be evaluated and possibly tested. Many of these aspects, given 

the new scenario, have to evaluated in detail, time not permitting to date. One key 

aspect which needs to be addressed is whether there is the potential for Lucky Strike 

pit’s limnology to resemble that of OWP prior to Drainage Tunnel discharge, i.e. turn 

acid. While there was some past effort extended (some years ago) to identify the 

source of bicarbonate, information regarding this source in of increasing importance 

for the Lucky Strike, since this water is reaching the Drainage Tunnel and the Valley 

seeps. 
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4.14 4.60 
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3.92 

.25* 

10.3 
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9.88 
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2.66 

8.70 
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5.77 
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9.20 

5.13 

-- 
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Table 39: Solubilities of Various Gases in Water. Henry’s Law Constant K 
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Table 40: OWP and OEP statistics for selected elements. 

ORIENTAL EAST PIT 

Min 

Max 

Aw 

N 

Min 

Max 

Avg 

@a 

224 

547 

367 

76 

Ca 

0.11 

15.0 

1.33 

WATER SAMPLES 

Fe Mg Mn 

0.01 19.6 4.67 

66.9 57.0 17.0 

18.0 36.5 10.6 

80 76 80 

FILTER PAPERS 

Fe Mg Mn 

0.24 0.02 0.00 

3.53 0.58 5.75 

2.09 0.12 0.38 

I 
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figure 44: Semilogarithmic plot of buoyancy density and sedimentation coefficient 
of selected bio-organic and inorganic particles found in natural water. 
Species found in Buchans OWP and OEP are marked with I+‘. From 
Ciaccio, 1971. 
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Figure 45: Nature and size domain of the important particles of aquatic systems 
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a - CO,-, b - HCO,-, c - H&O, 

Figure 46: Curves Showing Fractions of Total Carbon Dioxide Present as the 
Respective tons at Various Hydrogen Ion Concentrations. 
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Figure 47: Adsorption coefficient C, of carbon dioxide in sea water as a function of I 

temperature and chlorinity. 
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I Figure 48: Carbon components in sea water of Cl =I 9.00 %O at 20°C as a function 
of pH and the partial pressure of carbon dioxide. 
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Fig. 49a: Periphyton and Sed Trap Data 
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Fig. 49b: Periphyton and Sed Trap Data 
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Fig.50a: OEP Surface Water 
1988-1996 
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Fig. 50~: OEP Surface Water 
1988-1998 
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Fig. 51 a: OWP Surface Water 
1988- 1996 

Fig, 51 b: OWP Bottom Water 
1988-1996 
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Fig. 52: OEP Surface, 1989-1996 
Average [Zn] and [Mg] 
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Fig. 53a: OEP Zinc Model 
Case 1: 

- Model 0 Measured Surface Zn 

Fig. 53b: OEP Zinc Model 
Case 2: 
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Fig. 53~: ;aO; ;i:nc Model 
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