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Abstract 

The purpose of this paper was to determine the level of engagement with a specific 

stimuli while playing video games. The modern video game industry has a large and wide 

audience and is therefore becoming more popular and accessible to the public. The interactions 

and rewards offered in video games are a key to keep player engagement high. Understanding 

the player’s brain and how it reacts to different type of stimuli would help to continue improving 

games and advance the industry into a new era. Although studying human engagement had 

started many years ago, the application of measuring it in video game players has only been 

applied more recently and is still an evolving field of research.  This thesis will be taking an 

objective approach by measuring engagement through electroencephalogram (EEG) readings and 

seeing if it will help improve current dynamic difficulty adjustment (DDA) systems for video 

games leading to more engaging and entertaining games. Although statistically significant 

findings were not found in this experiment, the technique for future experiments were laid out in 

the form of classifiers comparison and program layouts. 
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1 Introduction 

This thesis will look at testing the usage of video games, electroencephalography, and 

classification algorithms as a biocybernetic system all in conjunction to form a more positive and 

engaging experience while playing a video game. The introduction will look at each of these 

areas and see how they could be merged to create such a result. It will also include the author’s 

motivation to create such a system, which includes two main objectives: finding a classification 

algorithm that was able to work in real time on brain data, and testing to see if the game would 

be more enjoyable with the help of the classification algorithm. Additionally, it will cite some 

similar research experiments that helped the creation of this experiment. 

1.1 Video Games 

Video games have been around since 1958 when the first video game was created called 

Tennis for Two [30]. Computers at this point were very large and expensive. The performance 

available back then was also very limited. The computer used to make and play the first game 

was analogue instead of the well known digital systems that are common today. Nowadays we 

have devices that are much more powerful and relatively inexpensive [38]. Because of this, video 

games have become more accessible to the public. Resultantly the videogame industry has been 

growing more and more every year. The growth can be found in not only the revenue of the 

video game industry [31] but also in its player base as more people are playing video games. 

Games are popular not only because of their accessibility, but also because of the interaction 

with the player. The interaction is a cognitive effort and results in an intrinsic feeling of reward 
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from putting such mental effort into the games’ stimuli. Because of this positive reward feeling, 

some people enjoy spending their time playing games. A problem that has been published in 

numerous papers and is the basis of research for many video game companies is how to increase 

such intrinsic reward that is felt while playing such a game. Mihály Csíkszentmihályi has 

developed a model that has been used extensively in the game design industry called “the Flow 

model.” [42] What this model tries to describe is how a player is most engaged with a game 

when they are in a Flow state. In the Flow model, as the author describes, the player is in the 

“sweet spot” between the difficulty of the game and the player's skill level. If a game is too hard 

and the player skill is too low then the player’s will get frustrated and will be taken out of their 

Flow state. Similarly, on the other side of the spectrum, if the game is too easy compared to the 

player’s skill, then the player will get bored. A bored player is more likely to then stop trying 

[10]. More details pertaining to Flow can be found in section 2.5.1 . 

1.2 Biofeedback 

Biofeedback is a biocybernetic technique where the use of indirect biosignatures is fed 

back into a computer. Some examples of biofeedback measuring devices are 

electroencephalography, electrocardiography, electromyography, magnetoencephalography, 

electrodermal activity, functional magnetic resonance imaging, electrocorticography, eye 

tracking, implicit-association testing, and behavior tracking. When trying to pick what kind of 

tool that should be used for an experiment, there are a few questions that must be asked, such as: 

what is the cost to undertake an experiment? What areas of the brain are needed to be measured? 

How fast do certain measurements need to be? How much computing power is needed or have 

available? How invasive does the experiment need to be? How will the data be used? The reason 
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for this is because each biofeedback device has its pros and cons. Biofeedback devices give the 

computer the ability to detect what state a user is in while they are interacting with something. 

What makes biofeedback devices such a powerful support for videogames is that they are able to 

make a feedback loop so the game can make modifications based on the user’s reaction to the 

game.  

 

Figure 1: Example of biofeedback 

1.3 Dunjions 

 The video game used for this experiment is called Dunjions. The first version (V1) was 

made by David Vallieres [49], a Laurentian alumni. A second version (V2) was developed by 

Stephane Horne a couple years later. The core game comes from another game called Dojies 

which was a game that won first place at the Sudbury Game Design Challenge in 2016, now 

called Northern Game Design Challenge. The game was made using the personal version of 

Unity 3D game engine. The game has two windows displayed. The first window is for the 

researcher and second is for the player. The reason for there being two windows is so that 
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information can be monitored while the game is being played. In V2 of the game, the researcher 

screen was used to conduct an experiment where the researcher manually changed certain 

elements of the game while it was being played. The game is primarily played using an Xbox 

360 or Xbox one controller but does require the use of a mouse to start. An Xbox controller was 

used because research shows that players’ preference in input device is measurable through EEG 

signals [3]. By choosing a device that is widely used on both console and PC devices, there 

would be a higher chance that the participants would be used to playing games with this input 

device.  

 The game is primarily programmed in C#. Because of this, the game can do many 

complicated things without extensive programming. Some examples of things C# has allowed to 

easily do is file I/O, networking, multi-thread processing, efficient memory usage, and quick 

compiling.  

 Dunjions is a top-down hack and slash dungeon crawler. Top-down is a term that means 

that the camera is looking straight down at the player. Hack and slash is a genre of games that the 

primary mode of interaction is through a sword. Dungeon crawler is another video game genre 

that means that there is dungeon-like environment. The main character of the game is a knight. 

The knight has two stats that are shown to the player. These two stats are health and stamina. The 

health starts at 100 and once it reaches 0, the knight dies. Once the knight dies, there is a respawn 

timer of five seconds that starts and once it reaches 0 the wave restarts from the beginning and 

the knight starts with full health again at the center of the room. The stamina stat determines how 

much damage the player can do and is used up by doing actions such as attacking and dashing. 

Attacking is done by pressing the right trigger. Unless the player is controlling the direction the 

knight is facing using the right analogue stick, the attack will be in the direction they are moving 
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in. The knight has two ways of moving about the environment. The first is by walking. The 

character can walk in any direction on the 2D axis. This movement is achieved by using the left 

analogue stick and pointing in the direction of travel. Another ability that the knight has is 

another movement ability called the dash. The knight is able to get a boost in speed in the 

direction of the movement analogue stick by pressing the right bumper.  
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2 Literature Review 

 Given the complexity of the thesis project, many different areas of study were taken into 

account. The disciplines that were reviewed range from computer science to neuroscience to 

behavioral sciences. The topics that will be covered in this section will include game engines, 

video game difficulty, the brain, engagement, biofeedback in video games, EEG patterns signal 

processing and signal classification. All these topics will be reviewed to current research that is 

conducted in their respective fields.  

2.1 Game Engines 

 Programs designed to help programmers make other programs have been increasingly 

used by game developers. This is a method that has led to higher-level languages. One such 

program that is very popular is the use of an operating system. Such a system allows 

programmers to think more abstractly about what they are making and allows them to make 

more complicated programs with less time or funding. Game engines are another example of 

such a program. Game engines vary in complexity but their designers try to solve a common 

problem: how do we make the process of creating a video game easier?  

 The Unity 3D engine was used for this study. The following will explain how it has given 

programmers the ability to make a game more feasible for such a study. Unity was first released 

in 2005. Back then the Unity team was imagining an easy-to-use system with professional tools. 

Since its official release, the team has been releasing updates constantly to improve its engine. 

Nowadays, it’s a multiplatform program that has been used for a multitude of games with over a 

million users around the world. The program allows users to design their game using popular 
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languages such as javascript and C#. Other tools that can be found in the engine are animation 

systems, 3D rendering, VR/AR support, efficient physics/collision detection, rapid compiling 

and real-time script state debugging, 3D sound, and others [43]. Another feature of game engines 

and Unity in particular is the user community behind it. Whether someone is a beginner and 

needs lessons, something in their code is not working properly, or there is a tool missing, there is 

someone else on the Unity forums that can help. A feature that the Unity team added to enable 

easier asset distribution is their own asset store where someone can either share for free or sell 

their work to other developers. Therefore, whether one is a programmer, behavioral scientist or 

even a mathematician, help with Unity is given to those that need assistance.  

2.2 Video Game Difficulty 

 Video games tend to differ from each other with respect to their complexity and structure. 

Given the wide variety of video games, it can be difficult to assess what makes games easy or 

hard to play. Another added complication is that the term difficulty varies from player to player. 

For this reason, it is important to try to break down how to properly define what difficult means 

before we can measure it. A recent paper by M. V. Aponte et al [7] investigated such a problem 

and proposed a model to describe difficulty in videogames. Their definition consists of three 

categories of difficulty, namely: 

1) Sensitive 

2) Logical 

3) Motor 

Sensitive difficulty according to the research team is where location-based complications occur. 

Such a difficulty, as an example, would arise when trying to find something on a map. Logical 
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difficulty is said to arise when complex inferences are required by the player. This is something 

that is especially applicable to puzzle games. The last, motor, is a difficulty that arises from the 

interaction between time and space. An example that most games have of this type of difficulty 

is the controller with which they are playing the game, where they need to perform a specific 

combination of buttons or tweaks on an analogue stick while only having a short period of time 

to perform it. The three difficulty categories are then applied to what is called a core challenge in 

which the event is undertaken in as small a portion in time as possible. Examples from their 

experiment of core challenges, using a first person shooter, was to take cover from enemy fire 

and another being to aim and shoot back. These two types of challenges would be grouped 

together into a composite challenge. It is important to note that when you are trying to measure a 

game player's skills and abilities, they should be rated on the core challenges. Their ability to 

complete composite challenges can be extrapolated from their abilities to complete core 

challenges. 

2.2.1 Difficulty Adjustment 

There have been many different techniques used to try to deal with the game difficulty vs 

player skill problem. The simplest way would be to set game parameters to fit the average 

players abilities. This would be done through play testing until the desired progression across all 

play testers is as even as possible or suits the majority of skill levels. Another technique used is 

to have multiple settings of difficulties. An example of this would be to have an easy, medium 

and hard mode for either a part of or the whole game. This way if a player has low skills they can 

pick the easy setting before starting the game and not feel frustrated. A more skilled player 

would get bored trying to play on the difficulty level that the average player base should have. 
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This paper uses another approach called Dynamic Difficulty Adjustment (DDA) system. What 

this system tries to do is to measure how well a player is doing and to modify the difficulty level 

so as to keep it balanced with the player's skill level. A DDA system can make any number of 

changes depending on the game, such as the intelligence/parameters of enemies or the 

complexity of puzzles. An example of intelligence of enemies would be its path finding 

algorithm or dodging abilities. An example of the complexity of puzzles that could be changed 

by a DDA system is in chess. A bot player could make the depth of their choice or make 

mistakes every now and then to make the player feel like they are doing better or worse. Since 

there are many games with many different genres, there are many aspects that can be used by 

DDA systems to change a game’s difficulty. A video game that used a DDA in the form of a 

“director” is the Left 4 Dead series. [55] The director would monitor a player’s accuracy, 

movement, health, and other criteria to adjust several aspects of the game including zombie 

spawning locations, ammo, and health packs.  
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2.3 Brain Physiology 

 

Figure 2: A representation of the brain with different lobes labeled 

The human brain, like many other organs, is very complicated. One reason for its 

complexity stems from its job of processing and controlling most systems in the body. As part of 

the central nervous system which contains 10 ^12 neurons [28], it is woven in intricate patterns. 

The brain is a single organ but different parts of the brain typically handle different functions of 

the body. For this reason it is important to know the different components to know which one is 

important to the topics in this thesis. The cerebrum, or the part of the brain that is associated with 

higher-level thoughts, is split into four main lobes. These lobes are the frontal lobe, temporal 

lobe, parietal lobe, and the occipital lobe. According to P. Michael Conn in Neuroscience in 

medicine [44], The frontal lobe has been found to be related to problem solving, emotions, 
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speech and intelligence. The temporal lobe has been measured to be related to hearing, high level 

visual decoding and memory. The parietal lobe has been found to be related to senses and their 

interpretations, language functions, and visual/ spatial perception. Lastly, the occipital lobe has 

been shown to correlate with visual perception. These are the most relevant of the many 

important functions each of these aspects of the brain is equipped to handle.  

The cerebrum can be further broken down into the left and right hemispheres. There are 

many functions that can be handled by either side of the brain. Although they might share the 

same name each side handles things slightly differently. two such function tested in the R.E. 

Wheeler study [22] are hand preference in writing and emotions. The study tested the effect of 

positive and negative experiences from a stimulation and the way that it activates the frontal 

cortex on either side differently. This is also known as asymmetrical activation. 

2.3.1 Brain Arousal 

Generally, the more a person thinks, the more their neurons are active. The important 

distinction here is that the firing of neurons is not only defined in intensity but also in intensity in 

certain frequency [28]. People will have a different amount of arousal levels even on the same 

stimuli. Some of the more common reasons for the variance are:  

- Some people put in more cognitive effort than others 

- Some people are predisposed to a disorder such as epilepsy [28] 

- Other research has shown that lacking in arousal or reduced arousal can be linked to 

defects such as mental illnesses [27] and depression [22]. 
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2.4 EEG 

 

Figure 3: An EEG cap representation 

 Electroencephalography is a biofeedback technique that has been around since 1875. It is 

a technique that measures the movement of electricity through the brain by measuring voltage 

potential differences, and is generally associated with measuring the electrical potential 

fluctuations of neurons firing in the brain. A simple rendition of the workings of an EEG goes 

like this [39]: A metallic conductor(electrode) touching the skin of one's head detects a very faint 

voltage change based on the electrical energy that is moving through the neurons through a 

process called volume conduction. This small voltage change is then sent through an amplifier 

and measured by a voltmeter. Using this information, one can tell how active a specific area of 
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the brain is working. With the use of multiple electrodes across the scalp and the knowledge that 

different areas of the brain are responsible for different aspects of human bodily functions, one 

can now piece together an indistinct picture of what the brain is thinking. Blurry being an 

important aspect here, as a single electrode will be picking up the electrical activity of millions, 

if not more, neurons firing. The aspects of an EEG that make it easy to work with is that it is 

typically non-invasive and has a high temporal resolution. In the past, a substance needed to be 

applied to make a proper connection between the scalp and the electrode. This substance is 

generally a conductive gel. Nowadays, with the invention of accurate dry electrodes, EEGs can 

be as easy to use as putting on glasses or a hat with only a slight hit towards accuracy. 

 

Figure 4: Muse EEG [53] 

EEGs over the years have become less expensive, on average, and have become more viable in 

the consumer market. According to recent papers, because of this shift, more and more brain 

computer interface studies are being conducted with EEGs, with 72.5% used in 2014 [11]. 

Another reason expressed by Gianluca Di Flumeri et al. was that EEGs have also become more 

portable [40]. With increased computational power in smaller chips due to smaller transistors and 

more efficient batteries, alongside better wireless technology, portability has been a huge 

improvement over older EEGs. 
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2.5 Engagement 

 An important topic relevant to this thesis is the concept of keeping someone's attention on 

a stimulus also understood as engagement. The definition of engagement is therefore important. 

Engagement as it relates to this thesis is “emotional involvement or commitment” [48]. As it 

relates to video game interactions there is no formal definition of engagement, only theories 

discussed by psychologists. One such definition was developed for the FUGA project in 2006 

[2]. The researchers approached it by determining the important features of video games’ 

subjective experiences. Their model was built on three research papers that looked at subjective 

videogame experience. These three research papers are Game Flow [36], Fundamental 

Components of the Gameplay Experience [35], and the Motivational Pull of Video Games [34]. 

The final output of this research and experimentation was that engagement is made of 10 

different components. These components are competence, flow, suspense, enjoyment, sensory 

immersion, imaginative immersion, control, negative effect, social connectedness, and social 

negative experience. Through extensive testing, researchers were able to break down the 

measurement of engagement through four different questionnaires, one of which is used for this 

study. These tests are: The Game Experience Questionnaire, In-game Experience Questionnaire, 

Post-game Experience Questionnaire, and Social Presence Gaming Questionnaire. The 

questionnaires are a series of questions where the player rates their experience on a scale of 1 to 

5 on a series of questions reflective of how it represents their subjective feeling. A version of the 

In-game Experience Questionnaire can be found in appendix 8.3. 
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2.5.1 Flow 

 An important part of engagement and video game design over the years is Flow Theory 

first introduced by Mihály Csíkszentmihályi in 1975. The theory was conceived in an attempt to 

explain why some people become so focused on a specific type of stimulus. He was specifically 

interested in artists and athletes; however the theory is applicable to almost any activity, 

including playing video games and education.  

The theory states that a person is experiencing flow if all six of its requirements are met. 

These requirements are: 

1) A clear set of goals 

2) Feedback relating to progress 

3) Feelings of control 

4) Loss of self consciousness 

5) Distortion of time 

6) Balance between challenge and skill 

Even though there are six individual points, they do intertwine in their functions.  

To attain flow, it is imperative that the goals are laid out in such a way that it is clear to a 

player how to reach the end of the activity. A player may get lost or sidetracked if what they are 

supposed to be doing is unclear. For this reason, it is important that the person trying to achieve 

flow is given proper feedback towards reaching the goal as well. Clear goals and good feedback 

on progress are controllable in the design of video games. Feeling in control of an activity may 

create a feeling of loss of self consciousness. The reason for this is that if someone feels like they 

are in control, their attention is on how to complete the activity instead of reflecting on their own 

abilities. Distortion of time is a byproduct of flow that many people experience while in the flow 
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zone. It also has its own saying “time flies when you are having fun.” Lastly is the balance of 

skill and challenge. The reason this part of flow is important for video games is because it is 

possible for game designers to make games easier and harder, allowing them to adjust the 

balance of skill and challenge to an engaging level. The below figure shows an example of how 

one would move through these dimensions and a designer would try to keep the player in the 

flow channel. 

 

Figure 5: Graph of Flow [42] 

There are two things that game designers can directly control when it comes to Flow. The 

first is the goals of the game and the associated feedback in trying to complete such goals. The 

other is the balance between challenge and skill. The first is relatively easy in the game design 

world. Assuming the game is not too complicated, the game designer needs to ensure that the 

player is aware of what they need to do and to acknowledge that they are doing something 
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productive toward the end goal. A tactic that is generally implemented to make this easier is the 

use of a tutorial. This ensures that the player knows what they need to do and how to do it. 

Secondly, the challenge and skill aspect of flow is more challenging because not all players have 

the same abilities and therefore there is no single difficulty level that will be suitable for all 

players. This thesis is specifically focusing on the latter concept. 

2.5.2 Effort and Demand 

Flow can be used as a definition of a simple point in time but there is another factor that 

has been tested by K. C. Ewing et al. [10]. The effort vs demand connection is a task load test 

where a person can keep up with the demand of a game up to a certain point. If the demand gets 

too large then there is an overload and the user will stop putting in the effort required in order to 

continue to play the game.  Another research paper by G. Chanel at al. [18] looked at testing 

classification of game difficulty using biosensor data. They concluded that they were getting a 

large number of their participants classified as easy/ bored even when it was in the hardest mode 

because they were simply giving up on the game. This experiment seems to support the previous 

research paper by K. C. Ewing. The approach G. Chanel and his team took to overcome effort 

and demand overload was to start over with the easiest difficulty when the game got too hard. 

This way the participants knew that it would be a manageable difficulty and they would start 

putting effort into the game again. 
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Figure 6: Graph of effort vs demand [1] 

2.6 EEG Biofeedback in Video Games 

EEG biofeedback devices have been used on consumer video games over at least a 

decade [37].  Other common biofeedback devices are heart rate monitors and electrodermal 

response sensors. 

Many researchers doing biofeedback studies use more advanced feedback hardware and 

techniques. Some of the more common devices include EEG, electrocardiograph (ECG), and 

Galvanic skin response (GSR) [11]. A few more obscure devices that have been used are 

thermometers, electrocorticography (ECoG), Magnetoencephalography (MEG), functional 

magnetic resonance imaging (fMRI), accelerometers, and gyroscopes. Other techniques that are 

not devices that have been used in biofeedback research are eye tracking and gesture recognition 

There are two forms of biofeedback systems: active and passive. Active biofeedback is a 

way of controlling the game with intention. An example of an active biofeedback device would 

be to control a character’s movement with the player's mind using an EEG. Passive biofeedback 

is a system where a player’s biosignatures are measured and fed into a program that modifies 
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itself without the player necessarily knowing that the game is changing. An example of a passive 

system would include a program that measures heart rate and then attempts to intimidate the 

players when they seem to be relaxed [45]. This technique would ensure that the player is 

constantly engaged with the horror game or help them manage their anxiety. 

Another aspect of video games using biofeedback is its ability to change people's 

behaviour and motivation in a lab type setting. This could lead to higher recruitment numbers for 

brain-computer interface (BCI) experiments [11] and give researchers a greater ability to test 

specific elements of human behaviour. 

2.7 EEG Patterns 

 EEGs are a way of looking at the effects of a person's brain activity but cannot tell you 

exactly what the person is thinking. Researchers first need to convert the voltage potentials 

measured into data that is readable and understandable. From this need, there have been 

techniques proposed by researchers to make sense of EEG data for measuring flow in video 

game players. Two of the most popular techniques are power analysis and phase analysis [11]. 

Another method called hybrid interfaces is starting to be used in more recent research.  

2.7.1 Power Analysis 

Power analysis, or event-related potentials, is the measurement of the amplitude of the 

voltage measured by EEGs in the time domain. This is generally seen as a more simple method 

but does have many applications. One reason this method is used is because it is much easier for 

the person being measured to control the amplitude from their own brain waves. With only 

limited coaching a participant can be trained to lower their amplitude. This form of training has 
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been used in some research funded by the military to reduce stress in their soldiers [1]. Although 

there are many ways of using power analysis, some of the more popular methods in video games 

include P300 and steady-state visually evoked potential (SSVEP) [11]. 

2.7.2 Phase Analysis 

Phase analysis is another approach to interpret what the brain is doing. It does this by 

breaking down the signal into the frequencies that are measured by the EEG. One method to 

utilize phase analysis is a technique called Fourier Transformation. This technique will be 

expanded upon in the section 2.8.1. Once a signal has been broken down into its component 

frequency, it is averaged into bands. The bands more commonly found in research papers are the 

Alpha, Beta, Delta, Theta and Gamma bands [11].  

Table 1: Frequency Bands of brain 

Name of Band Band Range (Hz) [32] 

Theta 4 - 7 

Delta 0.5 - 3 

Alpha 8 - 13 

Beta 14 - 30 

Gamma 31 - 50 

 

The activity of each band and where in the brain they were measured from has been 

found to have correlations to different emotional and physical processes. Some early work using 

this technique was on sleeping patients where the researchers were able to tell what state of sleep 

the subjects were in [46]. In more recent studies, especially ones relating to the topic of this 
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thesis, researchers looked at the application of certain bands at specific locations and how it 

applies to engagement, stress and emotions [1,3,5,6,8,10,14].  

 

Equation 1: Equations used to calculate engagement 

𝐵𝑒𝑡𝑎

𝐴𝑙𝑝ℎ𝑎 +  𝑇ℎ𝑒𝑡𝑎
 

𝑇ℎ𝑒𝑡𝑎

𝐴𝑙𝑝ℎ𝑎
 

Equation 1 Equation 2 

 

Once a signal is converted into bands, some papers [6,8,26] looked at forming equations 

to try to describe the extent of a players engagement. One such equation used in various research 

papers is Equation 1. Researchers would average out the oscillatory ranges of Beta, Alpha and 

Theta across all EEG electrodes and then input them into Equation 1.  Researchers also used the 

same EEG output and input them into Equation 2 but the results showed a higher degree of noise 

and lower accuracy towards predicting engagement.  

Another algorithm that has been mentioned and tested in a few studies [22,23,5,14] is the 

asymmetric activation of alpha band frequency of the frontal cortex. Through testing, it was 

found that one alpha band frequency was more active than the other related to a positive or 

negative experience. More specifically, if the right frontal lobe of the brain is less active than the 

left then it relates to a negative perception of a stimulus. Other asymmetrical activation theories 

have been proposed such as measuring the parieto-temporal regions of the brain [23] but none 

have been tested as much as the frontal asymmetrical activation and attained as statistically 

significant results. 
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2.7.3 Hybrid interfaces 

 A method that has been examined by various researchers is to mix two or more systems 

together, making a hybrid system [11, 47].  Hybrid systems have been shown to have some 

benefits over single systems. Some of these benefits include improved accuracy and additional 

control signals. 

2.8 Signal Cleaning 

When analysing and measuring real world data, it is often contaminated with noise and 

interference. Signal processing and cleaning must often be performed on data before it can be 

properly analyzed. In this section, we will look at two techniques used to clean and to prepare 

data that have been utilized in many EEG experiments [5,6,10,14,19, 32]. These two techniques 

are Fourier Transformation and Independent Component Analysis [17,21]. 

2.8.1 Fourier Transformation 

An algorithm that is used quite often in signal processing is the Fourier Transformation. 

This algorithm allows users to break down a modulating signal into its component frequencies. 

More specifically it breaks it down into the sinusoidal frequencies. Fourier Transformation 

functions by mapping a signal over time into its frequency representation. The equation for the 

finite discrete Fourier Transformation is:  
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Equation 2: Fast Fourier Complexity 

𝑋𝑘 = ∑ 𝑥𝑛 ∗ 𝑒
−𝑖2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

 

 
𝑋𝑘 =The frequency domain 

𝑥𝑛 =The signal 

 

 The problem with the above noted Fourier Transform algorithm is that it is slow to 

compute with a complexity of 𝑂(𝑛2). When significant amounts of real time signal processing 

need to be done, computational speeds must keep up with the incoming data. The Fast Fourier 

Transform (FFT) is an improvement over the traditional Fourier Transform by having a 

complexity of 𝑂(𝑛𝑙𝑜𝑔𝑛). The drawback of the FFT algorithm is that the signal needs to be 

processed with an array size containing a number of elements relating to the powers of 2. The 

equation for the FFT is the same as the regular Fourier Transformation but it overlaps the 

calculations to reduce redundancy.  

2.8.2 Independent Component Analysis 

A noise detection and extraction algorithm is the independent component analysis 

algorithm (ICA). It is a method of doing blind source separation and has been used to find noise 

patterns in data. One such pattern that has been found to work well with ICA is noise picked up 

by an EEG when the eye muscles blink [21]. Such patterns can compromise data and what ICA 

allows researchers to do is to isolate and then remove the noise while still keeping the underlying 

and useful data generated by the brain. The algorithm maximises the distance between the 
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potential components based on how many dimensions/sources there are. In the case of EEGs, the 

input data would be each electrode around the scalp. The output would be components that create 

the largest difference across each signal. An example of its application can be explained by 

means of the cocktail party scenario. The starting point of this scenario is having multiple people 

speaking and microphones in a room at the same time. The algorithm is then able to isolate the 

voices of specific people based on their unique voice frequencies and intensities received by the 

microphones. The ICA algorithm is able to distinguish most of the voices of each of the people 

who were talking, assuming there were as many people talking as there were microphones.  

A paper by T. Jung et al. [21] notes that the ICA algorithm should only be used if there is 

a limited amount of data. If there is a surplus of data that can be used in the EEG research, one 

should discard the distorted data. 

2.9 Signal Classification 

The output coming from the processed EEG data can sometimes be obvious enough to be 

read with human eyes. If games are using EEG data, the games must be able to classify the brain 

patterns independent of a human observer. Classification in this case means that the game needs 

to be able to use the data that is derived from the EEG and make the necessary changes in a 

timely manner without interrupting gameplay. Another term that is used to describe classifiers is 

machine learning. Machine learning means that the algorithm finds patterns automatically and 

without a programmer describing the rules. One requirement of machine learning algorithms is 

that the computer requires data to decern the patterns through a process called training.  
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2.9.1 Linear Classifiers 

Linear Classifiers function by interpolating the data in all dimensions by a linear function 

and classifying it accordingly. Two forms of linear functions are Linear Discriminant Analysis 

(LDA) and Support Vector Machines (SVM). A technique that augments linear classifiers is 

called kernels.  

Linear discriminant analysis 

 

Figure 7: Depiction of the use of an LDA 

 LDA functions by doing data reduction which gets a projection of the data and then 

separates it with a hyperplane. Figure 7 shows an example where data reduction was made by a 

LDA algorithm and can create a line to separate the data on the x axis. It functions by 
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dimensional reduction by only using the important dimensions that will help classify data, and 

separating data accordingly. This technique is used for several reasons; It is simple, if the data 

you are trying to separate is obvious in its distributions it gives an easy way to classify it, and it 

requires relatively low amounts of computational power. For the sake of this study, it was not a 

viable option since the data was not as obviously clustered.  

Support-Vector Machine 

Support Vector Machines (SVM) is a tool that have been used in both binary classifiers 

and Regression Analysis. SVMs work by creating a hyperplane between two or more classes. 

The hyperplane is positioned in such a way to maximize the margin between the datapoints. An 

example of this is if you were trying to classify two different types of fruit based on their weight 

and diameter. This would be considered 2-dimensional data. The SVM would create a line 

separating the groups of fruits. Depending on what side of the line(hyperplane), we can classify 

it as one of the types of fruits. This can be used for as many dimensions as needed. The SVM 

also has some helpful techniques that make it more powerful such as kernel’s which are 

discussed in the next section.  
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Figure 8: Depiction of an SVM [54] 

SVMs are a good option for BCI classification because they are good for generalization 

[15]. Generalization means that the algorithm does not suffer as much from over training and is 

therefore quite stable. As more data is added, the output of a training process should not change 

too much unless the data contains drastic outliers.  

In a study that reviewed different classification algorithms [15], kernelized SVM had 

some of the highest accuracy for synchronous experiments. Some speculation as to why this is 

when compared to more complicated algorithms is that it is less sensitive to outliers, its 
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robustness to curse of dimensionality, and its ability to regularize make it less affected by the 

often-noisy BCI data. 

Kernels 

 

Figure 9: Depiction of a Kernel [51] 

Kernels map data from their original form to another form. There are many kernels used 

to transform data but they all work on the same principle by having a known conversion 

equation. Conversion equations should be reversible. One way this can be attained is by adding 

another dimension and making the value of the new dimension a combination of its other 

dimensions. This would be interpreted as a linear kernel. As shown in Figure 10 another kernel 

that is popular for SVMS is the radial basis function (RBF) also known as a Gaussian Kernel. 

This method creates a highest point from which all other values are measured from using inverse 

euclidean distance. The distance can then be made non linear if needed.  Therefore, the closer a 

point is to the highest points, the larger the calculated kernel value. 
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2.9.2 Neural Network Classifiers 

 

Figure 10: Depiction of an artificial neural network 

Neural Networks are typically defined as the numerical representation of neurons in the 

brain. The “neurons” are generally placed into layers where all of the neurons from one layer 

have a connection to the next layer. This is shown in Figure 11. Each calculation is normally 

done layer by layer. Each neuron represents a value that is first multiplied by a weight and then 

added to its connecting neurons. After all the values are summed, a bias is added. The last 

calculation that is normally done after one layer is defined as an activation function.  If there is 

more than one hidden layer then a neural network can be considered a deep network. If the 

output of a layer feeds back to itself or to a previous layer then it can be considered a recurrent 

Neural Network. One of many learning algorithm for supervised neural networks is called back 

propagation. It functions by finding the output of a network and then finding the distance also 

called loss value to a desired output which then provides the direction to modify the weights and 
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biases of each layer. The modifications of the weights and biases done by back propagation then 

leads to a lower loss value. 

2.9.3 K-Nearest Neighbours 

 

 

Figure 11: Depiction of the K Nearest Neighbour algorithm [15] 

One of the simpler classification algorithms is the K-nearest neighbours. This algorithm 

works by having points in data space which describes a specific class. Then using a distance 

function, the algorithm can then determine which class a data point belongs to by looking at 

which class point it is closest to. The class allocation of the class points are determined by the 

nearest k points in the training phase. This is shown in Figure 12. A potential distance function 

would be Euclidean distance which is also known as the second norm. This algorithm is  
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attractive because it is simple but does have some drawbacks. One problem is that it is hindered 

by high dimensionality which is often accompanied by BCI data. To get a more flexible system, 

multiple points can be used for each class.  

2.9.4 Combination Classifiers 

 The most popular approach in BCI research up until now has been to use a single 

classification algorithm. More recently there have been some strategies that have included the 

use of multiple classifiers to solve a single problem [15]. There are three types of combinatorial 

techniques that can be used: Boosting, Voting and Stacking. 

- Boosting is the technique where the classifiers are in cascading order. If the previous 

algorithm misclassified the data, the next algorithms can possibly correct the error.  

- Voting is the simpler of the combinatorial techniques. It works by each algorithm doing 

their own classifying and the class with the most predictions is the one that is used.  

- Stacking is the application of feeding one classifier directly into the next one. It can be as 

wide or tall as necessary. Research has shown that it reduces variance and thus 

classification error.  
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3 Design 

 To properly take an objective look at measuring engagement through the use of an EEG 

while playing video games requires many different design choices. This section will layout the 

process of designing an experiment with the different components including: setup, equipment, 

software, and ethics. This section will also cover some complications that had been encountered 

in the design phase. The primary concept for the thesis experiment was to use a pre-existing 

video game that was modifiable and had the ability to measure engagement with an EEG. In the 

following section the game Dunjions will be detailed with an explanation of modifications and 

tools that were made specifically for the thesis experiment. 

3.1 Gameplay Loop 

 

Figure 12: In-game view of Dunjions of the participants side 
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The first step to design modification to a game was to understand what was currently 

there. This section will go into more detail what was described in the introduction. 

A player’s experience when playing Dunjions involved planning and hand eye 

coordination. The game required the following interactions: 

- Movement 

- Attacking 

- Assessing the knights state 

- Healing  

The first interaction was to move around the map to find enemies and dodge their attacks. 

This required spatial reasoning by the player. The next interaction required the player to attack 

the monsters. This required that the player first recognizes the monsters and swings at the 

appropriate time. The player will also have to take into account their stamina as if they just swing 

endlessly, they will not be able to dodge properly and it will take much longer to kill the 

monster, making the interaction more dangerous. The last interaction required by the player is 

picking up health. The health pickups is in the shape of a heart and just require the players to 

walk over it to restore their health.  

 As the player is playing, the game is continuously recording multiple elements of the 

game. Key elements are; damage taken by each different monster type, amount of enemies 

remaining, and how much health and stamina the player has. If the player's health reaches zero, 

the DDA makes the game easier and if the player eliminates a wave of enemies, the game is 

made more difficult. The manner by which the game is currently made harder or easier is by 

changing the modifiers of the enemies. The four main modifiers are output damage, attack speed, 

health, and movement speed. The amount by which the modifiers change when the player's 
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health reaches zero depends on how many times in a row it has happened. It also changes the 

difficulty based on the progression through the level. The progression is calculated by how many 

monsters are spawned compared to how many were killed. The monster that did the most 

damage is also modified to be easier to defeat in the event of a death. Modifications are also 

made after beating a wave. This type of modification uses information on how many waves were 

beaten since the last death and how much health the player has left. 

3.1.1 Enemies  

Each enemy in Dunjions had their own unique behavior. Behavior differences included 

movement, attack, and line of sight. This section will outline each unique behavior that the 

enemies possess. 

 The skeleton is the first monster that the players would encounter. Its behavior is that it 

walks around in straight lines and reflects off any walls it runs into. As soon as the player is in 

front of the skeleton, it starts homing on the player. If the skeleton collides with the player it 

takes a swing and damages the player. Once it attacks, the skeleton turns around 

and starts walking away. If the player attacks the skeleton from behind, it turns 

around and starts chasing them until they attack or the player escapes.  

 The spider is a non-damaging entity. Its behavior has it zooming around 

the map. If the player is in line of sight. It tries to run in front of the player. While 

it is in close proximity to the player, it drops an area of effect spider web that 

slows down the player. The spider can have up to two spider webs dropped at one 

time. The spider web disappears after 5 seconds. Only the player entity is affected 

by the spider web. 

Figure 13: 

Skeleton 

Enemy 

Figure 14: 

Spider Enemy 
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 The red monster is an enemy that is mostly immobile. It has the ability to throw a single 

homing fireball towards the player at which point it is on a cooldown timer. If the player 

manages to damage the monster, the fireball cooldown is reset, and the 

monster can instantly attack again. This means that it can attack just as fast 

as the player attacks. The red monster only attacks once there is a direct line 

of sight to the player. 

 The last enemy in the game is the green monster. Like the red 

monster, it is mostly immobile. Its behavior is more focused on 

attacks. It has a large amount of health and a long cool down for its 

attack which is not reset when damaged. Unlike the red monster, it 

shoots 5 large fireballs towards the player in quick succession which 

can inflict a significant amount of damage.  

3.1.2 Dunjions V3.0 

 

Figure 17: The flow of data through programs used in the experiment 

 Before this thesis experiment was created, there were two other versions. The first 

version looked at the effectiveness of a DDA in completion time and the second experiment 

Muse Direct Muse Lab 

Donjions CSV Log Files 

UDPReadout 

DataPrep 

Classification 

Figure 15: Red 

Monster 

Figure 16: Green 

Monster 
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looked at comparing the effectiveness of this DDA to a human making changes to the game. The 

thesis experiment required the Dunjions game as originally developed by David Vallieres to be 

modified to add the desired feature of EEG integration and a new type of arena combat. The 

EEG integration required the system to have network communication capabilities. 

 The EEG device used for this experiment was the wireless Muse 2016 model. This EEG 

headband was chosen for this experiment for many reasons.  

1) The first reason was that it uses dry electrodes which meant that the EEG will be much 

cleaner to use and less costly because conductive gel was not required.  

2) The second reason for this device to be selected was because it was one of the least 

expensive consumer products to have multiple electrodes on the market at the start of this 

experiment.  

3) The third reason was for its easy-to-use software to streamline the communication for PC 

integration. The two software used in this thesis experiment (Muse Direct, Muse Lab) 

will be detailed in a later section under Muse. The Muse API for Unity was designed for 

use with a cell phone so its built in interface was not available to use for this project.  

4) Another reason that the Muse EEG was chosen was because it fit easily on the forehead 

like a pair of glasses. The quick fitting accompanied with the software quickly relaying 

proper electrode contact meant that it was easy and fast to fit onto participants.  

5) Another reason that the Muse EEG was selected was that it has built in pre processed data 

capabilities for data that is sent through the bluetooth connection.  

6) Lastly an important feature was its wireless capability which meant that it would be easy 

to connect to the computer without having wires to get in the way of the participants. 
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 Modifications to the back end scripts were made to the Dunjions game to allow it to 

process the UDP packets sent from the Muse Lab software. The first challenge that needed to be 

addressed was that the data was coming in at roughly 256 packets per second for the raw EEG 

data. Since the game ran at 60 frames per second, there needed to be a way to read the data 

separately. This was solved by creating a separate thread for the EEG data that ran alongside the 

game. The intercepted data was then processed.  

The first step in the processing pipeline was to separate the tags from the data. The tags held the 

information involving: 

1)  The user 

2) Name of the data 

3) Datatype / how many data points. 

4) The data in binary 

Table 2: Data structure of EEG packet 

User/RawData, ddd ### 

Example: User RawData ddd ### 

Description: User Name 

defined by the 

Muse software 

since multiple 

EEG’s are able to 

connect to the 

same computer 

Name of the data 

that is to follow. 

This will say if its 

raw voltage, 

battery Percent, 

accelerometer, 

ect. 

Can be either I or d. 

I stands for integer 

and d for double. 

The amount of each 

of the letters tells 

how many digits 

follow 

The data stored in little-

endian ordering. The length 

is determined by the 

previous letters and count 

(it is not to be represented 

by the literal ascii text 

above) 

 

Once the tag was separated from the data, the data was formatted from byte form to a smaller 

array of the desired data type. Two processes needed to be done to achieve the formatting 

requirements. The first process was grouping the bytes. The second process was to change the 

endianness of the data. The next step was to store the data to be used by the game in short term 

memory and also to be outputted to a file. The storage technique used in the thesis experiment 
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was a mixture of dictionaries and arraylists. The dictionary made it easy to separate the types of 

data for later reference; the arraylists were ideal for storing an unknown length of data, especially 

when only a small amount of the data is referenced at any one time. Since the most recent data 

was referenced more often the arraylist was found to be an efficient way to store and use data. 

Arraylist was also selected to avoid race conditions as shallow copies of the region of data could 

be referenced and processed by the main thread while the network thread could keep storing the 

data without needing a lock whenever it received the data from the network. 

 Another feature that was added to the game for this thesis experiment was an arena style 

combat area. The arena combat feature was added to version 3 of the thesis experiment for two 

reasons. The most important reason was that it was much easier to isolate the type of difficulty 

the player was subjected to. There are three types of difficulties found in video games [7] 

(Sensitive, Logical, Motor) as discussed in section 2.2. By isolating a specific difficulty, it was 

determined that participants would be subjected to similar game experiences and have to 

overcome the same difficulties. In the case of this thesis experiment, the main difficulty that was 

chosen was motor. Sensitive and logical difficulties were still present but not as dominant as in 

versions 1 and 2 of Dunjions. 

 Each wave was made to be progressively harder with different enemy variations. The 

composition for each wave is shown in Table 3. 

Table 3: Wave Composition in Dunjions v3.0 

Wave Enemies Wave Enemies 

1 Skeleton: 5  7 Skeleton: 15  

Spider: 2 

Red monster: 3 

2 Skeleton: 7 

Spider:1 

8 Spider: 2 

Green monster: 1 

3 Spider:1 

Red monster:2 

9 Skeleton: 5  

Spider: 1 



39 

 

Green monster: 1 

4 Skeleton: 10 

Spider:1 

Red monster:1 

10 Skeleton: 10  

Spider: 1 

Red Monster: 2 

Green monster: 1 

5 Skeleton: 15  

Spider: 2 

Red monster: 2 

11 Skeleton: 15  

Spider: 2 

Red Monster: 2 

Green monster: 2 

6 Spider: 2 

Red monster: 4 

  

 

3.2 Motivation 

 It has been a goal for many different areas of behaviour related sciences to understand the 

brain and how it reacts to certain types of stimuli. Typically, researchers approach this problem 

by measuring behaviour through the use of questionnaires or the effects of a person's reactions 

such as body language. Questionnaires and visual observations are and have been invaluable 

methods that researchers have used to understand a persons behaviour. More recently, with more 

powerful hardware becoming less expensive and new data processing techniques becoming 

available, a wider range of researchers are now able to easily test and analyze how the brain 

reacts to outside stimuli. 

3.3 Similar research 

 The starting point for this experiment was research derived from David Vallieres 

experiment [49] testing the use of a DDA algorithm in a video game. The revised experiment 

focused on a different area of research using EEGs to predict engagement levels to elevate the 
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abilities of the DDA. Three different papers were invaluable to the idea leading up to the creation 

of this experiment. 

The first paper that influenced this experiment was an experiment undertaken by G. 

Chanel et al [18] where they applied an SVM classifier onto biofeedback measurements while 

playing a game of tetris to try to determine if the player was engaged. They tried to classify if a 

player was either playing in an easy, medium or hard mode and linking that to boredom, 

engagement or anxiety respectfully. By feeding their result into an SVM, they reached an 

accuracy of 53% without the use of an EEG. In a followup paper [50], the researchers used the 

EEG in addition to all the other biofeedback measurements and saw an increase in accuracy to 

63%. 

The second paper that influenced this research project was by M. Salminen et al [5] . The 

reason why this paper influenced this research was because they utilized oscillatory EEG signals 

to classify specific events in the videogame Super Monkey Ball 2. The events they were trying to 

classify were rated as either good or bad. For example, picking up collectables was considered 

good and falling off the map was bad. The method in which they classified the good and bad 

events was by comparing the activation of certain areas around the brain. Because of this 

research specific event prediction was used in the thesis experiment.  

The third most important influence which is a larger set of experiments was The Fun of 

Gaming (FUGA) initiative [4]. This was a government backed project that had the goal to create 

and improve methods to measure different dimensions of video game experience. The papers that 

came out of this study which showed that numerous researchers were working on similar 

projects. The tools and techniques that were derived from this initiative gave ways to handle 

problems that occurred throughout the design and application of the thesis experiment. 
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3.4 External Components 

Due to the nature of this experiment, specialized hardware and examination tools were 

necessary. This section will look at the components that were acquired for this study. Four main 

components were used for this study: 

1) Computer 

2) Muse EEG 

3) Questionnaire 

4) The Testing Lab 

 

3.4.1 Hardware 

For the thesis experiment, the following computer system components were used; a windows 

based desktop computer with a minimum of 8 GB of Ram with 4 physical CPU cores and 

Bluetooth connections with 2 monitors and 1 Xbox controller as peripherals. 

The specifications for the computer and its software can be found in the Appendix 8.2. The most 

important aspect of the computer was that it was able to handle the computation requirements of 

the software and the associated algorithms. 
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3.4.2 Muse 

 

Figure 18: Muse 2016 

 The EEG device used for this thesis experiment was the Muse 2016. This model is sold 

by the InteraXon company and primarily targets the meditation consumer market. The device is 

able to collect raw data at a rate of 256 Hz. This allows it to be used to find the frequencies 

generated by the neurons which are typically around 0.5Hz to 60Hz. The Muse EEG runs 

wirelessly using the bluetooth 4.0 hardware with a 128 bit Advanced Encryption Standard (AES) 

encryption with data integrity checks. The battery in the device has the ability to last up to five 

hours between charges. The devices have been used in numerous other studies, some which 

required ethics approvals and passed safety standards for consumer use by the Federal 

Communications Commission (FCC), CE, and TÜV SÜD. The electrode placement on the scalp 
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is based on the international 10-20 system and measures the F7, F8, T9, and T10 channels. Other 

measurements it can transmit are accelerometer data at 52Hz, battery level at 10Hz, gyroscope at 

52Hz, and alpha, beta, theta, delta and gamma waves. 

 At the start of the thesis experiment the Muse company had two free programs for 

research purposes using computers. The two software offered were Muse Direct and Muse Lab. 

Currently, both software’s are no longer supported and require special permission to use [33]. 

Although there is no more support for the computer software, there is ongoing support for their 

subscription-based application for iOS devices. 

Muse Direct is a software that reads the data being sent via Bluetooth. This software has 

different options on what to do with the data. It gives the researcher the ability to select how the 

data is formatted, and what port and protocol to send it over the network. It also allows the user 

to save the streaming of the data to a file. The problem with data in this file is that there is a lot 

of information stored, much of which is not needed in this thesis experiment.  Some examples of 

the data that is unnecessary is who the data is coming from, and the type of data on every line. 

This means that the files are much larger. An added advantage for some researchers is that the 

software allows the connection of multiple devices to be routed through this software. For the 

thesis experiment only one device was used, so the stability of having multiple devices was not 

tested. 

 Muse Lab is a program that allows users to visualise the data that comes in from the 

Muse Direct software. The program is java-based and allows the user to read the data sent from 

Muse Direct and specify which pieces are then sent out back to the network. Once the data is 

received, the software has the ability to record the information. The visualisation side of the 

program lets you control the speed that you see of the incoming data, the frequency of the 
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incoming data, and graph the data in the form of a stationary or a scrolling line. The program 

also allows the user to select which data goes out to the network. For the thesis experiment data 

was sent across two ports which allowed the subsequent programs to process the information 

they needed. Another option of this software that was not tested is the ability to set markers in 

the data for specific events. Because this requires manual use, this option was not used. A Muse 

Direct tool that was used for the thesis experiment was the ability to save and load all the settings 

applied for a specific connection including all output data. This helped ensure that all trials were 

as similar as possible.  

3.4.3 Questionnaire 

The questionnaire that was the basis for the thesis experiment was based on the “Game 

Experience Questionnaire” [2]. This questionnaire has 33 questions and was designed to measure 

seven different parts of interaction namely competence, immersion, tension, challenge, negative 

effect, and positive effect. A shortened version of the “Game Experience Questionnaire” that was 

used for the thesis experiment is called the “In-game Experience Questionnaire” and it consists 

of 14 questions. The response of the questions are marked on a scale between 0 and 4. For each 

of the seven parts of the game experience there are two questions. The final score is then the 

mean between the two scores. There are also extra questions in the case that the translation from 

its original form in Dutch is inadequate but in the thesis experiment, they were not used. The 

version of the questions used in this experiment can be found in section 8.3. The reason for using 

this questionnaire is because it has undergone reliability tests and resulted in satisfactory to high 

internal consistency. They found it was sensitive enough to pick up differences from gamers, 

game types, play characteristics, and social context of play.   
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A second questionnaire was also given at the end of the session to each participant to 

collect demographic information. This contained information about their age, sex and some 

information that was determined to be important for the EEG signal classification, such as which 

hand do they consider the dominant and if they were affected by colour blindness. Lastly, the 

participants were asked for information pertaining to their experience with video games, such as 

how often they played games in an average week and how many platforms/consoles they used 

when playing games. This information was found to be useful in previous game experiments. 

The previous experiments determined that there were differences in classification results from 

two main types of players: the hardcore players and the casual players.  

3.4.4 The Laboratory 

 The experiment required the use of a Laboratory to run the tests in a controlled 

environment. Because of this need the CHIL lab was used as the room to run the tests in. It was 

used since it is a smaller white room about 3meters by 2 meters. The walls are all white except a 

one way window on the one side of the room. The window is there incase an experiment needed 

to be monitored without bothering the participant. In this thesis experiment, the participant and 

the experimenter were in the same room. 

3.5 Software 

 The result of the thesis experiment was dependent on different software and programs 

working in conjunction. This section covers the networking protocols and the programs that were 

part of the thesis experiment. Software coded specifically for this thesis experiment will be 

explained in detail. The two main languages used were Python and C#. 
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3.5.1 Networking Protocols 

 Well designed network communication becomes vital when rapid communication is 

needed between programs and platforms. As this thesis experiment required numerous programs 

and interfaces to communicate together, internet protocols on the transport layer were needed to 

be taken into consideration in the design. Two main protocols that are typically used for 

transmission of messages are Transmission Control Protocol (TCP) and User Datagram Protocol 

(UDP) [41]. Each protocol advantages and disadvantages are discussed below. 

Transmission Control Protocol 

 TCP is able to handle safe and reliable connections across the internet. The manner in 

which it handles this is by having a two way connection between the two different hosts. 

 

Figure 19: picture displaying two way communication of TCP [41] 

The communication between the two hosts consists of a package sent to a destination host 

and the destination host acknowledging that they received the package. TCP also ensures that 

there was no corruption of the message and that if there are many messages to be sent, that they 

are received in the proper order. Although there are many advantages of using TCP, there are 

two key disadvantages, those being: 
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1) Large load: When there is a lot of small data being passed, the bandwidth is filled with 

more data since communication needs to be passed in both direction 

2) Longer delays: although the delays cause by tcp are usually very small, they do add up 

when a lot of data is being communicated. Some systems will wait before they receive 

the acknowledgment that the data was received before sending more data. If there is ever 

packet loss, this can back up communication quite a bit. 

 For the majority of applications TCP is adequate because the servers only have to handle 

a few packets per user or the delays are negligible or imperceptible. 

User Datagram Protocol 

 UDP is known to be simple and fast. UDP packets contain a source, destination, message 

length, checksum and a message. When data integrity is needed UDP may not be the best 

protocol to use since packets are often dropped or lost due to networks being imperfect. For this 

thesis experiment, on the other hand, all communication was done on the same hardware so the 

packets went almost directly from one program to another with very little chance of packet loss 

or disorder. For the thesis experiment UDP was selected over TCP because of the time sensitivity 

of the data. By using the quickest protocol the throughput needs of the data communication was 

satisfied. 

3.5.2 Python 

 Python is an interpreted programming language that is widely used throughout the 

scientific community. The language is interpreted at runtime. For this thesis experiment a Python 

program had been made to run alongside the game. The reason that python was selected was for 

its large amount of optimised libraries and its ease of use.  
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The python programs were primarily focused on the data side of the experiment. This 

means that it was used for: 

1) Recording data 

2) Preprocessing data 

3) Training ML models 

4) Running classification algorithms 

The 1st and 4th uses were done alongside the game and the 2nd and 3rd were used seperatly.   

To be able to work with the video game side, it was loaded with a rudimentary RPC (Remote 

Procedure Call) capabilities. The RPC side of the python program was to give the Video game 

the ability to trigger events to do certain things. These events included: 

1) When the game started 

2) When baselines were taken 

3) When predictions were needed 

4) When the game ended 

Each event was chosen because of a specific need. The game staring was important because it 

told the python program to start logging the all the data coming in. The baselines were there so 

that the later algorithm that needed to normalise the data to each participant’s brain activation 

levels was able to collect the clean data. The prediction call event was needed for the inference to 

be made on the game’s behalf. The output of this call would allow the game to make 

modifications. The game ending was so that the python code would not continue unnecessarily. 
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Recording the data 

The program required access to the incoming data and any other information that could 

be important to the classification process. For the purpose of this thesis, there were five different 

files that were recorded for each participant. These files included: 

1) Eyeblink 

2) Raw EEG 

3) Notched EEG 

4) Event Log file 

5) Stats file 

An eyeblink file, which would hold the information of when the EEG predicted when the 

players were blinking was recorded at a 10Hz interval using the headband’s communication. The 

second file would hold the raw EEG data coming from all four electrodes. As this data tended to 

be noisy, it was later ignored for use with analytics. The next file contained the notch-filtered 

EEG data. This data was cleaned to remove any signals between 45 and 60Hz. The fourth file 

recorded was the log file. This file held information pertaining to important events that happened 

in the game, such as if the player was killed or reached a checkpoint. Other important events 

contained in the log file were; when the baselines were taken, if the player picked up health, and 

when there was a change in scenes. The last of the files recorded is the stats file. This file 

contained the changes in the states of the player throughout their gameplay. Every time it 

changed it would log the stats for the enemies.  



50 

 

Data preprocessing 

The second step involved making the predictive model using SVMs. This process was 

done by first initializing necessary methods and variables: 

1) The first variable was to be able to map ranges of frequency with their 

names. These were the Alpha, Beta, Delta, Theta, and Gamma.  

2) Define a method to be able to open comma separated values (CSV) files 

and to transpose them. This would allow the use of external file storage 

for holding the player data.  

3) Define a method to do a time to data conversion. This would allow users 

to convert microseconds to a specific record from the EEG data.  

4) Define a method to remove large fluctuations in the data. The method 

would search for any data that was outside the third standard deviation 

of the average in either direction. Such events would happen when the 

player would move their hand near the EEG with or if excessive 

blinking were to occur. 

5) Create a method that would allow a Fast Fourier Transform to be applied 

to large amounts of data all at once. This was done using a library called 

Tensorflow as its signal processing package used a method to process 

data packets called short-time Fourier Transform (STFT). Even though 

Fourier Transformations convert time series data into frequency data, 

Tensorflow gives the ability for frequency data to be seen across time in 

an efficient manner.  

1) Frequency to Name 
table

2) CSV Reader

3) Time to Data

4) Rough Cleaning 
Method

5) Fast Fourier 
Transform Model

6) Fast Fourier Model 
Usage

7) Baseline Extraction 
Method

8) simple noise 
removing Method

9) Event Data 
Agregation Method

10) Baseline information 
extraction method

Figure 20: Data 

Preprocessing flowchart 
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6) Once the model was programmed, a method to run the model with specific data was 

made.  

7) A method was then created for extracting the baselines from a set of data 

8) A method for cleaning the data using independent component analysis was then made. 

This method would look specifically for markers such as eye blinks but could potentially 

be used to look for and clean other noise.  

9) The next method that needed to be programmed was to group processed data together by 

events to then be fed into a classifier. The two events that were used to group the data for 

this thesis experiment were deaths and checkpoints. This method would take 30-second 

increments between the previous event and time of the current event. It would then 

average the frequencies in each increment into the bands of interest; in this study it was 

alpha, beta and theta. After that it would flatten the two-dimensional array into one 

dimension and store it into the output array while also retaining the information on the 

participant it came from and the event it was associated with. 

10) The last method needed was to determine the average intensity and the standard deviation 

of the EEG data based on the baselines.  

11) Once all these methods have been initialised, the main program is run. The main program 

processed the participants files by opening up their EEG data and log file. It would then 

loop through the log file and store the appropriate log data in separate arrays. For 

example baselines for eyes open, closed, and if there was a death or checkpoint that 

occurred. Next it would run the event extraction method and append all the different 

participants’ data together and store it into a NumPy array ready to be used in the 

classification program section.  
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Data classification 

After all the data is processed and is all in one file it is then used in the classification 

process. Following are some important methods used in the classification process: 

1) Visualisation of class distribution. For example it is good to know how many data 

samples relate to deaths vs checkpoints 

2) Data siplification methods. It can be easy to train any model to have a bias. For this 

reason a method to balance class distribution is helpful so make sure that the model does 

not just train to predict one class because there are more data points available. For 

example there are more deaths related datapoints so being able to drop some of these 

points so there is a 50/50 balance between chackpoints and deaths is very useful 

3) Participant bias removal. When training a model, it is useful to train on different 

participants then you are testing on. Because of this, having a method to extract a specific 

person from the dataset and run a test on them seperatly is useful.  

4) Next is the process of separating the data into testing and training data. This looks to see 

if the trained network is generalised enough to be used on new data. The ratio used for 

this experiment is a 70% training to 30% testing. Since the desired choice of classifier is 

a Support Vector Machine (SVM) the LIBSVM library is used for this next part. This 

library allows the use of a fine tuning argument “c value”. This allows control over how 

large the support vector is to be and also what sort of misclassification is allowed. By 

testing a handful of values, the best value can be chosen. A scoring system was made on 

the results to be able to automatically find the best network. The scoring system is 

obtained by finding the difference between the testing and the training set accuracy, then 

dividing it by two and raised to the power of two then subtracted to the accuracy of the 
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testing set.  Therefore, the most general and most accurate results are preferable but still 

allow a little variation between the testing and training sets.  

Game Processing 

The last step is to have the communication open between the game and making a 

prediction. This is done with the third and final program. Many of the same methods from the 

cleaning and data preparation script are used, such as the cleaning method using the ICA 

algorithm, large noise data removal, baseline extraction, the tensorflow Short-time Fourier 

Transform (STFT) model and method, and a modified version of the event extraction. The 

modification comes from only having to create one data sample from the data that is read from 

the Muse software instead of reading it from the output of the CSV files. After all those methods 

are set up, it is only a matter of opening up the program to networking communication. This is 

first done by opening up some sockets to listen and send UDP datagrams through and initialising 

some variables to hold data. Some of the variables that are being initialized is an array to hold all 

the EEG data incoming. It is set to an initial size of 1,000,000, which gives roughly 65 minutes 

of data storage. This can be modified if more data is expected. Other variables include timing 

information for baselines and how many records are currently being stored. The last important 

variable is the SVM model that was determined from the previous program. Once all those 

variables have been initialized, an infinite loop is started and the program starts to listen. It must 

decode the incoming signals if: the incoming data relates to a game event, it will have the 

keyword game at the beginning; if not, it contains data pertaining to the EEG.  
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3.5.3 C# 

 The Dunjions game was almost exclusively written in C#. There have been 70 separate 

class files written for this game. The more important scripts relevant to the thesis experiment will 

be covered in this section. The game’s programming has a hierarchical structure that allows 

information to be handled more through the scripts and less through the manual manipulation 

through the engine. The most important script is GlobalVar. There are other scripts that handle 

the stats, enemy logic, heads-up display (HUD) elements, network data managers, and the 

outputting of data to files. 

Global Var 

The GlobalVar script was a critical addition to the thesis experiment game as it allowed 

important class files that are dynamically allocated to be accessed in an efficient manner. It did 

this by having static references to the important variables. 

 

Figure 21: C# class file name scheme 

GlobalVar Class

GlobalVar

Settings

StatsManager

Logger

KnightArena

EEG
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 These static class variables are the settings, the stats manager, the logger, the player and 

the networking EEG data handler.  

 The settings variable is used to hold three different variables: file location, volume levels, 

and port number. File location is used to determine where the log files and the EEG data dumps 

are to be stored. Volume level is used to control the intensity of the sound. The port number is 

used to store the port number that is used to listen for the EEG data.  It is also done through the 

engine’s Playerprefs class, which allows the settings to be stored between sessions if needed.  

 The stats manager is an integral class that handles storing, initializing, and modifying 

statistics as well as keeping track of any changes. Since all entities in the game are programmed 

to clone stats when they are created, the static reference in GlobalVar allows a simple way to 

reference the manager.  

 The static reference to the Logger instance is held in the GlobalVar class because there 

are many different other classes are programmed to output their data to one of the five output 

files. The Logger class contains a reference to the output files to avoid having to open and close 

them every time data is written. A timestamp is also placed on all the output files, which is 

zeroed out when the class is initialized. 

 The reference to a KnightArena instance is stored for easy access. KnightArena is the 

class that handles the controls of the playable character and handles the player stats during 

runtime. The reference in GlobalVar is overwritten by the KnightArena class when a new scene 

is loaded. This occurs because there is always a new KnightArena object every time the scene 

loads, and the object is reset and re-linked to GlobalVar. By having a static reference, player 

information, such as location, is available to all the enemies for behavior and stats use. 
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The last static variable that is stored in the GlobalVar class is the EEG data class. This 

class handles all the short-term storage, multithreading network communication, and simple 

processing. It is stored here for simple access for the visualization scripts. 

Stats Manager 

 As noted above, the stats manager has numerous useful functions. It handles the storage 

of the enemy and player stats in two ways. The first way is to keep backwards compatibility with 

the older versions (v1,v2) of the game. The older versions had only a few modifiable stats that 

could be made. Resultantly each 

enemy had specific stats that 

were changed in a specific order 

when an event occurred. Each 

specific stat had a multiplier and 

a bias. In version 3 they were set 

manually by a serialized class 

called scriptableSelectiveStats to 

make them more modular.  Once the initial stats were loaded into the stats manager the 

multiplier was set to 1. As the game progressed, the multiplier attribute was modified. Every 

time the game needed to become harder or easier, the stats instance for each enemy was 

modified. The stats class held information such as health, attack speed, damage, and timers. Each 

entity (enemy and player) cloned their default stats from the stats manager when they were 

created. The stats manager held a version of the current stat and the pending stat modification. 

The reason for holding the current and pending stats was to allow modifications to be made if 

and when needed without effecting the current state. In previous versions (v1 and v2) this was 

Figure 22: Example of stats of a monster 
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more important as enemies were spawned during gameplay and the stats were also able to be 

modified by another hidden player also known as a “wizard.” The stats manager will also hold 

other types of statistical information. Some of this information consists of; damage dealt and 

from which enemy, how many of each enemy is killed, how many player sword swings have 

been made, how much a health pickup is worth and how many health pickups have been made, 

which wave the player is on, what type of difficulty modification is being used and the starting 

time of the game.  

The difficulty modification types are handled by the DDA class. In version 3 of the game 

there were three different difficulty modification methods. The first method which was not used 

was the lack of modifications on a baseline difficulty set at the start. The next method was a 

modified DDA system from v1 and v2. It was modified for ease of use and to be more dynamic. 

The last method was a combination between the previous method with the classification 

predictive element received from the python code. Once the prediction was received, the system 

modified the player’s stats for both live and for future iterations. 

EEG 

The EEG class was comprised of several interlocking methods and variables. The starting 

method was triggered as soon as it is created. It initialized an empty dictionary to store the data 

that came from the Muse. The dictionary mapped the data type to a linked list of type EEGData 

through a KeyValuePair. The EEGData class contained the time it was received, the data type, 

the data array associated, and a flag to see if it was modified. The flag was used to ensured that 

the cleaning of artifacts was not done more than once for each piece of data. The cleaning of the 

data was not used in the testing phase through the C# game code. All of the cleaning was 

subsequently done through the python code. The other stored variables in the EEG class were the 
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baseline values for the EEG data, the value of each channel and frequency over time after 

undergoing a Fourier Transformation. This was used to average out the frequency values over 

time for the visualization purposes on the observer screen. Lastly, variables containing the 

networking and multi-thread information which included the references for UDPClient, port 

number, and thread were part of this class. 

UDP communication was the first thing that was started when the EEG class was 

initialized. Part of networking initialization requirements were set up on its own thread. The 

reason for doing so was that Unity’s scripts were all run on a single thread sequentially. So as to 

not disturb regular game logic, networking communication was needed to be done continuously 

and as fast as possible to prevent information from being lost. By having the networking on its 

own thread, the program will lose some ability to use some internal Unity timing functions. 

Additionally, it will gain the ability to create an endless loop that intercepts the packets as soon 

as they come in. As soon as the new thread is initialized the port is reserved and the loop starts. 

Whenever data comes in, it is initially deciphered to detect what type of data it is. The data is 

deciphered by parsing through the incoming packet for a specific marker. The packet 

(User/RawData, ddd ###) would contain a ‘d’ character for double and ‘i’ character for integer. 

The quantity of the data stored in the packet were determined by counting how many of the 

characters were together. Once the type and quantity was determined, the program then isolated 

the subsequent byte data, changed the endianness, and converted the subsequent byte data from 

byte arrays to its generic data type. Once the conversion was complete and the processed data 

from the network packet was stored in an array, it was then added into the dictionary and logged 

to the output file. 
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Several helper methods and access functions were used for the EEG class. The first 

method was to convert a byte array to a primitive datatype. The integer conversion was done 

with bit shifting, index placing, and multiplication. The byte array conversion to double type 

used the Bitconverter library that comes with C#. Other helper methods included; getting the 

banded data from the raw data, logging the FFT data to check if the algorithm was implemented 

correctly, some cleaning algorithms from earlier in the process that mimicked some of the 

Python script, and a GET method for the EEG data.  

DDA 

 A class was created to handle all the modifications for both the DDA system and to 

handle the predictions returned from the external Python scripts. The old DDA system from 

version 1 and 2 were streamlined to be simple to read and easy to modify. The streamlining was 

made by making each step in the DDA distinct from each other. The first step was to find the last 

event and then count how many times backward that event occurred consecutively. It then found 

the most damaging monster that was encountered since the last event. The script then determined 

the percentage progress that was made before the event occurred. 100% progress meant that the 

player had reached a checkpoint. The DDA then loops through each monster stats to modify their 

specific attributes according to the event type, then health remaining for a checkpoint or progress 

before they died. The consecutive events then added an additional modifying multiplier. 

Subsequently if the player died, the enemy that caused the most damage was modified again to 

be made easier. 

 In version 3 the algorithm added the EEG predictive modifications. The request 

prediction method of this class included a message sent to the same port that the Python script 

was listening on, telling it to make a prediction. It then started a separate thread to wait for a 



60 

 

response from the python code. A separate thread was used because the prediction process could 

take between 3 to 40 seconds in which  the game would have been frozen.  

3.5.4 Data Preparation 

 Before data was used for analysis, it was important to pre-process it because the EEG 

device was very sensitive and prone to noise and picking up unwanted artifacts. There was many 

different techniques that were used to reduce noise. The two noise sources that were removed in 

this thesis experiment were electrical and muscular. This section will cover how they were 

accounted for and the techniques used to remove them automatically.  

Generally, the first noise that is to be eliminated is the background electrical energy that 

surrounds you when you are in a building. In Canada, the wall power runs at 60Hz, so the 

removal of this specific frequency is necessary. This can be done through the use of a time series 

to frequency domain shift. Such an example can be done with a Fourier Transformation. Once 

the transformation has been done, it is as simple as not looking at the 60 Hz frequency and the 

surrounding few frequencies.  

The next artifact that had a large impact on the data was the effects of muscle movement. 

Three main sources of muscular noise came from blinking, jaw clenches and a hand touching the 

head. When someone blinks, there is a spike in the electrical activity measured. There were two 

techniques used in this study to reduce the effects of blinks. The first technique was to use the 

Independent Component Analysis. This method gives the ability to remove the majority of the 

blink noise, which is somewhat consistent, and keeping the underlying signal underneath. The 

second technique used for this study was to replace the length of the blink with a 0 Hz frequency. 

This means that the voltage stays the same across the event. There are two problems with using 
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such a technique. The first problem is that there would be a loss in brain activity measured. This 

loss was mitigated by averaging out the measurement across a longer period of time and 

therefore reducing the loss. The only resulting side effect would be the amplitude of the bands 

themselves would drop and the 0Hz amplitude would rise significantly. The 0Hz in this study 

and many others was therefore ignored. The next technique utilized was used to further reduce 

data loss from the previous problem. This was done by adding a larger window that the Fourier 

Transformation investigated. The smallest windows that should be used is the window relating to 

one second. This makes it easy to convert a specific data point to a frequency. For example, if 

the EEG is recording at 256 Hz, the window would be of size 256. This means that 1Hz would 

be in the 1 location in the vector and so on. By increasing the window to a value that is 2 to the 

power of something, the Fast Fourier Transformation can still be used and then you can multiply 

the frequency you want by the size of the window. For this example, the window would be of 

size 1,024 for an EEG that streams at 256 HZ. That means that for each frequency there are four 

values that can be looked at giving a higher accuracy.  

3.6 Ethics 

To be able to run the experiment on participants, ethics approval was required by 

Laurentian University. The process was done through the Laurentians University’s ethics board. 

A few aspects of the process were interesting to note. These aspects include the hardware, the 

video game in question, and the data.  
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4 Experiment 

The thesis experiment was comprised 8 steps. These steps were: 

 

Figure 23: Experiment progression visualisation 

 Each step had to be done in the specific order that they were listed.  

 Designing the experiment was the first step. This stage involved coming up with the idea 

and doing literature review and seeing what kind of questions needed to be answered. This is 

also the part of the experiment that took the longest.  

 After having gone through the design phase of the experiment, next came the 

implementation of modifications. This stepped involved finding the appropriate modification and 

additions needed to be applied to Dunjions to be able to test the experiment laid out in the design 

step. The important modifications and additions were laid out in the design section of this thesis.  

 The next step involved in the experiment was the testing of a focus group. This was a 

necessary step in the experiment to really make sure that all the components were ready for the 

actual participants. This step is explained in more detail in section 4.2.1. 

Design 
Experiment

Implement 
Modifications

Focus Group 
Testing

Testing Group 
A

Training 
Classifer

Testing Group 
B

Analyse Data
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   Once the experiment was ready for data collection, the first group was run through the 

game. The outline of the main experiment is explained in detail in the section 4.2. The necessity 

of this groups data is outlined in section 4.2.2. 

 Once the data was collected for the initial group, their data was now able to be fed 

through a classifier. Some preliminary testing on the data was done to see if the proper 

classification algorithm was used. Some of the results of this section are discussed in detail in the 

Discussion section of this thesis. 

 Once a classifier had been trained, it was now time for testing the second group of 

participants to see if the modifications based on the predictions of the classifiers helped support 

the hypothesis. 

 The last step of this thesis experiment was to run statistical analysis on the results and to 

further test the chosen classification algorithm to see if it improved with more data.  

4.1 Objectives 

 This thesis experiment had two main objectives. The first objective was to find a 

classification algorithm that was able to work in real time on brain data. The second objective 

was to test see if with the help of the classification algorithm, if the game would be more 

enjoyable. Due to these objectives a hypothesis was outlined to be tested. The hypothesis that 

was set out to test is outlined below. 

4.1.1 Hypothesis 

H0: The enjoyment of a video game is independent of a DDA system with access to EEG data 

H1: The enjoyment of a videogame improves from a DDA system with access to EEG data 
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 The hypothesis will be tested with the use of a ANOVA analysis on the reported positive 

effect of the game as reported in the Game experience questionnaire between the two versions. 

4.2 Main Experiment 

  The thesis experiment required 3 groups of individuals; focus group, group A, and group 

B. All three groups perceived the main experiment process the exact same way. The differences 

arose from either before the experiment started or after the experiment finished. Each difference 

will be discussed in the subsequent sections. 

 The room that the experiment took place in was part of the CHIL lab. The lab is in a 

small white room with a one way window. The reason that this room was chosen for this 

experiment was because it satisfied all of the requirements for this test. The requirements that 

were met were that the room be quiet, have minimal distractions, large enough for at least two 

people to sit comfortably. The setup of the experiment had a table facing the wall with two 

monitors on it. Only one of the monitors was facing the participant. The computer running the 

game stood beside the table. The participants were asked to assigned to sit on a well padded 

rolling seat that allowed them to slightly lean back if they wished to do so.  

 The following describes the process of the main experiment that was common between 

each group.  
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1. The first thing the participants did upon entering the testing 

room was to fill out a form stating that they agree to be 

tested. This form was accepted by the ethics committee of 

Laurentian University. The consent form had information 

pertaining to what they would be doing, what the EEG was 

and what would be done with the respective experiment data 

that was recorded. The participants had the added option to 

get a summary of the results of the study sent to them.  

2. Once the consent form was filled out, the participants were 

fitted with the EEG and were told to relax. They were 

instructed to try to keep their heads still, to avoid touching 

the EEG, and to avoid clenching their jaws throughout the 

experiment. Once the EEG could be seen to have good 

contact to the head using the Muse Direct program the 

experiment continued. They were then told to try to relax 

and take slow deep breaths. The participant were asked to 

signal that they were ready or two minutes had passed.  

3. They were then instructed to stay still as two baselines were 

taken. The first baseline was taken with the eyes open and the second baseline 

was taken with the eyes closed. Each baseline took 60 seconds.  

4. After the baselines were taken, the participants played through a short tutorial 

instructing them on how to use the controls.  

1) Consent Form

2) EEG Fitting

3) Baseline

4) Tutorial

5) Playthrough

6) Second Baseline

7) Remove EEG

8) Questionnairs

9) Debreif

Figure 24: Experiment 

Procedure 
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5. After the tutorial was completed, they started playing. The participants were told 

to play for roughly 25 minutes and reaching as far in the waves as they could. 

Each wave was made to be progressively harder with different enemy variations.  

6. Once the time for play session ran out, the game was ended by the experimenter 

and another two baselines were taken.  

7. Before continuing with the questionnaires, they were instructed to remove the 

EEG. 

8. Once the EEG was removed, they were given the modified game experience 

questionnaire to fill out. When that was completed, they were given the 

demographic questionnaire to fill out.  

9. Once the questionnaires were completed, it marked the end of the experiment and 

were given whatever time they needed to gather their personal effects and ask 

questions about the experiment. 

4.2.1 Grouping 

 The Experiment was split into three groups. Although The focus group, group A, and 

group B went through the same procedure as mentioned above, the differences are outlined in 

Table 4.  
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Table 4: Experiment Group Differences 

Group Description 

Focus Group • Testing Experiment Viability 

• Bug Finding 

• Data used for algorithm testing. 

• Collecting Experiment feedback 

Group A • Control Group for Engagement score 

• Data collection for training AI for the new algorithm 

• Difficulty modification was done by only DDA based on success and 

death 

Group B • Difficulty modified by old the previous DDA and the EEG 

classification 
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5 Results 

The analysis to prove the hypothesis was done by disproving the null hypothesis. This 

was done by running a one-way ANOVA analysis on the results of the Game Experience 

Questionnaire. After running this analysis, it showed that between the two test groups, there were 

no significant statistical differences and thus the null hypothesis cannot be rejected. Table 3 

shows the ANOVA results for all seven elements it measures. The hypothesis proof was using 

the statistical results of the positive effect. 

Table 5: ANOVA test Results 

Element Result (Alpha=0.05) 

Positive effect  F(1,21) = 0.60905, p = 0.44386 

Competence F(1,21) = 0.05645, p = 0.81451 

Immersion F(1,21) = 0.39255, p = 0.53772 

Tension F(1,21) = 0.07475, p = 0.78722 

Flow F(1,21) = 1.56404, p = 0.21241 

Challenge F(1,21) = 1.27896, p = 0.27084 

Negative effect F(1,21) = 1.81655, p = 0.19209 

  

From the above table we can see that the ANOVA test on the different aspects of the In-

Game Game Experience Questionnaire wielded a non-significant result for every attribute. The 

most significant of the result being the negative aspect of the game meaning that the 

modifications the EEG was potentially making the game less enjoyable for more participants 

than the first group. Since the value was too far from the desired 0.05 value, this conclusion is 

deemed unsignificant without more testing. 
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6 Discussion 

There were numerous results and lessons-learned from this thesis experiment. These 

ranged from the accuracy of classification techniques, the final results of the experiment, and the 

challenges that were encountered. These are further expounded below.  

The experiment had finished with 23 participants (15M,8F). that was roughly 11 people 

in each group. All but two were right handed and so only the data for the right handed-

individuals was used.  

6.1 Classification Accuracy  

Classification algorithms were tested on group A’s data to check the accuracy and 

appropriateness of the processed brain signals to the relevant events. Below are the results of this 

testing along with comparisons to group B’s data after their respective runs. The first algorithm 

analyzed was the K-Nearest Neighbours (KNN).  

KNN was the first technique investigated as a possible classifier. The KNN class in the 

Scikit learn library implemented for Python has one variable that is controllable called K value. 

The performance of the algorithm was determined by testing multiple K values and recording the 

average and maximum accuracies achieved. The graphs below show that the maximum accuracy 

peaks to just under 53%. This accuracy was insufficient for use in classifying group B.  
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Figure 25: KNN Maximum Accuracy for KNN for Group A 

As noted in Section 2.9.1, another recommended classification algorithm to use was 

Support Vector Machines (SVM). The code that was used for this algorithm came from the 

Libsvm library [29]. This library is offered for many different programming languages but the 

Python version was chosen. This library was chosen for its simplicity and its ability to store its 

structure between classification easily. Two main variables were compared in the process of 

selecting a SVM classifier. These two variables were the kernel type and the cost (accuracy 

versus computational time). The underlying library’s implementation tries to find the optimal 

setting for most of the remaining variables automatically. Four different accuracy Tests were 

performed for the SVM algorithm. These tests are as follows:  

1) Apply the SVM To the Group A and testing its accuracy on a single member that is 

seperated from the rest of the group 
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Figure 26: Single max accuracy for SVM's used on Group A 

2) Train the algorithm only using Group A but separating the groups data evenly in a 70/30 

ratio between training and testing 

 

Figure 27: Accuracy of SVM using a 70/30 split on Group A data 

3) Apply the SVM to both Group A and Group B and Testing how accurate it can be to 

predict a single persons data that is not part of the training phase 
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Figure 28: Single Max accuracy using SVM on all groups' data 

4) Apply the SVM algorithm on both Group A and Group B data and separating it into a 

70/30 ratio between testing and training 

 

Figure 29: Accuracy of SVM using a 70/30 split on all groups' data 

Each chart tested the SVM at various C values ranging from 10 to 106. The testing using 

ratio differences was applied 10 times for each c value. The data was randomised between 

training and testing each time. Three different kernels were tested alongside no kernel (linear). 

The 3 kernels compared were the Radial basis function (rbf), polynomial kernel (poly), and the 

sigmoid kernel. These 3 kernels were picked since they were the 3 that were built into the libsvm 

library. 
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A trend that was observed in the graphs below was that the accuracy of the SVM’s 

regardless of the kernel type, increased as the cost value (C value) increased. Although the trend 

was important, peak accuracy for any single model is also important. Even though the SVM did 

not show a high accuracy it was still more accurate than the KNN. The first figure shows the 

average of 10 models for each of the kernel types with varying lengths of c values ranging from 

10 to 106. The data points in this first test were from group A with a random subset of data put 

aside for testing the accuracy. The ratio of the data was set to 70 training/30 testing.. The trends 

confirm that as the C value increased, a higher accuracy was achieved. The results show that 

some kernels were performing better than other with the highest on average came from the 

sigmoid kernel. 

Comparing the group A to the whole data set was done to see what more data would 

bring in when doing classification. From the results of doing such a comparison it shows that 

more data was not useful in getting a higher accuracy. One prediction for this is that SVM are 

very good at generalization and that it might of been as generalized as it needed to be without 

having more data.  This means that for a study with not as much data, this might be a good 

classifier to use. 

It can be concluded from the graphs above that the maximum accuracy of an SVM can 

vary greatly between cost values and kernel types. For this reason, it was taken into 

consideration when selecting the correct SVM layout.  

The last classification algorithm tested was Artificial Neural Networks (ANN). The ANN 

library used for this research was the Tensorflow library for Python. This library was chosen for 

its optimisations, flexibility, and simplicity. As there are extensive options available when 

constructing a Neural network using this library, only certain options were tested.  
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The first test to run with Neural networks was to test to see what depth of the network 

would do while testing the breadth of the layers. Since the pool of data was quite small for using 

this type of neural network, it was tested using different variations of the data by retraining with 

a shuffled variation. The first observation to be made is that the Neural networks were prone to 

over training. 

 

Figure 30: NN Difference in accuracy between training and testing sets 

The graph above shows that the predictions from a neural network tend to have better 

results when the neural network doesn't over-train. This would mean that the network is more 

generalized. A more generalized network is more useful as it is best at predicting data that it has 

not seen yet.  
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Figure 31: NN Difference in Accuracy between training and testing sets per depth 

The next graph shows the same dimensions of accuracy vs difference but by looking at 

the use of three different hidden layers. The use of a single hidden layer seemed to show over 

training does affect the accuracy more. The other correlation that can be seen from this graph is 

that the more layers that are used, the more the difference that can be seen. 

 

Figure 32: NN Average Accuracy per depth of layers 
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Even though the overtraining affects the accuracy, the overall average accuracy of the 

networks does increase. This means there are benefits from increasing the depth of the networks. 

When this is compared to the average, according to the width of the layers, the trends are not as 

clear.  

 

Figure 33: NN Average Accuracy for width of layer 

After running multiple tests it was decided that the results were not adequate for this 

experiment compared to the results from the SVM.  

6.2 Challenges 

There were many different hurdles that needed to be overcome throughout the research, 

design and experimenting phase of this thesis experiment. Throughout the next few sections will 

discuss some of the more major hurdles encountered and any solutions that were found if there 

were any. 
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6.2.1 Muse software 

One of the most significant problems encountered in this study was the fact that halfway 

through the experiment the Muse company ceased to support the software necessary to run the 

real time data forwarding that was necessary for this study. To get around this, it was necessary 

to download and old version manually as the company did not want to give out their software. 

Another problem encountered was the instability of their software. The software worked long 

enough for 24 participants to run through the experiment.   

6.2.2 Dirty data needed cleaning 

 A large part of this thesis was the ability work with EEG data. This led to one of the 

major challenges that was faced. If you ask any neuroscientist, they will tell you that raw data is 

not easily used without some sort of pre processing. Because of the nature of this thesis 

experiment needing the data at runtime automatically, the data also needed to be cleaned 

automatically. For this reason, many different attempts were made to come up with a method that 

could account for the noise seen in the focus group testing.  

6.2.3 Lack of participants 

 Although some papers showed a potential benefit of using videogames could increase 

participant interest, this was not reflected in the recruitment process of this experiment. When 

recruiting participants using classrooms and clubs, many individuals had shown interest. 

Although the initial presentation had stirred up many contacts, very few had followed through. 

when trying to run through some more participants, the connection software became much more 

unstable leading to participant data being dropped.  
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6.2.4 Algorithm complexity 

 When first designing the system, a fully integrated system was envisioned. But as more 

research had been done and realizing there would need of using systems that are already 

implemented, a one application system was no longer viable. For this reason, the experiment 

needed to be made up of multiple programs. This complexity opened the door for more issues 

and raised the complexity of the system dramatically. this lead to an increase in development 

time and delayed the testing between the two groups.  
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7 Conclusion 

The experiment was established to prove that using an EEG and a classifier trained on 

events, that a person's abilities to progress could be predicted and help improve the player 

experience. Two methods were used to prove this hypothesis: literature review and testing. 

Several observations were made throughout this research:  

1) Certain events can be classified with the proper techniques 

2) EEG signals need to be cleaned 

3) Frequency domain data is more suitable for this type of experiment 

4) If a more general engagement prediction system is to be developed, then multiple games 

should be used in the experimentation 

 Given the hypothesis proposed for this experiment, the conclusion is that the results are 

not statistically significant given the specific implementation. The lack of significance in the 

results could have come from many different sources. Some key sources of variance are: 

1. the classification algorithm 

2. accuracy and reliability of the EEG 

3. variance in the gameplay 

4. amount of data collected 

 A possible lack of difference between group A and group B could have stemmed the fact 

that the DDA might have over compensated for the differences that the EEG algorithms were 

making. A future recommendation would be to analyze each algorithm separately to isolate the 

modifications done and then compare them. 
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 The results of this research has shown that there are multiple fields of science that have to 

be included to be able to form a scientifically accurate result. An interesting pattern that came up 

in papers used for this thesis is that the subject matter was much better approached when the 

researches were focusing on their area of expertise. This means that a more varied team involved 

in such an experiment could potentially attain a much better result than any single individual or 

researcher can do on their own. 

 

7.1 Future Work 

One aspect that this thesis experiment can be useful is in the design of the programs and 

communication. To create a similar experiment, the design aspect shown below could be used as 

a base and built upon.  

 

Figure 34: Experiment Blueprint 

This research was used to investigate the preliminary aspects of an application using an 

EEG to improve player experience. Based on this experiment it was determined that 

improvements could be made by: 

a. Using new techniques in the brain-computer interaction field being released regularly. 

EEG Network 

Game CSV Log Files 

UDPReadout 

DataPrep 

Classification 
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b. The use of more flexible machine learning algorithms.  

c. The use of more data. 

d. The use of regression analysis instead of the more simple classification approach 

 

 Another area of this research that could be improved in future work is by using a more 

accurate EEG. Although the Muse EEG headset was very convenient to use, the limited electrode 

placement and the dry electrodes used could link to more noise than their more accurate wet 

electrode counterparts. Although more electrodes can alter a players experience with the game 

more than a more streamlined headband, a similar device with more electrodes could prove to 

have data that could be more accurate. One alternative to the EEG cap that would allow the 

participants to focus on the game more would be through the use of a brain sensing VR headset. 

Since the headset is already going on one’s head, the headset would be a potentially better device 

to collect this type of data. 

 Another area in which this research could be improved upon is in the choice of the game 

used as different people prefer different games. Another modification would be to use different 

difficulty types such as the one expressed in the V3 against the previous versions of Dunjions. 

Since this game focused more on motor difficulty in the form of combat, a future version of the 

game could focus more on sensitive or logical difficulty in the form of pathfinding or puzzles.  

Another area that could be improved upon in such an experiment is to utilize more 

participants. With more complicated classification algorithms able to adjust to more intricate 

patterns, more data is needed. From this preliminary experiment, results showed that when trying 

to apply this algorithm to small changes, it can be hard to achieve a high rate of accuracy. If this 
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technique were to be applied to a wider range of emotions and feelings with more subjective 

questions to train on, it could lead to a more flexible classifier. 

 The last area that could be improve would be in the software applications themselves. 

Currently, there are many different programs working in conjunction. A more compact design 

would be ideal for both the consumer and academic world. In this experiment four programs 

were run simultaneously to allow the EEG to connect to a video game while performing 

classification predictions to modify the game in real time. If the simultaneous running programs 

could be reduced to one or possibly two, it would be much more friendly in a commercial or lab 

setting that might not be as computer-savvy, leading to even more research in this field (i.e. 

behavior sciences, video game design, etc.).  
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9 Appendices 

9.1 Software Versions 

- Python 3.6.3 

- C # .net 4.0 

- Unity3D 2019.2.0 

- Windows 10 

- Muse Direct 0.19.1 

- Muse Lab 1.6.3 

9.2 Hardware 

- Intel i7-3770 3.4GHz 

- 8 GB RAM 

- Muse 2016 

- XBox 1 Controller 

9.3 In-game Experience Questionnaire 

Please indicate how you felt while playing the game for each of the items, on the following scale: 

Not at all Slightly Moderately Fairly Extremely 

0 1 2 3 4 

 

1) I was interested in the game’s story 

2) I felt successful 

3) I felt bored 

4) I found it impressive 

5) I forgot everything around me 

6) I felt frustrated 
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7) I found it tiresome 

8) I felt irritable 

9) I felt skillful 

10) I felt completely absorbed 

11) I felt content 

12) I felt challenged 

13) I had to put a lot of effort into it 

14) I felt good 




