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Abstract: The origin of the acoustic and seismic emissions from impacted singing grains and

from avalanching dune sand grains is sought in modes of vibration in discreet grain columns.

It is postulated that when the grains in a column are pressed together, elastic shear bands

are formed at the contact areas with distinct elastic properties. The central part of such

contact shear bands, where the stress level is maximum, is partially fluidized, resulting in

reduced elastic moduli. In a given column, the elastic moduli would assume the lowest values

just below the impacting pestle and higher values further below.The assembly of all grain

columns below the pestle forms the slip shear band. The transfer of energy from the pestle

to the modes of vibration in such columns is effected by the stick-slip effect. The intense

collective vibration of all columns in the slip shear band results in the familiar musical

sound. The concept of grain flowability is used to justify the disparity between the acoustic

emissions from impacted singing grains and from avalanching dune sand grains. The concept

of grain columns is assumed to apply in the freely avalanching booming sand band, but with

larger length to justify the lower frequencies. This approach predicts frequency spectra

comprising a low frequency content and a dominant frequency with its harmonics in

agreement with the experimental evidence. Additionally, it can account for the low frequency

vibration evoked when booming sand flows through a funnel. It is argued that sand grains

do not sing or boom since the stick-slip effect in not applicable in the contact shear bands.

PACS: 43.20.Ks, 89.75.Fb, 45.70.Mg, 43.40.Le
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1. Introduction

The mechanism responsible for the seismic and acoustic emissions, when a bed of singing sand

or silica gel grains is impacted by a pestle, was the subject of a recent paper by Patitsas [1].

The mechanism was sought in shear modes of vibration in a well defined slip channel (shear

band) comprising several grain layers ahead of the impacting pestle. It was argued that due

to some not yet understood physico-chemical effect on the grain surface, a bed of singing (mu-

sical) grains is characterized by a relatively high level of rigidity. Thus, the grains just ahead

of the pestle are subjected to a relatively high stress level resulting in the partial fluidization

of the tips of the grain asperities and any grain coating at the contact areas, resulting in turn

in drastically reduced elastic moduli in the slip channel.

However, the assumption in [1] that the length of the slip channel, in directions nearly

normal to the direction of the pestle motion, is also well defined needs reconsideration. Such

an assumption was necessary in order to view the slip channel as a cavity with well defined

walls, with well defined shear standing wave patterns and with well defined eigenfrequencies.

It is highly likely that the walls at the channel ends are not well defined and that there are

propagating (traveling) waves along the slip channel as opposed to standing wave patterns.

Thus, the determination of the frequencies of the seismic and acoustic emissions remains an

open question. Whereas, it could be argued that the boundary of the slip channel adjacent to

the pestle is well defined, i.e., the height of the bumps is small compared with the wavelength

of any waves present, it is difficult to argue that this is also the case at the lower boundary.

A more gradual transition from very low elastic moduli below the pestle to nominal values

in the grain bed, well below the pestle, is a more realistic assumption. Effectively, the stress

level generated by the pestle decreases with depth resulting in lower fluidization at the grain

contact areas. Furthermore, it is unreasonable to expect that continuum mechanics alone can

provide a satisfactory solution when the width of the channel is only about ten times the

particle (grain) size.

Similarly, there are serious questions that need be considered regarding the recent ap-

proaches in accounting for the seismic and acoustic emissions from avalanching dune sands.

Four such approaches have been published over the past seven years: In the mainly experi-

mental report by Andreotti [2], it is shown that during a booming dune avalanche, there are

elastic waves propagating along the dune surface extending several cm below the surface. It is
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then argued that the grains would oscillate according to the particle displacement dictated by

such waves. Furthermore, such waves would synchronize the grain-grain collisions and would

become excited by such collisions. It is known that when grains of any kind are induced to

avalanche down an inclined plane, the average time required by one grain to overtake another

is given by the expression, Tc = 1/0.4
√

(d̄/g), where d̄ is the average grain diameter and

g = 9.8m/s2, Andreotti [2], MiDi [3]. Thus, the dominant frequency of the propagating waves

and that of the seismic and acoustic emissions can be defined as fd = 1/Tc. However, in

the paper by Vriend at al. [4], it is reported that dune vibrations were detected even when

there was no apparent avalanche in progress and moreover, during avalanches the dominant

frequency fd was accompanied by several harmonics.

Subsequent reports by Bonneau et al. [5, 6] go to great lengths to elucidate the properties

of waves propagating along a dune surface where the elastic moduli increase with sand depth.

However, there is no clear identification of the modes corresponding to frequencies equal to

multiples of fd. Even in the latest report by Andreotti and Bonneau [7], the question of

harmonics of fd is not addressed. In this latter report, it is assumed that a thin shear band is

formed between the avalanching sand band and the static sand below, and that leads to the

excitation of the surface waves. Whereas, such a shear band is nearly evident when a sand

plate breaks off and begins to slide downhill, there is no such evidence after the plate breaks

up and a free avalanche ensues. On page 253 in Bagnold [8], it is stated that the velocity of

a grain layer at depth ζ decreases linearly with ζ until it is zero at some depth Ho.

Furthermore, by studying a video recording by The National Geographic Society, Survivors

of the Skeleton Coast Park, Namibia, Africa (1993), it can be concluded that the avalanche

front looses height gradually until it comes to rest when the height is about 2 or 3 cm. By

observing the tail end of the avalanches in YouTube presentations, it can be inferred that its

thickness is considerably lower than in the front. One such presentation by the authors of the

paper by Douady et al. [9], with the title: The Song of Dunes, can be reached from the link in

the same paper. Additionally, when the gate on a wood frame on the slip face of a boomable

dune is suddenly released, with sand height behind the gate up to 10 cm, [9], it is difficult to

imagine that the thickness of the avalanching band is the same in its entire length. Therefore,

the argument in [5] that for booming to occur the avalanche thickness must exceed a certain

threshold is rather tenuous. Effectively, it is argued that the wave frequency defined by the
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overtake time Tc would be lower than the cutoff frequency of propagation in the avalanching

sand band. The argument is more tenuous when applied to the case of a sand pile pushed by

a blade in the study by Douady et al. [9], where the geometry is even more ill-defined.

When, about 0.5 kg of booming sand grains from Sand Mountain, Nevada, USA, were

placed in a glass jar, 7 cm in diameter by 16 cm in length, and shaken horizontally along the

jar axis, the dominant frequency of the acoustic emission was 280 Hz (Leach and Rubin [10]).

It can be argued that there is grain layer rollover and a high stress level when the grain mass

collides with the jar wall, as there is layer rollover and high stress level when the avalanche

front collides with the static sand ahead. The dominant frequency, fd, is about four times

larger in the former than in the latter case. According to Nori et al. [11], fd is approximately

65 Hz in the latter case. According to Leach et al. [12], fd tends to decrease with increased

grain mass in the jar. It appears that the mechanism responsible for the emissions from highly

localized events could also be responsible for the emissions from large scale events such as the

pushing of the sand mass by the hand or a blade and the sliding of sand plates on a dune

surface.

In the report by Patitsas [1], the concept of a shear band (slip channel) several mm thick,

under a sliding sand plate or under a freely avalanching sand band, was used to explain the

relevant emissions as originating with shear modes of vibration in the channel with shear

phase velocity about 1 m/s, such that λ ≈ twice the channel thickness. But, even if such a

channel existed in the case of free avalanche, it would not be well defined at the lateral ends,

as in the case of the slip channel under an impacting pestle. However, this approach could

explain the harmonics of fd.

In the experimental report in [9], it is also recognized that the frequency, fd, is defined

by the overtake time, Tc, but the synchronization of the collisions is effected by some sort of

coupling between adjacent grain layers due to some wave that propagates up-down between

the static sand and the surface of the avalanching band. There is no attempt to account for

overtone frequencies, but such an approach would lead to overtones in the sequence of 3fd, 5fd

etc. However, the notion of up-down motion of grain layers is in agreement with the notion

of up-down grain column oscillations proposed in this study.

In the mainly experimental report by Vriend et al. [4], the booming emission is sought in

compression wave propagation along a surficial grain layer about 2 m in depth. The frequency
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is defined by the condition that for specific phase velocities in the substrate, the grain layer

and in the air, there is total reflection at the boundaries. This approach was criticized by

Andreotti et al. [13] especially regarding the assumption that the phase velocity does not

increase with depth. Furthermore, the mathematical model used in [4] could not account for

the low frequency content present in the free avalanche acoustic and seismic emissions. Addi-

tionally, it is highly unlikely that the energy generated by a few kg of freely avalanching sand

grains into a hole dug on the face of a dune would be sufficient to excite a wave in such a large

layer in thickness and length. The absence of boomability in certain dunes in a given area is

not a strong indicator that the booming mechanism has to lie well beneath the dune surface,

since on the surface all dunes appear to be the same. Equivalently, only certain sections of

the Eastern and Northern shores of Lake Michigan USA, visited on August 2009, exhibited

singability.

No explanation has been presented as to why booming dune sand would cease booming,

when freely avalanching, but would continue to be musical when squeezed, Criswell et al.

[14]. Furthermore, no arguments have been published as to the unexpected low propagation

velocity of the synchronization wave on the booming dune surface [2], and more generally as

to the unusually low propagation velocity of an elastic wave in a pile of ordinary sand, about

50 m/s, well below the values predicted by the Hertz-Mindlin theory, Bachrach et al. [15].

Finally, no satisfactory explanation exists as to why singing sands do not boom and booming

sands do not sing, and as to why no acoustic emission is produced during an ordinary (silent)

grain avalanche.

Before proceeding with the presentation of the present approach, it is deemed appropriate

to attempt to elucidate the terminologies used in describing the sounds emitted by sheared

granular media

. (a) Singing or squeaking sound refers to musical sound of short duration, up to 200 ms,

with frequencies in the range 250 to 2500 Hz, emitted when beach sands or silica gel grains

are impacted by an object or stepped on.

(b) Booming dune sound refers to a relatively low frequency, 60 to 100 Hz, continuous hum-

like (drone-like) sound emitted when dune sand grains avalanche freely downhill.

(c) Continuous singing or squeaking sound refers to musical sound emitted when the bed of

singing (squeaking) grains is sheared continuously by a vertical rod, immersed about 3 cm, or
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by a smooth object pulled along the grain surface. The known frequency range is under 1000

Hz.

(d) Pushed (squeezed) booming sand sound refers to a continuous musical sound emitted,

roughly in the frequency range, 25 to 350 Hz, when the sand mass is pushed continuously by

the hand or a blade on the face of a dune, or by a blade in a confined geometry.

(e) Roar sound refers to loud sound emitted when the booming sand is pushed downhill in a

heaped-up manner, Lewis [16]. The frequency range has not been recorded but it is likely at

about 200 Hz.

(f). Sand plate sound refers to the sound emitted when dune sand plates avalanche freely

downhill. The frequency range has not been recorded but it is likely at about 200 Hz.

List of symbols used extensively

d overall diameter of a grain

R R=d/2

d̄ average diameter of grains in a column

b thickness of a contact shear band between two grains

Rb radius of a contact shear band

cp compression phase velocity in a contact shear band

cs shear phase velocity in a contact shear band

x̂ unit vector along the direction of grain-grain slide

ẑ unit vector along a grain column

z distance from the bottom of a grain column towards the pestle above

ζ sand depth on the face of a dune

ξx particle displacement along x̂ inside the contact shear band

ξz particle displacement along ẑ inside the contact shear band

L length of the contact shear band along x̂ equal approximately to 2Rb

λx wavelength along a grain layer along the direction of slide

λz wavelength along a grain column

N number of grains in a column

Vc compression propagation velocity in a grain column

λc wavelength of a mode of vibration along a column, same as λz
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η correction factor in (9)

Mp equivalent pestle mass above a grain column

f1 frequency of the fundamental mode in a grain column

f2, ..fN overtone frequencies, on average, harmonics of f1

fp frequency of the pestle mode of vibration where the entire column acts like

a sort spring

Tc time for one grain to overtake another=1/0.4
√

(d̄/9.8)

fc grain-grain collision frequency in a surface grain avalanche=1/Tc

fd frequency at the center of the dominant experimental spectrum envelope

H height of drop of a pestle on the grain bed surface

Brevort River sand: singing sand collected at the mouth of the Brevort River flowing into

the North shore of Lake Michigan, USA, about 25 km west from the city of St. Ignace.

Large plastic container: a 46×28 cm by 10 cm in sand depth plastic container

2. The grain column approach

Figure 1 depicts an assumed grain configuration inside a slip channel where the five grain

layers slide over one another along x̂. For reasons to become clear later, the slip channel can

also be referred to as, the vibration shear band or

the column shear band or even better, the slip shear band. Ultimately the source of all

vibrations are the elastic shear bands at the grain contact areas. For the first column on the

left hand side, they are labeled as: shear band # 1 at the bottom to shear band #6 at the

top. It is understood that the lifetime of a given column is roughly equal to the average time

required for a grain to overtake another, Tc, and that the lifetime of the five column configu-

ration is about five times shorter and that the lifetimes would decrease with increased grain

number, N , in the columns. However, the duration of the signals generated when a small

steel sphere impacts a grain bed, Fig. 2 for example, is comparable to the time Tc ≈35 ms for

relative slippage velocity, 1 cm/s, and grain diameter, d=0.35 mm. As the sphere descends

into the grain bed, a given column, about 5 to 10 mm long, looses grains at the top and

gains grains at the bottom. There is also grain exchange between columns, but, the collective

vibration of the columns, outlined below, would tend to smooth out the frequency shifts in

the course of time.
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These disk-like shear bands are characterized by thickness, b, radius, Rb, and by compres-

sion and shear moduli that result in the corresponding phase velocities, cp, cs. In the context

of the analysis that follows, b is assumed to be in the order of 300 nm for average grain dime-

ter, d̄ ≈ 0.3 mm, higher values can be compensated by higher values of the elastic moduli. In

the initial computations that follow, cp, cs, in the contact bands immediately below the pestle,

assume values in the order of a few m/s, implying a soft physical composition of such contact

bands.

Fig.1. An assumed grain column configuration in a slip shear band. The shaded areas

correspond to the elastic contact shear bands with physical properties of their own when the

grains are forced to slide past one another. They are characterized by compression and shear

phase velocities, cp, cs and particle displacements ξz, ξx.
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Inside the contact shear bands lie the tips of the surface asperities where transient tem-

peratures can rise to several hundred Co in time intervals up to a few microseconds, Bhushan

[17]. It is widely assumed that the space between the asperities is filled with some sort of

coating that plays a central role in the production of the musical sound. Several references
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to this effect can be found in [1, 9]. In the report by Lewis [16], the negative effect of moist

conditions on the boomability of sand grains is stressed and in the report by Miwa et al. [18],

it is suggested that certain beach sands lost their singability due to water pollutants resulting

from nearby construction projects. In the report by Brunet et al. [19], it is shown that in

a glass bead packing subjected to ultrasound waves, the dissipation increased by a factor of

five when the beads were covered with silicon oil. However, the loss of musicality of polluted

grains may not be as much due to viscous absorption as to changes in the friction coefficient

that results in the non-applicability of the stick-slip effect [20].

In a recent report by Patitsas [20], it is demonstrated that the water layer on the epidermis

of a finger rubbed on a glass surface acts as the interfacial band that facilitates slipping and

also results in the decrease of the friction coefficient with relative velocity resulting in the

stick-slip effect. Furthermore, it is argued that the shear modes of vibration responsible for

the acoustic emission are to be found in the finger skin. However, there is no reason why the

modes of vibration in the skin with thickness bs ≈5 mm, shear phase velocity cs ≈10 m/s and

wavelength λ ≈ 2bs could not also exist in the interfacial band with cs �10 m/s and thickness

b � λ. In this sense, the shear bands in Fig. 1 are assigned the roles of the interfacial band

and of the site of the shear modes of vibration with b � λ. The attempt to write, λ = 2b

results in cs ≈ 6×10−4 m/s, for b = d̄/1000 and fd=1000 Hz, where the average grain diameter

is, d̄=0.3 mm. Such unrealistic low value of cs leads to the conclusion that the shear modes

of vibration in the contact shear bands must be characterized by the conditions, b � λ and

L � λ along ẑ and x̂ respectively in Fig. 1, where L is the length of a given band along x̂. It

will be argued below that λ is the wavelength of the wave motion along and normally to the

grain column, i.e., such modes of vibration exist as part of macroscopic wave motion in the

adjacent grain mass.

If the motion of the grains in a given column were along ẑ only, the contact shear bands

could be replaced by equivalent short weightless springs. It is a straightforward exercise to

compute the eigenfrequencies and describe the corresponding modes of vibration for such a

system. For N blocks and N + 1 springs, there are N modes of vibration with frequencies,

f1, f2...fN . For the mode with frequency f1, all blocks oscillate in phase while for the mode

with frequency fN , neighboring blocks oscillate out of phase. The frequency f1 tends to be

rather insensitive to permutations of the blocks with different mass.
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It appears suitable at this stage to include a short paragraph from the study by Haff [21].

While the author was thinking of the booming dune emissions, the implications for the im-

pacted grains are obvious. ”Perhaps the mechanical analogue which most readily comes to

mind is the slipstick phenomenon, a nonlinear mechanism by which a steady input of external

energy is ultimately released and stored. This is certainly consistent with the oscillatory na-

ture of the system and with its sensitivity to grain surface conditions and hence, presumably,

to friction. To ascribe booming to a slipstick mechanism, however, is only to say the words;

until we have a clear picture in mind of what the grains are actually doing, we do not really

understand the origin of the booming sands”.

3. Modes of vibration in a given grain column

In what follows, the origin, O in Fig. 1, is assumed to coincide with the left side of

shear band # 1. The particle displacement, ξs, is written as, ξs = ∇× A, where A satisfies

the vector wave equation with phase velocity cs. A is chosen to lie along ŷ resulting in,

Ay = [A1cosαz+B1sinαz][A1
′cosβx+B′

1sinβx]ejωt and this in turn results in, ξz = β[A1cosαz+

B1sinαz][−A′
1sinβx + B′

1cosβx] and, ξx = α[A1sinαz − B1cosαz][A′
1cosβx + B′

1sinβx], where

the factor ejωt is understood to be included. The wave number, ks = ω/cs, is given as,

k2
s = α2 + β2. The question arises as to the nature of the boundary conditions at the ends of

a given shear band. If the ends are free, then, ∂ξx/∂x=0 at x = 0, resulting in B′
1=0 and in,

ξz = [A1cosαz + B1sinαz]βsinβx and, ξx = [A1sinαz − B1cosαz]αcosβx. The problem with

the choice of free ends is that ξx is greater than ξz by several orders of magnitude since βx →0

for the low frequency modes and β � α since b � L. If the ends are fixed then,

ξz = [A1cosαz + B1sinαz]βcosβx (1)

and

ξx = [A1sinαz − B1cosαz]αsinβx (2)

The latter choice appears reasonable when it is realized that the stress level decreases rapidly

as x approaches the ends of the band resulting in a solid-like state at the ends.

In shear band #1, the expression for the particle displacement along ẑ simplifies to,

ξ1z = [B1sinαz]βcosβx (3)
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assuming that ξ1z=0 at z=0, and that in shear band # 2 becomes,

ξ2z = [A2cosαz + B2sinαz]βcosβx (4)

In shear band #3, the coefficient subscripts become 3 and so on for the rest of the bands.

The boundary condition on the top of shear band # 1 at z = b is,

∫
σ1zzdxdy +

∫
σ2zzdxdy = M1∂

2ξ1z/∂t2 (5)

where M1 is the mass of grain # 1 and ∂2ξ1z/∂t2 is evaluated at some point x → 0. The

normal stress per unit area along ẑ is given as, σ1zz = −(λe + 2µe)∂ξ1z/∂z =-ρc2
p∂ξ1z/∂z,

while that along -ẑ at the bottom of shear band # 2 is given as, σ2zz = ρc2
p∂ξ2z/∂z. The mass

density in the bands was assumed to be equal to that in the grains, i.e., that of quartz equal

to 2650 kg/m3. Equation (5) is repeated at the top of shear band # 2 until the top of the

last band # 6, where the normal shear force σ6zz acts on the equivalent pestle mass Mp, i.e.,

∫
σ6zzdxdy = Mp∂

2ξ6z/∂t2 (6)

The result of (5), with A1=0, is the following working equation,

[−S1ρc2
pαcos(αb) + M1ω

2sin(αb)]B1 − [S2ρc2
pαsin(α1)]A2 + [S2ρc2

pαcos(α1)]B2 = 0 (7)

where S1, S2 are the areas of bands # 1 and 2, and α1 = α(b + d1).

The grains are assumed to be perfectly rigid, so that ξ1z(z = b) = ξ2z(z = b+d1), resulting

in the working equation,

sin(αb)B1 − cos(α(b + d1))A2 − sin(α(b + d1))B2 = 0 (8)

where d1 is the overall diameter of grain#1. There are 2N + 1 equations and 2N + 1 coeffi-

cients, B1, A2, B2, ...A6, B6 for N=5 grains as in Fig. 1.
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4. Propagation velocity in a grain column

It will be seen below that the present approach can account, fairly satisfactorily, for the

observed frequency spectra. However, it ought to account, even to some vague degree, for

the vaguely known seismic propagation velocity in a grain bed inside a bowl. To this end, an

attempt is made here to derive an expression for the propagation velocity in a column (chain)

of grains lying on a frictionless horizontal floor in order to emphasize the irrelevance of the

force of gravity. The grains are assumed to be spherical and identical with diameter, d, mass,

m, and the contact shear bands with thickness, b, are replaced by identical short springs of

spring constant, k. If an equivalent Young’s modulus for the thin contact bands is defined as,

Yb = F/(δz/b), then, Yb = kb. On page 305 in Symon [22], the problem of wave propagation

in a string (chain) of point particles of mass m, interparticle distance, h, and string tension, τ ,

is treated. A similar procedure can be used in this case by writing the force equation for the

nth grain as, md2un/dt2 = k(un−1−un)−k(un−un−1) where the displacement of the nth grain

is, un ≈ nd, since b � d. Then, by introducing the mass per unit length, σ = m/d, the wave

equation can be obtained, with phase velocity, Vc =
√

kd/σ =
√

(d/b)(Yb/σ). Furthermore,

if the compression phase velocity in the contact bands is defined as, cp = 1/η
√

(Yb)(/σb),

then, Vc/cp = η
√

(d/b)(σb/σ), where η is an adjustment constant. It can be shown that,

σb/σ = 3/2(Rb/R)2, where, Rb, R are the radii of the contact bands and the grains respectively,

with the assumption that the mass densities in the grains and the contact bands are the same.

Thus,

Vc/cp = η
√

3(Rb/R)
√

R/b (9)

It is worthy of note that the equivalent spring constant, k, varies as R2
b and as 1/b and thus,

Vc varies as Rb

√
1/b. It will be argued below that R/Rb=22.5 and that R/b=500, resulting in

Vc/cp = η
√

3.

5. Computations and implications

The major difficulty with this study is that the only parameters that can be measured with

certainty are the dominant frequency of the seismic and acoustic emissions, fd, and at times

harmonics of fd. In the computations that follow, the contact band thickness and radius,

b,Rb, respectively and the number of grains in a given column, N , are assigned reasonable
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values and the phase velocities, cp, cs, are allowed to vary. The eigenfrequencies, f1, f2, ..fN ,

are then determined by looking for the zeros of the determinant of the coefficients, B1, A2,..

when ω = 2πf is varied, provided the wavenumber α can be specified in terms of ω. Then,

for a given eigenfrequency, the coefficients can be specified relative to the arbitrary value of

B1=1, and the nature of the corresponding mode of vibration can be examined. However,

the value of the wavenumber β must be specified before α can be specified from the relation,

(ω/cs)
2 = α2 + β2. It was argued above that for low frequency vibrations, λz/b �1 and also

λx/L �1. But, L/b ≈100 and thus it can be argued that λx/λz ≈100, resulting in α/β ≈100,

and α ≈ ω/cs. Thus, it is argued that the relation between α and β for a standing wave

pattern in a given contact shear band must also hold for a low frequency mode of vibration.

The attempt to specify β from the condition, ξx=0 at x = L results in β = π/L from (2).

However, a finite value of β results in a cutoff frequency that is not consistent with the

experimental results that follow and also with the need for a low frequency corresponding to

pestle vibration.

The question arises naturally as to the value of the number, N , of grains in a given grain

column. Figures 8 and 9 in [1] depict the acoustic emissions when sand grains in a porcelain

coffee cup, 9 cm in diameter, were impacted by a wood rod 25 mm in diameter. The sand

depth before impact was about 10 mm and that after impact about 4 or 5 mm, implying that

N ≈ 15.

Computations were commenced by choosing N=12 and average grain dimeter d̄=0.35 mm

to correspond to that of the singing sand collected from the mouth of the Brevort River flowing

into the north shore of Lake Michigan, USA, about 25 km west from the city of St. Ignace.

The grain diameter, dj , was varied randomly between 0.2 and 0.5 mm and the band thickness

was assigned the value, b = d̄/1000. The circular contact areas, Sj in (7), were evaluated

by assuming the radii to be equal to the average diameter of the adjacent grains divided by

45. When two spheres of diameter, d, are squeezed together until the distance between their

centers becomes d− b, then, the radius of the contact shear band is, Rb = (1/
√

2)
√

bd = d/45

for b = d/1000. However, there is flexibility in this theoretical approach, i.e., if Rb is twice as

large and b is four times as large, Vc in (9) remains the same and so do the eigenfrequencies

as pointed out below.

When a rod is hand-held and pushed or tapped into a sand bed, it is impossible to estimate
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the pestle mass Mp. However, when a small sphere is dropped on the sand bed, it is possible

to evaluate approximately the effective value of Mp on top of a given column. To this end,

the sum of the cross-sectional areas of the columns below the sphere was assumed to be equal

to 1/3 the sphere cross-sectional area.

It is reasonable to assume that the degree of fluidization of the grain contact bands is

highest immediately below the pestle and that it decreases gradually with depth until it is

equal to that in the un-sheared static grains, assuming no wall effects. There would be a

gradual tapering off near the bottom of the grain column, however, for reason of computation

simplicity a linear decrease of the degree of fluidization with depth was assumed throughout

the column. The value of the compression velocity in the contact band below the pestle was

assigned the convenient value, cp(13)=1.0 m/s, and cs was assigned the same value as cp at

this stage for lack of any information otherwise. Then, the value of cp(1) =12.0 m/s resulted

in f1 = fd= 812 Hz corresponding to the dominant peak in Fig. 2. The sequence of the

frequencies, fp, f1, f2, f3, ..f12 , was as follows: 30, 812, 1497, 3091 Hz,.. with corresponding

αb = 2π(b/λ) values of: 0.000001, 0.0003, 0.0005, 0.0011,... For this particular grain size

distribution, f3 is excessively high.

When all grain diameters were set equal to 0.35 mm, the frequencies, fi, were, 36, 831,

1532, 2284 Hz,... All 12 modes conform with the condition, b/λ �1. The values, cp(1)=12

m/s, cp(13)=1 m/s, are not unique, i.e., practically the same frequencies, fi, could be obtained

with cp(13)=2 m/s and with cp(1) somewhat lower than 12 m/s. It will be argued below in

Section 11 that the elastic moduli tend to vanish near the grain bed surface where, cp=1 m/s

could not be ruled out. Furthermore, it will be argued at the end of this section that this

approach can allow for considerably higher values cp(1), cp(13), a few cm below the surface,

when it is recognized that the effect of the pestle stress on the grains results not only in lower

values for cp(j) but also in lower contact surface areas Sj due to grain-grain relative slippage.

The lowest frequency, fp=30 Hz, corresponds to the pestle vibration and it decreases rather

strongly with increased pestle mass Mp while the frequencies fj decrease very weakly with

increased Mp. This is in agreement with the lack of significant sensitivity of the frequency, fd =

f1, on the length of the rod used to impact the grain bed or the manner by which the impaction

is effected, by pushing or tapping the rod, for example. The frequencies corresponding to

standing wave patterns in the contact shear bands are quite high, i.e., αb = π results in
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f = 1/3.5 × 106 Hz with b=0.35/1000 mm.

Variations in the values of cs, cp revealed that the frequencies fi are proportional to the

values of cp and nearly independent of the values of cs. Only when cs(j) were reduced to

cp(j)/200 there was an appreciable reduction in fi, except for fp, namely, 28 Hz (αb=0.002),

701 Hz (0.06), 1487 Hz (0.15), 2220 Hz (0.19). It could be argued that when cs = cp, α = ω/cs

is extremely small, resulting in extremely large wavelength λc along the grain column compared

with the contact band thickness, b. The lack of dependence of fi on cs can also be justified

in the way the equations above were based on the particle displacement along ẑ as opposed

to x̂ where the shear strain is present. The proportionality between the frequencies fi and

cp(j) implies that (9) represents adequately the compressive wave propagation in the grain

column, since a given fi, corresponding to a given standing wave pattern in the column, is

proportional to Vc. The same argument can be repeated in justifying why the frequencies,

f1, f2,.. are reduced by the factor of
√

2 when the ratio d̄/b is reduced by the factor of 2.0, why

the same frequencies are increased by the factor 2 when the contact band radii are increased

by the same factor, and why the same frequencies are reduced by the factor of 2.0 when the

grain diameters are increased by the same factor.

The description of the corresponding modes was effected by computing the coefficients,

B1, A2, B2, ..A13, B13, and then the particle (grain) displacements, ξz, ξx, at the bottom middle

and top of every contact band. It was verified that, when cp(j) are all constant, regardless of

the number N of grains in the column, the particle displacement, ξz, behaves like a half sine

function, i.e., it peaks at the middle of the column and then dips to zero at the top of the

column . Then, according to (1, 2), ξx has a node at the middle of the column. In simple

terms, this is the fundamental mode of an elastic thin bar fixed at both ends. However, when

cp(j) are assigned lower values as j approaches N + 1, ξz attains maximum value somewhat

above the middle of the column and thus, ξx has a node correspondingly. Generally, ξx is

about ten times as large as ξz.

The relatively large particle displacement along x̂ is consistent with the assumption that

the stick-slip effect plays an important role towards the realization of the musical acoustic

emission. In the case of the compression waves in the contact bands, ξz > ξx and since ξz is

constrained to remain small, such waves cannot become excited. This question is raised also

in [20]. From (8), it follows that ξz is also the grain displacement along ẑ, and since L � λx,
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ξx is a measure of the grain oscillation displacement along x̂.

When the number of grains in a given column was increased from 12 to 24, with the

same average diameter, d̄=0.35 mm, and the same values for cp(j), the eigenfrequencies were

reduced by the factor of 2.0, since the propagation velocity in the column, Vc, remained the

same but the wavelength was increased by the same factor. Furthermore, when the grains

were permuted in several ways, f1 remained in the range of, 800±80 Hz, provided the smaller

grains were not appreciably segregated from the larger grains. The spread about the central

value of f1 lies within the half width of the major frequency envelopes, Fig. 2, for example.

A spread of about ± 10 per cent was also observed around the frequency f2. If all cp(j) were

increased by a factor of 2.0, then the values of fi would be the same as for N=12, but since

cp(25) remains at 1.0 m/s, cp(1) has to be increased somewhat more than by the factor of

2.0, i.e., from 12.0 to 26.0 m/s, and for N=48, to 60.0 m/s. Thus, it can be concluded that

generally a stiffer grain mass implies longer grain columns for the same frequency fd.

It is now argued that for a given N , the propagation velocity, Vc, in a column of un-

sheared grains extending from the free surface to the depth, H = Nd̄, could be determined

by assuming that cp(j) = cp(1) for all j, and then by computing the dominant frequency

f1. Then with λc ≈ 4H, Vc = f1λc. Computations revealed that Vc(N = 12) ≈18.5 m/s,

Vc(N = 24) ≈43.3 m/s, and Vc(N = 48) ≈101.6 m/s. Thus, every time N is doubled, Vc is

increased by about the factor of 2.34. For N=12, 24 and 48, the ratios Vc/cp(1) are 1.54, 1.66

and 1.69 respectively. Thus, the constant η introduced in Section 4 is nearly equal to 1.0. It

is reasonable to assume that the velocity, Vc, is a measure of the velocity of a compression

wave propagating in an undisturbed grain bed.

It is reported in [4] that ”body wave velocities” in the range 180 to 300 m/s were measured

well below the sand dune surface, and in Fig. 24.23 in Winterkorn and Fang [23], shear

wave velocities as low as 150 m/s are reported for dry round and angular-grained sands.

Additionally, wave velocities as low as 50 m/s in ordinary sand piles are reported in [15].

Evidently, the wave propagation velocity depends strongly on the depth of the propagation

path between the points of emission (shot) and reception of the elastic wave. Additionally,

it is reported in [15] that in preparing a sample from an unconsolidated material, in order

to study the velocity of sound for example, its physical properties are disturbed. The same

question is raised again in the ninth paragraph in Section 11.
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It was pointed out in Section 4 that the stiffness of a grain column is proportional to

the areas of the contact shear bands. In the context of the present computation routine,

the frequencies, fi, are doubled when the ratio d̄/Rb is halved. In this sense, the set of

values: fp=67, f1= 791, f2= 1603, f3=2561, etc were realized by assuming that cp(1)=25

m/s, cp(25)=15 m/s, with d̄/Rb increasing linearly between the corresponding values of 45

and 150. Thus, the troublesome value of 1 m/s for cp(25) can be removed while the column

propagation velocity still acquires the realistic value of about 50 m/s.

6. The single spring model

In the study by Nishiyama and Mori [24], the authors attempt to explain the acoustic

emissions from an impacted sand bed in terms of a single short spring action below the pestle.

Towards this end, rods and disks of various diameters and lengths were pushed or dropped on

the sand bed. There is an attempt to show that the dominant frequency, fd, decreases with

the rod mass, M , as the inverse of
√

M . In particular brass rods (disks) with diameter D=2.5

cm and weight as low as 10 gr were used. From a private communication with the principal

author, it follows that the shorter rods (disks) were pushed rather than dropped freely on the

grain bed. For a rod with M=100 gr, the mass Mp on top of a grain column, d̄=0.35 mm,

amounts to 200× 10−7 kg, while, in this study, in the case of the 11 mm steel sphere dropped

on the grain bed, Mp = 162 × 10−7 kg. The grain column mass is, Mc = 16.0 × 10−7 kg for

N=24.

The inverse square root relation can be seen in Fig. 4 in [24], up to M=250 gr, when the

singing sand was placed in a porcelain mortar, 10 cm in diameter at the top but only about

4 cm in sand depth. The frequency decreased from about 1000 to 200 Hz when the rod mass

was increased from 10 to 250 gr. A similar decrease of fd with rod mass M can be seen in

Fig. 6 in [24], for M < 300 gr. In that experiment, singing sand grains and also silent glass

beads, 0.6 mm in diameter, were placed in the same porcelain mortar, but with only 1.0 cm in

grain depth. It can be seen in [1] that in such confined geometry, all grains become singable

to some extent. However, when the sand was impacted in a relatively large container, 40× 40

by 30 cm deep, fd, decreased from about 1000 to 500 Hz, when M was increased from 10 to

100 gr, and then it leveled-off for larger M , Fig. 2 in [24].

The single spring model can be incorporated into the present approach by identifying the
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dominant frequency, fd, with the pestle frequency, fp, instead of with the fundamental, f1.

Thus, with N=24, dj = d̄=0.35 mm, cp(1)=350 m/s and cp(25)=160 m/s, the eigenfrequencies

were, fp=815 Hz, f1=10115 Hz, f2=20173 Hz etc. Roughly, the same frequencies could be

obtained with a somewhat lower value of cp(1) and a somewhat larger value of cp(25). Thus,

there is only one frequency envelope centered at fp, since the frequencies, f1, f2 are far beyond

the range where the stick-slip effect would be applicable. The frequency fp decreases exactly as

the inverse
√

Mp, until it becomes practically zero, while f1, f2 hardly decrease. Such a value

of cp(1), implying a column propagation velocity, Vc ≈700 m/s, seems to be in contradiction

with reported experimental values discussed in the previous section. The model would be a

possible alternative if there were no harmonics of fd, however, this is not the case as will be

outlined in the next section.

In the context of the present approach, the decrease of fd with cylinder mass, M , when the

sand was impacted in a mortar with sand depth about 1 cm, could be justified as follows: For

relatively small M , there would be the usual number of layers, N , and the usual frequency,

fd ≈1000 Hz. But, for larger M , there would be appreciable slippage at the bottom of the

mortar and fd would be defined primarily by the phase velocity, cp(1), resulting in significant

decrease of fd with mass M . It was determined that with N=12, fd decreased from about

1000 to 300 Hz when cp(1) was decreased from 18 to 18/64 m/s. However, it is reasonable to

assume that cp(2) would also decrease with M , and that would result in even lower fd.

The initial decrease of fd with M when the sand was impacted in the large container,

40×40 by 30 cm deep, in [24], could be attributed to an increase of N with increased cylinder

mass M before a saturation value of N was reached. When 13 mm aluminum cylinders,

ranging in length from 2 to 12 cm, were dropped from a height of about 10 cm on the Brevort

River sand in the 46×28 cm by 10 cm deep container, there were no significant changes in

fd. However, the 13 mm aluminum cylinders would have sunk into the sand appreciably more

than the 25 mm brass disks (rods) used in [24].

7. Experimental results and implications

The structure of the frequency spectrum of the signal emitted when a bed of singing grains

is impacted by a pestle, or a freely falling object, depends on such parameters as: shape,

size, surface texture, and speed of the impacting object, wall effects if the impactor is close
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to the walls of the container, and on the history of the grain bed, i.e. exposure to humidity

and to previous impacts. The scope of this study is not to determine the effect of any of such

parameters on the spectrum structure and in particular on the dominant frequency, fd, but to

develop a realistic theoretical model that would be based on the grain-grain interaction and

would account for the spectral properties of isolated events. It would also account for changes

of the spectral properties with one of the parameters listed above, when such changes have

been reported in the literature. Thus, in the previous section, the model is used to explain the

significant decrease of fd with the mass of the impacting object when it was only a few mm

away from the container wall when the sound was emitted. Furthermore, in the case of moist

singing sand emitting sound with, fd ≈2500 Hz, Brown et al. [25], it can be argued that the

sand mass was relatively very stiff and the grain columns were very short. Similar attempts

will be made below regarding the sound from pushed (squeezed) booming dune sand, or the

sound accompaning the flow of the same sand through a funnel. In this sense, the use in this

study of impacting objects of varying geometry and mass is justified, and in the same sense,

the precise value of fd in a given event is not an issue of importance.

In the early stages of this study, Fall 2010, the sand was placed in a ceramic flower pot

with 20 cm rim diameter and 10 cm depth. A regular pin microphone was placed about 10 cm

roughly above and to the side from the point of impact, while the geophone was placed near

the edge of the bed that was about 8 cm deep. Following an impact, the sand was poured into

another container and then back into the flower pot, which was bounced slightly for better

grain consolidation. More recently, Fall 2011, the sand was placed in a larger plastic container,

46×28 cm by 10 cm in sand depth, with a regular thick towel placed inside the container before

the sand was poured so as to prevent any slippage between the sand and the container walls.

In such a large container, it was possible to effect several impacts, about 10 cm apart, before

the sand was moved about in the container, with a small plastic cup, and finally the sand

surface was leveled and the container bounced slightly. The Geo Space Corporation geophone

is omni-directional with natural frequency equal to 14 Hz suited for detecting relatively low

frequency vibrations. The signals were processed by the NI USB-6210 analogue to digital

converter and analyzed by the Lab-View Signal Express software of National Instruments.
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7.1 Impacted singing sand grains

Fig.2. Frequency spectrum and the microphone recorded signal when an 11 mm steel sphere

was dropped, height H ≈10 cm, on a Brevort River singing sand bed in a ceramic flower pot,

20 cm rim diameter by 10 cm in depth. fd ≈790 Hz.
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Fig.3. Same as in Fig. 2 but for the geophone signal. The geophone was placed near the pot

rim about half immersed in the sand. fd ≈770 Hz.
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The purpose of this subsection is to demonstrate that harmonics of the fundamental are

excited when the grain bed is impacted by small steel spheres and by a glass rod, and thus,
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the single spring model is not applicable in these cases. Furthermore it is shown that the

frequency plots are fairly well reproducible even over long time periods.

The same recordings were repeated recently, about one year later, with the same sand in

the large plastic container. The microphone plots were reproduced quite well overall, however,

that was not the case for the geophone plots, where, the slight elbow at about 695 Hz would

appear as a totally separate peak. It could be argued that the geophone signal from the

relatively small sphere is more susceptible to localized grain mass un-isotropies as the sphere

was well immersed in the sand after impact. The peak at about 475 Hz would be an indication

of such an effect. It is likely due to the increase of the period of the inset signal after about 22

ms, implying that near the end of the impact, there was an appreciable increase in the grain

column length in the slip shear band.

From the simple Fourier transform theory, the half width of the transform of the inset

signal with length, ∆t=18 ms in Fig. 2, is 56 Hz, and the separation of the side peaks from

the center of the main envelope is 1.5×56=84 Hz. The half width of the main envelope is

about 62 Hz, and the separation of the first side peak (elbow) on the right from the center,

at 877 Hz, is 87 Hz. However, the separation of the first elbow on the left at 628 Hz amounts

to 162 Hz, implying that it is not a Fourier side peak, and since it is also present in Fig.3,

it could not be argued that it is due to some sort of noise, but rather due to a separate slip

shear band.

The question of noise is raised below in connection with Fig. 15. Here, it could be defined

as follows: It arises from the incoherent superposition of the elastic wave-trains emitted as a

grain rubs its way past other grains, and of the wave-trains due to vibrations in grain columns

of random length and direction around the pestle. Additionally, there would be low frequency

content due to air mass accelerations recorded by the microphone. In this sense, the envelope

at around 1000 Hz, in both plots, could be attributed to random column vibrations around

the sphere, or due to such vibrations in a relatively thin and ill-defined slip side band. In

this sense, when the slip shear band becomes totally ill-defined, then it becomes a source of

noise. Thus, there could be two or more slip shear bands around the lower hemisphere of the

impacting sphere, and around the pestle in general. A slight rotation of the sphere during

the impact, or a non-vertical direction of the pestle, would be a cause of such multiplicity

of slip shear bands. The lack of harmonics in the above plots could be attributed to the
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relatively short duration of the event and the lack of sufficient energy for the excitation of the

corresponding modes.

Fig.4. Frequency spectrum of the microphone recorded signal when a 16 mm steel sphere

was dropped on the Brevort River singing sand in the large plastic container, 46 × 28 cm by

10 cm sand depth, from the height H ≈20 cm. The vertical range was reduced somewhat in

order for the first harmonic of fd ≈578 Hz to be seen at about 1175 Hz. The second could be

seen with further reduction at about 1780 Hz.
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Fig.5. The same as in Fig. 4 but for the geophone recorded signal. fd is estimated at about

590 Hz. The second harmonic at just under 1800 Hz is discernible.
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Fig.6. Same as in Fig. 4 but for a 25 mm steel sphere. fd ≈467 Hz and the second harmonic

is barely seen at about 1400 Hz.
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Fig.7. same as in Fig. 6 but for the geophone signal. The first harmonic of fd ≈ 467 Hz is

quite prominent and the second is visible. The decrease of fd from 590 Hz in Fig. 5 to 467

Hz in Fig. 7 could be attributed to the increase in the column number N .
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Fig.8. Frequency spectrum of the microphone recorded signal when a glass rod, length 7.5

cm, diameter 1.5 cm obtained from the Museum of Sand in Nima, Japan, was pushed

manually into the Brevort River singing sand bed in the large plastic container, fd ≈630 Hz.

The side peak at 700 Hz is a Fourier side peak. The harmonics at about 1250 and 1870 Hz

are discernible.
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Fig.9. same as in Fig. 8 but for the geophone signal. It is remarkable that the two spectra

are practically identical in this case.
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Fig.10. Same as in Fig. 8 but with the sand in a flower pot, with 20 cm rim diameter and

10 cm in depth, nearly one year before the recording of the signal in Fig. 8. One harmonic is

clearly seen at 2fd with fd ≈590 Hz.
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Fig.11. Same as in Fig. 10 but for the geophone signal. The second harmonic is quite

discernible at about 1770 Hz with fd ≈590 Hz.
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The plots in Figs. 4 to 7 were fairly well reproducible. In these relatively simple geometries,

it is safe to argue that the slip shear band is a few mm thick and has the shape of a disk curved

around the impacting sphere, with radius roughly that of the sphere [1]. It is also safe to argue

that a larger disk radius would imply a larger disk thickness which corresponds proportionately
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to a lower frequency fd. From Figs. 4 and 6, the frequency ratio is 578/467=1.24, while the

square root of the radii ratio is, 1.25. For the case of the 16 and 25 mm glass spheres, the

analogous frequency ratio is, 800/600=1.33. Thus, for these particular cases the slip band

thickness increases roughly as the square root of the sphere radius.

The increase of fd from 590 in Fig. 10 to 630 Hz in Fig. 8, in the course of one year could

be due to the aging of the sand. It could also be due to a more or less deviation of the rod

axis from the vertical direction. The sand was kept well sealed in plastic bags when not in

use. When the same rod was dropped freely and vertically on the same sand bed from the

height of about 10 cm, fd was about 550 Hz, a value definitely lower than 630 Hz when the

rod was hand held, Fig. 8. These results lead to the conclusion that the single spring model

cannot be applicable in this case, for when hand held, the effective pestle mass is considerably

larger than that of the rod and fd ought to be considerably lower. There is evidence here of

the effect of the impact shock on the sand mass when the rod is dropped. It could be argued

that it results in longer grain columns and lower fd.

The absence of the low frequency content, i.e., at around fp, in all the above plots except

for the 11 mm steel sphere, could be attributed to the large energy required for the excitation

of the pestle vibration, especially when the pestle is hand held. Thus, when a 16 mm glass

sphere was dropped on the same sand bed, in the large plastic container, from the height

of about 15 cm, the geophone frequency spectrum included a weak low frequency content at

about 70 Hz. In some signals, more than others, the period increases somewhat with time,

suggesting that there is a slight increase of the column number N during penetration. The

lack of musicality of the low frequency sound emitted, fd ≈250 Hz, when the flat end of a

wood rod, diameter about 8 cm, impacted the Brevort River sand could be attributed to the

relatively low flowability of the sand. The duration of the signal amounted to only about 25

ms resulting in only about eight oscillations.

There are only two known reports on harmonics of fd. In Fig. (c) in [11], fd=860 Hz

and two harmonics are depicted. However, the impaction process of the ”squeaking” sand is

not specified. In the report by Takahara [26], the singing sand was impacted by a smooth

rounded wood rod in a glass funnel. The size of the rod and the funnel are not specified. The

fundamental is, fd=599 Hz and four harmonics are depicted. A strong first harmonic at 1045

Hz was evoked when the Brevort River sand was impacted by the 7.5 cm glass rod in a regular
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glass cup with diameters of 8 cm at the rim, 5 cm at the base, 9 cm in height and filled to

the height of 7 cm. There were also weaker second and third harmonics.

7.2 Pushed musical grains

Fig.12. The frequency spectrum of the microphone recorded signal when the 7.5 cm glass

rod was drawn manually in a nearly vertical position immersed at about 3 cm along the

surface of the Brevort River sand in the large plastic container. The signal is shown only up

to 160 ms, but the recorded signal lasted up to 500 ms.
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Fig.13. The same as in Fig. 12 but for the geophone recorded signal.
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Fig.14. The frequency spectrum of the microphone recorded signal when a 13 mm wood rod

was turned manually inside a 9 cm glass jar containing silica gel grains with depth of about

10 cm. fd ≈450 Hz.

The second minor envelope in Fig. 14 at about 540 Hz, could be due to a minor slip band

possibly near the bottom of the rod. It could correspond to the sharp peak at about 675 Hz

in Fig. 13. The signal insert from 0.12 to 0.17 s happens to be quite monochromatic.

The plots in Figs. 12 and 13 demonstrate that a continuous musical sound, similar to that

from an avalanching sand dune, can be emitted by the singing (squeaking) sand grains when

sheared (squeezed) in a continuous manner. The spectrum envelope in Fig. 12 resembles quite

well that in Fig. (a) in [11], and that seen in a YouTube presentation by the authors of [4],

with the title, Booming Sands, and narrated by M. Hunt. The ruggedness of the frequency

spectrum, as opposed to that in Fig. 6 for example, can be attributed to the continuous

renewal of the slip shear band in front of the rod in the course of time. Similar plots were pre-

pared, but not shown, when the same sand was similarly sheared by a 13 mm wood rod. The

signals were considerably more noisy and the frequency envelopes considerably more rugged

and wider than in Fig. 12. Evidently, the smooth surface texture of the glass rod, as opposed

to the wood rod, resulted in considerably more smooth transition from one slip shear band to

the next.
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7.3 Impacted silent sand grains

Fig.15. Frequency spectrum and the microphone recorded signal when a 13 mm wood rod

was tapped (pushed) into a bed of local silent beach sand in the large flower pot, 20 cm at

the rim and 10 deep. The weak hissing-like sound was barely audible
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Fig.16. Same as in Fig. 15 but for the geophone recorded signal. fd ≈457 Hz.
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The frequency spectrum shown in Fig. 15 is typical of silent sand beds impacted by a variety

of pestles. The noise envelope between about 2400 and 3200 Hz is nearly omni-present for
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all sorts of pestle and grains, suggesting that it originates with grain-grain rubbing near the

pestle where the stress forces are maximum. Effectively, these frequencies could correspond to

grain asperity collisions as the grains slide past one another. The rest of the noise frequency

content could be attributed to grain column vibrations near and parallel to the surface. The

grain number, N , varies randomly and the vibrations are nearly incoherent. This is not the

case for the grain columns below the pestle, resulting in a nearly monochromatic vibration in

some cases.

There is considerable variability of the spectrum shown in Fig. 16. In some cases, the

envelope is wider comprising many peaks, suggesting that the slip shear band is less well

defined, comprising a wider range of grain column numbers N , and in some cases it is nar-

rower without the side peaks between 200 and 400 Hz, for example. However, the noise level

approximately above 700 Hz is nearly absent in all cases. A wave with frequency f=1000

Hz, propagating along the surface with velocity Vs=1 m/s, has wavelength, λ=1.0 mm, not

appreciably larger than the average grain diameter, d̄=0.35 mm. Thus, the wave propagation

is likely to be cut-off or the wave amplitude to be reduced substantially.

Figures 17 and 18 correspond to Figs. 15 and 16 except that the rod was tapped (pushed)

into a bed of crusher dust, used as road surface cover in place of pavement. Most of the fine

dust had been removed. The use of the relatively small diameter wood rod was necessitated

by the large particles in the bed, i.e., a larger diameter rod would not penetrate into the bed

smoothly. Despite the unusual crusher dust grain size distribution, the sound was appreciably

louder and somewhat more musical than from the silent beach sand. When the same crusher

dust bed was impacted by one arm of a walnut cracker, a metallic rod 8 mm in diameter

tapered to a smooth rounded end, the microphone noise frequency content around 3000 and

1500 Hz was reduced relatively to that around 500 Hz, while the geophone spectrum was

similar to that in Fig. 18.
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Fig.17. Frequency spectrum of the microphone recorded signal when a 13 mm wood rod was

tapped (pushed) into a bed of crusher dust in the large flower pot. The grains were very

irregular in shape and varied in size from about 1 mm in overall diameter to as large and

irregular as 10 × 5 × 2.
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Fig.18. Same as in Fig.17 but for the geophone recorded signal. fd ≈362 Hz.
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Fig.19. Frequency spectrum of the microphone recorded signal when a metallic rod, 4.2 mm

in diameter, was pushed into the same bed of crusher dust in the large flower pot. fd ≈435

Hz.
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Furthermore, when the same grain bed was impacted by the nearly blunt end of a walnut

scraper, a metallic rod 4.2 mm in diameter with the end polished smoothly for 10 mm and

then slightly tapered to a conical end, the emission resulted in a geophone spectrum similar to

that in Fig. 18 and in a microphone spectrum shown in Fig. 19. Such a spectrum resembles

more closely those of the singing as opposed to those of the silent grains. Evidently, the small

diameter and the polished end of the pestle resulted in sufficiently low stress level around the

leading front of the pestle so as to reduce the excitation of the grain-grain rubbing and the

near surface grain column vibration noise to very low levels.

8. Collective column vibrations and the stick-slip effect

It now appears safe to conclude that the transition from non-singability to singability of a

grain bed is based on two premises: (a) the reduction of the stress level on the grains around

the pestle and (b) the transfer of the pestle energy to the grain column vibrations below the

pestle. The first could be met if there were sufficient grain-grain slippage in the slip shear

band below the pestle that would result in low stress level around the pestle, and the second,

if the stick-slip effect would be applicable, i.e., if the friction coefficient would decrease with
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relative velocity between the grains [20].

The degree of grain-grain slippage was tested by dropping a 16 mm steel sphere from a

height of 20 cm on grain beds in the 20 cm flower pot composed of: (a) Brevort River sand,

(b) Providence Bay, Manitoulin Island, ON, CA, nearly silent sand and (c) a local beach sand

sounding even more silent. In case (a), the sphere was barely visible at the center of the crater

about 10 mm deep, in case (b), nearly 1/3 of the upper hemisphere was visible and in case

(c), nearly all of the upper hemisphere was visible. It is estimated that in case (a), the sphere

traveled about twice as far as in case (c) after the initial impact.

Then, there is the question of the synchronization of the column vibrations in the slip shear

band. Is it due to a wave propagating in the same band as in the case of the freely avalanching

dune sand? In the case of the walnut scraper rod, the diameter of the slip shear band would

be equal to about 5 mm, while the synchronization wave would have wavelength equal to 10

cm for propagation velocity and frequency equal to 50 m/s and 500 Hz respectively. Thus,

the source of the grain column synchronization has to be sought elsewhere. It could be argued

that a few dominant column vibrations would induce the same vibration in the pestle, which

in turn would force all columns to vibrate in phase with it, thus, resulting in a collective

vibration of all grain columns. In turn, such an intense vibration would facilitate the slipping

of the grain mass away from the advancing pestle and would nearly eliminate the surface

noise described above. In this sense, the slip band acts like a short dipole radiating waves,

with frequency fd, in the surrounding grain mass.It is argued in Sections 5 and 8 that inside

the contact bands, ξx � ξz and that, by extension the grain oscillation amplitude along x̂ is

greater than that along ẑ. Furthermore, ξz was required to vanish in (1), at the bottom of the

slip shear band. Accordingly, a shear wave would be radiated into the grain mass surrounding

the slip shear band.

It could be argued that a minimum (threshold) impact pestle velocity is required for the

initial excitation of the few column vibrations. Such thresholds are always present before

a musical event can occur. When the wood rod was held vertically and forced to move

horizontally through a bed of silica gel grains, the immersion depth had to be more than

about 2 cm and the velocity had to be more than about 20 cm/s. Moreover, when a plastic

bead, 1 cm in diameter, was buried in a flat pile of the Brevort River singing sand and pulled

horizontally by a string, the depth had to exceed about 3 cm and the string had to be pulled
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rather sharply. Similar thresholds are seen in [9] where the booming dune grains were pushed

by a blade.

9. Grain flowability and grain confinement

It seems fair to argue that what distinguishes primarily a freely avalanching booming sand,

from other silent avalanching sands, is the relatively high avalanche front and the apparent

high flowability of the grains. Reference to high flowability, where the sand flow is compared

to that of a water stream, can be found in the reports by: Sholtz et al. [27], Bagnold [28] and

Humphries [29]. When Brevort River singing sand was placed in a plastic container, 40×35 by

25 cm deep and dumped sharply on the side of a nearby dune ridge with slope over 30o, there

was no appreciable avalanche front. The sand flow was sluggish and characterized more by

plate-like motion than free surface grain motion. It was more sluggish than that of ordinary

silent sand motion when similarly dumped. However, when a cupful of sand was tossed with

some force at an angle of about 45o on the flat top of a sand pile, the usual sound was evoked.

In [16], it is reported that when booming grains were placed in a sealed glass jar, 17.5 cm in

length by 10 cm in diameter, half full, and rapidly tilted, ”a violent roar” could be produced.

Similarly, when Brevort River singing sand was placed in a glass jar, 17 cm in length by 8 cm

in diameter but only 7 cm at the lip, and then tilted sharply, no sound was produced until

most of the sand had flown out of the jar and the sand height above the lip was about 15

mm. During the sound emission, the sand appeared to flow out of the jar as in one piece,

thus, reinforcing the concept of the slip shear band adjacent to the jar lip.

Similarly, when booming sand from Sand Mountain in NEV. USA, available in the laboratory

of the authors of [10] some 20 years ago, was placed in a large plastic funnel, 15 cm rim

diameter and 17 mm exit end, a low frequency vibration sound estimated at under 100 Hz

could be heard. However, when the same was attempted with the Brevort River singing sand,

no sound was evoked. Thus, it could be argued that singing sand grains do not boom because

of their low flowability.

It is not clear what caused the ”violent roar” sound when the glass jar was rapidly tilted.

It could be due to column vibrations in a slip shear band on the surface, as outlined in the

next Section, or due to a similar band adjacent to a glass wall. However, on page 45 in [16],

it is reported that the hum sound was emitted when the booming sand was poured from a
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hopper into a bag. Thus, a free avalanche booming was produced in the laboratory unless

the hum sound was due to the impact of the flowing sand on the stationary sand in the bag.

However, a cursory analysis of the sound emitted when the hand held booming sand was

dropped on the dune surface, revealed a sound with fd in the neighborhood of 250 Hz. The

sound is available in the YouTube video presentation by the authors of [9].

The funnel-like experiment was effected also by Lewis [16] by effectively cutting a square

hole into the glass jar cap, about 2.5 cm in side, and inverting the jar. The ensuing sound

is described as ”hum”. In the context of this approach, the grain columns, somewhat above

the plane of the hole, would span the hole width, but the grain contact phase velocity, cp(j),

would have minimum value in the middle of the column instead of at the top, as in the case

of the impacted bed or in the case of the freely avalanching dune sand.

Booming dune grains do not sing in the sense of emitting a musical sound when placed in a

large dish and impacted by a rod with diameter about 2 cm. In the context of this approach,

this is so since the relatively high flowability of such grains results in unstable long grain

columns. In other words, the grains can flow away from the rod without the aid of a slip shear

band below the pestle. However, when the booming dune surface was impacted sharply by

the palm of the hand, there was emission with fd ≈ 73 Hz [5]. Evidently, the relatively large

area of the impacting hand resulted in a sufficiently large degree of confinement that resulted

in a slip shear band a few cm below the hand. Similarly, when booming grains were confined

in a 25 cm wide circular channel and pushed by a large blade, they became boomable and or

singable [9]. Additionally, they became singable when confined inside a jar [10]. In [1, 30], it is

shown that salt, sugar and silent sand grains can exhibit singability when sufficiently confined.

On the other hand, when a flat pile of the Brevort River sand was impacted vertically by the

flat end of a wood rod (block) 14 cm in diameter, there was practically no musical sound

emission, as was the case for the smaller block described above, due to the relatively low

flowability of the grains.

10. The pushed booming sand

During the visit of the authors of [14] to the Sand Mountain, NEV, USA, the sand would

not boom during free avalanche, but it would emit musical sounds when pushed by the hand

or sheared (squeezed) by a shovel blade. Figure. 4 in [14] depicts the frequency spectra of the
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microphone and geophone recorded signals when a 30×30 cm flat shovel blade was withdrawn

sharply with a downward push from the dune face. There are distinct peaks at 67 and 76 Hz

in the geophone spectrum, most likely due to distinct slip shear bands under the shovel. In the

microphone spectrum, there are several peaks centered at around 60 Hz and a harmonic peak

at about 120 Hz, which is also present in Fig. 3d in [14]. There is also a hint of a harmonic

presence in Fig. 5b and reference to possible low frequency content in the 3 to 30 Hz range,

when the sand was dug by the hand.

The first attempt to determine the change in frequency with the manner the sand was

pushed on the face of a dune can be found in [16]. It was determined that when the sand was

pushed uphill, the frequency increased as opposed to when it was pushed downhill, and it also

increased with the speed of push. In Fig. 2 in [28], the shear plane is depicted when a sand

bed is pushed by a blade and an overburden is heaped up in front of the blade to a height

considerably larger than the sand bed depth. The shear plane runs from the foot of the blade

to the front of the overburden at an angle, β, from the horizontal bed plane. Intuitively, it

could be argued that when the sand is pushed downhill, β tends to zero, and that it tends to

larger values when the sand is pushed uphill, resulting in lower overburden mass Mp, and in

higher frequency fd = fp. It is possible, but unlikely that the sound is due to grain column

vibrations and that the column number, N , is lower when the sand is pushed uphill. Similar

arguments could be used to explain why fd increases with blade velocity on a horizontal sand

bed.

In [9], it is claimed that frequencies, fd, as low as 25 Hz were obtained by pushing the

booming sand on the face of a dune. In the YouTube presentation by the authors of [9], it can

be observed that when the sand on the face of a booming dune was squeezed between the two

hands, a fairly low frequency sound was emitted. It is highly likely that a slip shear band was

formed between the hands and that the pestle (overburden) mode of vibration was excited

with frequency, fd = fp. It is unlikely that the slip shear band was thick enough so as to result

in, fd = f1. There is no evidence of sand avalanche that would result in such a sound. Again,

the question would be resolved when the frequency spectrum becomes available. During such

sand squeezing and the subsequent dropping of the sand on the dune surface, the sand appears

to respond in the same manner as the Brevort River singing sand except for the lower value

of fd by about a factor of four.
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Furthermore, in [9], the study of the change of the dominant frequency, fd, with blade

speed and height of the grain mass in front of the blade was quantified. Booming grains from

the Atlantic shores of Morocco were pushed by a 25 cm blade in a cylindrical container, 1 m

in dimeter. From Fig. 2 in that report, it can be inferred that for fixed blade velocity, Vb, fd

varies nearly as the inverse of
√

Hb, where Hb is the sand height in front of the blade, implying

that fd = fp. However, the increased sand height could result in thicker slip shear band and

in fd = f1. The ambiguity would be resolved when the spectra of the emitted signals are

available.

11. Freely avalanching booming sand

When a sand band, several cm thick, is in a state of avalanche, it is effectively confined by

the plane of the static sand below and the thin band of about 20 relatively fast moving surface

layers above [2, 9]. It can now be argued that the grain layers near the bottom of the avalanche

front experience the greatest stress level when they decelerate sharply and are overtaken by

the layers above, and that a slip shear band could exist in that region. It is possible that the

so called ”roar sound” emitted when the sand is pushed downhill in a heaped-up manner, [16],

is due to grain column vibrations in such a front slip shear band. If there were no harmonics

of fd, then, such a sound would be due to the overburden vibration with frequency fd = fp.

However, the ”hum” that follows the ”roar” represents a steady state acoustic emission that is

independent of an avalanche front. It can be maintained by continuously digging a hole where

the avalanching sand is deposited [16]. It is reported in [2, 9] that the minimum thickness

of an avalanche for booming to occur is about 2 cm, implying grain number, N ≥100, with

d̄=0.18 mm.

Figure 5 in [16] depicts the ripples (waves) on the dune surface when the sand was pushed

downhill in a heaped-up manner. There are several avalanche fronts followed by flat plateau-

like segments. The author describes the sound as, ”being due to the hum accompanying the

roar”. In the context of this approach, the roar would be due to column vibrations in the

front slip shear bands, while the hum would be due to similar vibrations in the surface of the

flat segments, as described below. The column vibrations in the entire avalanche area would

be synchronized by the surface modes of wave propagation excited by the avalanching grains,

[5-7].
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In a static sand dune, the macroscopic elastic moduli increase with depth, ζ, due to the

increased normal stress at the grain contact areas resulting in larger contact band radii. Ac-

cording to the Hertz-Mindlin contact theory, both phase velocities increase with depth as ζ1/6.

This relation was verified by Bachrach et al. [15] for unconsolidated beach sand, despite veloc-

ity discrepancies discussed below. If the column propagation velocity, Vc, in the avalanching

sand band, increases similarly with ζ, then, according to (9), the contact band radius, Rb,

also increases as ζ1/6. As in the case of the impacted grains, the ratio of the average grain

diameter, d̄, to the contact band thickness, b, and the ratio d̄/Rb(1), at the bottom of the

avalanching band, were chosen equal to 1000 and 45 respectively.

With N=48, the ratio, d̄/Rb(49) = 45(48)1/6 = 45×1.91=86, at the top of the avalanching

sand band. Similarly, the phase velocity in the top contact band would be, cp(49) = cp(1)/1.91,

implying that cp(49)=1.6 m/s if cp(1)=3 m/s. Thus, with overburden mass, Mp, equal to the

mass of 20 fast avalanching grains and an assumed grain size distribution in a given column,

the eigenfrequencies were computed as follows: fp=49 Hz, f1=114 Hz, f2=221 Hz, f3=359

Hz etc. It was determined that the mode corresponding to f1 is characterized by a node at

about the center of the column. This is in agreement with the experimental data depicted

Fig. 3d and the discussion that follows on page 4 in [7], where the authors claim that the

particle (grain) displacement, along the avalanche direction, has a node near the center of the

avalanching band.

The frequency, fp, corresponds to the surface (overburden) mode of vibration. In Fig. 2,

parts (b) and (f) in [4], there appears to be evidence of such low frequency content. A minor

envelope centered at 30 Hz, as well as envelopes at 2fd and 3fd, with fd ≈ 100 Hz, can be seen

in the geophone frequency spectrum of the avalanche signals available at the website in [2].

Permission to this end was obtained from the author. A similar spectrum structure can be

viewed in a YouTube presentation by the authors of [4] seen above. Furthermore, harmonics

of fd=100 Hz can be seen in the spectrum of the sound emitted by an induced free avalanche

available in the YouTube presentation by the authors of [9] with the title, The Song of Dunes.

For N=96 at the depth of H=1.73 cm, cp(1) would be 2×3.0=6.0 m/s, and the column

propagation velocity, Vc, would be about 2×6.0=12.0 m/s. It is appreciably lower than the

phase speed of 40 m/s measured by generating a sinusoidal wave on the dune surface by the

use of a loud speaker [2]. However, it could not be argued that the wave so generated was
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limited to a surface band of only 2 cm thick. Moreover, when the wavelength of the surface

wave was measured by the use of floaters, [2], it could not correspond to a wave limited to a

band of 2 cm, since the floaters would have disrupted such a band. It was determined in [2]

that the wavelength of such a wave was the same inside and outside the avalanching band, thus

establishing that the wave was anchored in the sand bed well below the avalanching band. If

the compression phase velocity were equal to 12 m/s in the top layer of the static sand below

the avalanching sand band, then, at 10 cm below, i.e., 556 layers below the top layer, it would

be 12×5561/6=34 m/s, a number close to 40 m/s. It appears likely that there is a gradual

jump in the propagation velocity from about 12 m/s at the bottom of the avalanching band

to 40 m/s in the static sand below.

In the report by Bonneau et al. [5], the properties of the fundamental surface mode,

that would synchronize the grain-grain collisions and also the grain column vibrations in the

present context, are shown on page 8 in [5]. The mode propagates with phase velocity equal

to 32 m/s and has frequency and wavelength equal to 100 Hz and 32 cm respectively. From

the plots of the particle displacement along the direction of flow, Fig. 3 in [5], it follows that

the mode extends to the depth, H ≈32 cm. Thus, it could be assumed that the mode would

not be affected by the relatively low values of the elastic moduli of the contact bands in the

avalanching band. Furthermore, from the expressions of the elastic moduli on page 4 in [5],

it follows that the macroscopic elastic moduli approach zero as the depth, ζ →0, and thus,

the macroscopic compression and shear phase velocities and by extension the contact phase

velocities, cp(j), cs(j) could approach zero as ζ →0.

The issue of the path of propagation of surface waves on a pile of quartz sand grains is

addressed in [15]. Fermat’s principle is invoked in order to argue that such waves tend to

follow paths well below the surface where the propagation velocity is higher. In Fig. 6 in

the same report, it is shown that the measured propagation velocity is less than half the one

predicted by the Hertz-Mindlin theory. The authors suggest that such a discrepancy is due to

the presence of clay and water in the sand which could lower the macroscopic elastic moduli

significantly. The discrepancy was removed by effectively reducing the shear modulus of the

grains by the factor of about 100, Fig. 7 in [15]. In the same Figure, it can be observed

that when the distance between the shot and the receiver was about 10 cm, the propagation

velocity was just below 50 m/s. However, even for this low separation distance, the propaga-

39



tion path would lie well below the depth of 2 cm. Furthermore, the authors recognized the

difficulty in measuring the propagation velocity near the surface of a sand pile.

In the context of this study, it could be argued that the relatively low velocity of 50 m/s is

partly due to the partial fluidization of the grain contact bands, and since such fluidization is

bound to be higher in the avalanching band, where the grains are subjected to higher levels of

sliding, the propagation velocity would be appreciably lower in the same band. It is worthy of

note that the sand grains were not reported as musical, singing or booming in [15], and this

leads to the conclusion that fluidization in the contact bands is not a sufficient condition for

boomability. Thus, it has to be concluded that, as in the case of the impacted grains, both,

grain contact fluidization and the stick-slip effect are required for grain boomability.

It might not be totally out of place to suggest that the elastic wave used to determine the

propagation velocities, cs, cp, in a sand pile alters the surface physical state of the grains and

in the process it affects the outcome of the measurement. That is, at appreciable depths, the

grains are consolidated enough and there is negligible grain-grain sliding due to the presence

of the elastic wave. However, near the surface there could be appreciable grain-grain sliding

resulting in grain contact fluidization and in phase velocities well below those predicted by the

Hertz-Mindlin theory. Thus, the measured phase velocity decreases with increased amplitude

of the seismic wave between the shot and the receiver.

During a silent avalanche on a dune surface or in the initial stage of an avalanche on a

boomable sand dune, a given grain, in one of the 20 or so fast avalanching layers, generates a

quasi-periodic elastic wave train composed of the impact pulses upon collisions with the grains

in the layer below. The average time between collisions, Tc, is given in the first paragraph in

the Introduction. The chance that the given grain will collide with a grain below is maximum

when the grain below collides with another grain in the layer further below, since then it

is nearly stationary. Thus, it can be argued that the various quasi-periodic wave trains are

somewhat synchronized and the resultant wave amplitude is sufficiently large to initiate the

excitation of the column vibrations below. In this sense, the column vibrations, within a ra-

dius of several grain diameters, are nearly in phase, and if the conditions for the applicability

of the stick-slip effect exist, the resultant amplitude of the column vibrations will be sufficient

to generate the surface waves that synchronize all column vibrations within areas as large as

several m2 as reported in [2]. Thus, the question arises as to whether a geophone buried a few
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cm below a silent avalanche can record a fairly monochromatic signal, as in the case of the

impacted silent grains.

The collective grain column vibrations cannot be sustained at frequencies other than the

average grain-grain collision rate, fc ≈100 Hz for d̄ ≈0.18 mm. Unlike the case of the singing

grains where the energy that excites the column vibrations is derived from the impacting pes-

tle, in this case the energy is derived mainly from the surface grain-grain collisions. Thus, any

collective vibration has to be slaved to the frequency fc. However, the frequency f1 = fd is

defined by the elastic moduli of the contact shear bands, for a given N , and if fd is appreciably

different from fc, then, boomability is not possible. Such a conclusion is consistent with the

rarity of such a phenomenon. It occurs only during certain periods of the year and not all

dunes in a given region can boom during a free avalanche, even though, they can produce

the booming sound when squeezed by a shovel blade [14] or pushed by the hand or a blade

[9]. Furthermore, if the thickness of the avalanching sand band becomes too thin, then, fd is

forced to exceed fc and boomability ceases, as was reported in [5, 9].

12. Sliding booming sand plates

Along the path of many suggestions and assumptions during the development of this study,

not always correct, it seems fair to assume that there is a slip shear band (column shear band),

in front of the sliding plate, responsible for the seismic and acoustic emissions. How far such

a channel extends below the plate remains an open question. The channel width would be

rather thin given the chaotic dynamics of the grain motion under the plate. Thus, the rel-

atively low value of fd would imply the single spring mode of vibration where the relatively

large overburden mass, Mp, would be responsible for the low value of fd.

As in the case of the impacted grains, the gravitational energy of the plate can be trans-

ferred to the column vibrations via the stick-slip effect. At this stage, it is deemed appropriate

to include an excerpt from the book by Curzon [31], p. 285, that appears to correspond to

the observation by Vriend et al. [4] in that dune vibrations were detected even when there

was no apparent avalanche in progress. ”By the flowing in of the sand from the sides and the

repeated tread [of the traveler] a large part of the whole sand-layer of the slope at last acquires

motion, and by its friction against the motionless under-layer produces a noise, which from a

humming becomes a murmur, and in the end passes into a roar, and is all the more surprising
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in that one sees but little of the trickling and general movement of the sand-layer.”

13. Conclusions

The present theoretical approach (model) is based on the modes of vibration in grain columns,

where the grain contact shear bands provide the compression and shear elastic strength and

also the means for the transfer of energy from the impacting pestle, or from the potential

energy of an avalanching sand mass, into such modes of vibration via the stick-slip effect.

Such an approach is in agreement with the viewpoint, found in the literature, that the origin

of such phenomena lies in the surface state of the grains producing the singing or booming

sounds.

Within the context of this approach, it is possible to provide an explanation of the various

questions raised in the Introduction, namely:

(a) The harmonics and the low frequency envelope observed in the spectra of the seismic and

acoustic signals from a freely avalanching sand band correspond to column modes of vibration

with frequencies equal to the harmonics of the fundamental, f1, and the low frequency enve-

lope at the frequency fp corresponds to the overburden mode of vibration, where the entire

grain column acts as a single short spring.

(b) The same explanation holds regarding the observed frequency spectra of the signals from

an impacted grain bed except that the low frequency envelope corresponds to the pestle mode

of vibration.

(c) The singability of an impacted grain bed is the result of sufficient grain-grain slippage in

the slip shear band, comprising the grain columns below the pestle, and of the applicability of

the stick-slip effect. The pestle forces the grain columns to vibrate in phase with it, resulting

in the collective vibration of all columns. The ensuing intense vibration below the pestle fa-

cilitates the slipping of the grain mass away from the pestle and nearly eliminates the surface

noise generated by the intense grain-grain rubbing and the chaotic grain column vibrations

adjacent to the pestle near the surface.

(d) Singing grains do not boom when forced to free-avalanche since their relatively low flowa-

bility does not allow for an orderly surface flow comprising a fast avalanching thin band and

a slower well defined band below, several cm thick. Similarly, booming sand grains do not

sing when impacted in a dish by a pestle since their relatively high flowability results in suffi-
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cient sand motion away from the pestle without the need for an intense vibration in the slip

shear band below the pestle. It could be argued that ordinary sand grains do not sing when

impacted in a dish since the stick-slip effect is not applicable in the grain contact areas, and

this is likely the case during a silent sand avalanche.

(e) The relatively low propagation velocity of an elastic wave near the surface of a booming

dune and more generally in a pile of ordinary sand, about 50 m/s as opposed to about 200

m/s, could be attributed to the partial fluidization of the grain asperities inside the grain

contact shear bands. In the same sense, when an elastic wave is used to determine its velocity

of propagation, between the shot and the receiver, the unconsolidated grains near the surface

would slide somewhat past one another and in the process the elastic wave affects the out-

come of the measurement. That is, the measured propagation velocity would decrease with

increased wave amplitude.

(f) The extreme sensitivity of the boomability of a given sand dune to weather and other fac-

tors could be attributed to its sensitive dependence on the value of the fundamental frequency

f1 of the column vibrations in the avalanching band. That is, if f1 6= fc, boomability cannot

occur, where, fc = 1/Tc and Tc is the average time required for one grain to overtake another

in the fast avalanching surface band of about 20 layers. Furthermore, if the avalanching band

is too thin, then, f1 becomes greater than fc and boomability ceases. Additionally, booma-

bility would not be possible if the stick-slip effect were not applicable.

(g) Whereas, it is highly unlikely that the dominant frequency, fd, is equal to the low pestle

frequency, fp, when a grain bed is impacted by a pestle, this is not the case when booming

sand grains are impacted (sheared, pushed) by a large blade, or when sand plates break off on

the face of a dune and slide downhill. In the latter cases, the maintenance of a slip shear band

with thickness equal to about 20 mm, as in the case of a free avalanche, is highly unlikely due

to the relatively violent grain motion in front of the blade. It is more likely that the slip shear

band is only a few mm thick and that fd = fp.
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