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Abstract 

Alzheimer's disease (AD) is the most common form of dementia affecting seniors age 65 and over. 

When AD is suspected, the diagnosis is usually confirmed with behavioural assessments and 

cognitive tests, often followed by a brain scan. Advanced medical imaging and pattern recognition 

techniques are good tools to create a learning database in the first step and to predict the class label 

of incoming data in order to assess the development of the disease, i.e., the conversion from 

prodromal stages (mild cognitive impairment) to Alzheimer's disease. 

Advanced medical imaging such as the volumetric MRI can detect changes in the size of brain 

regions due to the loss of the brain tissues. Measuring regions that atrophy during the progress of 

Alzheimer's disease can help neurologists in detecting and staging the disease. 

In this thesis, we want to diagnose the Alzheimer’s disease from MRI images. We segment brain 

MRI images to extract the brain chambers. Then, features are extracted from the segmented area. 

Finally, a classifier is trained to differentiate between normal and AD brain tissues. 

We discuss an automatic scheme that reads volumetric MRI, extracts the middle slices of the brain 

region, performs 2-dimensional (volume slices) and volumetric segmentation methods in order to 

segment gray matter, white matter and cerebrospinal fluid (CSF), generates a feature vector that 

characterizes this region, creates a database that contains the generated data, and finally classifies 

the images based on the extracted features. For our results, we have used the MRI data sets from 

the Alzheimer’s disease Neuroimaging Initiative (ADNI) database1. 

We assessed the performance of the classifiers by using results from the clinical tests. 

Keywords 

“ADNI database, Image processing, Segmentation, Registration, Vector of attributes, 

classification, Machine learning, Training, Alzheimer’s disease”.  

 

                       
1 http://adni.loni.ucla.edu/ 
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Chapter 1                                                                             

Introduction       

1.1 Introduction 

Alzheimer's disease (AD) is the most common form of dementia affecting seniors age 65 

and over. AD causes nerve cell death and tissue loss throughout the brain, resulting to brain tissue 

shrinking and larger ventricles (chambers within the brain that contain cerebrospinal fluid). When 

AD is suspected, the diagnosis is first confirmed with behavioural assessments and cognitive tests 

and often followed by a brain scan [1].  

Advanced medical imaging with computed tomography (CT) or magnetic resonance 

imaging (MRI), and with single photon emission computed tomography (SPECT) or positron 

emission tomography (PET) can be used to help exclude other cerebral pathology or subtypes of 

dementia [1]. Moreover, it may predict conversion from prodromal stages (mild cognitive 

impairment) to Alzheimer’s disease [1], which is the most critical brain disease for the senior 

population.  

 Medical image processing and machine learning tools can help neurologists in assessing 

whether a subject is developing the Alzheimer disease. A machine learning system has been 

developed in order to extract meaningful information from the ADNI database, where the ventricle 

chambers are extracted using a segmentation method based on the statistical and geometrical 

features of the region of interest. We performed an analysis to see if this region corresponds to a 

good marker. 

Pattern recognition techniques are good tools to create a learning database in the first step 

and to predict the class label of incoming data in order to assess the development of the disease by 
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detecting changes in the size of brain regions due to the loss of the brain tissues. Measuring regions 

that atrophy during the progress of Alzheimer's disease can help neurologists in detecting and 

staging the disease. 

We used the MRI data sets from the Alzheimer’s disease Neuroimaging Initiative (ADNI) 

database2. ADNI data includes Alzheimer’s disease patients, mild cognitive impairment subjects 

and elderly controls. ADNI database aims to assist the researchers in the progression of 

Alzheimer’s disease by collecting, validating and using predictors for the disease such as MRI and 

PET images, cognitive tests and Cerebrospinal fluid (CSF).  

The present thesis describes the whole process of pattern recognition where the following steps 

are performed: 1) accessing ADNI database, 2) describing the medical data, 3) reading the 

volumetric MRI, 4) extracting the middle slices of the brain region, 5) performing segmentation 

methods in order to detect the region of brain’s ventricle, 6) generating a vector of attributes that 

characterizes this region, 7) creating a database that contains the generated data, 8) performing 

clustering to get the class labels and finally 9) performing some classification methods based on 

the clustering results. 

1.2 Thesis Outline  

In chapter 2, we describe the different image processing techniques including image pre-

processing, image segmentation, feature extraction, and classification techniques.  

In chapter 3, we include a literature review regarding the most used methods that describes and 

intends to diagnose Alzheimer’s disease based on ADNI database and some other medical MRI 

scans. 

In chapter 4, we describe briefly the organizational schema of the system implementation. 

Then, we describe the tools used to access the medical ADNI database, give an overview of the 

                       

 2   http://adni.loni.ucla.edu/ 
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type of medical data files and discuss the problems encountered during the first step of accessing 

data.  

In chapter 5, we include the segmentation methods used to extract the regions of interest and 

show the way they were used during the implementation process.  

In chapter 6, we define the vectors of attributes and show their comprehensive statistical 

analysis. Then, we introduce the classification methods and show the results of the used database 

in addition to classical databases results. Finally, we assess the different classification techniques    

Finally, in the conclusion, we summarize the different steps, assess the overall work and 

include recommendations and suggestions for future work. 
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Chapter 2  

Pattern Recognition Techniques for 

Image Processing 

 

2.1 Introduction 

One of the ultimate goals of classification is to produce meaningful patterns from raw data, classify 

them into different groups based on their characteristics and predict new patterns based on previous 

knowledge. The purpose of this Chapter is to present some of the classical methods used in 

machine learning and pattern recognition and introduce some of the newest concepts in this 

domain. Since the different methods depend strongly on the application, most of the highlighted 

examples are taken from image processing domain. 

Pattern recognition is the scientific discipline whose goal is the classification of objects into a 

number of categories or classes. Pattern recognition and machine learning were used in various 

applications such as speech recognition, face recognition, text analysis, image processing 

including medical images, space images, security domains, etc. All these domains share the same 

goal which is the extraction of patterns based on certain conditions and the separation of one class 

from the others [2] [3]. 

Different techniques based on classification rules and statistics where developed starting from 

linear and quadratic discriminates [4] (e.g. Fisher's linear discriminate analysis [5], principal 

component analysis (PCA) [6] and Karhunen-Loeve transform applied for the characterization of 

human faces [2]), to clustering techniques [7] (e.g. k-nearest neighbour classifiers [8], decision 

trees [9], etc.). To cope with the lack of meaningful information needed for the previous classifiers, 

new techniques were developed such as template matching [10] [11], Neural Networks [12], and 

more recently Support Vector Machine (SVM) [13] [14]. 
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The current chapter describes the process of pattern recognition and some techniques related to 

each step of pattern recognition. Section 2.2 gives a schematic overview of the pattern recognition 

process. Section 2.3 brought out segmentation techniques named: thresholding, edge-based 

segmentations, and region-based segmentations, watershed and wavelet transform. Section 2.4 

describes and discusses methods related to feature extraction and feature selection. Finally, Section 

2.5 reveals some of the most "classical" pattern recognition methods such as classification methods 

and introduced some other new algorithms.  

2.2 Pattern Recognition Methodology 

Pattern recognition is a set of processes that aim to extract meaningful information or patterns from 

a set of data. The organizational chart in Figure 2-1 shows supervised pattern recognition steps 

using classification techniques that predict categorical labels. 

The first step of pattern recognition is the problem statement which is gathering the data and the 

background knowledge behind the application domain, making hypotheses and establishing which 

type of information is needed to be extracted from the data. Usually gathering the data is followed 

by a preprocessing step mostly to clean it and standardize it [15]. Once the data is well defined, 

the next step is the extraction and representation of the data features in the form of vectors followed 

by the creation of models of the classes through machine learning. Depending on the type of label 

output (categorical labels or real-valued labels), on whether learning is supervised or unsupervised, 

and on whether the pattern algorithm is statistical or non-statistical, the expert has to choose one 

of the pattern recognition techniques (algorithms) such as classification, clustering, regression, etc. 

Finally, we proceed to the performance evaluation of the pattern recognition algorithm results 

using evaluation metrics such as bootstrapping and cross-validation. 
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Figure 2-1 Pattern Recognition Process 
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2.3 Segmentation techniques 

In computer vision and machine learning systems, image segmentation is intended to partition 

images into well-defined regions, where each region is a set of pixels that share the same range of 

intensities, the same texture or the same neighborhood. The purpose of segmenting images is to 

remove unwanted information in order to locate meaningful objects from the processed images. 

Many segmentation algorithms have been developed through the years and only some of them are 

highlighted in this chapter [16]. 

2.3.1 Thresholding 

When images contain different contrasting objects, thresholding provides effective means for 

obtaining segmented images. Thresholding techniques are based on partitioning the intensities 

using global or local threshold calculations techniques such as Otsu [17] and Niblack methods 

[18], where each threshold classifies the voxels (or pixels) into different modes using a clustering 

criterion. 

2.3.1.1 The Otsu Method 

The Otsu method [17] is a clustering technique that tends to produce two tight clusters by 

minimizing their overlap (misclassified pixels). The threshold is adjusted dynamically by 

increasing the spread of one cluster and decreasing the spread of the other one. The goal then is to 

select the threshold that minimizes the combined spread. We define the within-class variance as 

the weighted sum of the variances of each cluster: 

σwithin
2 =  nB(T)σB

2 (T) + nO(T)σO
2 (T) 2.1 

σbetween
2 =  nB(T)nO(T) (μB

2 (T) + μO
2 (T)) 2.2 

where: 

𝑛𝐵(𝑇) = ∑ 𝑝(𝑖)𝑇−1
𝑖=0 : the number of pixels in the first cluster 

𝑛𝑂(𝑇) = ∑ 𝑝(𝑖)𝑁−1
𝑖=𝑇 : the number of pixels in the second cluster 
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𝜎𝐵
2(𝑇): the variance of the pixels in the background (below threshold) 

𝜎𝑂
2(𝑇): the variance of the pixels in the foreground (above threshold) 

𝜇𝐵(𝑇): the mean of all pixels less than the threshold 

𝜇𝑂(𝑇): the mean of all pixels greater than the threshold 

[0, N-1]: is the range of intensity levels.  

 

Otsu algorithm 

The optimal threshold is the one that maximizes the between-class variance (or, conversely, 

minimizes the within-class variance).  

1. Calculate the histogram h. 

2. Separate the pixels into two clusters (background and foreground) according to the threshold. 

3. Find the mean of each cluster. 

for T=1:255 

        4. Calculte the new background’s number of pixels: nb = nb + h(T) 

        5. Calculte the new foreground’s number of pixels: no = no - h(T) 

        6. Calculte the new background’s mean: ub = (ub*nb + n*T) / nb 

        7. Calculte the new foreground’s mean: uo = (uo*no - n*T) / nb 

        8. Calculate the between-class variance: sbetween(T) = nb*no*(ub - uo)^2 

end 

9. Select T that corresponds to the maximum between-class varianc 
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2.3.1.2 Niblack method 

Niblack’s algorithm [18] calculates a local threshold T for each pixel. The threshold T is computed 

by using the mean µ and standard deviation σ of all the pixels in the pixel neighborhood, and is 

denoted as: T = µ+ k*σ , where the parameter k is a constant, which determines how much of the 

total object is extracted, and is usually chosen between 0 and 1. The value of k and the size of the 

neighborhood influence the result of thresholding. 

2.3.2 Edge detection 

Other segmentation methods are based on edge detection techniques such as Canny [19], active 

contours or snakes using the technique of matching a deformable model to an image by means of 

energy minimization [20] [21]. 

2.3.2.1 Canny edge detection 

Canny edge detection algorithm [19] aims to the following optimal properties: 

 Good detection: the algorithm should detect as many real edges in the image as possible. 

 Good localization: edges marked should be as close as possible to edges in the real image. 

 Minimal response: a given edge in the image should only be marked once, and where 

possible, image noise should not create false edges. 

Canny's algorithm is based on finding an optimal function as the first derivative of a Gaussian, 

originally described by the sum of four exponential terms. The effectiveness and cost of the 

algorithm depends on the size of the Gaussian filter and the hysteresis thresholds. 

2.3.2.2 Active contours  

The active contour [20] [21] is also sometimes called snake algorithm.  Given an approximation 

of the boundary of an object in an image, an active contour model deforms the initial boundary to 

lock onto characteristic features within the region of interest. The contour is deformed iteratively 

until it matches the boundary of the region of interest by looking for the minimum of energy of a 
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given problem. The energy function is a weighted combination of internal and external forces 

depending on the shape of the snake and location within the image.  

The integral energy function to be minimized is given by: 

                                Esnake
∗ = ∫ Esnake(v(s))ds

1

0

 2.3 

                                             = ∫ [Eint(v(s)) + Eimage(v(s)) + Econ(v(s))]ds
1

0

 2.4 

where  𝐸𝑖𝑛𝑡 = 𝛼(𝑠) |
𝑑𝑣

𝑑𝑠
|

2

+ 𝛽(𝑠) |
𝑑2𝑣

𝑑𝑠2|
2

 is the internal spline energy,  

α(s) and β(s) are the elasticity and stiffness of the snake respectively,  

 Eimage is derived from the image data over which the snake lies and it is modeled as a weighted 

combination of different function, and 

Econ comes from external constraints that force the snake toward or away from particular features. 

The effectiveness of the active contour algorithm depends on the initial choice of the approximate 

shape and starting position. A priori information is then used to move the snake toward an optimal 

solution. 

2.3.3 Region-based segmentation 

Region-based segmentation uses different techniques such as seeded region-growing [22], split-

and-merge [23], watershed [24] and Wavelet-based segmentation [25] which is based on 

mathematical concepts such as quadrature mirror filtering, sub-band coding, and pyramidal image 

processing. 

2.3.3.1 Region-growing segmentation 

Region-growing segmentation [22] starts with initial seed points chosen from the target region or 

without a priori knowledge, taken from the picks of the histogram. It checks the neighborhood 
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pixels and adds them to the region if they are similar to the chosen seeds using a similarity criteria 

(homogeneity predicates) based on a vector of characteristics (attributes) in the image such as the 

average, standard deviation, texture, etc. 

2.3.3.2 Split-and-merge segmentation 

Split-and-merge segmentation [23] consists of two different parts. The split process keeps dividing 

the image into smaller regions that do not respect a criterion of similarity. In the merge process, 

neighboring regions, resulting from the split process that respects a similarity criterion, using a 

vector of predicates, are merged into bigger regions. 

2.3.4 Watershed segmentation 

Meyer et al. [24], Beucher et al. [26] and most recently Gonzalez et al. [27] presented mathematical 

morphology methods based on two main tools: the watershed transform (WT) that segments an 

image into regions of interest (ROI), also called objects, and the homotopy modification that solves 

the over-segmentation problem by initializing markers of the images’ ROI. S. Beucher compared 

gray level images to topographic reliefs, where the intensity of a pixel corresponds to the altitude. 

In watershed by flooding, a water source is placed into each regional minimum and barriers or 

dams are built where different water flood sources are meeting. The resulting set of dams is called 

watershed by flooding. 

The watershed by flooding algorithm works on a gray scale image and is performed on the gradient 

image. The images must be pre-processed and the regions that satisfy a similarity criterion must 

be merged. 

1. Choose a set of markers, with different labels (pixels where the flooding shall start). 

2. The neighboring pixels of each marked area are inserted into a priority queue with a priority 

level corresponding to the gray level of the pixel. 

3. The pixel with the highest priority level is extracted from the priority queue. If the 

neighbors of the extracted pixel that have already been labeled all have the same label, then 
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the pixel is labeled with their label. All non-marked neighbors that are not yet in the priority 

queue are put into the priority queue. 

4. Redo step 3 until the priority queue is empty. The non-labeled pixels are the watershed lines. 

2.3.5 Wavelet transform 

In order to analyze physical situations, scientists, theoreticians and engineers represent data in a 

certain way that help them understand the meaning and the behaviour of the data. Many of them 

represent the data as a function of time because most of the signals in practice are time-domain, 

which is called time-domain representation. In another hand, in many cases, the most distinguished 

information is hidden in the frequency content of the signal.  

Example: The following CT image in Figure 2-2 is corrupted by a repeated noise (like a pattern) 

that is impossible to get removed by using the time-domain representation of the image (2-D 

signal) and time-domain filtering because the noise signal cannot be represented. In the opposite, 

from the frequency spectrum of the image, the noise signal is well represented by 3 pairs of 

impulses with horizontal, vertical and diagonal directions respectively and the filtering is more 

accurate since the information of the noise is well defined. 

Figure 2-2 Original image “HeadCT_corrupted.tif” image (courtesy of [119]) and its centred spectrum log  
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The frequency spectrum of a signal shows what frequencies (or frequency components) exist in 

the signal and by general definition, the frequency shows the change in rate of a mathematical or 

physical variable, i.e. In the case of a variable that changes fast, we say that it has high frequency. 

A variable that changes smoothly, has a low frequency. If this variable does not change at all, then 

we say it has zero frequency, or no frequency [28]. 

However, Wavelet transform represents a signal in the time and frequency domain at the same 

time. Wavelets are mathematical functions that represent data (or signals) by dividing it into 

different frequency components, were each frequency component has a different scale, and then 

analyzing each frequency component with an adequate resolution. Unlike the Fourier transform, 

they can access the time-domain and frequency representations of the data in the same time and 

therefore, can analyze physical situations where the signal contains discontinuities and sharp 

spikes. [28] 

In image processing, the Wavelets transforms are used to denoise the images, perform 

segmentation and compression of the signals. In the last decade, wavelet transform has been 

recognized as a powerful tool in a wide range of applications, including image/video processing, 

numerical analysis, and telecommunication. The advantage of wavelet over existing transforms 

such as Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT) is that wavelet 

performs a multiresolution analysis of a signal with localization in both time and frequency [25]. 

In addition to this, functions   with discontinuities and functions with sharp spikes require fewer 

wavelet basis vectors in the wavelet domain than sine-cosine basis vectors to achieve a comparable 

approximation. Wavelet operates by convolving the target function with wavelet kernels to obtain 

wavelet coefficients representing the contributions in the function at different scales and 

orientations. Wavelet or multiresolution theory can be used alongside segmentation approaches, 

creating new systems which can provide a segmentation of superior quality to those segmentation 

approaches computed exclusively within the spatial domain [29]. 

Discrete wavelet transform (DWT) can be implemented as a set of filter banks, comprising a high-

pass and low-pass filters. In standard wavelet decomposition, the output from the low-pass filter 

can then be decomposed further, with the process continuing recursively in this manner.  
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2.4 Feature selection and feature extraction 

Features should be easily computed, robust, compact, accurate, insensitive to various distortions 

and variations, and rotationally invariant.  

2.4.1 Feature extraction 

Feature extraction is a special form of dimensionality reduction that depends closely on the type 

of data and the application domain. For example, in image processing, the image contains 

meaningful objects characterized by their shape, textures, intensities, etc. Some of these attributes 

are summarized by Zhang et al. [30] where the authors classify the shape based on its contour 

attributes (e.g. chain-code, perimeter, compactness, etc.) and region attributes (e.g. area, Euler 

number, geometric and statistical moments, convex hull, etc.). Both types of attributes can be 

defined as structural or global. From the point of view of the authors, the structural approaches are 

too complex to implement compared to global approaches. However, they are useful in 

applications where partial matching is needed. Also, even though more popular, the contour shape 

descriptors are more sensitive to noise and variations than the region shape since they carry a 

smaller amount of information. Finally, for general shape applications, methods based on complex 

moments and spectral transforms are the best choices since they satisfy the six principles set by 

MPEG-7: good retrieval, accuracy, compact features, general application, low computation 

complexity, robust retrieval performance and hierarchical coarse to fine representation.  

2.4.2 Feature selection 

Feature extraction is usually followed by the selection of the optimal feature subset that reduces 

the cost of pattern recognition and provides better classification accuracy by reducing the number 

of features that need to be collected [31]. Some of the feature selection algorithms perform 

heuristic search through the whole space of attributes using methods such as hill climbing. Other 

algorithms divide the space of attributes into subspaces to have smaller combinations.  

Jain, et al. [32] presented a review of feature selection by demonstrating its value in combining 

features from different data models. They presented potential difficulties of performing feature 
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selection for small size sample data, due to the curse of dimensionality. They also reproduced the 

results of Pudil, et al. [33] who demonstrated the quality of the floating search methods in case of 

nonmonotonicity of the feature selection criterion or for computational reasons. They used the 

Mahalanobis distance 𝐷𝑀(𝑥) = √(𝑥 − 𝜇)𝑇𝑆−1(𝑥 − 𝜇) (µ and S are respectively the mean and the 

covariance matrix of the x vector) between two classes as a criterion function to assess the 

"goodness" of a feature subset and evaluated fifteen feature selection algorithms such as max-min, 

SFS and SBS. They finally claimed that using feature selection for classification of known 

distributions and comparing the selected subsets with the true optimal subset resulted in a well 

quantified quality of the selected subset. 

There are three types of feature selection methods: filter, wrapper and embedded approaches 

[34] [35]. Filters are the most widely used and are performed at the first stage of classification by 

selecting the best features according to some prior knowledge [36] [37]. Wrappers do not depend 

on the type of classifiers [38] [39]. An example of a wrapper method for nonlinear SVMs can be 

found in [39], where instead of minimising the classification error, the features are selected to 

minimise a generalisation error bound. Finally, embedded approaches simultaneously determine 

features and classifier during the training process. 

2.5 Pattern recognition algorithms 

Starting from the acquisition of data and its preprocessing to the extraction and selection of an 

optimal vector of attributes, we need to perform the most important step of pattern recognition 

which is the pattern recognition algorithm in form of classifiers, clustering, regression, etc.  

2.5.1 Classification algorithms 

Classification algorithms are supervised methods which means that the data is already labelled and 

they perform prediction of the classes by assigning a categorical label to the current class. In 

Figure 2-1, the classification process is performed in two steps, first we use sample data training 

to get the training attributes followed by the creation of class models through machine learning. 

The whole step is called learning. Simultaneously, a sample data test is being used to get the test 

vector of attributes. At this point, both data are being transported to a classifier algorithm that 
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should classify the test data based on the learning process. There are several classification 

techniques such as: 

Maximum entropy classifier is a classic Generalized Iterative Scaling algorithm that allows diverse 

sources of data to be combined where for each source of data, we determine a set of constraints on 

the model and using an algorithm such as Generalized Iterative Scaling (GIS), a model can be 

found that satisfies all of the constraints, while being as smooth as possible [40]. 

Naive Bayes classifier is a very popular probabilistic approach classifier based on the Bayesian 

theorem which is suitable for high dimensional input data. Even though its probability estimation 

is poor, Zhang, et al. [41] compared naive Bayes with C4.4 algorithm for ranking, and some 

extensions of naive Bayes such as the selective Bayesian classifier (SBC) and tree-augmented 

naive Bayes (TAN) and found out that naive Bayes performs significantly better than C4.4 and 

comparably with TAN.  

Decision trees, decision lists are classification methods where the input is the vector of attributes 

being classified and the output is the class label of the given tuple, where each node consists of a 

feature, and after each iteration, we go deeper through the tree till we get to the leaf that 

corresponds to the output label. One of the issues of this kind of classifier is to choose the right 

type since there are several types such as the ID3 and C4.5 [9]. 

Support vector machines is a classification method, originally invented by Vladimir Vapnik, that 

maps an n-dimensional input vector into a high dimensional (possibly infinite dimensional) feature 

space. This technique offers a possibility to train generalizable, nonlinear classifiers in high 

dimensional spaces using a small training set. However SVMs generalization error might get 

important due to the margin with which it separates the data [36] [39] [42]. 

Kernel estimation and K-nearest-neighbor (KNN) algorithms are statistical methods (a uniform 

kernel function produces the KNN technique) that have been applied to statistical classification by 

computing the PDFs of each class separately, using different bandwidth parameters, and then 

comparing them [43] [44].  

Neural networks is a multi-level perceptron where the term ’Neural network’ has its origins in 

attempts to find mathematical representations of information processing in biological systems. 
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Bishop defines the classical framework of a Neural network system by considering the functional 

form of the network model, including the specific parameterization of the basis functions, and then 

discussing the problem of determining the network parameters within a maximum likelihood 

framework, which involves the solution of a nonlinear optimization problem. This requires the 

evaluation of derivatives of the log likelihood function with respect to the network parameters 

which can be obtained efficiently using the technique of error backpropagation. [12] 

2.5.2 Clustering algorithms  

Clustering algorithms are unsupervised algorithms that aim to create clusters from raw unlabelled 

data and to predict categorical labels. They are usually used in the first process of classification 

for data training in order to get the initial set of class models. These techniques are usually easily 

programmed but they present several issues such as:  

-The nature of the data and the nature of the desired cluster.  

-The kind of required input and tools.  

-The size of the data set. 

-The choice of the initial set of clusters. [45] [46]  

Different clustering techniques have been established such as Categorical mixture models, K-

means clustering, Hierarchical clustering which is agglomerative or divisive and Kernel principal 

component analysis (Kernel PCA) [43] 

2.5.3 Other pattern recognition algorithms 

In addition to the previous classical methods, other recent techniques have been developed such 

as the Regression algorithms which aim to predict real-valued labels. Some of the regression 

algorithms are supervised such as Linear regression and extensions, Neural networks and Gaussian 

process regression (kriging) and others are unsupervised such as Principal components analysis 

(PCA) and Independent component analysis (ICA). Categorical sequence labeling algorithms 

predict sequences of categorical labels and similar to the regression algorithms, they include 
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supervised and unsupervised techniques such as Hidden Markov models (HMMs), Maximum 

entropy Markov models (MEMMs) and Conditional random fields (CRFs). Real-valued sequence 

labeling algorithms predict sequences of real-valued labels such as Kalman filters and Particle 

filters. Parsing algorithms predict tree structured labels such as Probabilistic context free grammars 

(PCFGs). General algorithms predict arbitrarily-structured labels Bayesian networks such as 

Markov random fields. Ensemble learning algorithms are supervised meta-algorithms for 

combining multiple learning algorithms such as Bootstrap aggregating ("bagging"), Boosting, 

Ensemble averaging and Hierarchical mixture of experts [12] [36] [47]. 
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Chapter 3  

Literature Review 

3.1 Introduction  

Alzheimer’s disease is manifested by progressive brain cell decay, the reason cells decay is still 

generally unknown. Research on new methods for earlier diagnosis is one of the most active areas 

in Alzheimer's scientific research domains that aim to generate future treatments that could target 

the disease in its earliest stages, before irreversible brain damage or mental decline has occurred. 

Different diagnosis techniques have been developed such as Biomarkers for earlier detection such 

as brain imaging/neuroimaging, cerebrospinal fluid (CSF) proteins, proteins in blood, Genetic risk 

profiling and mild cognitive impairment [48]. 

Magnetic resonance imaging (MRI) is a radiation free medical imaging technique that uses a 

magnetic field and radio waves to visualize detailed images of the internal structures (soft tissue) 

of the body producing cross-sectional gray level images of the body [49]. These images can be 

reconstructed into three-dimensional (3-D) images and processed using image processing 

techniques to denoise the images and extract meaningful information that might help the clinical 

diagnostic. 

3.2 Alzheimer’s Disease Neuroimaging Initiative 

data collection and MRI core Analysis 

The collection of the Alzheimer’s disease Neuroimaging Initiative (ADNI) database images was 

created under the LONI Image Data Archive (IDA) and has the objective of developing biomarkers 

to track both the progression of Alzheimer’s disease and changes in the underlying pathology [50].  
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The IDA has developed many neuroimaging research projects across North America and Europe 

and accommodates MRI, PET, MRA, DTI and other medical imaging techniques. 

3.3 Amyloid-imaging Positron Emission 

Tomography (PET) and Pittsburgh compound-B 

(PiB) 

In the early nineties, The Consortium to Establish a Registry for Alzheimer's Disease (CERAD) 

has developed a standardized neuropathology protocol for the postmortem assessment of dementia 

and control subjects that provides common language of Alzheimer’s disease and establishes a 

better diagnostic criteria, and resulted to a better interpretation of early subclinical changes of AD 

and normal aging. [51] 

From that point, more researches were conducted establishing that the Alzheimer's disease was 

due to the presence of beta-amyloid plaques and neurofibrillary tangles.  

In order to follow the progress of these proteins using medical imaging techniques, William E. 

Klunk and Chester A. Mathis, from the University of Pittsburgh, discovered a class of 

benzothiazoles (C7H5NS), heterocyclic compound derived from thioflavin T (Basic Yellow 1 or 

CI 49005). This biophysical dye included some compounds, used as an agent in positron emission 

tomography imaging. The first trials of the amyloid-imaging positron emission tomography (PET), 

using this new agent (tracer), were conducted in human research subjects in partnership with 

Uppsala University (Sweden) which named this compound Pittsburgh compound-B (PiB). In their 

study, mild AD patients expressed noticed retention of PIB in areas of frontal, parietal, temporal, 

occipital cortex and the striatum cortex where we assume to find large amounts of amyloid deposits 

in AD. Also, PIB retention was similar in AD patients and controls in unaffected areas (such as 

subcortical white matter). In the other hand, young people and older healthy control subjects 

showed a similar low PIB retention in cortical areas. [52]  
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Later on, they developed a quantitative imaging method for the measurement of amyloid 

deposition in humans (Kinetic modeling of amyloid binding) and included subjects with mild 

cognitive impairment (MCI). [53]  

However they needed much more data to validate their results.  

From there, Schroeter et al. [54] carried a systematic and quantitative meta-analysis (anatomical 

likelihood estimates) to identify patterns among study results, specifically neural correlates of 

Alzheimer's disease (AD) and early symptoms stage. Their results were based on 1351 patients 

and 1097 healthy control subjects with either atrophy or decreases in glucose utilization. The meta-

analysis revealed that early AD affects the structure of (trans-)entorhinal and hippocampal regions, 

and the functionality of the inferior parietal lobules and precuneus. This could isolate predictive 

markers for future diagnostic systems.   

3.4 Image Segmentation and processing techniques 

of ADNI data 

One of the first brain tissue segmentations studies was conducted by Tina Kapur, in the mid-

nineties, which presented a method for segmentation from magnetic resonance images using a 

parallel implementation of three existing computer vision techniques: expectation/maximization 

segmentation, binary mathematical morphology, and active contour models. [55] 

In the same way, a more accurate technique was developed by W. M. Wells et al. [56] based on 

adaptive segmentation of MRI data in contrast to the intensity based techniques. This method used 

knowledge of tissue intensity properties and intensity inhomogeneities in addition to the 

expectation-maximization (EM) algorithm and carried the results of more than 1000 brain scans.  

Held et al. [57] developed 3-D segmentation technique that classifies brain MR images into gray 

and white matters, cerebrospinal fluid (CSF), scalp-bone and background. They used Markov 

random fields (MRF's) by extracting three features related to the MR images, i.e., nonparametric 

distributions of tissue intensities, neighborhood correlations, and signal inhomogeneities.  
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Many other segmentation methods were applied in MR images afterwards. In 2000, an extensive 

survey of those methods was made by Pham et al. [58]. Those methods include: 

 thresholding or multithresholding (based on the intensity values and the image 

histograms),  

 region growing (based on intensity values and the image contours),  

 region classification methods (supervised methods based on pattern recognition 

techniques such as the k-nearest neighbors, maximum-likelihood or Bayes classifier 

that use training data),  

 clustering (similar to the classification techniques without the training data, including 

K-means, ISODATA algorithm, Fuzzy C-Mean algorithm, and the expectation-

maximization EM algorithm),  

 Markov Random Field Models (or MRF which is a statistical model that shows the 

spatial correlations between close pixels. MRF is combined with clustering algorithms 

to provide proper segmentation),  

 artificial Neural Networks (or ANNs which are parallel networks of nodes that simulate 

biological learning)   

 and other approaches including model-fitting, watershed algorithms, atlas guided 

approaches and deformable models.  

A more recent review regarding the brain MRI image segmentation methods was published in 

2010. Balafar et al. [59] added newest segmentation methods including fuzzy clustering algorithm 

(FCM), Gauss mixture vector, learning vector quantization (LVQ) that is a supervised competitive 

learning, self-organizing maps (SOM) which is an unsupervised clustering network, watersheds 

(gradient-based segmentation technique), region growing, active control model, double region 

based active control, multi region based active control, atlas-based segmentation and Markov 

random field (MRF). 
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Going back in time, Zhang et al. [60] suggested a HMRF-EM framework segmentation of brain 

MR images using a hidden Markov random field (HMRF) model and the expectation-

maximization EM algorithm. The HMRF model is a random process produced by a MRF which 

can be modeled by estimating the observations. They chose the EM algorithm to match the HMRF 

model.  

In 2002, Fischl et al. [61], developed an Automated Labeling technique, in addition to a registration 

procedure, that appoints a label value, from a 37 labels’ training dataset, to each voxel of the 

neuroanatomical Structures in the Human Brain. The labels include left and right caudate, 

putamen, pallidum, thalamus, lateral ventricles, hippocampus, and amygdala. According to the 

authors, the results were accurate when they applied their procedure to detect volumetric changes 

in mild Alzheimer’s disease. 

Van Leemput et al. [62] demonstrated an enhanced statistical framework for partial volume 

segmentation (PV) using parametric statistical image model as a spatial prior knowledge and an 

expectation-maximization algorithm that estimates the model’s parameters and performs a PV 

classification at the same time.  

To overcome the disadvantages of using the watershed transform when segmenting MR images 

into gray matter/white matter, Grau et al. [63] used an enhanced version of the transform, by adding 

prior information and atlas registration.  

Other researchers tried to automatically segment the brain MR images into more specific regions, 

e.g., cerebrospinal fluid (CSF), gray matter (GM), white matter (WM) and white matter lesions 

(WMAL). De Boer et al. [64] [65] used a trained k-nearest neighbor classifier with an extra step 

for the segmentation of white matter lesions.  

In the same manner, Tu et al. [66] created a hybrid discriminative/generative classifier model. The 

learning process of their classifier used probabilistic boosting tree (PBT) framework and a high 

dimensional vector of attributes with different scales in order to extract different anatomical 

structures of 3D MRI volumes. The resulting information is introduced within a hybrid model and 

an energy function is minimized in order to perform the final segmentation process. 
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For the purpose of assisting the diagnosis of AD, Colliot et al. [67] used NINCDS-ADRDA criteria 

[68] for patients with AD and Petersen et al.’s criteria [69] for patients with mild cognitive 

impairment (MCI). Their purpose was to extract the hippocampus and the amygdale structures 

using competitive region-growing. Their algorithm started from known landmarks (positions) as a 

prior knowledge. 

Zhang et al. [70] developed a new hybrid active contour model using level-set method whose 

energy function is not sensitive to image derivatives since it relied on both the object’s contour 

and region information.  

Concerning the work of Morra et al. [71], an auto context model (ACM) was created; to segment 

the hippocampus automatically in 3D T1-weighted MRI scans of subjects from the ADNI 

database. Their algorithm used 21 hand-labeled segmentations to learn a classification rule that 

classifies a hippocampus region from a non-hippocampus one using an AdaBoost method and a 

large vector of attributes (image intensity, position, image curvatures, image gradients, tissue 

classification maps of gray/white matter and CSF, and mean, standard deviation, and Haar filters 

of size 1 × 1 × 1 to 7 × 7 × 7). They employed the Bayesian posterior distribution of the labeling 

to recalculate the new system’s attributes. Finally, they validated their algorithm by comparing 

their results with hand-labeled segmentations. 

Following Adaboost algorithm, another popular classifier was applied to segment T1-weighted 

brain MRIs in order to extract the hippocampus region, i.e. the Support Vector Machine (SVM) as 

in Morra et al.’s work [72]. The authors compared the hierarchical AdaBoost, SVM with manual 

feature selection and hierarchical SVM with automated feature selection (Ada-SVM). They 

validated their results with the FreeSurfer brain segmentation package [73].  

In the same manner, David W. Shattuck et al. [74] validated their brain segmentation methods by 

implementing a web-based test environment [75] using many datasets and a number of metrics to 

evaluate the segmentation’s accuracy and the performance of skull-stripping (removal of extra-

meningial tissues from the MRI volume) in T1-weighted MRI. According to the authors, their 

web-test framework had been satisfactory on 3 popular algorithms named: the Brain Extraction 

Tool [76], the Hybrid Watershed Algorithm [77], and the Brain Surface Extractor [78]. 
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The segmentation based on edge detection was also used, e.g. Huang et al. [79] apply a geodesic 

active contour using the image edge geometry and the voxel statistical homogeneity in the purpose 

of extracting complex anatomical structures.  

Since the subcortical grey matter structures (located in the deep brain region) are low in contrast, 

which delimitates the segmentation results, Helms et al. [80] proposed a semi-quantitative 

magnetization transfer (MT) imaging protocol that overcomes limitations in T1-weighted (T1w) 

magnetic resonance images. 

 Other authors were more inclined in using 3D segmentation in spite of the long computation 

problem. AlZu'bi et al. [81] suggested Multiresolution analysis segmentation using Hidden 

Markov Models (HMMs) and extracted the vector of attributes with the assistance of 3D wavelet 

and ridgelet. 

To optimize the accuracy and speed of segmentation, Lötjönen et al. [82] created an optimised 

pipeline for multi-atlas brain MRI segmentation using different similarity measures. Additionally, 

they combined multi-atlas segmentation and intensity modelling through expectation 

maximisation (EM) and optimisation via graph cuts. For their results, they used two databases: 

IBSR data [83] and ADNI data [50]. 

Even though the segmentation of MR human brain images with multiple atlases was more 

successful, the method was less effective when it comes to the ventricular enlargement that is not 

caught by the atlas database. Heckemann et al. [84] added tissue classification information into the 

image registration and resumed their work into MAPER, multi-atlas propagation with enhanced 

registration [85]. They applied their algorithm on the subjects from the Oxford Project to 

Investigate Memory and Ageing (OPTIMA) [86] and the Alzheimer's Disease Neuroimaging 

Initiative (ADNI) [50].  

As the MRIs of the brain present an intensity non-uniformity (INU) phenomenon which affects 

the segmentation results, Rivest-Hénault et al. [87] presented a new method that uses local linear 

region representative and embedded region models. They tested their method on the Internet Brain 

Segmentation Repository (IBSR) database [83].  
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3.5 Analysis and further classification techniques of 

ADNI data 

The classification techniques were widely used to classify the MRIs of the human brain into 

regions of interest (ROIs) with the sole purpose of dividing each image into anatomical regions. 

They also have been used to create vectors of attributes of geometrical and statistical shapes that 

are embedded into a machine learning process, and associated with rules that are linked to the 

anatomical structures of the brain. Those rules should determine the corresponding brain’s 

structure of the shape and indicate a possible health problem related to the shape, e.g. atrophy of 

the hippocampus due to an advanced AD stage. 

Thus, Van Leemput et al. [88] described a model-based tissue classification of MRIs of the brain. 

According to the authors, starting from a digital brain atlas of prior expectations, their algorithm 

could segment multi-spectral MRIs, correct signal in-homogeneities, and add MRF's contextual 

information.  

In order to estimate any modification of the size or the shape of the brain, a fully automated method 

of longitudinal (temporal change) analysis, SIENA [89] has been developed. Smith et al. [90] 

added improvements to the SIENA package concerning the cross-sectional (single time point) 

analysis. The package showed the extracted brain, executed registration and tissue segmentation, 

and estimated the atrophy of the brain.  

Also, in order to get a robust brain MRI tissue classification, Cocosco et al. [91] created a pruning 

method that reduces incorrectly labeled samples in the training set (generated from prior tissue 

probability maps) using a minimum spanning tree graph-theoretic approach. The resulting set is 

associated with a supervised kNN classifier. 

Since the hippocampus was one of the first structures affected by the AD, Chupin et al. [92] proposed 

classification-based segmentation of the brain into two main regions: hippocampus (Hc) and the 

amygdala (Am). They used region deformation based on stable local anatomical patterns and 

probabilistic prior information. They evaluated their segmentation method in patients with AD, 

MCI, and elderly controls from the ADNI database. 
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The ultimate purpose of classification is to make a diagnosis of the brains’ MRIs and make a 

decision regarding the abnormality of the MRIs. Chaplot et al. [93] used the neural networks as a 

machine learning system with the wavelets as input and the support vector machine as the 

classification method. According to the authors, their classifier could classify the brain into normal 

or abnormal without specification of the abnormality. Another work was pursued by Klöppel et al. 

[94] who also used the support vector machines classifier in both learning process and 

classification process to separate patients with AD from healthy aging controls and to determine 

other forms of dementia. 

 From that point, researchers are more eager to detect the Alzheimer’s disease in its first 

stage, which could prepare the patients and give more room to find possible cures. According to 

Polikar et al. [95], even though wavelets and neural networks gave promising results, the studies 

are still inconclusive. They defined a set of classifiers combined with multiple data source fusion 

and a modified weighted majority voting procedure. They used their LEARN algorithm as a voting 

procedure instead of Adaboost.  

To diagnose subjects with possible AD, Vemuri et al. [96] aimed to develop and validate a 

diagnosis method using support vector machine (SVM) classification and a well characterized 

database. They applied three different classification models that use tissue densities and covariates 

and Include demographic and genetic information in the classification algorithm. 

Similarly, Davatzikos et al. [97] segmented the MRIs into grey matter (GM), white matter (WM) 

and cerebrospinal fluid (CSF) regions. They studied patterns of the spatial distribution of GM, 

WM and CSF volumes using a pattern classification technique. Using Pearson correlation 

coefficient and a leave-one-out procedure, they built spatial patterns of good discriminators 

between normal and MCI groups and performed a watershed-based clustering method to determine 

brain regions with good discriminate attributes. Finally, a pruning method was applied to reduce 

the number of unnecessary attributes.  

In the other hand, Magnin et al. [98] developed a classification method based on support vector 

machine (SVM). They first segmented the image into ROIs, using anatomically labelled template 

of the brain developed by Tzourio-Mazoyer et al. [99] to obtain probability masks for GM, WM, 

and CSF. Indeed, the histogram of each ROI showed 3 modes corresponding to the 3 probability 
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masks. The segmented ROI was modelled with a linear combination of three Gaussians. They use 

the SVM algorithm to classify the subjects and statistical procedures, based on bootstrap 

resampling, into AD subjects and elderly control subjects (CS). 

Likewise, Robinson et al. [100] developed a machine learning approach that determines population 

differences in whole-brain structural networks from brain atlases. The authors aimed to classify 

subjects based on their patterns and identify the best features which distinguish between groups, 

i.e. ROIs are automatically generated by label propagation and followed by classifier fusion, 

connections are built between ROIs using probabilistic tracking, a vector of attributes is 

determined using mean anisotropy measurements along those connections and finally combined 

with the principal component analysis (PCA) and maximum uncertainty linear discriminant 

analysis.  

Moreover, Zhang et al. [101] combined different modality of biomarkers to get complementary 

information for the diagnosis of AD and MCI. According to the authors, previous studies showed 

that structural MRI is suitable for brain atrophy measurement, functional imaging like FDG-PET 

is used for hypometabolism quantification, and CSF is best used for quantification of specific 

proteins. Henceforth, they propose to combine three modalities of biomarkers, i.e., ADNI baseline 

MRI, FDG-PET, and CSF biomarkers, to accurately distinguish between AD or MCI and healthy 

subject controls, using a kernel combination method. They extracted and labeled volumetric 

features from ROIs of each MR or FDG-PET image using atlas warping algorithm and used the 

original values of CSF biomarkers as direct additional features. They performed feature selection 

method to select the most discriminative MR and FDG-PET features and finally, they apply SVM 

method to evaluate the classification accuracy, using a 10-fold cross-validation.  

Finally, Cuingnet et al. [102] performed an automatic classification between patients with 

Alzheimer's disease (AD) or mild cognitive impairment (MCI) and elderly controls (CN) from 

structural T1-weighted MRI and compared 10 methods based on ADNI database: five voxel-based 

methods, three methods based on cortical thickness and two methods based on the hippocampus. 

In another hand, the authors performed their classification methods on three groups: CN vs. 

patients with probable AD, CN vs. prodromal AD or MCI converters (MCIc) and MCI non-

converters (MCInc) vs. MCIc. 
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The smallest part of data was used for the training process and the optimization of the parameters 

of the chosen mathematical model and the rest was used to obtain an unbiased estimate of the 

performance of the methods. They finally compared DARTEL [103] registration versus SPM5 

unified segmentation results [104].  

3.6 Present research 

In the present thesis, a pattern recognition methodology has been applied to classify an ADNI 

database subject as AD or Normal.  

A general organization schema has been established that exhibits the overall steps of the pattern 

recognition methodology. Starting from a raw data that has been collected from ADNI data source, 

the system goes through image preprocessing steps in order to remove unwanted and/or noisy 

information. In the following step, the ventricles area have been extracted from the coronal view 

of the 3D ADNI data using different segmentation techniques such as the active contour. From 

that point, every ventricles area that corresponds to one of the ADNI subjects, has been 

characterized using a unique set of attributes that characterizes the most the shape and morphology 

of the area. A learning step method has been added in order to generate class models by training 

an original set of data using unsupervised techniques such as the KNN and then generating a test 

data to be classified based on the class models created during the learning step and on the choice 

of the SVM classification algorithm.  
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Chapter 4  

Processing Methodology for 

Predicting Alzheimer’s Disease 

4.1 Introduction 

As mentioned in the introduction, AD causes brain tissue shrinking and larger ventricles [1] [105]. 

As a result, the ventricular enlargement is considered as a possible measure of Alzheimer's disease 

progression. In this work, the brain’s ventricles image is extracted using image processing 

techniques such as image enhancement and segmentation methods. The extracted image for the 

object of interest is analyzed using characterization and classification techniques. 

4.2 The Methodology 

Figure 4-1 shows the steps required to analyze and predict the Alzheimer’s disease. In Step 1, the 

ADNI data is accessed and stored in a database. In Step 2, it is reoriented for better interpretation 

and non-relevant information is removed. In Step 3, image segmentation is performed on the 

preprocessed 3D MRI neuroimaging brain data using different techniques in order to extract the 

ventricle’s area. In Step 4, segmentation techniques are followed by attribute extraction such as 

surface area, centre of gravity, average intensity and standard deviation in order to analyze the 

shape of the ventricle. In Step 5, characterization is followed by classification/prediction methods 

in order to assess whether the patient is developing the Alzheimer’s disease (AD).  
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Figure 4-1 Organizational schema of the system implementation 

 

Step 1- Access ADNI data:

• [D, info] = ReadData3D;

Step 2- Preprocessing:

• Reorient data for easier 
interpretation (stand patient 
up) 

• Remove non relevant 
information (upfront and 
downfront coronal slices )

Step 3- Segmentation Techniques:

• Thresholding techniques :  OTSU, Niblack

• Edge detection techniques : Canny, Active Contour, Edge-
based active contour model using the Distance Regularized 
Level Set Evolution (DRLSE) formulation

• Region based segmentation : region growing (from one seed), 
watershed

Step 4- Characterization:

• Extraction of vector of attributes of the 
segmented image  

Step 5- Classification techniques :

• KNN clustering technique

• SVM Classification
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4.3 Data access 

The data was accessed from Alzheimer’s Disease Neuroimaging Initiative Database (ADNI). 

ADNI is a multisite longitudinal clinical/imaging/genetic/biospecimen/biomarker study, whose 

goal is to determine the characteristics of AD as the pathology evolves from normal ageing to mild 

symptoms, to MCI, to dementia. It is a generally accessible data repository, which describes 

longitudinal changes in brain structure and metabolism.  

ADNI uses several medical file formats such as the classical Analyse Format (hdr/img) that 

contains a header file and a separate 3D image and the next generation of medical images based 

on the Analyse Format, called NIFTI which is an nii structure containing both the header file and 

the 3D image.  

The headers contain the information about the data such as the patient sex and age, the type of 

radiography, the view, size of voxels, etc, all of them stored into an info structure and the data 

itself as a 3D matrix usually of single type. All the nifti medical image files in ADNI database 

have the same standard which is: ADNI_pppp_S_ssss_Sequence_Sxxxx_Iyyyyy.nii where pppp 

is the patient ID, ssss is the site ID, Sequence is the Sequence and processing steps, Sxxxx is 

LONIUID and yyyyy is the Image ID. 

In this thesis, Analyse and Nifti medical image formats were used. Both the formats contain the 

same information in the header files, even though the architecture of the structure is different in 

both the formats. The data is first read using a matlab gui called readData3D3, which allows the 

user to open medical 3D files. It supports the following formats: Dicom Files (.dcm, .dicom), V3D 

Philips Scanner (.v3d), GIPL Guys Image Processing Lab (.gipl), HDR/IMG Analyze (.hdr), ISI 

Files (.isi) and NifTi Files (.nii) etc. 

Using the Matlab statement: [D, info] = ReadData3D; 

where D corresponds to the 3D MRI data and info is a structure containing the header information 

of the data such as the age, the sex, the view, etc. In case of Analyse 7.5 Format which uses 

                       
3  http://www.mathworks.com/matlabcentral/fileexchange/29344 
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radiological orientation (LAS), data should be flipped for correct image display in MATLAB and 

reoriented for easier interpretation (stand patient up).  

Some other packages were also used that allow 3D view and extraction of statistical information 

such as Twfu_bpm toolbox4 for multimodal image analysis called biological parametric mapping 

(BPM), based on a voxel-wise use of the general linear model. It has a high degree of integration 

with the SPM5 (statistical parametric mapping) software relying on it for visualization and 

statistical inference.  

Medical data is accessed through different packages and stored into 3D arrays where each element 

corresponds to a voxel with the three space coordinates and the intensity value. Depending on the 

chosen view, the three dimensions of each medical data were flipped or interchanged for correct 

interpretation of images. The next step is to extract meaningful information from the data using 

segmentation methods on the middle slice by taking the middle 2D array (or image) from the 

coronal section of the 3D data. 

 

 

 

 

 

                       
4  http://www.fmri.wfubmc.edu/cms/software 
5  http://www.fil.ion.ucl.ac.uk/spm/ 
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Chapter 5  

Segmentation of ADNI data 

5.1 Introduction 

In this chapter, 2D/3D image segmentation of original 3D MRI neuroimage brain data is 

performed. The theory about 2D segmentation is easily transported into 3D; however the cost of 

the algorithms is highly increased. The 3D segmentation transforms the original voxels in 3D 

images into 3D regions where each region, identified by a different label, represents meaningful 

physical behaviors defined by a vector of attributes (average, standard deviation, etc.). There are 

many existing segmentation techniques applied for medical image segmentation, including 

statistical methods, thresholding, edge detection, region-based techniques and more recently multi-

resolution (using wavelets, ridgelets, etc.) techniques [106] [107]. The choice of the method 

depends on the type and quality of the image and the statistics of the extracted regions.  

5.2 Preprocessing the ADNI Data 

When reading ADNI data (Figure 4-1), the resulting 3D data shows slices of images that can be 

visualized into three different views: coronal, transversal or sagittal (Figure 5-1). More relevant 

for the present work is visualization of the lateral ventricles of the brain. There are four ventricles 

in the brain, filled with cerebrospinal fluid (CSF), that are located within the brain parenchyma; 

two of them are called the lateral ventricles which are two curved shaped cavities located within 

the cerebrum in the middle region of the brain (Figure 5-2) [108]. In the preprocessing step, 

Analyse7.5 data is flipped for correct image display and to focus on the coronal view slices of the 

3D data. To extract the lateral ventricles, some of the upfront and down-front coronal view slices, 
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spatially low positioned (below brain mass) are removed, in order to decrease the cost of the 

algorithms.  

 

(a) Coronal view (b) Sagittal view 

 

 

(c) Transversal view 

 

Figure 5-1 Three different views of a 3D ADNI data 

 

 

 

Figure 5-2 Lateral Ventricles of the Brain.  
This classical woodcut is presented courtesy of the National Library of Medicine. 

(http://www.gather.com/viewImage.action?fileId=3096224744546601) 

http://www.gather.com/viewImage.action?fileId=3096224744546601
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Slices 1 to 255 every 10 slices of the ADNI (AD) subject: I60451.nii

Figure 5-3 shows the grey view of the coronal slices 1 to 255 every 10 slices of the ADNI AD 

subject” I60451.nii”. It can be noticed that the brain tissue starts being displayed in slice number 

31 and the lateral ventricles are visible from slice number 91 and they fade away completely 

starting at slice number 221. As a preprocessing step, the slices that provide little information about 

the shape of the lateral ventricles can be removed. 

 

 

1 11 21 31 41 51 61 

71 81 91 101 111 121 131 

141 151 161 171 181 191 201 

211 221 231 241 251   

 

Figure 5-3 Grey view of the coronal slices (Slices 1 to 251 every 10 slices of the ADNI AD  

subject I60451.nii) from left to right, top to bottom 
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5.3 Segmentation of ADNI Data 

5.3.1 Thresholding techniques 

Following the preprocessing step discussed in the above section, some of the classical 

segmentation techniques were performed in order to extract the ventricles’ region. The first 

performed segmentation method was the Otsu global thresholding algorithm (see section 2.3.1.1) 

by selecting initial threshold level values based on the histogram, i.e. the distribution of the image’s 

pixels’ intensities, of each coronal slice (Figure 5-4) and performing an adaptive thresholding 

based on the iterative threshold and the in-between variances. Since the selection of the initial 

threshold level value is based on the histogram of the image (Figure 5-4) and the image is 

dominated by a black background (high dark intensity frequency), it would be necessary to be 

careful when choosing the threshold. The resulting image in Figure 5-5 gives the entire area of 

the brain based on the intensity value after segmenting the middle slice using Otsu method. The 

ventricle’s region has been entirely extracted but some of the unwanted regions have been under 

or over segmented which will distort the final classification result. 

 

Figure 5-4 Histogram of the middle coronal slice of the ADNI AD subject “I60451.nii” 
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Figure 5-5 Middle slice of the ADNI AD subject “I60451.nii” after OTSU global thresholding 

 

 

The Otsu method, as defined above, is a global thresholding method that calculates a single 

threshold based on the entire image intensity without much attention to the complexity of the 

image. However, these results can be used for selecting some markers as initial points to more 

sophisticated segmentation methods. Since the Otsu method fails on extracting precise regions, 

local thresholding methods were used afterward. Among those methods, the classic Niblack 

algorithm. Niblack’s algorithm is presented in Figure 5-6. It is an adaptive or local thresholding 

method that depends on the choice of the parameter k. The latter is a coefficient that controls the 

standard deviation.  However, it is also dependent on the size of the filter N. As can be seen in 

Figure 5-7, Figure 5-8 and Figure 5-9, increasing the size of the filter N gives better results. In 

addition, smoothing filters where used to remove irrelevant details from the image. 

Slice 128 of the ADNI (AD) subject: I60451.nii after OTSU global thresholding
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Figure 5-7 Results of using Niblack local thresholding segmentation using the middle slice 

of the ADNI AD subject “I60451.nii”,  N=5. Upper left image k=-0.01, Upper right image 

k=-0.02, Bottom left image k=-0.03, Bottom right image k=-0.04. 

Niblack local thresholding: ULk = -0.01, URk = -0.02, BLk = -0.03, BRk = -0.04 and N = 5

1. Read the original slice image 

2. Initialize the segmented image 

3. Initialize the coefficient k that controls the standard deviation  

4. Get the size of the filter N 

5. for every pixel, calculate the average and the standard deviation of the 

neighbourhood of size N×N 

6. Set the segmented pixel image =  Slice(i, j) > mu + k * sigma 

               

Figure 5-6 Implementation of Niblack thresholding algorithm 
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Figure 5-8 Results of using Niblack local thresholding segmentation using the middle slice of 

the ADNI AD subject “I60451.nii”, N=11. Upper left image k=-0.01, Upper right image k=-0.02, 

Bottom left image k=-0.03, Bottom right image k=-0.04. 

Niblack local thresholding: ULk = -0.01, URk = -0.02, BLk = -0.03, BRk = -0.04 and N = 11
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Figure 5-9 Results of using Niblack local thresholding segmentation using the middle slice of 

the ADNI AD subject “I60451.nii”, N=17. Upper left image k=-0.01, Upper right image k=-0.02, 

Bottom left image k=-0.03, Bottom right image k=-0.04. 

 

When using thresholding techniques, the results lacked in precision. That was due to the nature of 

the medical images which have very close intensity values. Consequently, low level features as in 

a simple thresholding technique, based only on intensity values, cannot capture the relationship 

between pixels. 

5.3.2 Edge detection techniques 

From this point, edge detection techniques were used in order to extract the contour of the 

ventricles’ region. First of all, a classic and well established edge detector, known as Canny edge 

detector, was used. The edge detection using Canny edge detection algorithm [19] (see the 

Niblack local thresholding: ULk = -0.01, URk = -0.02, BLk = -0.03, BRk = -0.04 and N = 17
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resulting images output in Figure 5-10) gave correct output contours with less noise compared to 

Marr-and-Hildreth or Sobel. Even though the ventricle’s region is well detected and stable, some 

noise is introduced outside the region itself that must be thresholded a second time. The contours 

should also be closed in order to get well defined regions.  

 

 

 

 

(a) Canny edge detection (b) Sobel edge detection (c) Marr-and-Hildreth edge detection 

Figure 5-10 Canny, Sobel and Marr-and-Hildreth edge detection techniques using the middle 

slice of the ADNI AD subject “I60451.nii” 

 

As the latter edge detection techniques lacked in precision regarding the extraction of the region 

of interest, the active contour technique was a better option to follow. The active contour, as 

explained in section 2.3.2.2, gave much better results (Figure 5-11) than Canny's. However, the 

initialization is not automatic and is based on the current slice. Additionally, the initial contour 

should be around the region of interest in order to detect only the lateral ventricles. The cost has 

been reduced by initializing the contour to the same contour for every slice. This is acceptable for 

the images presenting a big area around the ventricle chambers and with similar brain dimensions. 

Canny edge detection using Slice 128 of the ADNI (AD) subject: I60451.nii
binary gradient mask
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However, a registration of the images should be proceeded to get similar dimensions and position 

of the brain in the case of a larger number of data (thousands), since the algorithm was applied on 

121 medical ADNI data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hence, for smaller areas, the latter algorithm was unsuccessful compared with the DRLSE 

segmentation which extracts the active contour using the Distance Regularized Level Set 

Evolution (DRLSE) formulation [109] (the Matlab code of the author can be found in 

http://www.imagecomputing.org/~cmli/DRLSE/). The parameters were changed as illustrated in 

Figure 5-12. The results of the same data image, using the DRLSE method, can be seen in Figure 

5-13 after 510 iterations.  

 

Figure 5-11 Active contour using a slightly reoriented and resized middle slice 
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1. Set the time step 

2. Calculate the coefficient of the distance regularization term 

3. Set the number of iterations 

4. Set the coefficient of the weighted length term  

5. Set the coefficient of the weighted area term 

6. Set the parameter that specifies the width of the Dirac Delta function 

7. Set the scale parameter in Gaussian kernel 
 

Figure 5-12 Section from DRLSE matlab code [109] illustrating the parameter setting 

 

 

 

Figure 5-13 Edge-based active contour model using the Distance Regularized Level Set 

Evolution (DRLSE) formulation after 510 iterations 
 

Even though DRLSE segmentation eliminates the need for re-initialization, the level set of the 

function was initialized by extracting correct position points and the same local points were used 

as a basis to the rest of slices using the Matlab statement:   [BW, c, r] = roipoly(mat2gray(Slice));   

In addition to the general and efficient initialization of the level set function, the algorithm reduced 

the number of iterations, while ensuring sufficient numerical accuracy. Nevertheless, the DRLSE 

algorithm was not applied on a large set of images to get a realistic idea on its results. More images 

should be tested.  

Final zero level contour, 510 iterations
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5.3.3 Region growing 

Following the edge detection techniques, region based segmentations were also used. One of the 

leading methods is the region growing technique that starts from one point called seed and start 

growing the region by adding neighbours according to a stopping criterion. Refer to section 2.3.3.1 

and to Figure 5-14 for further details.  

% Initialize the Output to zero matrix of same size than the input 
% Start the region with one pixel 
% Create a large matrix  to store the current segmented region pixels' (neighbours) 

and their coordinates  
while(distance between region and possible new pixels is less than a certain 

treshold) 
    % Add new neighbors pixels 
    for j=1:4, %four neighbours because it is 4 connectivity 
        % Calculate the neighbour coordinate            
        % Check if neighbour is inside or outside the image 
        % Add neighbor if inside and not already part of the segmented area 
    end 

  
    % Add a new block of free memory 
    % Add pixel with intensity nearest to the mean of the region, to the region 
    % Calculate the new mean of the region 
    % Save the x and y coordinates of the pixel 
    % Remove the pixel from the neighbour (check) list 
end 
% Return the segmented area as logical matrix 

 

Figure 5-14 Code Snippet of Region Growing method 

 

The region growing algorithm gave good results for a small number of images. That was due to 

the choice of the initial seed which has to be more automatic and less prone to errors; the cost is 

much bigger since the seed is chosen for every slide. Figure 5-15 shows the resulting segmented 

image for the coronal middle slice of the ADNI AD subject “I60451.nii”. The size of the slice 

image is 256×166, the distance=700 pixels and the initial seed point has the coordinates x=85 and 

y=105. We apply a mathematical morphological preprocessing before the region growing using 

the following Matlab code:  

 n=3;  

 Slice = imclose(imopen(imclose(imopen(Slice, ones(n)), ones(n)), ones(n)),ones(n)); 
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segmented Slice image

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-15 Segmentation of the middle slice using region growing method 

 

5.3.4 Watershed method 

Finally, the watershed method was tested (see section 2.3.4 for further details). The watershed 

method extracted the ventricle region but over-segmented the live tissue of the brain (Figure 5-16). 

 

 

 

 

 

 

  

                           Figure 5-16 Segmentation of the middle slice using Watershed method 
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Chapter 6  

Characterization and Classification 

Techniques for ADNI Data 

6.1 Introduction 

Up to this point, the process of pattern recognition as illustrated in Figure 4-1 was performing 

several steps such as access ADNI database, describe the medical data, read the volumetric MRI, 

extract the middle slice of the brain region and perform segmentation methods in order to detect 

the region of brain’s ventricle. In this chapter, the fourth and fifth steps were performed, where the 

system will generate a vector of attributes that characterizes this region, create a database that 

contains the generated data, perform clustering to get the class labels and finally perform some 

classification methods based on the clustering results. 

The choice of attributes depends closely on the object’s shape and statistics such as the statistical 

moments of order n, textures, geometric measures, etc. Once the attributes were extracted, a 

database, that is well defined and large enough to contain both training and testing data, was 

created. The first step of classification is to proceed to the learning process in order to produce the 

classes’ categorical labels, and then to perform the classification. A step of accuracy measure of 

the classifier is added to assess the accuracy of the employed classifier.    



48 

 

6.2 Attribute selection 

The AD disease can be assessed based on the shape of the ventricle chamber's area. Since AD 

causes the loss of brain mass due to molecules created in this area and spread all over the brain, it 

was assumed in this work that the whole brain can be assessed based on this specific area in order 

to  decrease the cost of calculation. Having stated this, the ventricle’s area was characterized based 

on its shape and morphology using statistical and geometrical attributes. The resulting attributes 

are respectively the surface area of the extracted region (Surf), the perimeter (Per), the first 

statistical moment (Mean), the second statistical moment (Std), 28 horizontal distances (W01, 

W02, …, W28), the height (Height) and the coordinates of the center of gravity of the region (Gx, 

Gy). The attributes are normalized into the range [0 1].  

 The surface (attribute Surf) of the extracted region corresponds to the number of pixels of the 

region divided by the size of the image (total number of pixels) to get normalized values.  

The perimeter (attribute Per), or the contour of the extracted region, is the sum of the contour 

pixels divided by the size of the image (total number of pixels) to get normalized values. 

The first statistical moment (attribute Mean), called the average or the mean, and the second 

statistical moment (attribute Std), called the standard deviation, calculate respectively the average 

value of the region’s intensity pixels and their standard deviation. Mean and Std are normalized 

into the range [0 1] using the following formulas: 

 

Mean =
(Mean − Min)

(Max − Min)
 

Std =
(Std − Min)

(Max − Min)
 

 

where Max and Min are respectively the maximum and the minimum intensities of the extracted 

region. 

  

W01 to W28 are the normalized horizontal distances of the extracted region. The widths are 

normalized by dividing the original values by the number of columns of the image. 
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Height is the normalized height of the region. The height is normalized by dividing the original 

value by the number of rows of the image 

  

Gx and Gy are the normalized coordinates of the center of gravity or center of mass statistic of the 

extracted region. The coordinates are normalized by dividing the original values by the size of the 

image. 

The algorithm that calculates the vector of attributes is listed in Algorithm 6-1. 

Algorithm 6-1 Extraction of vector attributes 

 

1. Get the contour from the region.                                      

2. Initialise the vector of attributes. 

3. Add the first attribute (normalized area of the extracted region). 

4. Add the second attribute (normalized perimeter of the extracted region).  

5. Add the first and the second standardized statistical moments. 

6. Add the standardized horizontal distances to the vector of attributes. 

7. Add the standardized height to the vector of attributes. 

8. Add the standardized center of gravity to the vector of attributes. 

 

In order to make a first assessment of the behavioral trend of each attribute, a statistical analysis 

was performed, over a set of 121 patterns, of the 35 attributes using stacked columns where each 

attribute is summarized by a column bar containing five key data points (also called five-number 

summary) named max, third quartile (Q3), median, first quartile (Q1) and min. The majority of 

the attributes tend to vary clearly and shall induce some relevant information regarding the 

classification between the different medical image data base (Figure 6-1). A second assessment 

of the statistical trend of the attributes was performed by visualizing the average, the standard 

deviation and the mode. The attributes showed distinct behaviors as well (Figure 6-2). The latter 

behavior should lead to a good classification tool.  
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Figure 6-1 Statistical trend of 121 medical image data base based on the five-number summary 

(Min, 1st Quartile, Median, 3rd Quartile and Max) 
 

 

 

Figure 6-2 Statistical trend of 121 medical image data base based on the standard deviation, the 

average and the mode 
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6.3 Classification 

After building a database of 121 patterns of 35 dimensions, the last step of the general framework, 

i.e. the classification, was performed. The clinical assessment of the patients imply 29 healthy 

(Normal) subjects and 92 AD subjects. The accuracy of the classification algorithms as well as the 

choice of the vector of attributes will be assessed, based on the latter statement. The K-Nearest 

Neighbors (KNN) clustering technique was first applied. Clustering is a procedure which aims to 

categorize objects. In particular, the objective is to categorize objects in groups that do not have 

class labels. Popular methods of clustering include; K-Nearest Neighbors, K-Means and K-

Medoids [43], [44]. 

The clustering results of some pairs of attributes are visually summarized in Appendix A, where 

each class is marked by the same color. Since there is 35 attributes, there would be 
35×34

2
=

1190 pairs of attributes. As 1190 results cannot be shown, only the results of some attributes were 

shown, i.e. the surface, the perimeter, the average, the standard deviation, the first two widths, the 

height and the coordinates of the center of gravity. As there is 9 attributes, only 
9×8

2
= 36 pairs of 

attributes are shown. They are including the 2-dimensionnal clustering results, projected into the 

coordinates of the pair of attributes, using two-dimensional KNN clustering technique. In every 

KNN results image, the AD subjects were labeled as red stars and the Normal subjects as green 

stars. The classification performance of the latter KNN results for each pair of attributes were 

summarized in Table 6.1. 

Clinical tests were used to assess the performance of the classifiers based on the following 

performance classification parameters [110]: 

- The sensitivity (SN) which refers to the ability of identifying the AD patients. 

SN =  
TP

(TP + FN)
× 100% 

- The specificity (SP) which refers to the ability of identifying the normal or healthy 

people. 

SP  =
TN

 TN + FP
× 100% 
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- The positive predictive value (PPV), also called precision or probability of correct 

positive prediction.  

PPV  =
TP

 TP + FP
× 100% 

 

- The Negative predictive value (NPV), which is the probability of correct negative 

prediction. 

NPV =
TN

 TN + FN
× 100% 

 

- The accuracy (ACC), which is the probability of both correct positive and negative 

predictions. 

ACC  =
TP + TN

 TP + FP + TN + FN
× 100% 

 

Where the parameters TP, FP, TN and FN are defined as follows: 

True positive (TP): the patient has the AD and the classification result is positive (AD). 

False positive (FP): the patient is normal and the classification result is positive.  

True negative (TN): the patient is normal and the classification result is negative (Normal). 

False negative (FN): the patient has the AD but the test is negative. 

 

Based on the latter parameters, as noticed in Table 6.1, good classification accuracy was achieved 

(almost 82%) for the pair of attributes Surface vs. Gx. For the same pair, 83.33% of subjects, with 

a positive test, have actually the AD disease and 66.67% of subjects, with a negative test, do not 

have the disease. A bad classification accuracy has been obtained for the pair of attributes Gx. vs. 

Gy (53.33%) with the least sensitivity value (59.57%). Additionally, whenever Gy was paired with 

another attribute, the classification tended to be less accurate (between 56.33% and 66.67%) with 

the exception of the Surface where the accuracy was actually 75%. For the rest of pairs of 

attributes, the accuracy was between 68.33% and 78.33%.  
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Table 6.1 KNN classification results for a pair of attributes 

 

Pairs of attributes SN SP PPV NPV ACC 

Surf Per     85.1064%     38.4615%      83.3333% 41.6667%  75% 

Surf Mean     89.3617%     38.4615%     84%     50%  78.3333% 

Surf Std     87.234%     38.4615%     83.6735%     45.4545%  76.6667% 

Surf W01     93.617%     23.0769%     81.4815%     50%  78.3333% 

Surf W02     82.9787%     23.0769%     79.5918%     27.2727%  70% 

Surf Height     78.7234%     30.7692%     80.4348%     28.5714%  68.3333% 

Surf Gx     95.7447%     30.7692%     83.3333%     66.6667%  81.6667% 

Surf Gy     87.234%     30.7692%     82%     40%  75% 

Per Mean     76.5957%     53.8462%     85.7143%     38.8889%  71.6667% 

Per Std     78.7234%     30.7692%     80.4348%     28.5714%  68.3333% 

Per W01     85.1064%     23.0769%     80%     30%  71.6667% 

Per W02     87.234%     15.3846%     78.8462%     25%  71.6667% 

Per Height     85.1064%     23.0769%     80%     30%  71.6667% 

Per Gx     85.1064%     30.7692%     81.6327%     36.3636%  73.3333% 

Per Gy     78.7234%     23.0769%     78.7234%     23.0769%  66.6667% 

Mean Std     87.234%     23.0769%     80.3922%     33.3333%  73.3333% 

Mean W01     89.3617%     23.0769%     80.7692%     37.5%  75% 
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Mean W02     82.9787%     23.0769%     79.5918%     27.2727%  70% 

Mean Height     82.9787%     23.0769%     79.5918%     27.2727%  70% 

Mean Gx     89.3617%     15.3846%     79.2453%     28.5714%  73.3333% 

Mean Gy     72.3404%     30.7692%     79.0698%     23.5294%  63.3333% 

Std W01     82.9787%     30.7692%     81.25%     33.3333%  71.6667% 

Std W02     76.5957%     15.3846%     76.5957%     15.3846%  63.3333% 

Std Height     87.234%     30.7692%     82%     40%  75% 

Std Gx     87.234%     7.6923%     77.3585%     14.2857%  70% 

Std Gy     68.0851%     15.3846%     74.4186%     11.7647% 56.6667% 

W01 W02     89.3617%     23.0769%     80.7692%     37.5%  75% 

W01 Height     85.1064%     15.3846%     78.4314%     22.2222%  70% 

W01 Gx     82.9787%     15.3846%     78%     20%  68.3333% 

W01 Gy     74.4681%     38.4615%     81.3953%     29.4118%  66.6667% 

W02 Height     78.7234%     30.7692%     80.4348%     28.5714%  68.3333% 

W02 Gx     85.1064%     15.3846%     78.4314%     22.2222%  70% 

W02 Gy     72.3404%     15.3846%     75.5556%     13.3333%  60% 

Height Gx     82.9787%     30.7692%     81.25%     33.3333%  71.6667% 

Height Gy     82.9787%     23.0769%     79.5918%     27.2727%  70% 

Gx Gy     59.5745%     30.7692%     75.6757%     17.3913%  53.3333% 
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As some pairs of attributes gave better results than others, all the attributes were used to see their 

impact on the classification results for 121 patterns. Table 6.2 show the output label of each pattern 

and its “actual” clinical label. The results gave 76.6667% of classification accuracy with 85.1064% 

of sensitivity, 46.1538% of specificity, 85.1064% of precision and 46.1538% of probability of 

correct negative prediction. Even though the values obtained by pairing Surface with Gx were not 

reached, some good results were obtained, since 40 AD subjects over 47 have been correctly 

identified from 60 testing samples. 

 

Table 6.2 Class labels of the KNN clustering technique using all the attributes 

Pattern Clinical 

label 

Output 

label 

Pattern Clinical 

label 

Output 

label 

Pattern Clinical 

label 

Output 

label 

1 'AD' 'AD' 42 'AD' 'Normal' 83 'AD' 'AD' 

2 'AD' 'AD' 43 'AD' 'AD' 84 'AD' 'AD' 

3 'AD' 'AD' 44 'AD' 'AD' 85 'AD' 'AD' 

4 'AD' 'AD' 45 'AD' 'AD' 86 'AD' 'AD' 

5 'AD' 'AD' 46 'AD' 'AD' 87 'AD' 'AD' 

6 'AD' 'AD' 47 'AD' 'AD' 88 'AD' 'AD' 

7 'AD' 'AD' 48 'AD' 'Normal' 89 'AD' 'AD' 

8 'Normal' 'Normal' 49 'AD' 'AD' 90 'Normal' 'Normal' 

9 'AD' 'Normal' 50 'Normal' 'AD' 91 'AD' 'AD' 

10 'AD' 'AD' 51 'Normal' 'AD' 92 'AD' 'AD' 

11 'AD' 'AD' 52 'Normal' 'Normal' 93 'AD' 'AD' 

12 'AD' 'AD' 53 'Normal' 'AD' 94 'Normal' 'Normal' 

13 'AD' 'AD' 54 'AD' 'AD' 95 'AD' 'AD' 

14 'AD' 'AD' 55 'AD' 'AD' 96 'AD' 'AD' 

15 'AD' 'AD' 56 'AD' 'AD' 97 'AD' 'AD' 

16 'AD' 'Normal' 57 'AD' 'AD' 98 'AD' 'AD' 

17 'Normal' 'AD' 58 'AD' 'AD' 99 'AD' 'AD' 

18 'AD' 'AD' 59 'Normal' 'Normal' 100 'AD' 'AD' 

19 'Normal' 'AD' 60 'Normal' 'Normal' 101 'AD' 'AD' 

20 'AD' 'AD' 61 'Normal' 'Normal' 102 'AD' 'AD' 

21 'AD' 'AD' 62 'AD' 'AD' 103 'AD' 'AD' 

22 'Normal' 'Normal' 63 'AD' 'AD' 104 'AD' 'AD' 

23 'AD' 'AD' 64 'AD' 'AD' 105 'AD' 'AD' 

24 'AD' 'AD' 65 'Normal' 'Normal' 106 'Normal' 'Normal' 

25 'AD' 'AD' 66 'Normal' 'Normal' 107 'Normal' 'Normal' 

26 'AD' 'Normal' 67 'Normal' 'Normal' 108 'AD' 'AD' 

27 'Normal' 'AD' 68 'AD' 'AD' 109 'Normal' 'Normal' 

28 'AD' 'Normal' 69 'Normal' 'Normal' 110 'Normal' 'Normal' 

29 'AD' 'AD' 70 'AD' 'AD' 111 'AD' 'AD' 
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30 'AD' 'AD' 71 'AD' 'AD' 112 'AD' 'AD' 

31 'AD' 'AD' 72 'AD' 'AD' 113 'Normal' 'Normal' 

32 'AD' 'Normal' 73 'AD' 'AD' 114 'AD' 'AD' 

33 'AD' 'AD' 74 'Normal' 'Normal' 115 'AD' 'AD' 

34 'AD' 'AD' 75 'AD' 'AD' 116 'AD' 'AD' 

35 'AD' 'AD' 76 'Normal' 'Normal' 117 'AD' 'AD' 

36 'AD' 'AD' 77 'AD' 'AD' 118 'Normal' 'Normal' 

37 'AD' 'AD' 78 'AD' 'AD' 119 'AD' 'AD' 

38 'AD' 'AD' 79 'AD' 'AD' 120 'AD' 'AD' 

39 'AD' 'AD' 80 'AD' 'AD' 121 'Normal' 'Normal' 

40 'Normal' 'AD' 81 'AD' 'AD'    

41 'Normal' 'Normal' 82 'AD' 'AD'    

 

The KNN classification technique performed fairly well but lacked accuracy when using some of 

the attributes. Also, even though the AD subjects have been correctly identified with a good 

percentage, some of the Normal subjects have been identified as diseased. Another classifier might 

resolve this problem and decrease the cost of treating healthy subjects. A similarity criterion, that 

classifies each data into the proper class name or label using the support vector machine (SVM) 

classification method, was created.  

The SVM is a classifier that attempts to create a linear vector that segments the classes equally. In 

the event that the data is not linearly inseparable, the SVM algorithm lifts the space into a higher 

dimensional plane, until, on that plane, a vector can separate the classes. It is a particularly good 

classifier, albeit a slow one [36], [42], [39]. It supports various mathematical formulations. We 

used the C-Support Vector Classification or C-SVC [110], [111] that solves the following 

optimization problem                       

                                                           min
𝜔,𝑏,𝜉

        
1

2
𝜔𝑇 𝜔 + 𝐶 ∑ 𝜉𝑖

𝑙

𝑖=1

 6.1 

            subject to the decision function      𝑦
𝑖
(𝜔𝑇𝜙(𝑥𝑖) +  𝑏)   ≥ 1 −  𝜉𝑖                                         

      𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑙, 

given training vectors of attributes 𝑥𝑖 ∈  𝑅𝑛, i=1, …,l, in two classes, and a label vector 𝑦 ∈  𝑅𝑙 

such that yi ∈ {1, −1}, to indicate the first or the second class 
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ω and b are adjustable parameters of the decision function which indicate, respectively, the weight 

and the bias 

𝜙(𝑥𝑖) are predefined functions of x , that map 𝑥𝑖 into a higher-dimensional space  

C > 0 is the regularization parameter. 

We set the parameter C of class i to weight*C in C-SVC in Equation 6.1. 

The SVM algorithm generates a support vector that defines the margin of largest separation 

between the two classes.  

The totality of the SVM results could not be interpreted since they represent 35 dimensions. 

However, the results were examined visually by plotting the SVM results of only 2-D vector of 

attributes. The data is first divided into two groups. The first group consists of 61 training patterns 

and the second group refers to the testing patterns and consists of the remaining 60 patterns. The 

SVM classifier was applied on the training data followed by the testing data. Each plot includes 

training data, testing data and the support vectors. In the figures, support patterns are indicated 

with blue squares surrounding one of the patterns. To assess the classification results, the previous 

performance classification parameters were applied. 

Using the first two attributes that correspond to the surface and perimeter of the objects, and by 

forcing a linearly separable solution, 75% of the patterns have been correctly classified. The 

patterns were more likely classified as AD than Normal with a sensitivity of 93.617% and a 

specificity of 7.6923% for 55 support vectors (SV). The classification results including the labeled 

patterns and support vectors were plotted in Figure 6-3 showing a predominant AD class for the 

first two attributes. The Normal patterns implied smaller values of surface and perimeter. For the 

same pair of attributes, the SVM classification performance gave close results compared to the 

KNN.  
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As the SVM classifier helps selecting the best features that improve the classification results, the 

same work was performed for the remaining 35 pairs of attributes and summarized in Appendix 

B. Table 6.3 summarizes the SVM classification results corresponding to 36 pairs of attributes by 

forcing a linearly separable solution. The results included the bias, the number of support vectors 

(SV), the sensitivity (SN), the specificity (SP), the positive predictive value (PPV), the negative 

predictive value (NPV) and the accuracy (ACC). 
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Table 6.3 SVM classification results for a pair of attributes with linearly separable solution 

including the bias, the number of support vectors (SV), the sensitivity (SN), the specificity (SP), 

the positive predictive value  (PPV), the negative predictive value 

Pairs of attributes Bias SV SN SP PPV NPV ACC 

Surf Per -0.7086 55 93.617% 7.6923% 78.5714%     25%     75% 

Surf Mean -0.6841 58 95.7447% 23.0769% 81.8182%     60%     80% 

Surf Std -0.6753 61 93.617% 15.3846%     80%     40% 76.6667% 

Surf W01 -0.6461 57 97.8723% 7.6923% 79.3103%     50% 78.3333% 

Surf W02 -0.6439 57 100% 7.6923% 79.661%   100%     80% 

Surf Height -0.7132 59 97.8723%       0% 77.9661%     0% 76.6667% 

Surf Gx -0.6694 57 97.8723%     7.6923% 79.3103%     50% 78.3333% 

Surf Gy -0.6445 61 97.8723%     0% 77.9661%     0% 76.6667% 

Per Mean -0.6593 57 93.617%     7.6923% 78.5714%     25%     75% 

Per Std -0.6757 61 97.8723%     0% 77.9661%     0% 76.6667% 

Per W01 -0.6998 55 97.8723%     7.6923% 79.3103%     50% 78.3333% 

Per W02 -0.7075 58 97.8723%     0% 77.9661%     0% 76.6667% 

Per Height -0.6704 57 95.7447%     0% 77.5862%     0%     75% 

Per Gx -0.6251 57 97.8723%  15.3846% 80.7018% 66.6667%     80% 

Per Gy -0.6271 59 97.8723%     0% 77.9661%     0% 76.6667% 

Mean Std -0.7063 58 95.7447%  15.3846% 80.3571%     50% 78.3333% 

Mean W01 -0.6907 55 95.7447%     7.6923% 78.9474% 33.3333% 76.6667% 
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Mean W02 -0.7108 60     100%     0% 78.3333%     NaN 78.3333% 

Mean Height -0.6586 58 95.7447%     7.6923% 78.9474% 33.3333% 76.6667% 

Mean Gx -0.7097 54     100%     0% 78.3333%     NaN 78.3333% 

Mean Gy -0.6721 61 97.8723%     7.6923% 79.3103%     50% 78.3333% 

Std W01 -0.6295 56     100%     7.6923% 79.661%     100%     80% 

Std W02 -0.6406 57 95.7447%     0% 77.5862%     0%     75% 

Std Height -0.6533 58 97.8723%  15.3846% 80.7018% 66.6667%     80% 

Std Gx -0.6431 55     100%     7.6923% 79.661%     100%     80% 

Std Gy -0.6959 60 97.8723%     0% 77.9661%     0% 76.6667% 

W01 W02 -0.6699 54 93.617%     0% 77.193%     0% 73.3333% 

W01 Height -0.6829 56 91.4894%     0% 76.7857%     0% 71.6667% 

W01 Gx -0.6369 53 95.7447%     0% 77.5862%     0%     75% 

W01 Gy -0.7549 58 95.7447%     0% 77.5862%     0%     75% 

W02 Height -0.6495 56 93.617%     0% 77.193%     0% 73.3333% 

W02 Gx -0.6794 57 95.7447%     0% 77.5862%     0%     75% 

W02 Gy -0.6618 60 93.617%     0% 77.193%     0% 73.3333% 

Height Gx -0.6602 58     100%     0% 78.3333%     NaN 78.3333% 

Height Gy -0.6584 60 97.8723%     0% 77.9661%     0% 76.6667% 

Gx Gy  -0.6898 56 91.4894%     7.6923% 78.1818%     20% 73.3333% 
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The results shown in Table 6.3, imply an overall better classification performance than the KNN’s. 

31 pairs of attributes gave better results than the KNN, and for every pair of attributes, more than 

93% of the AD subjects have been correctly identified. However, the Normal subjects have not 

been correctly classified due to the lower number of Normal subjects compared to the number of 

AD subjects. Also, the lower values of sensitivity occurred when the testing data happened to be 

mostly of AD subjects. 

The results show that the SVM technique gave more accurate classification results. Additionally, 

the SVM was a good tool for feature selection since it showed good classification results for a 

large number of pairs of attributes.  

To test the classifier for its performance, all the attributes were used subsequently. As the training 

patterns and the testing patterns were chosen randomly, the program was run several times (50 

times) and only the results of 10 distinct trials were kept as seen in Table 6.4. Another trial was 

executed by taking the first 61 patterns as training data and the rest 60 patterns as testing data. The 

classification performance accuracy slightly decreased to the range 70%- 78.3333% and the AD 

subjects were correctly identified into the range 91.3043% -100%. However, the Normal subjects 

were not all the time identified, which is due to the smaller number of Normal subjects. In this 

trial, all the testing data was classified as AD (Table 6.5). 
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Table 6.4 SVM classification performance results using all the attributes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trials SN SP PPV NPV ACC 

1 91.3043%   7.1429% 76.3636%   20.0000%  71.6667% 

2 93.4783%   7.1429 %  76.7857%  25.0000 % 73.3333% 

3 97.8261%        0 % 76.2712%         0% 75.0000% 

4 93.4783%  0%  75.4386%  0%  71.6667% 

5 100%  0%  76.6667%  NaN 76.6667% 

6 93.4783%  0%  75.4386% 0%  71.6667% 

7 95.6522%  0%  75.8621%  0%  73.3333% 

8 95.6522%  7.1429%  77.193%  33.3333%  75% 

9 91.3043%  0%  75%  0%  70% 

10 97.8261%  7.1429%  77.5862%  50%  76.6667% 

11 100% 0% '78.3333% NaN 78.3333% 
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Table 6.5 Class labels of the SVM classification technique using all the attributes 

Pattern Clinical 

label 

Output 

label 

Pattern Clinical 

label 

Output 

label 

Pattern Clinical 

label 

Output 

label 

1 'AD' 'AD' 42 'AD' 'Normal' 83 'AD' 'AD' 

2 'AD' 'AD' 43 'AD' 'AD' 84 'AD' 'AD' 

3 'AD' 'AD' 44 'AD' 'AD' 85 'AD' 'AD' 

4 'AD' 'AD' 45 'AD' 'AD' 86 'AD' 'AD' 

5 'AD' 'AD' 46 'AD' 'AD' 87 'AD' 'AD' 

6 'AD' 'AD' 47 'AD' 'AD' 88 'AD' 'AD' 

7 'AD' 'AD' 48 'AD' 'AD' 89 'AD' 'AD' 

8 'Normal' 'AD' 49 'AD' 'AD' 90 'Normal' 'Normal' 

9 'AD' 'AD' 50 'Normal' 'AD' 91 'AD' 'AD' 

10 'AD' 'AD' 51 'Normal' 'AD' 92 'AD' 'AD' 

11 'AD' 'AD' 52 'Normal' 'AD' 93 'AD' 'AD' 

12 'AD' 'AD' 53 'Normal' 'AD' 94 'Normal' 'Normal' 

13 'AD' 'AD' 54 'AD' 'AD' 95 'AD' 'AD' 

14 'AD' 'AD' 55 'AD' 'AD' 96 'AD' 'AD' 

15 'AD' 'AD' 56 'AD' 'AD' 97 'AD' 'AD' 

16 'AD' 'AD' 57 'AD' 'AD' 98 'AD' 'AD' 

17 'Normal' 'AD' 58 'AD' 'AD' 99 'AD' 'AD' 

18 'AD' 'AD' 59 'Normal' 'AD' 100 'AD' 'AD' 

19 'Normal' 'AD' 60 'Normal' 'AD' 101 'AD' 'AD' 

20 'AD' 'AD' 61 'Normal' 'Normal' 102 'AD' 'AD' 

21 'AD' 'AD' 62 'AD' 'AD' 103 'AD' 'AD' 

22 'Normal' 'AD' 63 'AD' 'AD' 104 'AD' 'AD' 

23 'AD' 'AD' 64 'AD' 'AD' 105 'AD' 'AD' 

24 'AD' 'AD' 65 'Normal' 'Normal' 106 'Normal' 'Normal' 

25 'AD' 'AD' 66 'Normal' 'Normal' 107 'Normal' 'Normal' 

26 'AD' 'AD' 67 'Normal' 'Normal' 108 'AD' 'AD' 

27 'Normal' 'AD' 68 'AD' 'AD' 109 'Normal' 'Normal' 

28 'AD' 'AD' 69 'Normal' 'Normal' 110 'Normal' 'Normal' 

29 'AD' 'AD' 70 'AD' 'AD' 111 'AD' 'AD' 

30 'AD' 'AD' 71 'AD' 'AD' 112 'AD' 'AD' 

31 'AD' 'AD' 72 'AD' 'AD' 113 'Normal' 'Normal' 

32 'AD' 'AD' 73 'AD' 'AD' 114 'AD' 'AD' 

33 'AD' 'AD' 74 'Normal' 'Normal' 115 'AD' 'AD' 

34 'AD' 'AD' 75 'AD' 'AD' 116 'AD' 'AD' 

35 'AD' 'AD' 76 'Normal' 'Normal' 117 'AD' 'AD' 

36 'AD' 'AD' 77 'AD' 'AD' 118 'Normal' 'Normal' 

37 'AD' 'AD' 78 'AD' 'AD' 119 'AD' 'AD' 

38 'AD' 'AD' 79 'AD' 'AD' 120 'AD' 'AD' 

39 'AD' 'AD' 80 'AD' 'AD' 121 'Normal' 'Normal' 

40 'Normal' 'AD' 81 'AD' 'AD'    

41 'Normal' 'AD' 82 'AD' 'AD'    
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To further test if better results could be achieved if a set of attributes were selected instead of 

selecting all the attributes, a dimensionality reduction algorithm is to be applied on the original 

data before applying the classification algorithms. 

PCA was used for dimensionality reduction in order to achieve a more consistent attributes. PCA 

dimensionality reduction is performed by projecting the original data onto the eigenvectors 

corresponding to the largest eigenvalues of the covariance matrix. After reading the data which 

consists of n = 121 patterns of dimensionality m = 35 (121 row vectors of 35 attributes each), the 

PCA algorithm performs the following steps: 

1. Center the data by subtracting the average value of the data from each row vector to ensure that 

every feature has zero mean. 

2. Calculate the covariance matrix using the formula: Σ =
1

𝑚
∑ 𝑥(𝑖)𝑥(𝑖)𝑇𝑚

1  where the x vector has 

zero mean. Matlab statement : Sigma = cov(x); 

3. Find the eigenvalues and their equivalent eigenvectors from the covariance matrix. 

Matlab eigenvalues and eigenvectors function was applied on the covariance matrix as follows: 

  [V, D] = eig(Sigma); 

where D is a diagonal matrix of eigenvalues and V is a full matrix whose columns are the 

corresponding eigenvectors so that Sigma*V = V*D.  

The resulting principal components are the eigenvectors with largest eigenvalues. More precisely, 

as PCA defines a set of principal components (PC), the first PC indicates the direction of the 

greatest variability. The second PC, which is perpendicular to the first one, would demonstrate the 

second greatest variability and so on. Consequently, the old system of coordinates would be rotated 

to fit the new axis which correspond to the principal components, and the original data points 

would be projected into this new lower dimensional coordinates system while preserving as much 

information as possible. Therefore, the projection into the principal components will not only 

reduce the original data but it will also change the values and the position of the vectors of 

attributes into the data matrix.  
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In order to apply the above concept, the next two Matlab statements were added:  

 VReduced = V(:, k);   

 PCReduced = Vreduced*x; 

where k is the reduced number of attributes, x is the standardized feature vector, and PCReduced 

is the reduced feature vector. 

As the MATLAB eig function orders the principal components from last to first, the diagonal of 

matrix D contains the variances for the principal components. The proportion of each principal 

component relative to the total variance can be determined by extracting and normalizing the 

diagonal of matrix D: 

 cumsum(flipud(diag(D))) / sum(diag(D)) 

The following values were obtained:  

0.4727, 0.6734, 0.7556, 0.8052, 0.8400, 0.8691, 0.8946, 0.9185, 0.9353, 0.9487, 0.9574, 0.9658, 

0.9725, 0.9784, 0.9823, 0.9856, 0.9881, 0.9904, 0.9922, 0.9938, 0.9953, 0.9965, 0.9974, 0.9982, 

0.9988, 0.9992, 0.9996, 0.9999, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000 and 1.0000.  

The first principal component contains 47.27% of the total variance of the original data, the first 

two principal components together contain 67.34% of the total variance of the original data, the 

first three principal components together contain 75.56% … etc. In addition to this, all of the 

variance can be reached using the first 29, 30, 31, 32, 33, 34 or 35 principal components together. 

After applying the PCA dimension reduction technique, the KNN technique was reapplied on 

different ordered sets of features. The results are summarized in Appendix C. The performance 

parameters, including the accuracy, decreased slightly. It was also noticed that the accuracy was 

mostly non relevant when the first principal component was chosen. This is obvious, given that 

the variance is less important when only this principal component was chosen. However, in 

general, PCA did not work well. All the principal components might be needed to ensure a 

variability of the variance in the data.  
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Additionally, when the SVM classification technique was reapplied, after using the PCA 

dimension reduction technique on the same different ordered sets, the performance has generally 

remained the same with a few exceptions. From Appendix C, it can be noticed that more than 78% 

of the data was correctly identified and all the AD subjects were correctly identified. 

Other techniques of classification have been used but did not produce better results due to the 

choice of the vector of attributes and the small size of the database.  

The first one is the Bayesian Network which is a decision making model. This model makes 

decisions based on the dependencies of the previous conditions using probability theory. It takes a 

set of particular inputs and based on the probability of the occurrence of the inputs in the training 

set, it makes a decision of where the new input is supposed to be classed. The highest probability 

calculated for a particular output based on the inputs is the decision that is finally chosen as the 

output [12], [36], [41]. 

The second method is the neural network which is a learning system that creates interconnecting 

artificial neurons. It receives an input through its input layer and produces an output that depends 

on the architecture of the neural network, the values of the initial weights and the number of hidden 

layers. The hidden layer contains a set of neurons that have various weights to produce and output 

from each neuron. Once each neuron has a result, those results are aggregated with another set of 

weights to produce the final output [12]. 
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Chapter 7                              

Conclusions and Future Work 

The main contribution of this thesis was to develop a method based on different image processing 

and pattern recognition techniques that classifies a subject as AD or normal with a success rate of 

more than 75% measured with respect to clinical tests. 

Image segmentation is very useful for MRI medical images, to detect regions of interest for 

radiotherapy planning and brain damage diagnostic. Several segmentation methods have been 

adapted and applied on 2D medical images. Different algorithms have been tested on real medical 

data from ADNI database. The system was used to extract the ventricles from the middle slice of 

each patient’s radiographic brain image, and these results were visually inspected and compared 

to the patient`s condition. Thresholding was applied to remove unnecessary regions and edge 

detection techniques as well as region segmentations were used to extract the ventricles. The 

results of the segmentation techniques including Otsu global thresholding, Canny Edge Detection, 

Niblack local thresholding and the Active contour, have been applied on 121 ADNI data including 

AD subjects and normal subjects. Active contours showed better results by extracting the exact 

region of the ventricles for the majority of the images. 

After extracting the region of the ventricles of each slice, we characterized the extracted region 

using a vector of 35 attributes such as the surface area and the perimeter of the shape. Those 

attributes were stored into a large data matrix where each row corresponds to one pattern and each 

column corresponds to one attribute. 

Once the database of 121 patterns was constructed, the data was classified using the KNN 

clustering technique for every pair of attributes at the beginning, and then, for the total 35 

attributes. A maximum accuracy has been obtained using the pair of attributes Surface vs. Gx 
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(81.6667%) and a minimum accuracy for the pair Gx vs. Gy (53.3333%). When using all the 

attributes, 76.6667% of classification accuracy was achieved.  

The SVM technique was applied in order to get a feature selection and better classification’s 

accuracy. The SVM classifier showed more accurate results with a minimum accuracy of 

73.3333% and a maximum accuracy of 80% depending of the chosen pair of attributes. The AD 

subjects were identified most of the time. However, the Normal subjects were less likely identified. 

By using all the attributes, all the AD subjects have been identified but the percentage of the 

Normal subjects dropped to 0% for many cases. 

PCA dimensionality reduction technique was applied in order to get the attributes that could 

classify the data more accurately. The same classification techniques were reapplied to the new 

reduced dimensionality data. The SVM gave similar results. However, PCA did not work well for 

the KNN classifier. Indeed, even though the attributes were modified and rearranged from the most 

discriminate to the less discriminate, it was noticed that all the principal components were required 

to ensure a variability of the variance in the data. 

The shape and the size of the ventricle, given by the vector of attributes, had a big impact on the 

final result. The SVM classifier was opted since it showed better accuracy compared to the KNN. 

A framework was successfully created to continue researching the use of SVMs towards 

classifying medical images. This framework has potential to make potent predictions based 

exclusively on the properties of a patient's hippocampus based on the strength of the SVM's ability 

to classify objects.  

Future research could focus on investigating other regions that might be more affected, coupled 

with appropriate features set in order to characterize the new regions. It is suggested to focus on 

reducing the cost and improving the precision of the algorithms by using more intelligent 

algorithms such as adaptive seeds initialization and image registration in order to get initial contour 

for the active contour segmentation method. It is also suggested to focus on the enhancement of 

the classification algorithms and adding more data to the system. 
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Appendices 

Appendix A: Clustering results of pairs of attributes. 

Clustering results using surface and perimeter attributes 

 

Clustering results using surface and average (mean) attributes 
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Clustering results using surface and standard deviation attributes 

 

 

Clustering results using surface and width 1 attributes 
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Clustering results using surface and width 2 attributes 

 

Clustering results using surface and height attributes 
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Clustering results using surface and center of gravity Gx attributes 

 

 

Clustering results using surface and center of gravity Gy attributes 
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Clustering results using perimeter and average attributes 

 

Clustering results using perimeter and standard deviation attributes 
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Clustering results using perimeter and Width 1 

 

Clustering results using perimeter and width 2 attributes 
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Clustering results using perimeter and height attributes 

 

 

Clustering results using perimeter and center of gravity Gx attributes 
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Clustering results using perimeter and center of gravity Gy attributes 

 

 

Clustering results using average and standard deviation attributes 
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Clustering results using average and width 1 attributes 

 

Clustering results using average and width 2 attributes 
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Clustering results using average and height attributes 

 

 

Clustering results using average and center of gravity Gx attributes 
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Clustering results using average and center of gravity Gy attributes 

 

 

Clustering results using standard deviation and width 1 attributes 
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Clustering results using standard deviation and width 2 attributes 

 

 

Clustering results using standard deviation and height attributes 
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Clustering results using standard deviation and center of gravity Gx attributes 

 

Clustering results using standard deviation and center of gravity Gy attributes 
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Clustering results using width 1 and width 2 attributes 

 

Clustering results using width 1 and height attributes 
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Clustering results using width 1 and center of gravity Gx attributes 

 

 

Clustering results using width 1 and center of gravity Gy attributes 
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Clustering results using width 2 and height attributes 

 

Clustering results using width 2 and center of gravity Gx attributes 
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Clustering results using width 2 and center of gravity Gy attributes 

 

 

Clustering results using height and center of gravity Gx attributes 
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Clustering results using height and center of gravity Gy attributes 

 

Clustering results using center of gravity Gx and center of gravity Gy attributes 
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Appendix B: SVM results of pairs of attributes. 

Support vector machine (SVM) results using surface and perimeter attributes 

 

 
 

Support vector machine (SVM) results using surface and average attributes 
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Support vector machine (SVM) results using surface and standard deviation attributes 

 
 

Support vector machine (SVM) results using surface and width 1 attributes 
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Support vector machine (SVM) results using surface and width 2 attributes 

 
 

Support vector machine (SVM) results using surface and height attributes 
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Support vector machine (SVM) results using surface and center of gravity Gx attributes 

 
 

Support vector machine (SVM) results using surface and center of gravity Gy attributes 
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Support vector machine (SVM) results using perimeter and average attributes 

 
 

Support vector machine (SVM) results using perimeter and standard deviation attributes 
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Support vector machine (SVM) results using perimeter and Width 1 

 
 

Support vector machine (SVM) results using perimeter and width 2 attributes 
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Support vector machine (SVM) results using perimeter and height attributes 

 
 

Support vector machine (SVM) results using perimeter and center of gravity Gx attributes 
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Support vector machine (SVM) results using perimeter and center of gravity Gy attributes 

 
 

 

Support vector machine (SVM) results using average and standard deviation attributes 
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Support vector machine (SVM) results using average and width 1 attributes 

 
 

Support vector machine (SVM) results using average and width 2 attributes 
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Support vector machine (SVM) results using average and height attributes 

 
 

Support vector machine (SVM) results using average and standard deviation Gx attributes 
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Support vector machine (SVM) results using average and standard deviation Gy attributes 

 
 

Support vector machine (SVM) results using standard deviation and width 1 attributes 
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SVM classification results using the Kernel Function: rbf_kernel, # SV = 56 and bias = -0.629537
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Support vector machine (SVM) results using standard deviation and width 2 attributes 

 
 

Support vector machine (SVM) results using standard deviation and height attributes 
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SVM classification results using the Kernel Function: rbf_kernel, # SV = 57 and bias = -0.640618
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SVM classification results using the Kernel Function: rbf_kernel, # SV = 58 and bias = -0.653279
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Support vector machine (SVM) results using standard deviation and Gx attributes 

 
 

Support vector machine (SVM) results using standard deviation and Gy attributes 
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SVM classification results using the Kernel Function: rbf_kernel, # SV = 55 and bias = -0.643074
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SVM classification results using the Kernel Function: rbf_kernel, # SV = 60 and bias = -0.695938
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Support vector machine (SVM) results using width 1 and width 2 attributes 

 
 

Support vector machine (SVM) results using width 1 and height attributes 
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SVM classification results using the Kernel Function: rbf_kernel, # SV = 54 and bias = -0.669861
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SVM classification results using the Kernel Function: rbf_kernel, # SV = 56 and bias = -0.682945
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Support vector machine (SVM) results using width 1 and center of gravity Gx attributes 

 
 

Support vector machine (SVM) results using width 1 and center of gravity Gy attributes 
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SVM classification results using the Kernel Function: rbf_kernel, # SV = 53 and bias = -0.636936
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SVM classification results using the Kernel Function: rbf_kernel, # SV = 58 and bias = -0.754905
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Support vector machine (SVM) results using width 2 and height attributes 

 
 

Support vector machine (SVM) results using width 2 and center of gravity Gx attributes 
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SVM classification results using the Kernel Function: rbf_kernel, # SV = 56 and bias = -0.649476
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SVM classification results using the Kernel Function: rbf_kernel, # SV = 57 and bias = -0.679360
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Support vector machine (SVM) results using width 2 and center of gravity Gy attributes 

 
 

Support vector machine (SVM) results using height and center of gravity Gx attributes 
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SVM classification results using the Kernel Function: rbf_kernel, # SV = 60 and bias = -0.661830
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SVM classification results using the Kernel Function: rbf_kernel, # SV = 58 and bias = -0.660206
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Support vector machine (SVM) results using height and center of gravity Gy attributes 

 
 

Support vector machine (SVM) results using center of gravity Gx and center of gravity Gy 

attributes 
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SVM classification results using the Kernel Function: rbf_kernel, # SV = 60 and bias = -0.658366
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SVM classification results using the Kernel Function: rbf_kernel, # SV = 56 and bias = -0.689848
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Appendix C: Performance assessment of the KNN and SVM classification results using sets 

of attributes, before and after applying PCA 

 

 

C- 1 Performance assessment of the KNN classification technique including SN, SP, PPV, NPV 

and ACC classification’s performance 

 KNN performances 

 SN SP PPV NPV ACC 

Before PCA 85.1064% 46.1538% 85.1064% 46.1538% 76.6667% 

PCA : all attributes 85.1064% 30.7692% 81.6327% 36.3636% 73.3333% 

Attributes 1 to 34 82.9787%      30.7692%      81.25%      33.3333%      71.6667% 

Attributes 1 to 33 78.7234% 30.7692% 80.4348% 28.5714% 68.3333% 

Attributes 1 to 32 74.4681%   30.7692%    79.5455%   25%    65% 

Attributes 1 to 31 80.8511% 30.7692% 80.8511% 30.7692% 70% 

Attributes 1 to 30 85.1064% 23.0769% 80% 30% 71.6667% 

Attributes 1 to 29 87.234% 15.3846% 78.8462% 25% 71.6667% 

Attributes 1 to 28 87.234% 38.4615% 83.6735% 45.4545% 76.6667% 

Attributes 1 to 27 82.9787% 46.1538% 84.7826% 42.8571% 75% 

Attributes 1 to 26 82.9787% 38.4615% 82.9787% 38.4615% 73.3333% 

Attributes 1 to 25 78.7234% 23.0769% 78.7234% 23.0769% 66.6667% 

Attributes 1 to 24 74.4681% 15.3846% 76.087% 14.2857% 61.6667% 

Attributes 1 to 23 76.5957% 23.0769% 78.2609% 21.4286% 65% 

Attributes 1 to 22 85.1064% 23.0769% 80% 30% 71.6667% 

Attributes 1 to 21 85.1064% 23.0769% 80% 30% 71.6667% 

Attributes 1 to 20 82.9787% 23.0769% 79.5918% 27.2727% 70% 

Attributes 1 to 19 82.9787% 38.4615% 82.9787% 38.4615% 73.3333% 

Attributes 1 to 18 76.5957% 23.0769% 78.2609% 21.4286% 65% 

Attributes 1 to 17 78.7234% 38.4615% 82.2222% 33.3333% 70% 

Attributes 1 to 16 74.4681% 30.7692% 79.5455% 25% 65% 

Attributes 1 to 15 63.8298% 30.7692% 76.9231% 19.0476% 56.6667% 
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Attributes 1 to 14 78.7234% 38.4615% 82.2222% 33.3333% 70% 

Attributes 1 to 13 78.7234% 53.8462% 86.0465% 41.1765% 73.3333% 

Attributes 1 to 12 74.4681% 53.8462% 85.3659% 36.8421% 70% 

Attributes 1 to 11 89.3617% 46.1538% 85.7143% 54.5455% 80% 

Attributes 1 to 10 76.5957% 46.1538% 83.7209% 35.2941% 70% 

Attributes 1 to 9 68.0851% 53.8462% 84.2105% 31.8182% 65% 

Attributes 1 to 8 80.8511% 23.0769% 79.1667% 25% 68.3333% 

Attributes 1 to 7 65.9574% 23.0769% 75.6098% 15.7895% 56.6667% 

Attributes 1 to 6 68.0851% 38.4615% 80% 25% 61.6667% 

Attributes 1 to 5 82.9787% 46.1538% 84.7826% 42.8571% 75% 

Attributes 1 to 4 82.9787% 38.4615% 82.9787% 38.4615% 73.3333% 

Attributes 1 to 3 80.8511% 30.7692% 80.8511% 30.7692% 70% 

Attributes 1 to 2 72.3404% 23.0769% 77.2727% 18.75% 61.6667% 

Attribute 1 70.2128% 53.8462% 84.6154% 33.3333% 66.6667% 

Attributes 2 to 35 85.1064% 30.7692% 81.6327% 36.3636% 73.3333% 

Attributes 3  to 35 85.1064% 30.7692% 81.6327% 36.3636% 73.3333% 

Attributes 4 to 35 85.1064% 30.7692% 81.6327% 36.3636% 73.3333% 

Attributes 5 to 35 85.1064% 30.7692% 81.6327% 36.3636% 73.3333% 

Attributes 6 to 35 85.1064% 30.7692% 81.6327% 36.3636% 73.3333% 

Attributes 7 to 35 85.1064% 30.7692% 81.6327% 36.3636% 73.3333% 

Attributes 8 to 35 85.1064% 30.7692% 81.6327% 36.3636% 73.3333% 

Attributes 9 to 35 85.1064% 30.7692% 81.6327% 36.3636% 73.3333% 

Attributes 10 to 35 85.1064% 30.7692% 81.6327% 36.3636% 73.3333% 

Attributes 11 to 35 85.1064% 30.7692% 81.6327% 36.3636% 73.3333% 

Attributes 12 to 35 85.1064% 30.7692% 81.6327% 36.3636% 73.3333% 

Attributes 13 to 35 85.1064% 30.7692% 81.6327% 36.3636% 73.3333% 

Attributes 14 to 35 85.1064% 30.7692% 81.6327% 36.3636% 73.3333% 

Attributes 15 to 35 82.9787% 30.7692% 81.25% 33.3333% 71.6667% 

Attributes 16 to 35 82.9787% 30.7692% 81.25% 33.3333% 71.6667% 

Attributes 17 to 35 82.9787% 30.7692% 81.25% 33.3333% 71.6667% 
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Attributes 18 to 35 82.9787% 30.7692% 81.25% 33.3333% 71.6667% 

Attributes 19 to 35 82.9787% 30.7692% 81.25% 33.3333% 71.6667% 

Attributes 20 to 35 82.9787% 30.7692% 81.25% 33.3333% 71.6667% 

Attributes 21 to 35 82.9787% 30.7692% 81.25% 33.3333% 71.6667% 

Attributes 22 to 35 82.9787% 30.7692% 81.25% 33.3333% 71.6667% 

Attributes 23 to 35 82.9787% 30.7692% 81.25% 33.3333% 71.6667% 

Attributes 24 to 35 82.9787% 30.7692% 81.25% 33.3333% 71.6667% 

Attributes 25 to 35 80.8511% 30.7692% 80.8511% 30.7692% 70% 

Attributes 26 to 35 80.8511% 38.4615% 82.6087% 35.7143% 71.6667% 

Attributes 27 to 35 85.1064% 38.4615% 83.3333% 41.6667% 75% 

Attributes 28 to 35 85.1064% 23.0769% 80% 30% 71.6667% 

Attributes 29 to 35  82.9787% 30.7692% 81.25% 33.3333% 71.6667% 

Attributes 30 to 35 78.7234% 30.7692% 80.4348% 28.5714% 68.3333% 

Attributes 31 to 35 74.4681% 23.0769% 77.7778% 20% 63.3333% 

Attributes 32 to 35 74.4681% 23.0769% 77.7778% 20% 63.3333% 

Attributes 33 to 35 76.5957% 30.7692% 80% 26.6667% 66.6667% 

Attributes 34 to 35 76.5957% 15.3846% 76.5957% 15.3846% 63.3333% 

Attribute 35 70.2128% 30.7692% 78.5714% 22.2222% 61.6667% 
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C- 2 Performance assessment of the SVM classification technique including SN, SP, PPV, NPV 

and ACC classification’s performance 

 SVM performances 

 SN SP PPV NPV ACC 

Before PCA 100% 0% 78.3333% NaN 78.3333% 

PCA : all attributes 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 34 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 33 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 32 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 31 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 30 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 29 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 28 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 27 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 26 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 25 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 24 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 23 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 22 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 21 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 20 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 19 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 18 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 17 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 16 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 15 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 14 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 13 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 12 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 11 100% 0% 78.3333% NaN 78.3333% 
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Attributes 1 to 10 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 9 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 8 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 7 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 6 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 5 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 4 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 3 100% 0% 78.3333% NaN 78.3333% 

Attributes 1 to 2 97.8723% 0% 77.9661% 0% 76.6667% 

Attribute 1 93.617% 0% 77.193% 0% 73.3333% 

Attributes 2 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 3  to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 4 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 5 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 6 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 7 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 8 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 9 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 10 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 11 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 12 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 13 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 14 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 15 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 16 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 17 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 18 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 19 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 20 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 21 to 35 82.9787% 7.6923% 76.4706% 11.1111% 66.6667% 
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Attributes 22 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 23 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 24 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 25 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 26 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 27 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 28 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 29 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 30 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 31 to 35 100% 0% 78.3333% NaN 78.3333% 

Attributes 32 to 35 95.7447% 0% 77.5862% 0% 75% 

Attributes 33 to 35 95.7447% 0% 77.5862% 0% 75% 

Attributes 34 to 35 91.4894% 7.6923% 78.1818% 20% 73.3333% 

Attribute 35 91.4894% 30.7692% 82.6923% 50% 78.3333% 


