
Biocybernetic Closed-loop System to

Improve Engagement in Video Games using

Electroencephalography

by

Stefan Klaassen

A thesis submitted in partial requirements for the Masters degree in

Computational Science

The Office of Graduate Studies

Laurentian University

Sudbury, Ontario, Canada

ii

Abstract

The purpose of this paper was to determine the level of engagement with a specific

stimuli while playing video games. The modern video game industry has a large and wide

audience and is therefore becoming more popular and accessible to the public. The interactions

and rewards offered in video games are a key to keep player engagement high. Understanding

the player’s brain and how it reacts to different type of stimuli would help to continue improving

games and advance the industry into a new era. Although studying human engagement had

started many years ago, the application of measuring it in video game players has only been

applied more recently and is still an evolving field of research. This thesis will be taking an

objective approach by measuring engagement through electroencephalogram (EEG) readings and

seeing if it will help improve current dynamic difficulty adjustment (DDA) systems for video

games leading to more engaging and entertaining games. Although statistically significant

findings were not found in this experiment, the technique for future experiments were laid out in

the form of classifiers comparison and program layouts.

Keywords

EEG, DDA, Video Games, Engagement, Flow, BCI, HCI, behavioral sciences, Unity, Python,

C#

Acknowledgments

Dr. Grewal, Dr. Dotta, Parents, CHIL, David Vallieres, Stephane Horne

iii

THESIS DEFENCE COMMITTEE/COMITÉ DE SOUTENANCE DE THÈSE
Laurentian Université/Université Laurentienne

Office of Graduate Studies/Bureau des études supérieures

Title of Thesis
Titre de la thèse Biocybernetic Closed-loop System to Improve Engagement in Video Games using

Electroencephalography

Name of Candidate
Nom du candidat Klaassen, Stefan

Degree
Diplôme Master of Science

Department/Program Date of Defence
Département/Programme Computational Sciences Date de la soutenance January 06, 2022

APPROVED/APPROUVÉ

Thesis Examiners/Examinateurs de thèse:

Dr. Ratvinder Grewal
(Supervisor/Directeur(trice) de thèse)

Dr. Blake Dotta
(Committee member/Membre du comité)

Dr. Kalpdrum Passi
(Committee member/Membre du comité)

Approved for the Office of Graduate Studies
Approuvé pour le Bureau des études supérieures
Tammy Eger, PhD
Vice-President Research (Office of Graduate Studies)

Dr. Aniket Mahanti Vice-rectrice à la recherche (Bureau des études supérieures)
(External Examiner/Examinateur externe) Laurentian University / Université Laurentienne

ACCESSIBILITY CLAUSE AND PERMISSION TO USE

I, Stefan Klaassen, hereby grant to Laurentian University and/or its agents the non-exclusive license to archive and make
accessible my thesis, dissertation, or project report in whole or in part in all forms of media, now or for the duration of my copyright
ownership. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also reserve the right to
use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. I further agree that permission
for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors
who supervised my thesis work or, in their absence, by the Head of the Department in which my thesis work was done. It is
understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my
written permission. It is also understood that this copy is being made available in this form by the authority of the copyright owner
solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright
laws without written authority from the copyright owner.

iv

Table of Contents

Table of Contents
Abstract ... ii

Keywords .. ii

Acknowledgments... ii

Table of Contents ... iv

List of Figures .. vi

List of Equations ... vii

List of Tables ... viii

1 Introduction .. 1

1.1 Video Games ... 1

1.2 Biofeedback .. 2

1.3 Dunjions .. 3

2 Literature Review... 6

2.1 Game Engines ... 6

2.2 Video Game Difficulty ... 7

2.2.1 Difficulty Adjustment .. 8

2.3 Brain Physiology ... 10

2.3.1 Brain Arousal ... 11

2.4 EEG ... 12

2.5 Engagement... 14

2.5.1 Flow ... 15

2.5.2 Effort and Demand ... 17

2.6 EEG Biofeedback in Video Games... 18

2.7 EEG Patterns ... 19

2.7.1 Power Analysis .. 19

2.7.2 Phase Analysis ... 20

2.7.3 Hybrid interfaces .. 22

2.8 Signal Cleaning ... 22

2.8.1 Fourier Transformation .. 22

2.8.2 Independent Component Analysis ... 23

2.9 Signal Classification ... 24

v

2.9.1 Linear Classifiers ... 25

2.9.2 Neural Network Classifiers .. 29

2.9.3 K-Nearest Neighbours ... 30

2.9.4 Combination Classifiers ... 31

3 Design .. 32

3.1 Gameplay Loop ... 32

3.1.1 Enemies .. 34

3.1.2 Dunjions V3.0 .. 35

3.2 Motivation ... 39

3.3 Similar research .. 39

3.4 External Components .. 41

3.4.1 Hardware .. 41

3.4.2 Muse ... 42

3.4.3 Questionnaire ... 44

3.4.4 The Laboratory .. 45

3.5 Software .. 45

3.5.1 Networking Protocols .. 46

3.5.2 Python .. 47

3.5.3 C# ... 54

3.5.4 Data Preparation .. 60

3.6 Ethics... 61

4 Experiment ... 62

4.1 Objectives ... 63

4.1.1 Hypothesis ... 63

4.2 Main Experiment .. 64

4.2.1 Grouping .. 66

5 Results .. 68

6 Discussion .. 69

6.1 Classification Accuracy .. 69

6.2 Challenges ... 76

6.2.1 Muse software .. 77

6.2.2 Dirty data needed cleaning... 77

6.2.3 Lack of participants ... 77

6.2.4 Algorithm complexity .. 78

vi

7 Conclusion ... 79

7.1 Future Work .. 80

8 References .. 83

9 Appendices ... 88

9.1 Software Versions ... 88

9.2 Hardware ... 88

9.3 In-game Experience Questionnaire ... 88

List of Figures

Figure 1: Example of biofeedback .. 3

Figure 2: A representation of the brain with different lobes labeled .. 10

Figure 3: An EEG cap representation ... 12

Figure 4: Muse EEG [53] .. 13

Figure 5: Graph of Flow [42] .. 16

Figure 6: Graph of effort vs demand [1] ... 18

Figure 7: Depiction of the use of an LDA .. 25

Figure 8: Depiction of an SVM [54] ... 27

Figure 9: Depiction of a Kernel [51]... 28

Figure 10: Depiction of an artificial neural network .. 29

Figure 11: Depiction of the K Nearest Neighbour algorithm [15] .. 30

Figure 12: In-game view of Dunjions of the participants side .. 32

Figure 13: Skeleton Enemy ... 34

Figure 14: Spider Enemy .. 34

Figure 15: Red Monster .. 35

https://d.docs.live.net/a89175536da3b79f/Documents/Thesis%20D1.docx#_Toc141734684
https://d.docs.live.net/a89175536da3b79f/Documents/Thesis%20D1.docx#_Toc141734685
https://d.docs.live.net/a89175536da3b79f/Documents/Thesis%20D1.docx#_Toc141734686

vii

Figure 16: Green Monster ... 35

Figure 17: The flow of data through programs used in the experiment.. 35

Figure 18: Muse 2016 ... 42

Figure 19: picture displaying two way communication of TCP [41] ... 46

Figure 20: Data Preprocessing flowchart .. 50

Figure 21: C# class file name scheme ... 54

Figure 22: Example of stats of a monster ... 56

Figure 23: Experiment progression visualisation ... 62

Figure 24: Experiment Procedure ... 65

Figure 25: KNN Maximum Accuracy for KNN for Group A .. 70

Figure 26: Single max accuracy for SVM's used on Group A .. 71

Figure 27: Accuracy of SVM using a 70/30 split on Group A data ... 71

Figure 28: Single Max accuracy using SVM on all groups' data .. 72

Figure 29: Accuracy of SVM using a 70/30 split on all groups' data ... 72

Figure 30: NN Difference in accuracy between training and testing sets 74

Figure 31: NN Difference in Accuracy between training and testing sets per depth 75

Figure 32: NN Average Accuracy per depth of layers ... 75

Figure 33: NN Average Accuracy for width of layer ... 76

Figure 34: Experiment Blueprint .. 80

List of Equations

Equation 1: Equations used to calculate engagement ... 21

Equation 2: Fast Fourier Complexity .. 23

https://d.docs.live.net/a89175536da3b79f/Documents/Thesis%20D1.docx#_Toc141734687
https://d.docs.live.net/a89175536da3b79f/Documents/Thesis%20D1.docx#_Toc141734691
https://d.docs.live.net/a89175536da3b79f/Documents/Thesis%20D1.docx#_Toc141734693
https://d.docs.live.net/a89175536da3b79f/Documents/Thesis%20D1.docx#_Toc141734695

viii

List of Tables

Table 1: Frequency Bands of brain ... 20

Table 2: Data structure of EEG packet ... 37

Table 3: Wave Composition in Dunjions v3.0.. 38

Table 4: Experiment Group Differences ... 67

Table 5: ANOVA test Results... 68

1

1 Introduction

This thesis will look at testing the usage of video games, electroencephalography, and

classification algorithms as a biocybernetic system all in conjunction to form a more positive and

engaging experience while playing a video game. The introduction will look at each of these

areas and see how they could be merged to create such a result. It will also include the author’s

motivation to create such a system, which includes two main objectives: finding a classification

algorithm that was able to work in real time on brain data, and testing to see if the game would

be more enjoyable with the help of the classification algorithm. Additionally, it will cite some

similar research experiments that helped the creation of this experiment.

1.1 Video Games

Video games have been around since 1958 when the first video game was created called

Tennis for Two [30]. Computers at this point were very large and expensive. The performance

available back then was also very limited. The computer used to make and play the first game

was analogue instead of the well known digital systems that are common today. Nowadays we

have devices that are much more powerful and relatively inexpensive [38]. Because of this, video

games have become more accessible to the public. Resultantly the videogame industry has been

growing more and more every year. The growth can be found in not only the revenue of the

video game industry [31] but also in its player base as more people are playing video games.

Games are popular not only because of their accessibility, but also because of the interaction

with the player. The interaction is a cognitive effort and results in an intrinsic feeling of reward

2

from putting such mental effort into the games’ stimuli. Because of this positive reward feeling,

some people enjoy spending their time playing games. A problem that has been published in

numerous papers and is the basis of research for many video game companies is how to increase

such intrinsic reward that is felt while playing such a game. Mihály Csíkszentmihályi has

developed a model that has been used extensively in the game design industry called “the Flow

model.” [42] What this model tries to describe is how a player is most engaged with a game

when they are in a Flow state. In the Flow model, as the author describes, the player is in the

“sweet spot” between the difficulty of the game and the player's skill level. If a game is too hard

and the player skill is too low then the player’s will get frustrated and will be taken out of their

Flow state. Similarly, on the other side of the spectrum, if the game is too easy compared to the

player’s skill, then the player will get bored. A bored player is more likely to then stop trying

[10]. More details pertaining to Flow can be found in section 2.5.1 .

1.2 Biofeedback

Biofeedback is a biocybernetic technique where the use of indirect biosignatures is fed

back into a computer. Some examples of biofeedback measuring devices are

electroencephalography, electrocardiography, electromyography, magnetoencephalography,

electrodermal activity, functional magnetic resonance imaging, electrocorticography, eye

tracking, implicit-association testing, and behavior tracking. When trying to pick what kind of

tool that should be used for an experiment, there are a few questions that must be asked, such as:

what is the cost to undertake an experiment? What areas of the brain are needed to be measured?

How fast do certain measurements need to be? How much computing power is needed or have

available? How invasive does the experiment need to be? How will the data be used? The reason

3

for this is because each biofeedback device has its pros and cons. Biofeedback devices give the

computer the ability to detect what state a user is in while they are interacting with something.

What makes biofeedback devices such a powerful support for videogames is that they are able to

make a feedback loop so the game can make modifications based on the user’s reaction to the

game.

Figure 1: Example of biofeedback

1.3 Dunjions

 The video game used for this experiment is called Dunjions. The first version (V1) was

made by David Vallieres [49], a Laurentian alumni. A second version (V2) was developed by

Stephane Horne a couple years later. The core game comes from another game called Dojies

which was a game that won first place at the Sudbury Game Design Challenge in 2016, now

called Northern Game Design Challenge. The game was made using the personal version of

Unity 3D game engine. The game has two windows displayed. The first window is for the

researcher and second is for the player. The reason for there being two windows is so that

4

information can be monitored while the game is being played. In V2 of the game, the researcher

screen was used to conduct an experiment where the researcher manually changed certain

elements of the game while it was being played. The game is primarily played using an Xbox

360 or Xbox one controller but does require the use of a mouse to start. An Xbox controller was

used because research shows that players’ preference in input device is measurable through EEG

signals [3]. By choosing a device that is widely used on both console and PC devices, there

would be a higher chance that the participants would be used to playing games with this input

device.

 The game is primarily programmed in C#. Because of this, the game can do many

complicated things without extensive programming. Some examples of things C# has allowed to

easily do is file I/O, networking, multi-thread processing, efficient memory usage, and quick

compiling.

 Dunjions is a top-down hack and slash dungeon crawler. Top-down is a term that means

that the camera is looking straight down at the player. Hack and slash is a genre of games that the

primary mode of interaction is through a sword. Dungeon crawler is another video game genre

that means that there is dungeon-like environment. The main character of the game is a knight.

The knight has two stats that are shown to the player. These two stats are health and stamina. The

health starts at 100 and once it reaches 0, the knight dies. Once the knight dies, there is a respawn

timer of five seconds that starts and once it reaches 0 the wave restarts from the beginning and

the knight starts with full health again at the center of the room. The stamina stat determines how

much damage the player can do and is used up by doing actions such as attacking and dashing.

Attacking is done by pressing the right trigger. Unless the player is controlling the direction the

knight is facing using the right analogue stick, the attack will be in the direction they are moving

5

in. The knight has two ways of moving about the environment. The first is by walking. The

character can walk in any direction on the 2D axis. This movement is achieved by using the left

analogue stick and pointing in the direction of travel. Another ability that the knight has is

another movement ability called the dash. The knight is able to get a boost in speed in the

direction of the movement analogue stick by pressing the right bumper.

6

2 Literature Review

 Given the complexity of the thesis project, many different areas of study were taken into

account. The disciplines that were reviewed range from computer science to neuroscience to

behavioral sciences. The topics that will be covered in this section will include game engines,

video game difficulty, the brain, engagement, biofeedback in video games, EEG patterns signal

processing and signal classification. All these topics will be reviewed to current research that is

conducted in their respective fields.

2.1 Game Engines

 Programs designed to help programmers make other programs have been increasingly

used by game developers. This is a method that has led to higher-level languages. One such

program that is very popular is the use of an operating system. Such a system allows

programmers to think more abstractly about what they are making and allows them to make

more complicated programs with less time or funding. Game engines are another example of

such a program. Game engines vary in complexity but their designers try to solve a common

problem: how do we make the process of creating a video game easier?

 The Unity 3D engine was used for this study. The following will explain how it has given

programmers the ability to make a game more feasible for such a study. Unity was first released

in 2005. Back then the Unity team was imagining an easy-to-use system with professional tools.

Since its official release, the team has been releasing updates constantly to improve its engine.

Nowadays, it’s a multiplatform program that has been used for a multitude of games with over a

million users around the world. The program allows users to design their game using popular

7

languages such as javascript and C#. Other tools that can be found in the engine are animation

systems, 3D rendering, VR/AR support, efficient physics/collision detection, rapid compiling

and real-time script state debugging, 3D sound, and others [43]. Another feature of game engines

and Unity in particular is the user community behind it. Whether someone is a beginner and

needs lessons, something in their code is not working properly, or there is a tool missing, there is

someone else on the Unity forums that can help. A feature that the Unity team added to enable

easier asset distribution is their own asset store where someone can either share for free or sell

their work to other developers. Therefore, whether one is a programmer, behavioral scientist or

even a mathematician, help with Unity is given to those that need assistance.

2.2 Video Game Difficulty

 Video games tend to differ from each other with respect to their complexity and structure.

Given the wide variety of video games, it can be difficult to assess what makes games easy or

hard to play. Another added complication is that the term difficulty varies from player to player.

For this reason, it is important to try to break down how to properly define what difficult means

before we can measure it. A recent paper by M. V. Aponte et al [7] investigated such a problem

and proposed a model to describe difficulty in videogames. Their definition consists of three

categories of difficulty, namely:

1) Sensitive

2) Logical

3) Motor

Sensitive difficulty according to the research team is where location-based complications occur.

Such a difficulty, as an example, would arise when trying to find something on a map. Logical

8

difficulty is said to arise when complex inferences are required by the player. This is something

that is especially applicable to puzzle games. The last, motor, is a difficulty that arises from the

interaction between time and space. An example that most games have of this type of difficulty

is the controller with which they are playing the game, where they need to perform a specific

combination of buttons or tweaks on an analogue stick while only having a short period of time

to perform it. The three difficulty categories are then applied to what is called a core challenge in

which the event is undertaken in as small a portion in time as possible. Examples from their

experiment of core challenges, using a first person shooter, was to take cover from enemy fire

and another being to aim and shoot back. These two types of challenges would be grouped

together into a composite challenge. It is important to note that when you are trying to measure a

game player's skills and abilities, they should be rated on the core challenges. Their ability to

complete composite challenges can be extrapolated from their abilities to complete core

challenges.

2.2.1 Difficulty Adjustment

There have been many different techniques used to try to deal with the game difficulty vs

player skill problem. The simplest way would be to set game parameters to fit the average

players abilities. This would be done through play testing until the desired progression across all

play testers is as even as possible or suits the majority of skill levels. Another technique used is

to have multiple settings of difficulties. An example of this would be to have an easy, medium

and hard mode for either a part of or the whole game. This way if a player has low skills they can

pick the easy setting before starting the game and not feel frustrated. A more skilled player

would get bored trying to play on the difficulty level that the average player base should have.

9

This paper uses another approach called Dynamic Difficulty Adjustment (DDA) system. What

this system tries to do is to measure how well a player is doing and to modify the difficulty level

so as to keep it balanced with the player's skill level. A DDA system can make any number of

changes depending on the game, such as the intelligence/parameters of enemies or the

complexity of puzzles. An example of intelligence of enemies would be its path finding

algorithm or dodging abilities. An example of the complexity of puzzles that could be changed

by a DDA system is in chess. A bot player could make the depth of their choice or make

mistakes every now and then to make the player feel like they are doing better or worse. Since

there are many games with many different genres, there are many aspects that can be used by

DDA systems to change a game’s difficulty. A video game that used a DDA in the form of a

“director” is the Left 4 Dead series. [55] The director would monitor a player’s accuracy,

movement, health, and other criteria to adjust several aspects of the game including zombie

spawning locations, ammo, and health packs.

10

2.3 Brain Physiology

Figure 2: A representation of the brain with different lobes labeled

The human brain, like many other organs, is very complicated. One reason for its

complexity stems from its job of processing and controlling most systems in the body. As part of

the central nervous system which contains 10 ^12 neurons [28], it is woven in intricate patterns.

The brain is a single organ but different parts of the brain typically handle different functions of

the body. For this reason it is important to know the different components to know which one is

important to the topics in this thesis. The cerebrum, or the part of the brain that is associated with

higher-level thoughts, is split into four main lobes. These lobes are the frontal lobe, temporal

lobe, parietal lobe, and the occipital lobe. According to P. Michael Conn in Neuroscience in

medicine [44], The frontal lobe has been found to be related to problem solving, emotions,

11

speech and intelligence. The temporal lobe has been measured to be related to hearing, high level

visual decoding and memory. The parietal lobe has been found to be related to senses and their

interpretations, language functions, and visual/ spatial perception. Lastly, the occipital lobe has

been shown to correlate with visual perception. These are the most relevant of the many

important functions each of these aspects of the brain is equipped to handle.

The cerebrum can be further broken down into the left and right hemispheres. There are

many functions that can be handled by either side of the brain. Although they might share the

same name each side handles things slightly differently. two such function tested in the R.E.

Wheeler study [22] are hand preference in writing and emotions. The study tested the effect of

positive and negative experiences from a stimulation and the way that it activates the frontal

cortex on either side differently. This is also known as asymmetrical activation.

2.3.1 Brain Arousal

Generally, the more a person thinks, the more their neurons are active. The important

distinction here is that the firing of neurons is not only defined in intensity but also in intensity in

certain frequency [28]. People will have a different amount of arousal levels even on the same

stimuli. Some of the more common reasons for the variance are:

- Some people put in more cognitive effort than others

- Some people are predisposed to a disorder such as epilepsy [28]

- Other research has shown that lacking in arousal or reduced arousal can be linked to

defects such as mental illnesses [27] and depression [22].

12

2.4 EEG

Figure 3: An EEG cap representation

 Electroencephalography is a biofeedback technique that has been around since 1875. It is

a technique that measures the movement of electricity through the brain by measuring voltage

potential differences, and is generally associated with measuring the electrical potential

fluctuations of neurons firing in the brain. A simple rendition of the workings of an EEG goes

like this [39]: A metallic conductor(electrode) touching the skin of one's head detects a very faint

voltage change based on the electrical energy that is moving through the neurons through a

process called volume conduction. This small voltage change is then sent through an amplifier

and measured by a voltmeter. Using this information, one can tell how active a specific area of

13

the brain is working. With the use of multiple electrodes across the scalp and the knowledge that

different areas of the brain are responsible for different aspects of human bodily functions, one

can now piece together an indistinct picture of what the brain is thinking. Blurry being an

important aspect here, as a single electrode will be picking up the electrical activity of millions,

if not more, neurons firing. The aspects of an EEG that make it easy to work with is that it is

typically non-invasive and has a high temporal resolution. In the past, a substance needed to be

applied to make a proper connection between the scalp and the electrode. This substance is

generally a conductive gel. Nowadays, with the invention of accurate dry electrodes, EEGs can

be as easy to use as putting on glasses or a hat with only a slight hit towards accuracy.

Figure 4: Muse EEG [53]

EEGs over the years have become less expensive, on average, and have become more viable in

the consumer market. According to recent papers, because of this shift, more and more brain

computer interface studies are being conducted with EEGs, with 72.5% used in 2014 [11].

Another reason expressed by Gianluca Di Flumeri et al. was that EEGs have also become more

portable [40]. With increased computational power in smaller chips due to smaller transistors and

more efficient batteries, alongside better wireless technology, portability has been a huge

improvement over older EEGs.

14

2.5 Engagement

 An important topic relevant to this thesis is the concept of keeping someone's attention on

a stimulus also understood as engagement. The definition of engagement is therefore important.

Engagement as it relates to this thesis is “emotional involvement or commitment” [48]. As it

relates to video game interactions there is no formal definition of engagement, only theories

discussed by psychologists. One such definition was developed for the FUGA project in 2006

[2]. The researchers approached it by determining the important features of video games’

subjective experiences. Their model was built on three research papers that looked at subjective

videogame experience. These three research papers are Game Flow [36], Fundamental

Components of the Gameplay Experience [35], and the Motivational Pull of Video Games [34].

The final output of this research and experimentation was that engagement is made of 10

different components. These components are competence, flow, suspense, enjoyment, sensory

immersion, imaginative immersion, control, negative effect, social connectedness, and social

negative experience. Through extensive testing, researchers were able to break down the

measurement of engagement through four different questionnaires, one of which is used for this

study. These tests are: The Game Experience Questionnaire, In-game Experience Questionnaire,

Post-game Experience Questionnaire, and Social Presence Gaming Questionnaire. The

questionnaires are a series of questions where the player rates their experience on a scale of 1 to

5 on a series of questions reflective of how it represents their subjective feeling. A version of the

In-game Experience Questionnaire can be found in appendix 8.3.

15

2.5.1 Flow

 An important part of engagement and video game design over the years is Flow Theory

first introduced by Mihály Csíkszentmihályi in 1975. The theory was conceived in an attempt to

explain why some people become so focused on a specific type of stimulus. He was specifically

interested in artists and athletes; however the theory is applicable to almost any activity,

including playing video games and education.

The theory states that a person is experiencing flow if all six of its requirements are met.

These requirements are:

1) A clear set of goals

2) Feedback relating to progress

3) Feelings of control

4) Loss of self consciousness

5) Distortion of time

6) Balance between challenge and skill

Even though there are six individual points, they do intertwine in their functions.

To attain flow, it is imperative that the goals are laid out in such a way that it is clear to a

player how to reach the end of the activity. A player may get lost or sidetracked if what they are

supposed to be doing is unclear. For this reason, it is important that the person trying to achieve

flow is given proper feedback towards reaching the goal as well. Clear goals and good feedback

on progress are controllable in the design of video games. Feeling in control of an activity may

create a feeling of loss of self consciousness. The reason for this is that if someone feels like they

are in control, their attention is on how to complete the activity instead of reflecting on their own

abilities. Distortion of time is a byproduct of flow that many people experience while in the flow

16

zone. It also has its own saying “time flies when you are having fun.” Lastly is the balance of

skill and challenge. The reason this part of flow is important for video games is because it is

possible for game designers to make games easier and harder, allowing them to adjust the

balance of skill and challenge to an engaging level. The below figure shows an example of how

one would move through these dimensions and a designer would try to keep the player in the

flow channel.

Figure 5: Graph of Flow [42]

There are two things that game designers can directly control when it comes to Flow. The

first is the goals of the game and the associated feedback in trying to complete such goals. The

other is the balance between challenge and skill. The first is relatively easy in the game design

world. Assuming the game is not too complicated, the game designer needs to ensure that the

player is aware of what they need to do and to acknowledge that they are doing something

17

productive toward the end goal. A tactic that is generally implemented to make this easier is the

use of a tutorial. This ensures that the player knows what they need to do and how to do it.

Secondly, the challenge and skill aspect of flow is more challenging because not all players have

the same abilities and therefore there is no single difficulty level that will be suitable for all

players. This thesis is specifically focusing on the latter concept.

2.5.2 Effort and Demand

Flow can be used as a definition of a simple point in time but there is another factor that

has been tested by K. C. Ewing et al. [10]. The effort vs demand connection is a task load test

where a person can keep up with the demand of a game up to a certain point. If the demand gets

too large then there is an overload and the user will stop putting in the effort required in order to

continue to play the game. Another research paper by G. Chanel at al. [18] looked at testing

classification of game difficulty using biosensor data. They concluded that they were getting a

large number of their participants classified as easy/ bored even when it was in the hardest mode

because they were simply giving up on the game. This experiment seems to support the previous

research paper by K. C. Ewing. The approach G. Chanel and his team took to overcome effort

and demand overload was to start over with the easiest difficulty when the game got too hard.

This way the participants knew that it would be a manageable difficulty and they would start

putting effort into the game again.

18

Figure 6: Graph of effort vs demand [1]

2.6 EEG Biofeedback in Video Games

EEG biofeedback devices have been used on consumer video games over at least a

decade [37]. Other common biofeedback devices are heart rate monitors and electrodermal

response sensors.

Many researchers doing biofeedback studies use more advanced feedback hardware and

techniques. Some of the more common devices include EEG, electrocardiograph (ECG), and

Galvanic skin response (GSR) [11]. A few more obscure devices that have been used are

thermometers, electrocorticography (ECoG), Magnetoencephalography (MEG), functional

magnetic resonance imaging (fMRI), accelerometers, and gyroscopes. Other techniques that are

not devices that have been used in biofeedback research are eye tracking and gesture recognition

There are two forms of biofeedback systems: active and passive. Active biofeedback is a

way of controlling the game with intention. An example of an active biofeedback device would

be to control a character’s movement with the player's mind using an EEG. Passive biofeedback

is a system where a player’s biosignatures are measured and fed into a program that modifies

19

itself without the player necessarily knowing that the game is changing. An example of a passive

system would include a program that measures heart rate and then attempts to intimidate the

players when they seem to be relaxed [45]. This technique would ensure that the player is

constantly engaged with the horror game or help them manage their anxiety.

Another aspect of video games using biofeedback is its ability to change people's

behaviour and motivation in a lab type setting. This could lead to higher recruitment numbers for

brain-computer interface (BCI) experiments [11] and give researchers a greater ability to test

specific elements of human behaviour.

2.7 EEG Patterns

 EEGs are a way of looking at the effects of a person's brain activity but cannot tell you

exactly what the person is thinking. Researchers first need to convert the voltage potentials

measured into data that is readable and understandable. From this need, there have been

techniques proposed by researchers to make sense of EEG data for measuring flow in video

game players. Two of the most popular techniques are power analysis and phase analysis [11].

Another method called hybrid interfaces is starting to be used in more recent research.

2.7.1 Power Analysis

Power analysis, or event-related potentials, is the measurement of the amplitude of the

voltage measured by EEGs in the time domain. This is generally seen as a more simple method

but does have many applications. One reason this method is used is because it is much easier for

the person being measured to control the amplitude from their own brain waves. With only

limited coaching a participant can be trained to lower their amplitude. This form of training has

20

been used in some research funded by the military to reduce stress in their soldiers [1]. Although

there are many ways of using power analysis, some of the more popular methods in video games

include P300 and steady-state visually evoked potential (SSVEP) [11].

2.7.2 Phase Analysis

Phase analysis is another approach to interpret what the brain is doing. It does this by

breaking down the signal into the frequencies that are measured by the EEG. One method to

utilize phase analysis is a technique called Fourier Transformation. This technique will be

expanded upon in the section 2.8.1. Once a signal has been broken down into its component

frequency, it is averaged into bands. The bands more commonly found in research papers are the

Alpha, Beta, Delta, Theta and Gamma bands [11].

Table 1: Frequency Bands of brain

Name of Band Band Range (Hz) [32]

Theta 4 - 7

Delta 0.5 - 3

Alpha 8 - 13

Beta 14 - 30

Gamma 31 - 50

The activity of each band and where in the brain they were measured from has been

found to have correlations to different emotional and physical processes. Some early work using

this technique was on sleeping patients where the researchers were able to tell what state of sleep

the subjects were in [46]. In more recent studies, especially ones relating to the topic of this

21

thesis, researchers looked at the application of certain bands at specific locations and how it

applies to engagement, stress and emotions [1,3,5,6,8,10,14].

Equation 1: Equations used to calculate engagement

𝐵𝑒𝑡𝑎

𝐴𝑙𝑝ℎ𝑎 + 𝑇ℎ𝑒𝑡𝑎

𝑇ℎ𝑒𝑡𝑎

𝐴𝑙𝑝ℎ𝑎

Equation 1 Equation 2

Once a signal is converted into bands, some papers [6,8,26] looked at forming equations

to try to describe the extent of a players engagement. One such equation used in various research

papers is Equation 1. Researchers would average out the oscillatory ranges of Beta, Alpha and

Theta across all EEG electrodes and then input them into Equation 1. Researchers also used the

same EEG output and input them into Equation 2 but the results showed a higher degree of noise

and lower accuracy towards predicting engagement.

Another algorithm that has been mentioned and tested in a few studies [22,23,5,14] is the

asymmetric activation of alpha band frequency of the frontal cortex. Through testing, it was

found that one alpha band frequency was more active than the other related to a positive or

negative experience. More specifically, if the right frontal lobe of the brain is less active than the

left then it relates to a negative perception of a stimulus. Other asymmetrical activation theories

have been proposed such as measuring the parieto-temporal regions of the brain [23] but none

have been tested as much as the frontal asymmetrical activation and attained as statistically

significant results.

22

2.7.3 Hybrid interfaces

 A method that has been examined by various researchers is to mix two or more systems

together, making a hybrid system [11, 47]. Hybrid systems have been shown to have some

benefits over single systems. Some of these benefits include improved accuracy and additional

control signals.

2.8 Signal Cleaning

When analysing and measuring real world data, it is often contaminated with noise and

interference. Signal processing and cleaning must often be performed on data before it can be

properly analyzed. In this section, we will look at two techniques used to clean and to prepare

data that have been utilized in many EEG experiments [5,6,10,14,19, 32]. These two techniques

are Fourier Transformation and Independent Component Analysis [17,21].

2.8.1 Fourier Transformation

An algorithm that is used quite often in signal processing is the Fourier Transformation.

This algorithm allows users to break down a modulating signal into its component frequencies.

More specifically it breaks it down into the sinusoidal frequencies. Fourier Transformation

functions by mapping a signal over time into its frequency representation. The equation for the

finite discrete Fourier Transformation is:

23

Equation 2: Fast Fourier Complexity

𝑋𝑘 = ∑ 𝑥𝑛 ∗ 𝑒
−𝑖2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

𝑋𝑘 =The frequency domain

𝑥𝑛 =The signal

 The problem with the above noted Fourier Transform algorithm is that it is slow to

compute with a complexity of 𝑂(𝑛2). When significant amounts of real time signal processing

need to be done, computational speeds must keep up with the incoming data. The Fast Fourier

Transform (FFT) is an improvement over the traditional Fourier Transform by having a

complexity of 𝑂(𝑛𝑙𝑜𝑔𝑛). The drawback of the FFT algorithm is that the signal needs to be

processed with an array size containing a number of elements relating to the powers of 2. The

equation for the FFT is the same as the regular Fourier Transformation but it overlaps the

calculations to reduce redundancy.

2.8.2 Independent Component Analysis

A noise detection and extraction algorithm is the independent component analysis

algorithm (ICA). It is a method of doing blind source separation and has been used to find noise

patterns in data. One such pattern that has been found to work well with ICA is noise picked up

by an EEG when the eye muscles blink [21]. Such patterns can compromise data and what ICA

allows researchers to do is to isolate and then remove the noise while still keeping the underlying

and useful data generated by the brain. The algorithm maximises the distance between the

24

potential components based on how many dimensions/sources there are. In the case of EEGs, the

input data would be each electrode around the scalp. The output would be components that create

the largest difference across each signal. An example of its application can be explained by

means of the cocktail party scenario. The starting point of this scenario is having multiple people

speaking and microphones in a room at the same time. The algorithm is then able to isolate the

voices of specific people based on their unique voice frequencies and intensities received by the

microphones. The ICA algorithm is able to distinguish most of the voices of each of the people

who were talking, assuming there were as many people talking as there were microphones.

A paper by T. Jung et al. [21] notes that the ICA algorithm should only be used if there is

a limited amount of data. If there is a surplus of data that can be used in the EEG research, one

should discard the distorted data.

2.9 Signal Classification

The output coming from the processed EEG data can sometimes be obvious enough to be

read with human eyes. If games are using EEG data, the games must be able to classify the brain

patterns independent of a human observer. Classification in this case means that the game needs

to be able to use the data that is derived from the EEG and make the necessary changes in a

timely manner without interrupting gameplay. Another term that is used to describe classifiers is

machine learning. Machine learning means that the algorithm finds patterns automatically and

without a programmer describing the rules. One requirement of machine learning algorithms is

that the computer requires data to decern the patterns through a process called training.

25

2.9.1 Linear Classifiers

Linear Classifiers function by interpolating the data in all dimensions by a linear function

and classifying it accordingly. Two forms of linear functions are Linear Discriminant Analysis

(LDA) and Support Vector Machines (SVM). A technique that augments linear classifiers is

called kernels.

Linear discriminant analysis

Figure 7: Depiction of the use of an LDA

 LDA functions by doing data reduction which gets a projection of the data and then

separates it with a hyperplane. Figure 7 shows an example where data reduction was made by a

LDA algorithm and can create a line to separate the data on the x axis. It functions by

26

dimensional reduction by only using the important dimensions that will help classify data, and

separating data accordingly. This technique is used for several reasons; It is simple, if the data

you are trying to separate is obvious in its distributions it gives an easy way to classify it, and it

requires relatively low amounts of computational power. For the sake of this study, it was not a

viable option since the data was not as obviously clustered.

Support-Vector Machine

Support Vector Machines (SVM) is a tool that have been used in both binary classifiers

and Regression Analysis. SVMs work by creating a hyperplane between two or more classes.

The hyperplane is positioned in such a way to maximize the margin between the datapoints. An

example of this is if you were trying to classify two different types of fruit based on their weight

and diameter. This would be considered 2-dimensional data. The SVM would create a line

separating the groups of fruits. Depending on what side of the line(hyperplane), we can classify

it as one of the types of fruits. This can be used for as many dimensions as needed. The SVM

also has some helpful techniques that make it more powerful such as kernel’s which are

discussed in the next section.

27

Figure 8: Depiction of an SVM [54]

SVMs are a good option for BCI classification because they are good for generalization

[15]. Generalization means that the algorithm does not suffer as much from over training and is

therefore quite stable. As more data is added, the output of a training process should not change

too much unless the data contains drastic outliers.

In a study that reviewed different classification algorithms [15], kernelized SVM had

some of the highest accuracy for synchronous experiments. Some speculation as to why this is

when compared to more complicated algorithms is that it is less sensitive to outliers, its

28

robustness to curse of dimensionality, and its ability to regularize make it less affected by the

often-noisy BCI data.

Kernels

Figure 9: Depiction of a Kernel [51]

Kernels map data from their original form to another form. There are many kernels used

to transform data but they all work on the same principle by having a known conversion

equation. Conversion equations should be reversible. One way this can be attained is by adding

another dimension and making the value of the new dimension a combination of its other

dimensions. This would be interpreted as a linear kernel. As shown in Figure 10 another kernel

that is popular for SVMS is the radial basis function (RBF) also known as a Gaussian Kernel.

This method creates a highest point from which all other values are measured from using inverse

euclidean distance. The distance can then be made non linear if needed. Therefore, the closer a

point is to the highest points, the larger the calculated kernel value.

29

2.9.2 Neural Network Classifiers

Figure 10: Depiction of an artificial neural network

Neural Networks are typically defined as the numerical representation of neurons in the

brain. The “neurons” are generally placed into layers where all of the neurons from one layer

have a connection to the next layer. This is shown in Figure 11. Each calculation is normally

done layer by layer. Each neuron represents a value that is first multiplied by a weight and then

added to its connecting neurons. After all the values are summed, a bias is added. The last

calculation that is normally done after one layer is defined as an activation function. If there is

more than one hidden layer then a neural network can be considered a deep network. If the

output of a layer feeds back to itself or to a previous layer then it can be considered a recurrent

Neural Network. One of many learning algorithm for supervised neural networks is called back

propagation. It functions by finding the output of a network and then finding the distance also

called loss value to a desired output which then provides the direction to modify the weights and

30

biases of each layer. The modifications of the weights and biases done by back propagation then

leads to a lower loss value.

2.9.3 K-Nearest Neighbours

Figure 11: Depiction of the K Nearest Neighbour algorithm [15]

One of the simpler classification algorithms is the K-nearest neighbours. This algorithm

works by having points in data space which describes a specific class. Then using a distance

function, the algorithm can then determine which class a data point belongs to by looking at

which class point it is closest to. The class allocation of the class points are determined by the

nearest k points in the training phase. This is shown in Figure 12. A potential distance function

would be Euclidean distance which is also known as the second norm. This algorithm is

31

attractive because it is simple but does have some drawbacks. One problem is that it is hindered

by high dimensionality which is often accompanied by BCI data. To get a more flexible system,

multiple points can be used for each class.

2.9.4 Combination Classifiers

 The most popular approach in BCI research up until now has been to use a single

classification algorithm. More recently there have been some strategies that have included the

use of multiple classifiers to solve a single problem [15]. There are three types of combinatorial

techniques that can be used: Boosting, Voting and Stacking.

- Boosting is the technique where the classifiers are in cascading order. If the previous

algorithm misclassified the data, the next algorithms can possibly correct the error.

- Voting is the simpler of the combinatorial techniques. It works by each algorithm doing

their own classifying and the class with the most predictions is the one that is used.

- Stacking is the application of feeding one classifier directly into the next one. It can be as

wide or tall as necessary. Research has shown that it reduces variance and thus

classification error.

32

3 Design

 To properly take an objective look at measuring engagement through the use of an EEG

while playing video games requires many different design choices. This section will layout the

process of designing an experiment with the different components including: setup, equipment,

software, and ethics. This section will also cover some complications that had been encountered

in the design phase. The primary concept for the thesis experiment was to use a pre-existing

video game that was modifiable and had the ability to measure engagement with an EEG. In the

following section the game Dunjions will be detailed with an explanation of modifications and

tools that were made specifically for the thesis experiment.

3.1 Gameplay Loop

Figure 12: In-game view of Dunjions of the participants side

33

The first step to design modification to a game was to understand what was currently

there. This section will go into more detail what was described in the introduction.

A player’s experience when playing Dunjions involved planning and hand eye

coordination. The game required the following interactions:

- Movement

- Attacking

- Assessing the knights state

- Healing

The first interaction was to move around the map to find enemies and dodge their attacks.

This required spatial reasoning by the player. The next interaction required the player to attack

the monsters. This required that the player first recognizes the monsters and swings at the

appropriate time. The player will also have to take into account their stamina as if they just swing

endlessly, they will not be able to dodge properly and it will take much longer to kill the

monster, making the interaction more dangerous. The last interaction required by the player is

picking up health. The health pickups is in the shape of a heart and just require the players to

walk over it to restore their health.

 As the player is playing, the game is continuously recording multiple elements of the

game. Key elements are; damage taken by each different monster type, amount of enemies

remaining, and how much health and stamina the player has. If the player's health reaches zero,

the DDA makes the game easier and if the player eliminates a wave of enemies, the game is

made more difficult. The manner by which the game is currently made harder or easier is by

changing the modifiers of the enemies. The four main modifiers are output damage, attack speed,

health, and movement speed. The amount by which the modifiers change when the player's

34

health reaches zero depends on how many times in a row it has happened. It also changes the

difficulty based on the progression through the level. The progression is calculated by how many

monsters are spawned compared to how many were killed. The monster that did the most

damage is also modified to be easier to defeat in the event of a death. Modifications are also

made after beating a wave. This type of modification uses information on how many waves were

beaten since the last death and how much health the player has left.

3.1.1 Enemies

Each enemy in Dunjions had their own unique behavior. Behavior differences included

movement, attack, and line of sight. This section will outline each unique behavior that the

enemies possess.

 The skeleton is the first monster that the players would encounter. Its behavior is that it

walks around in straight lines and reflects off any walls it runs into. As soon as the player is in

front of the skeleton, it starts homing on the player. If the skeleton collides with the player it

takes a swing and damages the player. Once it attacks, the skeleton turns around

and starts walking away. If the player attacks the skeleton from behind, it turns

around and starts chasing them until they attack or the player escapes.

 The spider is a non-damaging entity. Its behavior has it zooming around

the map. If the player is in line of sight. It tries to run in front of the player. While

it is in close proximity to the player, it drops an area of effect spider web that

slows down the player. The spider can have up to two spider webs dropped at one

time. The spider web disappears after 5 seconds. Only the player entity is affected

by the spider web.

Figure 13:

Skeleton

Enemy

Figure 14:

Spider Enemy

35

 The red monster is an enemy that is mostly immobile. It has the ability to throw a single

homing fireball towards the player at which point it is on a cooldown timer. If the player

manages to damage the monster, the fireball cooldown is reset, and the

monster can instantly attack again. This means that it can attack just as fast

as the player attacks. The red monster only attacks once there is a direct line

of sight to the player.

 The last enemy in the game is the green monster. Like the red

monster, it is mostly immobile. Its behavior is more focused on

attacks. It has a large amount of health and a long cool down for its

attack which is not reset when damaged. Unlike the red monster, it

shoots 5 large fireballs towards the player in quick succession which

can inflict a significant amount of damage.

3.1.2 Dunjions V3.0

Figure 17: The flow of data through programs used in the experiment

 Before this thesis experiment was created, there were two other versions. The first

version looked at the effectiveness of a DDA in completion time and the second experiment

Muse Direct Muse Lab

Donjions CSV Log Files

UDPReadout

DataPrep

Classification

Figure 15: Red

Monster

Figure 16: Green

Monster

36

looked at comparing the effectiveness of this DDA to a human making changes to the game. The

thesis experiment required the Dunjions game as originally developed by David Vallieres to be

modified to add the desired feature of EEG integration and a new type of arena combat. The

EEG integration required the system to have network communication capabilities.

 The EEG device used for this experiment was the wireless Muse 2016 model. This EEG

headband was chosen for this experiment for many reasons.

1) The first reason was that it uses dry electrodes which meant that the EEG will be much

cleaner to use and less costly because conductive gel was not required.

2) The second reason for this device to be selected was because it was one of the least

expensive consumer products to have multiple electrodes on the market at the start of this

experiment.

3) The third reason was for its easy-to-use software to streamline the communication for PC

integration. The two software used in this thesis experiment (Muse Direct, Muse Lab)

will be detailed in a later section under Muse. The Muse API for Unity was designed for

use with a cell phone so its built in interface was not available to use for this project.

4) Another reason that the Muse EEG was chosen was because it fit easily on the forehead

like a pair of glasses. The quick fitting accompanied with the software quickly relaying

proper electrode contact meant that it was easy and fast to fit onto participants.

5) Another reason that the Muse EEG was selected was that it has built in pre processed data

capabilities for data that is sent through the bluetooth connection.

6) Lastly an important feature was its wireless capability which meant that it would be easy

to connect to the computer without having wires to get in the way of the participants.

37

 Modifications to the back end scripts were made to the Dunjions game to allow it to

process the UDP packets sent from the Muse Lab software. The first challenge that needed to be

addressed was that the data was coming in at roughly 256 packets per second for the raw EEG

data. Since the game ran at 60 frames per second, there needed to be a way to read the data

separately. This was solved by creating a separate thread for the EEG data that ran alongside the

game. The intercepted data was then processed.

The first step in the processing pipeline was to separate the tags from the data. The tags held the

information involving:

1) The user

2) Name of the data

3) Datatype / how many data points.

4) The data in binary

Table 2: Data structure of EEG packet

User/RawData, ddd ###

Example: User RawData ddd ###

Description: User Name

defined by the

Muse software

since multiple

EEG’s are able to

connect to the

same computer

Name of the data

that is to follow.

This will say if its

raw voltage,

battery Percent,

accelerometer,

ect.

Can be either I or d.

I stands for integer

and d for double.

The amount of each

of the letters tells

how many digits

follow

The data stored in little-

endian ordering. The length

is determined by the

previous letters and count

(it is not to be represented

by the literal ascii text

above)

Once the tag was separated from the data, the data was formatted from byte form to a smaller

array of the desired data type. Two processes needed to be done to achieve the formatting

requirements. The first process was grouping the bytes. The second process was to change the

endianness of the data. The next step was to store the data to be used by the game in short term

memory and also to be outputted to a file. The storage technique used in the thesis experiment

38

was a mixture of dictionaries and arraylists. The dictionary made it easy to separate the types of

data for later reference; the arraylists were ideal for storing an unknown length of data, especially

when only a small amount of the data is referenced at any one time. Since the most recent data

was referenced more often the arraylist was found to be an efficient way to store and use data.

Arraylist was also selected to avoid race conditions as shallow copies of the region of data could

be referenced and processed by the main thread while the network thread could keep storing the

data without needing a lock whenever it received the data from the network.

 Another feature that was added to the game for this thesis experiment was an arena style

combat area. The arena combat feature was added to version 3 of the thesis experiment for two

reasons. The most important reason was that it was much easier to isolate the type of difficulty

the player was subjected to. There are three types of difficulties found in video games [7]

(Sensitive, Logical, Motor) as discussed in section 2.2. By isolating a specific difficulty, it was

determined that participants would be subjected to similar game experiences and have to

overcome the same difficulties. In the case of this thesis experiment, the main difficulty that was

chosen was motor. Sensitive and logical difficulties were still present but not as dominant as in

versions 1 and 2 of Dunjions.

 Each wave was made to be progressively harder with different enemy variations. The

composition for each wave is shown in Table 3.

Table 3: Wave Composition in Dunjions v3.0

Wave Enemies Wave Enemies

1 Skeleton: 5 7 Skeleton: 15

Spider: 2

Red monster: 3

2 Skeleton: 7

Spider:1

8 Spider: 2

Green monster: 1

3 Spider:1

Red monster:2

9 Skeleton: 5

Spider: 1

39

Green monster: 1

4 Skeleton: 10

Spider:1

Red monster:1

10 Skeleton: 10

Spider: 1

Red Monster: 2

Green monster: 1

5 Skeleton: 15

Spider: 2

Red monster: 2

11 Skeleton: 15

Spider: 2

Red Monster: 2

Green monster: 2

6 Spider: 2

Red monster: 4

3.2 Motivation

 It has been a goal for many different areas of behaviour related sciences to understand the

brain and how it reacts to certain types of stimuli. Typically, researchers approach this problem

by measuring behaviour through the use of questionnaires or the effects of a person's reactions

such as body language. Questionnaires and visual observations are and have been invaluable

methods that researchers have used to understand a persons behaviour. More recently, with more

powerful hardware becoming less expensive and new data processing techniques becoming

available, a wider range of researchers are now able to easily test and analyze how the brain

reacts to outside stimuli.

3.3 Similar research

 The starting point for this experiment was research derived from David Vallieres

experiment [49] testing the use of a DDA algorithm in a video game. The revised experiment

focused on a different area of research using EEGs to predict engagement levels to elevate the

40

abilities of the DDA. Three different papers were invaluable to the idea leading up to the creation

of this experiment.

The first paper that influenced this experiment was an experiment undertaken by G.

Chanel et al [18] where they applied an SVM classifier onto biofeedback measurements while

playing a game of tetris to try to determine if the player was engaged. They tried to classify if a

player was either playing in an easy, medium or hard mode and linking that to boredom,

engagement or anxiety respectfully. By feeding their result into an SVM, they reached an

accuracy of 53% without the use of an EEG. In a followup paper [50], the researchers used the

EEG in addition to all the other biofeedback measurements and saw an increase in accuracy to

63%.

The second paper that influenced this research project was by M. Salminen et al [5] . The

reason why this paper influenced this research was because they utilized oscillatory EEG signals

to classify specific events in the videogame Super Monkey Ball 2. The events they were trying to

classify were rated as either good or bad. For example, picking up collectables was considered

good and falling off the map was bad. The method in which they classified the good and bad

events was by comparing the activation of certain areas around the brain. Because of this

research specific event prediction was used in the thesis experiment.

The third most important influence which is a larger set of experiments was The Fun of

Gaming (FUGA) initiative [4]. This was a government backed project that had the goal to create

and improve methods to measure different dimensions of video game experience. The papers that

came out of this study which showed that numerous researchers were working on similar

projects. The tools and techniques that were derived from this initiative gave ways to handle

problems that occurred throughout the design and application of the thesis experiment.

41

3.4 External Components

Due to the nature of this experiment, specialized hardware and examination tools were

necessary. This section will look at the components that were acquired for this study. Four main

components were used for this study:

1) Computer

2) Muse EEG

3) Questionnaire

4) The Testing Lab

3.4.1 Hardware

For the thesis experiment, the following computer system components were used; a windows

based desktop computer with a minimum of 8 GB of Ram with 4 physical CPU cores and

Bluetooth connections with 2 monitors and 1 Xbox controller as peripherals.

The specifications for the computer and its software can be found in the Appendix 8.2. The most

important aspect of the computer was that it was able to handle the computation requirements of

the software and the associated algorithms.

42

3.4.2 Muse

Figure 18: Muse 2016

 The EEG device used for this thesis experiment was the Muse 2016. This model is sold

by the InteraXon company and primarily targets the meditation consumer market. The device is

able to collect raw data at a rate of 256 Hz. This allows it to be used to find the frequencies

generated by the neurons which are typically around 0.5Hz to 60Hz. The Muse EEG runs

wirelessly using the bluetooth 4.0 hardware with a 128 bit Advanced Encryption Standard (AES)

encryption with data integrity checks. The battery in the device has the ability to last up to five

hours between charges. The devices have been used in numerous other studies, some which

required ethics approvals and passed safety standards for consumer use by the Federal

Communications Commission (FCC), CE, and TÜV SÜD. The electrode placement on the scalp

43

is based on the international 10-20 system and measures the F7, F8, T9, and T10 channels. Other

measurements it can transmit are accelerometer data at 52Hz, battery level at 10Hz, gyroscope at

52Hz, and alpha, beta, theta, delta and gamma waves.

 At the start of the thesis experiment the Muse company had two free programs for

research purposes using computers. The two software offered were Muse Direct and Muse Lab.

Currently, both software’s are no longer supported and require special permission to use [33].

Although there is no more support for the computer software, there is ongoing support for their

subscription-based application for iOS devices.

Muse Direct is a software that reads the data being sent via Bluetooth. This software has

different options on what to do with the data. It gives the researcher the ability to select how the

data is formatted, and what port and protocol to send it over the network. It also allows the user

to save the streaming of the data to a file. The problem with data in this file is that there is a lot

of information stored, much of which is not needed in this thesis experiment. Some examples of

the data that is unnecessary is who the data is coming from, and the type of data on every line.

This means that the files are much larger. An added advantage for some researchers is that the

software allows the connection of multiple devices to be routed through this software. For the

thesis experiment only one device was used, so the stability of having multiple devices was not

tested.

 Muse Lab is a program that allows users to visualise the data that comes in from the

Muse Direct software. The program is java-based and allows the user to read the data sent from

Muse Direct and specify which pieces are then sent out back to the network. Once the data is

received, the software has the ability to record the information. The visualisation side of the

program lets you control the speed that you see of the incoming data, the frequency of the

44

incoming data, and graph the data in the form of a stationary or a scrolling line. The program

also allows the user to select which data goes out to the network. For the thesis experiment data

was sent across two ports which allowed the subsequent programs to process the information

they needed. Another option of this software that was not tested is the ability to set markers in

the data for specific events. Because this requires manual use, this option was not used. A Muse

Direct tool that was used for the thesis experiment was the ability to save and load all the settings

applied for a specific connection including all output data. This helped ensure that all trials were

as similar as possible.

3.4.3 Questionnaire

The questionnaire that was the basis for the thesis experiment was based on the “Game

Experience Questionnaire” [2]. This questionnaire has 33 questions and was designed to measure

seven different parts of interaction namely competence, immersion, tension, challenge, negative

effect, and positive effect. A shortened version of the “Game Experience Questionnaire” that was

used for the thesis experiment is called the “In-game Experience Questionnaire” and it consists

of 14 questions. The response of the questions are marked on a scale between 0 and 4. For each

of the seven parts of the game experience there are two questions. The final score is then the

mean between the two scores. There are also extra questions in the case that the translation from

its original form in Dutch is inadequate but in the thesis experiment, they were not used. The

version of the questions used in this experiment can be found in section 8.3. The reason for using

this questionnaire is because it has undergone reliability tests and resulted in satisfactory to high

internal consistency. They found it was sensitive enough to pick up differences from gamers,

game types, play characteristics, and social context of play.

45

A second questionnaire was also given at the end of the session to each participant to

collect demographic information. This contained information about their age, sex and some

information that was determined to be important for the EEG signal classification, such as which

hand do they consider the dominant and if they were affected by colour blindness. Lastly, the

participants were asked for information pertaining to their experience with video games, such as

how often they played games in an average week and how many platforms/consoles they used

when playing games. This information was found to be useful in previous game experiments.

The previous experiments determined that there were differences in classification results from

two main types of players: the hardcore players and the casual players.

3.4.4 The Laboratory

 The experiment required the use of a Laboratory to run the tests in a controlled

environment. Because of this need the CHIL lab was used as the room to run the tests in. It was

used since it is a smaller white room about 3meters by 2 meters. The walls are all white except a

one way window on the one side of the room. The window is there incase an experiment needed

to be monitored without bothering the participant. In this thesis experiment, the participant and

the experimenter were in the same room.

3.5 Software

 The result of the thesis experiment was dependent on different software and programs

working in conjunction. This section covers the networking protocols and the programs that were

part of the thesis experiment. Software coded specifically for this thesis experiment will be

explained in detail. The two main languages used were Python and C#.

46

3.5.1 Networking Protocols

 Well designed network communication becomes vital when rapid communication is

needed between programs and platforms. As this thesis experiment required numerous programs

and interfaces to communicate together, internet protocols on the transport layer were needed to

be taken into consideration in the design. Two main protocols that are typically used for

transmission of messages are Transmission Control Protocol (TCP) and User Datagram Protocol

(UDP) [41]. Each protocol advantages and disadvantages are discussed below.

Transmission Control Protocol

 TCP is able to handle safe and reliable connections across the internet. The manner in

which it handles this is by having a two way connection between the two different hosts.

Figure 19: picture displaying two way communication of TCP [41]

The communication between the two hosts consists of a package sent to a destination host

and the destination host acknowledging that they received the package. TCP also ensures that

there was no corruption of the message and that if there are many messages to be sent, that they

are received in the proper order. Although there are many advantages of using TCP, there are

two key disadvantages, those being:

47

1) Large load: When there is a lot of small data being passed, the bandwidth is filled with

more data since communication needs to be passed in both direction

2) Longer delays: although the delays cause by tcp are usually very small, they do add up

when a lot of data is being communicated. Some systems will wait before they receive

the acknowledgment that the data was received before sending more data. If there is ever

packet loss, this can back up communication quite a bit.

 For the majority of applications TCP is adequate because the servers only have to handle

a few packets per user or the delays are negligible or imperceptible.

User Datagram Protocol

 UDP is known to be simple and fast. UDP packets contain a source, destination, message

length, checksum and a message. When data integrity is needed UDP may not be the best

protocol to use since packets are often dropped or lost due to networks being imperfect. For this

thesis experiment, on the other hand, all communication was done on the same hardware so the

packets went almost directly from one program to another with very little chance of packet loss

or disorder. For the thesis experiment UDP was selected over TCP because of the time sensitivity

of the data. By using the quickest protocol the throughput needs of the data communication was

satisfied.

3.5.2 Python

 Python is an interpreted programming language that is widely used throughout the

scientific community. The language is interpreted at runtime. For this thesis experiment a Python

program had been made to run alongside the game. The reason that python was selected was for

its large amount of optimised libraries and its ease of use.

48

The python programs were primarily focused on the data side of the experiment. This

means that it was used for:

1) Recording data

2) Preprocessing data

3) Training ML models

4) Running classification algorithms

The 1st and 4th uses were done alongside the game and the 2nd and 3rd were used seperatly.

To be able to work with the video game side, it was loaded with a rudimentary RPC (Remote

Procedure Call) capabilities. The RPC side of the python program was to give the Video game

the ability to trigger events to do certain things. These events included:

1) When the game started

2) When baselines were taken

3) When predictions were needed

4) When the game ended

Each event was chosen because of a specific need. The game staring was important because it

told the python program to start logging the all the data coming in. The baselines were there so

that the later algorithm that needed to normalise the data to each participant’s brain activation

levels was able to collect the clean data. The prediction call event was needed for the inference to

be made on the game’s behalf. The output of this call would allow the game to make

modifications. The game ending was so that the python code would not continue unnecessarily.

49

Recording the data

The program required access to the incoming data and any other information that could

be important to the classification process. For the purpose of this thesis, there were five different

files that were recorded for each participant. These files included:

1) Eyeblink

2) Raw EEG

3) Notched EEG

4) Event Log file

5) Stats file

An eyeblink file, which would hold the information of when the EEG predicted when the

players were blinking was recorded at a 10Hz interval using the headband’s communication. The

second file would hold the raw EEG data coming from all four electrodes. As this data tended to

be noisy, it was later ignored for use with analytics. The next file contained the notch-filtered

EEG data. This data was cleaned to remove any signals between 45 and 60Hz. The fourth file

recorded was the log file. This file held information pertaining to important events that happened

in the game, such as if the player was killed or reached a checkpoint. Other important events

contained in the log file were; when the baselines were taken, if the player picked up health, and

when there was a change in scenes. The last of the files recorded is the stats file. This file

contained the changes in the states of the player throughout their gameplay. Every time it

changed it would log the stats for the enemies.

50

Data preprocessing

The second step involved making the predictive model using SVMs. This process was

done by first initializing necessary methods and variables:

1) The first variable was to be able to map ranges of frequency with their

names. These were the Alpha, Beta, Delta, Theta, and Gamma.

2) Define a method to be able to open comma separated values (CSV) files

and to transpose them. This would allow the use of external file storage

for holding the player data.

3) Define a method to do a time to data conversion. This would allow users

to convert microseconds to a specific record from the EEG data.

4) Define a method to remove large fluctuations in the data. The method

would search for any data that was outside the third standard deviation

of the average in either direction. Such events would happen when the

player would move their hand near the EEG with or if excessive

blinking were to occur.

5) Create a method that would allow a Fast Fourier Transform to be applied

to large amounts of data all at once. This was done using a library called

Tensorflow as its signal processing package used a method to process

data packets called short-time Fourier Transform (STFT). Even though

Fourier Transformations convert time series data into frequency data,

Tensorflow gives the ability for frequency data to be seen across time in

an efficient manner.

1) Frequency to Name
table

2) CSV Reader

3) Time to Data

4) Rough Cleaning
Method

5) Fast Fourier
Transform Model

6) Fast Fourier Model
Usage

7) Baseline Extraction
Method

8) simple noise
removing Method

9) Event Data
Agregation Method

10) Baseline information
extraction method

Figure 20: Data

Preprocessing flowchart

51

6) Once the model was programmed, a method to run the model with specific data was

made.

7) A method was then created for extracting the baselines from a set of data

8) A method for cleaning the data using independent component analysis was then made.

This method would look specifically for markers such as eye blinks but could potentially

be used to look for and clean other noise.

9) The next method that needed to be programmed was to group processed data together by

events to then be fed into a classifier. The two events that were used to group the data for

this thesis experiment were deaths and checkpoints. This method would take 30-second

increments between the previous event and time of the current event. It would then

average the frequencies in each increment into the bands of interest; in this study it was

alpha, beta and theta. After that it would flatten the two-dimensional array into one

dimension and store it into the output array while also retaining the information on the

participant it came from and the event it was associated with.

10) The last method needed was to determine the average intensity and the standard deviation

of the EEG data based on the baselines.

11) Once all these methods have been initialised, the main program is run. The main program

processed the participants files by opening up their EEG data and log file. It would then

loop through the log file and store the appropriate log data in separate arrays. For

example baselines for eyes open, closed, and if there was a death or checkpoint that

occurred. Next it would run the event extraction method and append all the different

participants’ data together and store it into a NumPy array ready to be used in the

classification program section.

52

Data classification

After all the data is processed and is all in one file it is then used in the classification

process. Following are some important methods used in the classification process:

1) Visualisation of class distribution. For example it is good to know how many data

samples relate to deaths vs checkpoints

2) Data siplification methods. It can be easy to train any model to have a bias. For this

reason a method to balance class distribution is helpful so make sure that the model does

not just train to predict one class because there are more data points available. For

example there are more deaths related datapoints so being able to drop some of these

points so there is a 50/50 balance between chackpoints and deaths is very useful

3) Participant bias removal. When training a model, it is useful to train on different

participants then you are testing on. Because of this, having a method to extract a specific

person from the dataset and run a test on them seperatly is useful.

4) Next is the process of separating the data into testing and training data. This looks to see

if the trained network is generalised enough to be used on new data. The ratio used for

this experiment is a 70% training to 30% testing. Since the desired choice of classifier is

a Support Vector Machine (SVM) the LIBSVM library is used for this next part. This

library allows the use of a fine tuning argument “c value”. This allows control over how

large the support vector is to be and also what sort of misclassification is allowed. By

testing a handful of values, the best value can be chosen. A scoring system was made on

the results to be able to automatically find the best network. The scoring system is

obtained by finding the difference between the testing and the training set accuracy, then

dividing it by two and raised to the power of two then subtracted to the accuracy of the

53

testing set. Therefore, the most general and most accurate results are preferable but still

allow a little variation between the testing and training sets.

Game Processing

The last step is to have the communication open between the game and making a

prediction. This is done with the third and final program. Many of the same methods from the

cleaning and data preparation script are used, such as the cleaning method using the ICA

algorithm, large noise data removal, baseline extraction, the tensorflow Short-time Fourier

Transform (STFT) model and method, and a modified version of the event extraction. The

modification comes from only having to create one data sample from the data that is read from

the Muse software instead of reading it from the output of the CSV files. After all those methods

are set up, it is only a matter of opening up the program to networking communication. This is

first done by opening up some sockets to listen and send UDP datagrams through and initialising

some variables to hold data. Some of the variables that are being initialized is an array to hold all

the EEG data incoming. It is set to an initial size of 1,000,000, which gives roughly 65 minutes

of data storage. This can be modified if more data is expected. Other variables include timing

information for baselines and how many records are currently being stored. The last important

variable is the SVM model that was determined from the previous program. Once all those

variables have been initialized, an infinite loop is started and the program starts to listen. It must

decode the incoming signals if: the incoming data relates to a game event, it will have the

keyword game at the beginning; if not, it contains data pertaining to the EEG.

54

3.5.3 C#

 The Dunjions game was almost exclusively written in C#. There have been 70 separate

class files written for this game. The more important scripts relevant to the thesis experiment will

be covered in this section. The game’s programming has a hierarchical structure that allows

information to be handled more through the scripts and less through the manual manipulation

through the engine. The most important script is GlobalVar. There are other scripts that handle

the stats, enemy logic, heads-up display (HUD) elements, network data managers, and the

outputting of data to files.

Global Var

The GlobalVar script was a critical addition to the thesis experiment game as it allowed

important class files that are dynamically allocated to be accessed in an efficient manner. It did

this by having static references to the important variables.

Figure 21: C# class file name scheme

GlobalVar Class

GlobalVar

Settings

StatsManager

Logger

KnightArena

EEG

55

 These static class variables are the settings, the stats manager, the logger, the player and

the networking EEG data handler.

 The settings variable is used to hold three different variables: file location, volume levels,

and port number. File location is used to determine where the log files and the EEG data dumps

are to be stored. Volume level is used to control the intensity of the sound. The port number is

used to store the port number that is used to listen for the EEG data. It is also done through the

engine’s Playerprefs class, which allows the settings to be stored between sessions if needed.

 The stats manager is an integral class that handles storing, initializing, and modifying

statistics as well as keeping track of any changes. Since all entities in the game are programmed

to clone stats when they are created, the static reference in GlobalVar allows a simple way to

reference the manager.

 The static reference to the Logger instance is held in the GlobalVar class because there

are many different other classes are programmed to output their data to one of the five output

files. The Logger class contains a reference to the output files to avoid having to open and close

them every time data is written. A timestamp is also placed on all the output files, which is

zeroed out when the class is initialized.

 The reference to a KnightArena instance is stored for easy access. KnightArena is the

class that handles the controls of the playable character and handles the player stats during

runtime. The reference in GlobalVar is overwritten by the KnightArena class when a new scene

is loaded. This occurs because there is always a new KnightArena object every time the scene

loads, and the object is reset and re-linked to GlobalVar. By having a static reference, player

information, such as location, is available to all the enemies for behavior and stats use.

56

The last static variable that is stored in the GlobalVar class is the EEG data class. This

class handles all the short-term storage, multithreading network communication, and simple

processing. It is stored here for simple access for the visualization scripts.

Stats Manager

 As noted above, the stats manager has numerous useful functions. It handles the storage

of the enemy and player stats in two ways. The first way is to keep backwards compatibility with

the older versions (v1,v2) of the game. The older versions had only a few modifiable stats that

could be made. Resultantly each

enemy had specific stats that

were changed in a specific order

when an event occurred. Each

specific stat had a multiplier and

a bias. In version 3 they were set

manually by a serialized class

called scriptableSelectiveStats to

make them more modular. Once the initial stats were loaded into the stats manager the

multiplier was set to 1. As the game progressed, the multiplier attribute was modified. Every

time the game needed to become harder or easier, the stats instance for each enemy was

modified. The stats class held information such as health, attack speed, damage, and timers. Each

entity (enemy and player) cloned their default stats from the stats manager when they were

created. The stats manager held a version of the current stat and the pending stat modification.

The reason for holding the current and pending stats was to allow modifications to be made if

and when needed without effecting the current state. In previous versions (v1 and v2) this was

Figure 22: Example of stats of a monster

57

more important as enemies were spawned during gameplay and the stats were also able to be

modified by another hidden player also known as a “wizard.” The stats manager will also hold

other types of statistical information. Some of this information consists of; damage dealt and

from which enemy, how many of each enemy is killed, how many player sword swings have

been made, how much a health pickup is worth and how many health pickups have been made,

which wave the player is on, what type of difficulty modification is being used and the starting

time of the game.

The difficulty modification types are handled by the DDA class. In version 3 of the game

there were three different difficulty modification methods. The first method which was not used

was the lack of modifications on a baseline difficulty set at the start. The next method was a

modified DDA system from v1 and v2. It was modified for ease of use and to be more dynamic.

The last method was a combination between the previous method with the classification

predictive element received from the python code. Once the prediction was received, the system

modified the player’s stats for both live and for future iterations.

EEG

The EEG class was comprised of several interlocking methods and variables. The starting

method was triggered as soon as it is created. It initialized an empty dictionary to store the data

that came from the Muse. The dictionary mapped the data type to a linked list of type EEGData

through a KeyValuePair. The EEGData class contained the time it was received, the data type,

the data array associated, and a flag to see if it was modified. The flag was used to ensured that

the cleaning of artifacts was not done more than once for each piece of data. The cleaning of the

data was not used in the testing phase through the C# game code. All of the cleaning was

subsequently done through the python code. The other stored variables in the EEG class were the

58

baseline values for the EEG data, the value of each channel and frequency over time after

undergoing a Fourier Transformation. This was used to average out the frequency values over

time for the visualization purposes on the observer screen. Lastly, variables containing the

networking and multi-thread information which included the references for UDPClient, port

number, and thread were part of this class.

UDP communication was the first thing that was started when the EEG class was

initialized. Part of networking initialization requirements were set up on its own thread. The

reason for doing so was that Unity’s scripts were all run on a single thread sequentially. So as to

not disturb regular game logic, networking communication was needed to be done continuously

and as fast as possible to prevent information from being lost. By having the networking on its

own thread, the program will lose some ability to use some internal Unity timing functions.

Additionally, it will gain the ability to create an endless loop that intercepts the packets as soon

as they come in. As soon as the new thread is initialized the port is reserved and the loop starts.

Whenever data comes in, it is initially deciphered to detect what type of data it is. The data is

deciphered by parsing through the incoming packet for a specific marker. The packet

(User/RawData, ddd ###) would contain a ‘d’ character for double and ‘i’ character for integer.

The quantity of the data stored in the packet were determined by counting how many of the

characters were together. Once the type and quantity was determined, the program then isolated

the subsequent byte data, changed the endianness, and converted the subsequent byte data from

byte arrays to its generic data type. Once the conversion was complete and the processed data

from the network packet was stored in an array, it was then added into the dictionary and logged

to the output file.

59

Several helper methods and access functions were used for the EEG class. The first

method was to convert a byte array to a primitive datatype. The integer conversion was done

with bit shifting, index placing, and multiplication. The byte array conversion to double type

used the Bitconverter library that comes with C#. Other helper methods included; getting the

banded data from the raw data, logging the FFT data to check if the algorithm was implemented

correctly, some cleaning algorithms from earlier in the process that mimicked some of the

Python script, and a GET method for the EEG data.

DDA

 A class was created to handle all the modifications for both the DDA system and to

handle the predictions returned from the external Python scripts. The old DDA system from

version 1 and 2 were streamlined to be simple to read and easy to modify. The streamlining was

made by making each step in the DDA distinct from each other. The first step was to find the last

event and then count how many times backward that event occurred consecutively. It then found

the most damaging monster that was encountered since the last event. The script then determined

the percentage progress that was made before the event occurred. 100% progress meant that the

player had reached a checkpoint. The DDA then loops through each monster stats to modify their

specific attributes according to the event type, then health remaining for a checkpoint or progress

before they died. The consecutive events then added an additional modifying multiplier.

Subsequently if the player died, the enemy that caused the most damage was modified again to

be made easier.

 In version 3 the algorithm added the EEG predictive modifications. The request

prediction method of this class included a message sent to the same port that the Python script

was listening on, telling it to make a prediction. It then started a separate thread to wait for a

60

response from the python code. A separate thread was used because the prediction process could

take between 3 to 40 seconds in which the game would have been frozen.

3.5.4 Data Preparation

 Before data was used for analysis, it was important to pre-process it because the EEG

device was very sensitive and prone to noise and picking up unwanted artifacts. There was many

different techniques that were used to reduce noise. The two noise sources that were removed in

this thesis experiment were electrical and muscular. This section will cover how they were

accounted for and the techniques used to remove them automatically.

Generally, the first noise that is to be eliminated is the background electrical energy that

surrounds you when you are in a building. In Canada, the wall power runs at 60Hz, so the

removal of this specific frequency is necessary. This can be done through the use of a time series

to frequency domain shift. Such an example can be done with a Fourier Transformation. Once

the transformation has been done, it is as simple as not looking at the 60 Hz frequency and the

surrounding few frequencies.

The next artifact that had a large impact on the data was the effects of muscle movement.

Three main sources of muscular noise came from blinking, jaw clenches and a hand touching the

head. When someone blinks, there is a spike in the electrical activity measured. There were two

techniques used in this study to reduce the effects of blinks. The first technique was to use the

Independent Component Analysis. This method gives the ability to remove the majority of the

blink noise, which is somewhat consistent, and keeping the underlying signal underneath. The

second technique used for this study was to replace the length of the blink with a 0 Hz frequency.

This means that the voltage stays the same across the event. There are two problems with using

61

such a technique. The first problem is that there would be a loss in brain activity measured. This

loss was mitigated by averaging out the measurement across a longer period of time and

therefore reducing the loss. The only resulting side effect would be the amplitude of the bands

themselves would drop and the 0Hz amplitude would rise significantly. The 0Hz in this study

and many others was therefore ignored. The next technique utilized was used to further reduce

data loss from the previous problem. This was done by adding a larger window that the Fourier

Transformation investigated. The smallest windows that should be used is the window relating to

one second. This makes it easy to convert a specific data point to a frequency. For example, if

the EEG is recording at 256 Hz, the window would be of size 256. This means that 1Hz would

be in the 1 location in the vector and so on. By increasing the window to a value that is 2 to the

power of something, the Fast Fourier Transformation can still be used and then you can multiply

the frequency you want by the size of the window. For this example, the window would be of

size 1,024 for an EEG that streams at 256 HZ. That means that for each frequency there are four

values that can be looked at giving a higher accuracy.

3.6 Ethics

To be able to run the experiment on participants, ethics approval was required by

Laurentian University. The process was done through the Laurentians University’s ethics board.

A few aspects of the process were interesting to note. These aspects include the hardware, the

video game in question, and the data.

62

4 Experiment

The thesis experiment was comprised 8 steps. These steps were:

Figure 23: Experiment progression visualisation

 Each step had to be done in the specific order that they were listed.

 Designing the experiment was the first step. This stage involved coming up with the idea

and doing literature review and seeing what kind of questions needed to be answered. This is

also the part of the experiment that took the longest.

 After having gone through the design phase of the experiment, next came the

implementation of modifications. This stepped involved finding the appropriate modification and

additions needed to be applied to Dunjions to be able to test the experiment laid out in the design

step. The important modifications and additions were laid out in the design section of this thesis.

 The next step involved in the experiment was the testing of a focus group. This was a

necessary step in the experiment to really make sure that all the components were ready for the

actual participants. This step is explained in more detail in section 4.2.1.

Design
Experiment

Implement
Modifications

Focus Group
Testing

Testing Group
A

Training
Classifer

Testing Group
B

Analyse Data

63

 Once the experiment was ready for data collection, the first group was run through the

game. The outline of the main experiment is explained in detail in the section 4.2. The necessity

of this groups data is outlined in section 4.2.2.

 Once the data was collected for the initial group, their data was now able to be fed

through a classifier. Some preliminary testing on the data was done to see if the proper

classification algorithm was used. Some of the results of this section are discussed in detail in the

Discussion section of this thesis.

 Once a classifier had been trained, it was now time for testing the second group of

participants to see if the modifications based on the predictions of the classifiers helped support

the hypothesis.

 The last step of this thesis experiment was to run statistical analysis on the results and to

further test the chosen classification algorithm to see if it improved with more data.

4.1 Objectives

 This thesis experiment had two main objectives. The first objective was to find a

classification algorithm that was able to work in real time on brain data. The second objective

was to test see if with the help of the classification algorithm, if the game would be more

enjoyable. Due to these objectives a hypothesis was outlined to be tested. The hypothesis that

was set out to test is outlined below.

4.1.1 Hypothesis

H0: The enjoyment of a video game is independent of a DDA system with access to EEG data

H1: The enjoyment of a videogame improves from a DDA system with access to EEG data

64

 The hypothesis will be tested with the use of a ANOVA analysis on the reported positive

effect of the game as reported in the Game experience questionnaire between the two versions.

4.2 Main Experiment

 The thesis experiment required 3 groups of individuals; focus group, group A, and group

B. All three groups perceived the main experiment process the exact same way. The differences

arose from either before the experiment started or after the experiment finished. Each difference

will be discussed in the subsequent sections.

 The room that the experiment took place in was part of the CHIL lab. The lab is in a

small white room with a one way window. The reason that this room was chosen for this

experiment was because it satisfied all of the requirements for this test. The requirements that

were met were that the room be quiet, have minimal distractions, large enough for at least two

people to sit comfortably. The setup of the experiment had a table facing the wall with two

monitors on it. Only one of the monitors was facing the participant. The computer running the

game stood beside the table. The participants were asked to assigned to sit on a well padded

rolling seat that allowed them to slightly lean back if they wished to do so.

 The following describes the process of the main experiment that was common between

each group.

65

1. The first thing the participants did upon entering the testing

room was to fill out a form stating that they agree to be

tested. This form was accepted by the ethics committee of

Laurentian University. The consent form had information

pertaining to what they would be doing, what the EEG was

and what would be done with the respective experiment data

that was recorded. The participants had the added option to

get a summary of the results of the study sent to them.

2. Once the consent form was filled out, the participants were

fitted with the EEG and were told to relax. They were

instructed to try to keep their heads still, to avoid touching

the EEG, and to avoid clenching their jaws throughout the

experiment. Once the EEG could be seen to have good

contact to the head using the Muse Direct program the

experiment continued. They were then told to try to relax

and take slow deep breaths. The participant were asked to

signal that they were ready or two minutes had passed.

3. They were then instructed to stay still as two baselines were

taken. The first baseline was taken with the eyes open and the second baseline

was taken with the eyes closed. Each baseline took 60 seconds.

4. After the baselines were taken, the participants played through a short tutorial

instructing them on how to use the controls.

1) Consent Form

2) EEG Fitting

3) Baseline

4) Tutorial

5) Playthrough

6) Second Baseline

7) Remove EEG

8) Questionnairs

9) Debreif

Figure 24: Experiment

Procedure

66

5. After the tutorial was completed, they started playing. The participants were told

to play for roughly 25 minutes and reaching as far in the waves as they could.

Each wave was made to be progressively harder with different enemy variations.

6. Once the time for play session ran out, the game was ended by the experimenter

and another two baselines were taken.

7. Before continuing with the questionnaires, they were instructed to remove the

EEG.

8. Once the EEG was removed, they were given the modified game experience

questionnaire to fill out. When that was completed, they were given the

demographic questionnaire to fill out.

9. Once the questionnaires were completed, it marked the end of the experiment and

were given whatever time they needed to gather their personal effects and ask

questions about the experiment.

4.2.1 Grouping

 The Experiment was split into three groups. Although The focus group, group A, and

group B went through the same procedure as mentioned above, the differences are outlined in

Table 4.

67

Table 4: Experiment Group Differences

Group Description

Focus Group • Testing Experiment Viability

• Bug Finding

• Data used for algorithm testing.

• Collecting Experiment feedback

Group A • Control Group for Engagement score

• Data collection for training AI for the new algorithm

• Difficulty modification was done by only DDA based on success and

death

Group B • Difficulty modified by old the previous DDA and the EEG

classification

68

5 Results

The analysis to prove the hypothesis was done by disproving the null hypothesis. This

was done by running a one-way ANOVA analysis on the results of the Game Experience

Questionnaire. After running this analysis, it showed that between the two test groups, there were

no significant statistical differences and thus the null hypothesis cannot be rejected. Table 3

shows the ANOVA results for all seven elements it measures. The hypothesis proof was using

the statistical results of the positive effect.

Table 5: ANOVA test Results

Element Result (Alpha=0.05)

Positive effect F(1,21) = 0.60905, p = 0.44386

Competence F(1,21) = 0.05645, p = 0.81451

Immersion F(1,21) = 0.39255, p = 0.53772

Tension F(1,21) = 0.07475, p = 0.78722

Flow F(1,21) = 1.56404, p = 0.21241

Challenge F(1,21) = 1.27896, p = 0.27084

Negative effect F(1,21) = 1.81655, p = 0.19209

From the above table we can see that the ANOVA test on the different aspects of the In-

Game Game Experience Questionnaire wielded a non-significant result for every attribute. The

most significant of the result being the negative aspect of the game meaning that the

modifications the EEG was potentially making the game less enjoyable for more participants

than the first group. Since the value was too far from the desired 0.05 value, this conclusion is

deemed unsignificant without more testing.

69

6 Discussion

There were numerous results and lessons-learned from this thesis experiment. These

ranged from the accuracy of classification techniques, the final results of the experiment, and the

challenges that were encountered. These are further expounded below.

The experiment had finished with 23 participants (15M,8F). that was roughly 11 people

in each group. All but two were right handed and so only the data for the right handed-

individuals was used.

6.1 Classification Accuracy

Classification algorithms were tested on group A’s data to check the accuracy and

appropriateness of the processed brain signals to the relevant events. Below are the results of this

testing along with comparisons to group B’s data after their respective runs. The first algorithm

analyzed was the K-Nearest Neighbours (KNN).

KNN was the first technique investigated as a possible classifier. The KNN class in the

Scikit learn library implemented for Python has one variable that is controllable called K value.

The performance of the algorithm was determined by testing multiple K values and recording the

average and maximum accuracies achieved. The graphs below show that the maximum accuracy

peaks to just under 53%. This accuracy was insufficient for use in classifying group B.

70

Figure 25: KNN Maximum Accuracy for KNN for Group A

As noted in Section 2.9.1, another recommended classification algorithm to use was

Support Vector Machines (SVM). The code that was used for this algorithm came from the

Libsvm library [29]. This library is offered for many different programming languages but the

Python version was chosen. This library was chosen for its simplicity and its ability to store its

structure between classification easily. Two main variables were compared in the process of

selecting a SVM classifier. These two variables were the kernel type and the cost (accuracy

versus computational time). The underlying library’s implementation tries to find the optimal

setting for most of the remaining variables automatically. Four different accuracy Tests were

performed for the SVM algorithm. These tests are as follows:

1) Apply the SVM To the Group A and testing its accuracy on a single member that is

seperated from the rest of the group

71

Figure 26: Single max accuracy for SVM's used on Group A

2) Train the algorithm only using Group A but separating the groups data evenly in a 70/30

ratio between training and testing

Figure 27: Accuracy of SVM using a 70/30 split on Group A data

3) Apply the SVM to both Group A and Group B and Testing how accurate it can be to

predict a single persons data that is not part of the training phase

40

45

50

55

60

65

70

75

80

85

90

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

A
cc

u
ra

cy
 (

%
)

C Value

SVM Group A Single Max Accuracy

RBF Poly Linear Sigmoid

40

50

60

70

80

90

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

A
cc

u
ra

cy
 (

%
)

C Value

SVM Group A 70/30 Max

RBF Poly Linear Sigmoid

72

Figure 28: Single Max accuracy using SVM on all groups' data

4) Apply the SVM algorithm on both Group A and Group B data and separating it into a

70/30 ratio between testing and training

Figure 29: Accuracy of SVM using a 70/30 split on all groups' data

Each chart tested the SVM at various C values ranging from 10 to 106. The testing using

ratio differences was applied 10 times for each c value. The data was randomised between

training and testing each time. Three different kernels were tested alongside no kernel (linear).

The 3 kernels compared were the Radial basis function (rbf), polynomial kernel (poly), and the

sigmoid kernel. These 3 kernels were picked since they were the 3 that were built into the libsvm

library.

40

50

60

70

80

90

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

A
cc

u
ra

cy
 (

%
)

C Value

SVM All Groups Single Max

RBF Poly Linear Sigmoid

40

50

60

70

80

90

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

A
cc

u
ra

cy
 (

%
)

C Value

SVM All Groups 70/30 Max

RBF Poly Linear Sigmoid

73

A trend that was observed in the graphs below was that the accuracy of the SVM’s

regardless of the kernel type, increased as the cost value (C value) increased. Although the trend

was important, peak accuracy for any single model is also important. Even though the SVM did

not show a high accuracy it was still more accurate than the KNN. The first figure shows the

average of 10 models for each of the kernel types with varying lengths of c values ranging from

10 to 106. The data points in this first test were from group A with a random subset of data put

aside for testing the accuracy. The ratio of the data was set to 70 training/30 testing.. The trends

confirm that as the C value increased, a higher accuracy was achieved. The results show that

some kernels were performing better than other with the highest on average came from the

sigmoid kernel.

Comparing the group A to the whole data set was done to see what more data would

bring in when doing classification. From the results of doing such a comparison it shows that

more data was not useful in getting a higher accuracy. One prediction for this is that SVM are

very good at generalization and that it might of been as generalized as it needed to be without

having more data. This means that for a study with not as much data, this might be a good

classifier to use.

It can be concluded from the graphs above that the maximum accuracy of an SVM can

vary greatly between cost values and kernel types. For this reason, it was taken into

consideration when selecting the correct SVM layout.

The last classification algorithm tested was Artificial Neural Networks (ANN). The ANN

library used for this research was the Tensorflow library for Python. This library was chosen for

its optimisations, flexibility, and simplicity. As there are extensive options available when

constructing a Neural network using this library, only certain options were tested.

74

The first test to run with Neural networks was to test to see what depth of the network

would do while testing the breadth of the layers. Since the pool of data was quite small for using

this type of neural network, it was tested using different variations of the data by retraining with

a shuffled variation. The first observation to be made is that the Neural networks were prone to

over training.

Figure 30: NN Difference in accuracy between training and testing sets

The graph above shows that the predictions from a neural network tend to have better

results when the neural network doesn't over-train. This would mean that the network is more

generalized. A more generalized network is more useful as it is best at predicting data that it has

not seen yet.

75

Figure 31: NN Difference in Accuracy between training and testing sets per depth

The next graph shows the same dimensions of accuracy vs difference but by looking at

the use of three different hidden layers. The use of a single hidden layer seemed to show over

training does affect the accuracy more. The other correlation that can be seen from this graph is

that the more layers that are used, the more the difference that can be seen.

Figure 32: NN Average Accuracy per depth of layers

76

Even though the overtraining affects the accuracy, the overall average accuracy of the

networks does increase. This means there are benefits from increasing the depth of the networks.

When this is compared to the average, according to the width of the layers, the trends are not as

clear.

Figure 33: NN Average Accuracy for width of layer

After running multiple tests it was decided that the results were not adequate for this

experiment compared to the results from the SVM.

6.2 Challenges

There were many different hurdles that needed to be overcome throughout the research,

design and experimenting phase of this thesis experiment. Throughout the next few sections will

discuss some of the more major hurdles encountered and any solutions that were found if there

were any.

77

6.2.1 Muse software

One of the most significant problems encountered in this study was the fact that halfway

through the experiment the Muse company ceased to support the software necessary to run the

real time data forwarding that was necessary for this study. To get around this, it was necessary

to download and old version manually as the company did not want to give out their software.

Another problem encountered was the instability of their software. The software worked long

enough for 24 participants to run through the experiment.

6.2.2 Dirty data needed cleaning

 A large part of this thesis was the ability work with EEG data. This led to one of the

major challenges that was faced. If you ask any neuroscientist, they will tell you that raw data is

not easily used without some sort of pre processing. Because of the nature of this thesis

experiment needing the data at runtime automatically, the data also needed to be cleaned

automatically. For this reason, many different attempts were made to come up with a method that

could account for the noise seen in the focus group testing.

6.2.3 Lack of participants

 Although some papers showed a potential benefit of using videogames could increase

participant interest, this was not reflected in the recruitment process of this experiment. When

recruiting participants using classrooms and clubs, many individuals had shown interest.

Although the initial presentation had stirred up many contacts, very few had followed through.

when trying to run through some more participants, the connection software became much more

unstable leading to participant data being dropped.

78

6.2.4 Algorithm complexity

 When first designing the system, a fully integrated system was envisioned. But as more

research had been done and realizing there would need of using systems that are already

implemented, a one application system was no longer viable. For this reason, the experiment

needed to be made up of multiple programs. This complexity opened the door for more issues

and raised the complexity of the system dramatically. this lead to an increase in development

time and delayed the testing between the two groups.

79

7 Conclusion

The experiment was established to prove that using an EEG and a classifier trained on

events, that a person's abilities to progress could be predicted and help improve the player

experience. Two methods were used to prove this hypothesis: literature review and testing.

Several observations were made throughout this research:

1) Certain events can be classified with the proper techniques

2) EEG signals need to be cleaned

3) Frequency domain data is more suitable for this type of experiment

4) If a more general engagement prediction system is to be developed, then multiple games

should be used in the experimentation

 Given the hypothesis proposed for this experiment, the conclusion is that the results are

not statistically significant given the specific implementation. The lack of significance in the

results could have come from many different sources. Some key sources of variance are:

1. the classification algorithm

2. accuracy and reliability of the EEG

3. variance in the gameplay

4. amount of data collected

 A possible lack of difference between group A and group B could have stemmed the fact

that the DDA might have over compensated for the differences that the EEG algorithms were

making. A future recommendation would be to analyze each algorithm separately to isolate the

modifications done and then compare them.

80

 The results of this research has shown that there are multiple fields of science that have to

be included to be able to form a scientifically accurate result. An interesting pattern that came up

in papers used for this thesis is that the subject matter was much better approached when the

researches were focusing on their area of expertise. This means that a more varied team involved

in such an experiment could potentially attain a much better result than any single individual or

researcher can do on their own.

7.1 Future Work

One aspect that this thesis experiment can be useful is in the design of the programs and

communication. To create a similar experiment, the design aspect shown below could be used as

a base and built upon.

Figure 34: Experiment Blueprint

This research was used to investigate the preliminary aspects of an application using an

EEG to improve player experience. Based on this experiment it was determined that

improvements could be made by:

a. Using new techniques in the brain-computer interaction field being released regularly.

EEG Network

Game CSV Log Files

UDPReadout

DataPrep

Classification

81

b. The use of more flexible machine learning algorithms.

c. The use of more data.

d. The use of regression analysis instead of the more simple classification approach

 Another area of this research that could be improved in future work is by using a more

accurate EEG. Although the Muse EEG headset was very convenient to use, the limited electrode

placement and the dry electrodes used could link to more noise than their more accurate wet

electrode counterparts. Although more electrodes can alter a players experience with the game

more than a more streamlined headband, a similar device with more electrodes could prove to

have data that could be more accurate. One alternative to the EEG cap that would allow the

participants to focus on the game more would be through the use of a brain sensing VR headset.

Since the headset is already going on one’s head, the headset would be a potentially better device

to collect this type of data.

 Another area in which this research could be improved upon is in the choice of the game

used as different people prefer different games. Another modification would be to use different

difficulty types such as the one expressed in the V3 against the previous versions of Dunjions.

Since this game focused more on motor difficulty in the form of combat, a future version of the

game could focus more on sensitive or logical difficulty in the form of pathfinding or puzzles.

Another area that could be improved upon in such an experiment is to utilize more

participants. With more complicated classification algorithms able to adjust to more intricate

patterns, more data is needed. From this preliminary experiment, results showed that when trying

to apply this algorithm to small changes, it can be hard to achieve a high rate of accuracy. If this

82

technique were to be applied to a wider range of emotions and feelings with more subjective

questions to train on, it could lead to a more flexible classifier.

 The last area that could be improve would be in the software applications themselves.

Currently, there are many different programs working in conjunction. A more compact design

would be ideal for both the consumer and academic world. In this experiment four programs

were run simultaneously to allow the EEG to connect to a video game while performing

classification predictions to modify the game in real time. If the simultaneous running programs

could be reduced to one or possibly two, it would be much more friendly in a commercial or lab

setting that might not be as computer-savvy, leading to even more research in this field (i.e.

behavior sciences, video game design, etc.).

83

8 References

[1] M. E. Smith, A. Gevins, H. Brown, A. Karnik, and R. Du, “Monitoring Task Loading with

Multivariate EEG Measures during Complex Forms of Human-Computer Interaction,” Hum

Factors, vol. 43, no. 3, pp. 366–380, Sep. 2001.

[2] K. Poels, “STREP / NEST-PATH Deliverable D3.3: GAME EXPERIENCE

QUESTIONNAIRE,” p. 47.

[3] L. E. Nacke, “Wiimote vs. controller: electroencephalographic measurement of affective

gameplay interaction,” 2010, p. 159.

[4] “FUGA The fun of gaming: Measuring the human experience of media enjoyment” May 2009.

Accessed: Nov. 18, 2021. [Online]. Available: http://project.hkkk.fi/fuga/.

[5] M. Salminen and N. Ravaja, “Oscillatory Brain Responses Evoked by Video Game Events: The

Case of Super Monkey Ball 2,” CyberPsychology & Behavior, vol. 10, no. 3, pp. 330–338, Jun.

2007.

[6] T. McMahan, I. Parberry, and T. D. Parsons, “Evaluating Electroencephalography Engagement

Indices During Video Game Play,” p. 5.

[7] M.-V. Aponte, G. Levieux, and S. Natkin, “Difficulty in Videogames: An Experimental

Validation of a Formal Definition,” in Proceedings of the 8th International Conference on

Advances in Computer Entertainment Technology, New York, NY, USA, 2011, pp. 49:1–49:8.

[8] A. Rajavenkatanarayanan, A. R. Babu, K. Tsiakas, and F. Makedon, “Monitoring Task

Engagement Using Facial Expressions and Body Postures,” in Proceedings of the 3rd

International Workshop on Interactive and Spatial Computing, New York, NY, USA, 2018, pp.

103–108.

[9] Q. C. Lam, L. A. T. Nguyen, and H. K. Nguyen, “A Novel Approach for Classifying EEG Signal

with Multi-Layer Neural Network,” in Proceedings of the 2017 International Conference on

Robotics and Artificial Intelligence, New York, NY, USA, 2017, pp. 79–83.

[10] K. C. Ewing, S. H. Fairclough, and K. Gilleade, “Evaluation of an Adaptive Game that Uses

EEG Measures Validated during the Design Process as Inputs to a Biocybernetic Loop,” Front

Hum Neurosci, vol. 10, May 2016.

[11] B. Kerous, F. Skola, and F. Liarokapis, “EEG-based BCI and video games: a progress report,”

Virtual Reality, pp. 1–17, Oct. 2017.

[12] K. Rajamani, A. Ramalingam, S. Bavisetti, and M. Abujelala, “CBREN: Computer Brain

Entertainment System Using Neural Feedback Cognitive Enhancement,” in Proceedings of the

84

10th International Conference on PErvasive Technologies Related to Assistive Environments,

New York, NY, USA, 2017, pp. 236–237.

[13] M. Abujelala, C. Abellanoza, A. Sharma, and F. Makedon, “Brain-EE: Brain Enjoyment

Evaluation Using Commercial EEG Headband,” in Proceedings of the 9th ACM International

Conference on PErvasive Technologies Related to Assistive Environments, New York, NY,

USA, 2016, pp. 33:1–33:5.

[14] É. Labonté-LeMoyne et al., “Are We in Flow Neurophysiological Correlates of Flow States in a

Collaborative Game,” in Proceedings of the 2016 CHI Conference Extended Abstracts on

Human Factors in Computing Systems, New York, NY, USA, 2016, pp. 1980–1988.

[15] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, “A review of classification

algorithms for EEG-based brain–computer interfaces,” J. Neural Eng., vol. 4, no. 2, p. R1, 2007.

[16] J. Gruzelier, A. Inoue, R. Smart, A. Steed, and T. Steffert, “Acting performance and flow state

enhanced with sensory-motor rhythm neurofeedback comparing ecologically valid immersive

VR and training screen scenarios,” Neuroscience Letters, vol. 480, no. 2, pp. 112–116, Aug.

2010.

[17] C. Lin et al., “Adaptive EEG-Based Alertness Estimation System by Using ICA-Based Fuzzy

Neural Networks,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53, no.

11, pp. 2469–2476, Nov. 2006.

[18] G. Chanel, C. Rebetez, M. Bétrancourt, and T. Pun, “Boredom, Engagement and Anxiety As

Indicators for Adaptation to Difficulty in Games,” in Proceedings of the 12th International

Conference on Entertainment and Media in the Ubiquitous Era, New York, NY, USA, 2008, pp.

13–17.

[19] A. Subasi and E. Erçelebi, “Classification of EEG signals using neural network and logistic

regression,” Computer Methods and Programs in Biomedicine, vol. 78, no. 2, pp. 87–99, May

2005.

[20] K. Katahira, Y. Yamazaki, C. Yamaoka, H. Ozaki, S. Nakagawa, and N. Nagata, “EEG

Correlates of the Flow State: A Combination of Increased Frontal Theta and Moderate

Frontocentral Alpha Rhythm in the Mental Arithmetic Task,” Front. Psychol., vol. 9, 2018.

[21] T.-P. Jung et al., “Extended ICA Removes Artifacts from Electroencephalographic Recordings,”

in Advances in Neural Information Processing Systems 10, M. I. Jordan, M. J. Kearns, and S. A.

Solla, Eds. MIT Press, 1998, pp. 894–900.

[22] R. E. Wheeler, R. J. Davidson, and A. J. Tomarken, “Frontal brain asymmetry and emotional

reactivity: A biological substrate of affective style,” Psychophysiology, vol. 30, no. 1, pp. 82–89,

1993.

85

[23] Louis A. Schmidt and Laurel J. Trainor, “Frontal brain electrical activity (EEG) distinguishes

valence and intensity of musical emotions,” Cognition and Emotion, vol. 15, no. 4, pp. 487–500,

Jul. 2001.

[24] G. Cheron, “How to Measure the Psychological ‘Flow’? A Neuroscience Perspective,” Front.

Psychol., vol. 7, 2016.

[25] M. Klasen, R. Weber, T. T. J. Kircher, K. A. Mathiak, and K. Mathiak, “Neural contributions to

flow experience during video game playing,” Soc Cogn Affect Neurosci, vol. 7, no. 4, pp. 485–

495, Apr. 2012.

[26] M. Andujar and J. E. Gilbert, “Let’s Learn!: Enhancing User’s Engagement Levels Through

Passive Brain-computer Interfaces,” in CHI ’13 Extended Abstracts on Human Factors in

Computing Systems, New York, NY, USA, 2013, pp. 703–708.

[27] D. W. Harrison, “Arousal Syndromes: First Functional Unit Revisited,” in Brain Asymmetry and

Neural Systems: Foundations in Clinical Neuroscience and Neuropsychology, D. W. Harrison,

Ed. Cham: Springer International Publishing, 2015, pp. 61–84.

[28] R. M. Beckstead, A survey of medical neuroscience. New York: Springer-Verlag, 1996.

[29] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines. ACM

Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011. Software available at

http://www.csie.ntu.edu.tw/~cjlin/libsvm

[30] E. Tretkoff, “October 1958: Physicist Invents First Video Game,” American Physical Society,

Oct-2008. [Online]. Available:

https://www.aps.org/publications/apsnews/200810/physicshistory.cfm.

[31] NewZoo Free 2016 Global Games Market Report [electronic resource], NewZoo Games,

[2016]http://resources.newzoo.com/hubfs/Reports/Newzoo_Free_2016_Global_Games_Market_

Report.pdf

[32] “Recognizing the Degree of Human Attention Using EEG Signals from Mobile Sensors.”

[Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812603/#.

[33] InteraXon Inc (2019). Dear Muse Developers. Retrieved from

https://choosemuse.com/development/.

[34] R. M. Ryan, C. S. Rigby, and A. Przybylski, “The Motivational Pull of Video Games: A Self-

Determination Theory Approach,” Motiv Emot, vol. 30, no. 4, pp. 344–360, Dec. 2006.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://www.aps.org/publications/apsnews/200810/physicshistory.cfm
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812603/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812603/
https://choosemuse.com/development/

86

[35] E. Laura and M. Frans, “Fundamental Components of the Gameplay Experience: Analysing

Immersion,” 2005.

[36] P. Sweetser and P. Wyeth, “GameFlow: A Model for Evaluating Player Enjoyment in Games,”

Comput. Entertain., vol. 3, no. 3, pp. 3–3, Jul. 2005.

[37] M. Ahn, M. Lee, J. Choi, and S. C. Jun, “A Review of Brain-Computer Interface Games and an

Opinion Survey from Researchers, Developers and Users,” Sensors (Basel), vol. 14, no. 8, pp.

14601–14633, Aug. 2014.

[38] “Check out how much a computer cost the year you were born.”

https://www.usatoday.com/story/tech/2018/06/22/cost-of-a-computer-the-year-you-were-

born/36156373/ (accessed Nov. 18, 2021).

[39] W. O. Tatum, Handbook of EEG interpretation. New York [N.Y.: Demos Medical Pub., 2013.

[40] G. Di Flumeri, P. Aricò, G. Borghini, N. Sciaraffa, A. Di Florio, and F. Babiloni, “The Dry

Revolution: Evaluation of Three Different EEG Dry Electrode Types in Terms of Signal

Spectral Features, Mental States Classification and Usability,” Sensors, vol. 19, no. 6, p. 1365,

Mar. 2019.

[41] “The Internet Protocol Stack.” https://www.w3.org/People/Frystyk/thesis/TcpIp.html (accessed

Nov. 18, 2021).

[42] M. Csikszentmihalyi, “Flow: The Psychology of Optimal Experience,” 1990.

[43] “Unity Platform Roadmap.” https://unity.com/roadmap/unity-platform (accessed Nov. 18,

2021).

[44] P. M. Conn, Ed., Neuroscience in Medicine. Totowa, NJ: Humana Press, 2003. 623-633

[45] “Keep Calm and Play On: Video Games That Track Your Heart Rate | MIT Technology

Review.” https://www.technologyreview.com/2015/09/21/72421/keep-calm-and-play-on-video-

games-that-track-your-heart-rate/ (accessed Nov. 18, 2021).

[46] N. Burch and H. L. Altshuler, Behavior and Brain Electrical Activity. Boston, MA: Springer

US, 1975.

[47] H. Banville and T. H. Falk, “Recent advances and open challenges in hybrid brain-computer

interfacing: a technological review of non-invasive human research,” Brain-Computer

Interfaces, vol. 3, no. 1, pp. 9–46, Jan. 2016.

[48] “Engagement Definition & Meaning - Merriam-Webster.” https://www.merriam-

webster.com/dictionary/engagement (accessed Nov. 18, 2021).

[49] D. Vallieres, “Achieving Flow in Gameplay through a Dynamic Difficulty Adjustment System,”

p. 87.

87

[50] G. Chanel, C. Rebetez, M. Bétrancourt, and T. Pun, “Emotion Assessment From Physiological

Signals for Adaptation of Game Difficulty,” Systems, Man and Cybernetics, Part A: Systems

and Humans, IEEE Transactions on, vol. 41, pp. 1052–1063, Dec. 2011, doi:

10.1109/TSMCA.2011.2116000.

[51] “What is the kernel trick? Why is it important? | by Grace Zhang | Medium.”

https://medium.com/@zxr.nju/what-is-the-kernel-trick-why-is-it-important-98a98db0961d

(accessed Nov. 18, 2021).

[52] “Brandguide.” https://brandguide.brandfolder.com/unity/downloadbrandassets (accessed Nov.

22, 2021).

[53] “Product - Google Drive.” https://drive.google.com/drive/folders/15pWkI6-CIIi-

U8Y7d2yA8rkSYGMCy8Ch (accessed Nov. 22, 2021).

[54] “SVM margin” https://commons.wikimedia.org/wiki/File:SVM_margin.png (accessed Nov. 22,

2021)

[55] A. Walker-McBay, "Mike Booth, the Architect of Left 4 Dead's AI Director, Explains Why It's So

Bloody Good," Kotaku Australia, 2018. [Online]. Available:

https://www.kotaku.com.au/2018/11/mike-booth-the-architect-of-left-4-deads-ai-director-

explains-why-its-so-bloody-good/. [Accessed: 08-Jun-2022].

https://doi.org/10.1109/TSMCA.2011.2116000
https://doi.org/10.1109/TSMCA.2011.2116000
https://doi.org/10.1109/TSMCA.2011.2116000
https://commons.wikimedia.org/wiki/File:SVM_margin.png

88

9 Appendices

9.1 Software Versions

- Python 3.6.3

- C # .net 4.0

- Unity3D 2019.2.0

- Windows 10

- Muse Direct 0.19.1

- Muse Lab 1.6.3

9.2 Hardware

- Intel i7-3770 3.4GHz

- 8 GB RAM

- Muse 2016

- XBox 1 Controller

9.3 In-game Experience Questionnaire

Please indicate how you felt while playing the game for each of the items, on the following scale:

Not at all Slightly Moderately Fairly Extremely

0 1 2 3 4

1) I was interested in the game’s story

2) I felt successful

3) I felt bored

4) I found it impressive

5) I forgot everything around me

6) I felt frustrated

89

7) I found it tiresome

8) I felt irritable

9) I felt skillful

10) I felt completely absorbed

11) I felt content

12) I felt challenged

13) I had to put a lot of effort into it

14) I felt good

