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Brief Note on Modelling 
The object of the dynamical model of biological polishing presented herein is to  simulate the bio- 
geochemical processes operating in the removal of heavy metals from mine drainage by means of 
periphytic algae. The  model describes the growth of periphyton, and the interactions between pe- 
riphyton, effluent, and fertilizer. Eventually it is hoped that it will serve as a management tool in 
that it will allow the user to determine the number of trees (or other substrate) and the amounts of 
nutrient to put into an effluent pool to maintain the metal concentrations below some legislatively 
set value year round. 

There are two markedly different approaches to modelling ecosystems in the scientific literature. 
In the “top down” approach, models are constructed which call for a comprehensive and detailed 
description of ecosystem components. These models are typically empirical in nature, and based 
on on-site observations. The “top down” approach is the methodology generally favoured by field 
biologists probably due to the the great complexity of natural systems they study. In contrast, the 
“bottom up’’ approach relies on careful quantification of key inputs, outputs, and internal processes 
for simulation of system dynamics. This approach is generally favoured by physical scientists and 
engineers, largely because it has been successful in their respective disciplines for several centuries. 
The models constructed in this approach are typically mechanistic and mathematical. The model 
which I will construct is an attempt to bridge the two ways of doing things. I will adopt a mechanistic 
theoretical perspective and identify the key biogeochemical processes operating in polishing ponds. 
However, I will use an empirical approach to quantify these complex processes first in the laboratory 
and then in the  field on a site-specific basis. Finally, the mechanistic/empirical model constructed 
must be calibrated and verified in the field. 

1.2 Bioaccurnulation of Metal Ions by Algae 
The active mode of metal accumulation by living cells is normally designated bioaccvmvlation. This 
process depends on the metabolic activity of living cells, which is itself affected by the presence of 
metal ions. The ability of an organism to survive in an environment with high concentrations of 
heavy metals may be due to two not necessarily mutually exclusive reasons: ( i )  the organism is able 
to maintain more or less normal metabolic function in the presence of elevated metal concentrations, 
or ( i i )  the organism is able to prevent the intracellular buildup of metal concentrations harmful 
to metabolism. T h e  growth of the organism is expected to be affected in both cases. Organisms 
have been reported to actually slow their growth in order to prevent the intercellular accumulation 
of metal ions. In case ( i i )  metal ions attach to the negatively charged cell walls and surrounding 
polysaccharides of an organism without entering it. 

The total amount of metal sequestered by algae depends on the saturation loading of the algae and 
surrounding polysaccharides, and the quantity of algae and polysaccharides exposed to the contam- 
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inated solution. To control the biological polishing process, then, requires an understanding of algal 
bioaccumulation kinetics ,and equilibria, and algal growth under various environmental conditions. 
Therefore, the modelling problem is to write down a set of differential equations which quantify ( i )  
the growth of algae in the environment, ( i i )  the nutrient flow to and from algae, ( i i i )  the adsorption 
of dissolved metal ions at low pH, ( iv )  the sieving of precipitated metal ions at higher pH. 

1.2.1 Growth of Periphyton 
The biomass balance equation for the periphyton is: 

v =  
a =  

G, = 

D, = 

H =  
n =  
A =  
up = 

da nAv,a 
nA- = nA(G, - D,)a - - 

dt  H 

volume of pond ( m 3 )  
density of periphyton on carbon substrate (alder, spruce etc.) (Cg/m2) 
growth rate of periphyton (C') 
death rate of periphyton (d- ' )  
depth of pond ( m )  
number of trees 
surface area per tree which supports periphyton growth (m2)  
settling rate of periphyton ( r n l d )  

Here we assume that no periphyton enters or leaves the pond through inflow or outflow. 
The rate of periphyton growth depends on three principal components: 

1. Temperature, T 

2. Solar radiation, I 

3. Nutrients, N 

4. Metal concentrations, m,f, on the periphyton 

Normally, it is assumed that environmental effects are multiplicative, although there is no a priori 
reason for this. Nevertheless, other algae growth models in the literature based on this assumption 
have been supported to some extent by data collected. Therefore, we take 

Gp = ~m(l2,20G(T)G(I>G(N)G(rn~)  (1.2) 

Here p,,,,20 is the maximum growth a t  optimal conditions (nutrient saturation, no metal sorption). 
The attenuating functions G ( T ) ,  G ( I ) ,  G ( N ) ,  and G(rn:) must be either taken from the literature, 

or determined esperimentally. The disadvantage of the first approach is that  literature values vary 
widely since they are typically average values over many sites. To reduce model calibration and 
improve accuracy it is best to determine these functions in the laboratory, and then 
verify them in the field. Furthermore, sensitivity analysis of the model will allow us to determine 
which variables are important, and which are not. This empiric/mechanistic, site-specific approach, 
I believe, is the best for ecological modelling. 
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Figure 1.1: Growth .vs. temperature 

Temperature Effect 

In the case of optimum light, nutrient saturation, and no metal sorption, it has been empirically 
determined that the growth of algae typically goes as an exponential: 

(1.3) 
(T-20) G ( T )  = 0, 

An experiment carried on a sample of periphyton growing in water from the site over a range of 
temperatures would establish 0,. In the environment T = T ( t )  over the year, and obviously effects 
growth. From a meteorologic record the temperature variation with time at a given site can be 
estimated using nonlinear regression. 

Light Effect 

The variation of photosynthesis with light also attenuates growth. There are several models in the 
literature ranging from Monod-type saturation to exponential growth and decay. For example, the 
Monod saturation type of factor is: 

Here I([ is the half-saturation constant. Again, it is preferable to determine the precise form of G ( I )  
for a specific site in the laboratory rather to rely on literature estimates. Furthermore, light intensity 
falls off with water depth, and has a diurnal period (photoperiod). The Beer-Lambert Law is used to 
account for I = I ( z ) ,  and a photoperiod is used to establish an average daily light intensity. Typically, 
the intensity is averaged over depth and photoperiod to give a pond and daily average value. To 
account for seasonal variation an additional factor is multiplied: I ( t )  = Iavg[l + sin(0.008603)]. This 
factor, again, could be established from meteorological records. 

Nutrient Effect 

This factor couples the growth model to the nutrient model. There is good evidence that algal growth 
is modulated by saturation kinetics of the Monod-type: 

N 
K m N  + N 

G ( N )  = 



K*H = 0.1 

c 
0 I.. P Y J h Y  

Figure 1.2: Growth .vs. light intensity 

G“’ t 

Figure 1.3: Growth .vs. limiting nutrient 

Here N represents the nutrient concentration (for example, phosphorus or nitrogen). When there are 
several nutrients necessary for plant growth, the one which is in shortest supply (not concentration) 
for the plant limits growth (“Liebig’s Law of the Minimum”): 

G ( N )  = min N2 * . . . }  { Krn~?+ N I  ’ KmNz + N 2 ’  

Effect’of rn: 

The quantification of the effect of metal concentrations is probably the most difficult. The Boojum 
data base provides some of the needed information but further laboratory experimentation is needed. 
For example, if metal concentrations in the plant are maintained at different levels, how does the plant 
grow relative to a control? To do these experiments, one should first establish, through experiment, 
the kinetics of bioaccumulation on periphyton. 
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Figure 1.4: Respiration .vs. temperature 

1.2.2 Death Rate D, 
Periphyton will not grow indefinately. Due to changing environmental factors the balance between 
growth and death G, - D, can shift from positive (i.e. net increase in biomass) to negative (i.e. 
net decrease of biomass). There are several causes for a decreasing periphyton population, time 
of year being the most obvious (reduced temperature and sunlight). In addition periphyton have 
grazers, except a t  low pH. Also, herbivorous zooplankton and higher lever grazing can be a source 
of periphyton loss. To begin with, I shall not include these relations in the model (although later 
on they will be incorporated). I assume the main source of periphyton loss is due to endogenous 
respiration in which organic carbon making up the algae is oxidized and excreted to  the environment 
as C02 and other by products: 

There is evidence in some studies of algal growth that respiration depends on light intensity, but the 
results are not conclusive. Temperature dependence, on the other hand, is well established. It has 
been empirically determined for a number of species of algae that respiration varies according to the 
exponential relation: 

D, = R (1.7)  

(1.8) (T-20)  R(T)  = R2o@R 

The values of the kinetic constant R2o and O R  can be found either in the literature, or, preferably, 
by laboratory experimentation on site-specific periphyton. 

1.2.3 Nutrient Relationships 

The growth of the periphyton depends on the availability of nutrients through the attenuating factor 
G ( N ) .  The nutrients, however, also are governed by a mass balance relation which couples nutrient 
flow in and out of the pond t o  uptake by periphyton. Nutrients are typically phosphorus, nitrogen, 
and carbon. The nutrient/food chain relationships are very complex and I shall give only a very 
simplified version to begin with. Below is a model nutrient cycle for the uptake and release of 

I dissolved available phosphorus by the algae, the conversion of unavailable phosphorus to available 
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Here 

1 

*#& .' / / r---Y Q? <D? 

1 

Pl = 
P2 = 
w, = 
w2 = 

Q =  
cp = 

Kll = 
K12 = 

dP1 
V -  dt 

= Wi - Qpi - K11Vpl+ DpnAc,a 

dP2 
V -  dt 

= W2 - Qp2 + Ki2Vpl - G,nAcpa 

(1.9) 

(1.10) 

unavailable phosphorus (rngll) 
available phosphorus ( r n g / l )  
input of less available phosphorus (mg/l) 
input of available phosphorus ( r n g l l )  
outflow rate ( l / s )  
phosphorus to chlorophyll ratio for periphyton (mg p/mg chl) 
rate of conversion of available phosphorus to unavailable and settling loss ( d - ' )  
rate of conversion of unavailable to available phosphorus ( d - l )  

Similar nutrient cycles for nitrogen and carbon can be written down; in fact, for polishing ponds under 
study, carbon is typically the limiting nutrient, and the other nutrients can be  assumed saturated. 

In summary the growth of the periphyton and relation to  temperture, sunlight, and nutrients 
over the year is expected to be something like that  shown in the diagram below: 
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Figure 1.7: Kinetics and equilibrium adsorption 

concentration of soluble metal (mg/l) 
inflow rate (=outflow rate) (mgll) 
inflow concentration of soluble metal (mgll) 
reaction rate of adsorption of metal onto periphyton (d - ’ )  
concentration of adsorbed metal ions on periphyton surface 
(mg metal adsorbedlkg of periphyton) 

If the adsorption takes place on a time scale Tadsorb << TcOntact, then a quasi-equilibrium assumption 
is a good one. The kinetics of adsorption and the loading curve of metal on periphyton should be 
determined in the laboratory using field samples: If a quasi-equilibrium assumption is justified the 
term kl,adf(m:,ad) can be dropped from Eq. 1.11 and Eq. 1.12 can be replaced by an equilibrium 
relation between m: and mr,a. One might model the equilibrium loading of metal on the periphyton 
by a Langmuir isotherm: 

(1.13) 

1.3 Sieving of Precipitated Metal in Solution 
For higher pH, metals cations begin to precipitate out of solution. The precise value at which a 
given dissolved species precipitates depends on the specific geochemistry of the system under study. 
Nevertheless, as a first step we divide the metal removal mechanisms into two types: electrostatic 
adsorption and physically driven sieving. While adsorption is a chemical process which removes 
dissolved species, sieving is a physico-chemical process which removes precipitated species suspended 
in solution. As the solution laden with precipitate flows past a plant, the particulate is forced up 
against the plant where it attaches to either polysaccharides surrounding the plant, or directly onto 
the cell wall. This is the “sticky-sieve” model. A number of questions arise. Is the process in 
quasi-equilibrium, with some fixed metal concentration on the plant as in the case of equilibrium 
adsorption? Or is it a cumulative one, inherently kinetic? Again, these questions depend on whether 
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Figure 1.8: Kinetics and loading for sieving 

T ~ , ~ ~ , ~ ~  << Tres,dence or if ~ ~ i ~ ~ , ~ ~  >> Tresidence, and should be properly determined in the laboratory. 
Here I present a tentative mathematical model for sieving. In the case ~ ~ i ~ ~ , ~ ~  >> Tres,dence, sieving 
is a steady build-up of precipitate on the algae. The total amount of metal sieved by periphyton is 
proportional to the precipitate laden flow across the algae; it is also proportional to  the total area of 
the algae exposed to the flow (which is itself proportional to the growth rate of the algae); certainly, 
it is proportional to m:; and presumably to the saturation loading of the periphyton. We take as a 
model then: 

(1.14) 

concentration of precipitated metal in solution (mg/I )  
mass specific concentration of sieved metal on plant ( m g / k g )  
saturation constant i.e. sieving limited by the concentration m l a  (dimensionless) 
average flow velocity around plant in pond 

Lpond /Tresidence 

csurj.nAa( t )  
total plant surface area 
plant surface area per unit of plant biomass ( m 2 / k g )  

The mass balance for precipitated metal in solution is therefore: 

(1.15) 

If Tsieuing << Tresidence, then the time to reach saturation is comparatively fast. In this case quasi- 
equilibrium holds between precipitate in solution and on algae, and the last term in the above 
equation would be replaced by a Monod-type saturation expression. Whether or not this is the case 
must be determined in the laboratory under controlled conditions. 
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1.4 Mathematical Model as a Control System 
The application of mathematical models to problems of environmental remediation is best done in 
the context of an on going interaction between modelling and experimentation. Moreover, in this 
case models are valuable aids for designing field sampling programmes and for identifying the key 
processes operating in a given system. If a sampling programme is done outside the context of a 
quantitative model, then the modeller is faced with a difficult (maybe impossible) task of retrofitting 
models to data sets which may not contain the key measurements needed to calibrate the model. The 
integrated approach-the “up/down approach”-is the one which has the best chance of producing 
quantitative models which accurately predict system behaviour in response to  external forcing and 
to controls. 

The set of differential equations presented above are a comparatively simple mechanistic model of 
bioaccumulation. For the present time, we divide biopolishing into two types: electrostatic adsorption 
and mechanical sieving. For lower pH electrostatic adsorption is dominant, whereas for higher pH 
mechanical sieving is dominant. In the case of electrostatic adsorption, there are five dependent 
variables: 

a, P I ,  PZ, m:, mta  (1.16) 
If electrostatic adsorption is kinetic on physical time scales, the five equations governing these vari- 
ables are Eq. 1.1, Eq. 1.9, Eq. 1.10, Eq. 1.11, and Eq. 1.12. If quasi-equilibrium holds between m: 
and r r ~ ; , ~ ,  then Eq. 1.10 is replaced with Eq. 1.13. Similarly, in the case of mechanical sieving, there 
are five dependent variables: 

a ,  PI, ~ 2 ,  m i ,  mta  (1.17) 
If sieving kinetics take place on a time scale comparable to the physical flow past a periphyton 
plant, the governing equations are Eq. 1.1, Eq. 1.9, Eq. 1.10, Eq. 1.14, and Eq. 1.15. In the case 
a quasi-equilibrium holds between m t  and mt,,, Eq. 1.14 would be replaced by another expressing 
equilibrium between preciptates in solution and on periphyton. 

There are several kinetic and equilibrium constants which must be determined either through 
literature estimates or direct experimentation on a site-specific basis: 

(1.18) 

In addition there are the rate constants associated to Eq. 1.10 or Eq. 1.13, and Eq. 1.14 or a 
corresponding equilibrium expression. Finally, there are site-specific constants u p ,  c p ,  uj low,  and 
CSUT j . .  

I t  should be emphasized the model presented is not just of academic interest, but can also serve 
as a management tool. This becomes clear when one recognizes that some of the functions and 
parameters are in fact control functions and parameters. Importantly, the output of the model, that 
is m + ( t ) ,  changes depending on the value of these externally adjustable functions and parameters. 
For example, changing kezchange = Q/V is physically equivalent to changing the flow rate into the 
pond, the  volume of the pond, or a combination of both. Changing n A  amount to changing the 
number of trees in the pond, the surface area of the tree, or a combination of both. The nutrient 
loading functions Wl(t) and W2(t) represent the times at which a given amount of fertilizer is applied. 
By changing them the growth of the periphyton is altered, and consequently the uptake of m+. The 
ultimate aim of biological polishing models, once they are calibrated and verified, is to adjust the 
control functions and parameters so the m+(t)  remains below some legislatively set value, and to 
optimize the entire process on the basis of management criteria. 
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1.5 Computing Facilities Needed 
To solve the coupled set of differential equations representing the system dynamics requires access 
to a sufficiently powerful computer. At the U.  of T. an account on a local area minicomputer (UNIX 
operating system) interfaced with a desk top PC would be ideal. The cost of this, I estimate, will 
be no more than fi 50/month ( the actual amount depends on how much CPU I use in a month, 
and can be monitored). Alternatively, Boojum Research could purchase dynamical systems software 
supportable by a 486 PC, which I could then run on my own PC. The cost of an entire package of 
this sort would be up to $2000 ( I  have some sales literature on the software if you would like to see 
i t ) .  

To solve the system of differential equations given above, I must learn how to use the various 
computer mathematics libraries available at the U. of T. This will take a few weeks. Once I have 
done this I will be ready to compute the simple model presented and generate some simulated time 
curves of metal concentrations in polishing ponds over the year. 
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Research Interests 

1.1 Introduction 
Below I describe in a general manner the basic physics which underlies ecological modelling. First, 
I briefly summarize the theory of self-organization developed by the Belgian physical chemist and 
Nobel laureate Professor Ilya Prigogine and his group in Brussels (incidentally, Prigogine was one 
of my Ph.D. examiners). I then outline the role of nonlinear mathematics within this theory. 
Finally, I describe in more detail the ecological research I have undertaken at Boojum Research 
and Technologies. 

1.2 Self-organization of Ecosystems 
Perhaps the most conspicuous aspect of nature is that it is in constant change, and that this change 
is not ordinarily reversible. One of the most profound discoveries of recent times is that irreversible 
processes operating far from thermodynamic equilibrium can be the source of order. If a physical 
system (i)  exchanges both energy and matter with the external environment, (ii) has catalytic, 
cross-catalytic, or autocatalytic chemical kinetics, and (iii) is constrained by the surroundings, then 
self-organization is possible. Under appropriate conditions, stable states characterized by spatial 
and temporal order may spontaneously appear from unstable, nonequilibrium states-these are 
referred to as dissipative structures by Prigogine and his co-workers. Most interestingly, ecosystems 
satisfy all these criteria: they exchange matter and energy with the surroundings; the hydro- 
biogeochemical reactions occurring within them are in general complex and nonlinear; and they 
are constrained by their external environment. Therefore, the structure and function of ecosystems 
can, in a very basic way, be understood as a problem of self-organization of nonequilibrium matter. 

1.3 Mathematical Analysis of Complex Systems 
The mathematical language used to describe complex physical systems is dynamical systems anal- 
ysis, a branch of mathematics originated by Poincark. The basic idea is to represent the instanta- 
neous state of a physical system as a point in mathematical phase space. The dynamical evolution 
of the system, which is given in terms of a set of evolution equations, is then a trajectory in this 
space. In thermodynamics, the phase space is a Hilbert-Sobolev space of local thermodynamic 
state variables, and the evolution equations are various nonlinear conservation equations. Sim- 
ilarly, in chemical and biochemical systems, the phase space is usually a Hilbert-Sobolev space 
of local quantities, and the evolution equations are a coupled set of nonlinear partial differential 
equations. On the basis of nonlinear mathematics, it is possible to explain the ordered and struc- 
tured patterns observed in many. far from equilibrium systems. Nonlinear mathematics is central 
to the theory of self-organization: stability analysis, bifurcation analysis, perturbation methods, 
and computer modelling are all part of the theories’ machinery. 



1.4 Hydro- biogeochemical Ecological Models 
Currently, I am an NSERC fellow at Boojum Research and Technology, anenvironmental engineer- 
ing firm based in Toronto. Boojum uses microbiological methods to control acid mine drainage, 
and is a pioneer in this field. From the standpoint of physics, the ecological systems that Boojum 
studies and manages are thermodynamically open, hydro-biogeochemical systems. I t  is possible 
to model these systems mathematically. To begin with, putative models would be dynamic be- 
cause flow velocities, chemical concentrations, sediment, microbial count, and biota vary with 
time. Furthermore, the models ought to be internally descriptive, causal models, because only by 
examining the operation and interrelations of basic physical, chemical, and biological processes is 
a deeper understanding of hydro-biogeochemical systems possible (a  “black box” approach, which 
is sometimes adopted in ecological modelling, is not nearly as powerful for it only relates obser- 
vations, but does not explain them at a more fundamental level). Casual models are quantified 
by means of differential equations which represent the actual physical, chemical, and biological 
processes taking place in the system. Finally, it should be emphasized that mathematical models 
of tailing ponds, polishing ponds, and open pits are intended not only as research tools but also as 
environmental management tools, useful for testing engineering measures before they are actually 
implemented on site. Also, simulation packages can be useful in promoting sales for they enable a 
potential client to see the eflects of various engineering measures in simulated time, and thereby 
to gain confidence in the technology. 

In the following, I first summarize the basic physics of open thermodynamic systems, and 
discuss how it applies to ecological systems. Next, I outline a simplified modelling approach 
which is useful for ecological systems, and give a few examples to illustrate the method. I also 
briefly discuss the exciting possibility of nonlinear dynamics in ecological systems. Finally, I cite a 
wetland model which resembles a Boojum polishing pond, and comment on the work to be done. 

1.4.1 Irreversible Thermodynamics 
Consider an open macroscopic system in a volume V bounded by a closed surface C (see Fig. 1 . 1 ) .  
An extensive quantity F ( t )  for Vis given as: 

F ( t )  = / A r ,  t m ,  t ) d V  ( 1 . 1 )  

Here f (r, t )  represents the density of F ( t )  per unit mass (specific variable), and p(r ,  t )  represents 
the mass per unit volume as a function of position and time. For example, if f ( r , t )  = 1 ,  then 
F ( t )  = M ( t )  is the mass as a function of time within V .  Under the most general nonequilibrium 
conditions, an arbitrary extensive quantity F ( t )  is not expected to be conserved (for example, 
matter is produced and consumed within V ,  and exchanged with the environment): 

d= = P [ F ]  + 4[F) 
dt 

Here P [ F ]  is a source production term and 4[F] is a flow term describing the exchange of F with 
the surroundings. 

With various choices of f ( r , t ) ,  Eq. 1.2 leads to the following set of balance equations [ l ] :  



Figure 1.1: Open thermodynamic system. 

- -  a(pv)  - - V . ( P + p v v )  
at 

(1.3)  

Here p7 is mass per unit volume of component y;  J, is diffusion flux; v is the center of mass 
\.elocity; u,, are the stoichiometric coefficients; v, are reaction rates; u is energy density; J,  is 
energy f lux;  s is entropy density: J, is entropy flux; 0 = C, J , X ,  is the entropy production; P is 
t tie pressure tensor. To close these equations a phenomenological relation between thermodynamic 
fluxes J ,  and forces - Y l ,  and a local equation of state is needed. For a chemical/biochemical system, 
the reaction terms are specified separately, usually on the basis of chemical/biochemical kinetic 
theory. In s u m m a r y ,  these equations in principle describe the physical, chemical, and biochemical 
i n t ~ r a c f i o n s  in a multi-component noneqzlilibriurn system. 

\\'e can recast Eq. 1.3-Eq. 1.6 ( a  set of coupled partial differential equations) in a more com- 
pressed notation: 

( 1 . 7 )  

?{ere { y i ( r ,  t ) ,  i = 1. . . . , n }  are the state variables p ,  v, u ,  s, andv,, and F' are complicated func- 
tions of the Xi's and their derivatives. The main point of a dynamical formalism is the ability 
to follow the evolution of a system in time. This we can visualize geometrically as follows: the 
iristantaneous state of the system is given by a point in the Hilbert-Sobolev space { tl,. . . , .)cn}. 
arid the time evolution of this state,  given by the evolution equations Eq. 1.7, is a trajectory in this 
space (see Fig. 1 . 2 ) .  Physically, the point in phase space is the system with particular chemical 
concent rations, flows, energy density, etc. ,  and the trajectory corresponds to these values changing 
in time. 

1.4.2 Multiple-unit Models 
111 principle. the coupled set of nonlinear partial differential equations given in Eq. 1.3 describe 
a n y  physical system. including ecological ones. However, in applying them to natural settings one 



Figure 1.2: Evolution in state space. 

is immediately overcome by the complexity of even the simplest ecological systems. The chief 
obstacle is not the mathematical solution of this coupled set of nonlinear p.d.e’s (although this is 
a nontrivial problem in itself and can only be done computationally) but the limited knowledge 
of the basic hydrological and biogeochemical processes taking place in ecosystems. Therefore, 
the first problem in ecological modelling is selecting the appropriate complezity and structure for 
a given ecosystem. This crucially important step is done at the conceptual stage before the 
machinery of the mathematics is brought to bear. Therefore, while the set of partial differential 
equations in Eq. 1.7 in principle includes all details of any possible system, the uncertainty of 
the precise physical, chemical, and biological processes, make it counterproductive to invest too 
much effort in constructing extremely detailed, complex models-models which ultimately do not 
give reliable knowledge of actual ecosystems. To use Eq. 1.7 it is necessary to reduce it to a more 
manageable set by identifying only those processes which are important to a particular ecosystem 
under study, and to simplify the processes as much as possible without ejecting the key dynamics 
(note, however, the basic physics principles expressed in Eq. 1.7 are still present and act as a 
constraint on any simplifications). 

One fruitful approach along these lines is the “lumped parameter modeln [2]. In this method 
the spatial variation of state variables and parameters is simplified by dividing the system into 
compartments corresponding to spatial regions, and assigning timedependent state variables to 
these compartments. Under these assumptions, the original coupled set of partial differential 
equations Eq. 1.7 reduces to a coupled set of ordinary differential equations. As an example 
of this approach, consider a single chemical compound introduced into a well-mixed lake. This 
system is easily described by a single-unit or “one-box” model (see Fig. 1.3): the concentration 
is the state variable C, and the time evolution of the concentration is quantified by the following 

Here C,, is the externally imposed inflow concentration, and k, and k, are the water exchange 
rate and reaction rate in the lake respectively. 

To introduce spatial variation in the concentration C, a first step might be a double-unit 
or “two-box” model quantified by a coupled system of two ordinary differential equations (see 



V 2=Vkr 

Figure 1.3: One-box model 

R2 = "2 kr,2C2 

Figure 1.4: Two-box model 
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The nitrogen cycle in an aquatic ecosystem. The processes are: 
( I )  Uptake of NO; and NH; by algae. (2) Photosynthais. (3) Nitrogen 
furation. (4) Graring with loss of undigested matter, (S). (6) and ( 7 )  are 
predation and loss of undigested ma:ter by predation. (8) Mortality. (9) 
Mineralization. (10) Settling. (11) Settliu of ditritus. (12) Sectling, (13)  
Release from sediment. (14) Nitrification. (IS), (16) and (18) InpuUoutput, 
(17) Denitrification. 

Figure 1.5: Nitrogen cycle in an aquatic ecosystem. 

Fig. 1.4): 

Here C1 and Cz are the concentrations of the compound in the two spatial compartments, k e z , i ,  i = 
1,2 are the exchange flows between the compartments, and k,,, i = 1 , 2  are the reaction constants 
in the two compartments. Note that in both cases the inflow rate C;, is an externally fixed 
variable, sometimes called a “forcing function”. Typically,  in real systems it is esternal variables 
which when altered produce changes in the state of the system; therefore, these variables are crucial 
to ecological engineering, since here the basic question often is, “if an inflow rate is varied, how 
does the system react?”. 

More complex box models are shown in conceptual diagrams in Fig. 1.5 (nitrogen cycle in an 
aquatic ecosystem) and Fig. 1.6 (phosphorus cycle in an eutrophication model). The conceptual 
diagrams illustrate the state variables, the external variables and how these are interrelated by 
processes. In the mathematical models corresponding to these conceptual diagrams, each box 1 
is represented by a single state variable x ( t ) l ,  and the arrows linking the boxes are represented 
by mathematical expressions coupling X I  and X k ,  k # 1. The evolution of each state variable is 
described by a kinetic equation, similar to those given for the one and two box lake models. 

I t  is straightforward to generalize to an m-unit system (m=number of boxes) in which each 
unit (box) might be described by several state variables, and each variable in a box linked to other 
variables by specific functions (see Fig. 1.7). The evolution equation for a multipleunit model is 
a set of coupled ordinary differential equations [3]: 

Here g; is the contact function which links a state variable xf to 2k other state variables, 2k 
being the connection number of the i th - site. Frequently ecological systems exhibit a structural 
hierarchy; this is represented by larger boxes enclosing groups of smaller boxes in Fig. 1.7. The 
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Figure 1.6: Phosophorus cycle in an eutrophication model. 

Figure 1.7: Multipleunit model 



Relationship between phosphorus input and 
lake phosphorus concentration at steady state: (a)  linear 
model, ( b )  nonlinear but monotonous model, and ( c )  model 
with local maxima and minima leading to a hysteresis effect 
(see text for further explanations). 

Figure 1.8: Phosphorus inflow .vs. steady state concentration 

larger boxes are referred to as submodels, and are often useful if certain processes are loosely 
coupled together. As before, the state of an ecosystem is represented as a point in the Hilbert 
space { x i } ,  and its dynamical evolution trajectory in this state space. A steady state is one 
for which = 0 for all i andk .  The importance of steady states is clear: they represent the 
ecosystem in dynamic balance, concentrations at a constant value, processes in equilibrium or 
steady nonequilibrium. In general, both the steady state and time dependent solutions of Eq. 1.6 
must be evaluated by numerical methods.' The stability of the steady state is then determined by 
the usual methods of linear stability analysis (stability of the steady state is certainly important for 
environmental management). Finally, and most importantly, the verification, sensitivity analysis, 
and calibration of the model is done using the available data base for the system. 

One expects a rich variety of behaviour for an ecological system modelled on this basis, espe- 
cially if the Eq. 1.10 is nonlinear. To illustrate the potential importance of nonlinearities, consider 
a simple eutrophication lake model [4]: 

(1.11) 

Here Pi, is the inflow phosphorus concentration, and P the phosphorus concentration in the lake. 
If the parameters p,  p, and 0 are independent of P ,  then Eq. 1.11 is a linear model with one single 
steady state solution. 

P P, = Pin--- 
P P + *  

(1.12) 

We see that phosphorus loading P is linearly related to the input of phosphorus Pin .  However, 
experiment and theory suggest that the sedimentation rate of phosphorus in general depends on P 
nonlinearly, through a nonlinear sedimentation coefficient 0. In this case the steady state solutions 
of Eq. 1.11 are no longer linearly related to Pi,. Since a t  steady state the total phosphorus input 
must equal the phosphorus sedimented plus that discharged, i.e. Mi, = M, + Mat,  the nonlinear 
dependence of M ,  on P results in more complex behaviour of steady state concentration P, (see 
Fig. 1.8). Note that Fig. 7c indicate a "hysteresis effect": the steady state concentration Pi, is 
not unique and depends on how it is reached. Increasing the inflow concentration above A results 
in an abrupt jump to B, and corresponding increase in P,. If now the inflow concentration is 
reduced.below B, the steady state concentration does not return to A but instead move to C .  Only 
after Mi, is reduced below D does P, return to the original branch of A. 
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Figure 1.9: Wetland model 



This discussion shows that nonlinearities in open systems are not just of academic interest but 
also of potential practical importance, especially if steady state concentrations in an ecosystem 
are being controlled by adjusting inflow rates. I t  is my belief that the neglect of nonlinearities in 
ecosystem modelling is the main reason why many models do not alzcaysfit the observations. The 
problem is not that models are not sufficiently complex (this often makes them more unreliable) but 
ra ther  that the key processes identified are modelled as linear processes. A great discovery recently 
in physics is that simple nonlinear models can produce a plethora of complex behaviour-the 
theory of self-organization. Nonlinearities are expected to play a major role in any biogeochemical 
system, since many biochemical reactions involving enzyme catalysis have cubic nonlinearities- 
a prerequisite for complex behaviour (for example, the hlichaelis-Menten equation of enzyme 
kinetics). 

1.4.3 Modelling ARUM 
The first step in modelling tailing ponds, open pits, polishing ponds etc. is to draw on the expertise 
of the Boojum research team to  a id  in constructing a conceptual diagram, reducing the large number 
of potential factors which influence acidity and microbial alkalinity generation to  a manageable 
set of 15 to 20 state variables. The second step is to write down kinetic equations f o r  each state 
variable (ordinary diflerential equations), drawing on the Boojum data base, laboratory results, and 
literature. The third step is to  numerically solve the resulting coupled set of diflerential equations 
on the computer, and to investigate the stability of the steady states. 

Important processes in the ARUM (Acid Reduction Using Microbiology) process include: 

(i) Physica l  processes: transport processes (diffusion and convection), sorption, temperature 
dependence, and evaporation. 

(ii) Chemica l  processes: chemical oxidation and reduction, acid-base reactions, photolysis, ion- 
ization, complexation, and precipitation, and geochemical aspects of diagenesis. 

(iii) Biological processes: photosynthesis, decomposition, uptake by plants, microbial metabo- 
lic reactions, enzyme kinetics, and biological aspects of diagenesis. 

I t  is the case that in a wetland the hydrology and biogeochemistry are to good approximation 
weakly coupled. For the systems Boojum works with, the conceptual diagram should consist of 
a hydrological submodel coupled "one way" to a biogeochemical submodel since the hydrological 
flows transport chemicals, biota, sediments etc., but are not largely influenced by them. 

As a final example of a multi-unit model, consider the conceptual wetland model in Fig. 1.9 
"j]: There are 14 state variables in the nitrogen submodel, 11 in the phosphorus submodel, and 5 
in the hydrological submodel. There are a total of 11 forcing functions. 
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