

GENERATING RANDOM SHAPES FOR MONTE CARLO ACCURACY

TESTING OF PAIRWISE COMPARISONS

by

Abdullah Almowanes

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science (MSc) in Computational Sciences

The School of Graduate Studies

Laurentian University

Sudbury, Ontario, Canada

© Abdullah Almowanes, 2013

THESIS DEFENCE COMMITTEE/COMITÉ DE SOUTENANCE DE

THÈSE

Laurentian Université/Université Laurentienne

School of Graduate Studies/École des études supérieures

Title of Thesis

Titre de la thèse GENERATING RANDOM SHAPES FOR MONTE CARLO ACCURACY

TESTING OF PAIRWISE COMPARISONS

Name of Candidate

Nom du candidat Almowanes, Abdullah

Degree

Diplôme Master of Science

Department/Program Date of Defence

Département/Programme Computational Sciences Date de la soutenance August 06, 2013

APPROVED/APPROUVÉ

Thesis Examiners/Examinateurs de thèse:

Dr. Waldemar W. Koczkodaj

(Supervisor/Directeur de thèse)

Dr. Amr Abdel-Dayem

(Committee member/Membre du comité)

Dr. Haibin Zhu

(Committee member/Membre du comité)

 Approved for the School of Graduate Studies

Dr. Andrzej Grzybowski Approuvé pour l’École des études supérieures

(External Examiner/Examinateur externe) Dr. David Lesbarrères

 M. David Lesbarrères

 Director, School of Graduate Studies

 Directeur, École des études supérieures

ACCESSIBILITY CLAUSE AND PERMISSION TO USE

I, Abdullah Almowanes, hereby grant to Laurentian University and/or its agents the non-exclusive license to

archive and make accessible my thesis, dissertation, or project report in whole or in part in all forms of media, now

or for the duration of my copyright ownership. I retain all other ownership rights to the copyright of the thesis,

dissertation or project report. I also reserve the right to use in future works (such as articles or books) all or part of

this thesis, dissertation, or project report. I further agree that permission for copying of this thesis in any manner, in

whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis

work or, in their absence, by the Head of the Department in which my thesis work was done. It is understood that

any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my

written permission. It is also understood that this copy is being made available in this form by the authority of the

copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as

permitted by the copyright laws without written authority from the copyright owner.

ii

Abstract

This thesis shows highly encouraging results as the gain of accuracy reached 18.4%

when the pairwise comparisons method was used instead of the direct method for com-

paring random shapes. The thesis describes a heuristic for generating random but nice

shapes, called placated shapes. Random, but visually nice shapes, are often needed

for cognitive experiments and processes. These shapes are produced by applying the

Gaussian blur to randomly generated polygons. Afterwards, the threshold is set to

transform pixels to black and white from different shades of gray. This transforma-

tion produces placated shapes for easier estimation of areas. Randomly generated

placated shapes are used to perform the Monte Carlo method to test the accuracy of

cognitive processes by using pairwise comparisons. An on-line questionnaire has been

implemented and participants were asked to estimate the areas of five shapes using a

provided unit of measure. They were also asked to compare the shapes in pairs. Such

Monte Carlo experiment has never been conducted for 2D case. The received results

are of considerable importance.

iii

To my parents, for their unconditional love, support and encouragement throughout

my life.

iv

Acknowledgements

First, I would like to express my deep gratitude towards my MSc thesis supervisor

Dr. Waldemar W. Koczkodaj, for all the time and effort that he devoted to help me

complete this thesis. Prof Koczkodaj defined the subject of this thesis, motivated me,

and helped throughout the past two years even during the most difficult times of my

study. His useful comments, remarks and engagement through the learning process

of the project were very supportive to finalize this master thesis. I would also like to

thank Dr. A. Abdel-Dayem and Prof. H. Zhu, for serving on the Advisory Committee,

their comments and reviewing the thesis. Moreover, I wish to thank my wife Hussa

for her personal support and great patience at all times. Without her love, help and

support, I would not have been able to finish this thesis. My gratefulness goes also to

my parents and sisters who have given me their unequivocal support throughout my

studies. In addition, I like to thank the participants in my survey, who have willingly

shared their precious time during the process answering my questionnaire. I would

like to acknowledge the generous financial support provided by the he Ministry of

Higher Education in the Kingdom of Saudi Arabia. Finally, I would like to extend

my gratitude to all those who surrounded me and supported me during this process.

v

Table of Contents

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Figures ix

List of Tables xiii

1 Introduction 1

2 The method of pairwise comparisons 4

2.1 Background . 5

2.2 Saaty’s Analytical Hierarchy Process 9

2.3 Reciprocal pairwise comparison matrix 11

2.4 Inconsistency . 15

3 Description of A Heuristic for Placated Random Shape Generation 21

3.1 Rationale . 23

3.2 Gaussian Blur . 24

3.2.1 Background . 24

3.2.2 Gaussian Blur Low Pass Filter 34

vi

3.3 The random shape heuristic algorithm 45

3.3.1 Generate Random Polygon . 45

3.3.2 Applying the blur and the cut-off 47

3.3.3 Dealing with holes . 53

4 Survey 62

4.1 Background . 62

4.2 Preparation . 65

4.3 Experiment 1 . 68

4.3.1 Sample . 68

4.3.2 Measures . 68

4.3.3 Stimuli . 72

4.3.4 Procedure . 74

4.3.5 Analysis . 77

4.3.6 Results . 78

4.3.7 Problems encountered in Experiment 1 81

4.4 Experiment 2 . 82

4.4.1 Sample . 85

4.4.2 Measures . 85

4.4.3 Stimuli . 87

4.4.4 Procedure . 88

4.4.5 Analysis . 91

4.4.6 Results . 91

5 Conclusions 100

Appendix A Appendix 111

A.1 Java Code . 111

A.1.1 Point Class . 111

vii

A.1.2 Pointlist Class . 112

A.1.3 RandomPoint Class . 113

A.1.4 Gaussian Class . 115

A.1.5 Image2Array Class . 120

A.1.6 SquareUnit Class . 122

A.2 PHP Code . 125

A.2.1 Consent form error checking and validating 125

A.2.2 Experiment 1 . 126

A.2.3 Experiment 2 . 132

A.3 MySQL . 137

A.3.1 Experiment 1 . 139

A.3.2 Experiment 2 . 140

viii

List of Figures

2.1 A decomposition of a problem into a hierarchy [59] 8

3.1 The first images to be transmitted using cable picture transmission

system[18] . 25

3.2 An image sent in 1922 using the improved system [18] 25

3.3 The first picture of the moon taken by Ranger 7 on July 31, 1964 [18] 26

3.4 An edge detection example[17]. 28

3.5 Image sharpening example [17]. 29

3.6 Image blurring example [17]. 29

3.7 Applying 5 ∗ 5 mean low pass filter [13]. 34

3.8 A 1D Gaussian distribution . 38

3.9 The shape before applying Gaussian blur 41

3.10 The shape after applying Gaussian blur 42

3.11 A 500 ∗ 500 image with 11 points shape 47

3.12 An output of a kernel with 9 radius 49

3.13 Blurring a random shape example . 50

3.14 The smooth looking shape after applying the cut-off using a 200 threshold 52

3.15 A terminal screenshot of the area of the shape output along with other

information . 52

3.16 A 7 points shape . 53

3.17 A 7 points shape with 20 Gaussian radius 53

3.18 The shape after applying a 100 threshold 54

ix

3.19 The shape after applying a 200 threshold 54

3.20 The shape after applying a 255 threshold 55

3.21 The shape after applying a 40 Gaussian kernel 55

3.22 The shape after applying a 127 threshold 56

3.23 The shape after using a 40 Gaussian radius and a 218 threshold . . . 56

3.24 A star looking shape . 57

3.25 A star looking shape with Gaussian blur of 10 57

3.26 A star looking shape with Gaussian blur of 10 and a 254 threshold . . 58

3.27 A star looking shape with Gaussian blur of 35 58

3.28 A star looking shape with Gaussian blur of 35 and a threshold of 240 58

3.29 An 8 points shape . 59

3.30 An 8 points shape and a Gaussian of size 25 59

3.31 An 8 points shape and a Gaussian of size 25 and 127 threshold 60

3.32 An 8 points shape and a Gaussian of size 45 and 150 threshold 60

3.33 An 8 points shape and a Gaussian of size 45 and 157 threshold 60

3.34 An 8 points shape and a Gaussian of size 45 and 206 threshold 61

3.35 A more extreme example . 61

3.36 A 50 points shape with 50 Gaussian radius and 127 threshold 61

3.37 A 50 points shape with 150 Gaussian blur radius and a 127 threshold 61

4.1 The 5 shapes to used for comparison [62] 63

4.2 The 5 Equal shapes with the square unit used in [1] 64

4.3 The questionnaire used in [1] . 64

4.4 A flowchart describing the step taken to perform the survey 66

4.5 The consent form used . 67

4.6 The select 5 shapes page . 69

4.7 How to use the unit to estimate the area example 70

4.8 Taks 2: estimate area of a shape in units 71

4.9 Taks 3: Compare the two shapes . 72

x

4.10 Experiment 1 flowchart . 73

4.11 Not too simple shape . 74

4.12 A shape with original area 121787 pixels before scaling 76

4.13 A shape with original area 71895 before scaling 76

4.14 Analysing and calculating the relative error for area estimation in units 77

4.15 Histogram showing the average error when using the direct method . 79

4.16 Histogram showing the average error when using pairwise comparisons

method . 80

4.17 Histogram showing the inconsistency when using pairwise comparisons

method . 80

4.18 The average time needed to complete each task in experiment 1 . . . 81

4.19 Task 3: pairwise comparison page (experiment 1) 83

4.20 Order shapes from largest to smallest screen 86

4.21 Pairwise comparisons used in experiment 2 88

4.22 Experiment 2 Flowchart . 89

4.23 A pairwise comparisons matrix in JConcluder 91

4.24 Weights of criterias example in JConcluder 92

4.25 Histogram showing the average error when using the direct method in

experiment 2 . 94

4.26 Histogram showing the inconsistency in the pairwise comparisons in

experiment 2 . 95

4.27 Histogram showing the average error when using the pairwise compar-

isons method in experiment 2 . 95

4.28 Comparing the average error rate when using the pairwise comparisons

and the direct method for area estimation of random shapes 96

4.29 The time taken to complete each task in experiment 2 in minutes . . 96

4.30 The most popular shape selected . 97

4.31 The second most popular shape selected 97

xi

4.32 The third most popular shape selected 98

4.33 The shapes that was not selected not even once 98

4.34 Shapes selected only once or twice . 99

A.1 Creating the unit square interface . 125

A.2 The MySQL overall view . 138

xii

List of Tables

2.1 A Nine point scale for pairwise comparison by [56] 11

2.2 A pairwise comparison matrix A . 13

2.3 Average RI for different n . 16

2.4 Average value of λmax of randomly generated pairwise comparison ma-

trices, RIn, the number of matrices with CR ≤ 10%, GD ≤ 1 and

GD ≤ 2 [5] . 19

3.1 Pascal’s Triangle . 36

3.2 A commonly used 15 x 15 Gaussian filter 39

3.3 Comparison between the 3 different algorithms 44

3.4 The placated random shape generation heuristic algorithm 45

4.1 A pairwise comparison matrix for the 5 geometric shapes [62] 62

4.2 A pairwise comparison matrix example for one of the records 78

4.3 The impact of bad screen design [15] 84

4.4 Experiment 2 steps . 90

xiii

1 Introduction

In this thesis, random placated shapes [3] are generated for Monte Carlo accuracy

testing of the pairwise comparisons method. The Monte Carlo method [45] is a statis-

tical numerical method that may be used for solving problems and has been applied

to many scientific fields [42]. It relies on the generation of a sequence of random

numbers [26]. The Monte Carlo method follows the following pattern. First, the

domain of the input is defined. Next, inputs are randomly generated. Afterwards,

the computation and testing are performed to discover the outcomes.

A placated shape is a smooth-looking shape without sharp edges and corners. It is a

random but visually nice smooth-looking shape. Random but visually nice shapes are

often needed for cognitive experiments and processes. These shapes also can be used

in many other areas such as computer games or software testing. Visual perceptual

skills can be assessed using placated shapes and the pairwise comparisons method.

The pairwise comparison method quantifies the relationship between the intensity of

physical stimuli and their perceptual effects [65]. Random shapes that are not too

tricky to estimate their area are used for the cognitive experiment. Our study demon-

strates an algorithm for generating these placated nice random shapes. No one really

knows what a nice shape is. However, we can recognize nice shapes once we see them

and more importantly, we can generate them. The second part of this study relies on

placated shapes, which are used for testing the accuracy of the pairwise comparisons

method.

The pairwise comparison is a practical and simple method. Its main goal is to estab-

lish the relative preference of n stimuli in situations where it is impractical to provide

1

estimates for the stimuli [23]. The pairwise comparison method has been widely used

in various domains such as in nuclear power [48] and in transportation systems [58].

In everyday life, people tend to make decisions. A great decision is one that leads

to the best outcome. In every country or region, there are standards regarding mea-

surements that may help in the process of decision-making. For example, people use

meters, foots, grams, and pounds for measuring length or weight. These assist in se-

lecting the better optimal option when there are different alternatives. Nonetheless,

there are many entities that cannot be measured using standard measures, so the

pairwise comparison method can be used in such situations. The method of pairwise

comparisons is probably as old as humankind. It is easy to imagine how people in

the past compared two different commodities by weighing them in each hand for a

fair exchange. Assessment of intangible criteria (e.g., the degree of environmental

pollution or public safety) involves not only imprecise or inexact knowledge, but also

inconsistency in our own assessments. The pairwise comparisons method can always

be used to reach final conclusions elegantly. The pairwise comparisons method is of

considerable importance in situations where direct measurements are impossible to

perform. It makes a natural and a powerful tool for decision-making. It is a natural

approach for processing subjectivity, although objective data can also be processed

this way. By common sense, and for any type of comparisons, taking two criteria

or alternatives at a time works better than taking all of them at once. Evidently,

handling multiple things at once is more difficult.

To perform the random shape Monte Carlo accuracy testing of pairwise comparisons,

an online questionnaire was implemented and acted as our data collection method.

Participants were asked to estimate areas of five shapes using a provided unit. In

addition, they were asked to compare the shapes in pairs. The average error rate was

then calculated for both and compared. The results were encouraging as the gain of

accuracy reached 18.4% when the pairwise comparisons method was used. To our

own knowledge and based on an intensive search, this is the first study in the world

2

for Monte Carlo 2D accuracy testing of pairwise comparisons.

This thesis is composed of three different chapters, in addition to the introduction

and conclusion. Chapter 2 of this thesis describes the method of pairwise comparisons

in full details. It provides a broad background survey of the method as well as a de-

scription of Saaty’s Analytical Hierarchy Process. It also describes the inconsistency

concept of the pairwise comparison matrix including Koczkodaj’s distance-based in-

consistency introduced in [32] and independently analyzed in [5]. The aim of Chapter

3 is to provide an overview description of the placated random shape generation

algorithm. In Chapter 4, the questionnaire, which was used for data collection, is

described and all the steps performed to complete the two experiments are described.

3

2 The method of pairwise comparisons

When comparing different entities, one tends to assign a single quality score to each

entity. If we have three different images of the same object, each with different quality

scale, many questions come to mind. Which question should be asked: How much

dose the quality of one image look compared to the other or would it be better to ask

simply if the image looks good [68]. Scales of measurement with zero placement and

measurement unit are known as interval scales [64]. The interval between any two

scale values has a meaning, but the numerical value of any single score is arbitrary.

Equivalent interval scales can be defined with different zeros and units. For example,

the Fahrenheit and Celsius temperature scales are equivalent interval scales with dif-

ferent zero placements, and different description of the amount of heat represented

by 1 degree. It is possible to convert between any two equivalent interval scales by

shifting and multiplicatively scaling the scale values [68]. In some situations, it is

very difficult to imagine measuring some objects without having universal standards.

In every country or region there are some standards regarding measurements. For

example, when measuring length or weight people use, meter, foot, kg, and pounds.

Nonetheless, there are many entities that cannot be measured using standard mea-

sures.

The pairwise comparisons method can always be used to reach strong and clever fi-

nal conclusions without too much difficulty. It is a common sense rule to take two

criteria or alternatives at a time rather than all at once. The reason is that han-

dling multiple things at once is more difficult. The pairwise comparisons method

is of high importance due to the fact that there are certain situations where direct

4

measurements are impossible to perform. This is a natural and a powerful tool that

is not practicality widely used, which may be due to the lack of scientific evidence

where better accuracy can be achieved using the pairwise comparisons method [35].

Therefore, we are trying in our research to show that the error rate decreases when

pairwise comparison method is used for area estimation for smooth random shapes.

Therefore, the accuracy increases when the pairwise comparisons method is used.

2.1 Background

The pairwise comparisons method has been in use for thousands of years. People of

the Stone Age were using it as a method of trade. To illustrate, they weighed a fish in

one hand with a bird in another hand to judge how valuable is each one. They would

then decide if they wanted to complete the transaction or not. However, it was not

until the 1300’s that the pairwise comparison method was scientifically introduced.

It was introduced by Remon Llull who was born in 1232 and died in 1316. Llull lived

in the Kingdom of Majorca in Catalan, Spain and he is one of the “founding fathers

of voting theory and social choice theory” [8]. Llull proposed an efficient system of

exhaustive binary comparisons. His voting systems is used in the analysis of certain

modern sports tournaments [8].

Nicolas de Condorcet, who is a French social scientist, mathematician, philoso-

pher and a human rights advocate, introduced a few important concepts related to

pairwise comparisons in 1785. One of these important concepts was the Condorcet’s

jury theorem. The theory states and translates to the following. If each member of

a voting group is more likely than not to make a correct decision, the probability

that the highest vote of the group is the correct decision increases as the number

of members of the group increases. It was used to simulate pairwise elections be-

tween all candidates in an election. He also explained the Condorcet’s paradox which

demonstrates that the majority of preferences become intransitive with three or more

candidate [43] [9].

5

In 1927, Thurstone [11] introduced the law of comparative judgment, which is the base

of all experimental work for all educational and psychological scales in which compar-

ative judgments are involved. The law of comparative judgment can be used in many

areas such the comparison of physical stimulus intensities, qualitative comparative

judgments, and psychological values. It can be used with samples with different gray

value, weights, or any other quantitative or qualitative value that need to be com-

pared [67]. When examining two samples for comparison, there should be some kind

of method to choose a preferred option from the compared pair. According to [67],

observers are not consistent in the comparative judgments when judging the same

pair in successive times if there is a just noticeable difference. Therefore, responses

from the same responder for a given sample may fluctuate. The law of comparative

judgment “applies fundamentally to the judgments of a single observer who compares

a series of stimuli by the method of paired comparison when no equal judgments are

allowed. It is a rational equation for the method of constant stimuli. It is assumed

that the single observer compares each pair of stimuli a sufficient number if times so

that a proportion may be determined for each pair of stimuli” [67]. The mathematical

formula for the law of comparative judgment is shown below [67]

S1 − S2 = x12

√
σ2

1 + σ2
2 − 2rσ1σ2 (2.1)

Where S1 = the psychological scale value of stimuli 1.

S2 = the psychological scale value of stimuli 2.

x12 = the sigma value corresponding to the proportion of judgment. It is either a

positive or a negative value.

σ1 = discriminal desperation 1

σ2 = discriminal desperation 2

r = correlation between σ1 and σ2

Pairwise comparison method is mainly used to subjectively compare objects. This

6

means that it is used to compare objects that are difficult or impossible to measure.

It may be used in all kinds of preference testing. In some situations, it is the only

feasible experimental technique [11].

It is generally accepted that the use of the pairwise comparison that is performed

today took place in 1977 [57]. It is a natural approach for processing subjective

data, although objective data can be also processed this way. In 1977, Thomas L.

Saaty proposed a hierarchical structure of pairwise comparison. According to [57],

the biggest problem of decision theory is how to get the weight for a set according to

the importance of each element of that set. This is due to the fact that importance is

judged according to criterion that may be shared by all or some of the elements. In

other words, the most important obstacle for making a decision is to develop weights

for some set of activities agreeing to the importance of each one of them. Saaty’s

method scaled the weights of the elements in each level of the hierarchy with respect

to the higher level element and a pairwise comparison matrix was constructed. Take

the“best house to buy” shown in [59] as an example. When an average income family

wants to buy a house, they identify 8 criterias that they have to look for in a house.

The problem has to be seen as a hierarchy with the top level as the goal, the second

level as the criteria, and the third as the candidate houses to be evaluated. See Fig-

ure 2.1 for how the problem is illustrated in an hierarchy. Intuitively, it is obvious that

the “two at a time” approach is better than “everything at once” method for any kind

of comparisons. To show that the pairwise comparisons method is superior to the

common sense by an expert’s eye approach, is not entirely a trivial task since there are

many hurdles to overcome. Saaty’s Analytical Hierarchy Process introduced in 1980

a method that aims to derive ranking order from pairwise comparisons. The values

of comparisons can be obtained from either an actual measurement or a subjective

perspective [56]. These days, there are many evidences that the pairwise compar-

isons method can be applied in many aspects in life. It can be used in the medical

field as shown in [30] where medical scale predictably improved using the pairwise

7

14 T.L. Saaty / The AHP: How to make a decision

consistent. When the matrix is inconsistent, the
10% consistency bound is a sufficient measure to
ensure that the eigenvector follows the Dirichiet
distribution with given parameters which can be
computed from the corresponding consistent ma-
trix. The gamma assumption is a powerful one
because of the inherent density of linear combina-
tions of these distributions.

4. Two examples

The AHP is used with two types of measure-
ment, relative and absolute, the latter having to do
with memory standards mentioned above. In both,
paired comparisons are performed to derive prior-
ities for criteria with respect to the goal. In rela-
tive measurement, paired comparisons are per-
formed throughout the hierarchy including on the
alternatives in the lowest level of the hierarchy
with respect to the criteria in the level above. In
absolute measurement, paired comparisons are
also performed through the hierarchy with the
exceptions of the alternatives themselves. The level
just above the alternatives consists of intensities or
grades which are refinements of the criteria or
subcriteria governing the alternatives. One pair-
wise compares the grades themselves under each
criterion by answering questions such as: How
much better is a student applicant with excellent
grades than one with very good grades? and how
much better is a student applicant with average
letters of recommendation than one with poor
ones? and so on. The alternatives are not pairwise
compared, but simply rated as to what category in
which they fall under each criterion. A weighting
and summing process yields their overall ranks.

This will become clear in the second example
below. There is no reason why forcing standards
on a problem should produce the same outcome
obtained through relative measurement. These are
two different descriptive (what can be) and
normative (what should be) settings.

4.1. Relative measurement: Choosing the best house
to buy

When advising a family of average income to
buy a house, the family identified eight criteria
which they thought they had to look for in a
house. These criteria fall into three categories:
economic, geographic and physical. Although one
may have begun by examining the relative impor-
tance of these clusters, the family felt they wanted
to prioritize the relative importance of all the
criteria without working with clusters. The prob-
lem was to decide which of three candidate houses
to choose. The first step is the structuring of the
problem asa hierarchy.

In the first (or top) level is the overall goal of
'Satisfaction with house'. In the second level are
the eight criteria which contribute to the goal, and
the third (or bottom) level are the three candidate
houses which are to be evaluated in terms of the
criteria in the second level. The definitions of the
criteria follow and the hierarchy is shown in Fig-
ure 1.

The criteria important to the individual family
were:

(1) Size of house: Storage space; size of rooms,
number of rooms; total area of house.

(2) Location to bus lines: Convenient, close bus
service.

SAT, SFACTION WIT""OUSE]

Figure 1. Decomposition of the problem into a hierarchy

Figure 2.1: A decomposition of a problem into a hierarchy [59]

comparisons method. The method of pairwise comparisons can be applied to both

objective measures, such as distance, by comparing length and subjective measures

like air pollution [74]. In addition, a study was introduced in [29] that demonstrates

how to strengthen the commonly used World Health Organizations Quality of Life

Index (WHOQOL) by using the consistency driven pairwise comparisons method. It

is also used in medical knowledge mining for image data to asess medical images for

early stroke detection [40]. In 2010, a new concept of pairwise comparisons ranking

data and pairwise comparisons consistent ranking data have been introduced [74].

Moreover, development and validation of a pairwise comparison scale for user expe-

rience (UX) evaluations with preschoolers was introduced in [73]. It has even been

used in work and publication of material that deals with the conflict between Israel

and the Palestinians in the Middle East [62]. Likewise, [28] propose a strong error

tolerant algorithm for ranking that only requires that the pairwise comparisons are

probably correct. Besides, the pairwise comparisons method was used to build an

expert system for construction tending process [37]. It was also used in selecting the

best strategy in the software certification process [4]. Furthermore, it was used on

nuclear power plants [48] and in transportation systems [58].

Research in pairwise comparison went even further. By not using any numbers, a

consistency driven algorithm has been presented and shown is in [74] as a method of

pairwise comparison. In [6], a useful tool for showing how to handle incomplete pair-

8

wise comparison matrices as a natural extension of the complete case was introduced.

Other examples include fuzzy pairwise comparisons extensions of the multi criteria

analysis with pairwise comparisons under a fuzzy environment [41] [12], and deriving

priorities from fuzzy pairwise comparisons judgments [46]. According to [24], it is

also encouraging to know that the triad-based algorithm for improving consistency

in the pairwise comparisons matrix are convergent. This also means that theoretical

grounds for trust in the pairwise comparisons method have been established. The

study of pairwise comparisons began to receive more attention due to the great ac-

complishments achieved in research. Additional research on pairwise comparisons is

still undergoing as it is a very important part of the decision making process.

2.2 Saaty’s Analytical Hierarchy Process

The Analytic Hierarchy Process (AHP) is a theory of measurement that uses the

pairwise comparisons method. The theory relies on the judgments of experts to derive

a priority scale. The comparisons are made using a scale of absolute judgments. These

judgments represent how much is one element better than another with respect to a

given attribute. The judgments may be inconsistent and consistency is a concern in

the analytical hierarchy process [61]. An organized decision maker should follow the

following analytical hierarchy process. The first step is to define the problem and to

determine the level of knowledge needed. The next step is to structure the decision

hierarchy from the top level (goal), through the intermediate level (criteria), to the

lowest level (alternatives). Next, construct the pairwise comparison matrices where

elements in the upper level are compared with the elements in the level below. The

last step is to use the priorities obtained from comparisons to weigh the priorities in

the level immediately below. This has to be repeated for all elements. Then for each

element in the level below, add its weighed values and obtain its overall or global

priority. The process of weighing and adding continues until the final priorities of the

alternatives in the lowest most level are obtained [61].

9

According to [40], the hierarchy reduces the number of comparisons from (n2) to

(nlnn). For example, a case with 49 features would require 1176 comparisons without

a hierarchy and only 168 comparisons if a hierarchy is used, grouping them into seven

features each. In order to assist in the process of making the decision using the

pairwise comparison method, a nine point scale is used. This is to quantify pairwise

preference of one element over the other. The scale, introduced by Saaty, is shown in

Table 2.1 [56].

10

Table 2.1: A Nine point scale for pairwise comparison by [56]

Description Scale

Equally preferred 1

Equally to moderately 2

Moderately preferred 3

Moderately to strongly 4

Strongly preferred 5

Strongly to very strongly 6

Very strongly preferred 7

Very strongly to extremely 8

Extremely preferred 9

2.3 Reciprocal pairwise comparison matrix

Making decisions requires comparing alternatives with respect to a set of criterias.

Whenever the number of criteria increases, the number of pairwise comparisons in-

creases. There are n(n − 1)/2 pairwise comparisons for any n criterias. Criterias in

the pairwise comparisons method are presented in pairs. We need to evaluate indi-

vidual alternatives to derive the respective weight for the criteria. The next step is

to construct the overall rating scheme of the alternative. That is to reach the best

choice possible [35]. For stimuli A1, A2, A3, ..., An, weights are w1, w2, w3, ..., wn and

the weight ratio matrix is W . The pairwise comparisons matrix is A which repre-

sents the preference between individual pairs of alternatives. The element aij is the

estimate of the actual weight ratio wij [36].

11

W =



w1

w1

w1

w2

w1

w3
. . . w1

wn

w2

w1

w2

w2

w2

w3
. . . w2

wn

w3

w1

w3

w2

w3

w3
. . . w3

wn

...
...

...
. . .

...

wn
w1

wn
w2

wn
w3

. . . wn
wn


(2.2)

A =



a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n

...
...

...
. . .

...

an1 an2 an2 . . . ann


(2.3)

All elements in the two matrices are positive and both matrices are reciprocal. A

reciprocal matrix is a matrix that satisfies the following:

aij = 1
aji

For i, j = 1, 2, 3, ..., n.

A number of different methods have been recommended to convert judgments in

the pairwise comparisons matrix A into a numerical scale. For a positive reciprocal

matrix A = [aij] and a vector w = (w1, w2, ..., wn), where the ratio matrix [wi, wj] is

an approximation to A. To find w, eigenvalue is used where the vector of weights is

an eigenvector w corresponding to the eigenvalue λmax [57] [35].

Suppose that a set of n objects in pairs according to their relative weights and have

a ratio scale need to be compared. Where A1, A2, A3, ..., An are the objects and

w1, w2, w3, ..., wn are the weights. The pairwise comparison is represented by the

following pairwise comparison matrix A shown in Table 2.2.

According to the Perron-Frobenius Theorem [54] [14], the max eigenvalue λmax is

a real and positive number. In addition, the elements of the reciprocal matrix A are

all positive [57]. If A is multiplied by the wt = (w1, w2, w3, ..., wn),

12

Table 2.2: A pairwise comparison matrix A

A1 A2 A3 . . . An

A1 w1/w1 w1/w2 w1/w3 . . . w1/wn

A2 w2/w1 w2/w2 w2/w3 . . . w2/wn

A3 w3/w1 w3/w2 w3/w3 . . . w3/wn
...

...
...

...
. . .

...

An wn/w1 wn/w2 wn/w3 . . . wn/wn

Aw = nw.

To find w, solve the system

(A− nI)w = 0

for the unknown w. This gives a non zero solution if and only if n is an eigenvalue of

A. Furturmore, all the eigenvalues λi for i = 1, 2, 3, ..., n are zeros except one. The

matrix A also satisfies the cardinal consistency property aijajk = aik and is called

consistent. This means that if a row in A is given, other entries can be determined

from this relation [57].

Here is an example to illustrate how the eigenvalue method is used. This is a 3X3

reciprocal matrix

A =


1 1

3
5

3 1 7

1
5

1
7

1


To normalize A, add the values of each column.

1 + 3 + 1
5

= 21
5

, 1
3

+ 1 + 1
7

= 31
21

, 5 + 7 + 1 = 13.

Now, divide each element of the matrix by the sum of its column to normalize

relative weights.

13

A =


5
21

7
31

5
13

15
21

21
31

7
13

1
21

3
31

1
13


After that, normalized principal eigenvector has to be calculated by getting the

average of the sum of each row of the normalized matrix.

w =


5
21

7
31

5
13

15
21

21
31

7
13

1
21

3
31

1
13

 =


0.848

1.930

0.221



w =
1

3


0.848

1.930

0.221

 =


0.282

0.643

0.073


The relative weights vector W is the relative weight between subjects being com-

pared. Notice that the sum of 0.282 + 0.643 + 0.073 = 1, because the eigenvector is

normalized. The following shows how to calculate the normalized principal vector W

for A using the eigenvalue.

A =


1 1

3
5

3 1 7

1
5

1
7

1


Then, use det(A− λI) = 0 to solve for λ and since I is the identity matrix and is

already known.

det(A− λI) =


1− λ 1

3
5

3 1− λ 7

1
5

1
7

1− λ

 = 0

14

By calculating λ, λmax = 3.0649 can be obtained. By substituting λ in the previous

equation,

det(A− λI) =


−2.0649 1

3
5

3 −2.0649 7

1
5

1
7

−2.0649

 .


w1

w2

w3

 = 0

W =


w1

w2

w3

 =


0.392

0.9140

0.1013


and the normalized W would looks like

W =


0.279

0.649

0.0719


which adds to one. Notice that this W , or W2 and the previous estimated W or W1

are almost the same.

W1 ≈ W2
0.282

0.643

0.073

 ≈


0.279

0.649

0.071


2.4 Inconsistency

Consistency is an important aspect of representing real life problems using scales.

Inconsistency of the pairwise matrix was introduced to make the pairwise compar-

isons matrix in a relatively acceptable scale. However, statistical measures, intuition,

and logic are important too. Saaty, the greatest single contributor to the popular-

ization of the pairwise comparisons method [35], proposed a method to analyze the

inconsistencies in the pairwise comparisons matrix [57]. Inconsistency is a rescaling of

15

the largest eigenvalue. Saaty’s Inconsistency Index is calculated using the following

formula.

CIn =
λmax − n
n− 1

(2.4)

Where CIn is the consistency index and λmax is the largest eigenvalue of a pairwise

comparisons n ∗ n reciprocal matrix A. It is also important to mention that the

inconsistency index means nothing by itself. It should be compared with a benchmark

to determine the magnitude of the deviation from consistency. Saaty demonstrated

that if a decision maker is fully consistent, then λmax = n and CI = 0. On the

other hand, λmax > n is used if the decision is not fully consistent. CI is always

non negative since λmax ≥ n. A consistency ratio CR was introduced by Saaty to

measure the consistency. Let RI be the benchmark, CR = CI
RI

RI is the average

value of CI from 500 positive reciprocal pairwise comparison matrices whose entries

are randomly generated using the 1 to 9 scale introduced earlier. See Table 2.3[53].

Table 2.3: Average RI for different n

n 1-2 3 4 5 6 7

RIn 0 0.58 0.90 1.12 1.24 1.32

For the given example above, λmax = 3.0649 and the size of the PC matrix is n = 3.

Thus, the consistency index is

CI = λmax−n
n−1

= 3.0649−3
3−1

= 0.03245.

According to Table 2.3 for n = 3, RI = 58. Therefore,

CR = CI
RI

= 0.03245
0.58

= 5.59% ≤ 10%

which means that the pairwise comparisons matrix is consistent. If the matrix is

consistence, λmax = n,CIn = 0, and CRn = 0. Saaty concluded that an inconsistency

ratio of 10% or less is acceptable. The decision maker is sufficiently consistent when

CR < 0.10 [53]. Saaty improved this ratio in [60] to 0.08 and to 0.05 for 3 ∗ 3 and

4 ∗ 4 matrices respectively.

16

Koczkodaj introduced a new definition of inconsistency in [32] because of the two

main problems with Saaty’s inconsistency definition. According to Koczkodaj, these

problems are the 10% rule of thumb and the lack of being able to exactly locate the

inconsistency. The eigenvalues is a global characteristic of a matrix and one can’t

say which matrix element contributes more to the inconsistency. Koczkodaj pro-

posed a method to calculate inconsistency based on a measure of deviation from the

nearest consistent reciprocal matrix. It is known as the distance-based inconsistency

definition. For example, when n = 3, and if a basic reciprocal matrix,

A =


1 a b

1
a

1 c

1
b

1
c

1


then it is reduced to a vector of three coordinates [a, b, c] [5]. In the consistent case,

b = ac holds and we can create three consistent reciprocal matrices. This is done by

the computation of one coordinate from computing the remaining two coordinates.

(b
c
, b, c), (a, ac, c), and (a, b, b

a
)

The inconsistency index of a 3× 3 pairwise comparisons matrix is CM(a, b, c).

CM(a, b, c) = min{ 1
a
|a− b

c
|, 1
b
|b− ac|, 1

c
|c− b

a
|}

For any n ∗ n matrix with n > 2,

CM(A) = max{min{|1− b
ac
|, |1− ac

b
|} for each triad (a, b, c) in A}.

The number of all possible triads of an n× n pairwise comparisons matrix equals:

n(n− 1)(n− 2)/3!

In the case of 4 ∗ 4 pairwise comparison matrix and a scale of 1 to 5, the threshold

should be 1/3 [38]. To define a threshold for higher dimensions pairwise comparisons

matrices, Koczkodaj proposes one grade off and two grades off rules [38].

17

The grade difference,GD(a, b, c) determines the approximation of an element by

the two other elements [38].

GD(a, b, c) = min{max{|a− b
c
|, | 1

a
− c

b
},max{|b− ac|, |1

b
− 1

ac
|},

max{|c− b
a
|, |1

c
− a

b
}}

The one grade off rule is

GD(a, b, c) ≤ 1

and the two grade off rule is

GD(a, b, c) ≤ 2

For matrices of higher order, the one grade off and the two grades off rules are

GD(A) = max{GD(a, b, c) for each triad (a, b, c) in A} ≤ 1 or 2,

Koczkodaj’s inconsistency index for 4 ∗ 4 pairwise comparisons matrices is stricter

than Saaty’s. The following is an example which shows that Saay’s 10% threshold

allows higher inconsistency when 1
9
, . . . , 1, . . . , 9 scale is used [5].

A =


1 1

8
2 6

8 1 7 9

1
2

1
7

1 2

1
6

1
9

1
2

1


Where CR = CR(4, 9) = 9.47 and CM = 0.8125. Analysis of GD ≤ 1, GD ≤ 2, and

CR ≤ 10% is shown in Table 2.4 [5].

Although Saaty’s consistency ratio and Koczkodaj’s consistency index are rele-

vant, they have drawbacks that still need to be investigated. For Saaty’s, “What

is the relation between an empirical matrix from human judgments and a randomly

generated one? Is an index obtained from several hundreds of randomly generated

matrices the right reference point for determining the level of inconsistency of pair-

wise comparison matrix built up from human decisions, for a real decision problem?

18

T
ab

le
2.

4:
A

ve
ra

ge
va

lu
e

of
λ
m
a
x

of
ra

n
d
om

ly
ge

n
er

at
ed

p
ai

rw
is

e
co

m
p
ar

is
on

m
at

ri
ce

s,
R
I n

,
th

e
n
u
m

b
er

of
m

at
ri

ce
s

w
it

h

C
R
≤

10
%

,
G
D
≤

1
an

d
G
D
≤

2
[5

]

n
S
am

p
le

S
iz

e

N
.

M
a-

tr
ic

es
w

.

C
R
≤

10
%

R
at

io
of

M
at

ri
-

ce
s

w
.

C
R
≤

10
%

N
.

M
a-

tr
ic

es
w

.

G
D
≤

1

R
at

io
of

M
at

ri
-

ce
s

w
.

G
D
≤

1

N
.

M
a-

tr
ic

es
w

.

G
D
≤

2

R
at

io
of

M
at

ri
-

ce
s

w
.

G
D
≤

2

3
10

7
2.

08
×

10
6

20
.8

%
1.

42
×

10
6

14
.2

%
2.

08
×

10
6

26
.8

%

4
10

7
3.

15
×

10
5

3.
15

%
2.

76
×

10
4

0.
27

6%
1.

7
×

10
4

1.
7%

5
10

7
2.

39
×

10
4

0.
23

9%
61

0.
00

06
1%

24
04

0.
02

4%

6
10

7
77

0
0.

00
77

%
0

0%
13

0.
00

01
3%

7
10

7
9

0.
00

00
9%

0
0%

0
0%

8
10

7
0

0%
0

0%
0

0%

9
10

7
0

0%
0

0%
0

0%

10
10

7
0

0%
0

0%
0

0%

19

How to take the size of matrices into account in a more precise form?”. For Koczko-

daj consistency index, “the elaboration of the thresholds in higher dimensions or to

replace the index by a refined grade off rule” [5]. The method of pairwise comparisons

is a very important concept and can be applied to many fields. However, additional

research on pairwise comparison inconsistency should be performed.

20

3 Description of A Heuristic for Placated

Random Shape Generation

This chapter explains how random but visually nice shapes can be generated, which

is often needed for cognitive experiments and processes. A nice shape is a shape

with no sharp edges and corners. It is a smooth looking placated shape. The con-

struction of random polygons is used in psychological research, testing algorithms,

creation of scenes for animation and interactive art. Generating random polygons

in a computationally efficient manner is important, particularly in a resource limited

environment such as the web browser [10]. The proposed heuristic is based on apply-

ing the Gaussian blur to randomly generated shapes. Subsequently, the threshold is

set to convert pixels to black and white from different shades of gray, giving shapes

which are not sharp or otherwise hard to distinguish the area (such as, a porcupine

or a sun with many rays). Randomly generated placated shapes are used for testing

the accuracy of cognitive processes (such as the process induced by pairwise com-

parisons). They can also be used in many other areas such as computer games or

software testing. The heuristic algorithm for generating nice random shapes can be

perceived as an ideal example of a heuristic algorithm. Not only it ignores whether or

not the solution can be proven to be correct, but such proof can very likely to never

be provided since no one really knows what a nice shape is. However, we can recog-

nize nice shapes once we see them. The observer can judge how successful we were

in that attempt. Generating totally random shapes is simple: generating random

coordinates, placing one pixel, and keep adding other random pixels to it. We have

21

not done it in this project since random shapes, which are not only nice or smooth

but also not too difficult to estimate their areas, is needed for the Monte Carlo testing

of the pairwise comparisons method accuracy. A 1D case (randomly generated bars)

for testing the accuracy of pairwise comparisons was published in [34] and [35] as

the first statistically correct in the world. The random bar length estimation error

was reduced from approximately 15 % (by direct method) to approximately 5 % by

using pairwise comparisons method. Evidently, it was not simple to find a solution

to a 2D case, since random but nice shapes needed to be generated. A diabolical

experiment was designed and published in [1] where random but equal in area shapes

were used. However, the shapes, although random were a product of a human hand

(as described in [39]) where a combination of rough pencil and brush strokes were

used for Gaussian blurring. Respondents were tricked in comparing random but equal

shapes (according to the area) without knowing that all shapes had an identical area,

by a cognitive experiment designed and reported in [1]. The results of the cognitive

experiment were rather astonishing. Only few respondents guessed the equality, while

the estimation of one shape to measure up to 10 times bigger than the other shape

was rather frequent. We need random shapes but these random shapes cannot be

too tricky to estimate. For example, a porcupine or a fairy-tale sun with many rays

are not easy for the area estimation purpose and must be excluded from this experi-

ment. On the other hand, random shapes cannot be trivial to estimate, for example,

randomly generated rectangles should not be used because of the proportionality to

one dimension. Circles are more valid but are still proportional to the square of the

diameter. Intuitively, it is obvious that the two at a time approach is better than

the everything at once method for any kind of comparisons. The main goal of the

presented experiments is to compare the accuracy of area assessments based on the

pairwise comparisons method with the direct method, which is also referred to as

by eye estimation. At the current stage of pairwise comparisons theory, there is no

possibility of proving, or disproving, by analytical means which method is superior.

22

3.1 Rationale

Our shape generation algorithm begins with generating a random polygon. It can

be degenerated (e.g., with holes). Several heuristics were presented for the random

generation of polygons and implemented as the RPG (Random Polygon Generator)

software package [66]. Although it is possible to generate nice random shapes, suited

for the use in cognitive studies by the smoothing option, the RPG heuristic algorithms

are considerably complex to implement. They are designed to generate polygons with

specific features from arbitrary sets of prescribed vertices. We present a more efficient

approach by assuming that there is no need to compute intermediate strict polygons

if one blurs the results to obtain smooth shapes at the end, since blurring and cutting

at a randomly chosen threshold is needed to obtain smooth shapes. In particular,

there is no need to enforce topological shape constraints. So, we make no effort to

ensure that the polygons are simply connected in the sense of topology. This property

could be lost after blurring. In our approach, connectedness follows from generating

a closed polygonal curve from the seed points. Moreover, blurring and then thresh-

olding with a sufficiently permissive cut-off maintains conceitedness. Obviously, the

results depend on the number of points, N , and how we generate random coordinates.

The method used to generate a curve from the random coordinates, the blur radius,

and the threshold value also influence the appearance of shapes. In principle, any

interpolatory or smoothing curve generation method such as: B-splines, Bezier, or

Hermite could be used to generate the curve from the random points. We use the

simplest linear spline interpolation, or “join the dots with straight lines.” The curve

should not be too thin otherwise the final thresholding may introduce aliasing arti-

facts when the blurring is applied. Blurring gives a smoother intensity surface, which

in terms lead to a smoother shape post-thresholding. The number of randomly gen-

erated points, N , should be large enough so that the polygonal curve is non-trivial.

We recommend using at least ten points, unless N itself is a random variable. By

assigning lower values for N , very simple shapes may be generated. On the other

23

hand, N should not be so large. This can result random variations that make ran-

dom coordinates averaged out by the blurring process, resulting in a featureless blob.

A Java random numbers function has been used for generating point coordinates by

rescaling the random number. The points are uniformly distributed in a square. It

has been done in such way that points fit in the assumed canvas, which is 500 ∗ 500

pixels. Blurring adds the mild and soft look to an initial rough shape and spreads the

curve inward and outward. For this reason, there should be a large enough margin

all around to accommodate the shape’s final bulk. Attractive for its simplicity, this

approach has great potential.

3.2 Gaussian Blur

3.2.1 Background

According to [18], increase gain of interest in image processing arises to improve the

graphic information for human interpretation and the processing of scene data for

machine perception. Image processing was needed in the early days in the newspa-

per industry. Pictures were sent by submarine cable between London and New York

for the first time in the 1921. It shortened the time usually needed to transmit the

photo, which was a week, to less than 3 hours. The system that was used to transmit

the picture is called the Bartlane cable picture transmission system. Special printing

equipment coded the picture for cable transmission and then recoded it at the receiv-

ing end for display. The first images to be transmitted using this method is shown

in Figure 3.1. Thereafter, an improved technique was invented in 1922. It was based

on photographic reproduction made from tapes that contained holes at the telegraph

receiving terminal, which produced a better image (see Figure 3.2). Even though the

transmission of these two images was related to digital images, the images were not

considered as a digital image processing result because the process did not include the

use of any computer. Therefore, the history of digital image processing is dependent

24

Figure 3.1: The first images to be transmitted using cable picture transmission

system[18]

Figure 3.2: An image sent in 1922 using the improved system [18]

on the development of computers. In the 1960s, the first computer, powerful enough

to process an image, was born and which is when the birth of image processing took

place. During that period of time, image processing began to improve in a faster

manner. In 1964, pictures of the moon transmitted by Ranger 7 were processed by

a computer at the Jet Propulsion Laboratory in Pasadena, CA. The image shown in

Figure 3.3 was processed to cleanup various types of image distortions. It was the

first picture of the moon that was taken by a US spacecraft.

Research in image processing has grown rapidly and is continuing to grow because of

the importance of that field. During the last 50 years, various techniques have been

introduced and developed in image processing. Nowadays, image processing systems

are becoming more and more popular due to the advances made in computer proces-

sors, memory, and graphics software. Image processing is used in many profession

fields in life such as remote sensing, bioinformatics, medical imaging, forensic science,

textiles, material science, military, film industry, document processing, printing in-

25

Figure 3.3: The first picture of the moon taken by Ranger 7 on July 31, 1964 [18]

dustry, and many more. There are many image processing techniques and operations

which can be used such as image scaling, image rotation, contrast stretching, image

analysis, image segmentation, image restoration, image compression, and image fil-

tering.

Consistent with [19], an image can be thought of as a two-dimensional light intensity

function f(x, y). Where f(x, y) gives the intensity at position (x, y). This point is

proportional to brightness or gray level of the image at that point. f(x, y) is sampled

so that the resulting digital image has m rows and n columns. The values of the

(x, y) become discrete quantities and each sample has to be quantized or rounded to

the nearest integer. The result will be a matrix of real numbers. Each element of

this matrix array is called a pixel, which allows to represent an image in a matrix. In

image processing, an operation defines a new image g in terms of an original image

f .

g(x, y) = t(f(x, y)) (3.1)

For instance, image filtering can be named as one of the many image processing

techniques and operations. A filter h can change a range of an image or changes the

image completely.

26

g(x) = h(f(x)) (3.2)

Gaussian blur is an image filtering technique.

3.2.1.1 Convolution

As Gaussian blur is a type of image filter and convolution is used for applying a filter

on an image, the convolution should be described first before explaining Gaussian

blur. Convolution is an operation performed on two functions and produces a third

new modified version. It is the treatment of a matrix by another one, which is called

a kernel. Many filters uses convolution as the method to apply the filter to the image.

One can build any custom filter that suit one’s needs.

When a 3 x 3 kernel matrix is used, the filter successively goes over every pixel of

the image. It multiplies the value of this pixel and values of the 8 surrounding pixels

with the kernel corresponding values. Then it adds the results, and the initial pixel

is set to this final result value. Here is an example [17] where the pixel, which the

calculations are performed on, is the one at the center of the matrix. The kernel

action area, which is called the neighborhood, is the whole matrix since both the

kernel and the original matrices are of the same size (3 ∗ 3).
40 42 46

46 50 55

52 56 58

 ,

the kernel matrix is 
0 1 0

0 0 0

0 0 0

 ,

27

Figure 3.4: An edge detection example[17].

and the convolution result for the center pixel is represented here:
? ? ?

? 42 ?

? ? ?



The filter reads successively all the pixels of the kernel action area. It then multiplies

the value of each of them by the kernel corresponding value and adds results. The

result will be

(40∗0)+(42∗1)+(46∗0)+(46∗0)+(50∗0)+(55∗0)+(52∗0)+(56∗0)+(58∗0) = 42.

It does the same for each other pixel.

Convolution is widely used in image processing and is used for many operations. The

following filters are some examples. The input image, kernel matrix, and the output

image are shown. The following convolution examples are taken from [17]. Figure 3.4

shows how convolution is used to detect the edges of an image. Another example,

Figure 3.5, shows how to sharpen an image. Also, Figure 3.6 demonstrates how to

blur an image.

The 2D convolution process requires M∗N multiplications for a kernel of size M∗N .

If the kernel size is 3 ∗ 3, then 9 multiplications and additions are needed which make

the process expensive for larger size kernels. Consequently, a more efficient way to

perform the convolution is needed. According to [2], it is known that these types of

28

Figure 3.5: Image sharpening example [17].

Figure 3.6: Image blurring example [17].

29

kernels are separable, which can reduce the computations to M + N multiplications

and make the cost less expensive. This process is called separable 2D convolution. A

separable matrix is one that can be decomposed into M x 1 and 1 x N matrices. For

example, 
A ∗ a A ∗ b A ∗ c

B ∗ a B ∗ b B ∗ c

C ∗ a C ∗ b C ∗ c

 =


A

B

C

 ∗ (a b c)

is a separable kernel and convolution calculation looks like the following,

x[m,n] ∗


A ∗ a A ∗ b A ∗ c

B ∗ a B ∗ b B ∗ c

C ∗ a C ∗ b C ∗ c

 = x[m,n]




A

B

C

 ∗ (a b c)



=

x[m,n] ∗


A

B

C


 ∗ (a b c)

Where x[m,n] is the matrix element at position [m,n].

The next example shows the two different ways of calculating the convolution by

using both the regular convolution and the separable convolution. It shows that they

yield the same answer 
1 2 3

4 5 6

7 8 9


and the separable kernel 

1 2 1

2 4 2

1 2 1

 =


1

2

1

 ∗ [1 2 1
]
.

Then by using the regular 2D convolution shown earlier, the result the pixel at position

[1, 1] would be

30

y[1, 1] = 1 ∗ 1 + 2 ∗ 2 + 3 ∗ 1 + 4 ∗ 2 + 5 ∗ 4 + 6 ∗ 2 + 7 ∗ 1 + 8 ∗ 2 + 9 ∗ 1 = 80.

When using the separable convolution, the first step is to apply the 1D vertical

convolution where the rows n = 1, and the columns m = 3.

y[∗, 1] =


1 2 1

2 4 2

1 2 1

∗


1

2

1

 =
[
1 ∗ 1 + 4 ∗ 2 + 7 ∗ 1 2 ∗ 1 + 5 ∗ 2 + 8 ∗ 1 3 ∗ 1 + 6 ∗ 2 + 9 ∗ 1

]

=
[
16 20 24

]
Then, apply the second step with the horizontal matrix

y[1, 1] = [16 20 24]*[1 2 1]= 16 ∗ 1 + 20 ∗ 2 + 24 ∗ 1 = 80.

For this example, the reduction in the number of flops can not be seen but it surely

would be apparent for larger sized kernels. The problem with the 2D separable

convolution is that it requires more storage. A buffer is needed in order to keep

the intermediate computation. For an uncompressed raw, 8-bit (unsigned char) gray

scale image with a 5x5 Gaussian Kernel on a (AMD 64 3200+ 2GHz) system, normal

convolution takes about 10.3 ms and separable convolution takes only 3.2 ms [2].

Separable convolution is faster compared to normal convolution. A convolution with

a separable 15 x 15 kernel requires only 13 percent of the computation needed for when

a non-separable kernel is used. According to [13], the improvement in performance

achieved, when the kernel is separable, is significant. A 15 x 15 kernel takes about

8 seconds when it is not separable. On the other hand, it takes only about 1 second

when it is separable. The Gaussian kernel is a classic example of a separable kernel.

For any 2D discrete signal, convolution is defined as [13]

I ′ = I ⊗H (3.3)

31

I ′(u, v) =
∞∑

i=−∞

∞∑
j=−∞

I(u− i, v − j).H(i, j) (3.4)

Where I is the original matrix, H is the filter kernel, and I ′ is the new matrix after the

convolution. The ⊗ is the convolution symbol. Now that the convolution equation is

defined, its mathematical properties can be summarized as follow:

� Commutativity

I ⊗H = H ⊗ I (3.5)

� Linearity

(s.I)⊗H = I ⊗ (s.H) = s.(I ⊗H) (3.6)

(I1 + I2)⊗H = (I1 ⊗H) + (I2 ⊗H) (3.7)

but

(b+ I)⊗H 6= b+ (I ⊗H)

� Separability

H = H1 ⊗H2 ⊗ · · · ∗Hn (3.8)

32

H ∗ I = I ⊗ (H1 ⊗H2 ⊗ · · · ∗Hn)

= (. . . ((I ⊗H1)⊗H2)⊗ · · · ∗Hn)

An additional factor to mention is that the convolution is an associative operation so

convolving in a horizontal direction first, then a vertical direction later will show the

same result.

Convolution is significantly important in image processing. It is so important that

specialized hardware exists to perform it in real time. In addition, high-performance

parallel computing can be used to convolve images quicker as images can be split into

small pieces and then each small piece can be assigned to a processor. Consequently,

the convolution calculations can be performed faster in parallel way [31].

3.2.1.2 Low Pass Filters

Convolution can be used to carry out the linear filtering of an image. The nature of

the filter is determined by the choice of kernel coefficients. Many image processing

operations can be done using linear filtering such as image sharpening and image

blurring. An image may be thought of as sound or radio waves as they all have

frequencies. Frequencies that are present in an image are referred to the changes

occurring in space. That is, how fast brightness or color changes as an image is

traversed. A low pass filter allows low spatial frequencies to pass unchanged but

not the high frequencies. The low pass filters are used for smoothing, averaging, or

blurring. This reduces the noise but also make fine details unclear. Any convolution

kernel that has positive values in all its elements can act similar to a low pass filter

[13]. Here is a 3 x 3 low pass an example of a kernel.
0.111 0.111 0.111

0.111 0.111 0.111

0.111 0.111 0.111


33

Figure 3.7: Applying 5 ∗ 5 mean low pass filter [13].

For simplicity, this is equal to

1/9


1 1 1

1 1 1

1 1 1


This type of filter is called a mean or average filter. Values from the neighborhood

are added together without being weighted, the number of pixels in the neighborhood

then divides the sum. This is why it is called an average filter. By applying a mean

filter, noise can be reduced which can make some images more clear. Figure 3.7 is

an example that shows how useful is the mean filter. The image on the right side

is the result of applying the filter. All the noise from the left image is now absent,

however the fine details are less apparent. Using this type of filters is effective in

many situations.

3.2.2 Gaussian Blur Low Pass Filter

The Gaussian kernel is named after Carl Friedrich Gaussian, a brilliant German

mathematician who lived between the years 1777 and 1855. To show his important,

his a picture shown along with the Gaussian kernel on a German banknote. These

34

banknotes are not in use nowadays as the Euro has replaced them [16]. Gaussian filters

are a class of linear smoothing filters, with the weights chosen according to the shape

of a Gaussian function. The Gaussian smoothing filter is a very favourable filter for

removing noise and is drawn from the normal distribution. As shown in the previous

section, blurring can be done using a uniform kernel that has equal coefficients. Also,

non-uniform kernels may be used instead. Gaussian blur is a non-uniform kernel. It

is similar to the mean filter, but it uses a different kernel. It represents the shape

of a Gaussian bell shaped curve. Gaussian blur works very similarly to any other

smoothing kernel, but the Gaussian blur produces a more natural looking blur. It is

one of the most often used smoothing techniques.

Designing a Gaussian filter can be done using two ways. The first method is to use

the coefficient of the binomial expansion to get an approximation to a Gaussian kernel

[70] [27]

(1 + x)n =

n
0

 +

n
1

 .x+

n
2

 .x2 + · · ·+

n
n

 .xn, (3.9)

which is the same as using the Pascals triangle [70] shown in Table 3.1.

Row n of Pascal’s triangle is a one-dimensional approximation to a Gaussian filter.

The filter will have n values. So, the five-point approximation is[
1 4 6 4 1

]
.

This is the 5th row coefficient of the Pascals triangle. This Gaussian filter may be

used to blur an image in the horizontal direction. If 2D Gaussian is needed, then

35

T
ab

le
3.

1:
P

as
ca

l’
s

T
ri

an
gl

e

In
d
ex

N
C

o
effi

ci
en

ts
S
u
m

of
co

effi
ci

en
ts

=
2N

0
1

1

1
1

1
2

2
1

2
1

4

3
1

3
3

1
8

4
1

4
6

4
1

16

5
1

5
10

10
5

1
32

6
1

6
15

20
15

6
1

64

7
1

7
21

35
35

21
7

1
12

8

8
1

8
28

56
70

56
35

8
1

25
6

9
1

9
36

84
12

6
12

6
84

36
9

1
51

2

10
1

10
45

12
0

21
0

25
2

21
0

12
0

45
10

1
10

24

11
1

11
55

16
5

33
0

46
2

46
2

33
0

16
5

55
11

1
20

48

36

another vertical convolution using 

1

4

6

4

1


is needed. A convolution with the multiple of the previous two matrices will also give

the same result but it is more expensive.

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1


Performing the calculation for the 5 x 5 matrix is more expensive than the calculation

of the 1D filter that is done vertically and then horizontally.

The second approach used to design the Gaussian kernel is to compute the ker-

nel weights directly from the discrete Gaussian distribution functions [27]. The 1D

Gaussian function is

g(x) =
1√
2πσ

e−
x2

2σ2 (3.10)

σ is the standard deviation. When σ = 1 and the mean = 0. The distribution looks

like Figure 3.8.

The 2 dimensions Gaussian formula is:

g(x, y) =
1

2πσ2
e−

x2+y2

2σ2 . (3.11)

37

Figure 3.8: A 1D Gaussian distribution

Where x is the distance from the origin in the horizontal axis, y is the distance

from the origin in the vertical axis, and σ is the standard deviation of the Gaussian

distribution. The following is a construction of a 3 x 3 Gaussian filter using the above

formula. When σ = 1, the filter is as follows:
0.0585498 0.0965324 0.0585498

0.0965324 0.159155 0.0965324

0.0585498 0.0965324 0.0585498


G(−1,−1) = 0.0585498, G(0,−1) = 0.0965324, G(1,−1) = 0.0585498,

G(−1, 0) = 0.09653240, G(0, 0) = 0.1591550, G(1, 0) = 0.0965324,

G(−1, 1) = 0.0585498, G(0, 1) = 0.0965324, G(1, 1) = 0.0585498

G(0, 0) is the origin located in the center of the kernel. The values get diminish as

the distance from the origin increases. Eventually, it will reach 0 when the distance

from the centre is near 3σ Also, it can be noticed that many values are the identical

38

Table 3.2: A commonly used 15 x 15 Gaussian filter

2 2 3 4 5 5 6 6 6 5 5 4 3 2 2

2 3 4 5 7 7 8 8 8 7 7 5 4 3 2

3 4 6 7 9 10 10 11 10 10 9 7 6 4 4

4 5 7 9 10 12 13 13 13 12 10 9 7 5 4

5 7 9 11 13 14 15 16 15 14 13 11 9 7 5

5 7 10 12 14 16 17 18 17 16 14 12 10 7 5

6 8 10 13 15 17 19 19 19 17 15 13 10 8 6

6 8 11 13 16 18 19 20 19 18 16 13 11 8 6

6 8 10 13 15 17 19 19 19 17 15 13 10 8 6

5 7 10 12 14 16 17 18 17 16 14 12 10 7 5

5 7 9 11 13 14 15 16 15 14 13 11 9 7 5

4 5 7 9 10 12 13 13 13 12 10 9 7 5 4

3 4 6 7 9 10 10 11 10 10 9 7 6 4 3

2 3 4 5 7 7 8 8 8 7 7 5 4 3 2

2 2 3 4 5 5 6 6 6 5 5 4 3 2 2

because the Gaussian blur is circularly symmetric. Now, one can convolve an image

with the Gaussian kernel in order to get the blurred smoothed image. Table 3.2 is an

example of a commonly used 15 x 15 Gaussian filter with a noticeable distribution

of the values [27]. The 2D Gaussian functions are rotationally symmetric. Therefore,

all lines and edges in all directions are treated similarly. Gaussian kernels smooth by

replacing each image pixel with a weighted average of the surrounding pixels and the

weight decreases as the distance from the center increases. In addition, the Fourier

transform of a Gaussian has a single lobe in the frequency spectrum and the Fourier

transform of a Gaussian is itself a Gaussian. The degree of smoothing of Gaussian

filter is σ and it is related to the wide of the Gaussian. When σ increases, the

Gaussian kernel widens and the image gets smoother. In addition, convolution of a

39

Gaussian with itself is another Gaussian. This means that one can first smooth an

image with a small Gaussian, and then convolve that smoothed image with another

small Gaussian. The result is equivalent to smoothing the original image with a larger

Gaussian. This allows large Gaussian kernels to be implemented very efficiently. Also,

Gaussian functions are separable as mentioned earlier. By smoothing an image with

a Gaussian blur, we make it “nicer”. In essence, each pixel is mapped into a weighted

average of that pixel’s neighborhood. The highest Gaussian value (weight) is given

to the original pixel while the neighboring pixels receive smaller weights since their

distance to the original pixel increases.

3.2.2.1 Example

Here is an illustration example using a program, written in Java that applies a Gaus-

sian blur to a randomly created shape. The Gaussian function part of the program

is according to [7]. The kernel used for convolution is shown in the following.

40

Figure 3.9: The shape before applying Gaussian blur



0.0009

0.0016

0.0027

0.0045

0.0071

0.0108

0.0158

0.0222

0.0300

0.0389

0.0485

0.0581

0.0668

0.0739



X



0.0009

0.0016

0.0027

0.0045

0.0071

0.0108

0.0158

0.0222

0.0300

0.0389

0.0485

0.0581

0.0668

0.0739



T

After applying this Gaussian blur kernel to Figure 3.9, the result smoothness

image is apparent in Figure 3.10.

41

Figure 3.10: The shape after applying Gaussian blur

3.2.2.2 A More Efficient Gaussian Blur

When using larger size kernels, the execution time can be very long. Proper use of

the Gaussian blur properties, as shown above, can help to reduce the cost of the

computations. Waltza and Millerb suggested an even more efficient way for applying

Gaussian blur [70]. They use two Gaussian blur properties in their more efficient

method. The first property is that the Gaussian blur large kernel can be decomposed

into the sequential application of small kernels. In addition, the Gaussian kernel is

separable into row and column operations. The paper also suggests that the row

and column operations can be formulated as finite-state machines (FSMs) to produce

highly efficient code. It shows that it is necessary to write results to an intermediate

images and then fetches these results for the next operation. The algorithm uses

SKIPSM [69]. SKIPSM is a new way to carry out many standard image processing

operations. In comparison with conventional hardware-based and software-based ap-

proaches, SKIPSM allows implementation at higher speeds and lower hardware cost.

In SKIPSM, a large class of neighborhood image processing operations, which are

generally considered not to be separable, is separated into row operation followed by

a column operation. Also, the formulation of these row and column operations is

compatible with pipelined operations. The implementation of the resulting opera-

tions is a simple finite-state machines. Here is a simple example [70] to illustrate the

42

efficient algorithm for Gaussian blur using finite-state machines. As a starting point,

consider 2 x 2 kennel 1 1

1 1

 .
By using the SKIPSM paradigm, the implementation requires one memory location

for the state of the row machine SR0 and a column state buffer SC0[i], i = 1, . . . , n,

where n is the size of the row. The column state buffer is set to zero at the start

of the overall operation, and the row state buffer is set to zero at the start of each

row. For each pixel, the main loop is executed once. The output is then written back

onto the input image. Here is what the loop should look like along with the SKIPSM

paradigm [70].

tmp1 = inpit[i][j]; // input pixel

tmp2 = SR0 +tmp1; //from row machine output

SR0 = tmp1; //update the row state buffer

output[i][j] = (2+SC0[i] + tmp)/4; //form and scale output

SC0[i] = tmp2; //update the column state buffer.

This 2 x 2 SKIPSM implementation requires five steps. The brute force algorithm

implementation would use nine. Here, the SKIPSM result is not very impressive. The

advantage increases as the size increases. To make things even more interesting, here

is a 3× 3 blur example. 
1 2 1

2 4 2

1 2 1


Here, SR0 and SR1 are needed. Also, column state buffers, SC0[i] and SC1[i]. The

output is written to [j − 1][i− 1] because it is the center of the 3× 3 neighbourhood

[70].

//row machine

tmp1 = inpit[i][j]; // input pixel

43

Table 3.3: Comparison between the 3 different algorithms

Algorithm Time

standard convolution 919 ms

separable convolution 450 ms

SKIPSM 108 ms

tmp2 = SR0 +tmp1; //from intermediate value

SR0 = tmp1; //update first row state buffer

tmp1 = SR1 + tmp 2; // new row machine output.

SR1 = tmp2; // update 2nd row state buffer

// column machine

tmp2= SC0[i] + tmp1;

SC0[i] = tmp1;

output[j-1][i-1] = (8+SC1[i]+tmp2))/16;

SC1[i] = tmp2;

Here, the calculation requires only 9 steps. The brute force approach for this case

requires 24 steps. These are 9 fetches, 5 multiplications, 8 additions, one scaling

step, and a write to the output image. The different approaches were all tested on a

PC-compatible computer using a 166 MHz AMD K6 CPU with 512 KB of secondary

cache and 64 MB of memory under Windows 95. The test was done using a 5 ∗ 5

kernel and the results is shown in Table 3.3 [70].

The best results were obtained using the SKIPSM. It is nine times faster than the

standard convolution. The speed advantages of the SKIPSM implementation should

be even greater for larger kernels.

44

3.3 The random shape heuristic algorithm

It is a natural temptation to draw a swirling line or a curve when attempting to

generate a random but nice shape. However, designing an algorithm or a heuristic

for such random line is not simple. Certainly, one can go left, right, up, or down

randomly and can also choose random number of steps but such line will be very

rigid and may cross itself many times. Table 3.4 shows a heuristic algorithm easy to

implement.

Table 3.4: The placated random shape generation heuristic algorithm

Step 1 Generate random polygon.

Step 2 Apply Gaussian blur with randomly chosen parameter.

Step 3 Select random threshold to turning grey pixels to black

3.3.1 Generate Random Polygon

Java was chosen for implementation since Java applications are typically compiled to

byte code (class file) that can run on any Java virtual machine (JVM) regardless of

computer architecture. It was important since the results of this project was used for

another project related to pairwise comparisons and data gathering took place over

the Internet.

A flat shape consisting of straight and non-intersecting sides that are joined to form

closed path is called a simple polygon. If the sides intersect then the polygon is not

45

simple and is just called a polygon. By definition [20], the polygon boundary may or

may not be part of the polygon itself. Whether the boundary is included or not, it

dose not effect our study. For the scope of this experiment, creating a polygon or a

simple polygon are both valid. Therefore, shapes do not have to be simple polygons.

To create a random polygon, the number of points needed for the polygon is randomly

generated. A random number of points between 7 and 90 was is used. This range is

chosen because shapes with lower number of points can be very simple. On the other

hand, shapes with very high number of points can be very complex and may have

many wholes that the Gaussian blur may not overcome. Java’s utility Math.random()

function is used to generate the number of points to be used. The function returns a

double value with a positive sign, >= 0.00 and < 1.00. Returned values are chosen

randomly with a uniform distribution from that range [52].

private int randomNumberOfPoints = numberOfPoints(min, max);

numberOfPoints takes the minimum and maximum number of points n and returns

a number between the min and the max inclusively. This gives the ability to specify

a minimum and a maximum bounds as desired. Min + (int)(Math.random() *

((Max - Min) + 1)) is a trick used along with the random function to generate a

number in between that range. It is used due to the limitation that the random

function has since it only generate a number that is >= 0.00 and < 1.00. After that

the RandomPoint function is used to randomly create n points. After that, an array

of type Point is generated.

Point[] points = new Point[randomNumberOfPoints];

Next, RandomPoint(randomNumberOfPoints, x) function is called. It takes both the

number of points and the image size x = 500 where imagesize = height∗width = x∗x.

The images used in this research all of the size of 500 ∗ 500. We took into consid-

eration the image size so we can accommodate all part of the image after Gaussian

blur is applied. Therefore, there is a 50 margin by the image border. To draw lines

46

Figure 3.11: A 500 ∗ 500 image with 11 points shape

connecting the randomly generated lines, g.fillPolygon(x, y, points.length) is

used [50]. fillPolygon method fills a closed polygon defined by arrays of x and y

coordinates. The third argument is the number of points that makes the polygon. It

draws a line connecting the final point to the first point which automatically closes

the figure. Figure 3.11 is a 500 ∗ 500 image that uses the following 11 randomly

generated points (x, y). (342, 387), (76, 97), (77, 216), (99, 87), (257, 142), (213, 329),

(137, 397), (99, 411), (103, 143), (311, 139), (58, 359) .

3.3.2 Applying the blur and the cut-off

In this subsection, applying Gaussian blur on a randomly generated shape and the

threshold cut-off are explained. To apply Gaussian blur, we need to generate the

Gaussian kernel using the Gaussian function first.

g(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (3.12)

47

with the help of Kernel class and by using the following method.

public static Kernel makeKernel(radius)

The Kernel class defines a matrix that describes how a specified pixel and its sur-

rounding pixels affect the value computed for the pixel’s position in the output image

of a filtering operation. [51]. makeKernel [25] takes the value of the radius and re-

turns the kernel. The function code used is shown below. See Figure 3.12 for an

example of the function output.

public static Kernel makeKernel(radius)

{

int size=radius*2+1;

float data[]=new float[size];

float sigma=radius/ 3.0f; // raduis = 3*sigma

float twoSigmaSquare=2*sigma*sigma;

float root=(float)Math.sqrt(twoSigmaSquare*Math.PI);

float total=0.0f;

for(int i=-radius;i<radius;i++)

{

float distance=i*i;

int index=i+radius;

data[index]=(float)Math.exp(-distance/twoSigmaSquare)/root;

total+=data[index];

}

for(int i= 0;i<data.length;i++)

{

data[i]/=total;

}

Kernel kernel=null;

48

Figure 3.12: An output of a kernel with 9 radius

if(horizonal)

{

kernel=new Kernel(size,1,data);

}else

{

kernel=new Kernel(1,size,data);

for (int i = 0; i < size/2; i++)

{

vertical vector

System.out.printf("%9.4f ", data[i]);

System.out.println();

}

}

return kernel;

}

Applying the blur was done with the help of the ConvolveOp [49] class. This class

operates with BufferedImage. It implements a convolution from the source to the

destination. Convolution using a convolution kernel is a spatial operation that com-

putes the output pixel from an input pixel by multiplying the kernel with the surround

49

Figure 3.13: Blurring a random shape example

of the input pixel. This allows the output pixel to be affected by the immediate neigh-

borhood in a way that can be mathematically specified with a kernel was that was

created earlier [49]. See Figure 3.13 for an example output.

ConvolveOp(kernel,ConvolveOp.EDGE_NO_OP,null);

The next step is to apply the cut-off by using the ReplacePixel(blurrdImage,

threshold) function. This function takes an array that represents the blurred image

and a threshold. It returns the new cut-off image by going through each and every

pixel in an image and checking its value. Pixels that are bellow the threshold value

are replaced by the value of 0 or black. On the other hand, pixels that are greater

than or equal than the threshold are switched to 255 or white. This will yield the

desired smooth looking shape. Simultaneously, this function will also calculate the

area of the shape by counting non white pixel.

public int[][] ReplacePixel(int[][] BlurredImage, int Threshold)

{

50

for(int i = 0 ; i < width; i++)

{

for(int j = 0 ; j < height ; j++)

{

if (newImage[i][j] >= Threshold)

{

newImage[i][j] = 255;

}

if (newImage[i][j] < Threshold)

{

newImage[i][j] = 0;

}

if(src[i][j] != 255)

{

area++;

}

}

}

}

Figure 3.14 shows what the smooth shape after the cut-off looks like. The output

of calculating the area of the randomly generated, smooth looking shape is shown in

Figure 3.15.

51

Figure 3.14: The smooth looking shape after applying the cut-off using a 200 threshold

Figure 3.15: A terminal screenshot of the area of the shape output along with other

information

52

Figure 3.16: A 7 points shape

Figure 3.17: A 7 points shape with 20 Gaussian radius

3.3.3 Dealing with holes

Shapes that are randomly generated with the growing number of points N are more

likely expected to have holes. To get the most desired nice looking shape with no

holes, parameters adjustment should be performed. The parameters being the Gaus-

sian blur radius and the threshold value. In the first example shown in Figure 3.16,

the shape is randomly generated and constructed using 7 points.

As it can be seen, the shape does not look excessively nice. It seems to be three dif-

ferent but not completely connected shapes. Getting a nice smooth looking shape out

of it requires extra process. First, apply the Gaussian blur of different radius values

and then apply a threshold with a more appropriate value. Applying a Gaussian blur

with a radius of 20 produces Figure 3.17.

In Figure 3.17, the shape is more connected now but there is still a large hole in the

53

Figure 3.18: The shape after applying a 100 threshold

Figure 3.19: The shape after applying a 200 threshold

centrer. By applying a threshold of 100, the result can be seen in Figure 3.18.

The result in Figure 3.18 shows three separate shapes which are not whatis desired.

Increasing the threshold, makes the image moves toward the desired shape. With the

200 threshold, Figure 3.19 shape shows that the hole is still there while a randomly

generated nice looking shape with no holes is the goal that have not been reached

yet.

Due to the fact that the whole is large, the threshold value should be considerably

large and near the maximum to eliminate the hole. However, the threshold 254 is still

not enough to remove the hole. Threshold value 255 would be acceptable and would

finally remove the hole. However, the shape becomes much bigger and some part of

the shape is not visible in the work area and this violates the niceness of the shape.

This can be seen in Figure 3.20.

Processing the same shape with a larger Gaussian blur radius with an appropriate

54

Figure 3.20: The shape after applying a 255 threshold

Figure 3.21: The shape after applying a 40 Gaussian kernel

threshold can remedy the problem. Figure 3.21 and Figure 3.22 demonstrates the

processed images after applying a Gaussian radius of 40 and then applying a 127

threshold.

Figure 3.22 is all connected with no holes as desired but there are still two strange

looking narrow nicks remaining. If they are not needed, a larger threshold should

be used. Making the threshold reach as large as 217 is not enough as a tiny little

hole is still there. The magic threshold number for this particular shape, that results

the perfect shape we are looking for, is 218. Using a 40 Gaussian radius and a 218

threshold will produce the placated smooth looking shape that is randomly generated.

This is shown in Figure 3.23.

In the next example, Figure 3.24, the randomly generated star looking shape also has

also a large whole in the middle. It is noticeable that the area covered with black is

smaller than the one in Figure 3.16 form the example shown earlier. The white whole

55

Figure 3.22: The shape after applying a 127 threshold

Figure 3.23: The shape after using a 40 Gaussian radius and a 218 threshold

56

Figure 3.24: A star looking shape

Figure 3.25: A star looking shape with Gaussian blur of 10

here is smaller, which can make using Gaussian, with smaller radius, possible to get

the preferred image. The value may be as low as 10, however the threshold has to be

254 for this to work. The blurred image looks like Figure 3.25 and Figure 3.26 after

applying the threshold.

As it can be seen in Figure 3.26, the shape is not very nice. A larger Gaussian filter

with a 35 radius will result the shape shown in Figure 3.27. Furthermore, a threshold

of 240 will give Figure 3.27 which is the smooth placated looking shape that we are

looking for.

In this third example, an 8 points shape with 2 holes is used (Figure 3.29). Applying

a Gaussian blur filter with the value of 25, gives Figure 3.30. A 127 threshold gives

the shape shown in Figure 3.31 or to be more accurate, 2 separate shapes, which is

not ideal. Increasing the Gaussian blur radius to 45 and having the threshold value

as 150 will give Figure 3.32 with no holes. Whenever the threshold increases, the 2

57

Figure 3.26: A star looking shape with Gaussian blur of 10 and a 254 threshold

Figure 3.27: A star looking shape with Gaussian blur of 35

Figure 3.28: A star looking shape with Gaussian blur of 35 and a threshold of 240

58

Figure 3.29: An 8 points shape

Figure 3.30: An 8 points shape and a Gaussian of size 25

“arms” of the shape come closer to each other until they meet and construct a new

hole. Figure 3.33 is the result when the threshold is 157. Going towards a higher

threshold, a 206 threshold, gives a placated looking shape with no holes shown in

Figure 3.34.

The next example is more extreme. With too many holes in the randomly gen-

erated shape, a higher Gaussian blur radius value is needed in order to get the nice

shape. Here, a 75 Gaussian radius is used with a 182 threshold and would result the

shape shown in Figure 3.35.

In this last example, Figure 3.36, a 50 point random shape was generated. The num-

ber of holes here are very hard to count. By applying a Gaussian blur with a 50 radius

and a 127 threshold, the right hand side and the middle shapes shown in Figure 3.36

are produced. However, a 150 Gaussian blur radius and a 127 threshold are used to

get the desired nice shape as shown in Figure 3.37.

59

Figure 3.31: An 8 points shape and a Gaussian of size 25 and 127 threshold

Figure 3.32: An 8 points shape and a Gaussian of size 45 and 150 threshold

Figure 3.33: An 8 points shape and a Gaussian of size 45 and 157 threshold

60

Figure 3.34: An 8 points shape and a Gaussian of size 45 and 206 threshold

Figure 3.35: A more extreme example

Figure 3.36: A 50 points shape with 50 Gaussian radius and 127 threshold

Figure 3.37: A 50 points shape with 150 Gaussian blur radius and a 127 threshold

61

4 Survey

4.1 Background

Few experiments that are similar to the experiment implemented in this research

were conducted in the past. When we decided to perform 2D Monte Carlo accuracy

testing for the pairwise comparison method using random shapes, the main question

that came to mind was: what is the best method to use? We looked at [55], [62],

[1], and [34]. In [62], Saaty experimented five different in area geometric shapes. The

objective was to compare the area of the shapes just by looking at them. The shapes

used were a circle, a triangle, a square, a diamond, and a rectangle. They are shown

in Figure 4.1. The comparisons’ values are then inputted to a pairwise matrix as

in Table 4.1. Notice how close the last two columns in the table are. The last two

columns represent priorities derived from judgment and the real normalized relative

sizes.

Table 4.1: A pairwise comparison matrix for the 5 geometric shapes [62]

Figure Circle Triangle Square Diamond Rectangle Priorities

Eigenvector

Actual

Relative Size

Circle 1 9 2 3 5 0.462 0.471

Triangle 1/9 1 1/5 1/3 1/2 0.049 0.050

Square 1/2 5 1 3/2 3 0.245 0.234

Diamond 1/3 3 2/3 1 3/2 0.151 0.149

Rectangle 1/5 2 1/3 2/3 1 0.093 0.096

62

Figure 4.1: The 5 shapes to used for comparison [62]

In [1], pairwise comparisons and visual perceptions of equal in area polygons were also

studied. Participants rated the areas of five randomly generated shapes of equal area.

A reference unit area was also displayed along with the shapes. Respondents’ average

error when estimating the area using the unit square was 25.75%. Nevertheless, the

error went down to 5.51% when the shapes were compared in pairs. It is a much

better improvement percentage than the 1D case where bars were used [34]. The

experement demonstrated in [1] is the first statistically proven experiment for 2D

shapes to improve accuracy of the pairwise comparisons method. In [1],a sample of

179 participated in the study. In the first part of that experiment, they were asked to

estimate the area of 5 randomly generated shapes of equal areas in units. Of course,

they were not told that the shapes were equal in area. The shapes and the unit

used are shown in Figure 4.2. The shapes were presented in an overhead screen and

participants took on average 10 to 15 seconds to estimate the area of each shape. In

the second part, the shapes were shown in pairs. Ten pairs were shown and similarly

it took 10 to 15 seconds to compare each pair. For each pair, participants were asked

which shape is larger. They also had the option to respond if they believed that a pair

was equal. The questionnaire is shown in Figure 4.3. Another study in [55] compared

63

Figure 4.2: The 5 Equal shapes with the square unit used in [1]

Figure 4.3: The questionnaire used in [1]

64

direct and pairwise area estimation of physical shapes through, not only vision, but

also by physically touching the shapes. Participants were asked to estimate areas of

five physical rigid shapes by viewing and touching the shapes using the direct and

pairwise methods. For the direct method, participants held one shape at a time and

estimated the area based on a unit square. The average error was 14.4%. However,

the error decreased to 0.3% when the shapes were touched by hand and compared in

pairs. That is considerably lower than the previous average error rates made, when

viewing with an overhead projector. Our research replicates the experiment in [1] but

this time with using shapes that were randomly generated with different area.

4.2 Preparation

Redoing [1] but with randomly generated shapes not equal in area, using the same

method of data collection was not an option. Using paper questionnaires and an

overhead projector has many limitations as it lacks the flexibility and the ability to

show real time random shapes with different area. Therefore, we had to think of with

a more sophisticated idea. We first had to generate the shapes to be used in the

experiment. We used the algorithm shown in Chapter 3 to generate the shapes and

calculate all the area of the shapes. For building the questionnaire, PHP is used. PHP,

or Personal Homepage tool [21], is a web scripting language that works as a tool to

process HTML forms and create web pages. It is a server side scripting language that

interprets the PHP code at the webserver and generates HTML. PHP is the engine

behind millions of dynamic web applications and can speak to many databases such

as MySQL [63]. It is the most well known web platform in the world as it operates in

more than 33% of the web servers across the world. Many companies trust PHP as

the language to use their applications. This includes Fortune companies [21]. PHP

strengths include performance, stability, built-in libraries for common web tasks, low

cost, and portability. Combining the use of PHP and MySQL is very favorable because

they work with almost all operating systems, webservers, and hardware [71]. After

65

How to Obtain Data

Create
Questionnaire

Research Options
to Acquire Data

Questionnaire is Preferable

Test
Questionnai

re?

Fails

Distribute
to

Responders

Pass

Prepare All
Tools and
Recourses

Needed

Ethics
Application

Yes
Approved?

Modify
Application No

Pilot
Questionna

ire Form

Analyze
Data

Reach
Conclusion

Publish Results

Idea

Access
Data

Figure 4.4: A flowchart describing the step taken to perform the survey

programing the questionnaire but before circulating the survey, an application had

to be submit for the University Research Ethics Board to approve our study. The

University Research Ethics Board is responsible for all research that includes human

subjects conducted by faculty, students and staff at the University to make sure that

the rights and the welfare of the human subjects involved are not harmed in any

way. The Ethical Bored has approved study and we were able attempt the next step

of the research. Every participant in the study had to read and electronically date

and sign the consent form prepared with the help of the University Research Ethics

Board before being able to start the survey. See Figure 4.5 for the consent form used.

Figure 4.4 shoe all steps taken for the preparation of the experiments.

66

6/5/13 Random Shapes Study

cs.laurentian.ca/grad/exp2/31-5/index.php 1/1

 Consent Form

Generating random data for 2D accuracy testing of pairwise comparisons questionnaire

Please read the following in regards to your participation in the study entitled “Generating random data for 2D
accuracy testing of pairwise comparisons.”
 My name is Abdullah Almowanes. I am an MSc student in the Department of Math and Computer Science at
Laurentian University. I’m conducting a research on how to compare and estimate the area of smooth looking
random shapes. Benefits of this study include testing the accuracy of the pairwise comparison method. Pairwise
comparison is used to compare entities in pairs to judge which of each entity is preferred as an alternative of
comparing them individually. The study will also help me complete my MSc thesis. There should be no risk to
you performing the tasks. If you get frustrated, you can withdraw from the experiment. The study will take
approximately 10 minutes of your time and will involve filling out a questionnaire by performing few tasks that
include comparing and estimating the area of some shapes. Tasks to be performed include: (1) Choose 5
shapes according to your liking from a set of shapes (2) Estimate the area of the shapes using a reference unit
that will be displayed. (3) Compare the area of the shapes in pairs. Your participation in this study is strictly
voluntary. You have the right to withdraw without completing the questionnaire at any time without any
consequences. If you have any questions or concerns about the study or about being a subject, you can call my
supervisor Prof. Waldemar W. Koczkodaj in his office at 705-675-1151, ext. 2311 or toll free at 1-800-461-
4030. You also can contact me through my supervisor. Your identity will not be revealed at any time. The results
from this study will be part of my MSc thesis. We will take all the measures to ensure anonymity of the
respondents. No IPs or any personal Identification is stored. Data will be kept for at most a year after the
finishing the study. Only group, not individual information will be reported and confidentiality is ensured. If you
wish, you can provide an email were you can be informed with the results of the study. For questions or
concerns regarding the ethical conduct of this study please contact: Research Ethics Officer, Laurentian
University Research Office, telephone: 705-675-1151 ext 2436 or toll free at 1-800-461-4030 or email:
ethics@laurentian.ca By providing checking the "I agree" box and providing today’s date you are
giving your digital signature that you have read the above statements and freely consent to participate
in this research

Date: 5 June 2013

Do you wish to be informed with the results of the study? (provide email if yes)

Yes Email

No

 I agree

Submit

Figure 4.5: The consent form used

67

4.3 Experiment 1

After preparing all the steps necessary to complete the questionnaire, it was ready for

distribution and we started the data collection process. The following is a detailed

description of experiment 1.

4.3.1 Sample

There where 65 participants whom contributed in this study. There was no particular

procedure for selecting participants. Any person could participate and no one was

excluded as long as that person is an adult. Students around campus were asked to

participate and we were asking them for the sake of helping with the research. Only

the date, time, and participants’ answers were recorded. The email was also recorded

only if the participant asked for the results to be sent to them when the study will

be completed. No IPs or any personal identification were stored.

4.3.2 Measures

In the first part of the experiment and only after the consent form was electronically

signed, participants were asked to choose 5 shapes from a pool of 70 shapes. These

shapes were previously randomly generated and have different areas. The 70 images

were all of size 500 ∗ 500. They were rescaled to a smaller size (63*63) to make all

70 shapes fit the screen(see Figure 4.6). The PHP code validated the participant’s

responds and made sure that the user chooses only 5 shapes. If not, a visible error

message was shown and the user was able to edit the shape selection to ensure that

only 5 were chosen. Users were encouraged to select the shapes based on what is

considered being easy for area estimation and comparisons. After the user has chosen

the 5 shapes, he/she may start performing the second task. In the second part, an

example will be displayed to help understand how this part should be done. The

following message is shown: “Task 2 (0/5): please estimate the area of the 5 shapes

68

6/5/13 Random Shapes Study

cs.laurentian.ca/grad/exp2/31-5/index.php 1/1

Task 1: please select 5 different shapes. Selection is based on what you consider to
be easy for the area estimation and comparisons. Selecting shapes of different sizes
is highly advisable.

Submit

Figure 4.6: The select 5 shapes page

69

Figure 4.7: How to use the unit to estimate the area example

you have just selected in units (a black square) i.e. how many black squares you need

to fill up the shape. The area estimation in units for the shape on the right is 2 units

square. That is because you can use 2 squares to fill up the shape on the right” (See

Figure 4.7). After some discussion, we decided for the square unit to be of size 3136

pixels. That is 56 ∗ 56 or 56 unit square. This size was chosen because it is not too

small to make it almost impossible to estimate the area of the shape. Also, it is not

too large to make the unit lose its properties and become as large as one of the shapes.

It was just the right size for our purpose. After that, the user can click on the start

task 2 button, which will allow the user to start the area estimation process for the

5 shapes that the user have selected. Shapes will be shown once at a time to ensure

that the user only concentrates on one shape at a time. You may see Figure 4.8 for

an example of what the area estimation in units page looks like. The user can only

input valid numeric values. No negative numbers, zeros, spaces, or even excursively

large numbers are allowed. If the user inputs an invalid value, an appropriate error

message will appear. If a value is valid and the submit button is clicked, the user

will be taken to the next page where the next shape estimation will take place. Users

70

Figure 4.8: Taks 2: estimate area of a shape in units

have to estimate the area of all 5 shapes.

In the last part of the experiment, selected shapes were shown in pairs side by side.

There are 10 unique pairs that can be formed from the five shapes, therefore, 10

comparisons were performed. Respondents were asked to choose if the pair is approx-

imately equal, if shape 1 is [(value from user)] times larger than shape 2, or shape 2

is [(value from user)] times larger than shape 1. The same three options are repeated

for each of the ten pairs. See Figure 4.9 for an example of a comparison question.

For example, if a participants answered a question by choosing “shape 1 is [1.5]

times larger than shape 2”, this means that shape 1 is 1 and a half larger than shape

2. After completing all 10 comparisons, an appreciation page is displayed. A detailed

flowchart of experiment 1 PHP code is shown in Figure 4.10. Some respondents an-

swered the questionnaire inconsistently, therefore, their questionnaire was not taken

into consideration. The reason for that is that they probably were not able to fully

comprehend what should be done or being confused which shape is larger than the

other.

71

Figure 4.9: Taks 3: Compare the two shapes

4.3.3 Stimuli

A pool of 70 random shapes that were randomly generated with different area sizes was

used. Respondents would then choose 5 of them to perform the area estimation and

comparison. They were asked to choose the 5 shapes that are easiest to estimate for

their area. This procedure gives more randomness to the experiment since probably

not all participants would use the same shapes, which produces a variety of shape

combinations. In addition, this will give an idea on the type of shapes that are easier

to use for area estimation according to the participant’s selection. After creating

around 100 shapes using the algorithm in Chapter 3, we decided to choose only

the ones shown in Figure 4.6. Random shapes should not be too simple for area

estimation such as randomly generated squares or circles [1]. Therefore, some of

them were eliminated. To add even more randomness to the experiment, the PHP

code randomly rescaled the 5 shapes after the user selection.

72

La
n

d
 o

n
 w

eb
si

te
Sh

o
w

 H
o

m
e

P
ag

e
W

h
ic

h
 c

o
n

ta
in

s
th

e
co

n
se

n
t

fo
rm

In
fo

rm
at

io
n

Fi

ll
u

p

V
al

id

In
fo

rm
at

io
n

 a
n

d

C
o

n
se

n
t?

Sh
o

w
 E

rr
o

r
m

es
sa

ge

N
o

Ye
s

Se
le

ct
 5

 S
h

ap
es

Se
le

ct
ed

 o
n

ly
 5

Sh

ap
es

?

Sh
o

w
 E

rr
o

r
m

es
sa

ge

N
o

Sh
o

w
 T

as
k

O
n

e
In

st
ru

ct
io

n
s

P
ag

e

Es
ti

m
at

e
A

re
a

in

U
n

it
es

 f
o

r
sh

ap
e

x

V
al

id
 N

u
m

er
ic

V

al
u

e?

Er
ro

r
M

es
sa

ge
N

o

x
=

1

Ye
s

X
 +

+

X
 <

=
5

?

Ye
s

x
=

1
N

o
In

p
u

t
A

re
a

C
o

m
p

ar
e

ar
ea

 o
f

2

sh
ap

es

V
al

id
 V

al
u

e?

Er
ro

r
M

es
sa

ge
N

o
Ye

s

X
 +

+

X
 <

=
1

0
?

Ye
s

U
se

r
in

p
u

ts

co
m

p
ar

is
o

n

d
ec

is
io

n
Th

an
k

Yo
u

 P
ag

e
N

o

F
ig

u
re

4.
10

:
E

x
p

er
im

en
t

1
fl
ow

ch
ar

t

73

Figure 4.11: Not too simple shape

4.3.4 Procedure

All of the shapes were polygons with a randomly chosen number of points between 5

and 90. The random numbers were generated using Math.Rand() function in Java.

Polygons are then generated and a Gaussian blur is applied to make rough edges

smooth. Afterwards, a threshold is set to turn grey pixels, which are a result of the

blurring, to black or white. As mentioned earlier, after generating over 100 shapes, we

went through all the shapes and decided to choose 70 to ensure that random shapes

are no very simple such as randomly generated squares or circles. Also, not too

complicated shape similar to Figure 4.11. You can notice that this shape is included

in the 70 shapes pool used. This is only to test the behavior of the participants

towards these kind of shapes. Next, the areas of all the shapes were calculated using

a Java method, introduced in Chapter 3. The method counts all non white pixel

in the image and displays the area of the shape in pixels. Obviously, it was the

simplest way to calculate the area of an irregular random shape. The areas of the

74

shapes are then recorded and saved to a MySQL database for easy access through

PHP. The largest shape area size is 126539 pixels and the smallest area size is 23752

pixels. That is about 1-5 ratio. When the user selects the 5 shapes, they will be

rescaled to add more randomness to the experiment. It is done by manipulating how

the image is displayed on the browser by randomly modifying the HTML img tag

height and width attributes. <img src = "img.jpg" width = "random" height =

"random"/>. height and width attributes should have the same values to ensure that

the image is a square. All 70 shapes are initially represented as 500 ∗ 500 image size.

Because of the rescaling, the area of the shape would definitely change. Therefore,

the new area in pixels should be calculated by PHP and saved in MySQL. Area of

the shapes dramatically change when the shape is rescaled and the 1 to 5 ratio is

lost. Let us take the shapes shown in Figure 4.12 and the one in Figure 4.13 as an

example. The original area of the first one, before scaling is 121787 pixels and 71899

pixels for the second one. The first shape is about 1.7 times larger than the second

one.

The rescaling process is shown here. An array of 5 numbers that represent the new

height and width is initialized, then each element of the array is assigned a value. One

of these values is 500 and the other 4 values are randomly assigned. The array is then

shuffled to make sure that it is in a random order. Next, new areas are calculated

according to the formula 4.1.

newarea =
newheight ∗ newwidth

500 ∗ 500
∗ oldarea (4.1)

From the example shown earlier, Figure 4.13, and with a new height and width values

of 128 and by applying 4.1, we get 4711 pixels which is the new area size of the rescaled

shape.

newarea =
128 ∗ 128

500 ∗ 500
∗ 71899 ≈ 4711pixels (4.2)

75

Figure 4.12: A shape with original area 121787 pixels before scaling

Figure 4.13: A shape with original area 71895 before scaling

76

Figure 4.14: Analysing and calculating the relative error for area estimation in units

4.3.5 Analysis

PHP code is used to extract the data. The values are then saved in several .txt files.

Along with the serial number for each record, the first file contains the users’ area

estimations for the 5 shapes and the actual area size in pixels. The values are then

copied to MS Excel where this part of the analysis will take place. For each record,

the value of the user estimated area in units is multiplied by the unit size in pixels and

then compared with the actual area of that shape. For example, in Figure 4.14 the

first line represents the user’s area after multiplying the unit size by the user input,

and the second line contains the actual area. The third line is the error rate, which

is calculated using the following formula.

RealativeError = |ActualArea− EstimatedArea|/ActualArea (4.3)

The relative error for shape 1 in Figure 4.14 is 18.14%. The average error for all

5 shapes is then calculated. To analyze the data for the second part, values of the

relative comparison coefficients are entered into the pairwise comparison matrix. For

5 shapes, only 10 values are needed and these values fill the upper triangle of the

matrix. We do not have to worry about the diagonal since all values on the diagonal

are ones, because comparing the same shape with itself gives 1 on the main diagonal.

This is a reciprocal matrix that satisfies the following formula.

aij =
1

aji
(4.4)

This would take care of the lower triangle matrix. Table 4.2 is an example that shows

the pairwise comparison matrix for comparing 5 shapes. Afterwards, JConcluder [72]

77

Table 4.2: A pairwise comparison matrix example for one of the records

shape1 shape2 shape3 shape4 shape5

shape1 1 1 0.4 0.87 0.125

shape2 1 1 0.3 1 .15

shape3 2.5 3 1 2 0.3

shape4 1.1 1 0.5 1 0.2

shape5 8 0.65 3 5 1

is used for further data analysis.

The JConcluder is a program that is developed by Ding Xu, a fellow student at

Laurentian University, and is part of his thesis. The program takes the 10 upper

triangle values of the pairwise comparisons matrix and performs the analysis needed

to calculate the weight vector and the inconsistency values. The real weight vector

and the estimated weight vector are compared and the relative error average is cal-

culated. Furthermore, the time spent to complete each task was analyzed and served

to demonstrate which method takes less time and the average time spent to complete

each task. Records with incomplete or apparent phony fields were removed and not

considered.

4.3.6 Results

The average error for estimating the area by the direct method was 41.82% which is

much larger than the 25.75% reported in [1] using the same method for random, but

equal in area shapes, which is pretty high. In addition, it is higher than the 15.42%

error reported in [33] for the 1D case using bars. Figure 4.15 shows the average

error rate for participants when the direct estimating the area in units method is

used. On the other hand, the average estimation error for the pairwise comparisons

78

Figure 4.15: Histogram showing the average error when using the direct method

method is only 24.85%., which is higher than the ones reported in [1] and [33] using

the same method. Figure 4.16 shows the average error rate when using the pairwise

comparisons method. Comparing the average error rate when the direct method

(41.82%) and the pairwise methods (24.85%) shows that, the accuracy rate improves

when the pairwise comparison method is used. The difference between the errors

derived from the direct method and pairwise comparisons method is called the gain of

accuracy [1]. The gain of accuracy (23.97%) is greater this time. This is a tremendous

improvement, decreasing from 48.82% to 24.85%.

In this experiment, the average inconsistency is 0.43. Some inconsistency rates were

unacceptably very high. Figure 4.17 shows the level of inconsistency for participants

in experiment 1 (More to come on experiment 1 inconsistency in the next subsection).

The average total time that it took participants to complete all the tasks was

about 7.6 minutes. Figure 4.18 shows the average time of each task in details. The

average time needed to estimate the area of the 5 shapes in units, was 3.09 minutes.

On the other hand, the time needed to compare all the shapes using the pairwise

79

Figure 4.16: Histogram showing the average error when using pairwise comparisons

method

Figure 4.17: Histogram showing the inconsistency when using pairwise comparisons

method

80

Figure 4.18: The average time needed to complete each task in experiment 1

comparisons method was 3.25 minutes. The process of estimating the area of the

shapes in units involves going through 5 pages. However, the process that uses the

pairwise comparisons method involves visiting 10 different pages. Therefore, the time

needed to complete one page using the pairwise comparison method is 0.325 minutes,

which is much better than the time needed to submit an area estimation in units page,

which is 0.618 minutes. Although the total average time needed to complete the area

estimation using the direct method is marginally lower, the accuracy or average error

rate dramatically decreases when the pairwise comparisons method is used.

4.3.7 Problems encountered in Experiment 1

Because of the higher inconsistency rates in many records, we suspected that there

should be something wrong in our experiment. We decided to investigate this matter

in depth. First, we went over the PHP code to check for any bugs but none were

found. We went over the data analyzing techniques used and things looked fine. We

also checked our pairwise comparisons matrices and the way we populated them for

all records but we found nothing wrong. Eventually, we found out that the main

81

problem that influenced the high inconsistency in many records was the not so good

user interface design. Many participants were confused when they were asked to

perform task 3 (See Figure 4.19). Task 3 shows 2 shapes and asks the user to compare

them. There are three possible options to choose from. Users can choose that the

shapes are equal, shape 1 is larger than shape 2, or shape 2 is larger than shape 1.

The user needed to answer that question 10 times for 10 different pairs. Consequently,

many users were confused or lost concentration during the process. Some of them

choose to select that shape 2 is larger then shape 1, but meant the opposite. When

doing so, the pairwise comparison matrix for that record completely went wrong. For

example, if the user wanted to enter that shape 1 is [3] times larger than shape

2 but Shape 2 is [3] times larger shape 1 is selected, this ruined the pairwise

comparison matrix. Instead of the value of 3 to be saved in corresponding matrix

position, 1
3

is saved. This will severely influence the inconsistency of the pairwise

comparisons matrix. Therefore, other measures had to be implemented regarding the

user interface design of the questionnaire. Another issue that we faced in experiment

1 was a problem with the ratio of the displayed shapes areas. In other words, the

area for 2 or more shapes were close to each other for many records which resulted

in redundancy. It had an impact on the pairwise comparisons matrix and of course

the inconsistency. Problems encountered in experiment 1 influenced the design of

experiment 2 to get the best results possible.

4.4 Experiment 2

To overcome all the glitches and drawbacks in experiment 1, the user interface redesign

was necessary. Good user interface design is very important for productivity and

accuracy improvement. It is one of the most important parts in any system. The

software code is invisible and users do not want to worry about the way the code

is written. What users find important is the simplicity and visual aesthetics of the

interface. Nowadays, the amount of programming effort devoted to the user interface

82

6/10/13 Random Shapes Study

cs.laurentian.ca/grad/exp1/28-4/index.php 1/1

Task 3 (1/10): Compare the following 2 shapes according to their areas

You may use numbers with or without fractions (such as 1, 3, 1.40, or 5.75) when comparing

 Shapes are approximately equal. Shape 1 is [] times bigger. Shape 2 is [] times bigger. Submit

Figure 4.19: Task 3: pairwise comparison page (experiment 1)

83

Table 4.3: The impact of bad screen design [15]

Seconds required per screen Years required to process 4.8 million screens

1 0.7

5 3.6

10 7.1

20 14.2

is more than 50% of the entire time needed to complete the system [15]. Creating

a good user interface is not too simple for a software programmer. User interface

software should be prototyped, tested, and modified repeatedly [47]. According to

[15], “User interface design is a subset of a field of study called human-computer

interaction (HCI). Human-computer interaction is the study, planning, and design

of how people and computers work together so that a person’s needs are satisfied

in most effective way.” For HCI designers, many factors must be considered: What

people want and what people expect? What physical limitations do people have?

How do the perceptual and information processing system work? Besides, designers

should consider the technical characteristics and limitation of the computer hardware

and software. Once an interface has been constructed, how humans react to it and

interact with it should be measured [22]. It can be done by extreme testing procedure

such as the try to break test. Building a good design is very beneficial to booth the

accuracy and the productivity of the system. A research found out that by processing

4.8 million screens per year, poor clarity made users spend an extra second per screen.

That is almost an additional one year to process all screens [15]. Table 4.3 shows the

impact of inefficient screen design on processing time.

84

4.4.1 Sample

There are 93 recorded observation used in this experiment. As in experiment 1,

any adult could participate as there was no particular procedure for selecting the

participants. Some participants who engaged in this experiment participated on the

previous one also. Others participated solely in this one. As in experiment 1, only

the date, time, and participants’ answers were recorded. The email was also recorded

only if the participant asked for the results to be sent to him/her when the study is

complete. No IPs or any personal identification was stored.

4.4.2 Measures

In the first part of experiment 2 and similar to experiment 1, participants were asked

to choose 5 shapes from a pool of 70 shapes. These shapes were previously randomly

generated and have different areas. The 70 images are all of size 500∗500. They were

rescaled to a smaller size of 63 ∗ 63 to make all 70 shape fit the screen for simpler

user selection (Figure 4.6). The PHP code validates the participant’s response and

makes sure that the user chooses only 5 shapes. Otherwise, a visible error message

will be shown and the user will be able to edit the shape selection to make sure only

5 are chosen. Users are encouraged to select shapes based on what they consider

being easy for the area estimation and comparisons. Now that the user has chosen

the 5 shapes, he/she can start performing the second task. An extra step was added

to the experiment to overcome the user interface design problem that occurred in

experiment 1. This extra step asks the user to put in order the 5 randomly generated

shapes from the largest to the smallest, where the largest gets the value of 1 and the

smallest gets 5. This screen can be seen in Figure 4.20. This is to ensure that the

user is able to distinguish the visible size difference among the shapes. In addition,

it gives the ability to be consistent in the way the pair of shapes is displayed on the

10 pairwise comparisons screens. The larger shape is displayed on the left and the

85

Figure 4.20: Order shapes from largest to smallest screen

smaller shape on the right all the time. The system will allow the user to proceed to

the area estimation in units page only if the ordering is correct. Otherwise, they would

need to select 5 new shapes. After that and exactly the same as experiment 1, the

user will be shown an example to help understand how the area estimation in unints

should be done. The black square example will be shown as in Figure 4.7. This time

we decided for the square unit to be of size 1600 pixels. That is a 40 ∗ 40 unit square,

which is smaller than the one used in experiment 1 due to the fact that shapes now

are in rather fixed scale ratio size. On the help page, the user can click on the start

task 2 button which will allow to start the area estimation process for the 5 shapes.

As in experiment 1 shapes will be shown one by one to ensure full concentration on

one shape at a time. Figure 4.8 shows how the direct method page is displayed. The

user can only input valid numeric values. No negative numbers, zeros, spaces, or even

very large numbers are allowed. If the user inputs an invalid value, an appropriate

error message will be shown. If a value is valid and the submit button is clicked, the

user will be taken to the next page, where the next shape estimation will take place.

Users have to estimate the area of all 5 shapes. In the last part of the experiment,

86

participants were shown two of the five random shapes side by side. Now that the user

have ranked them from largest to smallest, the larger shape is always displayed on the

left side, as shape 1 and the smaller shape is displayed on the right as shape 2. There

were 10 unique pairs that can be formed from the five shapes. So, 10 comparisons

were performed. This time, respondents were allowed to choose only one option which

is “Shape 1 is [(value from user)] times larger” for each of the ten pairs of shapes. A

screenshot of that page is shown in Figure 4.21. If the user feels that shape 1 is not

larger that shape 2, a “Disapprove” button is provided and can be clicked. Users can

click the “Disaprove” button only if they think that shape 1 is not larger than shape

2. Even though this is not possible to happen since the ordering already took place

and the larger shape is always displayed on the left side, the option of disapproving

was provided since different people may have different visual perception of shapes.

People see with their brains but the eyes take in light and then projects it to retina.

Cells carry the signal along a pathway to the brain, then interpret the projection of

the retina. Afterwards, light is turned into information that can be interpreted by the

brain [44]. People have different brain capabilities. Thus, they perceive what they

see differently and that is why the disapprove button is provided. If the disapprove

button is clicked, users would need to select 5 new shapes. After completing all 10

comparisons, a thank you page is displayed. Please see Figure 4.22 for a detailed

flowchart for the PHP code.

4.4.3 Stimuli

Pretty much like experiment 1, a pool of 70 random shapes that was randomly gener-

ated with different area sizes was used. Respondents were asked to choose 5 of those

shapes to perform the area estimation and comparison. This gives more randomness

to the experiment due to the fact that probably not all participants would use the

same shapes. In addition, this will give an idea on what type of shapes are easier

to use for area estimation according to the participant’s selection. Only the shapes

87

Figure 4.21: Pairwise comparisons used in experiment 2

shown in Figure 4.6 were used. This is because random shapes should not be very

simple such as randomly generated squares or circles [1]. To add even more random-

ness to the experiment, the PHP code randomly rescales the 5 shapes after the user

selection.

4.4.4 Procedure

As mentioned in experiment 1, all shapes were originally polygons with a randomly

chosen number of points between 5 and 90. The random numbers were generated

using Math.Rand() function in Java. Polygons are then generated and filled with

black and a Gaussian blur is applied to make rough edges smooth. Afterwards, a

threshold to transform grey pixels to black or white is used. The next step was to

scale all 70 shapes to make them equal in area with < 0.1% margin at most. Next, we

saved the new area of all the shapes. The largest size after rescaling is 23834 pixels

and the smallest is 23664 pixels. The difference between the largest and the smalles

is 170 pixels, which is too small to be noticed. Therfore, all of the shpaes became

88

La
n

d
 o

n
 H

o
m

e
P

ag
e

Sh
o

w
 H

o
m

e
P

ag
e

W
h

ic
h

 c
o

n
ta

in
s

th
e

co
n

se
n

t
fo

rm

In
fo

rm
at

io
n

Fi

ll
U

p
 a

n
d

Su

b
m

it

V
al

id

In
fo

rm
at

io
n

 a
n

d

C
o

n
se

n
t?

Sh
o

w
 E

rr
o

r
m

es
sa

ge

N
o

Ye
s

Se
le

ct
 5

 S
h

ap
es

Se
le

ct
ed

 o
n

ly
 5

Sh

ap
es

?

Sh
o

w
 E

rr
o

r
m

es
sa

ge

N
o

Sh
o

w
 T

as
k

O
n

e
In

st
ru

ct
io

n
s

P
ag

e

Es
ti

m
at

e
A

re
a

in

U
n

it
es

 f
o

r
sh

ap
e

x

V
al

id
 N

u
m

er
ic

V

al
u

e?

Er
ro

r
M

es
sa

ge
N

o

x
=

1

Ye
s

X
 +

+

X
 <

=
5

?

Ye
s

x
=

1
N

o
In

p
u

t
A

re
a

an
d

Su

b
m

it

C
o

m
p

ar
e

ar
ea

 o
f

2

sh
ap

es

V
al

id
 V

al
u

e?
Er

ro
r

M
es

sa
ge

N
o

Ye
s

X
 +

+

X
 <

=
1

0
?

Ye
s

In
p

u
t

co
m

p
ar

is
o

n

d
ec

is
io

n
 a

n
d

Su

b
m

it

Th
an

k
Yo

u
 P

ag
e

N
o

Sh
o

w
 O

rd
er

in
g

th
e

Sh
ap

es
 F

ro
m

La

rg
es

t
to

 S
m

al
le

st

P
ag

e

Ye
s

In
p

u
t

th
e

O
rd

er
 a

n
d

Su

b
m

it

C
o

rr
ec

t
O

rd
er

in
g?

N
o

Sh
o

w
 E

rr
o

r
m

es
sa

ge

Sh
ap

e
o

n
 L

ef
t

La
rg

er

Th
an

 t
h

e
Sh

ap
e

o
n

 T
h

e
R

ig
h

t?

Ye
s

N
o

F
ig

u
re

4.
22

:
E

x
p

er
im

en
t

2
F

lo
w

ch
ar

t

89

approxitally equal in area. The areas are then recorded and saved to a MySQL

database for easy access through PHP. To overcome the problem of experiment 1

consistency, we needed to be sure that the 5 selected shapes are displayed to the user

in 1-5 ratio from largest to smallest. That is why we performed the previous step

of rescaling all shapes to approximately equal in area shapes and then apply a new

random scale to have the 5 shapes in a 1-5 ratio. This can be done by manipulating

how the image is displayed on the browser. Next, Shapes are displayed on the ranking

screen in no particular order. The user then orders them from largest to smallest.

Table 4.4 shows the steps used for experiment 2 to have the shapes in a 1-5 ratio.

Table 4.4: Experiment 2 steps

Step 1 Scale all 70 shapes to make them equal in area.

Step 2 Show shapes for user selection.

Step 3 Randomly re-Scaling shapes to have areas in 1-5 ratio.

Step 4 Show shapes ordering page.

Step 5 If correct ordering, user inputs area in units for 5 shapes. If not, select 5 new shapes.

Step 6 Pairwise comparison method for the shapes having the larger shape on the left.

Step 7 If the larger shape is not on the left, disapprove and start again.

90

Figure 4.23: A pairwise comparisons matrix in JConcluder

4.4.5 Analysis

Similarly to the analysis procedure performed in experiment 1, the PHP code is used

to extract the data from the MySQL database. Excel and JConcluder [72] are used, as

in the previous experiment as well. Figure 4.23 demonstrates a pairwise comparisons

matrix inputted in JConcluder, and the inconsistency is shown as well. The weight

for each criteria is demonstrated in Figure 4.24.

4.4.6 Results

The average error rate when estimating the area of random shapes in units (direct

method), is 30.3% for the 93 observations. Figure 4.25 shows the error rates for all

observations when the direct method is used. On the other hand, the average error

rate is only 11.96% when the pairwise comparison method is used, and this can be

91

F
ig

u
re

4.
24

:
W

ei
gh

ts
of

cr
it

er
ia

s
ex

am
p
le

in
J
C

on
cl

u
d
er

92

seen in Figure 4.27. The gain of accuracy here is approximately 18.4%. The results

are highly encouraging. The drop of estimation error, from 30.3% to 11.96% (See

Figure 4.28), is even more spectacular than the 1D case reported in [33]. It is evident

that the accuracy improves when random shapes’ area estimation using the pair-

wise comparison method is enforced. In this experiment, the average inconsistency

is only 0.27, which is reasonably acceptable. It is more appealing than the average

inconsistency (0.43) reported in experiment 1. Figure 4.26 demonstrates the level of

inconsistency recorded in this experiment, when the pairwise comparisons method is

used.

The total average time that the participants needed to complete all tasks, is approx-

imately 9 minutes. Figure 4.29 demonstrates the average time spent on each task.

Although the average time taken to complete both the direct and pairwise comparison

methods are close, the accuracy improves dramatically when the pairwise comparisons

method is used.

Out of the pool of 70 shapes, participants were asked to choose 5 shapes to use for

area comparisons and estimation. Users were encouraged to select the shapes based

on what is considered simple for an area estimation and comparison. Some shapes

were popular, while others were not selected at all. The most popular shape is shown

in Figure 4.30, which was selected 9.20% of the time. This may be due to the fact

that the shape looks like a “triangle,” which is easier for participants to estimate its

area. The second most popular shape is shown in Figure 4.31 and was selected 6.59%

of the time. Figure 4.32 is the third most shape selected and it was chosen 6.48%

of the time. These three shapes are the easiest for area estimation and comparisons,

according to the observations.

The only shape, out of the 70 shapes, that was not selected at all can be seen in

Figure 4.33. The second and third least selected shapes, that were selected a few

times, appears in Figure 4.34. It appears that some shapes are not easy to do area

estimation but others were overlooked for no logical reason known.

93

Figure 4.25: Histogram showing the average error when using the direct method in

experiment 2

94

Figure 4.26: Histogram showing the inconsistency in the pairwise comparisons in

experiment 2

Figure 4.27: Histogram showing the average error when using the pairwise compar-

isons method in experiment 2

95

Figure 4.28: Comparing the average error rate when using the pairwise comparisons

and the direct method for area estimation of random shapes

Selecting 5 shapes,
1.17

Ordering the 5
shapes, 0.75

Estimiating
the area in
units, 3.19

Pairwise
comparisons,

3.88

Figure 4.29: The time taken to complete each task in experiment 2 in minutes

96

Figure 4.30: The most popular shape selected

Figure 4.31: The second most popular shape selected

97

Figure 4.32: The third most popular shape selected

Figure 4.33: The shapes that was not selected not even once

98

Figure 4.34: Shapes selected only once or twice

99

5 Conclusions

We have demonstrated that the Gaussian blur can be used for the generation of pla-

cated random shapes (accepted for publication in a journal [3]). The beauty of the

random generation of placated but random shapes method is its simplicity. However,

it is worth noticing that the method is simple yet not simplistic. Unlike in [1], the

generated 2D random, but not equal in area, shapes were used to test the accuracy

of pairwise comparisons.

The results of this experiment are in favor of the pairwise comparisons method over

the direct method. The average error for the pairwise comparisons was nearly 11.96%

versus 30.3% when the direct method is used. The gain of accuracy, which is the dif-

ference between the errors derived from the direct method and pairwise comparisons

method, is around 18.4%. It is even more impressive than the 1D case reported in

[33]. While the direct rating method may be straightforward to use and there is no

need to compute the weights, there are trade offs in terms of accuracy and reliability.

The pairwise comparison method gives more firmness for the final outcomes. The

low average inconsistency value implies that the resulting error between the actual

area of the shape and the area estimated by the observer is low. It is also worth

mentioning that the average time taken to complete both the direct and pairwise

comparison methods were close, but the accuracy improves dramatically when the

pairwise comparisons method is used.

To our own knowledge and based on an intensive Internet search of academic databases,

such as Web of Knowledge, this is the first study in the world for Monte Carlo 2D

accuracy testing of pairwise comparisons.

100

In the future, a more sophisticated algorithm to generate placated random shapes is

envisioned. The Gaussian value and the cut-off threshold may be assigned automati-

cally to generate the desired placated nice looking shape without holes. This can save

time and hassle in the shape generation process. Furthermore, the attempt will be

made to use it as a plug-in for open source image processing systems (such as GIMP)

when the software is perfected and extended to other filtering methods. Also, the

bump function may be used.

101

Bibliography

[1] P. Adamic, T. Kakiashvili, W. W. Koczkodaj, V. Babiy, R. Janicki, and

R. Tadeusiewicz. Pairwise comparisons and visual perceptions of equal area

polygons. Perceptual and Motor Skills, 108(1):37–42, 2013/05/24 2009. URL

http://dx.doi.org/10.2466/pms.108.1.37-42.

[2] Song Ho Ahn. Convulotion. URL http://www.songho.ca/dsp/convolution/

convolution.html.

[3] A Almowanes, T Kakiashvili, and W W Koczkodaj. Generating placated random

shapes for an area estimation study (accepted). Journal of Applied Mathematics

and Computational Mechanics, 2013.

[4] V Babiy, R Janicki, A Wassyng, AD Bogobowicz, and W W Koczkodaj. Select-

ing the best strategy in a software certification process. In Computer Science

and Information Technology (IMCSIT), Proceedings of the 2010 International

Multiconference on, pages 53–58. IEEE, 2010.

[5] Sandor Bozoki and Tamas Rapcsak. On saaty’s and koczkodaj’s inconsistencies

of pairwise comparison matrices. Journal of Global Optimization, 42(2):157–175,

2008.

[6] Sándor Bozóki, János Fülöp, and Waldemar W Koczkodaj. An lp-based inconsis-

tency monitoring of pairwise comparison matrices. Mathematical and Computer

Modelling, 54(1):789–793, 2011.

102

[7] Google Code. Effectserrordisplay.java. URL http://scalalab.googlecode.

com/hg/scalalab281Src/scalaExec/gui/EffectsErrorDisplay.java.

[8] Josep Colomer. Ramon llull: from ars electionis to social choice theory. Social

Choice and Welfare, 40(2):317–328, February 2013. URL http://ideas.repec.

org/a/spr/sochwe/v40y2013i2p317-328.html.

[9] Marquis de Condorcet. Essay on the application of analysis to the probability of

majority decisions. Paris: Imprimerie Royale, 1785.

[10] David Dailey and Deborah Whitfield. Constructing random polygons. In Proceed-

ings of the 9th ACM SIGITE conference on Information technology education,

pages 119–124. ACM, 2008.

[11] Herbert Aron David. The method of paired comparisons, volume 12. DTIC

Document, 1963.

[12] Hepu Deng. Multicriteria analysis with fuzzy pairwise comparison. In Fuzzy Sys-

tems Conference Proceedings, 1999. FUZZ-IEEE’99. 1999 IEEE International,

volume 2, pages 726–731. IEEE, 1999.

[13] Nick Efford. Digital Image Processing: A Practical Introduction Using Java (with

CD-ROM). Addison-Wesley Longman Publishing Co., Inc., 2000.

[14] Georg Frobenius, Ferdinand Georg Frobenius, Ferdinand Georg Frobenius, and

Ferdinand Georg Frobenius. Uber Matrizen aus nicht negativen Elementen.

Konigliche Akademie der Wissenschaften Sitzungsber, Kon, 1912.

[15] Wilbert O Galitz. The essential guide to user interface design: an introduction

to GUI design principles and techniques. Wiley, 2007.

[16] Gaussiankernel.nb. The gaussian kernel. URL http://www.stat.wisc.edu/

~mchung/teaching/MIA/reading/diffusion.gaussian.kernel.pdf.pdf.

103

[17] GNU. GNU Image Manipulation Program User Manual. URL http://docs.

gimp.org/en/index.html.

[18] Rafael C. Gonzalez and R.E. Woods. Digital image processing. World Stu-

dent Series. Addison-Wesley, 1992. URL http://books.google.ca/books?id=

CfQeAQAAIAAJ.

[19] R.C. Gonzlez and P.A. Wintz. Digital image processing. Applied math-

ematics and computation. Addison-Wesley Pub. Co., Advanced Book Pro-

gram, 1977. ISBN 9780201030440. URL http://books.google.ca/books?id=

UQhEAQAAIAAJ.

[20] Branko Grnbaum. Convex Polytopes, volume Series: Graduate Texts in Math-

ematics, Vol. 221. First Edition Prepared with the Cooperation of Victor Klee,

Micha Perles, and Geoffrey C. Shephardt, 1967.

[21] Andi Gutmans, Stig Bakken, and Derick Rethans. PHP 5 Power Programming

(Bruce Perens’ Open Source Series). Prentice Hall PTR, 2004.

[22] Wilfred J Hansen. Introduction to user interface systems for hci developers and

researchers. In Conference Companion on Human Factors in Computing Systems,

pages 377–378. ACM, 1994.

[23] Michael W Herman and Waldemar W Koczkodaj. A monte carlo study of pair-

wise comparison. Information Processing Letters, 57(1):25–29, 1996.

[24] Wlodzimierz Holsztynski and Waldemar W Koczkodaj. Convergence of incon-

sistency algorithms for the pairwise comparisons. Information processing letters,

59(4):197–202, 1996.

[25] Huxtable.com. Class graphics2d. URL http://groups.inf.ed.ac.uk/vision/

STAVRAKAKIS/skinSpotTool2/skinSpotTool/GaussianFilter.html.

104

[26] Carlo Jacoboni and Lino Reggiani. The monte carlo method for the solution

of charge transport in semiconductors with applications to covalent materials.

Reviews of Modern Physics, 55(3):645, 1983.

[27] Ramesh Jain, Rangachar Kasturi, and Brian G Schunck. Machine vision, vol-

ume 5. McGraw-Hill New York, 1995.

[28] Kevin G Jamieson and Robert D Nowak. Active ranking using pairwise compar-

isons. arXiv preprint arXiv:1109.3701, 2011.

[29] Tamar Kakiashvili, Waldemar W Koczkodaj, Phyllis Montgomery, Kalpdrum

Passi, and Ryszard Tadeusiewicz. Assessing the properties of the world health

organization?s quality of life index. In Computer Science and Information Tech-

nology, 2008. IMCSIT 2008. International Multiconference on, pages 151–154.

IEEE, 2008.

[30] Tamar Kakiashvili, W W Koczkodaj, and Marc Woodbury-Smith. Improving

the medical scale predictability by the pairwise comparisons method: Evidence

from a clinical data study. Computer methods and programs in biomedicine, 105

(3):210–216, 2012.

[31] Pavel Karas and David Svoboda. Algorithms for Efficient Com-

putation of Convolution, pages 179–208. InTech, Rijeka (CRO),

1st ed. edition, 2013. ISBN 978-953-51-0874-0. doi: http:

//dx.doi.org/10.5772/3456. URL http://www.intechopen.com/

books/design-and-architectures-for-digital-signal-processing/

algorithms-for-efficient-computation-of-convolution.

[32] W W Koczkodaj. A new definition of consistency of pairwise comparisons. Math-

ematical and computer modelling, 18(7):79–84, 1993.

[33] W W Koczkodaj. Statistically accurate evidence of improved error rate by pair-

105

wise comparisons. Perceptual and Motor Skills, 82(1):43–48, 2013/05/24 1996.

URL http://dx.doi.org/10.2466/pms.1996.82.1.43.

[34] W W Koczkodaj. Statistically accurate evidence of improved error rate by pair-

wise comparisons. Perceptual and motor skills, 82(1):43–48, 1996.

[35] W W Koczkodaj. Testing the accuracy enhancement of pairwise comparisons by

a monte carlo experiment. Journal of statistical planning and inference, 69(1):

21–31, 1998.

[36] W W Koczkodaj and S J Szarek. On distance-based inconsistency reduction

algorithms for pairwise comparisons. Logic Journal of IGPL, 18(6):859–869,

2010.

[37] W W Koczkodaj and Wojciech Trochymiak. An expert system for construction

tendering process. ESDA 1996: Expert systems and AI; Neural networks, 7:79,

1996.

[38] Waldemar W Koczkodaj, Michael W Herman, and Marian Orlowski. Using

consistency-driven pairwise comparisons in knowledge-based systems. In Pro-

ceedings of the sixth international conference on information and knowledge man-

agement, pages 91–96. ACM, 1997.

[39] Waldemar W. Koczkodaj, Nicolas Robidoux, and Ryszard Tadeusiewicz. Clas-

sifying visual objects with the consistency-driven pairwise comparisons method.

MG&V, 18(2):143–154, January 2009. ISSN 1230-0535. URL http://dl.acm.

org/citation.cfm?id=1643375.1643378.

[40] Waldemar W Koczkodaj, Artur Przelaskowski, and Kazimierz T Szopinski. Med-

ical knowledge mining from image data: synthesis of medical image assessments

for early stroke detection. Machine Graphics & Vision International Journal, 19

(3):283–298, 2010.

106

[41] Ming-Shin Kuo, Gin-Shuh Liang, and Wen-Chih Huang. Extensions of the mul-

ticriteria analysis with pairwise comparison under a fuzzy environment. Inter-

national Journal of Approximate Reasoning, 43(3):268–285, 2006.

[42] Tatsumi Kurosawa. Monte carlo calculation of hot electron problems. J. Phys.

Soc. Jpn, 21:424, 1966.

[43] Joan Landes. The history of feminism: Marie-jean-antoine-nicolas de caritat,

marquis de condorcet. In Edward N. Zalta, editor, The Stanford Encyclopedia

of Philosophy. Winter 2010 edition, 2010. URL http://plato.stanford.edu/

archives/win2010/entries/histfem-condorcet/.

[44] Peter Loken, Amy Voytilla, Matt Bach, and Sivika Sirisanthana. The

world of visual art and aesthetics: Its functions and limitations.

URL http://www.macalester.edu/academics/psychology/whathap/ubnrp/

aesthetics/home.html.

[45] Nicholas Metropolis and Stanislaw Ulam. The monte carlo method. Journal of

the American statistical association, 44(247):335–341, 1949.

[46] L Mikhailov. Deriving priorities from fuzzy pairwise comparison judgements.

Fuzzy sets and systems, 134(3):365–385, 2003.

[47] Brad A. Myers. User-interface tools: Introduction and survey. Software, IEEE,

6(1):15–23, 1989.

[48] Peter Nijkamp, Piet Rietveld, Henk Voogd, et al. Multicriteria evaluation in

physical planning. North-Holland Amsterdam, 1990.

[49] Oracle. Class convolveop, . URL http://docs.oracle.com/javase/6/docs/

api/java/awt/image/ConvolveOp.html.

[50] Oracle. Class graphics2d, . URL http://docs.oracle.com/javase/1.4.2/

docs/api/java/awt/Graphics2D.html.

107

[51] Oracle. Class kernel, . URL http://docs.oracle.com/javase/1.4.2/docs/

api/java/awt/image/Kernel.html.

[52] Oracle. Class math, . URL http://docs.oracle.com/javase/6/docs/api/

java/lang/Math.html.

[53] JI Pelaez and MT Lamata. A new measure of consistency for positive reciprocal

matrices. Computers & Mathematics with Applications, 46(12):1839–1845, 2003.

[54] Oskar Perron. Zur theorie der matrices. Mathematische Annalen, 64(2):248–263,

1907. ISSN 0025-5831. doi: 10.1007/BF01449896. URL http://dx.doi.org/

10.1007/BF01449896.

[55] John G Raiti and JD Daniels. Direct and pairwise area estimation of physical

shapes through vision and touch 1, 2. Perceptual and Motor Skills, 114(2):391–

396, 2012.

[56] L. Saaty. The analytic hierarchy process. McGraw-Hill, 1980.

[57] Thomas Saaty. A scaling method for priorities in hierarchical structures. Journal

of Mathematical Psychology, 15(3):234 – 281, 1977. ISSN 0022-2496. doi: 10.

1016/0022-2496(77)90033-5. URL http://www.sciencedirect.com/science/

article/pii/0022249677900335.

[58] Thomas Saaty. Scenarios and priorities in transport planning: Application to

the sudan. Transportation Research, 11(5):343–350, 1977.

[59] Thomas Saaty. How to make a decision: the analytic hierarchy process. European

journal of operational research, 48(1):9–26, 1990.

[60] Thomas Saaty. Fundamentals of multiple criteria decision making with the an-

alytic hierarchy process, 1994.

108

[61] Thomas Saaty. Decision making with the analytic hierarchy process. Interna-

tional Journal of Services Sciences, 1(1):83–98, 2008.

[62] Thomas Saaty. Relative measurement and its generalization in decision making

why pairwise comparisons are central in mathematics for the measurement of in-

tangible factors the analytic hierarchy/network process. RACSAM-Revista de la

Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas,

102(2):251–318, 2008.

[63] David Sklar and Adam Trachtenberg. PHP cookbook. O’Reilly Media, Inc., 2003.

[64] Stanley Smith Stevens et al. On the theory of scales of measurement, 1946.

[65] Davida Teller and url = http://ai.ato.ms/MITECS/Entry/teller.html publisher

= MIT John Palme, title = Psychophysics.

[66] A Thomas. Heuristics for the generation of random polygons.

[67] L L Thurstone. A law of comparative judgment. Psychological Review, 34(4):

273–286, 1927. ISSN 1939-1471(Electronic);0033-295X(Print). doi: 10.1037/

h0070288.

[68] Kristi Tsukida and Maya R Gupta. How to analyze paired comparison data.

Technical report, DTIC Document, 2011.

[69] Frederick M Waltz. Skipsm: separated-kernel image processing using finite-state

machines. In Proc. SPIE Conf. on Machine Vision Applications, Architectures,

and Systems Integration III, volume 2347, 1994.

[70] Frederick M Waltz and John WV Miller. Efficient algorithm for gaussian blur

using finite-state machines. In Photonics East (ISAM, VVDC, IEMB), pages

334–341. International Society for Optics and Photonics, 1998.

109

[71] Luke Welling and Laura Thomson. PHP and MySQL Web development. Sams

Publishing, 2003.

[72] Ding Xu. Jconcluder. URL http://sourceforge.net/projects/concluder/.

[73] Bieke Zaman. Introducing a pairwise comparison scale for ux evaluations with

preschoolers. In Human-Computer Interaction–INTERACT 2009, pages 634–

637. Springer, 2009.

[74] Y Zhai and R Janicki. On consistency in pairwise comparisons based numerical

and non-numerical ranking. In Proceedings of the International Conference on

Foundations of Computer Science, FCS, volume 2010, pages 183–186, 2010.

110

A Appendix

A.1 Java Code

A.1.1 Point Class

package Gaussian;

public class Point {

private int x;

private int y;

public Point (int x, int y) //contstructor

{

this.x=x;

this.y=y;

}

public int getX()

{

return x;

}

public void setX(int x)

{

this.x=x;

}

public int getY()

{

return y;

}

public void setY(int y)

111

{

this.y=y;

}

public String toString()

{

String context=””;

context=”x=”+x+” y=”+y;

return context;

}

}

A.1.2 Pointlist Class

package Gaussian;

import java.util.ArrayList;

import java.util.Iterator;

public class PointList {

private ArrayList<Point> pointList;

private int pointNumber;

public PointList()

{

pointList=new ArrayList<Point>();

}

public ArrayList<Point> getPointList()

{

return pointList;

}

public void setPointList(ArrayList<Point> pointList)

{

this.pointList=pointList;

}

public int getPointNumber()

{

return pointNumber;

}

112

public void setPointNumber(int pointNumber)

{

this.pointNumber=pointNumber;

}

public int[] getX()

{

int[] x=new int[this.pointNumber];

Iterator iter=this.pointList.iterator();

Point temp; //container

int i=0;

while(iter.hasNext())

{

temp=(Point)iter.next();

x[i]=temp.getX();

i++;

}

return x;

}

public void addPoint(Point p){

this.pointList.add(p);

}

public int[] getY()

{

int[] y=new int[this.pointNumber];

Iterator iter=this.pointList.iterator();

Point temp; //container

int i=0;

while(iter.hasNext())

{

temp=(Point)iter.next();

y[i]=temp.getY();

i++;

}

return y;

}

}

A.1.3 RandomPoint Class

package Gaussian;

113

import java.util.Random;

public class RandomPoint {

Point p[];

int panelSize;

public RandomPoint(int numberOfPoints, int panelSize

/*heigt or width as it should be square*/)

{//contstructor

p = new Point[numberOfPoints];

this.panelSize=panelSize;

}

public Point[] getRandomPoints(){

int x;

int y;

Random r = new Random();

for (int i = 0; i<p.length; i++)

{

x = r.nextInt((panelSize−50)−50) + 50;

y = r.nextInt((panelSize−50)−50) + 50;

p[i] = new Point(x,y);

System.out.println(p[i].toString());

}

return p;

}

//returns the values of x in an array

public int[] getX() {

int[] x;

x = new int [p.length];

for (int i = 0; i<x.length; i++)

{

x[i] = p[i].getX();

}

return x;

}

//returns the values of y in an array

public int[] getY() {

int[] y;

y = new int [p.length];

for (int i = 0; i<y.length; i++)

{

y[i] = p[i].getY();

}

114

return y;

}

}

A.1.4 Gaussian Class

package Gaussian;

import java.awt.BorderLayout;

import java.awt.Color;

import java.awt.Component;

import java.awt.Dimension;

import java.awt.FlowLayout;

import java.awt.Graphics;

import java.awt.Graphics2D;

import java.awt.TextField;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.awt.image.BufferedImage;

import java.awt.image.ConvolveOp;

import java.awt.image.Kernel;

import java.io.File;

import javax.imageio.ImageIO;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JPanel;

public class Gaussian extends JFrame {

private BlurPanel bPanel;

private TextField tField;

private JButton Gaussian;

private JButton SaveImg;

private JButton NewShape;

static int max;

static int i = 0;

public Gaussian() {

bPanel= new BlurPanel();

this.add(bPanel);

115

this.tField = new TextField(10);

Gaussian=new JButton(”Update Gaussian Raduis(sigma=raduis/3)”);

SaveImg=new JButton(”Save Image”);

NewShape=new JButton(”New Shape”);

Gaussian.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent arg0) {

bPanel.setRadius(Integer.parseInt

(tField.getText()));

}

});

NewShape.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent arg0) {

bPanel.NewShape();

}

});

SaveImg.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent ae){

try{

if(bPanel.getRadius()<=0){

SaveScreenShot(bPanel,”NoBlur.jpg”);

}

if(bPanel.getRadius()>0){

SaveScreenShot(bPanel,”WithBlur.jpg”);

}

}

catch(Exception e){

}}

});

JPanel control1=new JPanel(new FlowLayout(FlowLayout.CENTER));

control1.add(tField);

control1.add(Gaussian);

control1.add(SaveImg);

control1.add(NewShape);

this.add(control1,BorderLayout.SOUTH);

this.setSize(new Dimension(600,600));// jframe size

this.setLocationRelativeTo(null);

this.setTitle(”Random Shapes”);

this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

116

}

//capture the image

public static BufferedImage getScreenShot(Component component){

BufferedImage bi = new BufferedImage

(500, 500, BufferedImage.TYPE_INT_BGR);

component.paint(bi.getGraphics());

return bi;

}

// save the image

public static void SaveScreenShot(Component component,

String filename) throws Exception{

BufferedImage bi = getScreenShot(component);

ImageIO.write(bi, ”jpg”, new File(filename));

}

}

/*−−−−−−−−−−−−−−−−−−−−BlurPanel−−−−−−−−−−−−−−−−−−−−−−−*/

class BlurPanel extends JPanel{

private int r=0;

int min = 5;

int max = 11;

private BufferedImage image = null;

private int randomNumberOfPoints = numberOfPoints(min, max);

Point[] points = new Point[randomNumberOfPoints];

RandomPoint rp = new RandomPoint(randomNumberOfPoints, 500

/*image size*/);

int ix[];

int iy[];

public BlurPanel(){

ix = new int[4];

iy = new int[4];

//white background

ix[0]=0; iy[0]=0;

117

ix[1]=0; iy[1]=500;

ix[2]=500; iy[2]=500;

ix[3]=500; iy[3]=0;

rp.getRandomPoints();

}

int numberOfPoints(int min2, int max2) {

return randomNumberOfPoints = min2 + (int)(Math.random()

* ((max2 − min2) + 1));

// Min + (int)(Math.random() * ((Max − Min) + 1));

}

@Override //paint and reopaint

protected void paintComponent(Graphics mg) {

super.paintComponent(mg);

int[] x= rp.getX();

int[] y= rp.getY();

this.image= new BufferedImage

(500,500,BufferedImage.TYPE_BYTE_GRAY);

Graphics2D g=this.image.createGraphics();

g.setColor(Color.WHITE);

g.fillPolygon(ix, iy, 4);

g.setColor(Color.BLACK);

System.out.print(”Number of points = ”);

System.out.println(randomNumberOfPoints);

g.fillPolygon(x, y, points.length);

if(this.r>0){

image=this.gaussianFilter(this.r, true).filter(image, null);

image=this.gaussianFilter(this.r, false).filter(image, null);

System.out.print(”Gaussian raduis= ”);

System.out.println(r);

}

g.dispose();

mg.drawImage(image,0,0,null);

}

public void setRadius(int radius){

this.r=radius;

image=null;

this.repaint();

}

public int getRadius()

118

{

return r;

}

public void NewShape(){

image=null;

repaint();

}

/**

* Make a Gaussian blur kernel

*/

public static ConvolveOp gaussianFilter

(int radius, boolean horizonal){

int size=radius*2+1;

float data[]=new float[size];

float sigma=radius/ 3.0f; // raduis = 3*sigma

float twoSigmaSquare=2*sigma*sigma;

float root=(float)Math.sqrt(twoSigmaSquare*Math.PI);

float total=0.0f;

for(int i=−radius;i<radius;i++){

float distance=i*i;

int index=i+radius;

data[index]=(float)Math.exp

(−distance/twoSigmaSquare)/root;

total+=data[index];

}

for(int i= 0;i<data.length;i++){

data[i]/=total;

}

Kernel kernel=null;

if(horizonal){

kernel=new Kernel(size,1,data);

}else{

kernel=new Kernel(1,size,data);

for (int i = 0; i < size/2; i++) {

//to print the kernel vertical vector

119

System.out.printf(”%9.4f ”, data[i]);

System.out.println();

}

}

return new ConvolveOp(kernel,ConvolveOp.EDGE_NO_OP,null);

}

A.1.5 Image2Array Class

package Gaussian;

import java.awt.image.BufferedImage;

import java.awt.image.Raster;

import java.io.IOException;

import javax.imageio.ImageIO;

public class Image2Array

{

int height, width;

public Image2Array() {

}

//read image

public int [][] compress() throws IOException

{

File file = new File(”WithBlur.jpg”);

BufferedImage image = ImageIO.read(file);

Raster image_raster = image.getData();

int[][] original; // where we'll put the image

//get pixel by pixel

int[] pixel = new int[1];

int[] buffer = new int[1000];

original = new int[image_raster.getWidth()]

[image_raster.getHeight()];

width = image_raster.getWidth();

height = image_raster.getHeight();

System.out.print(”image size: ”);

System.out.print(width);

120

System.out.print(” x ”);

System.out.println(height);

for(int i = 0 ; i < image_raster.getWidth() ; i++)

for(int j = 0 ; j < image_raster.getHeight() ; j++)

{

pixel = image_raster.getPixel(i, j, buffer);

original[i][j] = pixel[0];

}

ReplacePixel(original, 200); //cutoff with threshold 200

return original;

}

int area=0;

// calculate the area

public int[][] ReplacePixel(int[][] src, int oldValue)

throws IOException

{

for(int i = 0 ; i < width; i++){

for(int j = 0 ; j < height ; j++)

{

if (src[i][j] >= oldValue)

{

src[i][j] = 255;

}

if (src[i][j] < oldValue)

{

src[i][j] = 0;

}

if(src[i][j] != 255)

// not all black pixels pure white

{

area++;

}

}

}

System.out.println(”Threshold= ”+ oldValue);

System.out.println(”Area= ”+area);

121

Array2Image(src);

return src;

}

public void Array2Image(int[][] src) throws IOException

{

BufferedImage theImage = new BufferedImage

(width, height, BufferedImage.TYPE_BYTE_GRAY);

for(int y = 0; y<width; y++){

for(int x = 0; x<height; x++){

int grayValue = src[x][y] << 16 |

src[x][y] << 8 | src[x][y];

theImage.setRGB(x, y, grayValue);

}

}

File outputfile = new File(”afterCut.jpg”);

ImageIO.write(theImage, ”jpg”, outputfile);

}

public static void main(String[] args) throws IOException {

Image2Array i2a = new Image2Array();

i2a.compress();

}

}

A.1.6 SquareUnit Class

package SquareUnit;

import java.awt.BorderLayout;

import java.awt.Color;

import java.awt.Component;

import java.awt.Dimension;

import java.awt.FlowLayout;

import java.awt.Graphics;

import java.awt.Graphics2D;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

122

import java.awt.image.BufferedImage;

import java.io.File;

import javax.imageio.ImageIO;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JPanel;

public class SquareUnit extends JFrame {

private BlurPanel bPanel;

private JButton SaveImg;

static int max;

static int i = 0;

public SquareUnit() {

bPanel= new BlurPanel();

this.add(bPanel);

SaveImg=new JButton(”Save Image”);

SaveImg.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent ae){

try{

SaveScreenShot(bPanel,”SquareUnit.jpg”);

}

catch(Exception e){

}}

});

JPanel control1=new JPanel(new FlowLayout

(FlowLayout.CENTER));

control1.add(SaveImg);

this.add(control1,BorderLayout.SOUTH);

this.setSize(new Dimension(600,600));// jframe size

this.setLocationRelativeTo(null);

this.setTitle(”Square Unit”);

this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

//capture the image

public static BufferedImage getScreenShot(Component component){

BufferedImage bi = new BufferedImage (500, 500, BufferedImage.TYPE_INT_BGR);

component.paint(bi.getGraphics());

return bi;

123

}

// save the image

public static void SaveScreenShot(Component component, String filename) throws Exception{

BufferedImage bi = getScreenShot(component);

ImageIO.write(bi, ”jpg”, new File(filename));

}

}

/*−−−−−−−−−−−−−−−−−−−−−−BlurPanel−−−−−−−−−−−−−−−−−−−−−*/

class BlurPanel extends JPanel{

private int r=0;

private BufferedImage image = null;

int ix[];

int iy[];

public BlurPanel(){

ix = new int[4];

iy = new int[4];

//white background

ix[0]=0; iy[0]=0;

ix[1]=0; iy[1]=500;

ix[2]=500; iy[2]=500;

ix[3]=500; iy[3]=0;

}

@Override

protected void paintComponent(Graphics mg) {

super.paintComponent(mg);

this.image= new BufferedImage(500,500,BufferedImage.TYPE_BYTE_GRAY);

Graphics2D g=this.image.createGraphics();

g.setColor(Color.WHITE);

g.fillPolygon(ix, iy, 4);

g.setColor(Color.BLACK);

// unit square size is 1600 pixels or 40*40

g.fillRect(230, 230, 40, 40);

g.dispose();

mg.drawImage(image,0,0,null);

124

Figure A.1: Creating the unit square interface

}

}

Generating the unit square example can be seen in Figure A.1.

A.2 PHP Code

In this section, I show parts of my php code for designing the questionnaire.

A.2.1 Consent form error checking and validating PHP code

This makes sure that the user can not get access to the questionnaire unless the

consent form is filled up and signed properly.

function validate_page_one()

{

$error = '';

125

if (!filter_var($_SESSION['email'], FILTER_VALIDATE_EMAIL) and $_SESSION['send email'] === 'Yes')

{

$error .=

”Email is invalid
”;

}

if ($_SESSION['agree'] != 'agree')

{

$error .= ”You must check the \”I agree\” checkbox to be able to continue</span

></br>”;

}

if ($_SESSION['day'] === 'Day' or $_SESSION['month'] === 'Month' or $_SESSION['year'] === 'Year')

{

$error .= ”You must select a valid \”Date\” to be able to continue</br>”

;

}

if (strlen($_SESSION['send email']) == 0)

{

$error .= ”Please answer the question \”Do you wish to be informed with the

results of the study? (provide email)\”</br>”;

}

return $error;

}

A.2.2 Experiment 1

A.2.2.1 Display the 70 shapes to allow the selection of the 5 shapes PHP

code

<?php

// show all shapes

$file_number = 1;

$file_name = '';

echo ”<table border=\”1\” align=\”center\”>”;

echo ”<tr>”;

for ($i = 1; $i <= 7; $i++) //rows

{

for($j = 1; $j <= 10; $j++) //columns

126

{

$file_name = ”shapes/”

. $file_number

. ”−WithCut.jpg”;

echo ”<td align=\”center\”>”;

echo ”<input type=\”checkbox\” name=\”selected[]\” value=” ;

echo $file_name;

if (is_array($_SESSION['selected']) and in_array($file_name, $_SESSION['selected']))

{

echo ' checked = ”checked”';

}

echo ”><img src=”;

echo $file_name;

echo ” width=\”63\” height=\”63\” alt=”;

echo $file_name;

echo ” />
</td>”;

$file_number++;

}

echo ”</tr>”;

}

echo ”</table>”;

?>

A.2.2.2 Estimating the area in units PHP code

The following displays 1 of of the 5 pages where the user is asked to estimate the area

of 1 of the selected shapes in units.

<html>

<head><title>Random Shapes Study</title>

<style type=”text/css”>

.error { color: #ff0000 }

.error { font−size:250% }

</style>

</head>

<body>

127

<h3>Task 2 (1/5): please estimate the area of the shape you have just selected in units (a black

square) i.e. how many black

squares you need to fill up the shape. Note: Area can be a number with or without a decimal point. (Eg.

1, 6, 0.5, 1.25, 7.75, 11.39,)</h3>

<?php

echo ”<table border=\”1\” align=\”center\”>”;

echo ”<tr>”;

echo ”<td>”;

echo ”<table border=\”1\” align=\”center\”>”; //table on the left side

echo ”<tr>”;

echo ”<th>Shape</th>”;

echo ”<th>Unit</th>”;

echo ”</tr>”;

$file_name = $_SESSION['5shapes'][0];

$shape_number = 0 + 1;

echo ”<tr>”;

echo ”<td align=\”center\” height=\”500\” >”;

echo ”<img src=\”$file name\” width=\”$height width[0]\” height=\”$height width[0]\” alt=\”

$file name\”/>

$shape number</td>”;

echo ”<td><img src=\”blacksquare.jpg\” alt=\”blacksquare.jpg\” width=\”250\” height

=\”250\”/></td>”;

echo ”</tr>”;

echo ”</table>”;

echo ”</td>”;

?>

<form action=”<?php echo $self ?>” method=”post”>

<td>

<!−− Table on right side −−>

<table border=”1” align=”center”>

<tr>

<th>Area estimation in units:</th>

</tr>

<tr align=”center”> <td height=”500”>Area = <input class=”input” type=”text” name=”area1”

value=”<?php echo $ SESSION['area1'] ?>” size = 5> Units <input type=”submit” name=”page3b” value=

”Submit” />

</td>

</tr>

128

</table>

<!−− END −−>

</td>

</tr>

</table>

<!−− END OF MAIN TABLE −−>

</form>

</body>

</html>

<?php

}

To check for errors, I used the following PHP code.

function validate_page_three_f()

{

$error = '';

if (!($_SESSION['area5'] > 0 and $_SESSION['area5']<=100) and (is_numeric ($_SESSION['area5'])))

{

$error .= ”Area of shape is too large or too small to be true</

br>”;

}

if (($_SESSION['area5'] == '') or !(is_numeric ($_SESSION['area5'])))

{

$error .= ”Area of shape should be a number</br>”;

}

return $error;

}

A.2.2.3 Displaying shapes in pair for comparisons PHP code

<html>

129

<head><title>Random Shapes Study</title>

<style type=”text/css”>

.error { color: #ff0000 }

.error { font−size:250% }

</style>

</head>

<body>

<h3><u>Task 3 (1/10):</u> Compare the following 2 shapes according to their areas</h3>

You may use numbers with or without fractions (such as 1, 3, 1.40, or 5.75) when comparing

<form action=”<?php echo $self ?>” method=”post”>

<?php

echo ”<table border=\”1\” align=\”center\”>”;

echo ”<tr>”;

echo(”</p>”);

$file_name = $_SESSION['5shapes'][0];

$shape_number = 0 + 1;

echo ”<td align=\”center\” height=\”500\” width=\”500\”>”;

echo ”<img src=\”$file name\” width=\”$height width1\” height=\”$height width1\” alt=\”$file name

\”/>

</td>”;

$file_name = $_SESSION['5shapes'][1];

$shape_number = 1 + 1;

echo ”<td align=\”center\” height=\”500\” width=\”500\” >”;

echo ”<img src=\”$file name\” width=\”$height width2\” height=\”$height width2\” alt=\”$file name

\”/>

</td>”;

echo(”</p>”);

echo ”</tr>”;

echo ”</table>”;

echo ”</form>”;

?>

<?php

if ($error)

{

echo ”<p>$error</p>\n”;

}

?>

<form action=”<?php echo $self ?>” method=”post”>

130

<table border=”1” align=”center”>

<tr>

<td>

<input type=”radio” name=”compare” value=”a” <?php if ($_SESSION['compare'] === ”a”)

{

echo 'checked = ”checked”';

}?>>

Shapes are approximately equal.

</td><td> <input type=”radio” name=”compare” value=”b” <?php if ($_SESSION['compare'] === ”b”)

{

echo 'checked = ”checked”';

}?>> Shape 1 is [<input class=”input” type=”text” name=”compare area b”

size = 1 >] times bigger.

</td><td> <input type=”radio” name=”compare” value=”c” <?php if ($_SESSION['compare'] === ”c”)

{

echo 'checked = ”checked”';

}?>> Shape 2 is [<input class=”input” type=”text” name=”compare area c”

size = 1>] times bigger.

</td><td>

<input type=”submit” name=”page4” value=”Submit” />

</td>

</tr>

</table>

</body>

</html>

<?php

}

To validate and check for user input errors I used the following PHP code

function validate_page_four()

{

$error = '';

if (strlen($_SESSION['compare']) == 0)

{

$error .= ”Please select a, b, or c</br>”;

}

if (($_SESSION['compare area b'] == '' and $_SESSION['compare']=='b'))

{

131

$error .= ”Please input approximately how many times shape 1 is larger

than shape 2</br>”;

}

if (($_SESSION['compare area c'] == '' and $_SESSION['compare']=='c'))

{

$error .= ”Please input approximately how many times shape 2 is larger

than shape 1</br>”;

}

if (($_SESSION['compare'] == 'c') and ($_SESSION['compare area c'] < 0 or $_SESSION['compare area c'

]>=25))

{

$error .= ”Estimating how many times is one shape larger than the other is too large

or too small to be true</br>”;

}

if ($_SESSION['compare'] == 'b' and $_SESSION['compare area b'] < 0 or $_SESSION['compare area b'

]>=25)

{

$error .= ”Estimating how many times is one shape larger than the other

is too large or too small to be true</br>”;

}

return $error;

}

A.2.3 Experiment 2

Most the php code used for Experiment 2 is the same as the one used in experiment

1 except for the ordering or ranking from largest to smallest page and the pairwise

comparisons 10 pages.

A.2.3.1 Shape ranking PHP code

Here is part of the php code I use to display the ”order from largest to smallest”

page.

function display_page_rank($error)

{

$self = $_SERVER['PHP SELF'];

?>

132

<html>

<head><title>Random Shapes Study</title>

<style type=”text/css”>

.error { color: #ff0000 }

.error { font−size:250% }

</style>

</head>

<body>

<h2> It is very important to make sure to input accurate data as much as possible otherwise inconsistent

data will be produced. Thank you for your patience and understanding.</h2>

<h3> Here are the shapes that you have just selected. <!−−ranked from the largest to the smallest. Do

you approve or disapprove the shapes and thier ranking?−−></h3>

<h3> Rank largest to smallest from 1 to 5, where the largest shape gets the value of 1, the smallest gets

the value of 5 and the shapes in between get the values of (2, 3, 4) respectively</h3>

<form action=”<?php echo $self ?>” method=”post”>

<?php

// to sort the area

$to_sort= array($_SESSION['scaled area1'] , $_SESSION['scaled area2'], $_SESSION['scaled area3'],

$_SESSION['scaled area4'], $_SESSION['scaled area5']);

asort($to_sort);

\\shuffle to randomise the order

$shuffle_to_rank=array(”<td width=\”250\”><img src=\”$file name[0]\” width=\”$jsut for ranking0

\” height=\”$jsut for ranking0\” alt=\”$file name[0]\”/></td>”,

”<td width=\”250\”><img src=\”$file name[1]\” width

=\”$jsut for ranking1\” height=\”$jsut for ranking1

\” alt=\”$file name[1]\”/></td>”,

”<td width=\”250\”><img src=\”$file name[2]\” width

=\”$jsut for ranking2\” height=\”$jsut for ranking2

\” alt=\”$file name[2]\”/></td>”,

”<td width=\”250\”><img src=\”$file name[3]\” width

=\”$jsut for ranking3\” height=\”$jsut for ranking3

\” alt=\”$file name[3]\”/></td>”,

”<td width=\”250\”><img src=\”$file name[4]\” width

=\”$jsut for ranking4\” height=\”$jsut for ranking4

\” alt=\”$file name[4]\”/></td>”);

$array_to_shuffle=array(”<td><input class=\”input\” type=\”text\” name=\”$rank1\” size = 1></

td>$shuffle to rank[0]”,

”<td><input class=\”input\” type=\”text\” name=\”

$rank2\” size = 1></td>$shuffle to rank[1]”,

133

”<td><input class=\”input\” type=\”text\” name=\”

$rank3\” size = 1></td>$shuffle to rank[2]”,

”<td><input class=\”input\” type=\”text\” name=\”

$rank4\” size = 1></td>$shuffle to rank[3]”,

”<td><input class=\”input\” type=\”text\” name=\”$rank5\”

size = 1></td>$shuffle to rank[4]”);

shuffle($array_to_shuffle);

?>

<table border=”1”>

<tr>

<?php echo $array_to_shuffle[$randomis[0]] .$array_to_shuffle[$randomis[1]] .$array_to_shuffle[$randomis[2]]

.$array_to_shuffle[$randomis[3]] . $array_to_shuffle[$randomis[4]];?>

</tr>

</table>

<p align=”center”>

Rank from largest to smallest, from 1 to 5. Where the largest shape gets the value of 1, the smallest gets the

value of 5</p>

<p align=”center”>

<input type=”submit” name=”pagerank1” value=”Submit” /></p>

<style type=”text/css”>

.error { color: #ff0000 }

.error { font−size:250% }

</style>

<?php //to show errors.

if ($error)

{

echo ”<p align=\”center\”>$error</p>\n”;

}

?>

</form>

</body>

</html>

<?php

}

134

To check if the user has the correct ordering, I used the following function that will

return an error if the ordering is wrong.

function validate_page_rank()

{

$error='';

if (($_SESSION['rank1'] <1 or $_SESSION['rank1']>5 or is_numeric($_SESSION['rank1'] or $_SESSION['rank1'] == ''

))

or ($_SESSION['rank2'] <1 or $_SESSION['rank2']>5 or is_numeric($_SESSION['rank2'] or $_SESSION['

rank2'] == ''))

or ($_SESSION['rank3'] <1 or $_SESSION['rank3']>5 or is_numeric($_SESSION['rank3'] or $_SESSION['

rank3'] == ''))

or ($_SESSION['rank4'] <1 or $_SESSION['rank4']>5 or is_numeric($_SESSION['rank4'] or $_SESSION['

rank4'] == ''))

or ($_SESSION['rank5'] <1 or $_SESSION['rank5']>5 or is_numeric($_SESSION['rank5'] or $_SESSION['

rank5'] == '')))

{

$error .= ”You have inputted invalid values; please make sure that you

input numbers between 1 and 5. Rank largest to smallest from 1 to 5, where the largest shape

gets the value of 1, the smallest gets the value of 5 and the shapes in between get the values

of (2, 3, 4) respectively</br>”;

return $error;

}

if(($_SESSION['rank1'] != 1)

or ($_SESSION['rank2'] != 2)

or ($_SESSION['rank3'] != 3)

or ($_SESSION['rank4'] != 4)

or ($_SESSION['rank5'] != 5))

{

$error .= ”Shape are not ranked correctly, please start over again by

clicking the link \”Start over again\” below. Rank largest to smallest from 1 to 5, where the

largest shape gets the value of 1, the smallest gets the value of 5 and the shapes in between

get the values of (2, 3, 4) respectively</br>”;

}

return $error;

}

135

A.2.3.2 Displaying shapes in pair for comparisons PHP code

As the design of the pairwise comparisons 10 pages in experiment 2 have changed, I

used the following code to display it.

<html>

<head><title>Random Shapes Study</title>

<style type=”text/css”>

.error { color: #ff0000 }

</style>

</head>

<body>

<h3>Task 3 (1/10): Compare the following 2 shapes according to their areas. You may select one option only.

You may use numbers with or without fractions (such as 1, 3, 1.40, or 5.75) when comparing</h3>

<form action=”<?php echo $self ?>” method=”post”>

<p align=”center”>

Click ”Disaprove” button only if you think that shape 1 is not larger than shape 2

<input type=”submit” name=”pagerank2” value=”Disapprove”/></p>

</p>

<?php

echo ”<table border=\”1\” align=\”center\”>”;

echo ”<tr>”;

echo ”<td align=\”center\”>”;

echo ”Shape 1”;

echo ”</td>”;

echo ”<td align=\”center\”>”;

echo ”Shape 2”;

echo ”</td>”;

echo ”<tr>”;

echo(”</p>”);

$file_name = $_SESSION['5shapes'][0];

$shape_number = 0 + 1;

echo ”<td align=\”center\” height=\”500\” width=\”500\”>”;

echo ”<img src=\”$file name\” width=\”$height width1\” height=\”$height width1\” alt=\”$file name

\”/>

</td>”;

$file_name = $_SESSION['5shapes'][1];

136

$shape_number = 1 + 1;

echo ”<td align=\”center\” height=\”500\” width=\”500\” >”;

echo ”<img src=\”$file name\” width=\”$height width2\” height=\”$height width2\” alt=\”$file name

\”/>

</td>”;

echo(”</p>”);

echo ”</tr>”;

echo ”</table>”;

echo ”</form>”;

?>

<?php

if ($error)

{

echo ”<p align=\”center\”>$error</p>\n”;

}

?>

<form action=”<?php echo $self ?>” method=”post”>

<table border=”1” align=”center”>

<tr>

<!−−<td>

<input type=”checkbox” name=”compare” value=”a” >

Shapes are approximately equal.

</td>−−><td> Shape 1 is [<input class=”input” type=”text” name=”compare area b”

size = 1 >] times larger.

</td><td>

<input type=”submit” name=”page4” value=”Submit” />

 1 of 10</td>

</tr>

</table>

</body>

</html>

<?php

}

A.3 MySQL code

Figure A.2 shows a bird-eye view of my database.

137

F
ig

u
re

A
.2

:
T

h
e

M
y
S
Q

L
ov

er
al

l
v
ie

w

138

A.3.1 Experiment 1 MySQL code

−−

−− Table structure for table `SHAPES`

−−

CREATE TABLE IF NOT EXISTS `SHAPES` (

`number` varchar(100) NOT NULL,

`area` varchar(100) NOT NULL

) ENGINE=MyISAM DEFAULT CHARSET=latin1;

−− −−

−−

−− Table structure for table `COMPARE_SHAPES`

−−

CREATE TABLE IF NOT EXISTS `COMPARE_SHAPES` (

`Serial_Number` int(25) NOT NULL AUTO_INCREMENT,

`Agree` varchar(10) NOT NULL,

`Server_Time_Date` varchar(100) NOT NULL,

`Session` varchar(100) NOT NULL,

`User_Date` varchar(50) NOT NULL,

`Send_Result` varchar(100) NOT NULL,

`Shape_1_Area` varchar(100) NOT NULL,

`Shape_2_Area` varchar(100) NOT NULL,

`Shape_3_Area` varchar(100) NOT NULL,

`Shape_4_Area` varchar(100) NOT NULL,

`Shape_5_Area` varchar(100) NOT NULL,

`scaled_area1` varchar(100) NOT NULL,

`scaled_area2` varchar(100) NOT NULL,

`scaled_area3` varchar(100) NOT NULL,

`scaled_area4` varchar(100) NOT NULL,

`scaled_area5` varchar(100) NOT NULL,

`Compare_1` varchar(100) NOT NULL,

`Compare_2` varchar(100) NOT NULL,

`Compare_3` varchar(100) NOT NULL,

`Compare_4` varchar(100) NOT NULL,

`Compare_5` varchar(100) NOT NULL,

`Compare_6` varchar(100) NOT NULL,

139

`Compare_7` varchar(100) NOT NULL,

`Compare_8` varchar(100) NOT NULL,

`Compare_9` varchar(100) NOT NULL,

`Compare_10` varchar(100) NOT NULL,

`time1` varchar(100) NOT NULL,

`time2` varchar(100) NOT NULL,

`time3` varchar(100) NOT NULL,

`total_time` varchar(100) NOT NULL,

PRIMARY KEY (`Serial_Number`)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=103 ;

−− −−

−−

−− Table structure for table `height_width`

−−

CREATE TABLE IF NOT EXISTS `height_width` (

`Session` varchar(100) NOT NULL,

`height_width1` varchar(100) NOT NULL,

`height_width2` varchar(100) NOT NULL,

`height_width3` varchar(100) NOT NULL,

`height_width4` varchar(100) NOT NULL,

`height_width5` varchar(100) NOT NULL

) ENGINE=MyISAM DEFAULT CHARSET=latin1;

A.3.2 Experiment 2 MySQL code

−−

−− Table structure for table `exp2SHAPES`

−−

CREATE TABLE IF NOT EXISTS `exp2SHAPES` (

`number` varchar(100) NOT NULL,

`area` varchar(100) NOT NULL

) ENGINE=MyISAM DEFAULT CHARSET=latin1;

−− −−

−−

140

−− Table structure for table `exp2COMPARE_SHAPES`

−−

CREATE TABLE IF NOT EXISTS `exp2COMPARE_SHAPES` (

`Serial_Number` int(25) NOT NULL AUTO_INCREMENT,

`Agree` varchar(10) NOT NULL,

`Server_Time_Date` varchar(100) NOT NULL,

`Session` varchar(100) NOT NULL,

`User_Date` varchar(50) NOT NULL,

`Send_Result` varchar(100) NOT NULL,

`Shape_1_Area` varchar(100) NOT NULL,

`Shape_2_Area` varchar(100) NOT NULL,

`Shape_3_Area` varchar(100) NOT NULL,

`Shape_4_Area` varchar(100) NOT NULL,

`Shape_5_Area` varchar(100) NOT NULL,

`scaled_area1` varchar(100) NOT NULL,

`scaled_area2` varchar(100) NOT NULL,

`scaled_area3` varchar(100) NOT NULL,

`scaled_area4` varchar(100) NOT NULL,

`scaled_area5` varchar(100) NOT NULL,

`Compare_1` varchar(100) NOT NULL,

`Compare_2` varchar(100) NOT NULL,

`Compare_3` varchar(100) NOT NULL,

`Compare_4` varchar(100) NOT NULL,

`Compare_5` varchar(100) NOT NULL,

`Compare_6` varchar(100) NOT NULL,

`Compare_7` varchar(100) NOT NULL,

`Compare_8` varchar(100) NOT NULL,

`Compare_9` varchar(100) NOT NULL,

`Compare_10` varchar(100) NOT NULL,

`time0` varchar(100) NOT NULL,

`time1` varchar(100) NOT NULL,

`time2` varchar(100) NOT NULL,

`time3` varchar(100) NOT NULL,

`total_time` varchar(100) NOT NULL,

`Disapprove` varchar(100) NOT NULL DEFAULT 'FALSE',

PRIMARY KEY (`Serial_Number`)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=53 ;

−− −−

−−

141

−− Table structure for table `exp2height_width`

−−

CREATE TABLE IF NOT EXISTS `exp2height_width` (

`Session` varchar(100) NOT NULL,

`height_width1` varchar(100) NOT NULL,

`height_width2` varchar(100) NOT NULL,

`height_width3` varchar(100) NOT NULL,

`height_width4` varchar(100) NOT NULL,

`height_width5` varchar(100) NOT NULL

) ENGINE=MyISAM DEFAULT CHARSET=latin1;

142

