
INTRODUCTION TO COMPUTER SCIENCE

AN OBJECT-ORIENTED APPROACH

USING JAVA 5
BlueJ and BeanShell Edition

Barry G. Adams
Department of Mathematics and Computer Science

Laurentian University

Copyright 1999–2007, Barry G. Adams, all rights reserved.

Contents

1 Introduction to Computation 1
1.1 Introduction .. . 2
1.2 Algorithms .2
1.3 Processors .. 3

1.3.1 Functional units of a CPU .. 4
1.4 Memory and I/O devices .. . 4
1.5 Programs . 6
1.6 Computer languages .. . 6

1.6.1 Machine and assembly languages 7
1.6.2 High-level languages .. . 8

1.7 Translation and interpretation of programs 9
1.8 Java virtual machine 10
1.9 Java source code to bytecode translation example 11
1.10 Review exercises 12

2 Fundamental Data Types 13
2.1 Fundamental data types and variables 14

2.1.1 Integer and floating point data types 14
From mathematical to computer data types 15
The char data type . 16
The boolean data type . 16

2.1.2 Integer and floating point literals 16
2.1.3 Declaring and initializing variables in Java 17

Rules for naming variables . 19
Constants . 19

2.2 Arithmetic operations and expressions 20
2.2.1 Basic arithmetic operations 20
2.2.2 Arithmetic expressions and precedence rules 20

2.3 Assignment statements 21
2.3.1 Try it withBeanShell . 22

2.4 Conversion between numeric types (type casting) 24
2.4.1 Truncation of floating point numbers 25
2.4.2 Loss of precision in floating point conversions 26

2.5 Arithmetic functions from theMath class . 27

i

ii CONTENTS

2.5.1 Examples of athematical functions 27
2.5.2 Rounding floating point numbers 29
2.5.3 Mathematical function prototypes 30

2.6 Terminology introduced in this chapter 31
2.7 Review exercises .. . 34
2.8 BeanShell exercises . 36

3 Writing Simple Classes 39
3.1 Introduction .. . 40
3.2 CircleCalculator class usingBlueJ . 40

3.2.1 Experimenting with the class 40
3.2.2 CircleCalculator source code . 43
3.2.3 Explanation of the source code 43

Class declaration . 44
Instance data fields . 44
Constructor declaration . 44
Method declarations . 45

3.3 TriangleCalculator class usingBlueJ . 46
3.3.1 Experimenting with the class 46
3.3.2 TriangleCalculator source code . 48
3.3.3 Explanation of the source code 50

Class declaration . 50
Instance data fields . 50
Constructor declaration . 50
Method declarations . 51

3.3.4 TestingTriangleCalculator . 51
3.4 QuadraticRootFinder class usingBlueJ . 52

3.4.1 Experimenting with the class 52
3.4.2 QuadraticRootFinder source code . 54
3.4.3 Explanation of the source code 55

Class declaration . 55
Instance data fields . 55
Constructor declaration . 56
Method declarations . 56

3.4.4 TestingQuadraticRootFinder . 57
3.5 UsingBeanShell with objects . 58

3.5.1 Constructor call expressions 58
3.5.2 Method call expressions .. . 59
3.5.3 BeanShell examples . 60

3.6 Writing and viewing Javadoc class documentation 62
3.6.1 Javadoc rules . 63
3.6.2 Javadoc version ofCircleCalculator 63

ClassCircleCalculator . 63
3.6.3 Javadoc version ofTriangleCalculator 64

CONTENTS iii

ClassTriangleCalculator . 64
3.6.4 Javadoc version ofQuadraticRootFinder 67

ClassQuadraticRootFinder . 67
3.6.5 Viewing the documentation .. . 69
3.6.6 Implementation and documentation views 70
3.6.7 Project documentation .. . 70

3.7 Syntax and logical errors 71
3.7.1 Some common syntax errors .. 73

Forgetting a semi-colon . 73
Undeclared variables . 73
Declaring a variable more than once .74
Misspelling the constructor name .75
Forgettingnew in constructor call expressions 75

3.7.2 Some common logical errors .. . 75
Using an incorrect formula . 76
Redeclaring an instance variable .. 76
Using a return type on a constructor .76

3.7.3 Invoking a method on a non-existent object 77
3.8 Summary of terminology 78
3.9 Review exercises .. . 86
3.10 Programming exercises 86

4 Classes, Objects, and Methods 91
4.1 Introduction .. . 92
4.2 String class . 92

4.2.1 Constructing strings .. . 92
4.2.2 String expressions and concatenation 93

String expressions containing numbers 94
4.2.3 String methods . 95

The length of a string . 95
Converting a number to a string . 96
Extracting a single character from a string 96
Constructing a substring . 96
Trimming a string . 97
Upper case and lower case conversions97
Searching for substrings . 98

4.2.4 Displaying numbers and strings 99
UsingSystem.out in BeanShell . 99
Special characters in strings .99
UsingSystem.out in BlueJ . 100
The toString method . 101
Defining our owntoString method . 101

4.2.5 Formatting numbers and strings (Java 5) 102
4.3 Example classes that use theString class . 104

iv CONTENTS

4.3.1 BankAccount class (first version) . 104
Designing the class . 104
Implementing the class . 105
ClassBankAccount . 106
Testing the class . 108

4.3.2 InitialsMaker class . 109
Designing the class . 109
Implementing the class . 110
ClassInitialsMaker . 110
Testing the class . 111

4.3.3 PasswordGenerator class . 111
Designing the class . 111
Implementing the class . 112
ClassPasswordGenerator . 113
Testing the class . 115
The “this ” object . 116

4.4 Association and aggregation 117
4.4.1 Association . 117
4.4.2 Aggregation . 117
4.4.3 TriangleCalculatorTester class . 117

ClassTriangleCalculatorTester . 118
4.4.4 Point class . 118

Designing the class . 119
Implementing the class . 119
ClassPoint . 119
Testing the class . 121

4.4.5 Circle class . 121
Designing the class . 121
Implementing the class . 122
ClassCircle . 122
Testing the class withBeanShell . 124
Testing the class withBlueJ . 125
ClassCircleTester . 127

4.5 Other library classes 127
4.5.1 Dates and times . 127

Date class . 127
SimpleDateFormat class . 128
Calendar class . 129
Person class that usesCalendar . 131
ClassPerson . 131
SpecializedCalendar class . 132
ClassCalendarMonth . 133
Explanation of the class . 136
Testing the class . 136

CONTENTS v

ClassCalendarMonthTester . 137
4.5.2 Currency formatting .. 138
4.5.3 Formatting fixed and floating point numbers (Java 1.4) 139

4.6 Review of OOP concepts .. . 140
4.6.1 Constructing objects .. . 140

Using a constructor . 140
Using a static factory method . 140
Using this as a constructor call expression 141
Default constructor . 142

4.6.2 Object references .. 143
Null references . 144
Comparison of primitive and reference types 145
Why do we need both primitive and reference types? 146
Assignment statements for reference types 146

4.6.3 Using references as arguments and method return values 147
4.6.4 Data encapsulation and integrity 148

Side-effects . 149
ClassMPoint . 149
ClassMCircle . 151
Copy constructor . 155
ClassMCircle . 156
BankAccount example . 157
ClassTransferAgent . 158

4.6.5 Instance variables and methods 160
Instance variables . 160
Instance methods . 160
Using an instance method . 160
Method composition . 162

4.6.6 Static variables, constants, and methods 162
Static variables . 162
Static constants . 162
Static methods . 162
Using static methods . 163
Counting the number of objects created from a class 163

4.6.7 Kinds of variables and arguments 165
4.6.8 Call by value argument passing mechanism 165

Call by value for an argument of primitive type 166
ClassArgumentTester1 . 166
Call by value for an argument of reference type (object type). 167
ClassArgumentTester2 . 168

4.6.9 main method . 169
Adding amain method to a class . 169
ClassCircleTester . 170
Writing a runner class . 171

vi CONTENTS

ClassBankAccountRunner . 171
4.7 Running a class with amain method . 172
4.8 Review exercises .. . 172
4.9 BeanShell exercises . 173
4.10 Programming exercises 175

5 Using Graphics Classes and Objects 181
5.1 Introduction .. . 182
5.2 Using theGraphicsFrame class . 182

5.2.1 EmptyDrawing template for simple graphics programs 183
ClassEmptyDrawing . 183

5.3 The graphics context 185
5.3.1 Graphics andGraphics2D objects . 185
5.3.2 paintComponent method . 185

5.4 User space and device space 186
5.5 Graphics classes and objects 187

5.5.1 Point2D andLine2D classes . 187
Defining points . 188
Defining lines using points . 188
ClassDrawLine . 189
Drawing rectangles using lines .190
ClassDrawBiggestRectangle . 190
Defining lines using coordinates .191
Resizing the drawing window . 192
ClassDrawBiggestRectangle2 . 193

5.5.2 Geometrical Shape Hierarchy (java.awt.geom package) 194
Drawing points . 194

5.5.3 RectangularShape classes . 195
Rectangle2D class . 196
ClassDrawBiggestRectangle3 . 196
Ellipse2D class . 197
ClassDrawEllipse . 197
RoundRectangle2D class . 198
ClassDrawRoundRectangle . 198
Arc2D class . 199
ClassDrawArc . 200

5.6 The drawing process .. . 202
5.6.1 Specifying attributes 202

Improving the rendering quality (smoothness) 202
Specifying colors . 203
Specifying line thickness . 205
ClassDrawArc2 . 205
Filling and stroking . 206

5.7 Put on a happy face .. 207

CONTENTS vii

5.7.1 Designing the face with boxes 207
5.7.2 No-frills happy face .. 207

ClassFaceMaker1 . 208
5.7.3 Colorful happy face .. 210

ClassFaceMaker2 . 211
5.7.4 Facial transformations 213

Affine transformations . 213
Resizing the face to fit the window . 213
ClassFaceMaker3 . 214
Making a half-size face . 217
Rotated happy face . 217

5.7.5 Four happy faces for the price of one 218
Top-level description . 218
Drawing one face . 220
Defining the face geometry . 221
Transforming a face . 221
Rendering a face . 222
ClassFaceMaker6 . 222

5.7.6 Running the six face maker programs together 225
ClassAllTogether . 225

5.8 Making your own coordinate transformations 225
5.8.1 Specific transformations 226

ClassBarGraph1 . 228
5.8.2 World to default user transformation 229
5.8.3 Coordinate system class .. . 231

ClassCoordinateSystem . 232
5.8.4 Drawing a bar graph . 233

ClassBarGraph2 . 233
5.8.5 Drawing a regular pentagon .. . 235

ClassDrawPentagon1 . 235
5.8.6 General transformation using affine transformations. 237

Bar graph using an affine transformation 238
ClassBarGraph3 . 239
Pentagon using an affine transformation 241
ClassDrawPentagon2 . 241

5.8.7 Transforming individual shapes 243
ClassDrawPentagon3 . 244

5.9 Review exercises .. . 246
5.10 Programming exercises 246

6 Making Decisions 251
6.1 Introduction .. . 252
6.2 Simple boolean expressions 252
6.3 If-statements .. . 254

viii CONTENTS

6.4 Real roots of a quadratic equation 256
6.4.1 QuadraticRootFinder class . 256

ClassQuadraticRootFinder . 256
6.5 Block declaration of variables 257
6.6 If-statement with no else 258
6.7 Comparison of floating point numbers 260

6.7.1 Floating point tester class 260
ClassFloatingPointTester1 . 260

6.8 Conditional operator 262
6.9 Nested and multiple (N-way) if-statements 263
6.10 Common errors with if-statements 265
6.11 Compound boolean expressions 268

6.11.1 Writing expressions using AND, OR, and NOT 268
Operator precedence rules . 269
DeMorgan’s laws . 270
Testing numerical ranges . 270

6.11.2 Leap year problem .271
6.11.3 Short circuit evaluation 273

6.12 String comparison and equality 273
6.12.1 Equals method for string omparison 274
6.12.2 Lexicographical ordering of strings 275

ClassCharacterDecoder . 275
Using character codes to order strings 276

6.12.3 compareTo method for string comparison 276
ClassStringComparer . 277

6.12.4 Case insensitive string comparison 278
6.13 Boolean valued methods 278
6.14 Error checking techniques 279

6.14.1 Reporting errors .. 280
6.14.2 Using boolean return values and exit to report errors. 281

6.15 Error reporting using exceptions 282
6.15.1 Exception classes and objects 282
6.15.2 Throwing exceptions in theBankAccount class 282

ClassBankAccount . 284
ClassExceptionTester . 286

6.15.3 Catching exceptions .. . 286
ClassExceptionCatcher . 287

6.16 Paper, scissors, rock game (PSR) 288
6.16.1 Rules of the game .288
6.16.2 Object-oriented PSR game 288

Designing thePSRPlayer class . 289
Designing thePSRGameclass . 289
PSRPlayer implementation . 289
ClassPSRPlayer . 290

CONTENTS ix

PSRGameimplementation . 290
ClassPSRGame . 291
Testing the class withBlueJ . 293
Testing the class withBeanShell . 293
Running the game using amain method 293

6.17 Console Input Using aScanner object . 294
6.17.1 Some usefulScanner methods . 294
6.17.2 One input per line input model 295
6.17.3 Console interface class for the PSR game 295

ClassPSRGameRunner . 295
6.18 Complex roots of a quadratic equation 297

6.18.1 Complex class . 297
ClassComplex . 297
ClassComplexQuadraticRootFinder 298
Testing the class withBlueJ . 301
Testing the class withBeanShell . 301
Console interface . 302
ClassComplexRunner . 302

6.19 Review exercises 303
6.20 BeanShell exercises . 304
6.21 Programming exercises 305

7 Repetition Structures 313
7.1 Introduction .. . 314
7.2 The while-statement (while-loop) 314

7.2.1 Converting a digit string to an integer 317
ClassStringToIntConverter . 318
ClassStringToIntRunner . 319

7.2.2 Square root algorithm using a while-loop 319
ClassSquareRootCalculator . 320
ClassSquareRootRunner . 321

7.2.3 Double your money problem .. 322
ClassDoubleYourMoney . 323
ClassDoubleYourMoneyRunner . 323

7.2.4 Factorization of an integer 324
ClassFactorizer . 325
ClassFactorizerRunner . 326

7.3 Sentinel-controlled while-loops 327
7.3.1 AverageMarkCalculator class . 328

ClassAverageMarkCalculator . 328
7.4 Query-controlled while-loops 328

7.4.1 BankAccount example . 329
ClassMaxBalanceCalculator . 330

7.5 Do-while statement (do-while loop) 331

x CONTENTS

7.6 General loop structures 333
7.7 For-statement (for-loop) 334

7.7.1 Pseudo-code for-loops for counting in steps 334
7.7.2 For-loops for counting in steps 335

7.8 Computing factorials 337
7.8.1 Computing the factorial of an integer 337

ClassFactorialCalculator . 338
ClassFactorialRunner . 338

7.8.2 Computing factorials using theBigInteger class 339
ClassBigFactorialCalculator . 341
ClassBigFactorialRunner . 341

7.9 Expressing the for-loop as a while-loop 342
7.10 Loan repayment table 343

7.10.1 Right justifying numbers in a field of given width 344
7.10.2 StringBuilder class . 345
7.10.3 Loan repayment table class 345

ClassLoanRepaymentTable . 346
7.10.4 Console user interface 348

ClassLoanRepaymentTableRunner . 348
7.11 Nested loops .. . 349

7.11.1 Investment table .. 352
ClassInvestmentTable . 353

7.11.2 Console user interface 354
ClassInvestmentTableRunner . 354

7.12 Plotting the graph of a function 356
7.12.1 SineGraph class . 358

ClassSineGraph . 358
7.13 Recursion and loops 361

7.13.1 What is recursion? .. 361
7.13.2 Examples of recursive definitions 361
7.13.3 Recursive factorial method 362

ClassFactorialCalculator . 363
ClassFactorialRunner . 363

7.13.4 Recursive gcd method .. 364
ClassGcdCalculator . 364
ClassGcdRunner . 365

7.13.5 Non-recursive and recursive sum methods 366
7.14 Common loop errors .. . 366

7.14.1 Misplaced semi-colon .. . 367
7.14.2 Off by one errors .367

7.15 BeanShell exercises . 367
7.16 Programming exercises 368

8 Array Data Types 379

CONTENTS xi

8.1 Introduction .. . 380
8.2 Mathematical sequences and subscript notation 380
8.3 Declaring and constructing arrays 381

8.3.1 Arrays of primitive type .. . 382
Declaring array types . 382
Constructing arrays . 382
Assigning values to array elements .. 382
Using array initializers . 383

8.3.2 Calculating the number of days in a month 384
ClassDaysInMonthCalculator . 384
ClassDaysInMonthRunner . 385
Declaring the size of an array at run-time 386
The length of an array . 386

8.3.3 Sequential array processing 386
8.3.4 Arrays of object type .. 387

Point2D arrays . 389
8.3.5 String arrays . 390

Command-line arguments . 390
ClassCommandLineArguments . 391
ClassLoanRepaymentTableRunner . 391
ClassInvestmentTableRunner . 392

8.3.6 Using arrays as method arguments and return values 393
Testing an array processing method .395
ClassAverage . 395
ClassAverageRunner . 396

8.4 Some simple array algorithms 397
8.4.1 Algorithm for the maximum array element 397

ClassMaxFinder . 397
ClassMaxFinderRunner . 398

8.4.2 Linear search slgorithm 400
ClassLinearSearcher . 400
ClassLinearSearcherRunner . 401

8.4.3 Bubble sort algorithm .. 402
Sorting an array of numbers . 403
ClassBubbleSorter . 404
ClassBubbleSorterRunner . 405
Sorting an array of strings . 406

8.5 Efficient evaluation of a polynomial 406
8.5.1 Horner’s algorithm .. 407
8.5.2 A class for polynomials .. 408

ClassPolynomial . 408
8.5.3 Testing thePolynomial class . 409

ClassPolynomialRunner . 410
8.6 Line graph example using arrays 411

xii CONTENTS

8.6.1 Line graph class . 411
Choosing a coordinate system . 412
Drawing the axes . 413
Drawing the line segments . 414
Drawing the circles at each vertex .414
ClassLineGraph . 414
ClassSimpleTester . 417

8.6.2 Drawing a random line graph .. 418
ClassRandomTester . 419

8.6.3 Converting arrays toGeneralPath objects 420
8.7 For-each loop .. 420
8.8 Methods with a variable number of arguments 422
8.9 Two-dimensional arrays 423

8.9.1 Multiplying matrices .. . 425
ClassMatrixMultiplier . 426
Testing the method inBlueJ . 427
Testing the method inBeanShell . 428
Testing matrix multiplication .. 429
ClassMatrixMultiplierRunner . 429

8.9.2 Board games . 431
8.10 Card shuffling and dealing application 432

8.10.1 Card class . 432
Card class design . 433
Card class implementation . 433
ClassCard . 433

8.10.2 CardDeck class . 436
CardDeck class design . 436
CardDeck implementation . 437
ClassCardDeck . 438
Testing the class inBlueJ . 440
Testing the class inBeanShell . 441
Testing the class from the command line 441
ClassCardDeckTester . 441

8.11 Review exercises 443
8.12 BeanShell exercises . 443
8.13 Programming exercises 444

9 Inheritance and Interfaces 451
9.1 Introduction .. . 452
9.2 What is inheritance? 453

9.2.1 The “is-a” and “has-a” relationships 454
9.3 Rules for declaring subclasses 455
9.4 Simple examples of subclasses 456

9.4.1 Graphics programs .456

CONTENTS xiii

9.4.2 Extending a circle calculator class 457
ClassCircleCalculatorA . 457
ClassCircleCalculatorB . 458
ClassCircleCalculatorTester . 459
BlueJ project for the circle calculator classes 460

9.4.3 Extending theBankAccount class . 460
ClassBankAccount . 461
ClassJointBankAccount . 464
BlueJ project for the bank account classes 465

9.5 Polymorphism .. 466
9.5.1 Polymorphic types .466

Polymorphic types in theBankAccount hierarchy 466
ClassAccountTester . 467
Examples of polymorphism . 468

9.5.2 Polymorphic methods .469
A polymorphic bank account transfer method 469
The polymorphictoString method . 470
ClassAccountTester2 . 470
Compile-time and run-time types . 471

9.6 Abstract classes and polymorphism 471
9.6.1 An employee inheritance hierarchy 471
9.6.2 Employee andManager classes . 472

ClassEmployee . 472
ClassManager . 473

9.6.3 Polymorphism in theEmployee hierarchy 474
ClassEmployeeProcessor . 474

9.7 TheObject class . 476
9.7.1 OverridingObject class methods . 476

Overriding thetoString method . 476
Overriding theequals method . 477
ClassPointEqualsTester . 477

9.8 Final classes .. . 479
9.9 Interfaces .. 479

9.9.1 Implementing theMeasurable interface 482
A measurable circle class . 482
ClassCircle . 482
A measurable rectangle class . 484
ClassRectangle . 484
Polymorphism with theMeasurable interface 485
ClassMeasurableTester . 485

9.9.2 Polymorphism with theShape interface 486
ClassShapeTester . 487

9.10 Multiple interfaces 488
9.10.1 Interface specifications 489

xiv CONTENTS

InterfaceMeasurable . 489
InterfaceTranslatable . 489
InterfaceScalable . 490

9.10.2 Classes that implement the interfaces 490
ClassCircle . 490
ClassRectangle . 491

9.10.3 Typecasts with multiple interfaces 492
ClassMultipleInterfaceTester . 492

9.11 Implementing theShape interface . 493
9.11.1 Shape interface methods . 493
9.11.2 Extending aShapeAdapter class which implementsShape 494

ClassShapeAdapter . 494
9.11.3 Triangle2D class that usesShapeAdapter 495

ClassTriangle2D . 496
ClassRandomTriangles . 497

9.11.4 ImplementingShape directly . 498
9.12 Turtle graphics class 499

9.12.1 Specification of the class 499
9.12.2 Implementation of the class 500

ClassTurtle2D . 502
9.12.3 Writing turtle graphics programs 505

ClassPentagonSpinner . 506
9.12.4 Recursive turtle graphics programs 508

ClassRecursiveTreeMaker . 508
9.13 Numerical applications of interfaces 509

9.13.1 Displaying a table of values of a function 510
InterfaceDoubleFunction . 511
ClassTableMaker . 511
ClassExpMinusFunction . 512
ClassCosFunction . 512
ClassTableMakerTester . 513

9.13.2 Function iteration 513
ClassFunctionIterator . 514
ClassFunctionIteratorTester . 515
ClassSquareRootIterator . 516

9.14 Review exercises 517
9.15 Programming exercises 518

10 Graphical Interface Design 523
10.1 Introduction 524
10.2 Basic structure of a GUI application 524

10.2.1 Basic template for GUI applications 524
ClassApplicationTemplate . 524

10.3 GUI components and the greeting application 526

CONTENTS xv

10.3.1 Greeting application design 526
10.3.2 Determining what GUI components are needed 526
10.3.3 Creating the GUI components 527
10.3.4 Choosing a layout manager for the GUI components 528
10.3.5 Adding GUI components to the frame 528
10.3.6 Sending events to listeners 529
10.3.7 Writing event processing code 530

ClassGreeting1 . 531
10.3.8 Using a button in the greeting application 532

ClassGreeting2 . 533
10.3.9 Multiple types of action event responses 535

ClassGreeting3 . 536
10.3.10 Using inner classes to specify event handlers 537

ClassGreeting4 . 538
External names for inner classes .540

10.4 Numeric fields and the temperature application 540
10.4.1 Numeric and string conversions 540

Converting numbers to strings . 540
Converting strings to numbers . 541
Using numeric fields in the temperature application 541

10.4.2 Temperature application 541
ClassTemperature . 541

10.5 Multi-line text fields 543
10.5.1 JTextArea objects . 543
10.5.2 Investment application 543

Using panels to design GUI layouts . 544
Doing the calculations . 545
ClassInvestment . 546

10.6 Using inheritance to design smarter text fields 548
10.6.1 Structure of theJTextField class . 548

ClassInputJTextField . 549
10.7 GUI for the loan repayment class 552

10.7.1 GUI version of the loan repayment class 552
ClassLoanRepaymentTableGUI . 553

10.8 Unit conversion application 555
10.8.1 Conversions class . 558

ClassConversions . 558
10.9 Inheritance and listener interfaces 560

10.9.1 ActionListener interface . 561
10.9.2 WindowListener interface . 561

10.10 Average mark calculator 563
10.10.1 Console version of average mark calculator 563

ClassMarkAverageConsole . 563
10.10.2 GUI version of average mark calculator 564

xvi CONTENTS

ClassMarkAverageGUI . 567
10.11 GUI version of theRandomTriangles class . 569

10.11.1ControlPanel class . 569
ClassControlPanel . 570
ClassRandomTrianglesGUI . 571

10.12 Inheritance and theGraphicsFrame class . 573
10.12.1GraphicsFrame class . 574

ClassGraphicsFrame . 574
10.13 Applets .. 575

10.13.1 RGB color applet .. 576
Laying out the components . 577
ClassRGBColorApplet . 581

10.13.2 Running applets fromBlueJ . 584
10.13.3 Running Java applets in a browser 586
10.13.4 Launching Java applications from an applet 587

ClassApplicationLauncher . 588
10.14 Review exercises 590
10.15 Programming exercises 590

11 Files and Streams 593
11.1 Introduction 594
11.2 File concepts .. . 594

11.2.1 What is a file? . 594
11.2.2 File organization on a sisk 594
11.2.3 Efficient file access using buffering 595
11.2.4 File access rights .. . 595
11.2.5 Reading and writing sequential files 595

Reading a sequential file . 595
Writing a sequential file . 596

11.2.6 File access methods .. . 597
Sequential access files . 597
Random access files . 597

11.3 File structure 598
11.3.1 Text file structure .. . 598
11.3.2 Binary file structure 599
11.3.3 Streams . 599

11.4 Java stream and file I/O class hierarchies 600
11.4.1 InputStream hierarchy . 600
11.4.2 OutputStream hierarchy . 603
11.4.3 Reader hierarchy . 604
11.4.4 Writer hierarchy . 605
11.4.5 File class . 606
11.4.6 Summary . 606

11.5 File I/O error handling using exceptions 607

CONTENTS xvii

11.5.1 Unchecked exceptions .. . 607
11.5.2 Checked exceptions .. 607

11.6 Reading and writing byte streams 608
11.6.1 Reading bytes from an input byte stream 608
11.6.2 Writing bytes to an output byte stream 610
11.6.3 File copy program .611

ClassFileCopier . 611
ClassFileCopyChooser . 613

11.7 Reading and writing character streams 616
11.7.1 Reading characters from an input stream 616
11.7.2 Writing characters to an output stream 618

PrintWriter class . 619
11.7.3 Simple search program .. . 620

ClassFileSearcher . 620
11.8 Viewing byte contents of files 622

11.8.1 ByteViewer class . 623
ClassByteViewer . 623

11.9 Text files ofBankAccount objects . 626
11.9.1 Reading and writing single-line records 626

Implementing thewriteAccount method 627
Implementing thereadAccount method 627

11.9.2 Finding a home forreadAccount andwriteAccount 629
11.9.3 Extending theBufferedReader class . 629

ClassBufferedAccountReader . 629
11.9.4 Extending thePrintWriter class . 632

ClassPrintAccountWriter . 632
11.10 Bank account text file processing 633

11.10.1 Finding the maximum balance among the accounts 635
ClassMaxBalanceCalculator . 636

11.10.2 Account processing 637
11.10.3 Reading database files into arrays 637
11.10.4 The DynamicArrayList<E> Class . 638

ClassListProcessor . 640
11.11 Binary object files using Polymorphism 643

11.11.1 Writing serialized objects to a file 643
ClassAccountListObjectWriter . 644

11.11.2 Reading serialized objects from a file 646
ClassAccountListObjectReader . 646
Reading more than one object at a time 648

11.12 Review exercises 649
11.13 Exercises .. . 650

12 Searching and Sorting Algorithms 657
12.1 Introduction 658

xviii CONTENTS

12.2 Minimum and maximum algorithms 658
12.3 Running time of an algorithm 661
12.4 Searching algorithms 662

12.4.1 Linear search algorithm 662
Order of linear search . 663

12.4.2 Recursive binary search algorithm 664
12.4.3 Non-recursive binary search algorithm 665
12.4.4 Running time of binary search algorithm 666
12.4.5 Class of static searching methods 667

ClassIntArraySearch . 668
12.4.6 Testing the search algorithms 669

ClassIntArraySearchTester . 669
12.5 Sorting algorithms 671

12.5.1 Selection sort algorithm 671
12.5.2 Running time for selection sort 673
12.5.3 Insertion sort algorithm 674
12.5.4 Running time for insertion sort 676
12.5.5 Simulation to compare selection and insertion sort 676

ClassQuadraticSortTimer . 677
12.5.6 Mergesort . 680
12.5.7 Merge algorithm for two sorted subarrays 680
12.5.8 Running time for mergesort 686
12.5.9 File merge example .. 686

ClassFileMerger . 688
12.5.10 Quicksort .690

Partitioning an array . 690
An implementation of partition .692

12.5.11 Running time for quicksort 693
12.5.12 Simulation to compare mergesort and quicksort 694

ClassFasterSortTimer . 694
12.5.13 Class of static sorting methods 696

ClassIntArraySort . 696
12.5.14 Testing the sorting algorithms 700

ClassSortTester . 701
12.6 Generic object sorting 702

12.6.1 TheComparator interface . 703
12.6.2 GenericArraySort class . 705

ClassGenericArraySort . 705
12.6.3 Sorting strings in lexicographical order 709

ClassStringComparator . 709
ClassStringDecreasingComparator 710
ClassGenericStringSortTester . 710

12.6.4 ComparingBankAccount objects . 713
ClassAccountNumberComparator . 713

CONTENTS xix

ClassAccountBalanceComparator . 713
ClassBankAccountSortTester . 714

12.7 Arrays class . 714
12.7.1 Comparable interface . 715
12.7.2 Searching algorithms 715
12.7.3 Sorting algorithms .. . 716

12.8 Exercises .. 717

13 Introduction to Data Types and Structures 723
13.1 Introduction 724
13.2 Abstract data types 724

13.2.1 Classification of ADT operations 724
Create operation . 725
Copy operation . 725
Destroy operation . 725
Modification operations . 725
Inquiry operations . 725

13.2.2 Pre- and post-conditions 725
13.2.3 Simple ADT examples .726

An integer ADT . 726
A floating point ADT . 726
A character ADT . 727
A boolean ADT . 727

13.2.4 Some common structured ADTs .. . 727
The array ADT . 727
The string ADT . 727

13.2.5 User defined ADT examples .. 728
A dynamic array ADT . 728
A bag ADT . 728

13.3 Implementing an ADT .. . 728
13.3.1 Implementation of theBag<E> ADT . 729

Designing theBag<E> ADT . 729
InterfaceBag<E> . 729
Designing a fixed size implementation 730
Choosing a data structure . 731
Implementing the constructors .732
Implementing the methods . 732
ClassFixedBag<E> . 733
Converting to a dynamic implementation 735
ClassDynamicBag<E> . 736

13.3.2 Implementation of theDynamicArray ADT 737
Designing theArray ADT . 737
InterfaceArray<E> . 738
Designing a dynamic implementation .739

xx CONTENTS

Using the design . 739
Implementing the constructors and methods 740
ClassDynamicArray<E> . 740

13.4 Java Collections Framework (JCF) 742
13.4.1 Interface hierarchy 742
13.4.2 Traversing a collection with an iterator 744
13.4.3 Iterable<E> interface . 746

13.5 Collection<E> andSet<E> interfaces . 746
13.5.1 Collection<E> interface . 746
13.5.2 Set<E> interface . 748

Set theory interpretation of the bulk set methods 749
13.6 Set Implementations and examples 749

13.6.1 HashSet<E> implementation ofSet<E> 749
13.6.2 LinkedHashSet<E> implementation ofSet<E> 750
13.6.3 TreeSet<E> implementation ofSortedSet<E> andSet<E> 750
13.6.4 Simple set examples .. 751
13.6.5 Removing duplicates from a list of words 753

ClassRemoveDuplicateWords . 753
13.7 List<E> andListIterator<E> interfaces . 754

13.7.1 List<E> interface . 754
13.7.2 ListIterator<E> interface . 757

13.8 List<E> implementations and examples . 757
13.8.1 ArrayList<E> implementation ofList<E> 757
13.8.2 LinkedList<E> implementation ofList<E> 758
13.8.3 Simple list examples .. . 758
13.8.4 Book inventory example .. . 760

ClassBook . 760
ClassBookList . 762

13.8.5 Insertion in a sorted list 764
ClassSortedListExample . 766

13.9 Map data type .. 768
13.9.1 Name-age example .768
13.9.2 Basic map operations .. . 768
13.9.3 Hash tables and codes .. 769

13.10 TheMap<K,V> interface . 770
13.11 Map implementations and examples 772

13.11.1HashMap<K,V> implementation ofMap<K,V> 773
13.11.2LinkedHashMap<K,V> implementation ofMap<K,V> 773
13.11.3TreeMap<K,V> implementation ofMap<K,V> 774
13.11.4 Simple map examples .. 774
13.11.5 Hours worked example .. . 777

ClassHoursWorked . 778
13.11.6 Favorites map with maps as values 780

13.12 Recursion examples using maps 783

CONTENTS xxi

13.12.1 The Fibonacci sequence 783
ClassFibonacci . 783

13.12.2 The Q-sequence .784
ClassQSequence . 785

13.13Collections utility class . 786
13.13.1 Book list sorting example 786

ClassBookComparator . 787
ClassSortBookList . 787

13.14 Programming exercises 789

xxii CONTENTS

List of Figures

1.1 An algorithm for
√

2 . 3
1.2 Computer memory locations (bytes) and addresses 5
1.3 Block diagram of a computer system 5
1.4 Mathematical description of addition problem 9
1.5 Java program statements to add three integers 9
1.6 The compilation process 9
1.7 The interpretation process 10
1.8 The Java Virtual Machine 11

2.1 Pictorial representation of uninitialized variables 17
2.2 Pictorial representation of initialized variables 18
2.3 UsingBeanShell to display results. 23
2.4 Matching actual and formal arguments 31

3.1 Thechapter3 project . 41
3.2 Enter constructor args and invoking methods 42
3.3 After choosing thegetArea method the result for the area is displayed. 42
3.4 ThreeCircleCalculator objects for radii 2, 3, and 4. 42
3.5 Instance data fields forcircle1 objects in (a) andcircle2 objects in (b). 44
3.6 Triangle formulas given two sidesa andb, and the contained angleγ. 46
3.7 Dialog box for entering the arguments to construct aTriangleCalculator object 47
3.8 The method menu for aTriangleCalculator object. 47
3.9 third side and sum of angles 48
3.10 Inspecting aTrianglCalculator object . 48
3.11 Dialog box for constructingQuadraticRootFinder object 52
3.12 The method menu for aQuadraticRootFinder object. 53
3.13 The roots of the quadratic equation fora = 1, b =−2 andc = 3/4. 53
3.14 The dialog box for thesetC method. 53
3.15 The roots of the quadratic equation fora = 1, b =−2, c = 1. 53
3.16 Inspect for aQuadraticRootFinder object . 54
3.17 Another example of inspect 58
3.18 UsingBeanShell to construct aCircleCalculator object and invoke its methods. 61
3.19 An editor window. 70
3.20 Generated Java documentation obtained from the implementation/interface button. 71

xxiii

xxiv LIST OF FIGURES

3.21 A web page for the chapter3 project documentation 72
3.22 BlueJ syntax error for a missing semi-colon. 73
3.23 DetailedBlueJ error message for a missing semi-colon. 73
3.24 DetailedBlueJ error message for an undeclared variable. 74
3.25 DetailedBlueJ error message for a variable declared twice.74
3.26 DetailedBlueJ error message for misspelled constructor name. 75
3.27 A template for a simple Java class declaration. 81
3.28 A template for a simple Java constructor declaration. 81
3.29 A template for a simple Java method declaration. 82

4.1 A string object in memory and a reference to it calledgreeting 93
4.2 BlueJ terminal window . 101
4.3 Matching actual and formal constructor arguments 105
4.4 (a) Constructing aBankAccount object, (b) the object menu 109
4.5 (a) Association inBlueJ using dashed line, (b) output for a test case. 119
4.6 Aggregation with thePoint andCircle classes. 125
4.7 Using inspect for object references 126
4.8 Getting an object on the workbench 126
4.9 TestingCalendarMonth in BlueJ . 137
4.10 Box and arrow representation of an object and a reference to it. 144
4.11 Comparison of primitive and reference types. 145
4.12 a = b for primitive types 146
4.13 a = b for reference types 147
4.14 A side-effect afterp changes thex from 3 to 999 154
4.15 The side-effect disappears afterp changesx from 3 to 999 158
4.16 TheTransferAgent example inBlueJ . 160
4.17 Correspondence between call expressions and prototypes 161
4.18 Call by value using references. 168
4.19 Themain-method project. 170

5.1 An empty drawing window .. . 183
5.2 User and device space 187
5.3 Drawing a line .. 190
5.4 The biggest rectangle 191
5.5 The biggest rectangle after resizing window 192
5.6 Inheritance hierarchy andShape interface diagram for graphics classes 195
5.7 Ellipse, circle, and frames 198
5.8 Drawing round rectangles 200
5.9 The three types of arcs 201
5.10 Anti-aliased version ofDrawArc . 203
5.11 DrawArc2 showing colors and stroke thickness 2 206
5.12 Designing the happy face with boxes 207
5.13 FaceMaker1 : a no-frills happy face . 210
5.14 FaceMaker2 : a colorful happy face . 212

LIST OF FIGURES xxv

5.15 FaceMaker3 : translating and scaling the happy face215
5.16 FaceMaker4 : a half-size happy face . 218
5.17 FaceMaker5 : a rotated happy face . 218
5.18 FaceMaker6 : four happy faces . 219
5.19 Bar graph coordinate transformation 226
5.20 Output of theBarGraph1 program . 230
5.21 World to default user coordinate transformation 230
5.22 Output of theDrawPentagon1 class . 237
5.23 World to default user coordinate transformation 238
5.24 A colorful happy face with ears 247
5.25 A fish . 248
5.26 Winnie the Pooh .. . 248
5.27 Nakami Araki .. 249
5.28 Centered coordinate system 250

6.1 A template for the if-statement 254
6.2 A flowchart for the execution of an if-statement 255
6.3 Flowchart for an if-statement with no else-part 259
6.4 Template for the multiple if-statement 264
6.5 A flowchart for the execution of a multiple if-statement 266
6.6 forgetting the braces 266
6.7 Pseudo-code algorithm for the leap year problem 272
6.8 Pseudo-code algorithm for roots of a cubic equation 310

7.1 A template for the while-statement 314
7.2 A flowchart for the execution of a while-statement 315
7.3 Algorithm to convert a string to an integer 318
7.4 Algorithm to compute

√
a. 320

7.5 Pseudo-code algorithm for doubling your money 322
7.6 Pseudo-code factorization algorithm 324
7.7 A template for the do-while statement 332
7.8 A flowchart for the execution of a do-while statement 332
7.9 A template for a general loop structure. 333
7.10 A template for the for-statement. 335
7.11 A flowchart for the execution of a for-statement 335
7.12 A for-loop expressed as a while-loop 343
7.13 Pseudo-code loan repayment algorithm 344
7.14 5 rows of 10 circles touching each other 350
7.15 Approximating part of a function with a line segment 356
7.16 Pseudo-code graph drawing algorithm 357
7.17 SineGraph output window . 359
7.18 Partial sum algorithm fore . 370
7.19 Pseudo-code non-recursive gcd algorithm 373
7.20 A pseudo-code gcd algorithm using subtraction 374

xxvi LIST OF FIGURES

7.21 Output from theGridMaker class . 375
7.22 ConcentricCircles output window . 376

8.1 Constructing an array of integers 383
8.2 Constructing an array,b, of threeBankAccount objects 388
8.3 Pseudo-code algorithm for maximum array element 397
8.4 Pseudo-code linear search algorithm 400
8.5 Pseudo-code bubble sort algorithm 403
8.6 Pseudo-code polynomial evaluation algorithm 407
8.7 Line graph for vertex array〈(x0,y0),(x1,y1), . . . ,(x6,y6)〉 412
8.8 Line graph fromSimpleTester . 418
8.9 A RandomTester output window . 420
8.10 A two-dimensional array with different length rows 425
8.11 Output of thePentagonalStar program . 447
8.12 A duck using arrays of points 448

9.1 Part of the domestic animal inheritance hierarchy 454
9.2 Bank account inheritance hierarchy 454
9.3 Employee inheritance hierarchy 455
9.4 A template for a simple Java subclass declaration. 455
9.5 Part of the GUI component hierarchy 457
9.6 Inheritance in BlueJ is indicated by a solid arrow 460
9.7 (a)CircleCalculatorA object menu, (b)CircleCalculatorB object menu . . . 461
9.8 Bank account inheritance project 465
9.9 BankAccount inheritance 466
9.10 Output ofShapeTester class . 489
9.11 Polar coordinates of a point(x1,y1) . 501
9.12 Output forPentagonSpinner program. 507
9.13 Output window for the RecursiveTreeMaker class 510
9.14 Another possible Employee inheritance hierarchy 519

10.1 Greeting application before Enter key is pressed 527
10.2 Greeting application after Enter key is pressed 527
10.3 Greeting application illustrating the flow layout 528
10.4 When an event occurs the component calls the appropriate event handler 529
10.5 Adding listeners (event handlers) to a GUI component 530
10.6 Greeting application containing a button 533
10.7 Greeting application containing an exit button 535
10.8 The temperature conversion application frame 540
10.9 The investment application 544
10.10LoanRepaymentTableGUI application . 556
10.11Conversions application . 557
10.12MarkAverage window for one set of marks . 564
10.13MarkAverage window for two sets of marks . 565

LIST OF FIGURES xxvii

10.14 The random triangles GUI using aControlPanel and aJPanel 569
10.15RGBColorApplet in the applet viewer window 577
10.16RGBColorApplet as a GUI application . 578
10.17RGBColorApplet in a BlueJ project . 585
10.18RGBColorApplet class menu . 585
10.19 DefiningRGBColorApplet applet parameters . 585
10.20RGBColorApplet running in Internet Explorer 587
10.21ApplicationLauncher running in Internet Explorer 588
10.22InvestmentTable application . 591
10.23ChangeMaker application . 591

11.1 TheInputStream andOutputStream hierarchies 601
11.2 TheReader andWriter hierarchies . 602
11.3 Part of the unchecked exception sub-hierarchy ofRunTimeException 607
11.4 Part of the checked exception sub-hierarchy ofIOException 608
11.5 TheByteViewer GUI showingByteViewer.class 622
11.6 Pseudo-code transaction processing algorithm 656

12.1 Pseudo-code algorithm for minimum array element 659
12.2 Pseudo-code linear search algorithm 663
12.3 Alternate Pseudo-code linear search algorithm 663
12.4 Pseudo-code recursive binary search algorithm 666
12.5 Pseudo-code non-recursive binary search algorithm 667
12.6 Pseudo-code selection sort algorithm 672
12.7 An insertion sort example for〈44,55,12,42,94,18,6,67〉. 675
12.8 Pseudo-code insertion sort algorithm 675
12.9 Mergesort example for the array〈8,1,6,4,10,5,3,2,22〉 681
12.10 Merging the subarrays〈1,8,12,15,17〉 and〈2,9,10,19,21,23,25〉 682
12.11 Pseudo-code merge algorithm for two subarrays 683
12.12 Partitioning subarrays for quicksort 691
12.13 Partitioning〈2,1,6,4,8,5,3,10〉 into subarrays〈3,1,2,4〉 and〈8,5,6,10〉. 693

13.1 JCF related interface hierarchy 742
13.2 TheCollection<E> interface . 743
13.3 TheIterable<E> interface . 744
13.4 TheIterator<E> interface . 744
13.5 TheSet<E> interface . 748
13.6 TheHashSet<E> class . 750
13.7 TheLinkedHashSet<E> class . 750
13.8 TheTreeSet<E> class . 751
13.9 TheList<E> interface . 755
13.10 TheListIterator<E> interface . 755
13.11 Indices for a list iterator 757
13.12 TheArrayList<E> class . 758

xxviii LIST OF FIGURES

13.13 TheLinkedList<E> class . 759
13.14 A two-column representation of the name-age map 768
13.15 A simple hash table of size 11 usingh(k) = k mod 11. 769
13.16Map interface . 771
13.17 TheHashMap<K,V> class . 773
13.18 TheLinkedHashMap<K,V> class . 773
13.19 TheTreeMap<K,V> class . 774
13.20 A map of maps .781
13.21 Memory game algorithm 792

List of Tables

1.1 Intel 8088 machine language program and data 7
1.2 Intel 8088 assembly language instructions 8
1.3 Example of Java source code to bytecode translation 12

2.1 The Java integer and floating point primitive types. 16
2.2 Translation of mathematical expressions to Java. 21

3.1 BlueJ actions and their corresponding Java statements. 59

5.1 The standard colors 204

6.1 The six comparison operators 253
6.2 The three basic logical operators 268
6.3 Truth tables for AND, OR, and NOT 269
6.4 ASCII codes for characters 276
6.5 Lexicographical string comparison usingcompareTo 277
6.6 Table of outcomes for the paper, scissors, rock game 289
6.7 Truth table for the exclusive or 303

7.1 A loan repayment table 344

8.1 Bubble sort example .. . 403
8.2 A deck of playing cards 433

12.1 Binary search example 664
12.2 Comparison ofn and log2n . 665
12.3 Low and high indices for non-recursive binary search 666
12.4 Selection sort example 672
12.5 Counting inner loop executions for selection sort 674
12.6 Counting inner loop executions for worst case insertion sort 676
12.7 Comparing average times for selection sort and insertion sort. 679
12.8 Growth rates for log2n, n, nlog2n, andn2. 687
12.9 Comparing average times for mergesort and quicksort. 696

xxix

xxx LIST OF TABLES

Chapter 1

Introduction to Computation
Algorithms, Processors, and Programs

Outline

Concepts of algorithm, processor, and memory

Translation and interpretation of programs

Java virtual machine (JVM)

Java source code compiler and byte code

1

2 Introduction to Computation

1.1 Introduction

In this chapter we present a brief overview of the nature of computation and the process whereby
a computer program written in a high-level language such as Java can be executed by a computer
system. First we introduce the concept of an algorithm whichdescribes how to solve a problem or
accomplish a task in a sequence of well defined steps. We are interested in algorithms that can be
executed by a computer system. To do this it is necessary to translate the algorithm into a program
in a language that the computer understands. When this is done the computer can execute the steps
of the program to complete the task for which the algorithm was designed.

The design of efficient algorithms, their expression in a programming language, and their ex-
ecution by a computer system is the essence of computer science. We are primarily concerned
with the problem solving process whereby algorithms are constructed, converted to programs in
the Java language, compiled, and executed by the Java Virtual Machine.

1.2 Algorithms

We are all somewhat familiar with algorithms. A recipe for baking a loaf of bread is a standard
example. The recipe is expressed as a number of steps that, iffollowed, will produce a loaf of
bread. It is important that each step be specified without ambiguity. For example, the step “add
some flour” is not precise enough and should be replaced by something like “add 3 cups of flour”.
Here we are assuming that the baker knows how much is in a cup. There are many other examples
from everyday life that can be expressed as a number of English statements that are sufficiently
detailed for an average person to understand and follow.

A recipe is not unique. It is possible to express a recipe for aparticular kind of bread as a
large number of simple steps for a novice baker or as a smallernumber of steps for an experienced
baker, who would understand a vague statement such as “season to taste”. A novice would require
further instructions on the kind and quantity of spices or herbs to add. Generalizing, we can say
that analgorithm is a sequence of unambiguous steps, for accomplishing some task or process.
Each step is a simple instruction or statement. The word “sequence” is important since it implies
that the steps must be performed in a specific order.

We are interested in algorithms that can eventually be executed by a computer system so it
will be very important that the individual instructions be unambiguous. We also require that the
total number of steps in an algorithm is finite although algorithms can have an infinite number
of steps and still be well-defined. For example, in mathematics any algorithm to calculate

√
2

necessarily has an infinite number of steps since the answer is an irrational number that has an
infinite non-repeating decimal expansion.

We can rephrase the algorithm in a finite form by asking for an algorithm to compute
√

2 ac-
curate to a specified number of digits. Such an algorithm is given in Figure 1.1. Here the left
arrow means that the value on the right side of the arrow is computed and assigned as the value of
the variable on the left side of the arrow. This algorithm is still not completely precise because it
doesn’t specify how many digits to use in the intermediate calculations. For example, if you use at
least 16 significant digits in each arithmetic operation then the algorithm will produce the approx-
imation 1.41421356237 accurate to the number of digits shown. The algorithm also assumes that

1.3 Processors 3

ALGORITHM : SquareRootOfTwo
x0← 1
x1← (x0+2/x0)/2
x2← (x1+2/x1)/2
x3← (x2+2/x2)/2
x4← (x3+2/x3)/2
x5← (x4+2/x4)/2
RETURN x5

Figure 1.1: An algorithm for computing an approximation to
√

2

the user knows how to add and divide real numbers (floating point numbers). Otherwise it would
have to be rewritten as an enormous number of smaller steps that explain the+ and/ operations.

Thus, algorithms have a context: they assume that the user (or computer) understands how to
execute a basic set of unambiguous instructions. Unfortunately, as we will see, the instructions
understood by a computer system are very elementary and far removed from the combination of
natural language and mathematics that are normally used to formulate algorithms at the human
problem solving level.

1.3 Processors

A processor is any device, computer, calculator, or human being, for example, that can process
or execute a sequence of instructions. A computer system contains a processor, called a central
processing unit or CPU, which knows how to perform (execute)instructions from a specific in-
struction set called the machine language of the CPU. Each kind of CPU has a different machine
language. For example, the machine language of the Pentium CPU used in a PC is very different
from that of the PowerPC CPU used in the Macintosh computer. The CPU in one of these personal
computers is built on a single microchip and is called a microprocessor.

Each machine language instruction is defined by a specific binary code: a binary string of
0’s and 1’s. This code determines what operation is to be performed and where to locate any
required data. This data is also represented in binary form.Compared to human problem solving
instructions and algorithms, written in English and mathematics, machine language instructions are
very primitive. In fact a single English instruction such as“compute the value of this polynomial at
x= 3.14” may have to be translated into several or even hundreds ofmachine language instructions
before it is understood by the CPU.

Fortunately, this translation process can be automated today, although this wasn’t always the
case for the first electronic computers. Our goal in this chapter is to briefly explain how the human
problem solving domain is mapped down to this primitive machine language level.

4 Introduction to Computation

1.3.1 Functional units of a CPU

A CPU is composed of three basic functional units.

• Arithmetic-Logic Unit (ALU): performs logical and arithmetic operations on data, such as
adding, subtracting, multiplying or dividing two binary numbers, determining if a number is
zero or greater than zero, or comparing two numbers to see if one is equal to the other, less
than the other, or greater than the other.

• Registers: storage locations within the CPU that hold data and numbers needed by the
ALU in performing operations, storing the results of these operations, or storing the address
of the next instruction to be executed.

• Control Unit (CU): controls the operation of the processor such as fetching from memory
the next instruction to be executed and any data needed, or decoding binary instructions to
determine what operation is to be performed.

1.4 Memory and I/O devices

To execute a machine language program the CPU needs to accessthe instructions and data. In the
early computer systems instructions and data were separateconcepts. Data was stored in a memory
but the program was not stored anywhere. Instead it was painstakingly constructed by connecting
various cables and hardware together. In essence the control unit was being “re-programmed” for
each program.

Von Neumann introduced what is known as the “stored-programconcept” that is the basis of
modern computing systems. The idea is that since instructions and data are both strings of binary
digits (bits) they can both be stored in a memory external to the CPU: instructions are just a form
of data understood by the CPU. Thus, a machine language program and its data is simply a large
string of 0’s and 1’s stored in a memory. The CPU keeps track ofthe location in memory of the next
instruction to be executed and each instruction specifies the location in memory of any required
data. To execute another program it is not necessary to “rewire” the hardware: simply store a new
program and its data in the memory and tell the CPU where to findthe first instruction.

A memory location is a basic unit of memory that has an addressassociated with it to dis-
tinguish it from other memory locations. Today most memories are organized as a sequence of
bytes. Each byte is a memory location containing 8-bits of information. We say that the memory is
“byte-addressable” since every byte has a unique address. Each instruction is now stored in one or
more bytes of memory and similarly for data items such as integers and real numbers. Many mod-
ern microprocessors use 32-bit instructions each stored infour consecutive bytes and use 32-bit
addresses to locate each byte. Similarly, they can process data in arithmetic and logical operations
using up to 32-bits at a time. A pictorial representation of six consecutive bytes of memory, their
addresses, and their content is shown in Figure 1.2. The content of each of the six bytes is shown
inside the boxes but the addresses are shown as labels besideeach box. They are obtained using
address decoding logic built into the memory chips and CPU.

There are two categories of memory chips. ROM is read only memory that once written can
not be changed and RAM is memory that can be read or written. The contents of RAM memory

1.4 Memory and I/O devices 5

11100111

00000110

01011101

10010010

01110111

10100000

Addresses

0001100...000

0001100...001

0001100...010

0001100...011

0001100...100

0001100...101

Figure 1.2: Computer memory locations (bytes) and addresses

Main
Memory

-�

Secondary
Memory

-�

Registers

Control Unit

ALU

CPU

Input
Devices

�

Output
Devices

-

Figure 1.3: Block diagram of a computer system

(volatile memory) are lost when power to the memory chips is interrupted (by turning the computer
off, for example) but the contents of ROM memory is permanent. There are also intermediate types
of memory that can be read and written but do not lose their contents when power is interrupted.

The ROM and RAM memory devices are often called main memory asopposed to secondary
memory which consists of external storage devices such as floppy disks and hard disks. They are
needed to store files and results of computations in a more permanent form that is not lost when
the computer is turned off.

Floppy disks and hard disks are both input and output devices, whereas the keyboard and the
mouse are classified as input devices. Here we use the term “input data” to describe incoming
data that is needed by the processor as it is executing instructions. The term “output data” refers
to data produced by the processor as a result of executing instructions. The block diagram in Fig-
ure 1.3 shows how the CPU communicates with the “outside world” using main memory (RAM
and ROM), secondary memory (floppy disks, hard disks), inputdevices (such as a mouse or key-

6 Introduction to Computation

board), and output devices (such as a display screen or a printer).

1.5 Programs

A program is a representation of an algorithm as a sequence of instructions that can be understood
and executed by a processor to complete the task, problem, orprocess described by the algorithm.
For a CPU each program is a sequence of machine language instructions. Since there are only
a few registers (32, for example) within a CPU for holding instructions to be executed, the data
required, and intermediate results, machine language programs and their data are stored in main
memory (see Figure 1.3).

The CPU’s control unit (CU) is designed to fetch instructions from memory and have them
executed using the ALU for operations and the registers for temporary storage. One of the registers
is a special one called the instruction address register (IAR). It’s purpose is to hold the memory
address of the next machine language instruction to be executed. Program execution at the machine
level can be briefly described by the following steps:

1. Load the IAR with the starting address in memory of the firstmachine language instruction.

2. Use IAR to fetch from memory the instruction to be executedand store it in an instruction
register (IR).

3. Use the CU to decode this instruction to determine the specific operation and the location of
any data required.

4. Fetch any data required and store it in registers.

5. Execute the instruction using this data.

6. Increment the address in the IAR to the next machine language instruction.

7. Return to step 2.

This fetch-decode-execute cycle is fundamental to the operation of all CPU’s and is called inter-
pretation. Thus, a CPU is an interpreter for a machine language program.

1.6 Computer languages

At the lowest level we can write programs directly in machinelanguage as long strings of 0’s and
1’s. The only advantage is that the CPU directly understandsthis language so maximum efficiency
and execution speed can be achieved. However, no one does this anymore because it is too difficult
for all but the simplest programs.

The next step up is to write programs in assembly language. Anassembly language is es-
sentially a mnemonic form of machine language. Instructions have names and addresses can be
represented symbolically with names rather than explicit 32-bit binary numbers. The CPU doesn’t
understand assembly language so it is necessary to convert an assembly language program to a

1.6 Computer languages 7

Instructions (hex) Instructions (binary)
A1 0000 1010 0001 0000 0000 0000 0000
03 06 0002 0000 0011 0000 0110 0000 0000 0000 0010
03 06 0004 0000 0011 0000 0110 0000 0000 0000 0100
A3 0006 1010 0011 0000 0000 0000 0110
Data (hex) Data (binary)
00 06 0000 0000 0000 0110
00 07 0000 0000 0000 0111
01 FF 0000 0001 1111 1111
02 0C 0000 0010 0000 1100

Table 1.1: Intel 8088 machine language program and data in both hexadecimal and binary notation

machine language program. This process of converting a program in one language to a program
in another language is calledtranslation or compilation. Of course, it is necessary to have a ma-
chine language program to do the translation. The translator that converts an assembly language
program to a machine language program is called anassembler. Once this translation process is
completed the resulting machine language program can be stored in memory and executed by the
CPU.

To briefly illustrate these ideas we will use a machine language program for an Intel 8088
processor (processor used in the original IBM PC) that simply adds three integers.

1.6.1 Machine and assembly languages

To understand what machine and assembly language programs looks like let us consider a small
Intel 8088 program to add three numbers and store the results. For this processor the standard size
for an integer is 16 bits. This means that each integer occupies two consecutive bytes of memory.
Therefore we assume that the three numbers to be added are stored in 6 bytes of memory and 2
further bytes of memory are reserved for storing the sum. Therefore the data part of the program
occupies 8 bytes. The processor has an instruction to move a 16-bit integer from memory into
a processor register, an instruction to add an integer in memory to a number in the register, and
an instruction to move the number in a register back to memoryagain. Therefore four machine
language instructions are required to add the three numbersand store the result. The four machine
language instructions and the data are shown in Table 1.1. The right column shows the binary
format and the left column shows the more compact hexadecimal notation (in base 10 the 10 digits
‘0’ to ‘9’ are used, in base 2 the 2 digits ’0’ and ’1’ are used, and in base 16 ’0’ to ’9’ and the six
new “digits” ’A’ to ’F’ are used).

The first instruction,A1 0000 , occupies 3 bytes. The first byte,A1, is called the opcode and
means that this is an instruction that moves a 16-bit number into a specific processor register called
ax . The remaining two bytes contain a special address used to locate the 16-bit number in a special
area of memory called the data segment. The second and third instructions are addition instructions
and the fourth instruction is another move instruction thatstores the result in the data segment.

The final four rows of the table show the 6 bytes in the data segment containing the three

8 Introduction to Computation

Instruction Destination Source
mov ax, i
add ax, j
add ax, k
mov sum, ax
Variable name Storage directive Value
i dw 6
j dw 7
k dw 511
sum dw 0

Table 1.2: Intel 8088 assembly language instructions

numbers to be added and the 2 bytes reserved for the answer. Inthe particular case shown the sum,
using decimal notation is6 + 7 + 511 , and the result (524 decimal,020C hexadecimal) is show
in the last two bytes. Thus, the four-instruction program isjust the string of 112 bits:

1010 0001 0000 0000 0000 0000 0000 0011 0000 0110 0000 0000 000 0 0010
0000 0011 0000 0110 0000 0000 0000 0100 1010 0011 0000 0000 000 0 0110

and is not very intelligible. Nevertheless, this is the onlyprogram understood by the processor.
In order to make programming at this level manageable assembly languages were invented. In

an assembly language symbolic names are given to instruction opcodes, to processor registers, and
to memory addresses. For example, our four instruction machine language program in Table 1.1 is
shown in assembly language in Table 1.2. For example, the instruction

mov ax, i

corresponds to the first three bytes (A1 0000) of the machine language program. Instructions that
move data from one place to another have the namemov and one of the 16-bit processor registers
has the nameax . Also we have used the symbolic namesi , j , k for the addresses of the three
integers to be added, and the namesum for the address of the memory location that will hold the
result. These symbolic names are used as labels ondw directives (dw means “define word”) which
allocate memory for data in 16-bit units. After the statements are executed by the processor the
result (524 decimal,020C hex) will be stored in the two bytes reserved forsum in the last row of
Table 1.2. We don’t care about the actual addresses: the assembler will take care of it. It is clear
that this program is much more understandable than the 112-bit string of 0’s and 1’s in machine
language.

1.6.2 High-level languages

Even though an assembly language program is much easier to write and read than a machine
language program, it is still very far from the familiar mathematical notation used at the human-
level of problem solving which we might express as shown in Figure 1.4.

1.7 Translation and interpretation of programs 9

i← 6 (assign 6 toi)
j← 7 (assign 7 toj)
k← 511 (assign 511 tok)
sum← i + j +k (assign their sum tosum)

Figure 1.4: Mathematical description of addition problem

int i = 6;
int j = 7;
int k = 511;
int sum = i + j + k;

Figure 1.5: Java program statements to add three integers

Therefore, most programs today are written in a high-level language such as C, C++, or Java.
For example, the statements in Figure 1.5 show that Java statements that correspond to the machine
language program in Table 1.1 or the assembly language program in Table 1.2. Even with no
programming experience these statements can probably be understood. Theint modifier indicates
that the name of the following variable refers to an integer number (a 32-bit integer in Java) and
the equal sign indicates that the variable on the left of the equal sign receives the value of the
expression on the right side of the equal sign. The equal signcorresponds to the left arrow that we
have used to denote assignment of a value to a variable.

1.7 Translation and interpretation of programs

Since the CPU only understands machine language it is necessary to convert programs written in
assembly language or a high-level language to machine language. There are three ways to do this

1. Write a program that converts the source program to a machine language program for a
specific CPU and then have the CPU execute this program directly. This is called translation.
The translation of an assembly language program to a machinelanguage program is done by
an assembler. In general a program that converts a program inone language to a program in
another language is called acompiler. This process is illustrated in Figure 1.6.

2. Write a program called aninterpreter that reads the source program one statement at a time

High Level Language

Program Source Code
-

Compiler Machine Language

Program Object Code

Figure 1.6: The compilation process

10 Introduction to Computation

Program Statements
Statement

- Interpreter

Back for next statement

6

-
Translate and execute
machine language
instructions for this
statement

Figure 1.7: The interpretation process

and has each statement executed by the CPU. Early versions ofthe BASIC programming
language were executed in this way. This interpretation process is shown in Figure 1.7.

3. Write a compiler program that translates the high-level language source program to a pro-
gram in some intermediate machine language representationfor a hypothetical machine
called avirtual machine. Now write an interpreter for this machine that has the program
executed on a real CPU. The interpreter can also compile groups of statements so that, if
they are encountered again, they do not need to be re-interpreted again.

Interpreters are more flexible than compilers but they can result in much slower execution since
each high-level language statement must be converted “on the fly” each time the statement is en-
countered. In program loops, where the same sequence of statements can be executed many times,
execution will be slower than for the corresponding machinelanguage program for the real CPU.
The benefits of both interpretation and compilation can be achieved by the hybrid approach (item 3
above) which is often called “just-in-time” compilation. Most Java program language interpreters
can use this hybrid approach to achieve speeds approaching that of the machine language for the
CPU.

1.8 Java virtual machine

Java is a peculiar high level language since it is first compiled, not to the machine language of
a specific real computer, but rather to a machine neutral object code calledbytecode. This is
illustrated in part (a) of Figure 1.8. The bytecode is the machine language for a hypothetical
(virtual) machine called theJava Virtual Machine (or JVM). The Java bytecode and the Java
compiler are both computer independent. Once a bytecode program is obtained it can be run on
any JVM. The JVM is the only machine dependent part of the process, shown in Figure 1.8(b).
Here the JVM interprets the bytecode instructions, converts them to the machine language of the
real machine, and has them executed on the real machine. Essentially, it is the Java interpreter.

Why does the process of running Java programs require an extra step? While it is possible to
design compilers or interpreters to convert Java to a specific machine language, converting it first
to Java bytecode has the advantage of portability. A bytecode program does not depend on the
hardware of any real computer system. It can be run on any computer system without the need for
recompilation as long as someone has written a JVM for the target computer system. Today a JVM
is available for almost every computer system.

1.9 Java source code to bytecode translation example 11

(a) Java Source Code
Java compiler

- Bytecode

(b) Bytecode - Java Virtual Machine

?

Real Machine

Figure 1.8: The Java Virtual Machine

1.9 Java source code to bytecode translation example

The entire process of translating a program from source codeto assembly language to object code
can be illustrated by the Java statements in Figure 1.5 that define three integer variables,i , j , and
k having the values6, 7, and511 , respectively, then add them together and store the result in a
variable calledsum.

The Java compiler translates these statements into the language of the Java Virtual Machine.
Table 1.3 shows three forms of this translation. The first column shows the 12 bytecode instruc-
tions in assembly language for the four Java statements. They are not as recognizable as the Java
statements, and are quite different from the Intel 8088 instructions in Table 1.2, but you can still
see familiar words such as “load”, “store”, and “add”. Thebipush instructions store the two byte
size integers,6 and7, in an area of memory called the stack, thesipush instruction does the same
for the 16-bit size integer511 , theistore instructions store data from the stack into memory, and
the iload instructions load the stack with the numbers to be added. Finally, theiadd instructions
add the numbers and the result is stored in memory.

The second column shows the bytecode in hexadecimal format,and the final column shows the
bytecode in binary form. Thus, the 3 Java statements ultimately result in the following sequence
of 0’s and 1’s:

0001 0000 0000 0110 0011 1100 0001 0000 0000 0111 0011
1101 0001 0001 0000 0001 1111 1111 0011 1110 0001 1011
0001 1100 0110 0000 0001 1101 0110 0000 0011 0110 0000 0100

This program is actually longer than required since it was obtained from the output of the Java
compiler which is assuming that local variables are used forthe variablesi , j , k , andsum. If we
were to write directly in assembly language the program could be expressed more simply as

bipush 6
bipush 7
iadd

12 Introduction to Computation

Assembly Language Bytecode (hex) Bytecode (binary)
bipush 6 10 06 0001 0000 0000 0110
istore_1 3C 0011 1100
bipush 7 10 07 0001 0000 0000 0111
istore_2 3D 0011 1101
sipush 511 11 01 FF 0001 0001 0000 0001 1111 1111
istore_3 3E 0011 1110
iload_1 1B 0001 1011
iload_2 1C 0001 1100
iadd 60 0110 0000
iload_3 1D 0001 1101
iadd 60 0110 0000
istore 4 36 04 0011 0110 0000 0100

Table 1.3: Example of Java source code to bytecode translation

sipush 511
iadd

which uses the stack area of memory to add three numbers and store the result.

1.10 Review exercises

◮ Exercise 1.1Think of something that you know how to do and try to write an algorithm in
English that could be followed by someone who has never done it before.

◮ Exercise 1.2Use your calculator to execute “by hand” the algorithm in Figure 1.1. Compare
your answer with the one produced using the square root key.

◮ Exercise 1.3How would you modify the algorithm in Figure 1.1 to compute anapproximation
to
√

a for anya > 0? Test your algorithm by computing approximations to
√

3,
√

4,
√

100, and√
10000. Note: a good way to test algorithms is to try them usingdata for which you know the

correct answer (e.g.,
√

10000 is 100).

BlueJ andBeanShell Edition Copyright 2002, 2005, 2007, Barry G. Adams

Chapter 2

Fundamental Data Types
Using BeanShell

Outline

Fundamental data types and variables

Declaration and initialization of variables

Arithmetic operations and expressions

Assignment statements

Arithmetic functions from the Math class

Using BeanShell to understand basic concepts

13

14 Fundamental Data Types

2.1 Fundamental data types and variables

Data comes in many types. There are numeric types for integers, characters and floating point
numbers, and there are non-numeric types, such as the boolean type which represents the logical
values true and false. These fundamental types are calledprimitive types. There are alsoobject
types, such as the string type for representing strings of characters. We can also define our own
types. However, in this chapter we concentrate on the fundamental numeric data types.

Formally, adata typehas two parts

• A set of values

• A set of operations on these values

In mathematics the most fundamental kinds of data are the integers and real numbers. We will start
with these familiar types and see how they are represented asprimitive types in Java.

2.1.1 Integer and floating point data types

In mathematics we defineZ to be the set of all integers, and we can define subsets such asN =
{n : n∈ Z,n≥ 0} containing only the non-negative integers (read this as theset of alln such that
n belongs toZ andn is greater than or equal to zero). From the integers we can then obtain the set
of rational numbers (fractions),Q = {q : q = a

b,a,b∈ Z,b 6= 0}. Finally, from the rationals we can
obtain the real numbersR.

In algebra, variables can be defined with values taken from some subset of the integers, ratio-
nals, or real numbers. Then, following the rules of algebra,operations on these values and variables
can be defined.

You should be familiar with the standard operations of addition, subtraction, multiplication, and
division, and with the rules of algebra for writing algebraic expressions involving variables, values,
and operations. Ifa andb are integer or real variables we usea+b, a−b, ab, anda/b to represent
these operations. In mathematics variables are normally one letter symbols so the multiplication
of a andb is implied by juxtaposition of the variables as inab. We can also usea ·b or a×b to
denote multiplication and this is more appropriate for example in pseudo-code algorithms where
variables often have multi letter names. In languages like Java∗ is used to denote multiplication.

Division requires some care, sincea/b is undefined ifb = 0. Also, if a andb are real numbers
thena/b is a real number, but ifa andb are integers thena/b need not be an integer. This means
there are two kinds of division: real number division and integer division to produce a quotient and
remainder. For integer division we can define the quotient and remainder using the

Quotient-remainder theorem (Q-R theorem)If n (the numerator) andd (the divisor
or denominator) are non-negative integers andd 6= 0, there are unique integersq, called
the quotient, andr, called the remainder, such that

n = d ·q+ r, wherer satisfies 0≤ r < d

In mathematics the quotientq is defined as the integer divisionn div d, and the remainderr is
defined, using the modulus operator, asn mod d. Do not confuse the integer divisionn div d with

2.1 Fundamental data types and variables 15

the fractionn
d which is a rational number, or the real numbera/b which in general is not an integer.

For example 27div 5 is 5 (remainder is 2) and 27/5 is the real number 5.4. Using fractions we
would write 27

5 = 5+ 2
5, so we haveq = 5 andr = 2 = 27 mod 5.

From mathematical to computer data types

We run into two problems when we try to make computer data types out of these mathematical
ones:

• Mathematical sets, such asZ andR, are infinite and we cannot represent an infinite number
of integers or real numbers with a finite amount of computer memory.

• Real numbers are stored in computer memory in a binary form. Many real numbers and
fractions, such as 1/3, π, or

√
2, have infinite decimal and binary representations, so they

cannot be stored exactly in binary form with a finite amount ofcomputer memory. Also,
some numbers such as 1/10 = 0.1 have finite decimal representations but infinite binary
representations.

The solution to the first problem is to restrict the ranges of the numbers to a finite subset of integers
or real numbers, and for the second problem we must simply accept the fact that there is some
smallround-off error (loss of precision) incurred when the infinite decimal expansions of certain
numbers such asπ or

√
2 are truncated to fit in a finite computer memory.

For storage, it is necessary to use a specific number of bits for each number. It is conventional
to specify several kinds of numerical data types with different “sizes” (number of bits). The larger
the number of bits, the larger the range of numerical data that can be represented. For integers, two
common choices are 16-bit and 32-bit integers.

Similarly, real numbers are calledfloating point numbers and are commonly stored using
32 or 64 bits. The 32-bit numbers are calledsingle precisionfloating point numbers. The 64-
bit numbers are calleddouble precision floating point numbers, since they can store numbers
with approximately twice the precision (number of significant digits). As a rule of thumb, 32-bit
floating point numbers have about 7 or 8 decimal digits of precision, and 64-bit numbers have about
16 decimal digits of precision. For example, in Javaπ has the approximate value 3.1415927 as a
single precision number and 3.141592653589793 as a double precision number. The trade offis
more precision at the expense of more storage space. Of course loss of precision (round-off error)
does not occur for integer values; either the number fits exactly in memory or there is overflow.

In Java there are seven numeric data types. Five are integer data types, calledbyte , short ,
char , int , and long . The other two numeric types are floating point types, calledfloat and
double . These numeric types and the non-numeric boolean type are called primitive types since
all data types are built from them. The seven numeric types, their sizes in bits, and their ranges, are
shown in Table 2.1. From the table, the minimum and maximum values of the five integer types
are−2n−1 and 2n−1−1, wheren is the number of bits. We normally use the standardint and
double types to represent integers and floating point numbers.

Since our integers now have a limited range we sometimes needto be concerned withoverflow
after performing an arithmetic operation. For example, what happens if we add something to the
largestint value? What happens if we add twoint values and the sum is larger than the largest

16 Fundamental Data Types

Type bits Minimum value Maximum value
byte 8 −128 127
short 16 −32768 32767
char 16 0 65535
int 32 −2147483648 2147483647
long 64 −9223372036854775808 9223372036854775807

float 32 ≈±1.40×10−45 ≈±3.40×1038

double 64 ≈±4.94×10−324 ≈±1.80×10308

Table 2.1: The Java integer and floating point primitive types.

int value? These problems with integer operations are called overflow. In other words, performing
arithmetic operations onint values can cause overflow and the result will be undefined.

A similar problem occurs for floating point numbers of typefloat or double . For example, the
numbers 3.4×1045 and−5.65×1056 have exponents that are outside the range of thefloat type
but within the range of thedouble type. For floating point numbers there is also the problem of
underflow. There are floating point numbers such as 1.5×10−400 that are not zero, but according
to the table they are smaller than the smallest possible non-zero number. They are normally stored
as zero. This is called underflow to 0.

It is not necessary to understand in detail how numbers are actually stored internally in binary
form. It is only necessary to understand how overflow and round-off errors can occur.

The char data type

Thechar data type represents characters, such as the letters of the alphabet, punctuation, or digits.
In Java acharacter literal is represented as a character enclosed in single quotes. Forexample,
the letter “a” is denoted by’a’ , the digit “3” is denoted by’3’ , and the exclamation mark “!” is
denoted by’!’ . It may seen strange that thechar type is considered to be a numeric type, since
we don’t normally think of doing arithmetic on characters. However, internally, characters are
represented as numbers. For example, the character’A’ is represented by the 8-bit ASCII code 65,
or in Unicode, which Java uses, by the 16-bit integer with value 65. We will not use thechar data
type in this Chapter.

The boolean data type

The only non-numeric primitive type is theboolean type which represents the two logical values
for true and false, denoted in Java by theboolean literals true and false . We will not use this
type until we discuss conditional statements in a later Chapter.

2.1.2 Integer and floating point literals

An integer value such as0, 4, or 5434 is called aninteger literal . Similarly, a floating point value
with a decimal point such as3.1416 is called afloating point literal . Scientific notation can also

2.1 Fundamental data types and variables 17

width ? area ?

Figure 2.1: Pictorial representation of uninitialized variables

be used for a floating point literal. For example,6.023E23 denotes 6.023×1023 and uses anE to
indicate the power of 10. Lowercasee can also be used to denote the exponent. Integer literals
never have a decimal point and floating point literals alwayshave one, except a decimal point is
not required if an exponent is used. For example,3E-5 is a valid floating point literal representing
3×10−5 = 0.00003.

2.1.3 Declaring and initializing variables in Java

The concept of avariable is fundamental to all programming languages. In Java, each variable
has a name, a type (such asint or double), and it corresponds to a storage location in computer
memory which can hold a value of the specified type. Think of a variable as a “named storage
location”. The content of this storage location is the valueof the variable. Thus, at any stage in
the execution of a computer program, a variable has a name anda value. Todeclare a variable
means to specify its type and its name in adeclaration statement. This provides information to
the compiler that is used to allocate enough storage space.

EXAMPLE 2.1 (variable declarations) The statements

int width;
double area;

declare anint variable calledwidth and adouble variable calledarea .

The declarations in Example 2.1 allocate two storage locations: 32 bits for an integer value and 64
bits for a double precision value. They do not specify or define the content of the storage locations.
The content of the storage location for a variable is called thevalueof the variable. In Example 2.1
width andarea areuninitialized variables. We say that the value of an uninitialized variable is
undefined. It is useful to have a pictorial representation ofa variable as a “named storage location”
in memory. This is illustrated in Figure 2.1 for the two uninitialized variables. The box represents
the storage location; the variable name is written beside the box. The content of the box is the
value of the variable. A question mark is shown to indicate that the two variables have not been
initialized.

Before we can use these variables they need to be given values. There are two ways to do this:
at the same time they are declared, or later in an assignment statement. We can give them values
when we declare them as the following example shows.

EXAMPLE 2.2 (variable declaration and initialization) Instead of the declarations in the
preceding example, we can use theinitialized declarations:

int width = 5;
double area = 3.1416;

18 Fundamental Data Types

width 5 area 3.1416

Figure 2.2: Pictorial representation of initialized variables

Each declares a variable and gives it an initial value at the same time. The pictorial representation
of these two variables, after initialization, is shown in Figure 2.2. The values in the boxes are the
current values of the variables.

EXAMPLE 2.3 It is also possible to declare and initialize multiple variables of the same type in
a single declaration:

double radius, area, circumference;

Another possibility is

double radius = 2.0, area, circumference;

which declares three variables and assigns the initial value 2.0 to radius .

Alternatively, when the variables are declared without initial values, we can initialize them later,
as shown in the next example.

EXAMPLE 2.4 (assignment statements)If the variableswidth andarea have been previously
declared, as in Example 2.1, we can give them values using statements like:

width = 5;
area = 3.1416;

Each of these statements is an example of anassignment statement.

EXAMPLE 2.5 (Multiple assignment statement) It is possible to give several variables of the
same type a common value using a multiple assignment statement. Assuming thata, b, andc have
been declared as variables of typedouble , the statement

a = b = c = 0.0;

gives each the value0.0 and is equivalent to

a = 0.0;
b = 0.0;
c = 0.0;

which uses three separate assignment statements.

2.1 Fundamental data types and variables 19

Assignment statements always have the name of a variable to the left of the= sign and the value
to be given the variable on the right of the equal sign. You canread the statement “width =
5; ” as “width gets or receives the value 5”. It is an error to use a variable on the left side of
an assignment statement if it has not been previously declared in a declaration statement. You
can always distinguish a declaration statement from an assignment statement because the former
specifies the type and the latter does not specify it.

A characteristic feature of a variable is that it has a type and a value. Java is astrongly typed
language. This means that once a variable has been declared,its type can never be changed.
However, when the program is running the value of a variable can be changed at any time using an
assignment statement.

If you forget to give a value to a variable and later attempt touse its value, the Java compiler
will complain with an error message saying that the variablehas not been initialized.

Rules for naming variables

In Java, the simplest kind of name is called anidentifier . An identifier must begin with a letter,
the dollar sign character ($), or the underscore character (_). Any remaining characters can also
be one of these, or any digit character (0 to 9). It is recommended that you not use the dollar sign
or underscore in variable names. Some identifiers, such as the type namesint anddouble , are
reserved words calledkeywords. They cannot be used for other purposes, such as variable names.

Java is alsocase-sensitive. This means that the case (uppercase or lowercase) is significant.
For example,width , Width , andWIDTH, would be the names of three different variables. It is
conventional to begin variable names with a lowercase letter and you should always follow this
convention, even though it is not a language requirement.

Constants

In addition to variables, Java also hasconstants. Like variables they have names, a type, and a
value. However once a value has been assigned it can never be changed. Constant declarations
are distinguished from variable declarations by using the strange keywordfinal : once you have
specified a value its final! The Java compiler will complain ifyou attempt to change the value of
a constant. The main purpose of a constant is to give a meaningful name to a literal, such as an
integer or floating point literal, as the following example shows:

EXAMPLE 2.6 (declaring constants) The declarations

final double CM_PER_INCH = 2.54;
final int MARGIN_WIDTH = 5;

define adouble constant for a conversion factor from centimeters to inches, and anint constant
that might represent the default width of the margin in a typesetting program.

Effective use of constants improves readability and makes it easier to modify programs. For ex-
ample, if the number5 appears in several places, it might mean the margin width in one place
and something else in another place. Then, changing the margin width is difficult. It is easy if a
constant is used.

20 Fundamental Data Types

It is also conventional to use all uppercase letters for constants with the underscore character
simulating a space.

2.2 Arithmetic operations and expressions

2.2.1 Basic arithmetic operations

In Java the addition and subtraction operations are denotedas in mathematics by+ and- . Juxta-
position cannot be used for multiplication since we want to have variable names longer than one
letter: ab is a variable, not the product ofa andb. Therefore, most programming languages use
the asterisk* to denote multiplication. For example,ab is a variable buta*b is the product of
variablesa andb. Division is denoted by/ . As in mathematics there are two kinds of division:
integer division to obtain the quotient, and the real, or floating point, division. In pseudo-codediv
is often used for integer division and/ is used for floating point division.

Unfortunately in Java/ is used for both kinds of division:a/b is an integer division only if both
a andb have integer values. If either or both ofa andb have floating point values it is a floating
point division. In Java, the modulus operationa mod b, giving the remainder whena is divided by
b, is denoted bya % b. The%operator is called the modulus operator or the remainder operator.

2.2.2 Arithmetic expressions and precedence rules

Mathematical expressions involving the basic operations can easily be translated to Java using the
same well known mathematicalprecedence rules(or order of operations):

1. * , %, and/ have the same precedence. They have a higher precedence than+ and- so they
are done first, in the left to right order in which they appear.This is calledleft associativity.
Example: In the expressiona + b*c + d the multiplication is done first.

2. + and- have the same precedence and are done next in the left to rightorder in which they
appear. They are also left associative. Example: In the expressiona + b - c , the addition
is done first, followed by the subtraction.

3. Parentheses have the highest precedence of all and can change the precedence of the other
operators. For example, in the expressiona + b*c + d the multiplication is done first, but
in the expression(a + b)*(c + d) , the multiplication is done last.

There are many other operators so this table is not complete.

EXAMPLE 2.7 (unary and binary operators) The arithmetic operators+, - , * , / , and%are
binary operators. For example, in an expression such asa + b , the valuesa andb are said to be the
operandsof the+ operator. Since there are two operands,+ is called abinary operator. Unlike the
binary * and/ operators, the+ and- operators can also be used in expressions such as-b , or +b,
where they have only one operand, the value ofb. In this context they are calledunary operators.

2.3 Assignment statements 21

EXAMPLE 2.8 (mathematical expressions)Table 2.2 shows some mathematical expressions
and their translations to Java, assuming that all variablesare real and represented as typedouble .
You must be careful with division operations. If9

5 and 5
9 had been translated as9/5 and 5/9 ,

Mathematical Expression Java Expression
a+bc−4 a + b*c - 4.0
1
2(a+b)(c−7) (a + b)*(c - 7.0)/2.0
9
5c+32 (9.0/5.0)*c + 32.0
5
9(f −32) (5.0/9.0)*(f - 32.0)

a2b2+ c3

a+b a*a*b*b + c*c*c/(a + b)

3x2−2x+4 3.0*x*x - 2.0*x + 4.0

1.3+x(3.4−x(2.5+4.2x)) 1.3 + x*(3.4 - x*(2.5 + 4.2*x))

s(s−a)(s−b)(s−c) s*(s - a)*(s - b)*(s - c)

Table 2.2: Translation of mathematical expressions to Java.

the wrong results would be obtained, since9/5 is an integer division with value1, and5/9 is an
integer division with value0.

EXAMPLE 2.9 (integer vs floating point division) Let totalCents be a variable of typeint
having the value3527 . ThentotalCents / 100 is an integer division having the value35 and
totalCents % 100 gives the remainder 27. On the other hand,totalCents / 100.0 is inter-
preted as a double floating point result, so its value is35.27 since 100.0 is a double literal constant.

In these examples of expressions, as a matter of style, we have surrounded the binary operators
+ and - by a single space, but we have not done this for the binary operators* and / . This is a
common convention to emphasize that a typical arithmetic expression is composed of terms and
factors. The terms are separated by the binary+ and- operators, and the factors are separated by* ,
/ and%. In the first example in Table 2.2 the terms area, b*c , and4.0 . The termb*c is composed
of two factorsb andc . The extra space around terms makes them stand out. If you prefer, you can
surround all binary operators by a single space.

2.3 Assignment statements

Assignment statements are used to give values to variables whose type has already been declared.
In Java the= sign is used to indicate an assignment. The left side is the name of the variable and
the right side is an expression. In the simplest cases an expression may be a literal, or a variable,
or an expression involving arithmetic operators. When an assignment statement is executed, the
value of the expression on the right side is evaluated and assigned as the value of the variable on
the left side.

22 Fundamental Data Types

EXAMPLE 2.10 (= does not denote mathematical equality)An assignment statement should
never be confused with an equation or an equality. There is a big difference between the assignment
statement

x = x + 1;

and the mathematical equationx = x+ 1. In the assignment statement the right side is evaluated
by adding one to the current value ofx and assigning the result as the new value ofx . The mathe-
matical equation is meaningless since it implies that 0= 1.

EXAMPLE 2.11 (special combination operators) There are also special combination oper-
ators such as+=, -= , *= , and /= , which combine an arithmetic operation and assignment. For
example, the assignment statement

totalArea += area;

is just shorthand for

totalArea = totalArea + area;

We will try to avoid using these combination operators sincethey make programs harder to read.

EXAMPLE 2.12 (assignment statements)The following statements declare three variables of
typedouble , using one combined declaration instead of three, and use three assignment statements
to specify the radius and calculate the area and circumference of a circle having this radius:

double radius, area, circ;
radius = 3.0;
area = Math.PI * radius * radius;
circ = 2.0 * Math.PI * radius;

It is not necessary to remember the double precision value ofπ, since it is available as the constant
Math.PI in a special built-in Java class calledMath . We will see that there are many useful mathe-
matics functions in theMath class. The nameMath.PI is an example of a qualified name (a name
with a dot in it).

2.3.1 Try it with BeanShell

You can test your understanding of simple examples like thisusing the interactiveBeanShell pro-
gram: a scripting shell for Java. With it you can execute Javastatements immediately.

In Figure 2.3 we showBeanShell in action on Example 2.12. In Figure 2.3(a)BeanShell’s
specialprint statement is used to see the value of a variable or expression. In Figure 2.3(b)
BeanShell’s specialshow() function is used to automatically show the result of each assignment
statement in angle brackets. This function acts like a “toggle” that turns on or off the displaying
of intermediate results from assignment statements. This is the most useful way to get output for
simple examples. If show is “on” then you can see the value of avariable at any time by simply
typing its name followed by a semicolon.

2.3 Assignment statements 23

(a) (b)

Figure 2.3: UsingBeanShell to display results.

Theprint andshow functions are not part of Java. They are simply provided byBeanShell to
control and view output. Later we will see how to do output in Java.

EXAMPLE 2.13 (dollars and cents) Continuing with Example 2.9 and assuming thatshow is
‘on’. try the following statements inBeanShell

bsh % int totalCents, cents, dollars;
bsh % totalCents = 3527;
<3527>
bsh % dollars = totalCents / 100;
<35>
bsh % cents = totalCents % 100;
<27>

Herebsh % is theBeanShell prompt and is not typed

EXAMPLE 2.14 (integer division and remainder) Try the following assignment statements
in BeanShell, assuming thatshow() is in ‘on’.

bsh % int n = 123, remainder, hundreds, tens, units;
bsh % hundreds = n / 100;
<1>
bsh % remainder = n % 100;
<23>
bsh % tens = remainder / 10;
<2>
bsh % units = remainder % 10;
<3>

24 Fundamental Data Types

Here a multiple declaration statement is used to declare fivevariables and initialize one of them.
Then the hundreds, tens, and units digits are extracted fromthe 3-digit integer123 .

EXAMPLE 2.15 (special increment and decrement operators)In Java there is a special in-
crement operator, denoted by++, for adding one to the value of a variable, and a special decrement
operator, denoted by-- , for subtracting one from the value of a variable. Try the following state-
ments inBeanShell, assumingshow() is ‘on’.

bsh % int i = 3;
bsh % int j = 4;
bsh % i++;
<3>
bsh % print(i);
4
bsh % j--;
<4>
bsh % print(j);
3
bsh %

Notice that the automatically displayed values are the values before the increment and decrement
is applied. TheBeanShell print statement shows the final values. The statements

i++;
j--;

are equivalent to the assignment statements

i = i + 1;
j = j - 1;

We will not use the increment and decrement operators too often, since they can make programs
harder to read. There are also--j and++j forms of these operators. Also in some cases++j and
j++ have different effects and similarly for--j andj-- .

2.4 Conversion between numeric types (type casting)

It is often necessary to convert a value of one numeric type toa value of another type. Sometimes
the compiler will automatically do this and sometimes it will complain and produce an error mes-
sage. The basic rule can be obtained from Table 2.1 in the column that indicates how many bits of
storage are required for the values of each type. If you attempt to convert to a type which requires a
smaller number of storage bits, the compiler will issue an error message because information may
be lost in converting to a value with a smaller number of bits.However we can force the conversion
with a technique calledtype casting, illustrated in the examples below. Of course this is normally
useful only if information is not lost in converting to the smaller size so numeric type casts should
be used with care.

2.4 Conversion between numeric types (type casting) 25

EXAMPLE 2.16 (valid implicit type conversions) Assume thatd ande have typedouble and
i has typeint . The two assignment statements in

bsh % int i = 1;
bsh % double d, e;
bsh % d = i;
<1>
bsh % e = i + 3.55;
<4.55>

do not cause any problems. In the first assignment the integeri is being converted to a larger size
(any int will fit in a double). In the second assignment, to add the 32-bit integer value of i to the
64-bit double value3.55 , the value with the smaller size is first converted to a value of the larger
size (so the value ofi is converted to a double), with no loss of information, then the addition is
performed as a 64-bit addition and the result is assigned toe.

EXAMPLE 2.17 (invalid implicit type conversions) Continuing the previous example the as-
signment statements in

bsh % int j;
bsh % i = e;
// Error: Typed variable: i: Can’t assign double to int: ...
bsh % j = i + e;
// Error: Typed variable: j: Can’t assign double to int: ...

each result in an error message. The first statement is an attempt to assign a 64-bit number as the
value of a 32-bit variable. This cannot always be done without losing information. The second
statement is an attempt to add the 32-bit integeri and the 64-bit double numberd, and assign the
result as the value of a 32-bit integerj . The expression on the right side does not cause problems:
the 32-bit value ofi can be converted to a 64-bit double precision number and thenadded to the
value ofd. However, the attempt to assign this double precision result to j may cause a loss of
information so the result is a compiler error.

2.4.1 Truncation of floating point numbers

A type cast can be used to truncate a floating point number. This has the affect of discarding
the fractional part of the number to produce an integer result. Even though there is a loss of
information, this is often a useful operation.

EXAMPLE 2.18 (explicit type conversion as truncation) Continuing with the previous exam-
ple try

bsh % i = (int) e;
<4>
bsh % j = i + (int) e;
<8>

26 Fundamental Data Types

and the compiler does not produce any errors. The use of an explicit type name in parentheses in
front of an expression is called atype cast. It tells the compiler to do the conversion anyway even
if data could be lost. A type cast is a unary operator that converts the expression to which it is
applied, to the specified type. Therefore, “(int) e ” causes the double numbere to be converted
to an int type. This means that the fractional part ofe, if any, is thrown away and the resulting
integer is kept as the value. This is calledtruncation and is a useful operation if we want the
integer part of a real number. If the integer is too big to store in anint then garbage is produced.
For example, inBeanShell try

bsh % i = (int)12345.5434;
<12345>
bsh % i = (int) 12345678912343.5;
<2147483647>

and observe that the value12345.5434 is truncated to12345 , which is not too large for a 32-bit
integer. However, thedouble value12345678912343.5 would be truncated to12345678912343
which is too large to hold in a 32-bit integer and overflow occurs with a meaningless result. In fact
the result here is the largest integer value (see Table 2.1.)

2.4.2 Loss of precision in floating point conversions

A loss of precision can also occur when trying to convert values of typedouble to type float
since the size is reduced from 64 bits to 32 bits.

EXAMPLE 2.19 (explicit type conversion as loss of precision)If d has typedouble andf has
type float then the statement

f = d;

results in a compiler error. We can use the typecast

f = (float) d;

The result will generally be a loss of precision in the conversion (see Table 2.1) which may be
acceptable in some applications. Consider theBeanShell example

bsh % double d = 1.11111111111111;
bsh % float f;
bsh % f = d;
// Error: Typed variable: f: Can’t assign double to float: .. .
bsh % f = (float) d;
<1.1111112>
bsh % d = 1e-66;
<1.0E-66>
bsh % f = (float) d;
<0.0>
bsh % d = 1e66;

2.5 Arithmetic functions from theMath class 27

<1.0E66>
bsh % f = (float) d;
<Infinity>

The first typecast results in a loss of precision, giving1.1111112 , which may be acceptable if
we don’t require the full precision of thedouble type. The second typecast gives an exponent
underflow so the float value will be0, and the last typecast gives an exponent overflow so the the
float value will be infinity. In the last two cases the exponents are outside the range of thefloat
type (see Table 2.1).

2.5 Arithmetic functions from the Math class

We will see that Java programs are made up of one or more classes each of which contains meth-
ods (functions are called methods in Java). Java has many built-in libraries of useful classes and
methods. For example, theMath library contains many standard mathematical functions as well as
two constants. We have already used the constantMath.PI to represent the double precision value
of π. There is alsoMath.E which represents the double precision value ofe.

There is a functionMath.sqrt(x) for computing
√

x; a power functionMath.pow(x,y) for
computingxy; the trigonometric functionsMath.sin(x) , Math.cos(x) , andMath.tan(x) ; the
inverse trigonometric functionsMath.asin(x) , Math.acos(x) , andMath.atan(x) ; the expo-
nential and log functionsMath.exp(x) andMath.log(x) , and several other functions.

2.5.1 Examples of athematical functions

Here are some examples that use mathematical functions.BeanShell can be used to try them.

EXAMPLE 2.20 (square root function) The statements (assuming show is ‘on’)

bsh % double x = 1.0, y = 2.0;
bsh % double x1 = 1.0, y1 = 2.0, x2 = 2.0, y2 = 3.0;
bsh % double distance1 = Math.sqrt(x*x + y*y);
bsh % double dx = x2 - x1;
bsh % double dy = y2 - y1;
bsh % double distance2 = Math.sqrt(dx*dx + dy*dy);
bsh % print(distance1);
2.23606797749979
bsh % print (distance2);
1.4142135623730951

compute the distance
√

x2 +y2 of the point(x,y) from the origin, and the distance
√

(x2−x1)2+(y2−y1)2 between the points(x1,y1) and(x2,y2) using the specific points(x,y) =
(1,2), (x1,y1) = (1,2), and(x2,y2) = (2,3).

EXAMPLE 2.21 (distances using the square root and cosine functions)Given thata andb,
are two sides of a triangle, andgammais the contained angle in degrees, the declaration statements

28 Fundamental Data Types

bsh % double a = 1.0, b = 1.0, gamma = 90.0;
bsh % gamma = Math.toRadians(gamma);
<1.5707963267948966>
bsh % double c = Math.sqrt(a*a + b*b - 2.0*a*b*Math.cos(gamm a));
bsh % double perimeter = a + b + c;
bsh % double s = perimeter / 2.0;
bsh % double area = Math.sqrt(s*(s-a)*(s-b)*(s-c));
bsh % print(perimeter);
3.414213562373095
bsh % print(area);
0.5
bsh % print(c);
1.414213562373095

compute the length of the third side and the perimeter and area of the triangle with side lengths
1 and contained angle90 degrees. Note that the trigonometric functions sin, cos, and tan require
angles in radians so we have use the functionMath.toRadians to do the conversion. There is also
a functionMath.toDegrees to convert radians to degrees.

BeanShell tip: If you are typing more than a few statements into theBeanShell workspace,
as in the previous two examples, and make a mistake then you may have to start over. To
avoid this open a workspace editor from the “File menu”. A mini-editor appears and you
can type your statements here and edit them. When you want to execute the statements just
select “Eval in Workspace” from the “Evaluate” menu and the results will appear in the
workspace.

EXAMPLE 2.22 (calculating windchill) Given the wind speedv in kilometers per hour and
the air temperaturet in degrees Celsius, the statement

double wc = 0.045*(5.27*Math.sqrt(v) + 10.45 - 0.28*v)*(t - 33.0) + 33.0;

computes the wind chill temperature in kilometers per hour.If you are using miles per hour forv
and degrees Fahrenheit fort then

double wc = 0.0817*(3.71*Math.sqrt(v) + 5.81 - 0.25*v)*(t - 91.4) + 91.4;

would be the appropriate statement.

EXAMPLE 2.23 (a heat loss formula) Another formula that computes heat loss instead of
windchill is given by

double h = (10.45 + 10.0*Math.sqrt(v) - v)*(33.0 - t);

wherev is the wind speed in meters per second,t is the temperature in degrees Celsius, andh is
the heat loss in kilo calories per square meter per hour.

EXAMPLE 2.24 (the power function) The expressionx2/3 + y2/3 can be computed with the
declaration statement

2.5 Arithmetic functions from theMath class 29

double d = Math.pow(x, 2.0/3.0) + Math.pow(y, 2.0/3.0);

assuming that the double variablesx andy have been assigned values.

EXAMPLE 2.25 (investment example using the power function)If r is the interest rate in per-
cent per year,m is the number of times interest is compounded per year,a is the initial investment,
andn is the number of years, then the Java translation of the value

v = a
(

1+
r

100m

)mn

of the investment aftern years is

double v = a * Math.pow(1.0 + r / (100.0*m), m*n);

using theMath.pow function in theMath class. The inner parentheses are very important here.
Without them it would be a division by100.0 followed by a multiplication bym, and not a division
by 100.0*m as required. Also both arguments of thepow function are of typedouble . We specified
m*n, which is anint , as second argument and the compiler does an implicit type cast to convert it
to adouble argument value.

EXAMPLE 2.26 (using exp, sin, and cos)You may have seen expressions such ase−3xcosx−
2e−2xsinx in calculus. The Java translation is

Math.exp(-3.0*x)*Math.cos(x) - 2.0*Math.exp(-2.0*x)*M ath.sin(x)

assuming that thedouble variablex has been assigned a value.

EXAMPLE 2.27 (generating random integers)TheMath.random() method returns a random
double precision numberr such that 0≤ r < 1. For example the following statement

int number = (int) (10 * Math.random()) + 1;

generates a random integer in the range 1 to 10 and assigns it as the value ofnumber .

First the integer10 is converted to adouble value, and the double precision multiplication is
performed to give a valuer in the range 0≤ r < 10. Then the type cast converts this by truncation
to an integeri, in the range 0≤ i ≤ 9, and 1 is added to give an integer in the range in the range
1 ≤ i ≤ 10. which is assigned tonumber . The parentheses around10 * Math.random() are
necessary since the type cast(int) is always applied to the value on its immediate right, which
would be10 without the parentheses.

2.5.2 Rounding floating point numbers

We have seen how to truncate floating point numbers to obtain integers using a type cast in Ex-
ample 2.18 and Example 2.27. Sometimes it is necessary to round floating point numbers to the
nearest integer. TheMath.round function will round adouble number to the nearest integer. The
return type islong not int since rounding adouble may produce a value that will not fit in a
32-bit integer but will always fit in a 64-bitlong integer.

30 Fundamental Data Types

EXAMPLE 2.28 (rounding to an integer) Consider the following statements inBeanShell:

bsh % int i, j, k;
bsh % i = (int) Math.round(123.45);
<123>
bsh % j = (int) Math.round(123.56);
<124>
bsh % k = (int) Math.round(-123.56);
<-124>
bsh % k = Math.round(123.56);
// Error: Typed variable: k: Can’t assign long to int: ...

The rounded value of123.45 is 123 as a 64-bit integer, the rounded value of123.56 is 124 as a
64-bit integer, and the rounded value of-123.56 is -124 as a 64-bit integer. The final assignment
statement shows that it is necessary to use the typecast(int) to force conversion fromlong to
int .

EXAMPLE 2.29 (rounding to two decimal places) A double precision variablex can be
rounded to two digits after the decimal point using a declaration statement such as:

double x2 = Math.round(x * 100.0) / 100.0;

If x has the value123.4567 thenx * 100.0 has the value12345.67 , andMath.round converts
this to thelong integer12346 , and division by100.0 produces thedouble number123.46 .

2.5.3 Mathematical function prototypes

In Java functions are called methods. To understand how to use one of the mathematical functions
in theMath class, we need to know (1) the name of the method, (2) the formal arguments and their
types, if any, and (3) the type of value that is computed and returned by the function.

For example, the functionMath.pow computesxy, so it needs two arguments which we can
call x andy , they are bothdouble numbers, and the value returned has typedouble . This tells us
immediately that the assignment statement in Example 2.25 has the correct form (syntax), recalling
that the compiler will implicitly convert theint argumentm*n to adouble value.

In Java themethod prototype is used to give a compact description of the rules for using the
method. For the power function the prototype is:

static double pow(double x, double y)

The wordstatic means that this method is not associated with any object (seeChapter 3). Next
we have the return type (double), and then the method name (pow). Inside the parentheses there is
a list of argument types followed by some names (x andy) to refer to the arguments.

Each type-name pair such asdouble x or double y , which appear in the method prototype,
is called aformal argument (the word parameter is often used as a synonym for argument).

Each value supplied when the method is called is referred to as anactual argument. The
process of using a method prototype to determine how to use a method is illustrated in Figure 2.4,
for the declaration statement in Example 2.25. Here the rightmost two arrows show the corre-

2.6 Terminology introduced in this chapter 31

double v = a * Math.pow(1.0 + r/(100.0*m), m*n);

? ?
6

double Math.pow(double x, double y)

Figure 2.4: Matching actual and formal arguments

spondence between the formal arguments and the actual arguments. The actual argument,1.0 +
r/(100.0*m) , is an expression that corresponds to the formal argumentx , and the actual argu-
ment,m*n, is an expression that corresponds to the formal argumenty . The leftmost arrow shows
that the value of the expression

Math.pow(1.0 + r/(100.0*m), m*n)

is adouble number, so it makes sense to multiply it by thedouble numbera.
The important idea here is that we can look at a statement, such as the one in Example 2.25,

and immediately see, by looking at the prototype, that it is avalid use of the method. Each of the
methods in theMath class has a prototype.

EXAMPLE 2.30 (some math function prototypes) Here are prototypes for some of the arith-
metic functions we have used in the preceding examples:

static double sqrt(double x)
static double pow(double x, double y)
static double sin(double x)
static double cos(double x)
static double tan(double x)
static double exp(double x)
static double random()
static long round(double x)

Most of these functions take a single formal argument of typedouble and return adouble value,
except forpow, random andround . Therandom function takes no arguments, but the empty set of
parentheses is still needed when calling the function (See Example 2.27).

The prototype forround clearly shows, as mentioned above, that the return value is of type
long , not int , so that no information is lost in the rounding.

2.6 Terminology introduced in this chapter

In this section we give simple definitions of the most important concepts introduced in the Chapter.

32 Fundamental Data Types

simple identifier

A sequence of one or more letters, digits and underscores such that the first character is not
a letter. Identifiers are used to give names to variables, classes and other entities.

An almost universal convention is to begin the name of a classwith an upper case letter. All
other identifiers begin with a lower case letter. In either case capitalize the beginning letter
of each interior word.

Identifiers arecase sensitive. The only example of a class we have seen so far is theMath
class.

Examples: radius , numberOfStudents , Math

numeric literal

A value representing a number such as an integer or a floating point constant in fixed or
scientific form

Examples: 1, -34 are literals of typeint .
Examples: 1L, -3456789212231L are literals of typelong .
Examples: 1.0 , -3.4 , -3.4D , 4.5 , 4.5D , 4.5d , 1.23E-04 are double literals. The suffixd
or D is optional. An exponent (power of 10) is denoted bye or E.
Examples: 1.0f , -3.4f , -3.4F are literals of typefloat . The suffixf or F must be
present.

variable

A named storage location that can hold a value of some type.

Examples: radius

type

A specific kind of data such as the set of all integers or the setof all real numbers.

Examples: int , float , double

variable declaration

A statement having one of the forms

typeName identifier;
typeName identifier= expression;

whereidentifier is the name of the variable,typeNameis the variable type andexpressionis
an expression that evaluates to a value that can be assigned to the variable.

2.6 Terminology introduced in this chapter 33

Example: double radius;
Example: double radius = 2.0;
Example: double area = Math.PI * radius * radius;
Example: int n=123, remainder, hundreds, tens, units;
Example: double area, circumference;
Example: double radius = 3.0, area;

The final three examples show that multiple variables of the same type can be declared and
optionally initialized in a single declaration.

constant declaration

A constant has the form

static final typeName identifier= expression;

The strange keywordstatic indicates that constants are associated with the class, notthe
objects of the class. The equally strange keywordfinal distinguishes a constant declaration
from an initialized variable declaration.

It is conventional to name constants using upper case letters and the underscore to simulate
a space.

Example: final double CM_PER_INCH = 2.54;

arithmetic expression

An expression involving variables and operators that evaluates to a numeric value.

Example: radius
Example: 2.0 * Math.PI * radius
Example: remainder % 10

assignment statement

A statement of the form

identifier = expression;

whereidentifieris the name of a variable that has already been declared andexpressionis an
expression whose value is assigned to the variable.

Example: radius = 2.0;
Example: area = Math.PI * radius * radius;
Example: a = b = c = 0.0;

The last example shows that several variables can be assigned the same value in a multiple
assignment statement.

34 Fundamental Data Types

2.7 Review exercises

◮ Review Exercise 2.1Define the following terms and give examples of each.

data type Q-R theorem div
mod primitive types floating point number
single precision double precision overflow
round-off error underflow truncation operation
scientific format fixed point format variable
rounding operation variable variable declaration
uninitialized variable initialized declaration assignment statement
identifier keyword case sensitive
precedence rules increment operator decrement operator
type casting implicit type conversion explicit type conversion
strongly typed numeric literal type
constant declaration arithmetic expression assignment statement
character literal boolean literal unary operator
binary operator integer division floating point division
Math class method prototype formal argument
actual argument

◮ Review Exercise 2.2Express the following numbers as Java literals of typefloat :

(a) 1234567, (b) 1.9×10−37, (c) 0.000045659043, (d) 3.14159

◮ Review Exercise 2.3Express the following numbers as Java literals in scientificformat of type
double :

(a) 1234567, (b) 1.9×10−37, (c) 0.000045659043, (d) 3.14159

◮ Review Exercise 2.4Translate the following mathematical expressions or formulas into Java

(a)
√

x3/2 +y3/2 (b) x2 +y2

(

1
1+x2

)1/2

(c) πa
√

a2+h2

(d) 3.2+4.7x+3.2x2−7.5x3 (e) e3x+2ysin(x+4y) (f)
x2

1+
√

1+x2

(g)
tanx+ tany

1− tanxtany
(h) m

(

v2

L
+gcosθ

)

(i) c

(

x
|x| −

x

(x2 +y2)1/2

)

◮ Review Exercise 2.5What are the differences among the three statements

int width;
int width = 5;
width = 5;

◮ Review Exercise 2.6Why would the compiler complain about the statements

2.7 Review exercises 35

int totalCents = 3527;
int dollars = totalCents / 100.0;

Write the correct statements.

◮ Review Exercise 2.7Give short answers to the following questions.

(a) What is the purpose of an assignment statement?

(b) What is the difference between the equal sign in an assignment statement and the equal sign
that is often used to denote an equation?

(c) When doesx = x+1 make sense?

◮ Review Exercise 2.8Give short answers to the following questions.

(a) Why do round-off errors occur?

(b) What is overflow and how does it occur?

(c) What is underflow and how does it occur?

(d) What are the differences in Java among0.1F , 0.1 , and0.1D ?

(e) If no suffix is specified what does the compiler assume about a number’s type?

(f) In a mathematical expression, how would you change the order of precedence so that an
addition operation is performed before a multiplication operation?

(g) In an expression in which an integer is multiplied by adouble number, what type does the
compiler assign to the result?

(h) Why does the compiler not automatically convert adouble value to anint value?

(i) When truncating a value of typedouble by type casting to a value of typeint , what error
can occur?

(j) The prototype for thesqrt method indicates that the argument is of typedouble . Why
does the method call expressionMath.sqrt(2) , which uses anint argument not cause a
compiler error?

(k) Give some examples of implicit type conversions.

(l) What is the difference between explicit type conversionand implicit type conversion?

◮ Review Exercise 2.9What is the largest number that can be correctly multiplied by itself before
integer overflow occurs?

36 Fundamental Data Types

2.8 BeanShell exercises

◮ BeanShell Exercise 2.1 (Evaluating mathematics formulas)
For each expression in Review Exercise 2.4 pick some values for the variables and evaluate the
expression.

◮ BeanShell Exercise 2.2 (Converting inches to feet and inches)
Write some statements that define a number of inches as anint variabletotalInches and convert
this number of inches to feet and inches and print the result.For example, 67 inches is 5 feet and
7 inches.

◮ BeanShell Exercise 2.3 (Converting floating point hours to hours, minutes, and seconds)
Write some statements that define adouble variabletotalHours initialized to some floating point
number of hours such as3.245 , convert it to hours, minutes and the nearest second, and display
the results. For example,3.245 hours is3 hours,14 minutes, and42 seconds.

◮ BeanShell Exercise 2.4 (Astronomy calculations)
In astronomy, angles are measured in degrees, minutes (1/60degree), and seconds (1/60 minute).
Write some statements that define a given angle specified by three integers (degrees, minutes and
seconds), convert it to a floating point angle, calculate thesine of this angle, and display the results.
For example, for integer values3, 15, and45 the floating point angle is3.2625 and the sine of this
angle is0.056910601485907715 .

◮ BeanShell Exercise 2.5 (Celsius to Fahrenheit temperature conversion)
Write some statements that define a temperature in degrees Celsius as adouble value, convert it
to degrees Fahrenheit, and display the converted temperature.

◮ BeanShell Exercise 2.6 (Fahrenheit to Celsius temperature conversion)
Write some statements that define a temperature in degrees Fahrenheit as adouble value, convert
it to degrees Celsius, and display the converted temperature.

◮ BeanShell Exercise 2.7 (Pythagorean theorem)
Write some statements that define the coordinates of two points (x1,y1) and (x2,y2) as double
values, compute the distance between the points, and display the result.

◮ BeanShell Exercise 2.8 (Height in metric units)
Write some statements that define twoint variables for the height of a person in feet and inches,
convert the height to centimeters and display the result. For example, someone who is 5 feet 10
inches tall is 177.8 cm tall.

◮ BeanShell Exercise 2.9 (Heat loss calculator)
Write some statements that define a temperature in degrees Celsius and a wind speed in kilometers
per hour asdouble variables and use the formulas in Example 2.22 and Example 2.23 to compute
and display the wind chill temperature and the heat loss. To use the heat loss formula in Exam-
ple 2.23 you will have to convert the input wind speed from kilometers per hour to meters per
second.

For example, if the wind speed is 30 km/hr and the temperatureis -15 C then the windchill is
-33.77635416592807 and the heat loss is 1487.240646055102

2.8BeanShell exercises 37

BlueJ andBeanShell Edition Copyright 2002, 2005, 2007, Barry G. Adams

38 Fundamental Data Types

Chapter 3

Writing Simple Classes
Using BeanShell and BlueJ

Outline

Writing simple Java classes usingBlueJ

Experimenting with and testing classes usingBlueJ

Using BeanShell with Objects and Methods

Understanding the structure of simple classes

Writing class documentation for Javadoc

Understanding common syntax and logical errors

Understand basic object-oriented terminology

39

40 Writing Simple Classes

3.1 Introduction

So far we have been writing simple sequences of statements that declare variables and assign the
results of arithmetic expressions to them. We have usedBeanShell to execute such sequences of
statements.

In Java a program (application) consists of one or more classes that are used to construct objects
which can interact with each another at execution time. Eachclass defines the functionality or
behavior of its objects by defining a number or methods (functions) that an object can execute.

These abstract concepts can be quite confusing for the beginner. Fortunately, there is an in-
tegrated development environment (IDE) calledBlueJ that lets us write classes and interactively
construct objects and invoke methods on them. It is a leaningtool for understanding the three
fundamental object oriented concepts ofclass, object, andmethod. In this senseBlueJ is unlike
other development environments. Also, withBlueJ it is very easy to test our classes and when
we are finished we can package our application in a form that can be executed outside theBlueJ
environment.

3.2 CircleCalculator class usingBlueJ

In this section we begin our study of object-oriented programming usingBlueJ to write a simple
class calledCircleCalculator , using the formulas in Example 2.12 to define how to calculate
the area and circumference of a circle.

In BlueJ we have the concept of aproject. It is a directory (folder) that contains all the class
files (java source files, byte code files) and other files associated with your project. You can create
a project and type in the classes yourself or you can use theBlueJ projects supplied with this book
that already contain them.

For this chapter we assume that theCircleCalculator class is found in aBlueJ project
calledbook-projects/chapter3 . The other classes in this Chapter,TriangleCalculator and
QuadraticRootFinder , are also in this project.

3.2.1 Experimenting with the class

Before analyzing the source code for this class we can experiment with the class by launching
BlueJ and opening thechapter3 project to get the display shown in Figure 3.1(a). Now perform
the following steps to test the class:

1. TheCircleCalculator rectangle represents the class. Before using the class for the first
time its source code file must be compiled into an object code (bytecode) file. You will
know when compilation is necessary because the class rectangle will be diagonally shaded.
If this is the case you can select the compile button to compile it, or right click on the class
rectangle and select compile.

2. Now right click on theCircleCalculator rectangle to bring up its menu.

3. Select thenew CircleCalculator menu choice shown in Figure 3.1(b).

3.2CircleCalculator class usingBlueJ 41

(a) (b)

Figure 3.1: (a) shows thechapter3 project withCircleCalculator highlighted,(b) shows how
to right-click to get the constructor menu.

4. In the “Create Object” dialog box shown in Figure 3.2(a) you can give a name to the object
or accept the default name. We have used the namecircle1 . Also you must provide a
value for the radius and we have chosen 2 When you select OK an object of the class is
constructed. The new object will appear on the object workbench as a red rounded rectangle
(see Figure 3.2(b)). The name of the object and the name of theclass are shown in this object
box. Each object created from the class is called aninstanceof the class.

5. Right click on this object and select a method from the menushown in Figure 3.2(b). If you
selectdouble getArea() then thegetArea method will be executed and the result for the
area of the circle with radius2 will be as shown in a message box (see Figure 3.3).

6. Now repeat the previous step and execute thegetCircumference andgetRadius methods.

7. Go back to step 1 and create two more objects calledcircle2 for a radius of3, andcircle3
for a radius of4. You can create as many objects (instances) as you want, eachwith a
different name and radius. Figure 3.4 shows three objects onthe object workbench.

8. If you double click on the yellowCircleCalculator rectangle an editor window appears
showing the Java source code for the class

This example elegantly illustrates the three fundamental object-oriented programming (OOP) con-
cepts ofclass, object, andmethod.

The class, represented by the yellow rectangle with the class name in it, acts like a blueprint for
creating objects. When you double click on it you see the Javacode for the class. When you right
click on it you can create an object or instance of the class bysupplying a name and any arguments.

An object is represented by a red rounded rectangle showing the name of the object and the
class that created it. When you right click on an object you can select one of the methods to invoke

42 Writing Simple Classes

(a) (b)

Figure 3.2: (a) shows the dialog box for entering the constructor argument (radius of the circle),
and (b) shows how to invoke thegetArea method by right clicking on the resulting object.

Figure 3.3: After choosing thegetArea method the result for the area is displayed.

Figure 3.4: ThreeCircleCalculator objects for radii 2, 3, and 4.

3.2CircleCalculator class usingBlueJ 43

on it. This is sometimes called “sending a message to the object”. This causes the Java code in the
class to execute and any results returned by the method are displayed.

We also see that several objects can be constructed from a class. Each has a unique name and
its own variables that define the object, such as the radius, area, and circumference.

3.2.2 CircleCalculator source code

Below we show the source code for theCircleCalculator class. For now we have omitted
comments so that we can emphasize the structure of the class.Comments are very important for
documenting a class and we will show how to include them laterin the Chapter. The source code
resides in a file calledCircleCalculator.java and can be viewed inBlueJ by double clicking
on the class rectangle.

public class CircleCalculator
{

private double radius;
private double area;
private double circumference;

public CircleCalculator(double r)
{

radius = r;
area = Math.PI * radius * radius;
circumference = 2.0 * Math.PI * radius;

}

public double getRadius()
{

return radius;
}

public double getArea()
{

return area;
}

public double getCircumference()
{

return circumference;
}

}

3.2.3 Explanation of the source code

The source code consists of a class declaration containing three parts: (1) instance data fields, (2)
constructor declarations, and (3) method declarations.

44 Writing Simple Classes

(a) (b)

Figure 3.5: Instance data fields forcircle1 objects in (a) andcircle2 objects in (b).

Class declaration

The following lines are called the class declaration.

public class CircleCalculator
{

...
}

It gives a name to the class and the class definition (class body) is contained within the opening
and closing braces. A more general template for a class declaration is given in Figure 3.27.

Instance data fields

To define the class we need to specify the variables that uniquely define the state of an object of
the class. This is done with the declarations

private double radius;
private double area;
private double circumference;

The keywordprivate indicates that these variables will not be directly accessible outside the
class. EachCircleCalculator object will have its own copies of these variables so they are
calledinstance data fieldsor instance variables.

To see this right click on aCircleCalculator object and choose inspect on the menu. For
example, if we right click on the objects calledcircle1 andcircle2 in Figure 3.4 and select
inspect the results are shown in Figure 3.5. This shows that each object has its own set of instance
data fields. Therefore, an object is often called aninstanceof the class.

Constructor declaration

Next comes the constructor declaration

3.2CircleCalculator class usingBlueJ 45

public CircleCalculator(double r)
{

radius = r;
area = Math.PI * radius * radius;
circumference = 2.0 * Math.PI * radius;

}

A more general template for a constructor declaration is given in Figure 3.28.
A constructor is needed in order to construct an object of the class, so its main purpose is to

give values to the instance data fields.
The first line gives theconstructor prototype. It specifies the name of the constructor, which

must always be the same as the name of the class and it specifieswhat arguments, if any, are
necessary to create an object. In our case we only need to specify the radius of the circle as a value
of typedouble .

Finally, within the matching braces we place the statementsthat should be executed when the
constructor is used to create an object. These statements are called theconstructor body.

In Figure 3.2(a) the constructor prototype is displayed andinput boxes are available for speci-
fying the object name and the constructor argumentr . When you fill in these values and click OK
the three assignment statements in the constructor are executed to define the object.

It is important to note that the types of the three variables must not be declared in the constructor
body since they have already been declared in the instance data field section of the class.

Method declarations

At this stage we have an object on the workbench that is just waiting for something to do. We can
tell an object what to do byinvoking a method on it. These methods are sometimes calledinstance
methods. TheCircleCalculator class contains three such methods,getRadius , getArea , and
getCircumference . For example, thegetArea method declaration is

public double getArea()
{

return area;
}

and similarly for the other two methods. A more general template for a method declaration is given
in Figure 3.29.

The first line of a method is called themethod prototype. Our method is public to indicate
that it is available outside the class.

Then comes the type of value returned by the method. In our case we are returning the area
which has typedouble .

Next comes the name of the method followed by a pair of parentheses which would normally
contain any arguments the method requires. The syntax here is the same as for constructor argu-
ments. In our case no arguments are needed but the parentheses are still required

Finally, within the matching braces we place the statementsthat should be executed when the
method is invoked (called). These statements are called themethod body.

46 Writing Simple Classes

��������@
@

@
@@

�
�
�
�
�
��

b

a
c

γ
α

β

c =
√

a2 +b2−2abcosγ

α = cos−1((b2+c2−a2)/(2bc))

β = cos−1((c2+a2−b2)/(2ca))

perimeter= a+b+c

s= perimeter/2

area=
√

s(s−a)(s−b)(s−c)

Figure 3.6: Triangle formulas given two sidesa andb, and the contained angleγ.

When we right click on an object we see a menu of these methods.If we selectgetArea then
the statements in its method body are executed. In our case weonly need to return the value of one
of the instance data fields and that is what thereturn statement does.

A common convention for a method that simply returns the value of an instance data field is to
prefix its name withget . Such methods are often calledget methodsor enquiry methods.

TheCircleCalculator class is a simple one and you should now understand how the actions
performed withinBlueJ correspond to the instance data fields, and the execution of code in the
bodies of the constructors and methods defined in the class.

3.3 TriangleCalculator class usingBlueJ

For our second class we will use the formulas for the side lengths and angles of a triangle to solve
the following problem:

“Given the length of two sides of a triangle and the containedangle in degrees, com-
pute the third side length, the other two angles, and the areaand perimeter of the
triangle.”

If we assume thata andb are the two side lengths andγ is the contained angle then the formulas
are given in Figure 3.6.

3.3.1 Experimenting with the class

We can try out this class by right clicking on theTriangleCalculator rectangle to get the “Create
Object” dialog box shown in Figure 3.7. We have given our object the nametriangle and have
used the constructor arguments 1, 1, and 90 degrees for the two side lengths and the contained
angle.

Right click on the object to get the method menu shown in Figure 3.8. There are nine methods,
three return the side lengths, three return the angles, one returns the perimeter, one returns the area,
and one checks how close the sum of the angles is to 180 degrees.

3.3TriangleCalculator class usingBlueJ 47

Figure 3.7: Dialog box for entering the arguments to construct aTriangleCalculator object

Figure 3.8: The method menu for aTriangleCalculator object.

48 Writing Simple Classes

(a) (b)

Figure 3.9: In (a) the value of the third side is shown, and in (b) the sum of the three angles is
shown.

Figure 3.10: The result of choosing inspect from the object menu for aTriangleCalculator
object.

The results for choosing thegetC method and thecheckAngleSum method are shown in Fig-
ure 3.9. If we right click on the object again and choose inspect we see the dialog box shown
in Figure 3.10. This shows that aTriangleCalculator object is defined by eight instance data
fields: three sides, three angles, the area, and perimeter.

3.3.2 TriangleCalculator source code

Below we show the source code for theTriangleCalculator class with the comments omitted
for now. The source code resides in a file calledTriangleCalculator.java and can be viewed
in BlueJ by double clicking on the class rectangle.

public class TriangleCalculator
{

private double a, b, c;
private double alpha;
private double beta;
private double gamma;
private double perimeter, area;

public TriangleCalculator(double sideA, double sideB, do uble g)

3.3TriangleCalculator class usingBlueJ 49

{
double s;

a = sideA;
b = sideB;
c = Math.sqrt(a*a + b*b -2*a*b*Math.cos(Math.toRadians(g)));

alpha = Math.acos((b*b + c*c - a*a) / (2*b*c));
alpha = Math.toDegrees(alpha);
beta = Math.acos((c*c + a*a - b*b) / (2*c*a));
beta = Math.toDegrees(beta);
gamma = g;

perimeter = a + b + c;
s = perimeter / 2;
area = Math.sqrt(s*(s-a)*(s-b)*(s-c));

}

public double getA()
{

return a;
}

public double getB()
{

return b;
}

public double getC()
{

return c;
}

public double getAlpha()
{

return alpha;
}

public double getBeta()
{

return beta;
}

public double getGamma()
{

return gamma;
}

public double getPerimeter()
{

return perimeter;
}

50 Writing Simple Classes

public double getArea()
{

return area;
}

public double checkAngleSum()
{

return alpha + beta + gamma;
}

}

3.3.3 Explanation of the source code

The structure of this class is similar toCircleCalculator .

Class declaration

The class declaration is

public class TriangleCalculator
{

...
}

Instance data fields

Inside the class declaration are the declarations for the eight instance data fields that were shown
in the “Inspector” window in Figure 3.10:

private double a, b, c;
private double alpha;
private double beta;
private double gamma;
private double perimeter, area;

Constructor declaration

The constructor declaration has the form

public TriangleCalculator(double sideA, double sideB, do uble g)
{

...
}

The first line is the constructor prototype, and it indicatesthat three double arguments are re-
quired to construct an object. This constructor corresponds to the “Create Object” dialog box in
Figure 3.7.

3.3TriangleCalculator class usingBlueJ 51

The constructor body contains the statements that are needed to calculate the third side length,
the remaining two angles, the perimeter, and the area using the formulas in Figure 3.6. Nine
variables are used here. Eight of them are just the variablesthat have already been declared as
instance data fields. These variables are available anywhere within the class (inside constructor or
method bodies).

However, there is also a variables that is just an intermediate variable used only inside the
constructor body to simply the calculations so its type mustbe declared:

double s;

This is an example of alocal variable.

Method declarations

The nine methods of this class are shown on the object menu in Figure 3.8. Eight of these methods
are just “get methods”. Each returns the value of one of the instance data fields.

An additionalenquiry method with the declaration

public double checkAngleSum()
{

return alpha + beta + gamma;
}

is also included in the class. This method is useful when testing the class.

3.3.4 TestingTriangleCalculator

This class is not as simple to test asCircleCalculator since it involves some complicated math-
ematical formulas. If would be easy to make a mistake in the translating of these formulas into
Java statements. For example, you could forget that the trigonometric functions require angles in
radians instead of degrees, or you could have a plus sign instead of a minus sign, or you could
have interchangeda andb somewhere. Therefore we need to be able to check our results.Here are
some ways to do this usingBlueJ.

• Use thecheckAngleSum method. Any significant deviation from 180 degrees means there
is some error in the formulas, either the translated ones or the original mathematical ones.

• Develop some test cases for which you know the answer independently. For example, in
Figure 3.7, we choose side lengths of 1 and a contained angle of 90 degrees because we
know that the third side length is

√
2≈ 1.4142, and the other two angles are 45 degrees.

Another simple case is the 30,60,90 triangle with sides 1,
√

3, 2. Other cases could be
checked using a calculator.

52 Writing Simple Classes

Figure 3.11: Dialog box for entering the three arguments to construct aQuadraticRootFinder
object calledrootFinder

3.4 QuadraticRootFinder class usingBlueJ

A quadratic equation has the formax2 +bx+c = 0 with a 6= 0. The values ofx which satisfy the
equation are called the roots of the equation. The rootsr1 andr2 are given in terms ofa, b, andc
by the well-known formulas

r1 =
1
2a

(

−b−
√

b2−4ac
)

, r2 =
1
2a

(

−b+
√

b2−4ac
)

We will assume that the roots are real and we do not check for the square root of a negative number.
This requires conditional statements which are introducedin a later Chapter. For testing purposes it
is also useful to know that the sum and product of the roots satisfy r1+ r2 =−b/a andr1r2 = c/a.

3.4.1 Experimenting with the class

We can try out this class by right clicking in theQuadraticRootFinder rectangle and selecting
the constructor to get the ”Create Object” dialog box shown in Figure 3.11. We have entered values
for the quadratic equationx2−2x+3/4= 0 whose roots arer1 = 1/2 andr2 = 3/2. Right clicking
on the object gives the method menu shown in Figure 3.12. There are eight methods associated
with a QuadraticRootFinder object, five are get methods for returning the coefficients and the
roots and three are set methods for modifying the coefficients.

Invoking thegetRoot1 andgetRoot2 methods gives the result boxes shown in Figure 3.13.
Normally, to calculate roots for another quadratic equation we would have to go back and create

another object, but this class has “set methods” which can beused to change one or more of the
coefficientsa, b, or c so it is not necessary to create a new object. If we want to change c to 1
and recalculate the roots we just invoke thesetC method. This gives the dialog box in Figure 3.14
that prompts for a new value of the argument. Now we can invokethegetRoot1 andgetRoot2
methods to see the new roots in Figure 3.15. Finally, if we right click on the object and choose
inspect we get the “Inspector” window shown in Figure 3.16.

3.4QuadraticRootFinder class usingBlueJ 53

Figure 3.12: The method menu for aQuadraticRootFinder object.

Figure 3.13: The roots of the quadratic equation fora = 1, b =−2 andc = 3/4.

Figure 3.14: The dialog box for thesetC method.

Figure 3.15: The roots of the quadratic equation fora = 1, b =−2, c = 1.

54 Writing Simple Classes

Figure 3.16: The result of choosing inspect from the object menu for aQuadraticRootFinder
object corresponding toa = 1, b =−2 andc = 1.

3.4.2 QuadraticRootFinder source code

Below we show the source code for theQuadraticRootFinder class with the comments omitted
for now. The source code resides in a file calledQuadraticRootFinder.java and can be viewed
in BlueJ by double clicking the class rectangle.

public class QuadraticRootFinder
{

private double a, b, c;
private double root1, root2;

public QuadraticRootFinder(double a, double b, double c)
{

this.a = a;
this.b = b;
this.c = c;
doCalculations();

}

private void doCalculations()
{

double d = Math.sqrt(b*b - 4*a*c);
root1 = (-b - d) / (2.0 * a);
root2 = (-b + d) / (2.0 * a);

}

public double getRoot1()
{

return root1;
}

public double getRoot2()
{

return root2;
}

3.4QuadraticRootFinder class usingBlueJ 55

public double getA()
{

return a;
}

public double getB()
{

return b;
}

public double getC()
{

return c;
}

public void setA(double value)
{

a = value;
doCalculations();

}

public void setB(double value)
{

b = value;
doCalculations();

}

public void setC(double value)
{

c = value;
doCalculations();

}
}

3.4.3 Explanation of the source code

There are some new concepts in this class.

Class declaration

The class declaration is

public class QuadraticRootFinder
{

...
}

Instance data fields

The instance data fields are

56 Writing Simple Classes

private double a, b, c;
private double root1, root2;

and they correspond to the “Inspector” window in Figure 3.16.

Constructor declaration

The constructor declaration is given by

public QuadraticRootFinder(double a, double b, double c)
{

this.a = a;
this.b = b;
this.c = c;
doCalculations();

}

In theCircleCalculator andTriangleCalculator constructors we gave the constructor argu-
ments names that were different from the instance data field names.

Here we give them the same names as the corresponding instance data fields. How do we
distinguish between the instance data field names and the argument names? The Java designers
thought of this and the answer is to use a special keyword called this as a prefix to indicate an
instance data field. In the constructor bodythis.a refers to the instance data field variablea anda
refers to the constructor argument whose value is supplied when we create an object by executing
the statements in the constructor body.

Method declarations

In the constructor body we find something new, namely the statement

doCalculations();

When this statement is executed (called) the statements in thedoCalculations method given by

private void doCalculations()
{

double d = Math.sqrt(b*b - 4*a*c);
root1 = (-b - d) / (2.0 * a);
root2 = (-b + d) / (2.0 * a);

}

are executed. They calculate the values of the two roots.
The method is declaredprivate since it is really just a helper method not needed outside the

class. This also means it doesn’t appear on the object menu inFigure 3.12.
Our get methods return a value using thereturn statement but thedoCalculations method

doesn’t return any value. It just calculates values for the two instance data fields for the two roots.
Methods that don’t return a value indicate this using the keyword void for the return type.

Why do we introduce this method? Why not just use the constructor declaration

3.4QuadraticRootFinder class usingBlueJ 57

public QuadraticRootFinder(double a, double b, double c)
{

this.a = a;
this.b = b;
this.c = c;
double d = Math.sqrt(b*b - 4*a*c);
root1 = (-b - d) / (2.0 * a);
root2 = (-b + d) / (2.0 * a);

}

The reason can be seen if you notice that thedoCalculations method is being used in four
different places in the class, once in the constructor, and once in each of the three “set” methods.
We could have duplicated the three lines of root calculatingcode in four places but this is not
normally good programming practice. Instead we use a technique calledfactoring that replaces
repeated blocks of code with a method and uses (calls) the method in several places.

The remainder of the class consists of the five get methods forreturning the three coefficients
and the two roots, and three set methods. Eachset methodchanges one of the instance data fields
so it is often called amutator method. This is useful since it means we can solve a new quadratic
equation without constructing another object. We simply call the appropriate set methods to change
one or more of the coefficients. For example, to change the coefficient a we have the method

public void setA(double value)
{

a = value;
doCalculations();

}

The return type isvoid to indicate that no value is being returned and there is an argument whose
value is used to change the value of the instance data fielda. Since this will change the roots
it is necessary to recalculate them by calling thedoCalculations method. Similar methods are
included to change the values ofb andc .

3.4.4 TestingQuadraticRootFinder

To test this class first try some values ofa, b, c that give known solutions. For example we have
tried the examplex2−2x+3/4 = (x−3/2)(x−1/2) = 0 and obtained the correct rootsr1 = 1/2
andr2 = 3/2. Similarly we triedx2−2x+1= (x−1)2 = 0 and obtained the double rootr1 = r2 = 1.

What happens if you tryx2+x+1 = 0. In this case there are no real roots sinceb2−4ac=−3.
The object inspector gives the results shown in Figure 3.17.This shows that we get the answers
NaN for both roots. In Java this stands for “not a number” meaningthat the result is not a valid
double number in this case because

√
−3 is not a real number. In fact, we know that the roots are

complex numbers in this case.
Another special case to try isa = 0, b = 1, c = 1. In this case the equation is not even a

quadratic equation. Nevertheless we get the answers-Infinity andNaN for the two roots. From
the formulas for the roots we see that the first root would be−2/0 which is giving-Infinity and
the second root would be 0/0 which is givingNaN.

58 Writing Simple Classes

Figure 3.17: The result of choosing inspect from the object menu for aQuadraticRootFinder
object corresponding toa = 1, b = 1 andc = 1.

Another possible test is to check results using the formulasr1 + r2 =−b/a andr1r2 = c/a for
the sum and product of the roots.

3.5 UsingBeanShell with objects

Within theBlueJ environment the creation of objects and the invoking of methods on them is done
interactively using the mouse and a dialog box to create the object (for example, Figure 3.1(b)
and Figure 3.2(a)) and then selecting the method we want to invoke on the object from the object
method menu (for example, Figure 3.2(b)).

Outside theBlueJ environment it is necessary to write Java statements to do this. Table 3.1
shows some examples of the correspondence betweenBlueJ mouse actions and menu choices and
the Java statements we use outsideBlueJ.

3.5.1 Constructor call expressions

Table 3.1 shows that to construct aCircleCalculator object calledcircle1 for a circle of radius
2 we use the statement

CircleCalculator circle1 = new CircleCalculator(2.0);

The left side of the statement indicates thatcircle1 will be the name of an object from the
CircleCalculator class and the right side uses the keywordnew to indicate that the constructor
should be called to create a new object. The right side of thisstatement is called aconstructor call
expression.

We can createTriangleCalculator andQuadraticRootFinder object in a similar way. For
example (see Figure 3.7 and Figure 3.11)

TriangleCalculator triangle = new TriangleCalculator(1, 1,90);
QuadraticRootFinder rootFinder = new QuadraticRootFinde r(1,-2,0.75);

3.5 UsingBeanShell with objects 59

BlueJ actions Java statement inBeanShell
Create aCircleCalculator object called
circle1 with radius 2 (Figure 3.1(b) and
Figure 3.2(a))

CircleCalculator circle1 =
new CircleCalculator(2.0);

Invoke thegetArea method on this object
(Figure 3.2(b))

double result = circle1.getArea();

Seeing the result is automatic (Figure 3.3) print(result);
Construct two moreCircleCalculator ob-
jects (Figure 3.5)

CircleCalculator circle2 =
new CircleCalculator(3.0);

CircleCalculator circle3 =
new CircleCalculator(4.0);

Choose inspect from object menu to see in-
stance data fields (see Figure 3.5(a))

print(circle1.getRadius());
print(circle1.getArea());
print(circle1.getCircumference());

Table 3.1:BlueJ actions and their corresponding Java statements.

In each case the constructor defined in the class declarationis called to create the new object and
the left side of the statement gives it a name.

3.5.2 Method call expressions

Now that we have some objects we can invoke methods on them. Todo this we need to specify the
method name, any required arguments, and the name of the object. For example (see Figure 3.2(a)
and Figure 3.3) the statement

double result = circle1.getArea();

gets the area of thecircle1 object. The right side of this statement is called amethod call
expressionand is formed from the object name followed by a dot followed by the method name.
We need an empty pair of parentheses here because this methodhas no arguments. Since we are
using a get method, a value is returned and we can assign it toresult , adouble variable.

Similarly, we can invoke methods onTriangleCalculator andQuadraticRootFinder ob-
jects. For example (see Figure 3.8 and Figure 3.9)

double c = triangle.getC());
double sum = triangle.checkAngleSum();

return the third side and angle sum and assign them to variables, and (see Figure 3.13 to Fig-
ure 3.15)

double r1 = rootFinder.getRoot1();
double r2 = rootFinder.getRoot2();

return the two roots of a quadratic equation and assign them to variables.
The statement

60 Writing Simple Classes

rootFinder.setC(1.0);

invokes thesetC method on theQuadraticRootFinder object namedrootFinder . It is not an
assignment statement sincesetC does not return a value (its return type isvoid). It is called
an expression statement. We know that this method has one argument for the new value ofthe
coefficientc in the quadratic equation so the effect of the method call expression is to changes the
value of this coefficient to 1.0.

3.5.3 BeanShell examples

To useBeanShell to experiment with the objects of our three classes we need totell it where to find
the bytecode files that theBlueJ compiler has produced, for exampleCircleCalculator.class .
These are located in the project directory. For example, assuming your project directory for this
chapter is

c:/book-projects/chapter3

then you can type the following command intoBeanShell

addClassPath("c:/book-projects/chapter3");

If you are runningBeanShell using Windows then it is important to use forward slashes here
instead of backslashes. This change to the classpath remains in effect until you exitBeanShell.
The following examples show howBeanShell can be used to construct objects and invoke methods
on them.

EXAMPLE 3.1 (CircleCalculator objects) The following statements useBeanShell to
calculate the area and circumference of a circle using aCircleCalculator object.

bsh % addClassPath("c:/book-projects/chapter3");
bsh % CircleCalculator circle1 = new CircleCalculator(2.0);
bsh % double area1 = circle1.getArea();
bsh % print(area1);
12.566370614359172
bsh % double circum1 = circle1.getCircumference();
bsh % print(circum1);
12.566370614359172

This example is shown in Figure 3.18

EXAMPLE 3.2 (Three CircleCalculator objects) Continuing the previous example, the
statements

bsh % CircleCalculator circle2 = new CircleCalculator(3.0);
bsh % CircleCalculator circle3 = new CircleCalculator(4.0);
bsh % double area2 = circle2.getArea();
bsh % double area3 = circle3.getArea();
bsh % double averageArea = (area1 + area2 + area3) / 3;
bsh % print(averageArea);
30.368728984701335

3.5 UsingBeanShell with objects 61

Figure 3.18: UsingBeanShell to construct aCircleCalculator object and invoke its methods.

construct two more objects,circle2 and circle3 , and compute the average area of the three
circles using thegetArea method.

EXAMPLE 3.3 (TriangleCalculator objects) The statements

bsh % TriangleCalculator triangle = new TriangleCalculato r(1,1,90);
bsh % double c = triangle.getC();
bsh % print(c);
1.414213562373095
bsh % double angleSum = triangle.checkAngleSum();
bsh % print(angleSum);
180.0

compute the length of the third side of the right-angled triangle and check the sum of the angles.

EXAMPLE 3.4 (QuadraticRootFinder objects) The statements

bsh % QuadraticRootFinder rootFinder = new QuadraticRootF inder(1,-2,0.75);
bsh % double r1 = rootFinder.getRoot1();
bsh % double r2 = rootFinder.getRoot2();
bsh % print(r1);
0.5
bsh % print(r2);
1.5
bsh % rootFinder.setC(1);
bsh % r1 = rootFinder.getRoot1();
bsh % r2 = rootFinder.getRoot2();
bsh % print(r1);
1.0
bsh % print(r2);
1.0

62 Writing Simple Classes

compute the rootsr1 = 1/2 andr2 = 3/2 of the equationx2−2x+3/4 = 0. Then the coefficientc
is changed to 1 and the new rootsr1 = r2 = 1 are computed.

3.6 Writing and viewing Javadoc class documentation

The three classes in this chapter have been presented without any comments. It is essential that
every class you write include comments to document the purpose of the class, its constructors and
methods. There are three kinds of comments in Java:

Single line comments If you use// then these characters and all others following them on the
same line are ignored by the Java compiler. For example in theTriangleCalculator class we
can use

private double gamma; // angle opposite side c

to indicate the purpose of the variablegamma.

Multi-line comments They begin with/* on one line and end on the same line or a following
one with the characters*/ . For example, the private method inQuadraticRootFinder can be
documented as follows:

/* This private method is used in the constructor and the
* three set methods in order to update the roots in case
* a coefficient is changed.
*/

private void doCalculations()
{

double d = Math.sqrt(b*b - 4*a*c);
root1 = (-b - d) / (2.0 * a);
root2 = (-b + d) / (2.0 * a);

}

The extra asterisks on the two intermediate lines are not necessary but they are supplied by the
BlueJ editor automatically so we will use them.

Javadoc comments They look like regular multi-line comments but they begin with /** so
that the javadoc processor can identify them. Of course the Java compiler sees them as or-
dinary multi-line comments and ignores them. For example, here is a javadoc version for the
CircleCalculator constructor.

/** Constructor for an object with specified radius.
* @param r the radius of the circle
*/

public CircleCalculator(double r)
{

3.6 Writing and viewing Javadoc class documentation 63

radius = r;
area = Math.PI * radius * radius;
circumference = 2.0 * Math.PI * radius;

}

Within a javadoc comment HTML tags can be used and there are special tags beginning with the@
character. In this example we have used the@paramtag to describe the constructor argument. The
HTML and special tags are used to apply special formatting tothe class documentation (interface).
The resulting HTML document can be viewed by a browser.

The javadoc comments are also shown byBlueJ in the “Create Object” dialog boxes.

3.6.1 Javadoc rules

First we need some of the javadoc rules:

• Use a javadoc block comment immediately before the class declaration to give a description
of the class. This comment can contain the special@author and@version tags.

• Use a javadoc comment immediately before each public constructor and method declaration.
The first line (ended by first period) is special and is used in the summary part of the docu-
mentation. Any remaining lines give further information that is shown in the detail part of
the documentation.

• Use a parameter line for each argument. It has the format

@paramname text.

wherenameis the name of the argument andtextdescribes the argument.

• Use a return line for each method that returns a value. It has the format

@return text.

There are other javadoc tags that we won’t need yet. We can nowgive the complete javadoc
versions of our three classes.

3.6.2 Javadoc version ofCircleCalculator

ClassCircleCalculator

book-projects/chapter3

package chapter3; // remove this line if you are not using pac kages
/**

* The objects of this class know how to compute the area and
* circumference of a circle, given its radius as a constructo r
* argument (parameter).
*/

public class CircleCalculator

64 Writing Simple Classes

{
// instance data fields defining a CircleCalculator object

private double radius;
private double area;
private double circumference;

/** Constructor for an object with specified radius.
* @param r the radius of the circle
*/

public CircleCalculator(double r)
{

radius = r;
area = Math.PI * radius * radius;
circumference = 2.0 * Math.PI * radius;

}

/**
* Return the radius of the circle.
* @return circle radius
*/

public double getRadius()
{

return radius;
}

/**
* Return the area of the circle.
* @return circle area
*/

public double getArea()
{

return area;
}

/**
* Return the circumference of the circle.
* @return circle circumference
*/

public double getCircumference()
{

return circumference;
}

}

3.6.3 Javadoc version ofTriangleCalculator

ClassTriangleCalculator

book-projects/chapter3

package chapter3; // remove this line if you are not using pac kages

3.6 Writing and viewing Javadoc class documentation 65

/**
* A TriangleCalculator represents a triangle by two side len gths and
* the contained angle in degrees. From this information the t hird
* side length and remaining two angles can be calculated. The n the
* area and perimeter can be calculated. All values can be retu rned
* using get methods.
*/

public class TriangleCalculator
{

private double a, b, c; // triangle side lengths
private double alpha; // angle opposite side a
private double beta; // angle opposite side b
private double gamma; // angle opposite side c

private double perimeter, area;

/**
* Construct a triangle given two sides and contained angle.
* @param sideA the first side length
* @param sideB the second side length
* @param g the contained angle in degrees
*/

public TriangleCalculator(double sideA, double sideB, do uble g)
{

double s;

a = sideA;
b = sideB;
c = Math.sqrt(a*a + b*b -2*a*b*Math.cos(Math.toRadians(g)));

// Angle opposite side a, contained by sides b and c

alpha = Math.acos((b*b + c*c - a*a) / (2*b*c));
alpha = Math.toDegrees(alpha);

// Angle opposite side b, contained by sides c and a

beta = Math.acos((c*c + a*a - b*b) / (2*c*a));
beta = Math.toDegrees(beta);

gamma = g;

// Calculate perimeter and use Heron’s formula for
// the area in terms of the side lengths

perimeter = a + b + c;
s = perimeter / 2;
area = Math.sqrt(s*(s-a)*(s-b)*(s-c));

}

/**
* Return the length of side a.

66 Writing Simple Classes

* @return the length of side a
*/

public double getA()
{

return a;
}

/**
* Return the length of side b.
* @return the length of side b
*/

public double getB()
{

return b;
}

/**
* Return the length of side c.
* @return the length of side c
*/

public double getC()
{

return c;
}

/**
* Return the angle opposite side a.
* @return the angle opposite side a in degrees
*/

public double getAlpha()
{

return alpha;
}

/**
* Return the angle opposite side b.
* @return the angle opposite side b in degrees
*/

public double getBeta()
{

return beta;
}

/**
* Return the angle opposite side c.
* @return the angle opposite side c in degrees
*/

public double getGamma()
{

return gamma;
}

3.6 Writing and viewing Javadoc class documentation 67

/**
* Return the perimeter of the triangle.
* @return the perimeter of the triangle
*/

public double getPerimeter()
{

return perimeter;
}

/**
* Return the area of the triangle
* @return the area of the triangle
*/

public double getArea()
{

return area;
}

/**
* Return the sum of the angles as a check that it is close
* to 180 degrees.
* @return the sum of the angles
*/

public double checkAngleSum()
{

return alpha + beta + gamma;
}

}

3.6.4 Javadoc version ofQuadraticRootFinder

ClassQuadraticRootFinder

book-projects/chapter3

package chapter3; // remove this line if you are not using pac kages
/**

* An object of this class can calculate the real roots of the
* quadratic equation axˆ2 + bx + c = 0 given the coefficients a, b, and c.
* The program does not check if there are real roots. Later whe n
* we know how to make decisions (if statements) we can make a be tter
* version of this class.
*/

public class QuadraticRootFinder
{

// Instance data fields for coefficients and roots

private double a, b, c;
private double root1, root2;

/**
* Construct a quadratic equation root finder given the coeff icients

68 Writing Simple Classes

* @param a first coefficient in axˆ2 + bx + c
* @param b second coefficient in axˆ2 + bx + c
* @param c third coefficient of axˆ2 + bx + c
*/

public QuadraticRootFinder(double a, double b, double c)
{

this.a = a;
this.b = b;
this.c = c;
doCalculations();

}

/* This private method is used in the constructor and the
* three set methods in order to update the roots in case
* a coefficient is changed.
*/

private void doCalculations()
{

double d = Math.sqrt(b*b - 4*a*c);
root1 = (-b - d) / (2.0 * a);
root2 = (-b + d) / (2.0 * a);

}

/**
* Return the first root.
* @return the first real root or NaN if there are none
*/

public double getRoot1()
{

return root1;
}

/**
* Return the second real root.
* @return the second real root or NaN if there are none
*/

public double getRoot2()
{

return root2;
}

/**
* Return the coefficient of xˆ2.
* @return the coefficient of xˆ2
*/

public double getA()
{

return a;
}

/**
* Return the coefficient of x.

3.6 Writing and viewing Javadoc class documentation 69

* @return the coefficient of x
*/

public double getB()
{

return b;
}

/**
* Return the constant coefficient.
* @return the constant coefficient
*/

public double getC()
{

return c;
}

/**
* Change the value of the coefficient of xˆ2.
* @param value the new value for the coefficient of xˆ2
*/

public void setA(double value)
{

a = value;
doCalculations();

}

/**
* Change the value of the coefficient of x.
* @param value the new value for the coefficient of x
*/

public void setB(double value)
{

b = value;
doCalculations();

}

/**
* Change the value of the constant coefficient.
* @param value the new value for the constant coefficient.
*/

public void setC(double value)
{

c = value;
doCalculations();

}
}

3.6.5 Viewing the documentation

With BlueJ it is very easy to generate and display the Java documentation. For example, to gener-
ate documentation for theCircleCalculator class double click on its rectangle to bring up the

70 Writing Simple Classes

Figure 3.19: An editor window.

editor window as shown in Figure 3.19. Now select the implementation button menu in the top
right corner of the toolbar and select interface. The documentation will be generated in the editor
window. Part of it is shown in Figure 3.20. You can use this button to toggle between the source
code (implementation) and the interface (documentation).

3.6.6 Implementation and documentation views

The implementation and documentation give two different views of a class. The implementation
gives the complete view of the source code including all comments, all constructor and method
bodies. The documentation produced by javadoc is often called thepublic interface or specifica-
tion of the class. It includes only the javadoc comments, the public class, constructor, and method
prototypes (first lines) but not the method bodies, all nicely formatted as an HTML document.
Private data fields and methods are not shown in the documentation.

These two views relate to how we use the class. As a programmerwriting Java classes we are
writing the complete source code (the implementation) but as someone that is simply using the
class, as we did in ourBlueJ experiments, it is only necessary to view the public interface. It gives
all the information needed to use the class.

3.6.7 Project documentation

Normally a project contains more than one class. The projectfor this chapter contains three classes.
It is possible to generate the Java documentation for all classes in a project simultaneously by

3.7 Syntax and logical errors 71

Figure 3.20: Generated Java documentation obtained from the implementation/interface button.

choosing “Project Documentation” from theBlueJ “Tools” menu. The documentation will appear
in your browser instead of the editor window. The first page ofthe results is shown in Figure 3.21.

3.7 Syntax and logical errors

When writing and testing a Java class it is rare that your firstattempt is without error so it is
important to recognize errors and be able to fix them.

There are two kinds of errors that can occur:syntax errors and logical errors. The Java
language is defined by a number of syntax or grammar rules thatare used by the compiler to
determine whether a Java statement is legal or not. If a statement is illegal we say that it contains
one or more syntax errors. These errors are often calledcompile-time errors since they are found
by the compiler when it attempts to compile your class to obtain the bytecode file. Forgetting the
semi-colon at the end of a statement is a common example of a syntax error.

Logical errors are often calledrun-time errors since they occur when the Java interpreter is
executing your class. A logical error may result in an abnormal termination of execution of a
constructor or method in your class or it may simply produce erroneous results because you used
a minus sign instead of a plus sign in some formula.

Finding logical errors can be difficult and can be accomplished only by thoroughly testing your
classes. Therefore we will place a lot of emphasis on techniques for testing classes.BlueJ is an
excellent environment for testing.

72 Writing Simple Classes

chapter3

All Classes
CircleCalculator
QuadraticRootFinder
TriangleCalculator

Package Class Tree Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class CircleCalculator

java.lang.Object

 |
 +-- CircleCalculator

public class CircleCalculator
extendsObject

The objects of this class know how to compute the area and circumference of a
circle, given its radius as a constructor argument (parameter).

Constructor Summary
CircleCalculator(double r)

 Constructor for an object with specified radius.

Method Summary
 double getArea()

 Return the area of the circle.

 double getCircumference()

 Return the circumference of the circle.

 double getRadius()

 Return the radius of the circle.

Methods inherited from class java.lang.Object

clone , equals , finalize , getClass , hashCode , notify ,

notifyAll , toString , wait , wait , wait

file:///C|/book-projects/chapter3/doc/index.html (1 of 3) [6/25/2003 10:31:30 AM]

Figure 3.21: A web page for the chapter3 project documentation

3.7 Syntax and logical errors 73

Figure 3.22:BlueJ syntax error for a missing semi-colon.

Figure 3.23: DetailedBlueJ error message for a missing semi-colon.

3.7.1 Some common syntax errors

Forgetting a semi-colon

For example, open the editor for theCircleCalculator class and remove the semi-colon from
the end of the line

public double radius;

Now compile the class using the Compile button on the editor toolbar and you will get an error
message at the bottom of the editor window as shown in Figure 3.22. Click on the question mark
button to see the more detailed message shown in Figure 3.23.

Undeclared variables

In theTriangleCalculator class it would be easy to omit the line

double s;

in the constructor body. Then you would get the error messageshown in Figure 3.24

74 Writing Simple Classes

Figure 3.24: DetailedBlueJ error message for an undeclared variable.

Figure 3.25: DetailedBlueJ error message for a variable declared twice.

Declaring a variable more than once

In the TriangleCalculator constructor declaration the local variables is declared for the first
time using

double s;

Later it is used in the line

s = perimeter / 2;

Replace this line by

double s = perimeter / 2;

Compile the class and you will get the error message shown in Figure 3.25.

3.7 Syntax and logical errors 75

Figure 3.26: DetailedBlueJ error message for misspelled constructor name.

Misspelling the constructor name

For example, in theCircleCalculator class (page 63) suppose the constructor declaration is
written as

public circleCalculator(double r)
{

...
}

We have used a lowercasec instead of an uppercaseC. If we compile the class we get the syntax
error shown in Figure 3.26. The error message indicates thatthe compiler is trying to consider
circleCalculator as a method but it doesn’t have a return type. The compiler does not consider
this as a constructor declaration because constructors must have the same name as the class.

Forgetting new in constructor call expressions

We can’t illustrate this error inBlueJ yet, but it is easy to make in some of ourBeanShell examples.
For example, try the following statements.

bsh % addClassPath("c:/book-projects/chapter3");
bsh % CircleCalculator circle = CircleCalculator(2.0);
// Error: Typed variable declaration : Command not found: Ci rcleCalculator:
<at unknown location>

Here we forgot to usenew on the right hand side of the statement. The error message is not so
helpful here. Withoutnew the Java interpreter is assuming that the right hand side is amethod call
(like getArea()) but there is no method with this name.

3.7.2 Some common logical errors

There are several very common logical errors that programmers make in Java.

76 Writing Simple Classes

Using an incorrect formula

As an example consider theTriangleCalculator formulas in Figure 3.6 that are implemented in
the constructor (page 64). Any number of logical errors could be made here such as using a+ sign
instead of a- sign. Errors like this can be discovered by testing.

Redeclaring an instance variable

This is difficult error for beginners to detect. For example,in the CircleCalculator class
(page 63) if we had replaced the assignment statements

radius = r;
area = Math.PI * radius * radius;
circumference = 2.0 * Math.PI * radius;

in the constructor body by the declarations

double radius = r;
double area = Math.PI * radius * radius;
double circumference = 2.0 * Math.PI * radius;

then the class would compile just fine; there are no syntax errors. However, when you construct
an object and ask it for the radius, area, and circumference,you will get 0.0 as an answer for any
radius. By declaring the variables in the constructor we have introduced three local variables that
have nothing to do with the instance data fields of the same name so the assignment of values to
them does not change the instance data field values.

For numeric instance data fields the compiler will automatically initialize their values to zero
and they will remain zero since we didn’t initialize them in the constructor. The local variables dis-
appear when the constructor body finishes execution. Therefore, when you invoke thegetRadius ,
getArea , andgetCircumference methods on an object,0.0 is returned in each case. This dec-
laration of a variable in a constructor or method having the same name as an instance variable is
calledshadowingand should be avoided.

Using a return type on a constructor

This is also a common error that is easy to make and is difficultfor a beginner to find and under-
stand.

Suppose theCircleCalculator constructor (page 63) is replaced by

public void CircleCalculator(double r)
{

...
}

We have erroneously usedvoid in the constructor prototype. This is not a syntax error. The
compiler simply assumes thatCircleCalculator is the name of a method, not the name of a
constructor.

3.7 Syntax and logical errors 77

If you try this in BlueJ by right clicking on the class you will seenew CircleCalculator()
and you will not be asked to enter a radius to construct an object. When you construct an object and
right click to get its menu of methods you will seevoid CircleCalculator(r) there, indicating
that this is a method.

What has happened is that by using a return type we have in effect not used any constructor in
our class. When the compiler notices this it automatically provides a so-called default do-nothing
constructor having the form

public CircleCalculator()
{
}

with no arguments and an empty body. So this is what you are using to create an object and again
when you invoke thegetRadius , getArea , andgetCircumference methods on an object,0.0 is
returned in each case.

3.7.3 Invoking a method on a non-existent object

In ourBeanShell examples we could have constructed our objects in two steps as we did sometimes
for int anddouble variables: first declare them and later assign values to them. For example we
could use the statements

bsh % addClassPath("c:/book-projects/chapter3");
bsh % CircleCalculator circle;
bsh % circle = new CircleCalculator(2.0);
bsh % double area = circle.getArea();
bsh % print(area);
12.566370614359172
bsh % circle = new CircleCalculator(3.0);
bsh % area = circle.getArea();
bsh % print(area);
28.274333882308138
bsh %

The first statement declarescircle to be a variable of typeCircleCalculator and the second
statement constructs an object to assign to it.

However suppose the second statement was accidentally omitted. Then the third statement is
trying to invoke thegetArea method on a non-existent object. InBeanShell we would get

bsh % CircleCalculator circle;
bsh % double area = circle.getArea();
// Error: // Uncaught Exception: Typed variable declaratio n :
Null Pointer in Method Invocation: <at unknown location>
Target exception: java.lang.NullPointerException

This cryptic error message tells us that we have a variablecircle of type CircleCalculator
but we have not constructed an object to assign to it. Later you will better understand this error
message.

78 Writing Simple Classes

3.8 Summary of terminology

In this section we give simple definitions of the important terms introduced in this Chapter. Many
terms are used to discuss and explain a language such as Java.It is important that you understand
them and can give examples of each term.

For example, there are general language-independent termssuch asvariable that would be
used in any computer language, and terms such asclass, object, andmethod that would be used
in any object-oriented language.

Other terms and definitions would be specific to Java. For example, the Java language is defined
by a set of rules called thegrammar or syntax of the language. Although these rules can be
formally defined we will introduce them in simple informal way.

Simple identifier

A sequence of one or more letters, digits and underscores such that the first character is not
a digit. Identifiers are used to give names to variables, classes, constructors, objects, and
methods.

An almost universal convention is to begin the name of a classwith an upper case letter. All
other identifiers begin with a lower case letter. In either case capitalize the beginning letter
of each interior word.

Identifiers arecase sensitive.

Example: radius , numberOfStudents are variable names
Example: CircleCalculator is a class name
Example: doCalculations , checkAngleSum are method names
Example: circle1 , triangle are object names.

type

A specific kind of data such as the set of all integers or the setof all real numbers, or the set
of all CircleCalculator objects.

Example: int , float , double are primitive types.
Example: CircleCalculator is an object type.

class (definition 1)

A definition of a set of objects of a specific type and their behavior.

Example: CircleCalculator , TriangleCalculator

class (definition 2)

A home for some functions not associated with any objects.

Example: Math is our only example so far.

object

An entity that has identity (a name), state, and behavior.

Example: A CircleCalculator object.

3.8 Summary of terminology 79

instance

An object constructed from a class.

Example: A CircleCalculator object that has the namecircle1 is an instance of the
CircleCalculator class.

method

A function or operation defined in a class that can be invoked on an object of the class. Such
methods are often calledinstance methods. Later we will learn that there are alsostatic
methods. The instance methods of a class define the behavior of objects.

Example: getArea , setA , checkAngleSum , doCalculations

constructor

A special kind of method defined in a class that is used to create an object (instance of the
class) having specified properties. An object must be created before any of its methods can
be invoked (executed). A constructor must have the same nameas its class.

Example: QuadraticRootFinder

variable declaration

A statement having one of the forms

accessModifier typeName identifier;
accessModifier typeName identifier= expression;

where, for now,accessModifieris either absent orprivate , identifier is the name of the
variable,typeNameis the variable type andexpressionis an expression that evaluates to a
value that can be assigned to the variable.

Example: double radius;
Example: double radius = 2.0;
Example: double area = Math.PI * radius * radius;
Example: CircleCalculator circle1 = new CircleCalculator(2.0);
Example: CircleCalculator circle1;
Example: int n=123, remainder, hundreds, tens, units;
Example: double area, circumference;
Example: double radius = 3.0, area;

The final three examples show that multiple variables of the same type can be declared and
optionally initialized in a single declaration.

constant declaration

A constant has the form

80 Writing Simple Classes

accessModifier static final typeName identifier= expression; The accessModi-
fier can bepublic or private . The strange keywordstatic indicates that constants are
associated with the class, not the objects of the class The equally strange keywordfinal
distinguishes a constant declaration from an initialized variable declaration.

It is conventional to name constants using upper case letters and the underscore to simulate
a space.

Example: static final double CM_PER_INCH = 2.54;

arithmetic expression

An expression involving variables and operators that evaluates to a numeric value.

Example: radius
Example: 2.0 * Math.PI * radius
Example: remainder % 10
Example: circle1.getArea() + circle2.getArea()

assignment statement

A statement of the form

identifier = expression;

whereidentifieris the name of a variable that has already been declared andexpressionis an
expression whose value is assigned to the variable.

Example: radius = 2.0;
Example: circle1 = new CircleCalculator(2.0);
Example: area = Math.PI * radius * radius;

class declaration

A template for a simple class declaration is shown in Figure 3.27. The first box is replaced
by the name of the class. The other boxes show that a class declaration has three parts, not
all of which are required in every class. These parts are defined below.

Example:

public class CircleCalculator
{

...
}

The part indicated by{...} is called theclass body.

3.8 Summary of terminology 81

public class ClassName
{

Data field declarations

Constructor declarations

Method declarations
}

Figure 3.27: A template for a simple Java class declaration.

modifiers ClassName (formalArgumentList)

{
local declarations and other statements

}

Figure 3.28: A template for a simple Java constructor declaration.

instance data field

An instance data field is a special variable declaration in the body of a class but outside any
method or constructor. These variables are available anywhere in the class and are the only
variable declarations that have a modifier such asprivate . Each object of the class has its
own copies of the instance data fields.

Example: private double radius;
Example: private double root1, root2;

The second example shows that more than one variable can be declared in one declaration.

constructor declaration

A template for a constructor declaration is shown in Figure 3.28. Themodifiersbox can be
replaced bypublic which is the only modifier we have discussed so far. Then we have the
name of the class followed by a formal argument list in parentheses, if any. TheformalArgu-
mentListis is list of type-variable pairs separated by commas.

Example:

public TriangleCalculator(double sideA, double sideB, do uble g)
{

82 Writing Simple Classes

modifiers returnType methodName(formalArgumentList)

{
local declarations and other statements

}

Figure 3.29: A template for a simple Java method declaration.

double s;
a = sideA;
...
area = Math.sqrt(s*(s-a)*(s-b)*(s-c));

}

The part indicated by{...} is called theconstructor body.

constructor prototype

The first line of a constructor declaration is the constructor prototype.

Example: public CircleCalculator(double r)
Example: public TriangleCalculator(double sideA,

double sideB, double g)

For a constructor, only the prototype is part of the public interface (see Javadoc output).

constructor call expression

An expression of the form

new ClassName(actualArguments)

that constructs an object from the class whose name isClassNameand whoseactualArgu-
ments, if any, is a list of expressions separated by commas that evaluate to a value of the type
indicated in theformalArgumentlist of the constructor prototype.

Example: new CircleCalculator(3.0)
Example: new QuadraticRootFinder(1.0,1.0,90.0)

method declaration

A template for a method declaration is shown in Figure 3.29. The modifiersbox can be
replaced bypublic or private which are the only modifiers we have discussed so far.
Then we havereturnType, the name of the return type, followed by the name of the method,

3.8 Summary of terminology 83

followed by a formal argument list in parentheses, if any. The formalArgumentListis is list
of type-variable pairs separated by commas. The differencebetween a constructor and a
method is that a method always has a return type and a name thatbegins with a lowercase
letter and a constructor has no return type and a name that begins with an uppercase letter.

Example:

public double getArea()
{

return area;
}

Example:

public void setC(double value)
{

c = value;
doCalculations();

}

Example:

private void doCalculations()
{

double d = Math.sqrt(b*b - 4*a*c);
root1 = (-b - d) / (2.0 * a);
root2 = (-b + d) / (2.0 * a);

}

The part of a method declaration indicated by{...} is called themethod body.

method prototype

The first line of a method declaration is the method prototype.

Example: public double getArea()
Example: public void setC(double value)
Example: public void doCalculations()

For a method, only the prototype is part of the public interface (see Javadoc output).

84 Writing Simple Classes

method call expression

An expression of one of the forms

objectName. methodName(actualArguments)
methodName(actualArguments)

The first form invokes a method calledmethodNameon an object calledobjectName. The
actualArguments, if any, is a list of expressions separated by commas that evaluate to a value
of the type indicated in the formal argument list of the method prototype. The second form,
without an object name, is used to invoke a method in the same class in which the method is
defined.

Example: circle1.getArea()
Example: rootFinder.setC(1.0)
Example: doCalculations()

enquiry method

A method that returns information specific to an object of a class, without changing the
object.

Example: In theTriangleCalculator class thecheckAngleSum method returns the sum
of the three angles.

mutator method

A method that changes the state of an object of a class, usually by modifying one or more
instance data fields.

Example: doCalculations in theQuadraticRootFinder class calculates new values for
the instance variablesroot1 androot2 .

get method

A special kind of enquiry method whose name isget Namewherenameis the name of one
of the instance data fields. Its purpose is to return the valueof this field.

Example: getArea returns the value of instance variablearea in CircleCalculator .

set method

A special kind of mutator method whose name isset Namewherenameis the name of one
of the instance data fields. Its purpose is to change the valueof this field.

Example: In theQuadraticRootFinder classsetC modifies the value of the instance
variablec .

3.8 Summary of terminology 85

local variable

A local variable is quite different from an instance variable. An instance variable is declared
in a class outside any constructor or method and it can be usedinside any constructor or
method of the class.

A local variable is declared in the body of a constructor or method and cannot be used
outside the constructor or method. It comes into existence each time the body is executed
and disappears when the constructor or method finishes execution.

Example: double s; declares a local variable in theTriangleCalculator constructor.

formal argument

A formal argument in a method or constructor is a special local variable whose value is
supplied when a method or constructor call expression is executed (called).

Example: In thesetC method of theQuadraticCalculator class, with prototypevoid
setC(double value) , value is a local variable of typedouble .

actual argument

An actual argument is a variable or expression whose value isused as the value of the corre-
sponding formal argument when a method or constructor call expression is executed (called).

Example: For thesetC method of theQuadraticRootFinder class, with prototypevoid
setC(double value) , the expressionrootFinder.setC(1.0) causes the value1.0 to be
assigned as the value of the formal argumentvalue .

return statement

A return statement has two forms:

return expression;
return;

The first form is used to indicate that the value ofexpressionis to be returned by the method.
The second form is used in a method that hasvoid return type. We havn’t seen an exam-
ple of this form yet. When areturn statement is executed the method finishes execution
immediately.

Example: return alpha + beta + gamma;

single line comment

A comment beginning with// . These characters and all following characters on the same
line are part of the comment.

multi-line comment

A comment beginning with/* and ending with*/ on the same or another line.

86 Writing Simple Classes

javadoc comment

A comment beginning with/** and ending with*/ on the same or another line.

3.9 Review exercises

◮ Review Exercise 3.1Define the following terms and give examples of each.

simple identifier type class
object instance method
constructor variable declaration constant declaration
class declaration instance data field constructor declaration
constructor prototype constructor call expression methoddeclaration
method prototype method call expression enquiry method
“get” method mutator method “set” method
local variable formal argument actual argument
return statement single line comment multi-line comment
javadoc comment @param @return
addClassPath public interface class specification
class implementation syntax error logical error
run-time error undeclared variable error duplicate definition error
redeclaration error

◮ Review Exercise 3.2Make a list of all the prototypes for the constructors used inthis chapter.

◮ Review Exercise 3.3Make a list of all the constructor call expressions used in this chapter.

◮ Review Exercise 3.4Make a list of all the prototypes for the methods used in this chapter.

◮ Review Exercise 3.5Make a list of all the method call expressions used in this chapter.

3.10 Programming exercises

In each programming exercise you should include javadoc comments and indicate what data you
have used to test your class.

◮ Exercise 3.1 (Converting inches to feet and inches)
Write a class calledInchesToFeetConverter whose constructor argument is an integer repre-
senting the height of a person in inches. This number is to be converted to feet and inches. For
example for a height of 67 inches is 5 feet and 7 inches. Use thefollowing class outline and fill in
the details indicated by{..} .

public class InchesToFeetConverter
{

private int heightInInches;

3.10 Programming exercises 87

private int feetPart;
private int inchesPart;

public InchesToFeetConverter(int height) { ... }
public int getHeightInInches() { ... }
public int getFeetPart() { ... }
public int getInchesPart() { ... }

}

◮ Exercise 3.2 (Height in metric units)
Write a class calledHeightConverter whose constructor has two integer arguments for the feet
part and the inches part of a height. This height is to be converted into centimeters. Use constants
for the conversion factors from centimeters to inches (2.54) and from feet to inches (12.0). For
example, for a height of 5 feet 10 inches the height in centimeters is 177.8. Use the following class
outline and fill in the details indicated by{..} .

public class HeightConverter
{

// put your constants here

private double heightCM;

public HeightConverter(int feet, int inches) { ... }
public double getHeightCM() { ... }

}

◮ Exercise 3.3 (Fahrenheit to Celsius temperature conversion)
Write a class calledFToCConverter that can be used to convert a Fahrenheit temperature to a
Celsius temperature. The constructor needs one argument for the given temperature in Fahrenheit.
Do not include any “set methods” in your class.

◮ Exercise 3.4 (Celsius to Fahrenheit temperature conversion)
Write a class calledCToFConverter that can be used to convert a Celsius temperature to a Fahren-
heit temperature. The constructor needs one argument for the given temperature in Celsius. Do not
include any “set” methods in your class.

◮ Exercise 3.5 (Heat loss and windchill calculator)
Write a class calledWindChillCalculator with a constructor that has twodouble arguments.
One us for the temperature in degrees Celsius and the other isthe wind speed in kilometers per hour.
The constructor should use the formulas in Example 2.22 and Example 2.23 to do the calculations.
To use the heat loss formula in Example 2.23 you will have to convert the input wind speed from
kilometers per hour to meters per second. As an example if thewind speed is 30 km/hr and the
temperature is -15C then the windchill is approximately -33.8 and the heat loss is approximately
1487.2. Include set methods for the temperature and for the wind speed.

88 Writing Simple Classes

◮ Exercise 3.6 (Making change)
Write a class calledChangeHelper that helps a cashier give change to a customer. The constructor
has two inputs, (1) the amount due as adouble value (e.g., 3.28 is 3 dollars and 28 cents) and
the amount received as adouble value (e.g., 5.00 is 5 dollars and 0 cents). Also assume that the
amount received from the customer is equal to or greater thanthe amount due. The constructor
should calculate the minimum number of dollars, quarters, dimes, nickels, and cents the customer
should receive as change. Each of these values should be returned using a “get” method.HINT:
First convert the two double numbers to total pennies (multiply by 100), round to the nearest
integer, subtract and use/ and%a few times to extract the numbers of each type of coin.

◮ Exercise 3.7 (Calculating Easter)
The day and month on which Easter falls can be calculated using quotients and remainders with
the following steps involving fifteen variables (a to p) starting with the value ofy for the given
year.

Step Dividend Divisor Quotient Remainder
1 y 19 – a
2 y 100 b c
3 b 4 d e
4 8b+13 25 f –
5 11(b−d− f)−4 30 g –
6 7a+g+6 11 h –
7 19a+(b−d− f)+15−h 29 – i
8 c 4 j k
9 (32+2e)+2 j−k− i 7 – m
10 90+(i +m) 25 n –
11 19+(i +m)+n 32 – p

The value ofn is the month number (3 for March, 4 for April) and the value ofp is the day of
the month. Write anEasterCalculator class whose constructor has one integer argument for the
year. Provide “get methods” for the month number and the day number for Easter.

◮ Exercise 3.8 (An interesting formula for the Fibonacci numbers)
The Fibonacci numbers (F0,F1,F2, . . .) occur often in computer science. They are integers and the
sequence beginning withF0 can be calculated exactly using the recurrence relationFn = Fn−1 +
Fn−2 whereF0 = F1 = 1. Later when we learn about loops you can use this formula to calculate
them exactly.

However there is an interesting closed formula for thenth Fibonacci number:

Fn =
1√
5

[(

1+
√

5
2

)n

−
(

1−
√

5
2

)n]

This is a strange formula since it appears that the results are not necessarily integers for alln =
0,1,2, However, it can be shown that they are all integers (the

√
5 factors all cancel out).

Write a class calledFibonacciCalculator with a constructor taking one integer argument for
the value ofn. Provide a “get” method to return the value ofFn usingdouble calculations with

3.10 Programming exercises 89

the formula. For example, some exact values areF10 = 55, F20 = 675,F30 = 832040, andF40 =
102334155 but your program will only give the approximate result F30 = 832040.0000000008.
Why are the answers not quite integers?

What is the largestFk that can be calculated exactly by truncating the floating point result?

◮ Exercise 3.9 (Calculatingex)
A series representingex is given by

ex = 1+
x
1!

+
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

in the sense that, for a givenx, using more terms gives better approximations toex. Write a class
called ExpCalculator with a constructor having onedouble argument for the value ofx and
two “get” methods. One returns the accurate value ofex obtained usingMath.exp(x) and the
other returns the approximate value obtained using this series up to the term inx4. Do not use the
Math.pow method to compute the powers. Instead write the approximation in the form

ex = 1+x(1+x(1/2+x(1/6+x(1/24))))

Use your class to discover the range ofx values for which the approximation agrees with the more
exact value to at least 5 significant figures.

For example, when x is 0.1 the accurate value is 1.1051709180756477 and the value from
the series is 1.1051708333333332. showing that forx = 0.1 the two results agree to at least 5
significant figures (in fact, 7 significant figures).

BlueJ andBeanShell Edition Copyright 2002, 2005, 2007, Barry G. Adams

90 Writing Simple Classes

Chapter 4

Classes, Objects, and Methods
OOP Concepts

Outline

String class

Writing classes that use strings

Writing classes that use association and aggregation

Using other library classes

Object construction

Object references

Data encapsulation and integrity

Running a class from the command line

91

92 Classes, Objects, and Methods

4.1 Introduction

In this Chapter we continue with the basic concepts and terminology of object-oriented program-
ming (OOP). One of the main themes is that existing library classes and classes we write ourselves
can be used together as building blocks to create the classeswe need to solve problems.

First we introduce theString class which represents sequences of characters and we write
some classes that use theString class. We introduce other important library classes such asthe
Date , Calendar , SimpleDateFormat andNumberFormat classes.

The important OOP concepts of association and aggregation are explained using several exam-
ples, including aPoint class and aCircle class.

Then we summarize and extend the important OOP concepts we have encountered so far. These
include object construction, object references, comparison of primitive and object types, compari-
son of assignment statements for primitive and reference types, using references as arguments and
method return values, data encapsulation and integrity, side-effects (both desirable and undesir-
able), comparison of instance and static variables and methods, and the call by value argument
passing mechanism use by Java.

Other useful library classes such as theCalendar , Date , andSimpleDateFormat are also
introduced.

We write several classes that show how to use theString class and that also illustrate the
important ideas of association and aggregation. TheBlueJ environment is very useful for exploring
these concepts.

Finally, we introduce themain method which is necessary in order to run Java classes outside
BlueJ from the command line.

4.2 String class

In Java theString class is part of a standard Java library (package) calledjava.lang and contains
many methods for operating on string objects. EachString object is a sequence of 0 or more
characters. This is one of the most important classes since strings are used in almost every program.

We will explore this class usingBeanShell andBlueJ and use strings in our own classes just
like we used the primitiveint anddouble types in Chapter 3.

4.2.1 Constructing strings

A literal string is a sequence of characters delimited by double quote characters. For example,
"Hello" is a literal string. The double quote characters are used to delimit the characters included
in the string but are not part of the string. The length of a string is defined as the number of
characters in the string, so this string has length 5.

Theempty string has no characters and a length of zero. It is denoted by"" , two consecutive
double quote characters with nothing between them.

Each character in a string is a Unicode character of typechar stored internally as a 16-bit
integer code. Thechar data type was briefly discussed in Chapter 2. To use strings wenormally
do not need to understand how characters are represented internally as integers.

4.2String class 93

Each character in a string can be directly referenced by an index. The index begins at zero
so the first character has index 0, the next has index 1, and so on. The string"Hello" can be
represented by the picture

H e l l o

0 1 2 3 4

Here each character is shown in a box and its index is shown below the box. The index can be used
to specify individual characters in the string. In the picture the firstl has index 2 (or position 2).

A substring of a given string is a string constructed from a subsequence of characters from the
string beginning at one index position and ending at another. In the picture the substring"ell"
begins at index 1 and ends at index 3.

To construct the literal string object"Hello Fred" and give it the namegreeting we use the
declaration statement

String greeting = "Hello Fred";

Strings are special, we do not need to usenew to create aString object as we did in Chapter 3
(see Table 3.1 for example).

It is very important to understand thatgreeting is defined on the left side of this declaration
as the name of aString object, not theString object itself. We say thatgreeting is anobject
reference variable. The right side creates theString object and returns a reference to it which is
then assigned togreeting . Loosely speaking we often say thatgreeting is an object when we
really mean that it is an object reference variable.

A picture of this process is shown in Figure 4.1. The box namedgreeting holds the reference,

greeting - String

Hello Fred

'

&

$

%
Figure 4.1: A string object in memory and a reference to it called greeting

shown as an arrow, and the rounded box represents the memory reserved for the object and the
characters in the string. This is very different from the waythe primitive types such asint and
double work (compare with Figure 2.2)

4.2.2 String expressions and concatenation

The most common string operation isconcatenation. It takes two strings and joins them together
to make a new string. It is also calledappendsince it appends one string to the end of another. In

94 Classes, Objects, and Methods

Java the+ operator is used to denote string concatenation and it should not be confused with its use
in the addition of numbers. Ifs1 , s2 , . . . ,sn are either strings or expressions that can be converted
to strings then

s1 + s2 + ... + sn

is called a string expression and it is always evaluated fromleft to right unless there are parentheses.
We can useBeanShell to illustrate string construction and concatenation

EXAMPLE 4.1 (Constructing literal strings) The statements

bsh % String name = "William " + "James " + "Duncan";
bsh % print(name);
William James Duncan

show how to concatenate three literal strings to make a new string.

EXAMPLE 4.2 (String variable expressions)Generalizing the preceding example, define the
string variablesfirst , middle and last for three names and concatenate them into a full name
using the statements

bsh % String first = "William";
bsh % String middle = "James";
bsh % String last = "Duncan";
bsh % String fullName = first + " " + middle + " " + last;
bsh % print(fullName);
William James Duncan
bsh %

The last declaration concatenates five strings, two of whichare strings consisting of a single space.
The three variables are replaced by their string values.

String expressions containing numbers

String expressions that contain both strings and numbers are very convenient. They are called
mixed string expressions and are evaluated like pure stringexpressions except that any numbers or
other expressions are converted to strings before the results are concatenated together.

EXAMPLE 4.3 (Mixed string expressions) In theBeanShell statements

bsh % String area = "Area: " + Math.sqrt(2.0);
bsh % print(area);
Area: 1.4142135623730951

the square root function returns adouble value which is converted to a string and then concatenated
with the literal string.

There are some pitfalls to watch out for, as the following example shows.

4.2String class 95

EXAMPLE 4.4 (Parentheses in string expressions)Suppose thatx andy are integer variables
that have the values3 and4, respectively. The evaluation of the string expression

"The sum of " + x + " and " + y + " is " + x + y

gives the string expression

"The sum of 3 and 4 is 34"

which is probably not what you want. To obtain the desired result

"The sum of 3 and 4 is 7"

it is necessary to use parentheses as in

"The sum of " + x + " and " + y + " is " + (x + y)

so that the final+ is interpreted as an addition instead of a string concatenation.

4.2.3 String methods

Many methods are available in theString class. For example, we can find the length of a string,
the character at a specified position, or a substring. As we did in Chapter 2, for the functions in the
Math class, we can document the string methods using their prototypes.

The length of a string

The prototype for the length method is

public int length()

indicating that this is an instance method that returns the number of characters in the string. Since
string indices begin at zero, a valid indexi for a strings should be in the range

0≤ i ≤ s.length() −1

EXAMPLE 4.5 (Length of a string) TheBeanShell statements

bsh % String name = "Harry";
bsh % int len = name.length();
bsh % print(len);
5

use the instance method call expressionname.length() to assign the length ofname to the integer
variablelen .

96 Classes, Objects, and Methods

Converting a number to a string

EXAMPLE 4.6 (Converting numbers to strings) If age is an integer variable andarea is a
double precision variable then the statements

String s1 = "" + age;
String s2 = "" + area;

convert the numbers to strings by using the empty string to force+ to be interpreted as concatena-
tion. This trick forces numeric values to be converted to strings.

Extracting a single character from a string

Sometimes we need to extract specific characters from a string. There is an instance method called
charAt to do this: It has the prototype

public char charAt(int index)

The return value is the character at the index (beginning at 0) as specified by the argument.

EXAMPLE 4.7 (Extracting a character from a string) The statements

bsh % String s = "Hello";
bsh % char c = s.charAt(1);
bsh % print(c);
e
bsh % print(s.charAt(5));
// Error: // Uncaught Exception: ...
... java.lang.StringIndexOutOfBoundsException: String index out of range: 5

show how to assign the character at position 1 in the string"Hello" to achar value and display
it. The last statement shows that if you specify an index outside the valid range (0 to 4 here), a
StringIndexOutOfBoundsException error message is displayed.

Constructing a substring

Thesubstring method constructs a new string that is a substring of a given string. There are two
versions with prototypes

public String substring(int firstIndex)
public String substring(int firstIndex, int lastIndexPlu sOne)

These instance methods are used to send messages to a string object and return one of its substrings.
The first version has one formal argument and returns the substring beginning at indexfirstIndex
and continuing to the end of the string. The second version has two formal arguments. It returns
the substring starting at indexfirstIndex and ending at indexlastIndexPlusOne - 1 rather
than the index of the last character of the substring as you might expect.

Since theString class is immutable the original string is unchanged. The substring operation
creates a new string.

4.2String class 97

EXAMPLE 4.8 (Substrings) Let d be an integer variable with a value in the range 1000 to
999999. TheBeanShell statements

bsh % int d = 531452;
bsh % String sd = "" + d;
bsh % int len = sd.length();
bsh % sd = "$" + sd.substring(0,len-3) + "," + sd.substring(l en-3);
bsh % print(sd);
$531,452

convert it to a string in the range$1,000 to $999,999 . The secondsubstring expression extracts
the digits that go after the comma and the first extracts the digits that precede the comma.

Trimming a string

Thetrim method can be used to remove leading and trailing spaces froma string. It is an instance
method with the prototype

public String trim()

A new string that has no leading or trailing spaces is createdby this method and a reference to it is
returned.

EXAMPLE 4.9 (Trimming a string) TheBeanShell statements

bsh % show();
<true>
bsh % String s, t;
bsh % s = " Hello ";
< Hello >
bsh % t = s.trim();
<Hello>

createt , a trimmed version ofs .

Upper case and lower case conversions

There are methods to convert strings from lower case to uppercase and vice versa. The prototypes
are

public String toLowerCase()
public String toUpperCase()

The first method can be used to construct a lowercase version of a string with all uppercase letters
replaced by lowercase ones, and the second method does the opposite.

EXAMPLE 4.10 (Case conversion)TheBeanShell statements

98 Classes, Objects, and Methods

bsh % String test = "Hello";
bsh % String upper = test.toUpperCase();
bsh % print(upper);
HELLO

creates an upper case version of the stringtest . Similarly, the statements

bsh % String test = "transfer";
bsh % char first = test.toUpperCase().charAt(0);
bsh % print(first);
T

return the upper case version of the first character of the string test .

Searching for substrings

Sometimes it is useful to know if one string is a substring of another one. There are four instance
methods to do this. Their prototype are

public int indexOf(int ch)
public int indexOf(int ch, int startIndex)
public int indexOf(String sub)
public int indexOf(String sub, int startIndex)

The first two methods search for a characterch in a string and the last two methods search for
a stringsub . The one argument versions begin the search at the start of the string and the two
argument versions begin atstartIndex .

In any case the value returned is−1 if the character or substring is not found. Otherwise the
index of the character or the first character of the substringis returned.

Also notice that these four methods all have the same name. This is an example ofmethod
overloading. The compiler can determine which version to use by looking at thesignature of the
method: the types and number of the arguments.

EXAMPLE 4.11 (Searching usingindexOf) TheBeanShell statements

bsh % String indices = "0123456789012345678901234567890" ;
bsh % String target = "This is the target string";
bsh % print(target.indexOf(’u’));
-1
bsh % print(target.indexOf(’g’));
15
bsh % print(target.indexOf("the"));
8
bsh % print(target.indexOf("target",12));
12
bsh % print(target.indexOf("target",13));
-1
bsh %

4.2String class 99

show how to search for characters and substrings.

4.2.4 Displaying numbers and strings

In BeanShell we have been using eithershow or print to display numbers and strings. InBlueJ we
have dialog boxes that appear and show the result (return value) of invoking a method that returns
a value.

These display techniques are not really part of Java. However Java can produce what is called
console outputor terminal output , if you have a console or terminal window, using an object
calledSystem.out which is automatically provided by the Java interpreter. Ithas two methods
calledprint andprintln for displaying data.

Some of the method prototypes are

public void println(int n)
public void println(double d)
public void println(String s)
public void println()

Hereprintln stands for “print line”. There are many differentprintln methods having different
argument types. We have shown four common ones here. This is another example of method
overloading. In each case the value of the actual argument isconverted to a string and displayed on
a line in the terminal window and the next output will begin ona new line. Theprintln method
with no argument simply moves to the next line.

For eachprintln method there is a correspondingprint method. The difference is that after
a print method is executed the next output will begin on the same line.

UsingSystem.out in BeanShell

In BeanShell if you select “Capture System in/out/err” from the File menuand then you can use
System.out .

EXAMPLE 4.12 (UsingSystem.out in BeanShell) Try the statements

double area = 3.14159;
System.out.println("Area: " + area);
System.out.print("Area: ");
System.out.println(area);

in theBeanShell editor and see the results in the workspace. The last two statements produce the
same output as the firstprintln statement.

Special characters in strings

Theprintln statement

System.out.println("Hello");

100 Classes, Objects, and Methods

has the same effect as theprint statement

System.out.print("Hello\n");

The backslash used in a string is called anescape characterand its use affects the meaning of
the next character. In this example it means to interpretn as the “newline” character instead of its
literal meaning. Thus, the newline character can be expressed as’\n’ . It is most useful in print
statements since each time it is used it causes a line break tothe beginning of the next line.

There are several of these special characters. For example,the carriage return character is
denoted by’\r’ and the tab character is denoted by’\t’ .

If you need to include a backslash literally in a string then it is necessary to use two backslashes
like this: \\ . Or, you may want to use the double quote character literallyin a string. This can be
done using\" in the string to specify that the double quote character is not the string delimiter.

EXAMPLE 4.13 (Using backslash as an escape character)The statement

System.out.println("\"\\Hello\\\"");

displays the string

"\Hello\"

since two double quotes and two backslash characters are included in the string.

UsingSystem.out in BlueJ

UsingSystem.out orBeanShell’s show andprint functions is the only way to test classes outside
BlueJ but we don’t normally need it inBlueJ. HoweverBlueJ has a terminal window and if you use
System.out it will automatically appear showing the output. We will findthis useful later. For
now, here is a small example.

EXAMPLE 4.14 (UsingSystem.out in BlueJ) Add the method

public void display()
{

System.out.println("Radius = " + radius);
System.out.println("Area = " + area);
System.out.println("Circumference = " + circumference);

}

to the CircleCalculator class (page 63). Now create an object for a radius of 3, chooseits
display method and you will see the terminal window shown in Figure 4.2.

4.2String class 101

Figure 4.2:BlueJ terminal window

The toString method

The toString method is a special method in Java with the prototype

public String toString()

The purpose of this method is to return a string representation of an object of the class.
An interesting property of this method is that if you use the name of an object in a string

expression the object will be replaced by the result of calling its toString method. If the class
does not contain atoString method a default one will be used.

EXAMPLE 4.15 (UsingtoString) TheBeanShell statements

bsh % addClassPath("c:/book-projects/chapter3");
bsh % CircleCalculator circle = new CircleCalculator(3.0) ;
bsh % String rep = "toString gives " + circle;
bsh % print(rep);
toString gives CircleCalculator@4d1d41
bsh % rep = "toString gives " + circle.toString();
bsh % print(rep);
toString gives CircleCalculator@4d1d41
bsh % print(circle);
CircleCalculator@4d1d41

show what the default string representation looks like for aCircleCalculator object. It is not
very useful. Notice that using the namecircle is equivalent to usingcircle.toString() so the
toString method essentially defines how an object can be converted to astring. The last statement
shows that if the name of an object is used as an argument toprint or System.out.print in Java
then the object will be converted to a string value using thetoString method.

Defining our own toString method

The defaulttoString method is not very useful but we can redefine it in any of our classes and
our version will be called.

EXAMPLE 4.16 (Adding toString to CircleCalculator) Add the method

102 Classes, Objects, and Methods

public String toString()
{

return "CircleCalculator[radius=" + radius + ", area=" +
area + ", circumference=" + circumference + "]";

}

to the CircleCalculator class (page 63). Now create an object for a radius of 3, chooseits
toString method and you will see the result in a “Method Result” box.

EXAMPLE 4.17 (Trying it with BeanShell) Since we modified the class make sure you start
a new version ofBeanShell before trying the statements

bsh % addClassPath("c:/book-projects/chapter3");
bsh % CircleCalculator circle = new CircleCalculator(3.0) ;
bsh % print(circle);
CircleCalculator[radius=3.0, area=28.274333882308138 ,
circumference=18.84955592153876]

which show our string representation for a radius of 3.

The toString method is sometimes useful for finding logical errors in yourclasses. If you
want to see the state of an object at a given place in the execution of a class you can insert a
statement of the form

System.out.println(obj);

whereobj is the name of the object.

4.2.5 Formatting numbers and strings (Java 5)

In Java 5 (Java 1.5) it is possible to format items (numbers and strings and other objects) accord-
ing to the specifications provided in aformat string . This gives precise control over how many
columns are used for each item (field width), whether an item is left or right justified within its
field width, and how many digits are displayed after the decimal point in the case of floating point
numbers.

The String class contains a static method with prototype

public static String format(String f, Object... args)

Heref is the format string andObject... args represents the values to be formatted.
There is also aprintf method that can be used with a format string that has the prototype

public void printf(String f, Object... args)

These methods are available in the latest version ofBlueJ but not inBeanShell.

EXAMPLE 4.18 (Format codes) Here are some useful format codes (each begins with%).

4.2String class 103

%5d format an integer right justified in field of width 5

%-5d format an integer left justified in field of width 5

%-20s format a string left justified in a field of width 20

%15.5f format a floating point number right justified in a field of width 15
using fixed format rounded to 5 digits after the decimal point

%.5f format a floating point number in a field that just fits using fixed format
rounded to 5 digits after the decimal point

%20.8e format a floating point number right justified in a field of width 20
using exponential (scientific) format rounded to 8 digits after the
decimal point

There are many other types of codes. A complete list can be found in the Java documentation for
theFormatter class.

EXAMPLE 4.19 (Formatted strings) The statements

int i = 3;
double pi = Math.PI;
String end = "End";
String f = String.format("answer: %5d%15.5f%10s", i, pi, e nd);
System.out.println(f);

produces the output

answer: 3 3.14159 End

consisting of the literal string"answer: " followed by the integer 3 right justified in a field of
width 5 followed by the value ofπ right justified in a field of width 15 and rounded to 5 digits after
the decimal point, and followed by the value of the stringend right justified in a field of width 10.

Theprintf method can also be used to specify the format string and printit. The statements

int i = 3;
double pi = Math.PI;
String end = "End";
System.out.printf("answer: %5d%15.5f%10s\n", i, pi, end);

produce the same output if we add the newline character\n to the end of the format string.

EXAMPLE 4.20 (Using System.out.printf in BlueJ) Repeat Example 4.14 using the
following method.

public void display()
{

System.out.printf("Radius = %.5f\n", radius);
System.out.printf("Area = %.5f\n", area);
System.out.printf("Circumference = %.5f\n", circumfere nce);

}

104 Classes, Objects, and Methods

to display the values rounded to 5 digits.

4.3 Example classes that use theString class

We now write some simple classes that use theString class. We also illustrate a three step “design,
implement, test” process for writing classes.

1. Begin with an English description of the class.

2. Design the class by deciding what methods it should have. This is called writing the class
specificationor thepublic interface. If the class is designed to be used primarily by other
classes (theString class is an example) then check the convenience of your design by
writing some typical statements that use the class.

3. Write the complete class by providing the implementation. This involves choosing any in-
stance data fields, and providing bodies for all methods and even providingprivate meth-
ods, if necessary, to aid in the implementation.

4. Test the class by itself usingBlueJ or BeanShell, or both. Even if the class is designed to
be used by other classes it should be tested by itself before being used in a larger system of
classes. This is calledunit testing.

4.3.1 BankAccount class (first version)

A description of this class is

“A BankAccount object should represent a bank account using an account number,
an owner name, and a current balance. There should be a constructor for creating a
bank account given these values. There should be methods to withdraw or deposit a
given amount and the usual “get methods” for returning the account number, owner
name, and balance.“

This is amutable class since the withdraw and deposit methods change the balance in the account.
We use this class many times throughout the book to illustrate important concepts.

Designing the class

The English description directly gives the following specification or public interface.

public class BankAccount
{

// put instance data field declarations here
public BankAccount(int accountNumber, String ownerName,

double initialBalance) {...}
public void deposit(double amount) {...}
public void withdraw(double amount) {...}

4.3 Example classes that use theString class 105

BankAccount myAccount = new BankAccount(123, "Peter Pasco e", 125.50);

public BankAccount(int accountNumber, String ownerName, double initialBalance)

{
...

}

����� ? ?

Figure 4.3: Matching actual and formal constructor arguments

public int getNumber() {...}
public String getOwner() {...}
public double getBalance() {...}

}

We have used the notation{...} to indicate that the method bodies are part of the implementation
step, not the public interface step. Also we have not shown the javadoc comments but they should
also be included in this step. We have not indicated the instance data fields yet.

For this simple class it is easy to check our design. For example, to create an account, withdraw
$100, and show the current balance we could use the statements

BankAccount account = new BankAccount(123, "Peter Pascoe" , 125.50);
account.withdraw(100);
System.out.println("The current balance is " + account.ge tBalance());

The correspondence between the formal arguments in the constructor prototype

public BankAccount(int accountNumber, String ownerName,
double initialBalance)

and the actual arguments in the constructor call expression

new BankAccount(123, "Peter Pascoe", 125.50)

is shown in Figure 4.3.

Implementing the class

We need to declare three private instance data fields for the account number, account owner name,
and current balance:

private int number;
private String name;
private double balance;

106 Classes, Objects, and Methods

There is one set of these variables for each bank account object and the purpose of the constructor
is to initialize these fields. Therefore, we can write the constructor as

public BankAccount(int accountNumber, String ownerName, double initialBalance)
{

number = accountNumber;
name = ownerName;
balance = initialBalance;

}

The deposit method needs to add the amount specified by the formal argument to the value of
the instance data field for the balance and the withdraw method needs to subtract this amount.
Therefore, we can write thedeposit method as

public void deposit(double amount)
{

balance = balance + amount;
}

and thewithdraw method

public void withdraw(double amount)
{

balance = balance - amount;
}

The “get methods” are easy to write since they just return thevalue of one of the instance data
fields. For example,

public String getName()
{

return name;
}

We can also add atoString method. Here is the completed class declaration complete with
javadoc comments.

ClassBankAccount

book-projects/chapter4/bank_account

package chapter4.bank_account; // remove this line if you’ re not using packages
/**

* First version of the BankAccount class. No error checking
* is performed.
* <p>
* There is a better version in library.BankAccount.
* <p>
* Each object from this class encapsulates the account numbe r,
* owner name, and current balance of a bank account.

4.3 Example classes that use theString class 107

*/
public class BankAccount
{

private int number;
private String name;
private double balance;

/**
* Construct a bank account with given account number, owner n ame
* and initial balance.
* @param accountNumber the account number.
* @param ownerName the owner name.
* @param initialBalance the initial balance.

*/
public BankAccount(int accountNumber, String ownerName,

double initialBalance)
{

number = accountNumber;
name = ownerName;
balance = initialBalance;

}

/**
* Deposit the given amount of money in the account.
* @param amount the amount to deposit (no error checking).

*/
public void deposit(double amount)
{

balance = balance + amount;
}

/**
* Withdraw the given amount of money from the account.
* @param amount the amount to withdraw (no error checking).
*/

public void withdraw(double amount)
{

balance = balance - amount;
}

/**
* Return the account number.
* @return the account number.
*/

public int getNumber()
{

return number;
}

/**
* Return the owner name.
* @return the owner name.

108 Classes, Objects, and Methods

*/
public String getName()
{

return name;
}

/**
* Return the account balance.
* @return the account balance.
*/

public double getBalance()
{

return balance;
}

/**
* Return a string representation of a bank account.
* @return a string representation of a bank account.
*/

public String toString()
{

return "BankAccount[number=" + number + ", name="
+ name + ", balance=" + balance + "]";

}
}

Testing the class

This is only a preliminary version of this class. Later when we have introduced conditional state-
ments we can make a more robust version of this class that checks, for example, if the amount
specified in thewithdraw method would not result in an overdrawn account.

This class is easy to test inBlueJ. For example, construct an object calledcircle as shown in
Figure 4.4(a) and choose some of its methods from the method menu shown in Figure 4.4(b).

You can also test this class using either theBeanShell workspace or theBeanShell editor.

EXAMPLE 4.21 (TestingBankAccount with BeanShell) The following statements

bsh % addClassPath("c:/book-projects/chapter4/bank_ac count");
bsh % BankAccount account = new BankAccount(123, "Peter Pas coe", 125.50);
bsh % account.withdraw(100);
bsh % print(account.getBalance());
25.5
bsh % account.deposit(100);
bsh % print(account.getBalance());
125.5
bsh % print(account);
BankAccount[number=123, name=Peter Pascoe, balance=125 .5]

show how to create an account, withdraw and deposit $100, anduse thetoString method to
display the account.

4.3 Example classes that use theString class 109

(a) (b)

Figure 4.4: (a) Constructing aBankAccount object, (b) the object menu

Testing is important even in a simple class like this. While writing this book the author used
the toString method

public String toString()
{

return "BankAccount[number=" + name + ", name="
+ name + ", balance=" + balance + "]";

}

Can you find the logical error? The error was noticed whenBeanShell produced the result

bsh % print(account);
BankAccount[number=Peter Pascoe, name=Peter Pascoe, bal ance=125.5]

4.3.2 InitialsMaker class

A description of this class is

“An InitialsMaker object uses the first and last name of a person to produce the
initials. For example, if the name is Henry James then the initials are HJ.”

Designing the class

We need a constructor that has two string arguments for the first and last names, a method to return
the initials as a string and we will also include atoString method.

This gives the public class interface

public class InitialsMaker
{

110 Classes, Objects, and Methods

// instance data fields go here
public InitialsMaker(String firstName, String lastName) {...}
public String getInitials() {...}
public String toString() {...}

}

We choose to make this an immutable class so no “set methods” are provided.

Implementing the class

The class is easily implemented. We choose one instance datafield of type String for the initials:

public String initials

We have made a decision here not to include the first and last names as data fields, so we do not
include “get” methods for them. An alternate design would beto provide these data fields and their
associated “get methods”.

The constructor can use thesubstring method to extract the first letter of each name. Then
these letters can be concatenated together to get a two character string. Finally, this string can be
converted to upper case:

public InitialsMaker(String firstName, String lastName)
{

initials = firstName.substring(0,1) + lastName.substrin g(0,1);
initials = initials.toUpperCase();

}

The complete class is given by

ClassInitialsMaker

book-projects/chapter4/strings

package chapter4.strings; // remove this line if you’re not using packages
/**

* An object of this class takes a person’s first and last names
* and extracts the first letter of each name
* to makes a two character initial string converted to upper c ase.
*/

public class InitialsMaker
{

private String initials; // string containing two initials

/**
* Construct an object for the given names
* @param firstName the first name
* @param lastName the last name
*/

public InitialsMaker(String firstName, String lastName)
{

4.3 Example classes that use theString class 111

initials = firstName.substring(0,1) + lastName.substrin g(0,1);
initials = initials.toUpperCase();

}

/**
* Return the initial string
* @return return the initial string
*/

public String getInitials()
{

return initials;
}

public String toString()
{

return "InitialsMaker[initials=" + initials + "]";
}

}

Testing the class

The class is easily tested in bothBlueJ andBeanShell. There are two kinds of tests: (a) are the first
letters of each name being extracted properly, and (b) are the initials being converted to upper case
properly. For example, names like ”Fred Duncan” can test (a)but not (b), where it is necessary to
try names such as “henry james”, “Henry james”, and ”henry James”.

EXAMPLE 4.22 (TestingInitialsMaker with BeanShell) The following statements

bsh % addClassPath("c:/book-projects/chapter4/strings ");
bsh % InitialsMaker maker = new InitialsMaker("harry", "ja mes");
bsh % print(maker.getInitials());
HJ
bsh % print(maker);
InitialsMaker[initials=HJ]

show how to create an object and perform one of the tests on it.

4.3.3 PasswordGenerator class

A description of this class is

“A PasswordGenerator object generates random 7 character passwords. The
first four characters should be lower case letters and the last three characters should
be digits 0 to 9.”

Designing the class

Since no input is required we only need the constructor with no arguments. Also we need a method
callednext which will return the next random password as a string each time it is called. This gives
the simple class interface

112 Classes, Objects, and Methods

public class PasswordGenerator
{

// instance data fields go here
public PasswordGenerator() {...}
public String next() {...}

}

Implementing the class

Before implementing this class we need to find out how to generate random numbers. Either we
have to do it ourselves or we find out if Java can do it. Fortunately, Java can do it so we will follow
the “do not reinvent the wheel policy”.

In Example 2.27 (page 29) we showed how to use theMath.random method in theMath class.
This method can generate randomdouble numbers in the range 0≤ r < 1 which were converted to
integers in the range 1≤ i ≤ 10. We could use this approach but there is also a class calledRandom
whose objects can generate random integers directly. It hastwo constructors with prototypes

public Random()
public Random(long seed)

The first constructor is used to generate a sequence of randomnumbers that depends on the current
time in milliseconds. In other words the same sequence will not be repeated. The second construc-
tor generates sequences that use a “seed”. Each value of the seed gives a repeatable sequence. Of
course if you are using a random number generator in a game youwill not want to use this version
since every time you run the game the same sequence will be generated.

This suggests that we modify our design to use two constructors. The no-arg constructor can
use the current time to generate a seed and the other one can use a specified seed. This gives the
modified class design

public class PasswordGenerator
{

// instance data fields go here
public PasswordGenerator() {...}
public PasswordGenerator(long seed) {...}
public String next() {...}

}

This is our first example of a class that has more than one constructor. This is permissible and
quite common as long as the constructors can be distinguished by their argument types (signature).

TheRandomclass has several methods but the one we are interested in hasthe prototype

public int nextInt(int n)

which generates a random integeri in the range 0≤ i ≤ n−1. We now have enough information
to write the following partial implementation of the class

public class PasswordGenerator
{

4.3 Example classes that use theString class 113

private Random random;

// any other instance data fields go here

public PasswordGenerator()
{

random = new Random();
}
public PasswordGenerator(long seed)
{

random = new Random(seed);
}
public String next() {...}

}

Here we have an object referencerandom being used as an instance data field. It refers to aRandom
object in the same way thatname in theBankAccount class (page 106) refers to aString object.
Thus, each constructor needs to create an object and assign its reference torandom .

To implement thenext method we need to first generate random characters in the range ’a’
to ’z’ . This can be done by generating random integers in the range 0to 25 using the method call
expressionrandom.nextInt(26) and using the result as an index into the string

String LETTERS = "abcdefghijklmnopqrstuvwxyz";

to generate a random letter. Starting with an empty string wehave

int index;
String password = "";
index = random.nextInt(26);
password = password + LETTERS.substring(index, index+1);

Repeating the last two statements three more times gives us astring of four random letters.
To generate random digit characters we can simply userandom.nextInt(10) and convert the

result to a digit character by concatenation onto the letterstring.
TheLETTERSstring is an example of a constant string andPasswordGenerator objects do not

need their own copies of this string. One copy for all objectssuffices and this can be indicated
using thestatic modifier. Static data fields arenot instance data fields:

private static final String LETTERS = "abcdefghijklmnopqr stuvwxyz";

This gives the following complete class declaration:

ClassPasswordGenerator

book-projects/chapter4/strings

package chapter4.strings; // remove this line if you’re not using packages
import java.util.Random;
/**

114 Classes, Objects, and Methods

* An object of this class knows how to generate
* random 7 character password of the form LLLLDDD where L
* is a lower case letter and D is a digit.
*/

public class PasswordGenerator
{

private static final String LETTERS = "abcdefghijklmnopqr stuvwxyz";
private Random random;

/**
* Construct an default generator whose sequence is based on t he
* current time in milliseconds.
*/

public PasswordGenerator()
{

random = new Random();
}

/**
* Construct a generator that is repeatable. If the same seed
* is used again then the same sequence is generated.
* @param seed a seed to start the random number generator.
*/

public PasswordGenerator(long seed)
{

random = new Random(seed);
}

/**
* Return a generated password. Another password is generate d each
* time this method is called.
* @return another password
*/

public String next()
{

int index; // index into a string (0,1,2,...)

String password = "";

index = random.nextInt(26); // 0 to 25 inclusive
password = password + LETTERS.substring(index, index + 1);
index = random.nextInt(26);
password = password + LETTERS.substring(index, index + 1);
index = random.nextInt(26);
password = password + LETTERS.substring(index, index + 1);
index = random.nextInt(26);
password = password + LETTERS.substring(index, index + 1);

index = random.nextInt(10);
password = password + index;
index = random.nextInt(10);
password = password + index;

4.3 Example classes that use theString class 115

index = random.nextInt(10);
password = password + index;

return password;
}

}

The import statement The very first line of this class is new. TheRandomclass is not a standard
class likeMath , System , andString . These classes are in a Javapackage(collection of related
classes) calledjava.lang that is automatically imported into any class that needs them. Thus, for
example, thefully qualified name of theString class isjava.lang.String .

For Java classes in other packages such asjava.util it is necessary to explicitly import them.
For Random this is done using

import java.util.Random;

before the class declaration.
It is not essential to use theimport statement. Its purpose is simply to allow you to use the

short names instead of the fully qualified ones. Thus, ifRandom is not imported then we must use
its full namejava.util.Random everywhere. For example, as a private data field we would need
to write

private java.util.Random random;

and in the constructors we would need to write

random = java.util.Random();
random = java.util.Random(seed);

Testing the class

This class is easily tested either withBeanShell or with BlueJ. The following example shows how
to test the class inBeanShell.

EXAMPLE 4.23 (Testing PasswordGenerator with BeanShell) The following state-
ments

bsh % addClassPath("c:/book-projects/chapter4/strings ");
bsh % PasswordGenerator gen = new PasswordGenerator();
bsh % print(gen.next());
avfi637
bsh % print(gen.next());
iqde665
bsh % gen = new PasswordGenerator(); // make a new one
bsh % print(gen.next());
zuwe456
bsh % gen = new PasswordGenerator(123);
bsh % print(gen.next());

116 Classes, Objects, and Methods

eomt574
bsh % gen = new PasswordGenerator(123);
bsh % print(gen.next());
eomt574
bsh %

show how to create objects and test them. FourPasswordGenerator objects are created here and
references to them are assigned to the reference variablegen .

The first two are based on the current time so they produce different values the first time their
next method is called but the last two use the same seed so the first time theirnext method is
called the same passwordeomt574 is produced.

With BlueJ try constructing objects of each type (current time or seed)and try thenext method
on the object menu several times. Another approach is to add the following test method to the
PasswordGenerator class:

public void test()
{

System.out.println(next());
}

Each time we select this method from the object menu a random password is appended to theBlueJ
terminal window.

The “this” object

There is an important idea in the above test method. Notice that next() is used without applying
it on an object, whereas inBeanShell Example 4.23 we usedgen.next() since we already had
the variablegen . TheBeanShell statements were not part of thePasswordGenerator class. They
were simply statements that used the class.

However, thenext() method belongs to thePasswordGenerator class itself and we do not
have an explicit object name likegen to refer to. In a situation like this we use what is called the
this object. Usingnext() is equivalent to usingthis.next() .

We have seenthis before in theQuadraticRootFinder class (page 67). There it was used to
refer to an instance data field when an argument had the same name. Now we are using it to refer
to “this” object. The compiler will also accept

System.out.println(this.next());

wherethis is explicit but it is not necessary.
Whenever you see an instance method call expression in a class that is not prefixed with an ob-

ject name,this is the implied object. In thedoCalculations method inQuadraticRootFinder
this was implied and we could have used

this.doCalculations()

4.4 Association and aggregation 117

4.4 Association and aggregation

Our Java programs normally consist of interacting objects from several classes. These classes are
either built-in classes such asString that come with the Java SDK (software development kit),
classes obtained from someone else, such as your course instructor or friends, or classes we write
ourselves such asCircleCalculator or PasswordGenerator . We will also see that complex
classes are commonly designed in terms of simpler ones. The termsassociationandaggregation
are often used to describe how classes can relate to each other.

4.4.1 Association

Some classes are not related to any other classes. For example, the classes in Chapter 3 do not
require any other class in order be compiled and work properly.

On the other hand, thePasswordGenerator class (page 113) depends on both theString
and Random classes. If either of these classes were not available then the class could not be
compiled. We say that thePasswordGenerator class is associated with, or uses, these classes.
This relationship is not symmetric so we do not say that theString class is associated with the
PasswordGenerator class. Classes, such as theString class, are designed to be used by other
classes.

Thus, classA is associated with classB if A usesB. This can occur in several ways:

1. An object ofB is used as a local variable in a constructor or method inA.

2. An object ofB is used as a method or constructor argument inA.

3. An object ofB is used as a return value of a method inA.

4. An object ofB is used as an instance data field inA.

When we use the word object here we really mean an object reference. We will see many examples
of these four kinds of relationships.

4.4.2 Aggregation

Case (4) above is an important special case of association called aggregation. This is how we make
complex objects out of simpler ones and is often used in a “bottom up” approach to object-oriented
design. First we design, implement, and test the simplest classes and then we use them as instance
data fields of more complex classes, and so on.

We have already seen some simple examples of aggregation in the classes in this Chapter that
useString objects as instance data fields and thePasswordGenerator class that uses aRandom
object.

4.4.3 TriangleCalculatorTester class

As an example of association in which one class uses a local variable of another class consider the
following small class that could be used to test theTriangleCalculator class.

118 Classes, Objects, and Methods

ClassTriangleCalculatorTester

book-projects/chapter4/tester

package chapter4.tester; // remove this line if you’re not u sing packages
import chapter3.TriangleCalculator; // remove this line i f you’re not using packages
/**

* A short class to show how to test the TriangleCalculator
* class from Chapter3 using System.out.println
*/

public class TriangleCalculatorTester
{

public TriangleCalculatorTester()
{
}

/**
* Test the TriangleCalculator class
* @param a side length
* @param b another side length
* @param g contained angle in degrees
*/

public void doTest(double a, double b, double g)
{

TriangleCalculator tri = new TriangleCalculator(a,b,g);
System.out.println("Sides: " + tri.getA() + ", " + tri.getB ()

+ ", " + tri.getC());
System.out.println("Angles: " + tri.getAlpha() + ", " + tri .getBeta()

+ ", " + tri.getGamma());
System.out.println("Angle sum is " + tri.checkAngleSum());

}
}

In this class the constructor has nothing to do so its body is empty. ThedoTest method does all
the work by creating aTriangleCalculator object as a local variable and displaying the results
in the terminal window.

This class is inBlueJ project book-projects/chapter4/tester , as shown in Figure 4.5(a).
We have also included with theTriangleCalculator class from Chapter 3 (page 64) which was in
thebook-projects/chapter3 project. The dashed line from theTriangleCalculatorTester
class to theTriangleCalculator class indicates the association or “uses” relation. The results of
constructing an object witha = 1, b = 1 andc = 90 degrees is shown in the terminal window in
Figure 4.5(b).

4.4.4 Point class

As an another example of association and the idea of buildingobjects from simpler objects we first
consider aPoint class for geometrical points(x,y). Then we will use it to write aCircle class.

4.4 Association and aggregation 119

(a) (b)

Figure 4.5: (a) Association inBlueJ using dashed line, (b) output for a test case.

Designing the class

The Point class has instance data fields of typedouble for the x andy coordinates of a point,
constructors, ‘’get methods” for the coordinates, and we include atoString method. We also
assume that this class is immutable. Therefore, the public interface is

public class Point
{

double x, y;
public Point() {...}
public Point(double x, double y) {...}
public double getX() {...}
public double getY() {...}
public String toString() {...}

}

For the constructor with no arguments we choose to constructthe point at the origin with coordi-
nates(0,0). Many other methods could be included (see end of Chapter exercises).

Implementing the class

Here is the complete implementation of the class.

ClassPoint

book-projects/chapter4/geometry

package chapter4.geometry; // remove this line if you’re no t using packages
/**

* A class representing immutable geometrical points (x,y)
* in the plane.

120 Classes, Objects, and Methods

*/
public class Point
{

private double x;
private double y;

/**
* Construct a point from its coordinates.
* @param x the x coordinate of the point
* @param y the y coordinate of the point
*/

public Point(double x, double y)
{

this.x = x;
this.y = y;

}

/**
* Construct the default point (0,0).
*/

public Point()
{

x = 0.0;
y = 0.0;

}

/**
* Return the x coordinate of this point.
* @return the x coordinate of this point
*/

public double getX()
{

return x;
}

/**
* Return the y coordinate of this point.
* @return the y coordinate of this point
*/

public double getY()
{

return y;
}

/**
* Return a string representation of a Point.
* @return a string representation of a Point
*/

public String toString()
{

return "Point[" + x + ", " + y + "]";
}

4.4 Association and aggregation 121

}

Testing the class

This class is easily tested inBlueJ. With BeanShell we have to be careful as the following example
shows.

EXAMPLE 4.24 (TestingPoint with BeanShell) The following statements

bsh % addClassPath("c:/book-projects/chapter4/geometr y");
bsh % import Point; // necessary or we get java.awt.Point
bsh % Point origin = new Point();
bsh % Point p = new Point(1,2);
bsh % print(origin);
Point[0.0, 0.0]
bsh % print(p);
Point[1.0, 2.0]
bsh % print(p.getX());
1.0
bsh % print(p.getY());
2.0

show how to create somePoint objects and test them. It is necessary here to use theimport
statement.1

4.4.5 Circle class

TheCircle class describes a circle in terms of its radius and thex andy coordinates of its center.

Designing the class

Our first attempt at an interface for this class might be

public class Circle
{

private double x, y, radius;
public Circle() {...}
public Circle(double x, double y, doubler r) {...}
public double getX() {...}
public double getY() {...}
public double getRadius() {...}
public String toString() {...}

}

1 There is already a class in packagejava.awt calledPoint andBlueJ will use it by default unless we tell it to
use our version. Therefore we need theimport statement.

122 Classes, Objects, and Methods

Here we have two constructors. The no-arg constructor is forthe unit circle, with radius 1 and
center(0,0). The next one uses thex andy coordinates of the center and the radius to define the
circle.

In this design we are not associating theCircle class with thePoint class so there would be
no association between the two classes. However, since we already have thePoint class it would
be better to use aggregation and use the instance data fields and interface given by

public class Circle
{

private Point center;
private double radius;
public Circle() {...}
public Circle(double x, double y, doubler r) {...}
public Circle(Point c, double r) {...}
public Point getCenter() {...}
public double getRadius() {...}
public String toString() {...}

}

Now we choose 3 constructors. The first two have the same prototypes as in the previous design
but now the third one allows aPoint object to be used as a reference argument. Now we have a
getCenter method that returns a reference to the center of the circle asa Point object. We could
have also included thegetX andgetY method but they can be obtained using the corresponding
methods of thePoint class applied to thePoint object returned bygetCenter .

Implementing the class

Here is the completedCircle class.

ClassCircle

book-projects/chapter4/geometry

package chapter4.geometry; // remove this line if you’re no t using packages
/**

* A class representing immutable geometrical circles.
* Each circle is described by its center (a Point object)
* and its radius (a double number).
*/

public class Circle
{

private Point center;
private double radius;

/**
* Construct circle with given center point and radius.
* @param p the center of the circle
* @param r the radius of the circle
*/

4.4 Association and aggregation 123

public Circle(Point p, double r)
{

center = p;
radius = r;

}

/**
* Construct circle with given center coordinates and radius .
* @param x the x coordinate of the circle center
* @param y the y coordinate of the circle center
* @param r the radius of the circle
*/

public Circle(double x, double y, double r)
{

center = new Point(x,y);
radius = r;

}

/**
* Construct a default circle: a unit circle with center (0,0)
* and radius 1.
*/

public Circle()
{

center = new Point();
radius = 1;

}

/**
* Return radius of circle.
* @return radius of circle
*/

public double getRadius()
{

return radius;
}

/**
* Return center of circle.
* @return center of circle
*/

public Point getCenter()
{

return center;
}

/**
* Return a string representation of a Circle.
* @return a string representation of a Circle
*/

public String toString()
{

124 Classes, Objects, and Methods

return "Circle[" + center + ", " + radius + "]";
}

}

Recall that when an object name is used in a string it is replaced by the result of calling its
toString method. We have used this to include thetoString method of thePoint class in
the toString method of theCircle class.

Testing the class withBeanShell

The following example shows how to test thecircle class inBeanShell.

EXAMPLE 4.25 (Testing Circle with BeanShell) Try the following statements inBean-
Shell

bsh % addClassPath("c:/book-projects/chapter4/geometr y");
bsh % import Point; // necessary or we get java.awt.Point
bsh % Point center = new Point(3,4);
bsh % Circle c1 = new Circle();
bsh % Circle c2 = new Circle(center, 5);
bsh % Circle c3 = new Circle(3,4,5);
bsh % print(c1);
Circle[Point[0.0, 0.0], 1.0]
bsh % print(c2);
Circle[Point[3.0, 4.0], 5.0]
bsh % print(c3);
Circle[Point[3.0, 4.0], 5.0]
bsh % double radius = c2.getRadius();
bsh % double x = c2.getCenter().getX();
bsh % double y = c2.getCenter().getY();
bsh % print(radius);
5.0
bsh % print(x);
3.0
bsh % print(y);
4.0

Here we construct a default circlec1 and a circlesc2 andc2 with center at(3,4) and radius 5 in two
ways using the second and third constructors. Then we use thetoString method to display the
results and show how the “get” methods are used. This also shows that we did not need to provide
“get” methods in theCircle class for thex andy coordinates of the center since, for example, the
x coordinate can be obtained using the method call expressionc2.getCenter().getX() which
uses two methods in one expression. First we get the center asc2.getCenter() . Since this is an
object of typePoint we can then invoke itsgetX() method all in one statement, and similarly for
the y coordinate. When aggregation is involved it is common to seeseveral method invocations
strung together like this. In this case the separate statements

4.4 Association and aggregation 125

Figure 4.6: Aggregation with thePoint andCircle classes.

Point c = c2.getCenter();
double x = c.getX();
double y = c.getY();

could also be used.

Testing the class withBlueJ

Because theCircle class uses aggregation it is interesting to test it inBlueJ. To do this construct
four objects as follows so that you obtain the project shown in Figure 4.6.

1. Right click on thePoint rectangle and select menu itemnew Point(x,y) to construct a
point (3,4) with namecenter .

2. Right click on theCircle rectangle and select menu itemnew Circle() to construct a
default circle with namec1 .

3. Right click on theCircle rectangle again and select menu itemnew Circle(p,r) to con-
struct a circle with namec2 . Choosecenter as the center point. You can do it in the “Create
Object’ dialog box by typing its name in the box, or just clickin the text field for the cen-
ter point and then click on thecenter object and its name should appear in the text field.
Finally, choose 5 for the radius.

4. As above but choose menu itemnew Center(x,y,r) and enter 3, 4, and 5 for the valuesx ,
y , andr .

You should now have the four objects on the workbench as shownin Figure 4.6. The fact that the
Circle class “uses” thePoint class is indicated by the dashed arrow.

Now you can right click on any of the objects and choose a method or the “inspect” menu
choice to test the class. To see aggregation and object references in action try the following

126 Classes, Objects, and Methods

(a) (b)

Figure 4.7: (a) Choosing “Inspect” from thec2 menu, (b) choosing “Inspect” for the resulting
object reference.

(a) (b)

Figure 4.8: (a) ChoosinggetCenter from c2 menu, (b) result of using ”get” from the “Method
Result” box.

1. Right click on objectc2 and choose the “Inspect” menu choice to get the “Inspector” box
shown in Figure 4.7(a). Instead of showing thePoint object fields we only see<object
reference> . This isBlueJ’s way of telling us thatcenter is a reference to the object, not
the object itself.

2. Now click on the this reference and click the “Inspect” button and you will actually see the
x andy fields for thecenter object.

TheCircle class uses aggregation by having aPoint object as an instance data field but it also
uses association in another way because thegetCenter method returns a reference to thePoint
object that is the center of the circle.BlueJ lets you put such objects on the work bench as follows.

1. From thec2 object menu select thegetCenter method to get the “Method Result” box
shown in Figure 4.8(a).

2. Click on the object reference and click the “Get” button toget the box shown in Figure 4.8(b)
asking for the name of the object

3. Choose a name and the object will appear on the object bench.

We can also write classes, similar toTriangleCalculatorTester (page 118), to test the
Point andCircle classes. Here is a simple example:

4.5 Other library classes 127

ClassCircleTester

book-projects/chapter4/geometry

package chapter4.geometry; // remove this line if you’re no t using packages
/**

* A short class to show how to test the Circle and Point classes .
*/

public class CircleTester
{

public CircleTester()
{
}

/**
* Test the Point and Circle classes.
*/

public void doTest()
{

Point center = new Point(3,4);
Circle c1 = new Circle();
Circle c2 = new Circle(center, 5);
Circle c3 = new Circle(3, 4, 5);
System.out.println("c1 = " + c1);
System.out.println("c2 = " + c2);
System.out.println("c3 = " + c3);

double radius = c2.getRadius();
double x = c2.getCenter().getX();
double y = c2.getCenter().getY();
System.out.println("Radius = " + radius);
System.out.println("Center x = " + x);
System.out.println("Center y = " + y);

}
}

4.5 Other library classes

We have used theString andRandom library classes. There are many others that are useful and
we illustrate a few of them here.

4.5.1 Dates and times

There are three classes that are useful for working with dates and formating them.

Date class

TheDate class in packagejava.util has two constructors and two useful methods, among others,
with prototypes

128 Classes, Objects, and Methods

public Date()
public Date(long date)
public long getTime()
public void setTime(long date)
public String toString()

The first constructor creates aDate object for “right now”. In this class each date is represented
by a long integer that is the number of milliseconds since January, 1,1970, 00:00:00 GMT. For
example, while I am typing this the date is 1055681816162. The toString method gives the more
meaningful result “Sun Jun 15 08:56:56 EDT 2003”.

EXAMPLE 4.26 (TheDate class usingBeanShell) Try the following statements inBeanShell

bsh % import java.util.Date;
bsh % Date now = new Date();
bsh % print(now);
Sun Jun 15 08:56:56 EDT 2003
bsh % long t = now.getTime();
bsh % print(t);
1055681816162
bsh % Date first = new Date(0L);
bsh % print(first);
Wed Dec 31 19:00:00 EST 1969
bsh % first.setTime(0L + 1000L * 60L * 60L * 24L);
bsh % print(first);
Thu Jan 01 19:00:00 EST 1970
bsh %

The import statement is necessary here. Also recall that along integer literal needs anL suffix to
distinguish it from anint literal. Thefirst date corresponds to time 0, indicating that we are 5
hours behind GMT. Then 1 day is added to this time by adding to0L the number of milliseconds
in a day.

SimpleDateFormat class

TheSimpleDateFormat class in packagejava.text can be used to format dates in many different
ways. Two of its constructors and a format method have prototypes

public SimpleDateFormat()
public SimpleDateFormat(String pattern)
public String format(Date d)

This class is associated with theDate class. The first constructor uses a default format specific
to the user locale and the second constructor has an argumentto specify the format. Theformat
method formats a givenDate object as aString using the specified format.

EXAMPLE 4.27 (UsingSimpleDateFormat) Continuing the previous example try the fol-
lowing statements inBeanShell

4.5 Other library classes 129

bsh % import java.text.SimpleDateFormat;
bsh % SimpleDateFormat f1 = new SimpleDateFormat();
bsh % String n1 = f1.format(now);
bsh % print(n1);
6/15/03 8:56 AM

bsh % SimpleDateFormat f2 = new SimpleDateFormat("dd/MM/y yyy");
bsh % String n2 = f2.format(now);
bsh % print(n2);
15/06/2003

bsh % SimpleDateFormat f3 = new SimpleDateFormat("HH:mm:s s z");
bsh % String n3 = f3.format(now);
bsh % print(n3);
08:56:56 EDT

Again theimport statement is necessary here. This example shows three of themany different
date formats that are possible2.

Calendar class

TheDate class does not deal with the many properties of dates such as the year, month, day of the
month, day of the year, etc. TheCalendar class in packagejava.util , has this functionality.

There are several different calendars in use around the world and Java can use any of them.
In particular we are interested in the class calledGregorianCalendar . Constructors for the
Calendar class would be quite complex and would have to deal with the different conventions
such as Sunday being the first day of the week in North Americancountries but Monday being the
first day of the week in France.

Therefore we do not have constructors in theCalendar class. Instead a staticgetInstance
method is provided to return the appropriate calendar object for your locale. Here are a few of the
many methods in theCalendar class.

public static Calendar getInstance()
public Date getTime()
public int get(int field)
public void set(int field, int value)
public void set(int year, int month, int day)

Recall that usingstatic as a modifier on a method such asgetInstance means that the method
is not invoked on a particular object. Instead a static method is invoked using the class name. In
our case we would useCalendar.getInstance() . This is like usingMath.sqrt(2) in theMath
class. Therefore, to construct aCalendar object for the current locale and the current time we
would use a statement such as

Calendar now = Calendar.getInstance();

2See the Java documentation for more examples.

130 Classes, Objects, and Methods

ThegetTime method can be used to convert the current calendar to along integer time.
Since there are so many instance data fields to “get” the designers opted for one “get” method

and an integer value to indicate what field to get rather than aseparate method for each field. For
example, the field number for the year is the constantCalendar.YEAR . There are similar constants
for the many other fields. Static constants in another class are always accessed using the syntax

ClassName. constantName

There are two forms of theset method. The first can set an individual field to a value. For
example to set the day of the month field to 1 (first day) we coulduse

calendar.set(Calendar.DAY_OF_MONTH, 1);

The second form can be used to set the three date fields simultaneously. For example to get a
calendar for December 25 in the current year use

Calendar christmas = Calendar.getInstance();
christmas.set(christmas.get(Calendar.YEAR), Calendar .DECEMBER, 25);

EXAMPLE 4.28 (Using theCalendar class) Try the following statements inBeanShell

bsh % import java.util.Date;
bsh % import java.util.Calendar;
bsh % Calendar now = Calendar.getInstance();
bsh % Date time = now.getTime();
bsh % print(time);
Sun Jun 15 10:04:12 EDT 2003
bsh % print(now.get(Calendar.YEAR));
2003
bsh % print(now.get(Calendar.MONTH)); // January is month 0
5
bsh % print(now.get(Calendar.DAY_OF_MONTH)); // June 15
15
bsh % print(now.get(Calendar.DAY_OF_WEEK)); // Sunday = 1
1
bsh % print(now.get(Calendar.DAY_OF_YEAR));
166
bsh % Calendar christmas = Calendar.getInstance();
bsh % int year = christmas.get(Calendar.YEAR);
bsh % christmas.set(year, Calendar.DECEMBER, 25);
bsh % print(christmas.getTime());
Thu Dec 25 11:13:01 EST 2003

This shows that the month numbers begin at 0 not 1 (June is month 5) and the days of the week
begin at 1 (Sunday).

EXAMPLE 4.29 (Leap years) The followingBeanShell statements

4.5 Other library classes 131

bsh % import java.util.Calendar;
bsh % Calendar feb2003 = Calendar.getInstance();
bsh % feb2003.set(2003, Calendar.FEBRUARY, 1);
bsh % Calendar feb2004 = Calendar.getInstance();
bsh % feb2004.set(2004, Calendar.FEBRUARY, 1);
bsh % print(feb2003.getActualMaximum(Calendar.DAY_OF_ MONTH));
28
bsh % print(feb2004.getActualMaximum(Calendar.DAY_OF_ MONTH));
29

show that thegetActualMaximum method properly accounts for leap years.

Person class that usesCalendar

We can easily use theCalendar class to determine how old a person is this year. Your employer
could use it to find out when you should retire. Given thatbirthYear is the year of birth andage
is the age this year in years the following statements calculate the age:

Calendar now = Calendar.getInstance();
age = now.get(Calendar.YEAR) - birthYear;

Here is a simple class that uses these statements:

ClassPerson

book-projects/chapter4/calendar

package chapter4.calendar; // remove this line if you’re no t using packages
import java.util.Calendar;

/**
* A simple class that represents a person by a name and year of b irth
* There is also a method to determine how old the person is this year.
*/

public class Person
{

private String name;
private int birthYear;

/**
* Construct object given name and year of birth.
* @param name the name of the person
* @param birthYear the year of birth
*/

public Person(String name, int birthYear)
{

this.name = name;
this.birthYear = birthYear;

}

132 Classes, Objects, and Methods

/**
* Return the name.
* @return the name
*/

public String getName()
{

return name;
}

/**
* Return the birth year
* @return the birth year
*/

public int getBirthYear()
{

return birthYear;
}

/**
* Return the age this year.
* @return the age this year
*/

public int age()
{

Calendar now = Calendar.getInstance();
return now.get(Calendar.YEAR) - birthYear;

}
}

Here we have not included the age as a private data field. We could have done this and calculated
the age in the constructor. However, if the age is calculatedin the constructor it will never change
subsequently and there is a remote possibility that an object of this class exists for a few years and
the age will be incorrect.

SpecializedCalendar class

Some classes likeCalendar are very complex and for specialized applications it might be useful
to develop a simpler version of the class. This is called adapting a class and the simpler version is
called anadapter class.

If we want to write a program that displays the calendar for a given month then we do not need
the full complexity of theCalendar class:

1. The only parts of a date we need are the year and month.

2. We need the day of the week for the first day of the month. For example, the first day of the
month might be a Thursday so we need to skip Sunday to Wednesday and number days from
1 beginning on Thursday.

3. We need to know the number of days in the month, properly accounting for February in a
leap year.

4.5 Other library classes 133

4. We need the names of the months if we want to print headings for each month.

The Calendar class can easily be adapted for this purpose. To do this we develop a class called
CalendarMonth that has the following public interface.

public class CalendarMonth
{

public CalendarMonth() {...}
public CalendarMonth(int year, int month) {...}
public int getYear() {...}
public int getMonth() {...}
public int dayOfWeek() {...}
public int daysInMonth() {...}
public String monthName() {...}
public String toString() {...}

}

Here the first constructor uses the year and month for today and the second one uses given values.
ThedayOfWeek method returns the day of the week for the first day of the month. The return value
is in the range 1 (Sunday) to 7 (Saturday). ThedaysInMonth method returns the number of days
in the month, properly accounting for February in a leap year. ThemonthName method returns one
of the stringsJanuary to December and thetoString method returns a string such asJune 2003
which could be used to print headings.

To implement the class we need the private data field

private Calendar calendar;

Now the constructors can simply create aCalendar object for the first day of the month and the
methods can use methods from theCalendar class. Adapter classes are usually quite simple since
all the work is being done by the adapted class using aggregation. Here is the complete class
followed by an explanation of the constructors and methods.

ClassCalendarMonth

book-projects/chapter4/calendar

package chapter4.calendar; // remove this line if you’re no t using packages
import java.util.Calendar;
import java.text.SimpleDateFormat;

/**
* A class that represents a month of a given year in a form suita ble
* for printing calendars.
*/

public class CalendarMonth
{

private Calendar calendar;

public static final int JANUARY = Calendar.JANUARY;

134 Classes, Objects, and Methods

public static final int FEBRUARY = Calendar.FEBRUARY;
public static final int MARCH = Calendar.MARCH;
public static final int APRIL = Calendar.APRIL;
public static final int MAY = Calendar.MAY;
public static final int JUNE = Calendar.JUNE;
public static final int JULY = Calendar.JULY;
public static final int AUGUST = Calendar.AUGUST;
public static final int SEPTEMBER = Calendar.SEPTEMBER;
public static final int OCTOBER = Calendar.OCTOBER;
public static final int NOVEMBER = Calendar.NOVEMBER;
public static final int DECEMBER = Calendar.DECEMBER;

public static final int SUNDAY = Calendar.SUNDAY;
public static final int MONDAY = Calendar.MONDAY;
public static final int TUESDAY = Calendar.TUESDAY;
public static final int WEDNESDAY = Calendar.WEDNESDAY;
public static final int THURSDAY = Calendar.THURSDAY;
public static final int FRIDAY = Calendar.FRIDAY;
public static final int SATURDAY = Calendar.SATURDAY;

/**
* Construct a calendar for this month.
*/

public CalendarMonth()
{

calendar = Calendar.getInstance();
calendar.set(Calendar.DAY_OF_MONTH, 1);

}

/**
* Construct a calendar for given year, month.
* @param year the year
* @param month the month in the range 0 to 11
*/

public CalendarMonth(int year, int month)
{

calendar = Calendar.getInstance();
calendar.set(year, month, 1); // months begin at 0

}

/**
* Return the year for this calendar.
* @return the year for this calendar.
*/

public int getYear()
{

return calendar.get(Calendar.YEAR);
}

/**
* Return the month for this calendar.
* @return the month for this calendar.

4.5 Other library classes 135

*/
public int getMonth()
{

return calendar.get(Calendar.MONTH);
}

/**
* Return the day of week for the first day of this month.
* @return the day of week for the first day of this month
* in range 1 to 7 where 1 = Sunday, 7 = Saturday
*/

public int dayOfWeek()
{

return calendar.get(Calendar.DAY_OF_WEEK);
}

/**
* Return number of days in the month.
* @return number of days in month.
* Leap years are taken into account
*/

public int daysInMonth()
{

return calendar.getActualMaximum(Calendar.DAY_OF_MON TH);
}

/**
* Return the month name
* @return the month name
*/

public String monthName()
{

SimpleDateFormat f = new SimpleDateFormat("MMMM");
return f.format(calendar.getTime());

}

/**
* Return a string representation of a month
* @return a string representation of a month
*/

public String toString()
{

// example: June 2003
SimpleDateFormat f = new SimpleDateFormat("MMMM yyyy");
return f.format(calendar.getTime());

}
}

136 Classes, Objects, and Methods

Explanation of the class

We define twelve static public constants for the months in thesame range as theCalendar class
and similarly seven constants for the day names. Since they are static constants there is only one
set for all objects and they are referred to using names such as CalendarMonth.JUNE . Since the
constants here are public we should have included a javadoc comment for each one of them.

For the default constructor we start with the date for today and set the day field to 1 for the
first day of the month. Similarly, the second constructor uses the three argument form of the set
method.

Since we set the calendar object to the first day of the month wesimply use the expression

calendar.get(Calendar.DAY_OF_WEEK)

in thedayOfWeek method to return a number in the range 1 to 7 for the day of week for the first
day of the month.

For the last day of the month we use thegetActualMaximum method from Example 4.29 which
returns the maximum value of any field so we apply it to theDAY_OF_MONTHfield. The returned
value properly accounts for leap years.

The month name can be obtained using a special format ofSimpleDateFormat so we use it in
themonthName method. Similarly we use another date format in thetoString method.

Testing the class

There is not much testing to do since our class is just a specialized case of theCalendar class.
The following example shows how to test the class inBeanShell.

EXAMPLE 4.30 (UsingCalendarMonth in BeanShell)

bsh % addClassPath("c:/book-projects/chapter4/calenda r");
bsh % CalendarMonth thisMonth = new CalendarMonth();
bsh % print(thisMonth.dayOfWeek());
1
bsh % print(thisMonth.daysInMonth());
30
bsh % print(thisMonth.monthName());
June
bsh % print(thisMonth);
June 2003
bsh % CalendarMonth feb2004 = new CalendarMonth(2004, Cale ndarMonth.FEBRUARY);
bsh % print(feb2004.dayOfWeek());
1
bsh % print(feb2004.daysInMonth());
29
bsh % print(feb2004.monthName());
February
bsh % print(feb2004);
February 2004

4.5 Other library classes 137

(a) (b) (c)

Figure 4.9: TestingCalendarMonth in BlueJ

In this testthisMonth refers to June, 2003.

To test the class usingBlueJ follow the steps

1. Construct an object calledthisMonth using the default constructor on the class menu (see
Figure 4.9(a)).

2. Construct another object calledfeb2004 using the other constructor on the class menu and
enter 2004 for the year andCalendarMonth.FEBRUARY for the month. You now have two
objects as shown in Figure 4.9(b).

3. Right click on the objects to get the object menu (see Figure 4.9(c)) and try the different
methods.

4. If you use “inspect” on the object menu you will be able to see the static data fields by
clicking on the “Show static fields” button in the Inspector window. These fields are also
available by right clicking on the class rectangle.

Here is a short tester class that can also be used.

ClassCalendarMonthTester

book-projects/chapter4/calendar

package chapter4.calendar; // remove this line if you’re no t using packages
/**

* A simple test program for the CalendarMonth class
*/

public class CalendarMonthTester
{

public CalendarMonthTester()
{

138 Classes, Objects, and Methods

}

public void doTest()
{

CalendarMonth thisMonth = new CalendarMonth();
System.out.println("First day of month is " + thisMonth.da yOfWeek());
System.out.println("Number of days in month is " + thisMont h.daysInMonth());
System.out.println("Month name is " + thisMonth.monthNam e());
System.out.println("Calendar name is " + thisMonth);

System.out.println();
CalendarMonth feb2004 = new CalendarMonth(2004, Calendar Month.FEBRUARY);
System.out.println("First day of month is " + feb2004.dayO fWeek());
System.out.println("Number of days in month is " + feb2004. daysInMonth());
System.out.println("Month name is " + feb2004.monthName());
System.out.println("Calendar name is " + feb2004);

}
}

4.5.2 Currency formatting

Another useful class in thejava.text package isNumberFormat which can be used to format
numbers as currency. The static methodgetCurrencyInstance constructs a currency format for
your locale and returns a reference to it. Then you can use itsformat method to do the formatting.
Therefore a currency formatter can be declared using

NumberFormat currency = NumberFormat.getCurrencyInstan ce();

This is the same idea as in theCalendar class. A static method is used instead of a constructor
to create an object. The method has no arguments: everyone will get the appropriate formatter for
their locale and programs will be locale independent.

For a North American locale this formatter rounds numbers totwo decimal places, puts a dollar
sign at the beginning of the number, and uses a comma as the thousands separator.

EXAMPLE 4.31 (Formatting currency) Try theBeanShell statements

bsh % import java.text.NumberFormat;
bsh % import java.util.Locale;
bsh % double salary = 100000.555;
bsh % NumberFormat currency = NumberFormat.getCurrencyIn stance();
bsh % print(currency.format(salary));
$100,000.56
bsh % NumberFormat currencyCF =
NumberFormat.getCurrencyInstance(Locale.CANADA_FREN CH);
bsh % print(currencyCF.format(salary));
100 000,56 $

The defaultcurrency object for the author corresponds toLocale.CANADA . Other locales such as
Locale.CANADA_FRENCH can be specified. In this case the dollar sign is at the end, thedecimal
point is replaced by a period and spaces are used instead of commas to separate thousands.

4.5 Other library classes 139

4.5.3 Formatting fixed and floating point numbers (Java 1.4)

The material in this section is not so important in Java 5 since the staticformat method in the
String class and theprintf method inSystem.out can more easily be used to format numbers
(see Section 4.2.5).

Another useful class in thejava.text package isDecimalFormat which can be used to format
numbers in fixed or floating point (scientific) format. In scientific notation numbers are usually
represented in the form±m× 10e where 1≤ m < 10 is called the mantissa ande is called the
exponent. Fixed format numbers are rounded to a fixed number of digits after the decimal point
without an exponent and are suitable for numbers in a small range such as 1 to 10.

For example, to specify fixed notation with 1 or more digits tothe left of the decimal point and
five digits to the right you can use the format

DecimalFormat fix = new DecimalFormat(" 0.00000;-0.00000 ");

Here the format string comes in two parts. To the left of the semi-colon is the format for non-
negative numbers and to the right is the format for negative numbers. Here we specify a leading
space for non-negative numbers and a minus sign for negativenumbers. This means that in a
column numbers of mixed sign will line up.

The format method has the prototype

public String format(double d)

so fix.format(d) would be used to format adouble number as a string using the specified
format. Here is a simple example.

EXAMPLE 4.32 (Fixed format) Try the statements

bsh % import java.text.DecimalFormat;
bsh % DecimalFormat fix = new DecimalFormat(" 0.00000;-0.0 0000");
bsh % print(fix.format(Math.PI));

3.14159
bsh % print(fix.format(-Math.PI));
-3.14159

The numbers are properly rounded.

Similarly, to specify a scientific format with one non-zero digit to the left of the decimal point, five
digits after the decimal point and a three digit exponent we use the format

DecimalFormat sci = new DecimalFormat(" 0.00000E000;-0.0 0000E000");

Here is an example.

EXAMPLE 4.33 (Scientific format) Try the statements

bsh % DecimalFormat sci = new DecimalFormat(" 0.00000E000; -0.00000E000");
bsh % double d = 1.2345678E-23;
bsh % print(sci.format(d));

1.23457E-023
bsh % print(sci.format(-d));
-1.23457E-023

140 Classes, Objects, and Methods

The numbers are properly rounded. You can also use a lower case e for the exponent.

4.6 Review of OOP concepts

In this section we review and extend the basic OOP concepts ofChapter 3 and Chapter 4.

4.6.1 Constructing objects

In object-oriented programming the creation of objects is the most basic concept. Before an object
can be used it must be constructed using aconstructor call expression(Chapter 3, page 82) or by
calling a static method in a class that returns an object of the class (factory method).

Using a constructor

Examples that use a constructor are

(1) Circle c1 = new Circle(new Point(3,4), 5) ;
(2) Point p = new Point(3,4) ;
(3) Point q = new Point() ;
(4) Circle c1 = new Circle(3, 4, 5) ;
(5) BankAccount a = new BankAccount(123, "Reginald Hill", 4000) ;
(6) SimpleDateFormat f = new SimpleDateFormat("MMMM yyyy") ;

In each case the constructor call expression is underlined.In the first example there are two con-
structor call expressions, one is used as an argument in the other.

Corresponding to each constructor call expression is a constructor prototype. For the above
examples the prototypes are

public Circle(Point p, double radius)
public Point(double x, double y)
public Circle(double x, double y, double radius)
public BankAccount(int number, String name, double balanc e)
public SimpleDateFormat(String pattern)

A constructor prototype is the first line of the constructor declaration. It tells you how to write
valid constructor call expressions. The general syntax fora constructor declaration was given in
Chapter 3, Figure 3.28.

Using a static factory method

Examples of object construction that use a static method are

Calendar now = Calendar.getInstance() ;
NumberFormat currency = NumberFormat.getCurrencyInstan ce() ;

4.6 Review of OOP concepts 141

Thestatic method call expressionthat constructs the object is underlined. Each such expression
begins with the class name not an object name as in an instancemethod call expression (see Chap-
ter 3, page 84). This particular kind of static method is often called afactory method, since its
purpose is to manufacture a complex object such as aCalendar object.

Usingthis as a constructor call expression

We have seen two uses ofthis . It is used to access an instance data field. For example, in the
Point class (page 119) we usedthis.x andthis.y in the constructor to refer to the instance data
fields because the constructor arguments had the same name.

Also, this can be used in a method call expression. For example, theQuadraticRootFinder
class in Chapter 3, page 67 we used the method call expressiondoCalculations() in several
places to aid in the calculations. We could have usedthis.doCalculations() to emphasize that
the method is defined in “this” class although it was not necessary.

There is a third use ofthis which is quite useful in classes that contain several constructors.
For example, in theCircle class we had three constructors

public Circle()
{

center = new Point();
radius = 1;

}

public Circle(double x, double y, double r)
{

center = new Point(x, y);
radius = r;

}

public Circle(Point p, double r)
{

center = p;
radius = r;

}

The first two constructors are really special cases of the third one so we could have written them
as

public Circle()
{

this(new Point(), 1);
}

public Circle(double x, double y, double r)
{

this(new Point(x,y), r);
}

142 Classes, Objects, and Methods

Here we are usingthis to call the third constructor. This does not seem like much ofa simplifica-
tion in this example, but it is in classes where constructor bodies contain lots of statements which
would have to be duplicated.

Often there is a general constructor and all others are special cases. We can write the code once
for the most general constructor and usethis to refer to it in the other constructors.

Default constructor

In all the classes we have written we have included at least one constructor. It is common to see
classes that have no constructors. For example in theCircleTester class (page 127) we included
the no-arg constructor

public CircleTester()
{
}

which does nothing since there are no data fields in this class. The purpose of the class is simply
to provide thedoTest method that can be executed inBeanShell or BlueJ as a simple test of the
Circle class. In fact this constructor could have been completely omitted from the class and when
you right click on theCircleTester class rectangle you will still see the no-arg constructor on
the menu.

The reason is that if no constructor declarations at all are present in a class the compiler will
automatically provide a so-calleddefault no-arg constructor. This is often humorously called the
Miranda convention:

“You have the right to a constructor. If you do not have one, a default one will be
provided for you by the compiler.”

The no-arg constructor, whether we provide it or let the compiler provide it, allocates memory for
an object, like any constructor, but it also provides default initialization for any uninitialized data
fields according to the following rules:

1. A value of 0 is assigned to all uninitialized numeric data fields.

2. A reference value ofnull is assigned to all uninitialized data fields of object type (see
Section 4.6.2 below).

You can try it withBlueJ by writing the following three very simple classes in a project.

public class One
{

// the simplest of all classes
}

public class Two
{

private int k;
private One one;

4.6 Review of OOP concepts 143

}

public class Three
{

private int k;
private One one;

public Three()
{
}

}

Construct an object of each type and use “Inspect” on the object menu to see the data fields for
objects of classesTwo andThree . In either case you will see

private int k = 0;
private One one = null;

indicating that there is a default initialization.
Of course, it is best not to rely on default initialization and a better version ofTwo or Three

would be

public class Four
{

private int k;
private One one;

public Four()
{

k = 0;
one = null;

}
}

Here the initialization is explicit.

4.6.2 Object references

Constructing an object is a three step process for the Java run-time system.

1. Memory space is allocated for the object and its instance data fields.

2. A reference to the object is returned so that it can be located.

3. This reference is assigned as the value of an object reference variable.

Thus, an object is located using anobject reference. Each object reference can be stored in a
variable called anobject reference variablewhose value gives the location of the object. The
name of this variable is called the object name.

144 Classes, Objects, and Methods

(a) objectName -

'

&

$

%

ClassName

object
data

(b) objectName null

Figure 4.10: Box and arrow representation of an object and a reference to it.

A picture of an object and a reference to it is shown in Figure 4.10(a). This is often called the
box and arrow notation. The object and its data fields are shown as a roundedbox. The reference
variable is shown as a square box with an arrow pointing to theobject to symbolize the reference
to the object, and the picture corresponds to the statement

ClassName objectName= new ClassName(actualArguments);

The right side is the constructor call expression. When it isexecuted the memory space for the
object is obtained and a reference to the object is returned.This reference is then assigned as the
value of the object reference variableobjectName. For example,

Circle c = new Circle(3, 4, 5);

Object types are quite different than the primitive types such asint anddouble . This can be
seen by comparing Figure 4.10 with Figure 2.1 and Figure 2.2.However the reference variable
itself acts like a primitive type.

Null references

It is common to declare the name of an object without constructing the object right away. This
situation is shown in Figure 4.10(b). Here we have no arrow. This corresponds to the declaration

ClassName objectName;

A reference that does not point to an object yet is called anull reference and is indicated by the
Java keywordnull so this declaration can be written as

ClassName objectName= null ;

These two declarations are not quite the same. In the first case we have an uninitialized variable.
In the second case the variable is initialized to the valuenull .

For example,

Circle c = null;

indicates thatc is an object reference variable for and object of typeCircle but it does not yet
refer to any object. For such a variable it is a run-time errorto invoke methods on anull reference.
For example, the statements

4.6 Review of OOP concepts 145

Circle c = null;
double radius = c.getRadius();

would give an error called aNullPointerException (references are sometimes called pointers)
because there is no object to invoke thegetRadius method on. This is a common error that you
must watch out for.

Comparison of primitive and reference types

We have encountered two types of variables in Java:

primitive types
numeric types such asint , long , char , float , anddouble introduced in Chapter 2 and the
boolean type which will be introduced in a later Chapter.

reference types
object types such asString , Circle , andBankAccount introduced in Chapter 3 and Chap-
ter 4.

These two types work in very different ways. For example, ifd is a double variable then we
cannot take its square root by doing something liked.sqrt() . Sinced is not an object it has no
methods. Instead we need to apply the staticMath.sqrt method and useMath.sqrt(d) . But
if c is a reference to aCircle object then we can usec.getCenter() to invoke thegetCenter
method onc and return the center of the circle. Thus, you cannot invoke methods on variables of
primitive type.

The situation is shown in Figure 4.11. Here we see in part (a) that the value of thedouble

(a) area 17.902

(b) greeting - String

Hello Fred

'

&

$

%
Figure 4.11: Comparison of primitive and reference types.

variablearea is stored directly in the memory allocated forarea but the value ofgreeting is a
reference to the string object"Hello Fred" indicated by the arrow, and the reference is stored in
the memory allocated forgreeting . TheString object, namely the string value"Hello Fred" ,
is stored elsewhere in memory reserved for the object. In fact as mentioned above we can think of
the referencegreeting as a primitive type – the memory address or location of the object.

146 Classes, Objects, and Methods

a 17

b 19

beforea = b

(a)

a 19

b 19

aftera = b

(b)

Figure 4.12: a = b for primitive types

Why do we need both primitive and reference types?

Why not use reference types for all variables? This could have been done in Java and is done
in other OOP languages such as Smalltalk. However some typessuch asint anddouble were
specified as primitive types to make their use more efficient as there is a certain amount of overhead
in following a reference to find its object.

Assignment statements for reference types

Another major difference between primitive types and reference types occurs with the interpreta-
tion of assignment statements such as

a = b;

If a andb are variables of primitive types then we know this statementmeans to assign the value
of b as the value ofa. In other wordsa andb have the same values after the assignment. This is
shown in Figure 4.12. In part (a), before the assignmenta = b , variablea has the value17, and
variableb has the value19. In part (b), after the assignmenta = b , both variables have the same
value19.

However, ifa andb are references to objects then the situation is quite different, as shown in
Figure 4.13. In part (a), before the assignmenta = b , there are separate references for each of the
objectsobjectAandobjectBsoa andb hold different values. In part (b), after the assignmenta =
b, a andb now hold the same values, namely a reference toobjectB.

Unless there was some other reference toobjectA, it has now become an orphan. This is
indicated by the question mark besideobjectA. The Java interpreter contains a garbage collector
that will eventually delete it and reclaim the memory it uses.

EXAMPLE 4.34 (BankAccount example of a = b)For theBankAccount class theBeanShell
statements

bsh % addClassPath("c:/book-projects/chapter4/bank_ac count");
bsh % BankAccount fred = new BankAccount(123, "Fred", 150.0);
bsh % BankAccount mary = new BankAccount(345, "Mary", 350.0);
bsh % mary = fred;
bsh % mary.withdraw(100.0);

4.6 Review of OOP concepts 147

a -

b -

beforea = b

(a)

a
@

@
@

@
@R

?

b -

aftera = b

(b)

'
&

$
%objectA

'
&

$
%objectB

'
&

$
%objectA

'
&

$
%objectB

Figure 4.13: a = b for reference types

bsh % print(mary);
BankAccount[number=123, name=Fred, balance=50.0]
bsh % print(fred);
BankAccount[number=123, name=Fred, balance=50.0]

make bothmary andfred refer to the same account, the one with account number123 as shown
by theprint statements. “Mary” and “Fred” now have the same bank account, so100 dollars is
withdrawn from account number123 . The other account, Mary’s original account with account
number345 , is an orphan and can no longer be referenced.

4.6.3 Using references as arguments and method return values

We have seen in Section 4.4.1 (page 117) on association that object references of one class can be
used in another class in the following ways.

1. local variables in the body of a constructor or method
For example, on page 118 we use

TriangleCalculator tri = new TriangleCalculator(a,b,g);

in the body of thedoTest method inTriangleCalculatorTester .

2. constructor or method arguments
For example, inCircle (page 122) we have the constructor prototype

public Circle(Point p, double r)

so the first argument is a reference to aPoint .

3. method return values
For example, in most of our classes we have used thetoString method which returns a
reference to aString object. As another example, thegetCenter method in theCircle
class contains thereturn statement

148 Classes, Objects, and Methods

return center;

which returns a reference to thePoint object for the center of the circle.

4. instance data fields
This is aggregation and we have seen several examples. For example,PasswordGenerator
(page 113) has the instance data field

private Random random;

and inCalendarMonth (page 133) we have the instance data field

private Calendar calendar;

4.6.4 Data encapsulation and integrity

One of the benefits of object oriented programming is that data can be spread out over a number
of objects. Each object is then responsible for its own data,independent of the data of any other
object. This is calleddata encapsulation.

For example, in thePoint class each object has its own copies of the data fieldsx and y
representing the coordinates of the point. This particularclass was designed to be immutable: it is
not possible to change the coordinates of aPoint object after it was constructed since there are no
“set” methods and the data fields are private.

If possible it is a good idea to make your classes immutable. This is not possible in general.
Many classes, such asBankAccount (page 106), must be mutable since thewithdraw anddeposit
methods must change the account balance.

Having private data fields is a necessary condition for the immutability of a class. For example,
in thePoint class we could violate immutability in two ways:

• make the data fieldspublic instead ofprivate

public double x;
public double y;

• providesetX andsetY methods:

public void setX(double x)
{

this.x = x;
}

public void setY(double y)
{

this.y = y;
}

4.6 Review of OOP concepts 149

With public data fields we can construct an object and then directly change its data fields as follows

Point = new Point(3,4);
p.x = 4; // 4 is new x coordinate
p.y = 5; // 5 is new y coordinate

If you try to do this withprivate data fields the compiler will give you an error message.
Similarly, if the “set” methods are included but the data fields are stillprivate then the data

fields can be changed indirectly as follows

Point = new Point(3,4);
p.setX(4); // 4 is new x coordinate
p.setY(5); // 5 is new y coordinate

Later we will see that if we need to make the class mutable the “set” methods are preferable to
making the data fields public.

The same ideas apply to theBankAccount class. To maintain data integrity it would be nec-
essary to ensure that an account cannot have a negative balance, and that thewithdraw method
cannot withdraw more money than is available. Our version ofthe class does not ensure these
conditions but we will be able to modify the class when we learn about conditional statements.

Side-effects

When a class is associated with a mutable class it is possibleto have undesirable side-effects
that violate data encapsulation. To see this we will write a new mutable version of thePoint
class calledMPoint that containssetX andsetY methods3. The class is in aBlueJ project called
book-projects/chapter4/side_effects .

ClassMPoint

book-projects/chapter4/side_effects

package chapter4.side_effects; // remove this line if you’ re not using packages

/**
* This class is like Point except it is a mutable version
* with setX and setY methods. We have also added a copy constru ctor.
*/

public class MPoint
{

private double x;
private double y;

/**
* Construct a point from its coordinates.
* @param x the x coordinate of the point
* @param y the y coordinate of the point

3We have also added a copy constructor to be discussed below

150 Classes, Objects, and Methods

*/
public MPoint(double x, double y)
{

this.x = x;
this.y = y;

}

/**
* Construct the default point (0,0).
*/

public MPoint()
{

x = 0.0;
y = 0.0;

}

/**
* Copy constructor
* @param p point to copy
*/

public MPoint(MPoint p)
{

x = p.x;
y = p.y;

}

/**
* Return the x coordinate of this point.
* @return the x coordinate of this point
*/

public double getX()
{

return x;
}

/**
* Return the y coordinate of this point.
* @return the y coordinate of this point
*/

public double getY()
{

return y;
}

/**
* Set a new value for the x coordinate
* @param x the new x coordinate
*/

public void setX(double x)
{

this.x = x;
}

4.6 Review of OOP concepts 151

/**
* Set a new value for the y coordinate
* @param y the new y coordinate
*/

public void setY(double y)
{

this.y = y;
}

/**
* Return a string representation of an MPoint object.
* @return a string representation of an MPoint object
*/

public String toString()
{

return "MPoint[" + x + ", " + y + "]";
}

}

In the same project we also write the following version of theCircle class calledMCircle
that usesMPoint instead ofPoint and violates data encapsulation.

ClassMCircle

book-projects/chapter4/side_effects

package chapter4.side_effects; // remove this line if you’ re not using packages

/**
* This class is identical to Circle except it used MPoint, the mutable point
* class, instead of Circle, which uses the immutable Point cl ass.
*/

public class MCircle
{

private MPoint center;
private double radius;

/**
* Construct circle with given center point and radius.
* @param p the center of the circle
* @param r the radius of the circle
*/

public MCircle(MPoint p, double r)
{

center = p;
radius = r;

}

/**
* Construct circle with given center coordinates and radius .
* @param x the x coordinate of the circle center

152 Classes, Objects, and Methods

* @param y the y coordinate of the circle center
* @param r the radius of the circle
*/

public MCircle(double x, double y, double r)
{

center = new MPoint(x,y);
radius = r;

}

/**
* Construct a default circle: a unit circle with center (0,0)
* and radius 1.
*/

public MCircle()
{

center = new MPoint();
radius = 1;

}

/**
* Return radius of circle.
* @return radius of circle
*/

public double getRadius()
{

return radius;
}

/**
* Return center of circle.
* @return center of circle
*/

public MPoint getCenter()
{

return center;
}

/**
* Return a string representation of an MCircle object.
* @return a string representation of an MCircle object
*/

public String toString()
{

return "MCircle[" + center + ", " + radius + "]";
}

}

The following example illustrates the side-effects.

EXAMPLE 4.35 (An undesirable side-effect)Try the statements

bsh % addClassPath("c:/book-projects/chapter4/side_ef fects");
bsh % MPoint p = new MPoint(3,4);

4.6 Review of OOP concepts 153

bsh % MCircle c = new MCircle(p, 5);
bsh % print(c);
MCircle[MPoint[3.0, 4.0], 5.0]
bsh % p.setX(999);
bsh % print(c);
MCircle[MPoint[999.0, 4.0], 5.0]

and notice that the change of thex coordinate ofp from 3 to 999 has miraculously changed thex
coordinate of the center of the circle to999 too.

Why should a change in a point that should have nothing to do with the circle, change the circle
object? The reason is thatp and the instance data fieldcenter both reference the same object since
the constructor contains the statement

center = p;

so any change in this object throughp is also a change in the center of the circle.

You can also confirm these results usingBlueJ as follows

1. Construct anMPoint object calledp with coordinates3 and4.

2. Construct anMCircle object calledc using the constructor that has anMPoint object and
choosep as theMPoint object and a radius of 5.

3. Now use thesetX method on the object menu ofp and change thex coordinate to999 .

4. Finally, use the inspector choice on object menu forc and examine the object reference
center to see that thex coordinate of the center is now999

The following example shows another way to violate data encapsulation withMCircle .

EXAMPLE 4.36 (Another side-effect) Try the statements

bsh % addClassPath("c:/book-projects/chapter4/side_ef fects");
bsh % MCircle c = new MCircle(3,4,5);
bsh % print(c);
MCircle[MPoint[3.0, 4.0], 5.0]
bsh % MPoint p = c.getCenter();
bsh % p.setX(999);
bsh % print(c);
MCircle[MPoint[999.0, 4.0], 5.0]
bsh %

and notice that we can usegetCenter to obtain a reference to the center point. Then we can use
this reference to change thex coordinate from3 to 999 . The reason here is the statement

return center;

in thegetCenter method, which also returns a reference top.

154 Classes, Objects, and Methods

These situations involving undesirable side-effects are shown in Figure 4.14. Here it is clear that
there is only oneMPoint object and it can be modified either through referencep or reference
center .

p - MPoint

x 3

y 4

'

&

$

%
c - MCircle

center

radius 5

'

&

$

%

�

Figure 4.14: A side-effect afterp changes thex from 3 to 999
.

To see that this side-effect does not occur in the original versions of these classes try the fol-
lowing example inBeanShell.

EXAMPLE 4.37 (No side-effect in original classes)Try the statements

bsh % addClassPath("c:/book-projects/chapter4/geometr y");
bsh % import Point; // necessary or we get java.awt.Point
bsh % Point p = new Point(3,4);
bsh % Circle c = new Circle(p, 5);
bsh % print(c);
Circle[Point[3.0, 4.0], 5.0]
bsh % p = new Point(999,4);
bsh % print(c);
Circle[Point[3.0, 4.0], 5.0]

and notice now that there is no change to the center coordinates of the circle. This occurs because
Point is an immutable class so there is no way to change thePoint object that was created. All
we can do is create a new object forp to reference in the statement

p = new Point(999,4);

So now instead of having two referencesp andcenter to the same object we have references to
different objects. Nowcenter is a reference to(3,4) and thep is a reference to(999,4).

4.6 Review of OOP concepts 155

The same analysis applies to theString class since it is also immutable. As a general rule it is
best to make classes immutable if possible.

Before fixingMCircle to remove side effects we discuss the concept of acopy constructor.

Copy constructor

A copy constructor makes a copy of the object referenced by its argument. For a class called
ClassNamethe copy constructor has the prototype

public ClassName(ClassName objectName)

We have included the copy constructor

public MPoint(MPoint p)
{

x = p.x
y = p.y

}

in the MPoint class. It is legal to usep.x andp.y here even though the data fields are private
because we are inside theMPoint class itself and instance data fields can be accessed directly in
this case.

Using the copy constructor we can modify theMCircle class so that side-effects do not occur.
The first modification is to change the constructor that accepts anMPoint reference as an argument
to

public MCircle(MPoint p, double r)
{

center = new MPoint(p);
radius = r;

}

This makes a copy of theMPoint object referenced byp and assigns its reference tocenter . Now
the MCircle object has its own copy of this object which is not affected byany changes to the
callers object referenced byp.

The second modification is to change thegetCenter method to

public MPoint getCenter()
{

return new MPoint(center);
}

Again, this returns a reference to a copy of the center objectnot a reference to the center object
itself. In other words, by making copies we do not give away tothe caller a reference to our private
data field of typeMPoint .

These changes are tested in a project calledbook-projects/chapter4/no_side_effects
that contains ourMPoint class and the following version ofMCircle .

156 Classes, Objects, and Methods

ClassMCircle

book-projects/chapter4/no_side_effects

package chapter4.no_side_effects; // remove this line if y ou’re not using packages

/**
* This class is like the original MCircle class
* but we have made it immutable so there are no side-effects.
*/

public class MCircle
{

private MPoint center;
private double radius;

/**
* Construct circle with given center point and radius.
* @param p the center of the circle
* @param r the radius of the circle
*/

public MCircle(MPoint p, double r)
{

center = new MPoint(p);
radius = r;

}

/**
* Construct circle with given center coordinates and radius .
* @param x the x coordinate of the circle center
* @param y the y coordinate of the circle center
* @param r the radius of the circle
*/

public MCircle(double x, double y, double r)
{

center = new MPoint(x,y);
radius = r;

}

/**
* Construct a default circle: a unit circle with center (0,0)
* and radius 1.
*/

public MCircle()
{

center = new MPoint();
radius = 1;

}

/**
* Return radius of circle.
* @return radius of circle
*/

public double getRadius()

4.6 Review of OOP concepts 157

{
return radius;

}

/**
* Return a copy of the center of circle.
* @return a copy of the center of circle
*/

public MPoint getCenter()
{

return new MPoint(center);
}

/**
* Return a string representatio of an MCircle object.
* @return a string representation of an MCircle object
*/

public String toString()
{

return "MCircle[" + center + ", " + radius + "]";
}

}

Now run theBeanShell test in Example 4.35 using this version ofMCircle :

EXAMPLE 4.38 (The side-effects are gone)Try the statements

bsh % addClassPath("c:/book-projects/chapter4/no_side _effects");
bsh % MPoint p = new MPoint(3,4);
bsh % MCircle c = new MCircle(p, 5);
bsh % print(c);
MCircle[MPoint[3.0, 4.0], 5.0]
bsh % p.setX(999);
bsh % print(c);
MCircle[MPoint[3.0, 4.0], 5.0]

and the side-effects are gone: changing thex coordinate does not change the center of the circle.

With the immutable version ofMCircle we have the situation shown in Figure 4.15. Now there
are twoMPoint objects instead of one. Side-effects like this always arisefrom mutable classes and
references and cannot occur for primitive types such asint or double .

BankAccount example

As a simple example of association and aggregation that has desirable side-effects consider a class
calledTransferAgent whose objects can take twoBankAccount and transfer a given amount of
money from one account to the other. The public class interface is given by

public class TransferAgent
{

158 Classes, Objects, and Methods

p - MPoint

x 999

y 4

'

&

$

%

MPoint

x 3

y 4

'

&

$

%
c - MCircle

center

radius 5

'

&

$

%

6

Figure 4.15: The side-effect disappears afterp changesx from 3 to 999 .

public TransferAgent(BankAccount from, BankAccount to) { ...}
public void transfer(double amount) {...}

}

Here the constructor arguments specify references to the two accounts and thetransfer method
does the transfer of a specified amount from thefrom account to theto account. Therefore the
TransferAgent is associated with (or uses) theBankAccount class.

The class implementation needs two private data fields of typeBankAccount to hold references
to the two accounts that are involved in the transfer. Therefore the class also illustrates aggregation.
The constructor will initialize these fields. Thetransfer method just needs to withdraw the given
amount from one account and deposit it in the other account using thewithdraw anddeposit
methods. Here is the complete class.

ClassTransferAgent

book-projects/chapter4/bank_account

package chapter4.bank_account; // remove this line if you’ re not using packages
/**

* A TransferAgent object can be used to transfer a given amoun t of money
* from one account to another.
*/

public class TransferAgent
{

private BankAccount from;
private BankAccount to;

/**
* Construct an object for two accounts
* @param from the "from" account

4.6 Review of OOP concepts 159

* @param to the "to" account
*/

public TransferAgent(BankAccount from, BankAccount to)
{

this.from = from;
this.to = to;

}

/**
* Transfer the given amount of money from one account to the ot her.
* @param amount amount to transfer
*/

public void transfer(double amount)
{

from.withdraw(amount);
to.deposit(amount);

}
}

There are side-effects since theBankAccount class is mutable and thetransfer method will
change the balance data field of the twoBankAccount objects given as arguments in the construc-
tor. However, here the account objects are changed from inside the class, by thetransfer method,
not from outside it as in theMCircle Example 4.35, where the center of the circle was changed
from outside the class. In fact the purpose of thetransfer method is to produce these side-effects.
You can try this class inBeanShell or BlueJ.

EXAMPLE 4.39 (Desirable side-effects)The statements

bsh % addClassPath("c:/book-projects/chapter4/bank_ac count");
bsh % BankAccount fred = new BankAccount(123, "Fred", 1000) ;
bsh % BankAccount mary = new BankAccount(345, "Mary", 1000) ;
bsh % TransferAgent agent = new TransferAgent(fred, mary);
bsh % agent.transfer(500);
bsh % print(fred);
BankAccount[number=123, name=Fred, balance=500.0]
bsh % print(mary);
BankAccount[number=345, name=Mary, balance=1500.0]

transfer $500 from thefred account to themary account.

In BlueJ try the following steps.

1. Create twoBankAccount objects with the account numbers, names, and initial balances
given above in theBeanShell example.

2. Create aTransferAgent object calledagent for the two accounts as given in the above
BeanShell example. The result is shown in Figure 4.16.

3. From theagent object menu choose transfer and enter 500 as the amount.

4. Inspect the two account objects or use theirgetBalance() methods to verify that the transfer
was made.

160 Classes, Objects, and Methods

Figure 4.16: TheTransferAgent example inBlueJ

4.6.5 Instance variables and methods

We now summarize the concepts related to instance variablesand methods.

Instance variables

The instance variables (instance data fields) of a class, if any, are declared in the class but outside
any method or constructor. Each object from the class has itsown set of these instance variables.
Each instance method has access to these variables to examine or change the state of the object.

Instance methods

The methods we have written so far have been methods that we can invoke on an object. We have
called these methodsinstance methodsor object methods. In BlueJ they are accessed by right
clicking on an object and choosing a method from the object menu.

In Java every method belongs to some class and when we construct an object from a class we
often say that the object is an instance of the class. Each class we use or write usually has one or
more instance methods. These methods define the behavior of objects from the class. A template
for a method declaration was given in Chapter 3, Figure 3.29.

Using an instance method

To use a method means to invoke it on an object. For example, the getArea method in the
CircleCalculator class in Chapter 3 (page 106), returns the area of the circle so we say that
a CircleCalculator object knows how to compute the area of a circle – this is part of its behav-
ior.

When an instance method is executed it is associated with some object. For example, ifcircle
is aCircleCalculator object then the statement

double area = circle.getArea();

4.6 Review of OOP concepts 161

String letter = LETTERS.substring(index, index + 1);

public String substring(int first, int lastPlusOne)

{
...

}

�
��	

�
��	

�
��	 ?

Figure 4.17: Correspondence between call expressions and prototypes

calculates the area and assigns it to variablearea . The expressioncircle.getArea() is called
an instance method call expression, and we say that we are invoking thegetArea method on the
circle object. We can also say that we aresending a messageto an object.

Here are some examples we have used in Chapter 4 with each instance method call expression
underlined.

(1) int length = name.length() ;
(2) char first = test.toUpperCase().charAt(0) ;
(3) password = password + LETTERS.substring(index, index + 1) ;
(4) String upper = test.toUpperCase() ;
(5) account.deposit(100)) ;
(6) String firstInitial = firstName.substring(0,1).toUpper Case() ;
(7) double x = c2.getCenter().getX() ;
(8) doCalculations() ; // this is the implied object
(9) long t = now.getTime() ;
(10) String n3 = f3.format(now) ;

There is a direct correspondence between a method call expression and the method prototype as
shown by the example in Figure 4.17.

In the simplest case an instance method call expression has one of the forms (see Chapter 3,
page 84)

objectName. methodName(actualArguments)
this. methodName(actualArguments)

The second form refers to a method in its own class and the “this. ” part can be omitted.
Examples (2), (6), and (7) illustrate an important idea called message composition. For ex-

ample, in (2) we first send thetoUpperCase message to the stringtest . This returns another
string and we send thecharAt(0) message to it to finally obtain an upper case version of the first
character of the stringtest .

Similarly, in (7) we send thegetCenter() message to the pointc2 . This returns a point and
we send thegetX() method to it to finally obtain thex coordinate of the center of the circle.

162 Classes, Objects, and Methods

Method composition

Instance message composition can be extended to several steps so the general form is

objectName.methodName(args1). methodName(args2) ... methodNameN(argsN)
this. methodName(args1). methodName(args2) ... methodName(argsN)

As mentioned above “this. ” can be omitted. Read these expression from left to right andas long
as each expression returns the right kind of object the entire expression will make sense.

4.6.6 Static variables, constants, and methods

Static variables

Variables can be declared static using thestatic modifier on the variable declaration. We have
not used static variables yet but an example we will use belowis

private static int count = 0;

which declarescount to be a static variable whose initial value is 0.
A static variable is quite different from an instance variable where each object has its own

copy of the variable. This is shown in Figure 4.15 where the two MPoint objects clearly have their
own copies of thex andy data fields. For a static variable there is only one copy and all objects of
the class share this variable – any constructor or method in the class can inspect or modify it. In
the above example any change in the value ofcount made by some object will also be seen by all
other objects from the class. We say thatcount is ashared variable.

Static constants

A static constant in a class is declared in the same way as a static variable but thefinal keyword
is included. Constants in a class are normally declared to bestatic since there is no need for
each object to have its own copy of a constant. The constantMath.PI is an example from theMath
class and we have also introduced some examples of our own. InthePasswordGenerator class
(page 113) we defined a string of lower case letters as a staticconstant:

public static final String LETTERS = "abcdefghijklmnopqrs tuvwxyz";

and in theCalendarMonth class we used static integer constants such as

public static final int JANUARY = Calendar.JANUARY;

Static methods

Thestatic modifier is used on a method prototype and declaration to distinguish a static method
from an instance method. We have not written a static method yet but we have used some. A static
method in a class is not associated with any object of the class. Thus, the statements in the body of
a static method cannot refer to any of the instance data fields.

4.6 Review of OOP concepts 163

Using static methods

The syntax for using a static method is similar to that of an instance method except the class name
is used in place of the object name. For example, all the methods in theMath class are static
methods (see Chapter 2) so to calculate

√
2 and assign it to a variable we would use

double root2 = Math.sqrt(2.0);

The expressionMath.sqrt(2.0) is called astatic method call expression. The class nameMath
must be present so the compiler will know which class contains thesqrt method. TheMath class
is an example of a class that contains only static methods.

Here are some examples we have used in Chapter 3 and Chapter 4 with each static method call
expression underlined.

(1) beta = Math.toDegrees(beta) ;
(2) System.out.println("Area: " + area) ;
(3) Calendar now = Calendar.getInstance() ;
(4) NumberFormat currency = NumberFormat.getCurrencyInstan ce() ;

Examples like (2) are interesting. HereSystem is the name of a class soSystem.out is a static
variable in this class. The type of this variable isPrintWriter which has severalprint and
println instance methods.

The methods in the static method call expressions in (3) and (4) are calledfactory methods
because they are static methods in a class whose job it is to construct an object from some class
and return a reference to it.

Thus, the general syntax for invoking a static method is

ClassName. methodName(actualArguments)
methodName(actualArguments)

The second form would correspond to a static method in its ownclass.

Counting the number of objects created from a class

For thePoint class (page 119) suppose that we want to count how many objects from the class
have been instantiated (created). We can do this with a static variable and a static method using the
project calledbook-projects/chapter4/static_variable . that contains a modified version
of the Point class from projectbook-projects/chapter4/geometry . The newPoint class is
obtained by adding the followingstatic variable to the data field section (outside any constructor
or method).

private static int count = 0;

Now add the following statement to the body of each constructor;

count++;

Thus, each time an object is createdcount will be incremented.
Finally, add the following static method to the class

164 Classes, Objects, and Methods

public static int getCount()
{

return count;
}

Testing the class withBeanShell Now you can test the class inBeanShell as follows.

EXAMPLE 4.40 (Counting the number of objects) The statements

bsh % addClassPath("c:/book-projects/chapter4/static_ variable");
bsh % import Point; // necessary of we get java.awt.Point
bsh % print(Point.getCount());
0
bsh % Point p1 = new Point(1,2);
bsh % Point p2 = new Point(3,4);
bsh % Point p3 = new Point(4,5);
bsh % Point p4 = p1;
bsh % int objectCount = Point.getCount();
bsh % print(objectCount);
3

show how to use the static method to count the number ofPoint objects that have been created. If
you were expecting 4 as an answer instead of 3 recall from Figure 4.13, page 147, thatp1 andp4
are references to the same object, thePoint object with coordinates(1,2).

Testing the class withBlueJ You can also useBlueJ to do the same test:

1. Create a fewPoint objects.

2. Now you will not find thegetCount method on the object menu since it is not an instance
method. Instead right click on thePoint class box and it will be there.

3. Call thegetCount method to display the number of objects created and displayed so far.

A class can contain a mixture of instance methods and static methods4. or it can contain only
methods of one kind. This is often a design decision. One possible advantage of a static method
is that it is not necessary to first construct an object beforeusing the method. Only the class name
is needed. Of course, to execute an instance method it is always necessary to construct an object
first.

The Math class is an example of a class containing only static methods. If the designer had
used instance methods then it would always be necessary to construct some “math” object before
using one of the math functions and this does not make sense.

Some classes have both kinds of methods. For example, theNumberFormat class (see Sec-
tion 4.5.2) has the static methodgetCurrencyInstance but it also has the instance method
format .

4TheString class is an example

4.6 Review of OOP concepts 165

The classes we have written so far have been classes containing only instance methods. If
an instance method does not access any instance data fields then we could choose to make it
an instance method or a static method. For example, thedoTest method in the simple classes
TriangleCalculatorTester , page 118,CircleTester , page 127, andCalendarMonthTester ,
page 137, do not access any data fields. In fact, these classeshave no data fields. Therefore these
methods could have been made static. The only difference inBlueJ is that we would now access
thedoTest() method from the class menu instead of the object menu.

4.6.7 Kinds of variables and arguments

So far we have seen four kinds of variables in Java.

• Instance data fields:They are instance variables that are declared outside any constructor
or method in a class and can be accessed directly by any instance method in the class.

• Static data fields: They are static variables that are declared outside any constructor or
method in a class and can be accessed by any instance or staticmethod in the class.

• Local variables: They are variables declared in a method or constructor body and are only
accessible within this body.

• formal arguments: They are declared in the constructor or method prototype andbecome
local variables inside the constructor or method body.

4.6.8 Call by value argument passing mechanism

When a method or constructor call expression is executed, itis important to understand how the
actual arguments in the expression are assigned to the formal arguments specified in the method or
constructor declaration.

For example, in Figure 4.3 (page 105) there are three formal arguments that need to be matched
with the three actual arguments in the constructor call expression. When the constructor is called
the valuesof the actual arguments are assigned as the values of local variables with the names
accountNumber , ownerName andinitialBalance .

Thus, in the body of the constructor,accountNumber will have the value123 , ownerName will
have the value of a reference to theString object"Peter Pascoe" , andinitialBalance will
have the value125.50 .

This is thecall by valueargument passing mechanism. The rules are simple:

• If an actual argument is a variable then a copy of its value is supplied as the value of the
formal argument.

• If an actual argument is a literal (literal string or number for example) then this literal value
is supplied as the value of the formal argument.

• If an actual argument is an expression then the expression isevaluated and its value is sup-
plied as the value of the formal argument.

166 Classes, Objects, and Methods

Call by value for an argument of primitive type

A consequence of call by value is that if a constructor or method argument is a primitive type and
a variable is used as an actual argument, then the value of that variable can not be changed by the
method since only a copy of the variable’s value, not its location, is passed to the method. For
example consider the following method, which could be a static or an instance method since it
doesn’t refer to the instance data fields of any class.

void addOne(int k)
{

k = k + 1;
}

If the intent of this method is to add one to variablek , and somehow return it to the caller of the
method, it does not work sincek is a local variable which receives only a copy of the caller’svalue,
not its location.

An interesting feature ofBeanShell is that we can define this method without the keywords
static or public andBeanShell will treat it as static method without having to specify to which
class it belongs. Here is an example.

EXAMPLE 4.41 (Arguments of primitive type) TheBeanShell statements

bsh % void addOne(int k) { k = k + 1; }
bsh % int m = 5;
bsh % addOne(m);
bsh % print(m);
5
bsh % print(k);
// Error: Undefined variable or class name, parameter: arg t o method:

print : at Line: 6 : in file: <unknown file> : print (k)

do not change the value ofmsince the value ofm, not its location, is assigned tok in the method
body and 1 is added to the value of this local variable not to the callers variablem. When the
method finishes executing the local variablek disappears and is no longer available. This feature
of BeanShell is very convenient for testing static methods.

In BlueJ: we can write the small tester class

ClassArgumentTester1

book-projects/chapter4/arguments

package chapter4.arguments; // remove this line if you’re n ot using packages

/**
* Illustrating call by value for primitive types
*/

public class ArgumentTester1
{

4.6 Review of OOP concepts 167

public void doTest()
{

int m = 5;
addOne(m);
System.out.println(m);

}

private static void addOne(int k)
{

k = k + 1;
}

}

Now we can construct aArgumentTester1 object and invoke itsdoTest() method, which will
call the staticaddOne method and display the resulting value ofmwhich is still 5.

Call by value for an argument of reference type (object type)

For reference types the situation is quite different. We still use “call by value” but now the value
passed is a copy of a reference to the caller’s object so therewill now be two references to the
caller’s object. Consider the following method.

void addOneDollar(BankAccount b)
{

b.deposit(1.0);
}

Hereb is a reference to aBankAccount object and this class is mutable, so thedeposit statement
will change the balance of theBankAccount object referenced byb. The following BeanShell
example shows this. We have included a copy ofBankAccount in thearguments project.

EXAMPLE 4.42 (Arguments of reference type) TheBeanShell statements

bsh % addClassPath("c:/book-projects/chapter4/argumen ts");
bsh % void addOneDollar(BankAccount b) { b.deposit(1); }
bsh % BankAccount a = new BankAccount(123, "Fred", 1000);
bsh % addOneDollar(a);
bsh % print(a);
BankAccount[number=123, name=Fred, balance=1001.0]

show that the balance of the object referenced bya has $1 added to it because inside the methodb
is also a reference to this object.

This situation is illustrated in Figure 4.18. Before theaddOneDollar method call, part (a),a is the
only reference to the object. During the method call, part (b), b is a local variable that is a copy
of a so it refers to the same object. After the method callb disappears and we have the original
situation but with the balance increased by one dollar.

In BlueJ: we can write the small tester class

168 Classes, Objects, and Methods

Before method call(a)

a - BankAccount

balance

1000

'

&

$

%

During method call(b)

a -

b -

BankAccount

balance

1001

'

&

$

%

After method call(c)

a - BankAccount

balance

1001

'

&

$

%
Figure 4.18: Call by value using references.

ClassArgumentTester2

book-projects/chapter4/arguments

package chapter4.arguments; // remove this line if you’re n ot using packages
import chapter4.bank_account.BankAccount; // remove thi s line if you’re not using packages

/**
* Illustrating call by value for reference types
*/

public class ArgumentTester2
{

public void doTest()
{

BankAccount a = new BankAccount(123, "Fred", 1000);
addOneDollar(a);
System.out.println(a);

}

private static void addOneDollar(BankAccount b)
{

b.deposit(1);
}

4.6 Review of OOP concepts 169

}

We can construct aTester object and invoke itsdoTest() method. This will call the static
addOneDollar method and display the resulting value ofa which will show the increase in balance
by one dollar.

4.6.9 main method

So far our classes have been designed for execution inside the BlueJ environment but if you try to
run one of them outside theBlueJ environment using the command line java interpreter you will
get an error message indicating that the interpreter cannotfind the infamousmain method.

When the interpreter tries to run a class it looks for a special static method, called themain ,
method, having the exact form

public static void main(String[] args)
{

....
}

If found the interpreter will begin executing the statements in the body of this method. There are
two ways to introduce the main method:

• Put amain method in the class you want to run. If your program consists of more than class
one of them should have amain method and it will be called the main class.

• Write a special runner class that has a main method and run it with the interpreter. This has
the advantage that the class you want to run doesn’t need to bemodified.

We illustrate both approaches and then show how to run classes containing a main method using
a command prompt (Windows), or terminal window (Unix) and the java compiler (javac) and
interpreter (java).

Adding a main method to a class

As an example, we make a new project calledmain-method containingPoint , Circle , and
CircleTester from projectgeometry using “Add class from file”. The project is shown in Fig-
ure 4.19.

Now modify this version ofCircleTester (page 127) by adding the main method

public static void main(String[] args)
{

CircleTester tester = new CircleTester();
tester.doTest();

}

to obtain the class

170 Classes, Objects, and Methods

Figure 4.19: Themain-method project.

ClassCircleTester

book-projects/chapter4/main_method

package chapter4.main_method; // remove this line if you’r e not using packages
import chapter4.geometry.Point; // remove this line if you ’re not using packages
import chapter4.geometry.Circle; // remove this line if yo u’re not using packages

/**
* A short class to show how to test the Circle and Point classes .
* This version contains a main method.
*/

public class CircleTester
{

public CircleTester()
{
}

/**
* Test the Point and Circle classes.
*/

public void doTest()
{

Point center = new Point(3,4);
Circle c1 = new Circle();
Circle c2 = new Circle(center, 5);
Circle c3 = new Circle(3, 4, 5);
System.out.println("c1 = " + c1);
System.out.println("c2 = " + c2);
System.out.println("c3 = " + c3);

double radius = c2.getRadius();
double x = c2.getCenter().getX();

4.6 Review of OOP concepts 171

double y = c2.getCenter().getY();
System.out.println("Radius = " + radius);
System.out.println("Center x = " + x);
System.out.println("Center y = " + y);

}

public static void main(String[] args)
{

CircleTester tester = new CircleTester();
tester.doTest();

}
}

This version of the class can be used both inside and outsideBlueJ. The purpose of themain
method here is to execute the statements we would do interactively with BlueJ: (1) an object called
tester is constructed, (2) thedoTest method is invoked on it. Themain method can even be
executed from withinBlueJ. Just right click on theCircleTester rectangle and you will seevoid
main(args) on the class menu. Select it and click OK to get them output as you would be creating
an object with the constructor and invoking itsdoTest method.

Writing a runner class

The second approach which doesn’t involve changing the class you want to run is to write a special
runner class that has amain method in it. Example 4.21 shows a simple test of theBankAccount
class usingBeanShell. We can write this test as the following class:

ClassBankAccountRunner

book-projects/chapter4/main_method

package chapter4.main_method; // remove this line if you’r e not using packages
import chapter4.bank_account.BankAccount; // remove thi s line if you’re not using packages
/**

* A class with only a main method showing how to do a simple test
* of the BankAccount class outside BlueJ. The class is writte n so
* that it can also be tested within BlueJ
*/

public class BankAccountRunner
{

public void doTest()
{

BankAccount account = new BankAccount(123, "Peter Pascoe" , 125.50);
System.out.println("Initial balance is " + account.getBa lance());
account.withdraw(100);
System.out.println("Balance is " + account.getBalance());
account.deposit(100);
System.out.println("Balance is " + account.getBalance());
System.out.println(account);

}

172 Classes, Objects, and Methods

public static void main(String[] args)
{

BankAccountRunner runner = new BankAccountRunner();
runner.doTest();

}
}

We have written this class so that it can also be run insideBlueJ in the usual way: (1) create a
BankAccountRunner object calledrunner using thenew BankAccountRunner() menu choice
from the yellow class rectangle, (2) select thedoTest choice from the object menu. Themain
method does exactly the same thing.

4.7 Running a class with amain method

To run a class with amain method outsideBlueJ it is necessary to open a terminal window or
console window (called an MS-DOS prompt or command prompt inwindows) and then compile
and interpret the class using thejavac andjava commands.

You can now navigate to the directoryc:/book-projects/chapter4/main_method and is-
sue the compiler command

javac BankAccountRunner.java

This command produces the bytecode file (see Chapter 1) called BankAccountRunner.class .
You can useBlueJ do this step too and then open a command prompt and just use theinterpreter.

To run the bytecode file use the interpreter command

java BankAccountRunner

The following output should appear in the terminal window.

Initial balance is 125.5
Balance is 25.5
Balance is 125.5
BankAccount[number=123, name=Peter Pascoe, balance=125 .5]

4.8 Review exercises

◮ Review Exercise 4.1Define the following terms and give examples of each.

class implementation class specification public interface
unit testing mutable class immutable class
Math.random java.util.Random Java package
fully qualified name this association
aggregation toString Date
Calendar SimpleDateFormat NumberFormat
DecimalFormat constructor call expression factory method

4.9BeanShell exercises 173

default constructor object reference object reference variable
null null reference primitive type
reference type object type local variable
data encapsulation data integrity side-effects
copy constructor instance variable static variable
instance method static method method call expression
sending a message method composition static constant
formal argument actual argument call by value
main method runner class

◮ Review Exercise 4.2How can you easily distinguish a constructor prototype froma method
prototype?

◮ Review Exercise 4.3Explain the relationship between a constructor declaration, a constructor
prototype, and a constructor call expression.

◮ Review Exercise 4.4Explain the relationship between a method declaration, a method proto-
type, and a method call expression.

◮ Review Exercise 4.5Give three examples of a constructor prototype and for each example give
three examples of a constructor call expression.

◮ Review Exercise 4.6Give three examples of a method prototype and for each example give
three examples of a method call expression.

◮ Review Exercise 4.7If you do not provide a constructor in a class the compiler will provide a
default constructor. What does this constructor do?

◮ Review Exercise 4.8What is the difference between a default constructor and a no-arg con-
structor?

◮ Review Exercise 4.9What is the difference between the public interface of a class and its im-
plementation?

4.9 BeanShell exercises

◮ BeanShell Exercise 4.1Write some statements that define a string index, extract thecharacter
at that index, and display it.

◮ BeanShell Exercise 4.2Write some statements that define a string index, extract thecharacter
at that index as a one-character string, and display it.

◮ BeanShell Exercise 4.3Write some statements that define a start index and an end index, ex-
tract the substring whose first character is at the start index and whose last character is at the end
index, and display the substring.

174 Classes, Objects, and Methods

◮ BeanShell Exercise 4.4Write some statements that define two strings, search one string for
the other string, and display the result.

◮ BeanShell Exercise 4.5Write some statements that convert a given strings , assumed to con-
tain 4 lowercase letters, to a string calledalternate of alternate upper and lower case letters. For
example, ifs has the value"abcd" thenalternate has the value"AbCd" .

◮ BeanShell Exercise 4.6Define an all-uppercase string callednameUpper and write a single
statement that converts it to a string calledname in which the first letter is upper case and the
remaining letters are lower case. For example,"WILLIAM" will be converted to"William" .

◮ BeanShell Exercise 4.7Write statements that construct twoBankAccount objects each having
an initial balance of $1,000. Use thewithdraw anddeposit methods to withdraw $50 from the
first account and deposit it in the second account. Display the results.

◮ BeanShell Exercise 4.8Write statements that construct twoBankAccount objects each having
an initial balance of $1,000. Construct aTransferAgent object to transfer $50 from the first
account to the second account. Display the results.

◮ BeanShell Exercise 4.9Write statements usingTriangleCalculatorTester (page 118) to
test theTriangleCalculator class.

◮ BeanShell Exercise 4.10Write some statements that usePoint (page 119) to construct two
points, calculate the distance between them, and display the results. (NOTE: it is necessary to use
import Point; in BeanShell so that we get ourPoint class instead ofjava.awt.Point)

◮ BeanShell Exercise 4.11Write some statements that useCircle (page 122) to construct two
circles and display the average of thex andy coordinates of their centers. (see Example 4.25)

◮ BeanShell Exercise 4.12Write some statements that use theCalendar class to determine what
day of the week you were born on.

◮ BeanShell Exercise 4.13Write some statements that define adouble number and use the
DecimalFormat class to display this number in fixed format with 3 digits after the decimal point.

◮ BeanShell Exercise 4.14Write some statements that define adouble number and use the
DecimalFormat class to display this number in scientific format with 3 digits after the decimal
point.

◮ BeanShell Exercise 4.15TheNumberFormat class has a locale dependent static method called
getNumberInstance that formats fixed point numbers for your locale. Experimentwith the fol-
lowing statements:

NumberFormat fix5 = NumberFormat.getNumberInstance();
fix5.setMinimumFractionDigits(5);
fix5.setMaximumFractionDigits(5);

◮ BeanShell Exercise 4.16Write some statements to show the difference between call byvalue
for primitive types and for a mutable reference type.

4.10 Programming exercises 175

4.10 Programming exercises

In each programming exercise you should include javadoc comments and indicate what data you
have used to test your class.

◮ Exercise 4.1 (AFullNameMaker class)
Write a class calledFullNameMaker with the following interface.

public class FullNameMaker
{

// data fields go here
public FullNameMaker(String first, String mid, String las t) {...}
public String getName1() {...}
public String getName2() {...}
public String getName3() {...}

}

Here the three names of a person are provided to the constructor. MethodgetName1 returns the full
name, methodgetName2 returns the full name but with the middle name replaced by itsfirst letter
followed by a period, and methodgetName3 returns the last name first, followed by a comma and a
space followed by the first name, followed by a space, the middle initial and a period. For example,
if the three input names are ”WILLIAM”, ”James”, and ”duncan” then the methods should return
the strings ”William James Duncan”, ”William J. Duncan”, and ”Duncan, William J.”. All names
are stored and output with the first letter capitalized and other letters in lower case regardless of
the input.

◮ Exercise 4.2 (A CopyCard class)
Make a project calledcopy-card . UsingBankAccount as a model write a class calledCopyCard
that represents a student photocopy card using the student number,studentID (as an integer), the
student name,name (as aString), and the amount remaining on the card,balance (as adouble
number). Include two methods that change the amount on the card: (1) anadd method that adds a
given amount to the copy card balance and (2) asubtract method that subtracts a given amount.
The three “get” methods each return one of the data field values.

Also include in thecopy-card project the following tester class that has adoTest method for
use insideBlueJ and amain method for use outsideBlueJ.

public class CopyCardTester
{

public void doTest()
{

CopyCard fred = new CopyCard(123, "Fred Bolger", 125.0);
CopyCard mary = new CopyCard(456, "Mary Nelson", 150.0);
fred.subtract(25.0);
mary.subtract(50.0);
displayCard(fred);
displayCard(mary);
fred.add(20.0);

176 Classes, Objects, and Methods

mary.add(10.0);
displayCard(fred);
displayCard(mary);

}

private void displayCard(CopyCard c)
{

System.out.print("Id: " + c.getStudentID());
System.out.print(", Name: " + c.getName());
System.out.println(", Balance: " + c.getBalance());

}

public static void main(String[] args)
{

CopyCardTester tester = new CopyCardTester();
tester.doTest();

}
}

Here we use a private method to display the results after eachoperation on the card. You can also
run this class inBeanShell as follows. Make sure you select “Capture System in/out/err” from the
BeanShell File menu and useaddClassPath for your project. Then use the statements

CopyCardTester tester = new CopyCardTester();
tester.doTest();

◮ Exercise 4.3 (ATriangle class)
Make a project calledtriangle that contains thePoint class from project
book-projects/chapter4/geometry
Add to this project theTriangle class with the public interface

public class Triangle
{

public Point v1, v2, v3;
public Triangle(Point p1, Point p2, Point p3) {...}
public Point getVertex1() {...}
public Point getVertex2() {...}
public Point getVertex3() {...}
public double area() {...}
public String toString() {...}

}

that usesPoint objects (aggregation) for the three verticesv1 , v2 , andv3 . To calculate the area
use the interesting formula

area=
1
2

∣

∣

∣
(x2y3−x3y2)+(x3y1−x1y3)+(x1y2−x2y1)

∣

∣

∣

where(x1,y1), (x2,y2), and(x3,y3) are the three vertices. Recall that the absolute value of a number
x is denoted by|x|. The methodMath.abs can be used to calculate it.

4.10 Programming exercises 177

◮ Exercise 4.4 (AName class)
Make aBlueJ project calledperson . Write a class calledNamethat represents the name of a person
using the following design.

public class Name
{

private String firstName;
private String lastName;

public Name(String first, String last) {...}
public Name(String fullName) {...}

public String getFirstName() {...}
public String getLastName() {...}
public String toString() {...}

}

For the second constructor assume that a full name is the firstname followed by one space followed
by the last name. You can extract the two names usingindexOf to find the position of the space.

Also, store the first and last names in a standard form. For example, ”james”, ”James”, and
”JAMES” should be stored as ”James”.

◮ Exercise 4.5 (AnAddress class)
Continuing Exercise 4.4, add to theperson project anAddress class that represents the address
of a person using the following design.

public class Address
{

String street;
String city;
String province;
String postalCode;

public Address(String street, String city, String provinc e,
String postalCode) {...}

public String getStreet() {...}
public String getCity() {...}
public String getProvince() {...}
public String getPostalCode() {...}
public String toString() {...}

}

◮ Exercise 4.6 (A simpler version ofCalendar)
Continuing Exercise 4.4 and Exercise 4.5, add to theperson project an adapter class that is a
simpler version of the complexCalendar class with the following public interface.

178 Classes, Objects, and Methods

import java.util.Calendar;
/**

* A simplified version of the complicated GregorianCalenda r class that is
* part of the standard Java library and contains about 50 meth ods. Our
* class just needs to deal with the year, month, and the day. A c lass like
* this is called an adapter class since it adapts a more comple x class for
* our simpler needs.
*/

public class CalendarDate
{

private Calendar calendar;

/**
* Construct a calendar date for right now.
*/

public CalendarDate() {...}

/**
* Construct a calendar date for a given year, month, and day.
* @param year the year
* @param month the month in the range 1 to 12
* @param day the day of the month in range 1 to 31
*/

public CalendarDate(int year, int month, int day) {...}

/**
* Return the year for this date.
* @return the year for this date
*/

public int getYear() {...}

/**
* Return the month for this date.
* @return the month for this date in range 1 to 12
*/

public int getMonth() {...}

/**
* Return the day of the month for this date.
* @return the day of the month for this date in range 1 to 31
*/

public int getDayOfMonth() {...}

/**
* Return a string representation of a calendar date.
* @return a string representation of a calendar date

4.10 Programming exercises 179

*/
public String toString() {...}

}

◮ Exercise 4.7 (APerson class using aggregation)
Continuing Exercise 4.4, Exercise 4.5, and Exercise 4.6, add to theperson project aPerson class
that represents the address of a person using the following design.

public class Person
{

private Name name;
private Address address;
private CalendarDate birthDate;

public Person(Name n, Address a) {...}

public String getName() {...}
public String getAddress() {...}
public CalendarDate getBirthDate() {...}
public int ageThisYear() {...}
public String toString() {...}

}

◮ Exercise 4.8 (New methods for thePoint class)
Make a project calledpoint that contains thePoint class from project
book-projects/chapter4/geometry
Include the following methods to thePoint class.

(a) an instance method calledadd that takes aPoint object as an argument and adds it to “this”
Point object, returning a newPoint object. Use the addition formula(a,b) + (c,d) =
(a+c,b+d).

(b) similarly include asub method using the subtraction formula(a,b)− (c,d) = (a−c,b−d).

(c) a static method calledadd that takes twoPoint objects as arguments, adds them, and returns
a newPoint object.

(d) similarly include a staticsub method.

BlueJ andBeanShell Edition Copyright 2002, 2005, 2007, Barry G. Adams

180 Classes, Objects, and Methods

Chapter 5

Using Graphics Classes and Objects
An introduction to Java 2D

Outline

Drawing graphics in a frame

User space and device space in Java2D

Drawing process in Java2D

Writing classes using geometricalShape objects

Using thedraw and fill methods for shapes

UsingPoint2D to define points

Line2D Shape

Rectangle2D and RoundRectangle2D shapes

Ellipse2D and Arc2D shapes

UsingGeneralPath to make custom shapes

Using attributes such as color and line thickness

Using affine transforms to do rotation, scaling and translation

Understanding coordinate transformations

181

182 Using Graphics Classes and Objects

5.1 Introduction

In this chapter we continue with the ideas presented in Chapter 4 but now we introduce some
graphics classes and objects and learn how to use them to drawpictures. This will give you more
experience using existing classes, writing simple classes, and computer graphics is fun too.

A graphical user interface (GUI) is necessary in order to draw pictures on a drawing surface.
In Java we can do this in two ways: (1) with stand alone GUI applications, or (2) with applets that
run in a browser. We will follow the first approach and write graphical applications that have a
frame containing a rectangular drawing surface.

In order to make this as simple as possible for beginners we use a customGraphicsFrame
class. In Chapter 11 we explain how this class works, but for now we just use it to simplify the
process of writing graphics programs that use Java 2D, the powerful two-dimensional graphics
package that is part of Java. Java 2D is a large collection of classes and we will cover only the
basic ideas in this book.

We begin with some important graphics concepts such as the graphics context, user space, and
device space. Then we describe the part of the hierarchy of built-in geometrical shape classes
that describes lines, rectangles, round rectangles, ellipses, and arcs. Some simple demonstration
programs show how to draw these shapes.

Next we discuss the drawing process and how to specify attributes such as line thickness,
colors, and rendering quality. The basicdraw andfill methods are used to draw and fill shapes
using the specified geometry and attributes. The entire process of specifying the geometry and
attributes of objects, and then rendering the objects, is illustrated by several versions of a “happy
face” program.

Finally, we illustrate how to change the coordinate system by calculating the transformations of
points ourselves and by using the built-inAffineTransform class to change the default coordinate
system. Affine transformations allow us to easily translate, scale, and rotate geometric objects
before rendering them.

5.2 Using theGraphicsFrame class

TheGraphicsFrame class is used to create aJFrame object representing a window on the screen,
and to put aJComponent in it to act as a rectangular drawing surface or “canvas”, with a specified
size, that exactly fills the interior of the frame.

This is a custom class that is available inBlueJ project/book-projects/custom_classes so
you can just use “Add class from files” from the “Edit” menu to put a copy in each project that
requires it.

For Windows an empty drawing window is shown in Figure 5.1. Ithas the usual title bar with
the minimize, maximize and close buttons characteristic ofa Windows program. The drawing
surface is the interior of the frame, and is 400 pixels wide and 300 pixels high in this example.

5.2 Using theGraphicsFrame class 183

Figure 5.1: An empty drawing window

5.2.1 EmptyDrawing template for simple graphics programs

The empty frame in Figure 5.1 was produced by the followingEmptyDrawing program class,
which you can compile and run with the Java interpreter (GraphicsFrame should be in the same
directory).

ClassEmptyDrawing

book-projects/chapter5/simple_shapes

package chapter5.simple_shapes; // remove this line if you ’re not using packages
import custom_classes.GraphicsFrame; // remove this line if you’re not using packages
import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

/**
* A template for simple Java 2D drawing programs that use a
* simple GraphicsFrame class that show a window frame with
* a drawing surface (JPanel) inside.
*/

public class EmptyDrawing extends JPanel
{

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;

// drawing statements go here
}

/**
* Use this method inside BlueJ.

184 Using Graphics Classes and Objects

*/
public void draw()
{

// Construct frame with a 400 pixel wide and 300 pixel high dra wing area.
// (0,0) is the top right corner and (399,299) is lower right c orner.

new GraphicsFrame("An empty drawing", new EmptyDrawing() , 400, 300);
}

/**
* Use main method outside BlueJ from the command line.
*/

public static void main(String[] args)
{

new EmptyDrawing().draw();
}

}

We will use this class as a template for the programs in this chapter.
The first import statement is used only if you use the package version of theGraphicsFrame

class. The otherimport statements are necessary to make available the standard Java classes for
GUI programming. Since there are many classes that need to beimported we normally use the
asterisk in the import statements to avoid a long list of import statements for the individual classes.
The asterisk means to import all the classes in the package.

Next we have the name of our class. In the template this isEmptyDrawing . We also indicate
that our class extendsJPanel . The JPanel class defines a rectangular drawing surface, so the
EmptyDrawing class extends this class. It will be our drawing canvas. It isan extension of a class
calledJComponent . We will learn in Chapter 10 that this extension mechanism, called inheritance
and specified by the keywordextends , is a powerful way to organize related classes. For now just
think of anEmptyDrawing object as a type ofJPanel object which is also a type ofJComponent
object.

In a graphical Java user interface acomponentis an object that has a visible appearance on the
screen (in Unix terminology components are often called widgets). ThepaintComponent method
will contain our drawing statements as indicated by the comment in theEmptyDrawing class.

We write our classes so that they can be run both insideBlueJ using thedraw method, and
outside using themain method. In thedraw method we simply construct theGraphicsFrame
object

new GraphicsFrame("An empty drawing", new EmptyDrawing() , 400, 300);

We didn’t need to give it a name so it is called ananonymousobject. This corresponds to the
customGraphicsFrame constructor prototype (see Chapter 11)

public GraphicsFrame(String title, JComponent jc, int wid th, int height)

The first argument specifies a title for the window frame,"An empty drawing" , the next argument
is an instance of our drawing class,new EmptyDrawing() , and the final two arguments specify
the width,400 , and height,300 , of the drawing surface in pixels.

You can run the class inBlueJ as follows.

5.3 The graphics context 185

1. Right click on theEmptyDrawing rectangle and selectnew EmptyDrawing , corresponding
to the default constructor

2. Right click on the resulting object and choosevoid draw() from the object menu.

To run the class outsideBlueJ themain method just needs to construct an anonymous object of
our class and call itsdraw method:

new EmptyDrawing().draw();

This is equivalent to

EmptyDrawing drawing = new EmptyDrawing();
drawing.draw();

which corresponds to the aboveBluej actions.

5.3 The graphics context

In a windowing system graphics output is controlled by agraphics context. This context is a data
structure which contains information on the type of graphics device (screen, printer, or plotter, for
example), and how to render graphics on the device using the various drawing attributes, such as
font information, line colors and styles, and region fillingpatterns and colors.

5.3.1 Graphics and Graphics2D objects

In Java a graphics context is an object from a class calledGraphics . This class contains methods
for drawing and setting attributes such as colors. In Java 1.1.x the support for graphics is very
minimal; for example, there is no way to specify the thickness of lines in a drawing. When Java 1.2
(now called Java 2) was released, full support for two-dimensional graphics was provided by a rich
set of classes referred to collectively as Java 2D.

To permit the use of the new graphics features, and also to maintain backward compatibility
with the original ones, a subclass of theGraphics class calledGraphics2D was provided. This is
another example of inheritance. Since we will only be using Java 2D drawing methods, we need
to convert an original graphics contextg to a new one using the type cast statement

Graphics2D g2D = (Graphics2D) g;

This kind of type cast has the same syntax as the type casting of an int to a double using a
statement such as “double d = (int) i; ”, with which we are familiar. However, it’s purpose is
quite different here and you will understand it only when we study inheritance in Chapter 10.

5.3.2 paintComponent method

To make pictures we need to put some statements in thepaintComponent method. When a graph-
ics program is run thepaintComponent method is called by the window manager part of the Java

186 Using Graphics Classes and Objects

run-time system. It is also called whenever part of the component needs to be refreshed. This can
happen when part of the component is covered by another window and then uncovered, or when
the component is restored after being minimized. We never directly call thepaintComponent
method ourselves. To draw a picture we only need to put our drawing statements in the body of
this method, as indicated by the comment line in theEmptyDrawing class.

Also, through inheritance, aJPanel object is aJComponent object, so we need to call the
paintComponent method in the parentJComponent class in case the component needs to be re-
freshed. This is done using the statement (see Chapter 10)

super.paintComponent(g);

which must always be the first statement in thepaintComponent method body whose declaration
for all program classes in this chapter will have the following structure:

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;

// other statements go here
}

It is not necessary to understand the details at this stage. Just remember to include the two state-
ments shown at the beginning of the method body.

Both the old and the new graphics contexts can be used. Methods in the original context can be
referenced usingg, and methods in the new one can be referenced usingg2D. We never construct
these graphics contexts ourselves. They are provided as actual arguments to thepaintComponent
method when the Java run-time system calls it to create the window or refresh it.

5.4 User space and device space

In order to draw lines, circles, rectangles and other objects we need to understand the coordinate
systems used to specify the positions of objects on the drawing surface. All drawing commands use
what is called user space. On the other hand, the rectangulardrawing surface consists of discrete
pixels (dots) arranged horizontally and vertically in whatis called a device space. The coordinate
system indevice spaceis an integer coordinate system and each pixel is represented by its integer
coordinatesx andy. Every graphics device (screen, printer, or plotter, for example) has a device
space associated with it. Since we will only be using the device space for the rectangular screen
window, we often refer to device space asscreen space.

For screen space, the origin(0,0) is at the top left corner of the surface. The horizontalx
coordinate increases from left to right and the verticaly coordinate increases from top to bottom.
Unfortunately, this is a left-handed coordinate system, instead of the universal right-handed co-
ordinate system used in mathematics, for which the origin(0,0) is at the bottom left and they
axis increases from bottom to top. Later we will see how to change the coordinate system to the
conventional one if desired.

5.5 Graphics classes and objects 187

User spaceis a space of double precision numbers that represents a continuous space. By de-
fault, the ranges of its coordinates are the same as that of the screen space. For example, if we have
a 31 by 21 pixel drawing surface then the user origin(0.0,0.0) corresponds to the top left pixel,
which has integer screen coordinates(0,0), and the bottom right corner would be(30.0,20.0),
corresponding to the pixel with screen coordinates(30,20). This is shown in Figure 5.2.

(0.0,0.0)s

(30.0,20.0)s
User Space

(0,0)s

(30,20)
31 by 21 Device Space

sss
Figure 5.2: User and device space

It is important to realize that the width and height in devicespace are not measured in some
system of units. They are the width and height in pixels. In Figure 5.2 device space is 31 pixels
wide and 21 pixels high but the coordinates of the lower rightcorner are 30 and 20. This does
not apply to user space; here the width is 30 units measured using the double precision coordinate
system.

In the general case aw by h pixel device space has top left corner at(0,0) and bottom right
corner at(w−1,h−1) and corresponds to a user space with top left corner at (0.0,0.0) and bottom
right corner at(w−1,h−1). The specific transformation from user space to device spaceis called
the default transformation . It is part of the graphics context and is automatically provided for
us each time thepaintComponent method is called. Later we will see how to modify the default
transformation.

5.5 Graphics classes and objects

In order to make drawings we need some classes that describe the geometry of basic graphical
objects, such as lines, rectangles and circles, in terms of points in user space. A rich set of classes
is provided with Java2D.

5.5.1 Point2D and Line2D classes

The simplest classes,Point2D andLine2D , in the java.awt.geom package, are used to define
points and lines.

188 Using Graphics Classes and Objects

Defining points

Points in user space can either be represented by theirx andy coordinates, or asPoint2D objects.
For example, to define the four corner points in user space in Figure 5.2 we could define the 4
objects

Point2D.Double topLeft = new Point2D.Double(0.0, 0.0);
Point2D.Double topRight = new Point2D.Double(30.0, 0.0);
Point2D.Double bottomLeft = new Point2D.Double(0.0, 20.0);
Point2D.Double bottomRight = new Point2D.Double(30.0, 20 .0);

The class name here has the qualified namePoint2D.Double indicating that points are represented
by double precision numbers. There is also a class calledPoint2D.Float that can represent points
using single precision floating point numbers. Then we woulduse the statements

Point2D.Float topLeft = new Point2D.Float(0.0F, 0.0F);
Point2D.Float topRight = new Point2D.Float(30.0F, 0.0F);
Point2D.Float bottomLeft = new Point2D.Float(0.0F, 20.0F);
Point2D.Float bottomRight = new Point2D.Float(30.0F, 20. 0F);

Here it is necessary to tell the compiler that the decimal constants are of typefloat rather than
double using theF suffix, since the default isdouble if no suffix is used. The compiler does not
implicitly convert values of typedouble to float and gives an “incompatible type” error if theF
suffix is omitted. The prototypes for these constructors are

public Point2D.Float(float x, float y)
public Point2D.Double(double x, double y)

After a point has been constructed, the individual coordinates can be retrieved using thegetX and
getY methods which have the prototypes

public double getX()
public double getY()

These enquiry methods returndouble values even for points of typePoint2D.Float .

Defining lines using points

Lines in user space can be described geometrically as objects from theLine2D class using their end
points. There are two classes:Line2D.Double andLine2D.Float . The constructor prototypes
are

public Line2D.Float(Point2D.Float p1, Point2D.Float p2)
public Line2D.Double(Point2D.Double p1, Point2D.Double p2)

wherep1 andp2 are the end points of the lines.
For example, to define a line between the pointstopLeft andtopRight and draw it we could

use the statements.

5.5 Graphics classes and objects 189

Line2D.Double line = new Line2D.Double(topLeft, topRight);
g2D.draw(line);

which uses the constructor that takes two points as arguments. Defining a line object does not
cause the line to be drawn. It only describes the geometry. Inorder to draw the line we must use
thedraw method in the graphics context. If we don’t need to refer to the line again, we can write
these statements as the single statement

g2D.draw(new Line2D.Double(topLeft, topRight));

which uses an anonymous object.
Here is a simple program class, containing amain method, that draws a line and labels the two

endpoints with their coordinates:

ClassDrawLine

book-projects/chapter5/simple_shapes

package chapter5.simple_shapes; // remove this line if you ’re not using packages
import custom_classes.GraphicsFrame; // remove this line if you’re not using packages
import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

/**
* Draw a line and label its endpoints with their coordinates.
*/

public class DrawLine extends JPanel
{

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;

Point2D.Double p1 = new Point2D.Double(10.0,20.0);
Point2D.Double p2 = new Point2D.Double(225.0,170.0);
g2D.draw(new Line2D.Double(p1,p2));
g2D.drawString("(10,20)", (float) p1.getX(), (float) p1 .getY());
g2D.drawString("(225,170)", (float) p2.getX(), (float) p2.getY());

}

public void draw()
{

new GraphicsFrame("Drawing a line", new DrawLine(), 300, 2 00);
}

public static void main(String[] args)
{

new DrawLine().draw();
}

}

190 Using Graphics Classes and Objects

ThedrawString method is also illustrated here. It is the simplest way to draw text. There are two
method prototypes

public void drawString(String text, int x, int y)
public void drawString(String text, float x, float y)

where(x,y) are the coordinates of the bottom left corner of the text string. Since there is no
version that takesdouble arguments, we needed to type cast the coordinates returned by getX()
andgetY() to typefloat in theDrawLine class. The output is shown in Figure 5.3.

Figure 5.3: Drawing a line

Drawing rectangles using lines

As another simple example, here is a program that draws the biggest rectangle on the drawing
surface inside the frame:

ClassDrawBiggestRectangle

book-projects/chapter5/simple_shapes

package chapter5.simple_shapes; // remove this line if you ’re not using packages
import custom_classes.GraphicsFrame; // remove this line if you’re not using packages
import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

/**
* Draw the biggest rectangle inside the frame using lines to d raw the
* rectangle. If the frame is resized the rectangle doesn’t ch ange.

*/
public class DrawBiggestRectangle extends JPanel
{

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;

5.5 Graphics classes and objects 191

Point2D.Double topLeft = new Point2D.Double(0.0, 0.0);
Point2D.Double topRight = new Point2D.Double(300.0, 0.0) ;
Point2D.Double bottomLeft = new Point2D.Double(0.0, 200. 0);
Point2D.Double bottomRight = new Point2D.Double(300.0, 2 00.0);

Line2D.Double top = new Line2D.Double(topLeft, topRight) ;
Line2D.Double right = new Line2D.Double(topRight, bottom Right);
Line2D.Double bottom = new Line2D.Double(bottomRight, bo ttomLeft);
Line2D.Double left = new Line2D.Double(bottomLeft, topLe ft);

g2D.draw(top);
g2D.draw(right);
g2D.draw(bottom);
g2D.draw(left);

}

public void draw()
{

new GraphicsFrame("Drawing the biggest rectangle",
new DrawBiggestRectangle(), 301, 201);

}

public static void main(String[] args)
{

new DrawBiggestRectangle().draw();
}

}

The program output is shown in Figure 5.4. The black rectangle outline is just visible at the border

Figure 5.4: The biggest rectangle

of the drawing surface.

Defining lines using coordinates

TheLine2D classes have another constructor that uses 4 numbers to specify the coordinates of the
endpoints. They have the prototypes

public Line2D.Float(float x1, float y1, float x2, float y2)

192 Using Graphics Classes and Objects

public Line2D.Double(double x1, double y1, double x2, doub le y2)

wherex1 andy1 are the coordinates of one end point andx2 andy2 are the coordinates of the other
end point. In theDrawBiggestRectangle program we can replace the eight statements defining
the points and lines by the four statements

Line2D.Double top = new Line2D.Double(0.0, 0.0, 300.0, 0.0);
Line2D.Double right = new Line2D.Double(300.0, 0.0, 300.0 , 200.0);
Line2D.Double bottom = new Line2D.Double(300.0, 200.0, 0. 0, 200.0);
Line2D.Double left = new Line2D.Double(0.0, 200.0, 0.0, 0. 0);

Resizing the drawing window

When the window is displayed, it can be resized by clicking onany of the sides or corners and
dragging the mouse. Figure 5.5 shows theDrawBiggestRectangle window after resizing. The

Figure 5.5: The biggest rectangle after resizing window

rectangle did not automatically expand to become the biggest one possible in the new window.
This may or may not be what you want. If you want the rectangle to resize itself so that it is always
the biggest one, then it is necessary to ask the graphics context for the current size of the drawing
surface. We can do this by adding the following two statements to thepaintComponent method.

double xMax = getWidth() - 1;
double yMax = getHeight() - 1;

The getWidth and getHeight methods return the width and height of the drawing surface in
pixels. We subtract 1 from each to get the integer coordinates of the bottom right pixel. The right
sides of these assignments evaluate to integer values. These values are automatically converted to
double values in user space (explicit type conversion) for assignment toxMax andyMax.

The instance methodsgetWidth andgetHeight don’t need to use the dot notation to send a
message to an object. When a method is used in this way it is implied that it is sending the message
to an object of the class in which the method is used. This object is actually aJComponent object,
and if you were to look at this class you would find that it has agetWidth method and agetHeight
method.

5.5 Graphics classes and objects 193

Now change the definitions of the four corner points in theDrawBiggestRectangle program
to

Point2D.Double topLeft = new Point2D.Double(0.0, 0.0);
Point2D.Double topRight = new Point2D.Double(xMax, 0.0);
Point2D.Double bottomLeft = new Point2D.Double(0.0, yMax);
Point2D.Double bottomRight = new Point2D.Double(xMax, yM ax);

to obtain the following class.

ClassDrawBiggestRectangle2

book-projects/chapter5/simple_shapes

package chapter5.simple_shapes; // remove this line if you ’re not using packages
import custom_classes.GraphicsFrame; // remove this line if you’re not using packages
import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

/**
* Another version of DrawBiggestRectangle that uses the com ponent’s
* getWidth and getHeight methods to draw the biggest rectang le even
* when the frame is resized.
*/

public class DrawBiggestRectangle2 extends JPanel
{

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;

double xMax = getWidth() - 1;
double yMax = getHeight() - 1;

Point2D.Double topLeft = new Point2D.Double(0.0, 0.0);
Point2D.Double topRight = new Point2D.Double(xMax, 0.0);
Point2D.Double bottomLeft = new Point2D.Double(0.0, yMax);
Point2D.Double bottomRight = new Point2D.Double(xMax, yM ax);

Line2D.Double top = new Line2D.Double(topLeft, topRight) ;
Line2D.Double right = new Line2D.Double(topRight, bottom Right);
Line2D.Double bottom = new Line2D.Double(bottomRight, bo ttomLeft);
Line2D.Double left = new Line2D.Double(bottomLeft, topLe ft);

g2D.draw(top);
g2D.draw(right);
g2D.draw(bottom);
g2D.draw(left);

}

public void draw()

194 Using Graphics Classes and Objects

{
new GraphicsFrame("Drawing the biggest rectangle (2)",

new DrawBiggestRectangle2(), 301, 201);
}

public static void main(String[] args)
{

new DrawBiggestRectangle2().draw();
}

}

When you run this class the rectangle will be resized automatically when the window is resized.
This works only becausegetWidth andgetHeight are inside thepaintComponent method. Each
time the window is resized this method is called and the variablesxMax andyMax will have new
values to reflect the new size of the drawing surface.

5.5.2 Geometrical Shape Hierarchy (java.awt.geom package)

The Line2D class is one of an extensive set of graphical classes. Each class represents a geo-
metrical object as aShape as shown in Figure 5.6. We will study the concept of inheritance and
interfaces in Chapter 10. All the objects can be considered as different kinds ofShape objects.
They belong to theShape family. The nice thing about theShape family is that thedraw method
in the Graphics2D graphics context knows how to draw objects defined by any of the classes in
this family. In fact it has the prototype

public void draw(Shape s)

This is much better than having separate methods such asdrawLine , drawRectangle , ordrawArc
to draw each kind of object. The twoPoint2D classes are also shown but they are not part of the
Shape family.

Drawing points

You may wonder how to draw a single point. Ifp is aPoint2D object, then you might expect that
g2D.draw(p) will draw the point. This does not work since a point is not aShape . Instead it is
necessary to draw a line from one point to the same point using

g2D.draw(new Line2D.Double(p,p));

Using the coordinatesx andy of the point you can also use

g2D.draw(new Line2D.Double(x,y,x,y));

If you want to draw pictures entirely in terms of pixels in device space rather than user space there
are better ways, which we will not discuss, that use image andraster objects.

5.5 Graphics classes and objects 195

Shape Point2D

Point2D.Float, Point2D.DoubleRectangularShape

Rectangle2D

Rectangle2D.Float, Rectangle2D.Double

RoundRectangle2D

RoundRectangle2D.Float, RoundRectangle2D.Double

Ellipse2D

Ellipse2D.Float, Ellipse2D.Double

Arc2D

Arc2D.Float, Arc2D.Double

Line2D

Line2D.Float, Line2D.Double

QuadCurve2D

QuadCurve2D.Float, QuadCurve2D.Double

CubicCurve2D

CubicCurve2D.Float, CubicCurve2D.Double

GeneralPath

Figure 5.6: Inheritance hierarchy andShape interface diagram for graphics classes

5.5.3 RectangularShape classes

The four classes of typeRectangularShape are defined in terms of the frame (a rectangle) of
the shape. Do not confuse the use of the word frame here with the window frame. There is also
the concept of the bounding rectangle (or bounding box) for ashape. It is the smallest rectangle
containing the shape and is not always the same rectangle as the frame.

• A Rectangle2D object defines a rectangle using its frame. Here the frame is the same as the
bounding rectangle.

• An Ellipse2D object defines an ellipse using its frame. Here the frame is the same as the
bounding rectangle.

• A RoundRectangle2D object defines a rounded rectangle that has elliptical arcs at the cor-
ners. It is defined using its frame and the frame of the ellipsethat contains the corner arcs.

• An Arc2D object defines an arc of an ellipse using its frame. For an arc the frame and the
bounding rectangle are different rectangles.

196 Using Graphics Classes and Objects

Rectangle2D class

We have defined a rectangle using four lines inDrawBiggestRectangle but theRectangle2D
class is more convenient. The prototypes for constructing arectangle object are

public Rectangle2D.Float(float x, float y, float w, float h)
public Rectangle2D.Double(double x, double y, double w, do uble h)

wherex and y are the coordinates of the top left corner of the rectangle,w is the width of the
rectangle, andh is the height of the rectangle.

In theDrawBiggestRectangle2 class we can replace thepaintComponent method to obtain
the class

ClassDrawBiggestRectangle3

book-projects/chapter5/simple_shapes

package chapter5.simple_shapes; // remove this line if you ’re not using packages
import custom_classes.GraphicsFrame; // remove this line if you’re not using packages
import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

/**
* A version of DrawBiggestRectangle2 that uses a Rectangle2 D.Double
* object instead of four Line2D.Double objects to draw the bi ggest rectangle.
*/

public class DrawBiggestRectangle3 extends JPanel
{

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;

double xMax = getWidth() - 1;
double yMax = getHeight() - 1;

Rectangle2D.Double biggestRect =
new Rectangle2D.Double(0.0, 0.0, xMax, yMax);

g2D.draw(biggestRect);
}

public void draw()
{

new GraphicsFrame("Drawing the biggest rectangle (3)",
new DrawBiggestRectangle3(), 301, 201);

}

public static void main(String[] args)
{

new DrawBiggestRectangle3().draw();

5.5 Graphics classes and objects 197

}
}

which defines a rectangle in user space with top left corner at(0.0,0.0) , width xMax - 0.0 =
xMax and heightyMax - 0.0 = yMax .

Ellipse2D class

TheEllipse2D.Float andEllipse2D.Double classes define ellipses. The constructors are

public Ellipse2D.Float(float x, float y, float w, float h)
public Ellipse2D.Double(double x, double y, double w, doub le h)

Herex andy are the coordinates of the top left corner of the ellipse frame, w is the width of this
frame, andh is its height. The ellipse will be a circle ifw andh are the same. Here is a class that
draws an ellipse and a circle with their frames.

ClassDrawEllipse

book-projects/chapter5/simple_shapes

package chapter5.simple_shapes; // remove this line if you ’re not using packages
import custom_classes.GraphicsFrame; // remove this line if you’re not using packages
import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

/**
* Show how to draw an ellipse and a circle and their bounding bo xes.
*/

public class DrawEllipse extends JPanel
{

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;

Ellipse2D.Double ellipse = new Ellipse2D.Double(20,20,2 00,100);
Ellipse2D.Double circle = new Ellipse2D.Double(300,20,1 00,100);

g2D.draw(ellipse);
g2D.draw(ellipse.getFrame());
g2D.draw(circle);
g2D.draw(circle.getFrame());

}

public void draw()
{

new GraphicsFrame("Drawing ellipses", new DrawEllipse() , 422, 142);
}

198 Using Graphics Classes and Objects

public static void main(String[] args)
{

new DrawEllipse().draw();
}

}

The first ellipse constructor defines an ellipse whose frame has top left corner at (20,20) with width
200 and height 100. The second ellipse constructor defines a circle whose frame has top left corner
at (300,20) with width and height 100. This gives a circle of radius 50. The output is shown in
Figure 5.7. The left window shows the ellipse and circle withtheir frames and the right window,

Figure 5.7: Ellipse, circle, and frames

obtained by commenting out the statements in the class that define and draw the rectangles, shows
the ellipse and circle without their frames. There is also agetBounds2D method which will return
the bounding box. In the case of an ellipse,GetBounds2D returns the same rectangle asgetFrame .

RoundRectangle2D class

The RoundRectangle2D.Float andRoundRectangle2D.Double classes define rectangles with
rounded corners. The corners are one quarter arcs of an ellipse. The constructor prototypes are

public RoundRectangle2D.Float(float x, float y, float w, f loat h,
float arcw, float arch)

public RoundRectangle2D.Double(double x, double y, doubl e w, double h
double arcw, double arch)

Herex andy are the coordinates of the top left corner of the frame,w is its width, andh is its height.
The values ofarcw andarch define the width and height of the frame of the ellipse of whichthe
arc is a part. Here is a program that draws two round rectangles of the same size but with different
sized arcs at the corners.

ClassDrawRoundRectangle

book-projects/chapter5/simple_shapes

package chapter5.simple_shapes; // remove this line if you ’re not using packages
import custom_classes.GraphicsFrame; // remove this line if you’re not using packages

5.5 Graphics classes and objects 199

import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

/**
* Draw rounded rectangles using RoundRectangle2D
*/

public class DrawRoundRectangle extends JPanel
{

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;

// First four parameters define the frame and last
// two parameters define the arc width and height

RoundRectangle2D.Double roundRect1 =
new RoundRectangle2D.Double(20,20,200,100,100,60);

RoundRectangle2D.Double roundRect2 =
new RoundRectangle2D.Double(240,20,200,100,100,100);

g2D.draw(roundRect1);
g2D.draw(roundRect2);

}

public void draw()
{

new GraphicsFrame("Drawing round rectangles",
new DrawRoundRectangle(), 462, 142);

}

public static void main(String[] args)
{

new DrawRoundRectangle().draw();
}

}

The round rectangle on the left has top left corner at (20,20), width 200, and height 100. It has
an arc of an ellipse whose frame has width 100 and height 60. This means that the arc is 50 units
wide and 30 units tall. The round rectangle on the right has the same size with top left corner at
(240,20) but it has a circular arc that is 50 units wide and 50 units high. Since this is half the height
of the round rectangle we obtain a round rectangle with semi-circular sides. The output is shown
in Figure 5.8.

Arc2D class

TheArc2D.Float andArc2D.Double classes define an arc as a part of an ellipse. The constructor
prototypes are

public Arc2D.Float(float x, float y, float w, float h,

200 Using Graphics Classes and Objects

Figure 5.8: Drawing round rectangles

float startAngle, float extentAngle, int type)

public Arc2D.Double(double x, double y, double w, double h,
double startAngle, double extentAngle, int type)

As with the otherRectangleShape classes, the first four arguments define the frame of the ellipse
of which the arc is a part. The value ofstartAngle specifies the starting angle in degrees for
the arc andextentAngle specifies how many degrees are in the arc. A horizontal line tothe
right of the arc center has an angle of 0. Thetype argument has one of the three constant values
Arc2D.OPEN for an ordinary arc,Arc2D.CHORD if the start and end points of the arc should be
joined, andArc2D.PIE if the end points of the arc should be joined to the center of the ellipse.
Here is a class that draws an arc using the three different joining conditions:

ClassDrawArc

book-projects/chapter5/simple_shapes

package chapter5.simple_shapes; // remove this line if you ’re not using packages
import custom_classes.GraphicsFrame; // remove this line if you’re not using packages
import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

/**
* Show how to draw arcs using the three types of joining condit ions.
*/

public class DrawArc extends JPanel
{

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;

// First four parameters give the frame of enclosing ellipse

Arc2D.Double arc1 = new Arc2D.Double(20,20,200,100,0,21 0,Arc2D.OPEN);
Arc2D.Double arc2 = new Arc2D.Double(240,20,200,100,0,2 10,Arc2D.CHORD);
Arc2D.Double arc3 = new Arc2D.Double(460,20,200,100, 0, 2 10,Arc2D.PIE);

5.5 Graphics classes and objects 201

Figure 5.9: The three types of arcs

/* For arcs the frame is not the same as the bounding box. The Fr ame
* is the frame of the ellipse of which the arc is a part and the
* bounding box is the smallest rectangle enclosing the arc
*/

g2D.draw(arc1);
g2D.draw(arc1.getFrame());
g2D.draw(arc1.getBounds2D());
g2D.draw(arc2);
g2D.draw(arc2.getFrame());
g2D.draw(arc2.getBounds2D());
g2D.draw(arc3);
g2D.draw(arc3.getFrame());
g2D.draw(arc3.getBounds2D());

}

public void draw()
{

new GraphicsFrame("Drawing arcs", new DrawArc(), 682, 142);
}

public static void main(String[] args)
{

new DrawArc().draw();
}

}

The first arc has a frame with top left corner at (20,20), width200, and height 100. The arc
extends from angle 0 (horizontal) in a counterclockwise direction 210 degrees. The other arcs
have the same angles. The output is shown in Figure 5.9. The bottom window shows the three arcs
with their frames and the top window shows them without frames. As mentioned above, for arcs

202 Using Graphics Classes and Objects

getFrame andgetBounds2D return different rectangles.

5.6 The drawing process

So far our programs have had the following structure in thepaintComponent method: define the
geometry, then render it with the draw command. There are actually four steps to the drawing
process:

1. Define the geometry of the picture in some convenient coordinate system.

2. Transform the geometry if necessary to position objects on the drawing surface.

3. Specify any attributes such as colors or line thicknesses.

4. Render the drawing using draw and fill commands and attributes.

We have used the default user space coordinate system, whichis just the device space coordinate
system but using double numbers instead of integers. In steps 2 and 3 it is possible to define any
suitable coordinate system and to specify attributes such as drawing quality, colors, line styles, and
line thickness.

5.6.1 Specifying attributes

Thedraw command uses a default set of attributes to render a geometrical object. For example, the
default color is black, the default screen background is light gray, the line thickness is one pixel,
and the rendering of curves and lines is not anti-aliased.

Improving the rendering quality (smoothness)

When lines and curves are drawn they often look jagged. The effect is more noticeable the nearer
the line is to the horizontal or vertical. To a certain extentthis is an unavoidable consequence of
using discrete pixels to represent a continuous mathematical line. The effect can be minimized by
using what is called “anti-aliasing”. With this technique,pixels near the ones that are drawn can
be given various shades of gray or other colors to make the lines appear smoother.

In Java 2 it is possible to turn on anti-aliasing using the following formidable looking statement

g2D.setRenderingHint(RenderingHints.KEY_ANTIALIASIN G,
RenderingHints.VALUE_ANTIALIAS_ON);

whereg2D is the graphics context. Place this statement in thepaintComponent method after the
definition ofg2D in any of the classes we have considered and you will notice a dramatic increase in
picture quality. For example if thepaintComponent method of theDrawArc program is replaced
by

public void paintComponent(Graphics g)
{

5.6 The drawing process 203

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;

g2D.setRenderingHint(RenderingHints.KEY_ANTIALIASIN G,
RenderingHints.VALUE_ANTIALIAS_ON);

Arc2D.Double arc1 = new Arc2D.Double(10,10,100,50,0,210 ,Arc2D.OPEN);
Arc2D.Double arc2 = new Arc2D.Double(120,10,100,50,0,21 0,Arc2D.CHORD);
Arc2D.Double arc3 = new Arc2D.Double(230,10,100,50,0,21 0,Arc2D.PIE);
g2D.draw(arc1);
g2D.draw(arc2);
g2D.draw(arc3);

}

then the result shown in Figure 5.10 can be compared with the top frame in Figure 5.9.

Figure 5.10: Anti-aliased version ofDrawArc

Specifying colors

Colors in Java 2D are objects from a class calledColor in packagejava.awt . There are several
models for dealing with color in graphics systems. We consider only the RGB system in which
colors are specified by their red, green, and blue components. The two constructors have prototypes

public Color(int red, int green, int blue)
public Color(float red, float green, float blue)

With the integer arguments, color values are in the range 0 to255 with 0 being the absence of the
color. In the floating point version the values are in the range 0.0F to 1.0F .

EXAMPLE 5.1 (Defining colors) The statements

Color redColor = new Color(255,0,0);
Color greenColor = new Color(0,255,0);
Color blueColor = new Color(0,0,255);
Color blackColor = new Color(0,0,0); // absence of all color s
Color whiteColor = new Color(255,255,255); // presence of a ll colors
Color yellowColor = new Color(255,255,0); // red + green = ye llow

204 Using Graphics Classes and Objects

Name Red Green Blue Name Red Green Blue
Color.black 0 0 0 Color.blue 0 0 255
Color.cyan 0 255 255 Color.darkGray 64 64 64
Color.gray 128 128 128 Color.green 0 255 0
Color.lightGray 192 192 192 Color.magenta 255 0 255
Color.orange 255 200 0 Color.pink 255 175 175
Color.red 255 0 0 Color.white 255 255 255
Color.yellow 255 255 0

Table 5.1: The standard colors

define some standard colors using the integer arguments.

There are 13 predefined color constants in classColor which can also be used. Their names and
values are shown in Table 5.1. There are two useful methods intheGraphics2D graphics context
for specifying colors. ThesetPaint method is used to set the drawing color, and thegetPaint
method is used to retrieve the current drawing color in case you want to save it. They have the
prototypes

public void setPaint(Paint p)
public Paint getPaint()

A Color object is a kind ofPaint object so the statement

g2D.setPaint(Color.red);

sets the current drawing color to red. All subsequentdraw commands will use this color until it is
changed. The statement

Paint save = g2D.getPaint();

saves the current color in variablesave .

EXAMPLE 5.2 (Colored arcs) In thepaintComponent method for theDrawArc program given
on page 200 you can replace the three draw statements for the arcs by

g2D.setPaint(Color.red);
g2D.draw(arc1);
g2D.setPaint(Color.green);
g2D.draw(arc2);
g2D.setPaint(Color.blue);
g2D.draw(arc3);

to get a red, green, and a blue arc.

5.6 The drawing process 205

Specifying line thickness

Another important attribute in the rendering of a graphics object is the line thickness. When a line
or curve is rendered it is stroked by a brush with a certain thickness. This brush is an object from a
class calledStroke which has a useful subclass calledBasicStroke . One of the constructors has
the prototype

public BasicStroke(float width)

wherewidth is the thickness of the brush in user space. ThesetStroke method in the graphics
context is used to make aStroke object the current one. The default thickness is 1 pixel. There
are other constructors, which we won’t use in this book, thatspecify how lines are joined.

EXAMPLE 5.3 (Specifying line thickness)In theDrawArc program on page 200 if we add the
statement

g2D.setStroke(new BasicStroke(2.0F));

before thedraw statements, the arcs will be drawn with curves and lines thatare twice as thick as
the default (obtained using1.0F).

Here is the final version of the arc drawing program calledDrawArc2 that draws three arcs in red,
green, and blue, with anti-aliasing and a stroke thickness of 2:

ClassDrawArc2

book-projects/chapter5/simple_shapes

package chapter5.simple_shapes; // remove this line if you ’re not using packages
import custom_classes.GraphicsFrame; // remove this line if you’re not using packages
import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

/**
* A version of DrawArc that uses colors, line thickness,
* and anti-aliasing for a smoother picture.
*/

public class DrawArc2 extends JPanel
{

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;
g2D.setRenderingHint(RenderingHints.KEY_ANTIALIASIN G,

RenderingHints.VALUE_ANTIALIAS_ON);

Arc2D.Double arc1 = new Arc2D.Double(20,20,200,100,0,21 0,Arc2D.OPEN);
Arc2D.Double arc2 = new Arc2D.Double(240,20,200,100,0,2 10,Arc2D.CHORD);
Arc2D.Double arc3 = new Arc2D.Double(460,20,200,100,0,2 10,Arc2D.PIE);

206 Using Graphics Classes and Objects

g2D.setStroke(new BasicStroke(2.0f)); // lines twice as w ide as default
g2D.setPaint(Color.red);
g2D.draw(arc1);
g2D.setPaint(Color.green);
g2D.draw(arc2);
g2D.setPaint(Color.blue);
g2D.draw(arc3);

}

public void draw()
{

new GraphicsFrame("Drawing arcs (2)", new DrawArc2(), 682 , 142);
}

public static void main(String[] args)
{

new DrawArc2().draw();
}

}

The output window is shown in Figure 5.11.

Figure 5.11:DrawArc2 showing colors and stroke thickness 2

Filling and stroking

Another important operation is to fill the interior of an object with a color. For this we use thefill
command with prototype

public void fill(Shape s)

EXAMPLE 5.4 (Filling and stroking) The statements

Ellipse2D.Double circle = new Ellipse2D.Double(40,40,12 0,120);
g2D.setPaint(Color.red);
g2D.fill(circle);
g2D.setPaint(Color.blue);
g2D.setStroke(new BasicStroke(2.0f));
g2D.draw(circle);

fill a circle of radius 60 centered at (100,100) with red and then stroke its outline in blue using a
stroke of width 2 in user space.

5.7 Put on a happy face 207

5.7 Put on a happy face

Let us put everything we have learned together to write some classes that draw a happy face with
eyes, a nose, and a mouth. First we design the face using boxes. Then we draw a no-frills version
of the face. Next we use filling and colors. Finally we show howour face can be transformed by
rotations, scalings, and translations to produce different faces, all from the original version.

5.7.1 Designing the face with boxes

We can use a circle for the face, two circles for the eyes, a triangle for the nose, and the bottom
half of an ellipse for the mouth. Since circles, arcs, and ellipses are specified using their frames
it is easy to first lay out the boxes as shown in Figure 5.12. Here we are using a drawing surface

�
�
��

B
B

BB

201

180

100

20118020
30

3030

30 30

40

(0,0)s
(10,10)
s

(40,50)s (130,50)s
(90,80)s

(50,120)s

Figure 5.12: Designing the happy face with boxes

with a width and height of 201 pixels. The default user space coordinate system will have upper
left corner at (0.0,0.0) and bottom right corner at (200.0,200.0). The face fits in a box with top
left corner at (10,10), width 180, and height 180. The eye boxes have upper left corners at (40,50)
and (130,50) with width 30 and height 30. The nose will be a triangle with vertices at (100,80),
(90,110), and (110,110). The mouth will be the lower half of the ellipse that fits in the box with
top left corner at (50,120), width 100, and height 40.

5.7.2 No-frills happy face

First we use the box description to produce the following geometrical description of the face.

Ellipse2D.Double face = new Ellipse2D.Double(10,10,180, 180);

208 Using Graphics Classes and Objects

Ellipse2D.Double leftEye = new Ellipse2D.Double(40,50,3 0,30);
Ellipse2D.Double rightEye = new Ellipse2D.Double(130,50 ,30,30);
Arc2D.Double mouth = new Arc2D.Double(50,120,100,40,180 ,180,Arc2D.OPEN);
Point2D.Double noseTop = new Point2D.Double(100,80);
Point2D.Double noseLeft = new Point2D.Double(90,110);
Point2D.Double noseRight = new Point2D.Double(110,110);
Line2D.Double nose1 = new Line2D.Double(noseTop,noseLef t);
Line2D.Double nose2 = new Line2D.Double(noseLeft,noseRi ght);
Line2D.Double nose3 = new Line2D.Double(noseRight,noseT op);

The coordinates directly correspond to those given in Figure 5.12. We have defined 5 geometrical
objects (face, left eye, right eye, nose, mouth). The next step is to specify attributes for each of
these objects and render them usingdraw andfill commands. For our first attempt we use the
default black color and various line thicknesses. The statements are

g2D.setStroke(new BasicStroke(2.0f));
g2D.draw(face);

to obtain the face outlined in black with line thickness of 2 pixels,

g2D.fill(leftEye);
g2D.fill(rightEye);

to obtain the left and right eyes filled in black,

g2D.setStroke(new BasicStroke(4.0f));
g2D.draw(mouth);

to draw the mouth with a line thickness of 4 pixels, and

g2D.setStroke(new BasicStroke(2.0f));
g2D.draw(nose1);
g2D.draw(nose2);
g2D.draw(nose3);

to draw the nose as three lines forming a triangle with line thickness of 2 pixels. Here is the
complete classFaceMaker1 that produces the no-frills happy face.

ClassFaceMaker1

book-projects/chapter5/happy_faces

package chapter5.happy_faces; // remove this line if you’r e not using packages
import custom_classes.GraphicsFrame; // remove this line if you’re not using packages
import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

/**
* First No-frills version of face maker to test the design.

5.7 Put on a happy face 209

*/
public class FaceMaker1 extends JPanel
{

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;
g2D.setRenderingHint(RenderingHints.KEY_ANTIALIASIN G,

RenderingHints.VALUE_ANTIALIAS_ON);

// Define the geometry (face, eyes, mouth, nose) in the defau lt
// user space coordinate system

Ellipse2D.Double face = new Ellipse2D.Double(10,10,180, 180);
Ellipse2D.Double leftEye = new Ellipse2D.Double(40,50,3 0,30);
Ellipse2D.Double rightEye = new Ellipse2D.Double(130,50 ,30,30);
Arc2D.Double mouth = new Arc2D.Double(50,120,100,40,180 ,180,Arc2D.OPEN);
Point2D.Double noseTop = new Point2D.Double(100,80);
Point2D.Double noseLeft = new Point2D.Double(90,110);
Point2D.Double noseRight = new Point2D.Double(110,110);
Line2D.Double nose1 = new Line2D.Double(noseTop,noseLef t);
Line2D.Double nose2 = new Line2D.Double(noseLeft,noseRi ght);
Line2D.Double nose3 = new Line2D.Double(noseRight,noseT op);

// Now render the geometry using draw, fill, various line thi cknesses

g2D.setStroke(new BasicStroke(2.0f));
g2D.draw(face);

g2D.fill(leftEye);
g2D.fill(rightEye);

g2D.setStroke(new BasicStroke(4.0f));
g2D.draw(mouth);

g2D.setStroke(new BasicStroke(2.0f));
g2D.draw(nose1);
g2D.draw(nose2);
g2D.draw(nose3);

}

public void draw()
{

new GraphicsFrame("Happy Face 1", new FaceMaker1(), 201, 2 01);
}

public static void main(String[] args)
{

new FaceMaker1().draw();
}

}

The output window is shown in Figure 5.13.

210 Using Graphics Classes and Objects

Figure 5.13:FaceMaker1 : a no-frills happy face

5.7.3 Colorful happy face

We can improve on our happy face by using colors and fills for the parts of the face. The statements
are

g2D.setPaint(Color.pink);
g2D.fill(face);

to fill the face with pink,

g2D.setPaint(Color.black);
g2D.setStroke(new BasicStroke(2.0f));
g2D.draw(face);

to outline it in black, 2 pixels wide,

g2D.setPaint(Color.blue);
g2D.fill(leftEye);
g2D.fill(rightEye);

to fill the eyes with blue, and

g2D.setPaint(Color.red);
g2D.setStroke(new BasicStroke(4.0f));
g2D.draw(mouth);

to give the face a red mouth 4 pixels wide.
Finally, to fill the nose with green we run into a problem. Thefill method requires an argu-

ment that is an object in theShape hierarchy shown in Figure 5.6. The triangular nose isn’t defined
that way. We need to make the nose into aShape object. If you look at Figure 5.6 you will see
that there is no triangle shape but there is a class calledGeneralPath at the bottom. This class can
be used to make custom shapes. To turn the nose into a triangular path, replace the statements that
define the nose (the threePoint2D statements and threeLine2D statements) by the statements

GeneralPath nose = new GeneralPath();
nose.moveTo(100.0F,80.0F); // start at top of nose
nose.lineTo(90.0F,110.0F); // line to bottom left
nose.lineTo(110.0F,110.0F); // line to bottom right
nose.closePath(); // draws line back to top of nose

5.7 Put on a happy face 211

These statements first create an emptyGeneralPath object callednose . This object hasmoveTo
andlineTo methods which can be used to define the geometry of the custom shape. These methods
require floating point arguments rather than double precision ones. We use themoveTo command
to indicate that we want to start defining the path at the top ofthe nose. Then we use alineTo to
define a line from the top to the bottom left corner of the triangle, and anotherlineTo to define a
horizontal line from there to the bottom right corner of the triangle. Finally theclosePath method
is used to close the path by defining a line back to the beginning. We now have a closed geometrical
path that defines our nose so we can fill it, or draw it, or both. To fill it with green use

g2D.setPaint(Color.green);
g2D.fill(nose);

Here is the complete class for drawing the colorful happy face.

ClassFaceMaker2

book-projects/chapter5/happy_faces

package chapter5.happy_faces; // remove this line if you’r e not using packages
import custom_classes.GraphicsFrame; // remove this line if you’re not using packages
import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

/**
* Improved version of FaceMaker1 that uses colors and a shape for the nose.
*/

public class FaceMaker2 extends JPanel
{

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;
g2D.setRenderingHint(RenderingHints.KEY_ANTIALIASIN G,

RenderingHints.VALUE_ANTIALIAS_ON);

// Define the geometry (face, eyes, mouth, nose) in the defau lt
// user space coordinate system

Ellipse2D.Double face = new Ellipse2D.Double(10,10,180, 180);
Ellipse2D.Double leftEye = new Ellipse2D.Double(40,50,3 0,30);
Ellipse2D.Double rightEye = new Ellipse2D.Double(130,50 ,30,30);
Arc2D.Double mouth = new Arc2D.Double(50,120,100,40,180 ,180,Arc2D.OPEN);

// Make a custom shape for the nose so we can fill it
// Note that paths use float type not double

GeneralPath nose = new GeneralPath();
nose.moveTo(100.0f,80.0f); // start at top of nose
nose.lineTo(90.0f,110.0f); // line to bottom left
nose.lineTo(110.0f,110.0f); // line to bottom right

212 Using Graphics Classes and Objects

Figure 5.14:FaceMaker2 : a colorful happy face

nose.closePath(); // draws line back to top of nose

// Now render the geometry using draw, fill, various
// line thicknesses, and color attributes

g2D.setPaint(Color.pink);
g2D.fill(face);
g2D.setPaint(Color.black);
g2D.setStroke(new BasicStroke(2.0f));
g2D.draw(face);

g2D.setPaint(Color.blue);
g2D.fill(leftEye);
g2D.fill(rightEye);

g2D.setPaint(Color.red);
g2D.setStroke(new BasicStroke(4.0f));
g2D.draw(mouth);

g2D.setStroke(new BasicStroke(2.0f));
g2D.setPaint(Color.green);
g2D.fill(nose);

}

public void draw()
{

new GraphicsFrame("Happy Face 2", new FaceMaker2(), 201, 2 01);
}

public static void main(String[] args)
{

new FaceMaker2().draw();
}

}

The output window is shown in Figure 5.14.

5.7 Put on a happy face 213

5.7.4 Facial transformations

After defining a geometric object, such as the happy face, it is possible to apply transformations
to it. For example we can translate it to a new position on the drawing surface, scale it about the
origin (0,0) so that it is larger or smaller, or even rotate itabout (0,0). This would be difficult to do
if we had to calculate all the new coordinates of the face. Imagine trying to draw the happy face
in Figure 5.14 rotated by 45 degrees about its center by calculating the new coordinates of all the
objects that make up the face. Fortunately it is not necessary to do this.

Affine transformations

Transformations such as translations, rotations, scalings, and their compositions are called affine
transformations. They can be used to change from one coordinate system to another. We can also
think of the transformation process as a transformation of the geometric objects themselves.

The graphics context,Graphics2D , that we have been using has an affine transformation as-
sociated with it. Initially this transformation is just thedefault one that transforms user space to
device space (see Figure 5.2) in such a way that the drawing surface in the integer device space
with origin (0,0) at the top left and lower right corner at(w−1,h−1) corresponds to a double
precision user space with coordinates(0.0,0.0) at the top left and(w−1,h−1) at the bottom right.
We say that user space is mapped to device space using the identity transformation.

So far in our program classes we have accepted this default transformation. However, we can
modify it using affine transformations. Then all rendering commands will use the new transforma-
tion. It is important to realize that each time thepaintComponent method is called by the Java
run-time system this default transformation is provided inthe graphics context.

Affine transformations are objects from theAffineTransform class. To construct a default
affine transformation object calledat , we use the statement

AffineTransform at = new AffineTransform();

Initially, this is the identity transformation.

Resizing the face to fit the window

Our happy face was designed in Figure 5.12 to fill a 201 by 201 pixel rectangle. If we resize the
window the face does not change its size. It would be nice if wecould scale the face so that it just
fits the current window.

We can do this by modifyingFaceMaker2 to use an affine transformation to apply the appro-
priate scale factor. We will think in terms of transforming the face itself rather than the coordinate
system.

As an example we start with Figure 5.15(a) which shows the 201by 201 pixel face in a 301 by
301 pixel window. We can get the maximum coordinates of the window using

double xMax = getWidth() - 1;
double yMax = getHeight() - 1;

Now there are three steps to transforming the face.

214 Using Graphics Classes and Objects

1. Translate the face as shown in Figure 5.15(a) so that its center is at the top left corner
(0.0,0.0). This means to subtract 100 from thex andy coordinates of each point, so that
the original face center at(100.0,100.0) is now at(0.0,0.0). The result of this transforma-
tion is shown in Figure 5.15(b). Of course, only one quarter of the face is now visible.

2. Scale the face by the factorxMax/200 in the horizontal direction and the factoryMax/200
in the vertical direction (this gives a factor of 1.5 in each direction for our 301 by 301 pixel
example). Since scaling takes place about the origin(0,0) this is why we first translated the
center of the face to the origin.

The result of the previous translation and this scaling about the origin is shown in Fig-
ure 5.15(c). The face is now larger but again only one quarterof the face is visible.

3. Finally, translate the face back so that its center is at(xMax/2,yMax/2), the center of the
window. Now the entire face is scaled to fit in the center of thewindow as shown in Fig-
ure 5.15(d).

To implement the composition of these three transformations in Java we construct an affine
transformation object as follows.

AffineTransform at = new AffineTransform(); // identity tr ansformation
at.translate(xMax / 2, yMax / 2); // applied third
at.scale(xMax / 200, yMax / 200); // applied second
at.translate(-100, -100); // applied first

Here we use thetranslate andscale methods to modify the affine transformation objectat .
Thescale method always scales about the origin (0,0). That’s why we needed to first translate the
face so that its center was at (0,0).

It is important to understand that the transforms appear in the source code in the reverse order
to the three steps shown above. You always do this when you arethinking of transforming objects
instead of coordinate systems. It is called the “first applied last written” rule for the composition
of object transformations. It is also important to note thatthe line thickness is also scaled, by 1.5
in the example.

The final step is to change the default transform in the graphics contextg2D so that it uses our
affine transform. This modification is done by thetransform method in the statement

g2D.transform(at);

Now every time you draw a line, rectangle, ellipse or other object, the graphics context will ap-
ply this transform to your coordinates. Here is the class called FaceMaker3 that uses this affine
transformation:

ClassFaceMaker3

book-projects/chapter5/happy_faces

package chapter5.happy_faces; // remove this line if you’r e not using packages
import custom_classes.GraphicsFrame; // remove this line if you’re not using packages

5.7 Put on a happy face 215

(c) (d)

(a) (b)

Figure 5.15:FaceMaker3 : translating and scaling the happy face

import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

/**
* A variation of FaceMaker2 that uses affine transformation s
* to draw a face that scales with the size of the window
*/

public class FaceMaker3 extends JPanel
{

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;
g2D.setRenderingHint(RenderingHints.KEY_ANTIALIASIN G,

RenderingHints.VALUE_ANTIALIAS_ON);

216 Using Graphics Classes and Objects

// Define the geometry (face, eyes, mouth, nose) in the defau lt
// user space coordinate system

Ellipse2D.Double face = new Ellipse2D.Double(10,10,180, 180);
Ellipse2D.Double leftEye = new Ellipse2D.Double(40,50,3 0,30);
Ellipse2D.Double rightEye = new Ellipse2D.Double(130,50 ,30,30);
Arc2D.Double mouth = new Arc2D.Double(50,120,100,40,180 ,180,Arc2D.OPEN);

// Make a custom shape for the nose so we can fill it
// Note that paths use float type not double

GeneralPath nose = new GeneralPath();
nose.moveTo(100.0f,80.0f); // start at top of nose
nose.lineTo(90.0f,110.0f); // line to bottom left
nose.lineTo(110.0f,110.0f); // line to bottom right
nose.closePath(); // draws line back to top of nose

/*
* Transform the geometry so that the face always has the size o f
* the window. The transformations are applied in the reverse order
* of appearance.
*/

double xMax = getWidth() - 1; // width of window in user space
double yMax = getHeight() - 1; // height of window in user spac e
AffineTransform at = new AffineTransform();
at.translate(xMax / 2, yMax / 2); // (4) translate back to cen ter
at.scale(xMax / 200, yMax / 200); // (2) scale to fit window si ze
at.translate(-100, -100); // (1) move face center to (0,0)
g2D.transform(at);

// Now render the geometry using draw, fill, various
// line thicknesses, and color attributes

g2D.setPaint(Color.pink);
g2D.fill(face);
g2D.setPaint(Color.black);
g2D.setStroke(new BasicStroke(2.0f));
g2D.draw(face);

g2D.setPaint(Color.blue);
g2D.fill(leftEye);
g2D.fill(rightEye);

g2D.setPaint(Color.red);
g2D.setStroke(new BasicStroke(4.0f));
g2D.draw(mouth);

g2D.setStroke(new BasicStroke(2.0f));
g2D.setPaint(Color.green);
g2D.fill(nose);

}

5.7 Put on a happy face 217

public void draw()
{

new GraphicsFrame("A Happy Face (3)", new FaceMaker3(), 30 1, 301);
}

public static void main(String[] args)
{

new FaceMaker3().draw();
}

}

This class is identical to programFaceMaker2 except for the statements that calculate the affine
transformation. None of the coordinates of the geometry defining the original face needed to be
changed.

Making a half-size face

Suppose we want a face that scales with the window size but is only half the maximum size. This
can be done by modifyingFaceMaker3 to use the following affine transformation.

AffineTransform at = new AffineTransform();
at.translate(xMax / 2, yMax / 2); // (4) translate back to cen ter
at.scale(xMax / 200, yMax / 200); // (3) scale to fit window si ze
at.scale(0.5, 0.5); // (2) scale by 1/2
at.translate(-100, -100); // (1) move face center to (0,0)
g2D.transform(at);

which can be simplified by combining the two consecutive scaling transformations to obtain the
scaling transformation

at.scale(xMax / 400, yMax / 400);

If you call the resulting classFaceMaker4 the result is shown in Figure 5.16.

Rotated happy face

Suppose we want a full-size face that scales with the window size but is rotated 45 degrees clock-
wise This can be done by modifyingFaceMaker3 to use the following affine transformation.

AffineTransform at = new AffineTransform();
at.translate(xMax / 2, yMax / 2); // (4) translate back to cen ter
at.scale(xMax / 200, yMax / 200); // (3) scale to fit window si ze
at.rotate(Math.toRadians(45)); // (2) rotate 45 degrees
at.translate(-100, -100); // (1) move face center to (0,0)
g2D.transform(at);

If you call the resulting classFaceMaker5 the result is shown in Figure 5.17. The normal con-
vention for positive rotation angles is counterclockwise but it is clockwise here because the device
coordinate system hasy coordinate that increased from top to bottom. To obtain a counterclock-
wise rotation use a negative angle.

218 Using Graphics Classes and Objects

Figure 5.16:FaceMaker4 : a half-size happy face

Figure 5.17:FaceMaker5 : a rotated happy face

5.7.5 Four happy faces for the price of one

As a final example of object transformations let us modifyFaceMaker3 to draw four half size
happy faces, in a two by two arrangement, on the 201 by 201 pixel device space with centers at
(xMax/4, yMax/4), (3∗xMax/4, yMax/4), (xMax/4, 3∗yMax/4), (3∗xMax/4, 3∗yMax/4). (see
Figure 5.18). Four affine transforms are needed here. The procedure is to define one transform,
draw the face, redefine this transform, draw the face, and so on.

Top-level description

To begin, the class has the following structure

public class FaceMaker6 extends JPanel
{

5.7 Put on a happy face 219

Figure 5.18:FaceMaker6 : four happy faces

private Ellipse2D.Double face, leftEye, rightEye;
private Arc2D.Double mouth;
private GeneralPath nose;

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;
g2D.setRenderingHint(RenderingHints.KEY_ANTIALIASIN G,

RenderingHints.VALUE_ANTIALIAS_ON);

// Draw four faces in 2 by 2 arrangement using translations to
// position the faces

double xMax = getWidth() - 1;
double yMax = getHeight() - 1;
drawFace(g2D,xMax/4, yMax/4); // with center at (xMax/4, y Max/4)
drawFace(g2D,3*xMax/4, yMax/4); // with center at (3*xMax /4, yMax/4)
drawFace(g2D,xMax/4, 3*yMax/4); // with center at (xMax/4 , 3*yMax/4)
drawFace(g2D,3*xMax/4, 3*yMax/4); // with center at (3*xM ax/4, yMax/4)

}

public static void main(String[] args)
{

new GraphicsFrame("Four Happy Faces", new FaceMaker6(), 3 01, 301);
}

}

where we now use data fields for the geometrical objects that make up the face: we will refer to
them outside thepaintComponent method so they can no longer be local to that method as in

220 Using Graphics Classes and Objects

previous versions of the class.

Drawing one face

This structure clearly indicates that we need adrawFace method that takes the graphics context
and thex andy coordinates of the face center as actual arguments. This method is responsible for
defining the face geometry, setting up the proper affine transformation using the coordinates of the
face center and rendering the face, so it has the structure.

private void drawFace(Graphics2D g2D, double x, double y)
{

// (1) define the face geometry
// (2) save the default transformation in g2D
// (3) set up an affine transform for face centered at (x,y)
// (4) use it to modify the default transformation
// (5) render the face using the this transformation
// (6) restore the default transformation in g2D

}

We now consider each of these six steps in turn. We first define the geometry as before using the
default coordinate system. Now we write a method to do this having the prototype

private void defineFaceGeometry()

Since thedrawFace method will be called several times, and each time it is called it is assumed
that the default transformation is in effect, it is very important that we first save the default trans-
formation, before making local changes, and then restore itafter rendering the face. The saving
and restoring can be done with thegetTransform andsetTransform methods in the graphics
context, so steps (2) and (6) are easy.

To make our modifications to the default transformation we will use a method having the pro-
totype

private AffineTransform getFaceTransform(double x, doub le y)

This method constructs and returns the appropriate affine transform using the specified coordinates
for the center of the face.

To render the face using various colors and line thicknesseswe now use a method with proto-
type

private void renderFace(Graphics2D g2D)

since it needs to know the graphics context.
Therefore the next level in the design process is complete and thedrawFace method is given

by

private void drawFace(Graphics2D g2D, double x, double y)
{

defineFaceGeometry();

5.7 Put on a happy face 221

AffineTransform save = g2D.getTransform();
AffineTransform at = getFaceTransform(x, y);
g2D.transform(at);
renderFace(g2D);
g2D.setTransform(save); // restore default transform

}

The two statements that construct the local transformationat and use it to modify the default one
could also have been expressed as the single statement

g2D.transform(getFaceTransform(x, y));

Defining the face geometry

ThedefineFaceGeometry method is given by

private void defineFaceGeometry()
{

face = new Ellipse2D.Double(10,10,180,180);
leftEye = new Ellipse2D.Double(40,50,30,30);
rightEye = new Ellipse2D.Double(130,50,30,30);
mouth = new Arc2D.Double(50,120,100,40,180,180,Arc2D.O PEN);
nose = new GeneralPath();
nose.moveTo(100.0f,80.0f); // start at top of nose
nose.lineTo(90.0f,110.0f); // line to bottom left
nose.lineTo(110.0f,110.0f); // line to bottom right
nose.closePath(); // draws line back to top of nose

}

The only difference here is that we must not re-declare the object variables. They have already
been declared as data fields.

Transforming a face

ThegetFaceTransform method uses the ideas fromFaceMaker3 and is given by

private AffineTransform getFaceTransform(double x, doub le y)
{

double xMax = getWidth() - 1;
double yMax = getHeight() - 1;
AffineTransform at = new AffineTransform();
at.translate(x, y); // (4) translate object back to (x,y)
at.scale(0.5,0.5); // (3) scale object by one half
at.scale(xMax / 200, yMax / 200); // (2) scale to fit window
at.translate(-100,-100); // (1) translate object to origi n
return at;

}

222 Using Graphics Classes and Objects

It constructs an affine transform and returns a reference to it. Here steps (1) and (2) are the same
as inFaceMaker3 , and the only difference is that the final translation usesx andy to position the
half-size face.

Rendering a face

Finally, the geometry is rendered as before by the method

private void renderFace(Graphics2D g2D)
{

g2D.setPaint(Color.pink);
g2D.fill(face);
g2D.setPaint(Color.black);
g2D.setStroke(new BasicStroke(2.0f));
g2D.draw(face);

g2D.setPaint(Color.blue);
g2D.fill(leftEye);
g2D.fill(rightEye);

g2D.setPaint(Color.red);
g2D.setStroke(new BasicStroke(4.0f));
g2D.draw(mouth);

g2D.setPaint(Color.green);
g2D.fill(nose);

}

We made the geometrical objects into data fields so thatdefineFaceGeometry andrenderFace
can refer to them. If they had been declared indefineFaceGeometry they would have been local
to that method. Putting everything together gives the complete program class.

ClassFaceMaker6

book-projects/chapter5/happy_faces

package chapter5.happy_faces; // remove this line if you’r e not using packages
import custom_classes.GraphicsFrame; // remove this line if you’re not using packages
import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

/**
* Four for the price of one. Using affine transformations
* to draw four copies of the half-size face from FaceMaker3
*/

public class FaceMaker6 extends JPanel
{

// Data fields are geometrical objects defining the face

5.7 Put on a happy face 223

private Ellipse2D.Double face, leftEye, rightEye;
private Arc2D.Double mouth;
private GeneralPath nose;

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;
g2D.setRenderingHint(RenderingHints.KEY_ANTIALIASIN G,

RenderingHints.VALUE_ANTIALIAS_ON);

// Draw four faces in 2 by 2 arrangement using translations to
// position the faces

double xMax = getWidth() - 1;
double yMax = getHeight() - 1;
drawFace(g2D, xMax/4, yMax/4); // with center at (xMax/4, y Max/4)
drawFace(g2D, 3*xMax/4, yMax/4); // with center at (3*xMax /4, yMax/4)
drawFace(g2D, xMax/4, 3*yMax/4); // with center at (xMax/4 , 3*Ymax/4)
drawFace(g2D, 3*xMax/4, 3*yMax/4); // with center at (3*xM ax/4, 3*yMax/4)

}

// Draw the face with center at (x,y) using the specified
// graphics context

private void drawFace(Graphics2D g2D, double x, double y)
{

// (1) define geometry, (2) save default transformation
// since we will be calling this method several times
// to make transformations relative to the default
// transformation. (3) make a local transformation at,
// (4) apply it to the default transformation, (5) render
// the face geometry using this default transformation,
// (6) restore the default transformation

defineFaceGeometry();
AffineTransform save = g2D.getTransform();
AffineTransform at = getFaceTransform(x, y);
g2D.transform(at);
renderFace(g2D);
g2D.setTransform(save); // restore default transform

}

private void defineFaceGeometry()
{

// Define the geometry (face, eyes, mouth, nose) in the defau lt
// user space coordinate system

face = new Ellipse2D.Double(10,10,180,180);
leftEye = new Ellipse2D.Double(40,50,30,30);
rightEye = new Ellipse2D.Double(130,50,30,30);

224 Using Graphics Classes and Objects

mouth = new Arc2D.Double(50,120,100,40,180,180,Arc2D.O PEN);

// Make a custom shape for the nose so we can fill it
// Note that paths use float type not double

nose = new GeneralPath();
nose.moveTo(100.0f,80.0f); // start at top of nose
nose.lineTo(90.0f,110.0f); // line to bottom left
nose.lineTo(110.0f,110.0f); // line to bottom right
nose.closePath(); // draws line back to top of nose

}

// Render the face using the current transformation

private void renderFace(Graphics2D g2D)
{

g2D.setPaint(Color.pink);
g2D.fill(face);
g2D.setPaint(Color.black);
g2D.setStroke(new BasicStroke(2.0f));
g2D.draw(face);

g2D.setPaint(Color.blue);
g2D.fill(leftEye);
g2D.fill(rightEye);

g2D.setPaint(Color.red);
g2D.setStroke(new BasicStroke(4.0f));
g2D.draw(mouth);

g2D.setPaint(Color.green);
g2D.fill(nose);

}

// Construct an affine transformation that will scale the
// face about its center and translate it so that the
// center is at (x,y)

private AffineTransform getFaceTransform(double x, doub le y)
{

double xMax = getWidth() - 1;
double yMax = getHeight() - 1;
AffineTransform at = new AffineTransform();
at.translate(x, y); // (4) translate object back to (x,y)
at.scale(0.5,0.5); // (3) scale object by one half
at.scale(xMax / 200, yMax / 200); // (2) scale to fit window
at.translate(-100,-100); // (1) translate object to origi n
return at;

}

public void draw()
{

5.8 Making your own coordinate transformations 225

new GraphicsFrame("Four Happy Faces", new FaceMaker6(), 3 01, 301);
}

public static void main(String[] args)
{

new FaceMaker6().draw();
}

}

5.7.6 Running the six face maker programs together

Since theGraphicsFrame class and the six face maker classes all construct objects itis possible
to run them all together using the following runner class.

ClassAllTogether

book-projects/chapter5/happy_faces

package chapter5.happy_faces; // remove this line if you’r e not using packages
import custom_classes.GraphicsFrame; // remove this line if you’re not using packages

/**
* Display six happy face frames all together
*/

public class AllTogether
{

public void draw()
{

new GraphicsFrame("FaceMaker6", new FaceMaker6(), 701, 7 01);
new GraphicsFrame("FaceMaker5", new FaceMaker5(), 601, 6 01);
new GraphicsFrame("FaceMaker4", new FaceMaker4(), 501, 5 01);
new GraphicsFrame("FaceMaker3", new FaceMaker3(), 401, 4 01);
new GraphicsFrame("FaceMaker2", new FaceMaker2(), 301, 3 01);
new GraphicsFrame("FaceMaker1", new FaceMaker1(), 201, 2 01);

}

public static void main(String[] args)
{

new AllTogether().draw();
}

}

5.8 Making your own coordinate transformations

The coordinate system for the default user space, corresponding to the identity transformation,
is called thedefault coordinate system. It is rarely a useful system for real applications. For
example, we might be developing a bar graph program with 4 vertical bars, one for each quarter
of the year, and height given by the net profit in dollars for a company for each quarter. The

226 Using Graphics Classes and Objects

natural coordinate system here has a horizontal coordinateranging from 0 to 5, allowing the bars
to be centered around 1 to 4 with a little space on either side of each bar if desired, and a vertical
coordinate ranging from 0 to 10000, increasing from bottom to top. This is an example of aworld
coordinate systemor a problem domain coordinate system. For the default system we would
require a drawing surface that is 5 pixels wide and 10000 pixels (10 feet) tall!

As another example we may want to draw the graph of one period of the sine curvey = sinx.
Here thex-axis would range from 0 to 2π and they-axis would range from−1 to 1.

Thus, we need to be able to convert coordinates from the worldcoordinate system to the default
user coordinate system. There are several ways to do this:

1. Develop the specific transformations for each program andapply them directly.

2. Develop the general transformation from the world to the default user system, which can be
customized for use in any program.

3. Use the affine transformations that are part of Java 2D to obtain the general transformation
from the world to the default user system.

We will discuss each method.

5.8.1 Specific transformations

Continuing the bar graph example, we need to convert the bar graph world coordinate system to
the default user coordinate system, as shown in Figure 5.19.Here the world coordinate system

-

6s
(0,0)

s
(5,0)

s

s(x,y)

s(0,10000)

Bar graph world coordinate system

-

?

s(0,0)

s
(w−1,h−1)

s(x′,y′)

Default user coordinate system

-

Figure 5.19: Bar graph coordinate transformation

is a right handed coordinate system with origin at the bottomleft corner. A typical point has
coordinates(x,y). The default user system is a left handed coordinate system with origin at the top
left corner. A typical point has coordinates(x′,y′). To transform thex coordinate we use the fact
that the range 0 to 5 must be transformed to the interval 0 tow−1, wherew is the width in pixels
of the screen window. Similarly, they coordinate in the range 0 to 10000 (bottom to top) must be

5.8 Making your own coordinate transformations 227

transformed to the rangeh−1 to 0 (bottom to top), whereh is the height in pixels of the screen
window. The transformation equations are

x′ = sxx, wheresx =

(

w−1
5

)

y′ = h−1−syy, wheresy =

(

h−1
10000

)

As a check, these equations clearly show thatx = 0 is transformed tox′ = 0, x = 5 is transformed
to x′ = w−1, y = 0 is transformed toy′ = h−1, andy = 10000 is transformed toy′ = 0.

Let us write a very simple program that draws four vertical bars using this coordinate transfor-
mation. We suppose that the bar values are 8000.0, 10000.0, 5000.0, and 2000.0. First we write a
local method calledbar that returns aRectangle2D.Double object representing one of the bars.
It needs the prototype

private Rectangle2D.Double bar(int barNumber, double bar Height,
int w, int h)

wherebarNumber takes on the values 0, 1, 2, and 3,barHeight is the height of the bar in the
world coordinate system, andwandh are the width and height of the drawing surface in pixels. We
can call it four times to define the bars using the statements

int w = getWidth(); // width of window in pixels;
int h = getHeight(); // height of window in pixels;

Rectangle2D.Double r1 = bar(0, 8000.0, w, h);
Rectangle2D.Double r2 = bar(1, 10000.0, w, h);
Rectangle2D.Double r3 = bar(2, 5000.0, w, h);
Rectangle2D.Double r4 = bar(3, 2000.0, w, h);

Now we can fill the bars with colors,

g2D.setPaint(Color.red); g2D.fill(r1);
g2D.setPaint(Color.green); g2D.fill(r2);
g2D.setPaint(Color.blue); g2D.fill(r3);
g2D.setPaint(Color.white); g2D.fill(r4);

and outline them in black.

g2D.setPaint(Color.black);
g2D.draw(r2);
g2D.draw(r1);
g2D.draw(r3);
g2D.draw(r4);

The complete definition of thebar method is

228 Using Graphics Classes and Objects

private Rectangle2D.Double bar(int barNumber, double bar Height, int w, int h)
{

double sx = (w-1) / 5.0; // x scale factor
double sy = (h-1) / 10000.0; // y scale factor
double xTopLeft = (0.5 + barNumber*1.0) * sx;
double yTopLeft = (h-1) - sy * barHeight; // reverse y axis
double barW = sx * 1.0;
double barH = sy * barHeight;
return new Rectangle2D.Double(xTopLeft, yTopLeft, barW, barH);

}

Here the mathematical formulas are used to define the scale factorssx andsy . The width of each
bar is chosen to be one unit in the world system. We have written barNumber*1.0 to emphasize
this, althoughbarNumber could be used. Therefore, the bars will have no space betweenthem, and
they will have widthsx in default user space. To convert a width and height to default user space,
multiply it by sx andsy , respectively.

The top leftx coordinates of the bars have the values 0.5, 1.5, 2.5, and 3.5, which can be
expressed as0.5 + barNumber*1.0 , so we can express them in default user space as(0.5 +
barNumber*1.0)*sx . Notice that they coordinates of the tops of the bars in default user space do
not have the valuessy * barHeight : since they direction is reversed we have to subtract these
values fromh-1 . Finally, thebar method returns a newRectangle2D.Double object defined
using the transformed default user space values. Here is thecomplete program class

ClassBarGraph1

book-projects/chapter5/coordinate_system

package chapter5.coordinate_system; // remove this line i f you’re not using packages
import custom_classes.GraphicsFrame; // remove this line if you’re not using packages
import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

/**
* Illustrate the use of specific coordinate transformation s
* from the world coordinate system for a bar graph to default u ser
* coordinates. This is not very easy to do for each special cas e.
*/

public class BarGraph1 extends JPanel
{

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;

int w = getWidth(); // width of window in pixels;
int h = getHeight(); // height of window in pixels;

Rectangle2D.Double r1 = bar(0, 8000.0, w, h);

5.8 Making your own coordinate transformations 229

Rectangle2D.Double r2 = bar(1, 10000.0, w, h);
Rectangle2D.Double r3 = bar(2, 5000.0, w, h);
Rectangle2D.Double r4 = bar(3, 2000.0, w, h);

g2D.setPaint(Color.red); g2D.fill(r1);
g2D.setPaint(Color.green); g2D.fill(r2);
g2D.setPaint(Color.blue); g2D.fill(r3);
g2D.setPaint(Color.white); g2D.fill(r4);

g2D.setPaint(Color.black);
g2D.draw(r2);
g2D.draw(r1);
g2D.draw(r3);
g2D.draw(r4);

}

/*
* Default coord system: origin at top left corner, lower righ t corner at
* (w-1, h-1) where w, h are width and height in pixels.
* Bar coord system: origin in lower left corner, width 5 and he ight 10000.
* Note: shape objects always assume origin is at top left corn er of window.
*/

private Rectangle2D.Double bar(int barNumber, double bar Height, int w, int h)
{

double sx = (w-1) / 5.0; // x scale factor
double sy = (h-1) / 10000.0; // y scale factor
double xTopLeft = (0.5 + barNumber*1.0) * sx;
double yTopLeft = (h-1) - sy * barHeight; // reverse y axis
double barW = sx * 1.0; // bar width
double barH = sy * barHeight; // bar height
return new Rectangle2D.Double(xTopLeft, yTopLeft, barW, barH);

}

public void draw()
{

new GraphicsFrame("Bar Graph By Hand", new BarGraph1(), 30 1, 201);
}

public static void main(String[] args)
{

new BarGraph1().draw();
}

}

The output is shown in Figure 5.20.

5.8.2 World to default user transformation

It may be inconvenient to work out the details of the world to default user coordinate transforma-
tions for each program. A better approach is to derive the general transformations. Consider a
world coordinate system with bottom left corner at(xL,yB) and upper right corner at(xR,yT), as

230 Using Graphics Classes and Objects

Figure 5.20: Output of theBarGraph1 program

-

6s
(xL,yB)

s(xR,yT)

s(x,y)

World Coordinate System

-

?

s(0,0)

s
(w−1,h−1)

s(x′,y′)

Default User Coordinate System

-

Figure 5.21: World to default user coordinate transformation

5.8 Making your own coordinate transformations 231

shown in Figure 5.21. We want to transform this world coordinate system to the default user coor-
dinate system with origin at the top left. Ifw andh are the width and height of the screen window
in pixels, then the lower right corner is at(w−1,h−1). The transformation of thex coordinate of
a point is obtained from the fact that the ratio of the distance ofx from the left side of the rectangle
to the width of the rectangle must be the same in both coordinate systems so

x distance
rectangle width

=
x−xL

xR−xL
=

x′−0
w−1

Similarly, for they coordinate, the ratio of the distance ofy from the bottom of the rectangle, to
the height of the rectangle, must be the same in both coordinate systems so

y distance
rectangle height

=
y−yB

yT −yB
=

h−1−y′

h−1

Again note that it ish−1−y′ noty′ in the numerator because they′ coordinate origin is at the top
and the distances in the ratios are positive.

We can solve these equations forx′ andy′ to obtain the general transformation equations:

x′ = sx(x−xL), wheresx =
w−1

xR−xL

y′ = sy(yT −y), wheresy =
h−1

yT −yB

The factoryT − y, rather thany− yT , is due to the reversal of the direction of they axis in going
from world coordinates to device coordinates. The factorssx andsy are called the scale factors of
the transformation.

5.8.3 Coordinate system class

An interesting object-oriented approach to implementing this world coordinate transformation is
to consider a coordinate system transformation as an objectthat knows how to transform world
coordinates to the default user coordinate system.

Each coordinate system transformation is defined by six numbers, namely the coordinates of
the bottom left corner and top right corner of the world coordinate rectangle, and the width and
height in pixels of the default user space. The constructor will need to specify these values and
we need two methods to transform thex andy coordinates in the world system to the default user
system. Therefore the class has the specification

public class CoordinateSystem
{

// Construct a world coordinate system
public CoordinateSystem(double xl, double xr, double yb, d ouble yt,

double w, double h) {...}
// transform x coordinate from world to default user coordin ates
public double x(double x) {...}
// transform y coordinate from world to default user coordin ates
public double y(double y) {...}

}

232 Using Graphics Classes and Objects

The complete class declaration is

ClassCoordinateSystem

book-projects/custom_classes

package custom_classes; // remove this line if you’re not us ing packages
/**

* A class to set up a window in a world coordinate system.
* The window is defined by its lower left corner (xl,yb) and it s upper
* right corner (xr,yt), and it is mapped to a default user coor dinate system
* with origin (0,0) at the top left corner and lower right corn er at (w-1,y-1).
*/

public class CoordinateSystem
{

private double xLeft, xRight;
private double yBottom, yTop;
private double width, height;
private double scaleX, scaleY;

/**
* Construct a coordinate system and mapping from a world coor dinate system
* window defined by lower left corner (x1,yb) and upper right corner (xr,yt)
* to a default user space window defined by origin (0,0) at top left corner
* and lower right corner at (w-1,h-1).
*/

public CoordinateSystem(double xl, double xr, double yb, d ouble yt,
double w, double h)

{
xLeft = xl;
xRight = xr;
yBottom = yb;
yTop = yt;
width = w;
height = h;
scaleX = (width - 1.0) / (xRight - xLeft);
scaleY = (height - 1.0) / (yTop - yBottom);

}

/**
* Map world coordinate x value to user space value.
* @param x the world x coordinate to map
* @return the x coordinate in user space.
*/

public double x(double x)
{

return (x - xLeft) * scaleX;
}

/**
* Map world coordinate y value to user space value.
* @param y the world y coordinate to map
* @return the y coordinate in user space.

5.8 Making your own coordinate transformations 233

*/
public double y(double y)
{

return (yTop - y) * scaleY;
}

}

The constructor arguments are thex range fromxL to xR and they range fromyB to yT . The
constructor just needs to assign values to the six data fields. For example, the statement

CoordinateSystem pixel = new CoordinateSystem(0,5,0,100 00,301,201);

sets up a coordinate transformation for the bar graph shown in Figure 5.19. Then statements such
as

double xp = pixel.x(x);
double yp = pixel.y(y);

can be used to transform the coordinates(x,y) of a point in the bar graph coordinate system to its
coordinates(xp,yp) in default user space corresponding to the 301 by 201 pixel window.

5.8.4 Drawing a bar graph

We can easily rewrite theBarGraph1 class to use theCoordinateSystem class. The result is

ClassBarGraph2

book-projects/chapter5/coordinate_system

package chapter5.coordinate_system; // remove this line i f you’re not using packages
import custom_classes.GraphicsFrame; // remove this line if you’re not using packages
import custom_classes.CoordinateSystem; // remove this l ine if you’re not using packages
import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

/**
* A version of BarGraph that uses a custom CoordinateSystem c lass
* to convert the world coordinate system of the bar graph to de vice
* coordinates. Every coordinate must be explicitly transfo rmed by
* the programmer. An alternate approach that avoids this is t o
* use AffineTransforms
*/

public class BarGraph2 extends JPanel
{

CoordinateSystem pixel;

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;

234 Using Graphics Classes and Objects

int w = getWidth();
int h = getHeight();

/* Set up a mapping from world to device coordinate systems.
* In world system 0.0 <= x <= 5 (increasing to right)
* and 0.0 <= y <= 10000 (increasing upward).
* Here w, h are the width and height in pixels of JPanel
*/

pixel = new CoordinateSystem(0.0, 5.0, 0.0, 10000.0, w, h);
g2D.setStroke(new BasicStroke(1.0f));

/* Specify world coordinates for top left corner of each rect angle,
* it’s width, and it’s height.
*/

Rectangle2D.Double r1 = bar(0.5, 8000.0, 1.0, 8000.0);
Rectangle2D.Double r2 = bar(1.5, 10000.0, 1.0, 10000.0);
Rectangle2D.Double r3 = bar(2.5, 5000.0, 1.0, 5000.0);
Rectangle2D.Double r4 = bar(3.5, 2000.0, 1.0, 2000.0);

g2D.setPaint(Color.red); g2D.fill(r1);
g2D.setPaint(Color.green); g2D.fill(r2);
g2D.setPaint(Color.blue); g2D.fill(r3);
g2D.setPaint(Color.white); g2D.fill(r4);

g2D.setPaint(Color.black);
g2D.draw(r1);
g2D.draw(r2);
g2D.draw(r3);
g2D.draw(r4);

}

/*
* Transform rectangle with specified top left corner, width , height
* into device coordinates (y increasing downward). Note how differences
* are used to transform widths and heights.
*/

private Rectangle2D.Double bar(
double xMin, double yMax, double w, double h)

{
double width = pixel.x(w) - pixel.x(0);
double height = pixel.y(0) - pixel.y(h); // note this differ ence
return new Rectangle2D.Double(pixel.x(xMin), pixel.y(y Max), width, height);

}

public void draw()
{

new GraphicsFrame("Bar Graph Using CoordinateSystem",
new BarGraph2(), 301, 201);

}

public static void main(String[] args)

5.8 Making your own coordinate transformations 235

{
new BarGraph2().draw();

}
}

Here we have to be careful writing thebar method since aRectangle2D.Double object is speci-
fied in the device coordinate system with origin at the top left corner andy coordinate increasing
downward, whereas our coordinate system has the origin at the the bottom left corner with they
coordinate increasing upward.

5.8.5 Drawing a regular pentagon

As another example, let us write a program class that draws a regular pentagon. If the center of
the pentagon is at(0,0) and the radius isr, then the coordinates(xk,yk), k = 0,1,2,3,4 of the 5
vertices are

xk = r coska, yk = r sinka

where the anglea is 60 degrees which is 72π/180 radians (divide a circle of radiusr into 5
equal sectors of 72 degrees each). To center the pentagon letus choose a world coordinate
system in whichx and y both range from -5 to 5, with the radius chosen as 4. We can use a
CoordinateSystem object defined by

CoordinateSystem pixel =
new CoordinateSystem(-5,5,-5,5,getWidth(),getHeight());

to transform it so that the pentagon center is the center of the screen window.
For example thex coordinate of vertex 1 in the world system isr*Math.cos(a) and in the

default user system it ispixel.x(r*Math.cos(a)) . Similarly they coordinater*Math.sin(a)
becomespixel.y(r*Math.sin(a)) . Here is the class.

ClassDrawPentagon1

book-projects/chapter5/coordinate_system

package chapter5.coordinate_system; // remove this line i f you’re not using packages
import custom_classes.GraphicsFrame; // remove this line if you’re not using packages
import custom_classes.CoordinateSystem; // remove this l ine if you’re not using packages
import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

/**
* Explicit transformation of coordinates using the Coordin ateSystem class
* to draw a pentagon.
*/

public class DrawPentagon1 extends JPanel
{

public void paintComponent(Graphics g)

236 Using Graphics Classes and Objects

{
super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;
g2D.setRenderingHint(RenderingHints.KEY_ANTIALIASIN G,

RenderingHints.VALUE_ANTIALIAS_ON);

int w = getWidth();
int h = getHeight();

/* Set up a mapping from world to device coordinate systems.
* In world system -5 <= x <= 5 (increasing to right)
* and -5 <= y <= 5 (increasing upward).
* Here w, h are the width and height in pixels of JPanel.
*/

CoordinateSystem pixel = new CoordinateSystem(-5, 5, -5, 5 , w, h);

/* The pentagon will have its center at the origin of this
* coordinate system.
*/

double a = Math.toRadians(72.0); // 72 degrees in radians
double r = 4.0; // radius of pentagon’s circumscribed circle

/* Transform coordinates of vertices to default user space (pixels)
* using pixel.x and pixel.y
*/

double x0,y0,x1,y1,x2,y2,x3,y3,x4,y4;

x0 = pixel.x(r*Math.cos(0*a)); y0 = pixel.y(r*Math.sin(0 *a));
x1 = pixel.x(r*Math.cos(1*a)); y1 = pixel.y(r*Math.sin(1 *a));
x2 = pixel.x(r*Math.cos(2*a)); y2 = pixel.y(r*Math.sin(2 *a));
x3 = pixel.x(r*Math.cos(3*a)); y3 = pixel.y(r*Math.sin(3 *a));
x4 = pixel.x(r*Math.cos(4*a)); y4 = pixel.y(r*Math.sin(4 *a));

// Construct a path for the pentagon in default user space

GeneralPath pentagon = new GeneralPath();
pentagon.moveTo((float) x0,(float) y0); // east
pentagon.lineTo((float) x1,(float) y1);
pentagon.lineTo((float) x2,(float) y2);
pentagon.lineTo((float) x3,(float) y3);
pentagon.lineTo((float) x4,(float) y4);
pentagon.closePath();

// fill it with yellow, then outline it in black using 2 pixel b rush

g2D.setPaint(Color.yellow);
g2D.fill(pentagon);
g2D.setPaint(Color.black);
g2D.setStroke(new BasicStroke(2.0f));

5.8 Making your own coordinate transformations 237

Figure 5.22: Output of theDrawPentagon1 class

g2D.draw(pentagon);
}

public void draw()
{

new GraphicsFrame("Drawing a pentagon",
new DrawPentagon1(), 301, 301);

}

public static void main(String[] args)
{

new DrawPentagon1().draw();
}

}

First the vertices are transformed usingcs.x and cs.y to default user space and then the pen-
tagon is constructed as a path. Thefloat type must be used in themoveTo and lineTo method
arguments.

Because the pentagon is aShape object it can be used as an argument to thedraw and fill
methods of the graphics context. The output is shown in Figure 5.22.

5.8.6 General transformation using affine transformations

Another way to implement the general transformation is to construct anAffineTransform object
as we did in some of the happy face programs. We can do this withthe followingworldTransform
method that takes thex andy rangesxMin to xMax andyMin to yMax in the world coordinate system
as arguments and the width and height of the drawing surface in pixels, namelyw andh.

private AffineTransform worldTransform(double xMin, dou ble xMax,
double yMin, double yMax, int w, int h)

{

238 Using Graphics Classes and Objects

double sx = (w-1) / (xMax - xMin); // scale factor in x directio n
double sy = (h-1) / (yMax - yMin); // scale factor in y directio n
AffineTransform at = new AffineTransform();
at.scale(sx, -sy); // -sy reverses y axis
at.translate(-xMin, -yMax); // upper left corner (xMin,yM ax) to (0,0)
return at;

}

Here we are thinking in terms of transforming a rectangular object from the world coordinate
system to the default coordinate system as shown in Figure 5.23. The rectangle on the left in the

-

6s
(0,0)

(xmin,ymin) (xmax,ymin)

(xmin,ymax) (xmax,ymax)

-

-

6s

(0,ymin−ymax) (xmax−xmin,ymin−ymax)

(0,0) (xmax−xmin,0)

Figure 5.23: World to default user coordinate transformation

world coordinate system has lower left corner at(xmin,ymin) and upper right corner at(xmax,ymax).
We first need to translate this rectangle so that its top left corner is at the origin(0,0). This

is done by subtractingxmin from thex coordinates andymax from they coordinates. The affine
transform which does this is

at.translate(-xMin, -yMax);

This gives the rectangle on the right side of Figure 5.23.
Now we scale this rectangle to the size of the rectangle shownon the right side of Figure 5.21.

This is done using the scale factors

sx =
w−1

xmax−xmin
, sy =

h−1
ymax−ymin

and we also need to change the direction of they axis so that it points downward (this is a reflection
in thex axis. The affine transform that does this scaling and reflection is

at.scale(sx, -sy);

Bar graph using an affine transformation

Here is a variation of the bar graph program that uses this method and the statements

5.8 Making your own coordinate transformations 239

AffineTransform world = worldTransform(0.0, 5.0, 0.0, 100 00.0, w, h);
g2D.transform(world);

to define the world coordinate transform and apply it to the graphics context.

ClassBarGraph3

book-projects/chapter5/coordinate_system

package chapter5.coordinate_system; // remove this line i f you’re not using packages
import custom_classes.GraphicsFrame; // remove this line if you’re not using packages
import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

/**
* A version of BarGraph that uses a general affine
* transformation to convert the world coordinate system of t he
* bar graph to device coordinates.
*/

public class BarGraph3 extends JPanel
{

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;

int w = getWidth();
int h = getHeight();

/* World coordinates: 0.0 <= x <= 5, 0.0 <= y <= 10000
* w, h are width and height of window in pixels.
*/

AffineTransform world = worldTransform(0.0, 5.0, 0.0, 100 00.0, w, h);
g2D.transform(world);

// If you don’t want the line thickness to scale with respect t o
// the affine transformation simply specify a stroke width o f 0.
// Try something like 0.1f to see the effects of scaling

g2D.setStroke(new BasicStroke(0.0f));

/*
* Since we now have a right handed coordinate system rectangl es
* are described using their lower left corner instead of the u pper
* left corner as would be the case in the left-handed device sy stem.
*/

Rectangle2D.Double r1 = new Rectangle2D.Double(0.5, 0.0, 1.0, 8000.0);
Rectangle2D.Double r2 = new Rectangle2D.Double(1.5, 0.0, 1.0, 10000.0);
Rectangle2D.Double r3 = new Rectangle2D.Double(2.5, 0.0, 1.0, 5000.0);
Rectangle2D.Double r4 = new Rectangle2D.Double(3.5, 0.0, 1.0, 2000.0);

240 Using Graphics Classes and Objects

g2D.setPaint(Color.red); g2D.fill(r1);
g2D.setPaint(Color.green); g2D.fill(r2);
g2D.setPaint(Color.blue); g2D.fill(r3);
g2D.setPaint(Color.white); g2D.fill(r4);

g2D.setPaint(Color.black);
g2D.draw(r1);
g2D.draw(r2);
g2D.draw(r3);
g2D.draw(r4);

}

/*
* Transform right-handed coordinate system with lower left corner at
* (xMin,yMin) and upper right corner at (xMax,yMax) to the le ft handed
* device coordinate system with upper left corner at (0,0) an d lower
* right corner at (w-1,h-1) where w, h are the width and height of the
* drawing window in pixels. In this coordinate system y incre ases
* downwards.
*/

private AffineTransform worldTransform(double xMin, dou ble xMax,
double yMin, double yMax, int w, int h)

{
double sx = (w-1) / (xMax - xMin); // scale factor in x directio n
double sy = (h-1) / (yMax - yMin); // scale factor in y directio n
AffineTransform at = new AffineTransform();
at.scale(sx, -sy); // -sy reverses y axis
at.translate(-xMin, -yMax); // upper left corner (xMin,yM ax) to (0,0)
return at;

}

public void draw()
{

new GraphicsFrame("Bar Graph Using AffineTransform",
new BarGraph3(), 301, 201);

}

public static void main(String[] args)
{

new BarGraph3().draw();
}

}

It is important to realize that when an affine transformationinvolves scaling the brush size is also
scaled. Sometimes this is desirable, as in the face maker examples, but in the bar graph example
it may not be desirable. If you don’t want the line thickness to scale with respect to the affine
transform simply specify a stroke width of 0:

g2D.setStroke(new BasicStroke(0.0f));

We have done this in theBarGraph3 class. If this is not done the brush size will be huge because of
the very different scales, 0 to 5 in the horizontal directionand 0 to 10000 in the vertical direction.

5.8 Making your own coordinate transformations 241

It is also important to note that we now define our shapes usingworld coordinates but, since
this is a proper right-handed coordinate system, the framesof objects such as rectangles, ellipses,
and arcs are now specified using their lower left corner rather than their upper left corner. For
example, the first bar,r1 , is specified using 0.5, 0.0 for the first two arguments since these are the
coordinates of the lower left corner of the bar in the world coordinate system.

Using the affine transform method is usually better than the previous one usingpixel , a
CoordinateSystem object, since the later does not scale brush sizes and it requires the applica-
tion of thepixel.x andpixel.y methods to every coordinate specified in your program. With the
affine transformation approach we simply use our world coordinates everywhere and the graphics
context will take care of the transformation to default userspace.

Pentagon using an affine transformation

Here is a version ofDrawPentagon1 that uses an affine transformation:

ClassDrawPentagon2

book-projects/chapter5/coordinate_system

package chapter5.coordinate_system; // remove this line i f you’re not using packages
import custom_classes.GraphicsFrame; // remove this line if you’re not using packages
import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

/**
* Using an affine transformation to set up a world coordinate system
* and use it to transform the graphics context.
*/

public class DrawPentagon2 extends JPanel
{

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;
g2D.setRenderingHint(RenderingHints.KEY_ANTIALIASIN G,

RenderingHints.VALUE_ANTIALIAS_ON);

int w = getWidth();
int h = getHeight();

/* Set up a mapping from world to device coordinate systems.
* In world system -5 <= x <= 5 (increasing to right)
* and -5 <= y <= 5 (increasing upward).
* Here w, h are the width and height in pixels of JPanel.
* Transform the graphics context to use this mapping.
*/

AffineTransform world = worldTransform(-5, 5, -5, 5, w, h);
g2D.transform(world);

242 Using Graphics Classes and Objects

double a = Math.toRadians(72.0); // 72 degrees in radians
double r = 4.0; // radius of circumscribed circle

// Define the pentagon using world coordinates

double x0,y0,x1,y1,x2,y2,x3,y3,x4,y4;

x0 = r*Math.cos(0*a); y0 = r*Math.sin(0*a);
x1 = r*Math.cos(1*a); y1 = r*Math.sin(1*a);
x2 = r*Math.cos(2*a); y2 = r*Math.sin(2*a);
x3 = r*Math.cos(3*a); y3 = r*Math.sin(3*a);
x4 = r*Math.cos(4*a); y4 = r*Math.sin(4*a);

// Construct a path for the pentagon in default user space

GeneralPath pentagon = new GeneralPath();
pentagon.moveTo((float) x0,(float) y0); // east
pentagon.lineTo((float) x1,(float) y1);
pentagon.lineTo((float) x2,(float) y2);
pentagon.lineTo((float) x3,(float) y3);
pentagon.lineTo((float) x4,(float) y4);
pentagon.closePath();

// set the brush to two pixels.

double pixelWidth = Math.abs(1 / world.getScaleX()); // pi xel width in world
double pixelHeight = Math.abs(1 / world.getScaleY()); // p ixel height in world

// Now we can calculate a line thickness relative that is two p ixels wide

float thickness = 2 * (float) (Math.min(pixelWidth, pixelH eight));

// Comment the following statement and you will see that the b rush thickness
// of the graphics context is transformed as well. It will be v ery thick.

g2D.setStroke(new BasicStroke(thickness));

// fill it with yellow, then outline it in black using 2 pixel b rush

g2D.setPaint(Color.yellow);
g2D.fill(pentagon);
g2D.setPaint(Color.black);
g2D.draw(pentagon);

}

/*
* Transform right-handed coordinate system with lower left corner at
* (xMin,yMin) and upper right corner at (xMax,yMax) to the le ft handed
* device coordinate system with upper left corner at (0,0) an d lower
* right corner at (w-1,h-1) where w, h are the width and height of the
* drawing window in pixels. In this coordinate system y incre ases

5.8 Making your own coordinate transformations 243

* downwards.
*/

private AffineTransform worldTransform(double xMin, dou ble xMax,
double yMin, double yMax, int w, int h)

{
double sx = (w-1) / (xMax - xMin); // scale factor in x directio n
double sy = (h-1) / (yMax - yMin); // scale factor in y directio n
AffineTransform at = new AffineTransform();
at.scale(sx, -sy); // -sy reverses y axis
at.translate(-xMin, -yMax); // upper left corner (xMin,yM ax) to (0,0)
return at;

}

public void draw()
{

new GraphicsFrame("Drawing a pentagon (AffineTransform) ",
new DrawPentagon2(), 201, 201);

}

public static void main(String[] args)
{

new DrawPentagon2().draw();
}

}

An interesting feature of this class is the calculation of the size of a pixel in the world coordinate
system. Doing this lets us choose line thicknesses in terms of pixels so we can scale the brush
independent of the affine transformation. InDrawPentagon2 we have chosen a thickness of 2
pixels.

5.8.7 Transforming individual shapes

TheAffineTransform class has a method calledcreateTransformedShape with prototype

Shape createTransformedShape(Shape s)

That applies the affine transformation to the specifiedShape object and returns the transformed
Shape object. This provides another method for transforming objects without actually changing
the default transformation associated with the graphics context.

For example, in theDrawPentagon2 class we could define the world transformation

AffineTransform world = worldTransform(-5, 5, -5, 5, w, h);

and instead of using

g2D.transform(world);

we would define the pentagon as aGeneralPath object and use

pentagon = (GeneralPath) world.createTransformedShape(pentagon);

to transform the pentagon. Here is the revised class.

244 Using Graphics Classes and Objects

ClassDrawPentagon3

book-projects/chapter5/coordinate_system

package chapter5.coordinate_system; // remove this line i f you’re not using packages
import custom_classes.GraphicsFrame; // remove this line if you’re not using packages
import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

/**
* Using an affine transformation to set up a world coordinate system.
* This version does not transform the Graphics context. Inst ead it
* uses createTransformedShape to transform world shapes to device shapes.
* Since we are not transforming the graphics context the line thicknesses
* will not change.
*/

public class DrawPentagon3 extends JPanel
{

/**
* Construct a pentagon drawing panel with a white background .
*/

public DrawPentagon3()
{

setBackground(Color.white);
}

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;
g2D.setRenderingHint(RenderingHints.KEY_ANTIALIASIN G,

RenderingHints.VALUE_ANTIALIAS_ON);

int w = getWidth();
int h = getHeight();

/* Set up a mapping from world to device coordinate systems.
* In world system -5 <= x <= 5 (increasing to right)
* and -5 <= y <= 5 (increasing upward).
* Here w, h are the width and height in pixels of JPanel.
*/

AffineTransform world = worldTransform(-5, 5, -5, 5, w, h);

double a = Math.toRadians(72.0); // 72 degrees in radians
double r = 4.0; // radius of circumscribed circle

// Define the pentagon using world coordinates.

double x0,y0,x1,y1,x2,y2,x3,y3,x4,y4;

x0 = r*Math.cos(0*a); y0 = r*Math.sin(0*a);

5.8 Making your own coordinate transformations 245

x1 = r*Math.cos(1*a); y1 = r*Math.sin(1*a);
x2 = r*Math.cos(2*a); y2 = r*Math.sin(2*a);
x3 = r*Math.cos(3*a); y3 = r*Math.sin(3*a);
x4 = r*Math.cos(4*a); y4 = r*Math.sin(4*a);

// Construct a path for the pentagon in default user space

GeneralPath pentagon = new GeneralPath();
pentagon.moveTo((float) x0,(float) y0); // east
pentagon.lineTo((float) x1,(float) y1);
pentagon.lineTo((float) x2,(float) y2);
pentagon.lineTo((float) x3,(float) y3);
pentagon.lineTo((float) x4,(float) y4);
pentagon.closePath();

// Now transform the pentagon shape from world to device coor ds

pentagon = (GeneralPath) world.createTransformedShape(pentagon);

// fill it with yellow, then outline it in black using 2 pixel b rush

g2D.setPaint(Color.yellow);
g2D.fill(pentagon);
g2D.setStroke(new BasicStroke(2.0f));
g2D.setPaint(Color.black);
g2D.draw(pentagon);

}

/*
* Transform right-handed coordinate system with lower left corner at
* (xMin,yMin) and upper right corner at (xMax,yMax) to the le ft handed
* device coordinate system with upper left corner at (0,0) an d lower
* right corner at (w-1,h-1) where w, h are the width and height of the
* drawing window in pixels. In this coordinate system y incre ases
* downwards.
*/

private AffineTransform worldTransform(double xMin, dou ble xMax,
double yMin, double yMax, int w, int h)

{
double sx = (w-1) / (xMax - xMin); // scale factor in x directio n
double sy = (h-1) / (yMax - yMin); // scale factor in y directio n
AffineTransform at = new AffineTransform();
at.scale(sx, -sy); // -sy reverses y axis
at.translate(-xMin, -yMax); // upper left corner (xMin,yM ax) to (0,0)
return at;

}

public void draw()
{

new GraphicsFrame("Drawing a pentagon (AffineTransform) ",
new DrawPentagon3(), 301, 301);

}

246 Using Graphics Classes and Objects

public static void main(String[] args)
{

new DrawPentagon3().draw();
}

}

One advantage of this approach is that the line thickness will not be scaled since the affine trans-
formation of the graphics context is not being changed. Another advantage is that several parts of
a picture could be designed in different coordinate systemsand transformed independently before
drawing the complete picture.

5.9 Review exercises

◮ Review Exercise 5.1Define the following terms and give examples of each.

component graphics context device space
screen space user space default transformation
bounding rectangle attribute rendering
anti-aliasing RGB color affine transformation
translation scaling rotation
private method default coordinate system world coordinatesystem

◮ Review Exercise 5.2Explain the following methods or classes and write some Javastatements
to illustrate each.

Shape draw fill
Point2D getX getY
Line2D Rectangle2D Ellipse2D
Arc2D RoundRectangle2D getBounds2D
paintComponent JPanel JComponent
GraphicsFrame Graphics Graphics2D
Color setPaint getPaint
BasicStroke setStroke getStroke
GeneralPath moveTo lineTo
closePath AffineTransform translate
scale rotate transform
getTransform setTransform CoordinateSystem
getWidth getHeight

5.10 Programming exercises

◮ Exercise 5.1 (A sad face maker)
Write a class calledSadFaceMaker based onFaceMaker2 that shows a sad face instead of a smiling
face.

5.10 Programming exercises 247

◮ Exercise 5.2 A bright eyes face maker)
Write a class calledBrightEyesFaceMaker , based onFaceMaker2 , that replaces the circular eyes
with white elliptical ones with a blue circle inside.

◮ Exercise 5.3 A happy face with ears)
Write a class calledFaceWithEarsMaker , based inFaceMaker2 , that adds ears to the face as
shown in Figure 5.24. Hint: If you fill and draw the ears first and then draw and fill the face it will

Figure 5.24: A colorful happy face with ears

cover up part of the ears.

◮ Exercise 5.4 Create your own art work
Write your own graphics program that draws an interesting picture. For example, you could draw
a fish, a mouse, or a Halloween pumpkin. An example of a fish is shown in Figure 5.25. Here
the fish body and tail fin are blue, the other fins are light blue,the eye is a white circle containing
a black ellipse and the mouth is a red arc. Another example is shown in Figure 5.26. Another
example that uses thecurveTo method not discussed in the text is shown in Figure 5.27.

◮ Exercise 5.5 (Order of draw and fill is important)
Write a program class calledDrawFillTest that displays two circles side by side. Use a brush
width of 10.0f , drawing color black, and fill color red. Render the left circle usingdraw followed
by fill . Render the right circle usingfill followed bydraw . Explain the differences.

◮ Exercise 5.6 (A pie chart)
Write a program calledPieChart that draws a pie chart having 5 pieces, each specified by the
percentage of the entire pie that it requires. Use the percentages 4%, 10%, 11%, 15%, and 60%,
which can each be converted to the number of degrees in the circle. Use a different color for
each piece. Design your program so that the largest pie possible is shown centered in the window
regardless of the size of the window. (Hint: the diameter of the pie is the minimum ofw and
h, wherew and h are the width and height of the window in pixels. There is a function called
Math.min in theMath class) that can find the minimum value.

248 Using Graphics Classes and Objects

Figure 5.25: A fish

Figure 5.26: Winnie the Pooh

5.10 Programming exercises 249

Figure 5.27: Nakami Araki

◮ Exercise 5.7 (Affine transformations)
Suppose that you have a drawing surface that is 201 pixels wide and 201 pixels high. The de-
fault user space coordinate system would have origin (0.0,0.0) at the top left corner, with bottom
right corner at (200.0,200.0), and with they-axis increasing from top to bottom. The following
statements

AffineTransform at = new AffineTransform();
at.translate(100,100);
at.scale(10,-10);
g2D.setStroke(new BasicStroke(1.0f/10.0f));
g2D.transform(at);

will change the user space coordinate system so that the origin is in the middle of the window. The
x coordinates now range from−10 to 10 and they coordinates range from−10 to 10 increasing
upwards like a normal mathematical coordinate system. Verify this by writing a program class
calledAxesMaker that uses these statements to draw thex andy axes as lines from−9 to 9 with an
arrow at the end of each positive axis. The output is shown in Figure 5.28. What happens if you
remove thesetStroke statement?

◮ Exercise 5.8 (Translating origin to center of window)
The following statements can be used inside thepaintComponenet method to change from the
default user space to a user space with a right handed coordinate system whose origin is at the
center of the window.

double xMax = getWidth() - 1;
double yMax = getHeight() - 1;
// flip the y axis

250 Using Graphics Classes and Objects

Figure 5.28: Centered coordinate system

AffineTransform at = new AffineTransform(1, 0, 0, -1, 0, (do uble) yMax);
// Translate origin to center of screen
at.translate(xMax/2, yMax/2);
g2D.transform(at);

Verify this by writing a program to draw thex axis from-xMax/2 to xMax/2 and they axis from
-yMax/2 to yMax/2 . Then draw a line from(0,0) to (xMax/2,yMax/2) .

◮ Exercise 5.9 (Drawing a hexagon)
Write a program calledDrawHexagon that is similar toDrawPentagon except that it draws a six-
sided polygon with all sides equal.

BlueJ andBeanShell Edition Copyright 2002, 2005, 2007, Barry G. Adams

Chapter 6

Making Decisions
Conditional execution of statements

Outline

Simple boolean expressions

Relational and equality operators and expressions

Conditional operator

Comparison of floating point numbers

Simple if-else statement

If without else statement

Nested and multiple (N-way) if-statement

Common errors with if-statements

Compound boolean expressions and logical operators

Lexicographical ordering of strings using character codes

String comparison and equality

Error reporting using exceptions

Throwing and catching exceptions inBankAccount class

Paper, scissors, rock game

Complex roots of a quadratic equation

251

252 Making Decisions

6.1 Introduction

In the programs we have written so far, statements are alwaysexecuted one after the other in a
sequential manner: the same sequence of statements is always executed. However, many algo-
rithms are expressed in terms of conditions that can be true or false, depending on the input data
for example, so the statements executed depend on these conditions. We need to be able to express
the fact that one sequence of statements is to be executed if acertain condition is true and another
sequence is to be executed if the condition is false.

For example, in theTriangleCalculator class from Chapter 3 (page 64) the constructor
arguments were two sides of a triangle and the contained angle. We did not check that these values
were positive. A better program would check using conditions such asa> 0 andb> 0 and only do
the calculations if these conditions were true. Similarly,in Chapter 3, theQuadraticRootFinder
class (page 67) was used to compute the roots of the quadraticequationax2 +bx+c = 0 in case
both are real. The condition for real roots isb2−4ac≥ 0 but we did not check this condition.

In this chapter we will see how the if-statement can be used for the conditional execution of
statements. To express conditions we use boolean expressions, which can have true or false values,
relational operators, which compare the values of arithmetic expressions to produce true or false
values, and logical operators, which combine simple boolean expressions to obtain compound
boolean expressions.

Boolean expressions can be tested in a program using an if-statement. When the expression
has a true value one block of statements is executed and when it has a false value another block of
statements is executed. This process of executing one blockof statements or another, based on the
value of a boolean expression, is calledconditional execution. This will give our classes important
decision making capabilities. A discussion of common if-statement errors is also included.

To illustrate these ideas we we use the the “Paper, Scissors,Rock” game. Also, we modify the
BankAccount class, introduced in Chapter 4, to include error checking. The important concepts of
an exception and throwing an exception are also introduced and illustrated using theBankAccount
class. We also extend theQuadraticRootFinder class so that it finds both the real and complex
roots of a quadratic equation.

6.2 Simple boolean expressions

Conditional execution is based on the evaluation of a condition. In Java the condition is aboolean
expressionwhich evaluates to one of the valuestrue or false of the boolean data type (see
Chapter 2). These two values are calledboolean literals.

Just as there are many ways to form arithmetic expressions, the same applies to boolean ex-
pressions. The most common is to compare two arithmetic or boolean expressions using a binary
comparison operator. These expressions are calledcomparison expressionsand have the form

Expression1 ComparisonOperator Expression2

whereComparisonOperatoris one of the sixcomparison operatorsshown in Table 6.1. This table
also shows the standard mathematical notation for these operators. A double equal sign represents
equality in Java since the single equal sign is already used for assignment. The two expressions
are evaluated first before the comparison operator is applied.

6.2 Simple boolean expressions 253

Comparison Mathematical Meaning
Operator Notation

> > greater than
>= ≥ greater than or equal
< < less than

<= ≤ less than or equal
== = equal
!= 6= not equal

Table 6.1: The six comparison operators

The six comparison operators fall into two groups:== and != are calledequality operators,
since they test expressions for equality or inequality, andthe other four operators are calledrela-
tional operators. The corresponding expressions have the form

ArithmeticExpression1 RelationalOperator ArithmeticExpression2

for relational expressions, and the form

Expression1 EqualityOperator Expression2

for equality expressions, whereExpression1andExpression2can be either boolean or arithmetic
expressions.

EXAMPLE 6.1 (Simple boolean expressions)

(a) The expressionmonth == 3 is true only ifmonth has the value 3.

(b) The expressionk % 2 == 0 is true only if the integerk is even, which is the case if the
remainder on division by 2 is 0. The expressionk % 2 != 0 is true only if the integerk is
odd. Generalizing, the expressionk % n == 0 is true only ifk is divisible by the integern
(remainder on division byn is 0).

(c) The expressionb*b - 4.0*a*c >= 0 is true only if the quadratic equationax2+bx+c = 0
has real roots. For example it is false ifa, b, andc all have the value 1, and true ifa = 1,
b = 3, andc = 2.

(d) If playerChoice is a variable of typechar , the expressionplayerChoice == ’P’ is true
only if the variable has the value’P’ .

(e) In a turtle graphics system the turtle has a pen that can beeither up or down. This condition
can be represented by a variable calledpenUp of typeboolean , where a value oftrue indi-
cates that the pen is up. A boolean variable such aspenUp is a simple example of a boolean
expression since it evaluates to atrue or false value.

In examples (a) to (d) the expressions on either side of the comparison operator are evaluated
before the comparison operator is applied.

254 Making Decisions

if (BooleanExpression)

{

Statements A
}
else
{

Statements B
}

Figure 6.1: A template for the if-statement

6.3 If-statements

Conditional execution can be accomplished using an if-statement Since the syntax varies with the
computer language it is useful to express it using the following language independentalgorithmic
notation often calledpseudo-code.

IF BooleanExpressionTHEN
Statements A

ELSE
Statements B

END IF

HereBooleanExpressionstands for any expression that evaluates to one of the valuestrue or false.
The statements labeledA are executed ifBooleanExpressionis true and the statements labeled
B are executed if it is false. In Java the corresponding if-statement has the structure shown in
Figure 6.1. The parentheses enclosingBooleanExpressionare necessary. A sequence of statements
enclosed in braces is called ablock so the if-statement defines two blocks, one for each value of
BooleanExpression. The first block is called theif-block and the second block is called theelse-
block.

The statements in the two blocks are indented by an equal amount of space. Indentation has
no effect on execution. It is there to improve the readability. We recommend using three spaces of
indentation for the statements in a block.

The template in Figure 6.1 is a static diagram, designed to show the syntax and layout to use
when writing if-statements. It does not show the flow of execution. A flowchart is a graphical
representation of the flow of execution. The flowchart for theif-statement is shown in Figure 6.2.
The downward arrow at the top indicates the flow before the if-statement is encountered. Then the
diamond-shaped box represents the boolean expression to beevaluated. One of the outward arrows
is chosen depending on the value of the expression. Rectangular boxes contain statements to be
executed sequentially. To follow the flow, begin at the top and follow the arrows until you reach
the bottom. In any case exactly one of the two blocksA andB will be executed. The downward
arrow at the bottom represents the flow after the if-statement.

6.3 If-statements 255

Statements A

�
�

�
�

@
@

@
@

@
@

@
@

�
�

�
�

Boolean
Expression

?

falsetrue

Statements B

? ?

? ?

?

r

Figure 6.2: A flowchart for the execution of an if-statement

EXAMPLE 6.2 (Calculating the absolute value)The absolute value|x| of x is defined to bex
if x≥ 0 and−x if x < 0. It can be calculated usingMath.abs . If we didn’t have this function in
theMath class we could use the following method

double abs(double x)
{

if (x >= 0)
{

return x;
}
else
{

return -x;
}

}

which returns the absolute value of adouble number.

EXAMPLE 6.3 (A cube root method) If x is a real number then its cube rootx1/3 can be
calculated usingMath.pow(x, 1.0/3.0) but only if x≥ 0. If x< 0 we can writex1/3 =−(−x)1/3

and use-Math.pow(-x, 1/.0/3.0) . The method

double cubeRoot(double x)
{

if (x >= 0)
{

return Math.pow(x, 1.0/3.0);

256 Making Decisions

}
else
{

return -Math.pow(-x, 1.0/3.0);
}

}

uses an if-statement to return the cube root ofx in either case.

6.4 Real roots of a quadratic equation

In Chapter 3 we wrote aQuadraticRootFinder class (page 67) to find the real roots of a quadratic
equation. We can now modify it to determine if there are real roots. To do this we add the data
field

private boolean realRoots;

This variable will be set to true if the equation has real roots and false otherwise. The “get” method

public boolean hasRealRoots()
{

return realRoots;
}

can be used to determine if the equation has real roots. We need to modify thedoCalculations
method to use an if-statement to give a value to this boolean variable depending on the sign of
b2−4ac.

6.4.1 QuadraticRootFinder class

Here is the complete class with these modifications.

ClassQuadraticRootFinder

book-projects/chapter6/root_finder

package chapter6.root_finder; // remove this line if you’r e not using packages
/**

* An object of this class can calculate the real roots of the
* quadratic equation axˆ2 + bx + c = 0 given the coefficients a, b, and c.
* In this version there is a check for real roots.
*/

public class QuadraticRootFinder
{

private double a, b, c;
private double root1, root2;
private boolean realRoots;

6.5 Block declaration of variables 257

/**
* Construct a quadratic equation root finder given the coeff icients
* @param a first coefficient in axˆ2 + bx + c
* @param b second coefficient in axˆ2 + bx + c
* @param c third coefficient of axˆ2 + bx + c
*/

public QuadraticRootFinder(double aCoeff, double bCoeff , double cCoeff)
{

a = aCoeff;
b = bCoeff;
c = cCoeff;
doCalculations();

}

private void doCalculations()
{

double d1 = b*b - 4*a*c;
if (d1 >= 0)
{

double d = Math.sqrt(d1);
root1 = (-b - d) / (2.0 * a);
root2 = (-b + d) / (2.0 * a);
realRoots = true;

}
else
{

realRoots = false;
}

}

/**
* Returns true if real roots were found else false.
* @return true if real roots were found else false
*/

public boolean hasRealRoots()
{

return realRoots;
}

// getRoot1 and getRoot2 methods from Chapter 3 go here

// getA, getB, and getC methods from Chapter 3 go here

// setA, setB, and setC methods from Chapter 3 go here

}

6.5 Block declaration of variables

A block is any sequence of statements delimited by braces. Variables are defined in blocks and
are said to haveblock scope. This means that they do not exist outside the block in which they are

258 Making Decisions

declared. We have now seen three kinds of blocks:

• Data fields have the widest scope. They are defined in the classdeclaration block so they
are available anywhere in the class. The variablesa, b, andc in theQuadraticRootFinder
class are examples.

• Local variables in a constructor or method are defined only inthe block defining the con-
structor or method body. The variabled1 defined in thedoCalculations method is an
example.

• Variables declared in the if-block or the else-block of an if-statement are local to this block.
The variabled defined in the if-block of thedoCalculations method is an example.

6.6 If-statement with no else

When the else-part of the if-statement is not required, it can be omitted to give the pseudo-code
statement

IF BooleanExpressionTHEN
Statements

END IF

or the Java statement

if (BooleanExpression)
{

// statements
}

The if-block is executed only if the boolean expression is true. Otherwise it is skipped and execu-
tion resumes with any statements after the if-statement. The flowchart for the if-statement with no
else-part is shown in Figure 6.3.

EXAMPLE 6.4 (If-statement with no else-part) In QuadraticRootFinder we could have
written thedoCalculations method as

private void doCalculations()
{

realRoots = false;
double d1 = b*b - 4*a*c;
if (d1 >= 0)
{

double d = Math.sqrt(d1);
root1 = (-b - d) / (2.0 * a);
root2 = (-b + d) / (2.0 * a);
realRoots = true;

}
}

6.6 If-statement with no else 259

�
�

�
�

@
@

@
@

@
@

@
@

�
�

�
�

?

?

?

?

Block

Boolean
Expression

true false

r
Figure 6.3: Flowchart for an if-statement with no else-part

which initializesrealRoots to false so no else-part is required.

EXAMPLE 6.5 (Assigning boolean expressions)Another variation of Example 6.4 is

private void doCalculations()
{

double d1 = b*b - 4*a*c;
realRoots = d1 >= 0;
if (realRoots)
{

double d = Math.sqrt(d1);
root1 = (-b - d) / (2.0*a);
root2 = (-b + d) / (2.0*a);

}
}

which uses a boolean assignment statement to assign the trueor false value of the boolean ex-
pressiond1 >= 0 directly to the variablerealRoots , which now becomes the condition in the
if-statement.

EXAMPLE 6.6 (One line if-statement) The following statements compute the maximum of
the integer variablesx andy and assign it tomax.

int max = x; // assume x is the maximum
if (y > max)
{

max = y; // replace max with y if y is bigger than x
}

260 Making Decisions

Since there is only a single statement in the if-block the braces can be omitted so you will often
see the if-statement written as

if (y > max)
max = y;

or even as the so-called one line if-statement

if (y > max) max = y;

The same rule applies to the else-block. Another variation of the maximum calculation is

int max;
if (x > y)

max = x;
else

max = y;

If you find the use of braces more readable always use them. Several common errors can occur by
not using braces (see Section 6.10).

6.7 Comparison of floating point numbers

Most floating point numbers cannot be stored exactly in computer memory. For example, the sim-
ple decimal number 0.1 cannot be stored exactly because its binary value has an infinite number
of digits. This leads to truncation error. Computers also have a limited accuracy when performing
computations. Each arithmetic operation may introduce a small roundoff error, and as more opera-
tions are carried out, roundoff error can accumulate. In practice we may consider the two numbers
1 and 0.99999999 to be “equal”, but they may not be equal to thecomputer. Therefore, it is ad-
visable not to compare two expressions of typedouble directly, using the comparison operators,
especially the equality operators. Instead, either theabsolute error or therelative error can be
used.

6.7.1 Floating point tester class

Errors can be demonstrated using the following class that computesπ5 in two ways, once using
Math.pow , and the other using four multiplications. The class can be run both inside and outside
BlueJ.

ClassFloatingPointTester1

book-projects/chapter6/floating_point

package chapter6.floating_point; // remove this line if yo u’re not using packages
/**

* Testing equality of floating point numbers using equality .
*/

6.7 Comparison of floating point numbers 261

public class FloatingPointTester1
{

public void doTest()
{

double x = Math.pow(Math.PI, 5.0);
double y = Math.PI * Math.PI * Math.PI * Math.PI * Math.PI;
System.out.println("1st approx is " + x);
System.out.println("2nd approx is " + y);

if (x == y)
System.out.println("equal");

else
System.out.println("not equal");

}

public static void main(String[] args)
{

FloatingPointTester1 tester = new FloatingPointTester1();
tester.doTest();

}
}

EXAMPLE 6.7 (Using == to compare floating point numbers)TheFloatingPointTester1
class produces the output

1st approx is 306.0196847852814
2nd approx is 306.01968478528136
not equal

Thepow method actually uses the formulae5lnπ = π5 to compute its result rather than direct mul-
tiplication. The comparison finds them to be “not equal” since there will be differing amounts of
round-off error in the two calculations. In factx is slightly greater thany . This example shows that
we must be careful when comparing floating point numbers directly.

EXAMPLE 6.8 (Absolute error for floating point comparison) If you want to compare two
arithmetic expressions of typedouble for equality, or inequality, it may be better to use

absoluteError= |x−y|

as a measure of equality. This defines the absolute error between the two valuesx andy as the
absolute value of the difference between the two numbers. Wecan use it to check if the absolute
difference between two numbers is smaller than a very small number, say1E-10 . Replace the
if-statement inFloatingPointTester1 with

if (Math.abs(x - y) <= 1E-10)
System.out.println("equal");

else
System.out.println("not equal");

262 Making Decisions

to get FloatingPointTester2 and the “equal” message will be printed. This means that two
floating point numbers should be considered equal if they areclose enough to each other as defined
by 1E-10 .

EXAMPLE 6.9 (Relative error for floating point comparison) In scientific calculations the
relative error is often a better measure of the closeness of two floating point numbersx andy. If
x 6= 0, one definition is

relativeError=
x−y

x

We can replace the if-statement inFloatingPointTester2 with

double relativeError = (x - y) / x;
if (Math.abs(relativeError) <= 1E-10)

System.out.println("equal");
else

System.out.println("not equal");

to getFloatingPointTester3 and the “equal” message will be printed.

6.8 Conditional operator

There is a special operator in Java called theconditional operator, denoted by?: , which can be
used to write special if-statements in a compact fashion. Itproduces conditional expressions of the
form

booleanExpression? expressionA: expressionB

The value of the conditional expression isexpressionAif booleanExpressionis true andexpres-
sionBotherwise. The value of the conditional expression can thenbe assigned to a variable. For
example, ifexpressionAandexpressionBevaluate to anint value then we can write a statement
such as

int v = booleanExpression? expressionA: expressionB;

The conditional operator is not really necessary since you can achieve the same result with

int v;
if (booleanExpression)

v = expressionA;
else

v = expressionB;

We will not use the conditional operator much since it can make programs harder to read.

6.9 Nested and multiple (N-way) if-statements 263

EXAMPLE 6.10 (The conditional operator) The absolute value method in Example 6.2 can
also be defined as

double abs(double x)
{

return (x >= 0) ? x : -x;
}

using the conditional operator.

EXAMPLE 6.11 (The conditional operator) In Example 6.6 the maximum of two integer
variablesx andy was computed using an if-statement. This can also be done as

int max = (x >= y) ? x : y;

using the conditional operator.

EXAMPLE 6.12 (The conditional operator version of cubeRoot) The cubeRoot method
from Example 6.3 can be expressed as

double cubeRoot(double x)
{

return (x >= 0) ? Math.pow(x, 1.0/3.0) : -Math.pow(-x, 1.0/3 .0);
}

using the conditional operator.

6.9 Nested and multiple (N-way) if-statements

In the general if-statement in Figure 6.1 the two blocks can also contain other if-statements. If-
statements within if-statements are said to be nested.

EXAMPLE 6.13 (A nested if-statement) Suppose we have an amount of moneya≥ 0 and the
tax is 5% if 0≤ a < 10000, 10% if 10000≤ a < 100000, and 15% ifa≥ 100000. The nested
if-statement

double tax;
if (a >= 10000)
{

if (a < 100000)
{

tax = 0.10 * a;
}
else // a >= 100000
{

tax = 0.15 * a;
}

264 Making Decisions

if (BooleanExpression1)

{

Statements 1
}

else if (BooleanExpression2)

{

Statements 2
}
...

else if (BooleanExpressionN)

{

Statements N
}
else
{

Default statements

}

Figure 6.4: Template for the multiple if-statement

}
else // a < 10000
{

tax = 0.05 * a;
}

shows one way to compute the tax using a nested if-statement inside the outer if-block. We have
included comments on the else parts to improve readability.

The if-else-statement is designed for a two-way decision process. It can be generalized to a
multiple if-statement, sometimes called an if-else-if-statement, that is a special kind of nested if-
statement designed for a multi-way decision process. The template is a generalization of the one
given in Figure 6.1 and is shown in Figure 6.4.

There areN conditions, represented byN boolean expressions, andN + 1 blocks. TheN
conditions do not have to be mutually exclusive. There may bemore than one condition that
evaluates to true. But in this case only the block for the firstof these conditions will be executed.
The order of the tests is important in this case.

If the N conditions are mutually exclusive, meaning that only one ofthem at a time can be
true, then the order of the conditions is not important. In any case, exactly one of theN+1 blocks
of statements is executed. If none of theN conditions is true, the default block is executed. A
flowchart for the multiple if-statement is shown in Figure 6.5.

6.10 Common errors with if-statements 265

EXAMPLE 6.14 (Calculating letter grades) The following if-statement assigns a letter grade
for a given integer mark:

String letterGrade;
if (mark < 0)

letterGrade = "";
else if (mark > 100)

letterGrade = "";
else if (mark >= 80)

letterGrade = "A";
else if (mark >= 70)

letterGrade = "B";
else if (mark >= 60)

letterGrade = "C";
else if (mark >= 50)

letterGrade = "D";
else

letterGrade = "F";

Here marks outside the range 0 to 100 are assigned an empty string as a letter grade. The order
of the conditions is important here since they are not mutually exclusive. For example, using
marks >= 50 first will not work since any mark of 50 or more will result in a grade of D being
assigned.

6.10 Common errors with if-statements

The following three examples show errors that can occur if you are not careful with braces. They
can be avoided by always using braces.

EXAMPLE 6.15 (Forgetting the braces) Consider the if-statement in Figure 6.6(a) The intent
here is to assign the maximum ofx andy to max and the minimum tomin . However, because there
are no braces in the else-block the compiler assumes that only the assignment tomax belongs to
this block. The indentation is misleading and has no effect on the compiler. Thus,min will always
receive the value ofx since this assignment statement is not part of the if-else statement. This is an
example of a logical error. The if-statement in Figure 6.6(b) corrects the problem using braces.

EXAMPLE 6.16 (Else without if) If you forget to use braces for the if-block, as in the if-
statement in Figure 6.6(c) the Java compiler will now reportan “else without if” error message.
Since there are no braces in the if-block the compiler assumes that

if (x >= y)
max = x;

266 Making Decisions

?

�
��

@
@@

@
@@

�
��

expr1 -true
block 1 -

?
false

�
��

@
@@

@
@@

�
��

expr2 -true
block 2 -

?
falserrr

?

�
��

@
@@

@
@@

�
��

exprN -true
block N -

?
false

default block

?
?r

Figure 6.5: A flowchart for the execution of a multiple if-statement

if (x >= y)
{

max = x;
min = y;

}
else

max = y;
min = x;

(a)

if (x >= y)
{

max = x;
min = y;

}
else
{

max = y;
min = x;

}

(b)

if (x >= y)
max = x;
min = y;

else
{

max = y;
min = x;

}

(c)

Figure 6.6: forgetting the braces

6.10 Common errors with if-statements 267

is a complete if-statement with no else part. Then the statement min = y is a normal statement
not inside an if-statement. Then theelse is encountered with no matchingif , and this is a syntax
error.

EXAMPLE 6.17 (Dangling else problem) Consider the following statement with a nested if-
statement:

if (mark >= 50)
if (mark <= 100)

System.out.println("Pass");
else

System.out.println("Fail");

The intent here is to displayPass in case the mark is in the range 50 to 100 andFail otherwise.
However, for marks less than 50 nothing is ever displayed andfor marks greater than 100 theFail
message is displayed.

Again the indentation is misleading since it seems to associate theelse part with the outerif .
However, it is also possible to associate theelse with the innerif and the results are not the same.
This is called the “dangling else problem”.

To resolve this ambiguity the compiler always associates anelse with the nearestif so the
if-statement is interpreted as

if (mark >= 50)
{

if (mark <= 100)
System.out.println("Pass");

else
System.out.println("Fail");

}

To obtain the desired meaning, and associate theelse with the outerif , we need to use braces:

if (mark >= 50)
{

if (mark <= 100)
System.out.println("Pass");

}
else
{

System.out.println("Fail");
}

which now displays theFail message for marks less than 50.

268 Making Decisions

Java Mathematical Meaning
Notation Notation

&& ∧ logical “and” (looks like an “A”)
|| ∨ logical “or” (looks like an “r”)
! ∼, ¬ logical “not” (negation)

Table 6.2: The three basic logical operators

6.11 Compound boolean expressions

A boolean expression is an expression which can have a true orfalse value. The simplest boolean
expression is just a boolean variable itself, for examplerealRoots in Example 6.5. Boolean ex-
pressions can also be obtained using the comparison operators in Table 6.1. Acompound boolean
expressionconsists of two or more boolean expressions connected together by one or more logical
operators. These operators can be used to express conditions that can be true in more than one way.

The mathematical and Java notations for the three basic logical operators are shown in Ta-
ble 6.2. In mathematics,∧ is often called “wedge” and∨ is often called “vee”. There are several
mathematical notations for negation. Two are shown in the table, namely∼, which is called “tilde”,
and¬. Both are called “not”. We will use∼. In pseudo-code you can use either the mathematical
notation or the names AND, OR, and NOT.

The symbols∧ and∨ are not available on keyboards so Java uses&& and || instead1. For
negation the exclamation mark is used.

6.11.1 Writing expressions using AND, OR, and NOT

If b1, b2, ...,bn aren boolean expressions then

b1∧b2∧ . . .∧bn (b1 && b2 && ... && bn , in Java)

is the compound expression obtained by “and”ing together the n expressions. It is called the
“logical and”. The value of this compound expression is trueonly if all n expressionsb1 to bn

are true. If any expression is false then the compound expression is false. Atruth table gives
the values of a compound boolean expression in terms of all possible values of the simple boolean
expressions it contains. In the case of two simple expressions,p andq, the truth table forp∧q is
shown in Figure 6.3(a). For example, the first row of this table tells us that ifp is false andq is
false, thenp∧q is also false. The last column of the table clearly shows thatp∧q is true only if
both p andq are true.

Similarly, we can perform the∨ operation and

b1∨b2∨ . . .∨bn (b1 || b2 || ... || bn , in Java)

is the compound expression obtained by “or”ing together then expressions. It is called the “logical
or”. The value of this compound expression is true if any one of then expressionsb1 to bn is true.

1Double symbols are used since& and| have other meanings in Java which we will not discuss (bitwise operators).

6.11 Compound boolean expressions 269

p q p∧q
false false false
false true false
true false false
true true true

(a)

p q p∨q
false false false
false true true
true false true
true true true

(b)

p ∼ p
false true
true false

(c)

Table 6.3: Truth tables for AND, OR, and NOT

It is false only if alln expressions are false. In the case of two simple expressionsp andq the truth
table forp∨q is shown in Figure 6.3(b). The last column of the table clearly shows thatp∨q is
false only if bothp andq are false.

The operators∧ and∨ are binary operators because they operate on two boolean expressions.
The∼ operator is an example of a unary operator. It operates on only one boolean expression
to give the opposite truth value (negation) of the expression. The truth table for∼ p is shown in
Figure 6.3(c).

Operator precedence rules

Among the unary operators- , +, ! , the binary arithmetic operators* , / , %, +, - , the comparison
operators<, <=, >, >=, ==, != , and the binary logical operators&&, || , we have the following
precedence rules in the order from highest to lowest:

1. Parentheses() have the highest precedence.

2. The unary operators- , +, and the unary negation operator! , have equal precedence and they
are right associative (they are applied in right to left order).

3. The binary arithmetic operators* , / , and%have equal precedence and they are left associa-
tive (they are applied in left to right order).

4. The binary arithmetic operators+ and- have equal precedence and they are left associative.

5. The relational operators<, <=, >, and>= have equal precedence and are not associative.

6. The equality operators== and!= have equal precedence and are left associative.

7. The binary logical “and” operator&& is left associative.

8. The binary logical “or” operator|| is left associative.

EXAMPLE 6.18 (Applying precedence rules) In expressionmark >= 0 && mark <= 100
the expressionsmark >= 0 andmark <= 100 are evaluated first and then&& is applied. To empha-
size this the expression could be written using parenthesesas(mark >= 0) && (mark <= 100) .

270 Making Decisions

Assuming thatd andp are of typeint , the compound expression! d == 0 || p == 0 results
in the compiler error “can’t convert int to boolean”. The! operator is being applied tod since it
has a higher precedence than==. Parentheses are needed to obtain!(d == 0) || p == 0 . Now
d == 0 is evaluated and then! is applied. Thenp == 0 is evaluated and finally|| is applied.

EXAMPLE 6.19 (Mixed boolean expressions)The∧ and∨ operators can be mixed together.
In the expressiona∧b∨c the expressiona∧b is evaluated first according to the precedence rules,
then∨ is applied. To evaluateb∨c first it is necessary to use parentheses and writea∧ (b∨c).

EXAMPLE 6.20 (Truth table for (a∧b)∨c and a∧ (b∨c)) The truth table requires 8 rows,
since there are 23 = 8 possible combinations for the values ofa, b, andc. This gives the truth table

a b c a∧b b∨c (a∧b)∨c a∧ (b∨c)
false false false false false false false
false false true false true true false
false true false false true false false
false true true false true true false
true false false false false false false
true false true false true true true
true true false true true true true
true true true true true true true

where the results for(a∧b)∨c anda∧ (b∨c) in the final two columns show that the expressions
are not the same.

DeMorgan’s laws

If a andb are boolean expressions, we have the laws

∼ (a∧b) = (∼ a)∨ (∼ b)

∼ (a∨b) = (∼ a)∧ (∼ b)

for negating compound expressions. These laws are called deMorgan’s laws and can be easily
verified using truth tables. The generalizations ton expressionsb1, b2, ...,bn are

∼ (b1∧b2∧ . . .∧bn) = (∼ b1)∨ (∼ b2)∨ . . .∨ (∼ bn)

∼ (b1∨b2∨ . . .∨bn) = (∼ b1)∧ (∼ b2)∧ . . .∧ (∼ bn)

Testing numerical ranges

Often it is necessary to test if a variablen has a value in the rangea to b. In mathematics this is
expressed asa≤ n≤ b. In programming languages we cannot use the expressiona <= n <= b .
Instead, it is expressed asa <= n && n <= b using&& to connect two relational expressions.

6.11 Compound boolean expressions 271

EXAMPLE 6.21 (Numerical ranges) In Example 6.14 a letter grade was assigned to a mark
using a multiple if-statement. The conditions were not mutually exclusive so the order was im-
portant. Using compound logical expressions involving&&, we can make the conditions mutually
exclusive as follows:

if (80 <= mark && mark <= 100)
letterGrade = "A";

else if (70 <= mark && mark < 80)
letterGrade = "B";

else if (60 <= mark && mark < 70)
letterGrade = "C";

else if (50 <= mark && mark < 60)
letterGrade = "D";

else if (0 <= mark && mark < 50)
letterGrade = "F";

else
letterGrade = ""; // invalid mark case

Now the order of the conditions is not important. The else-block is used to trap errors. When
possible it is best to write the conditions in a multiple if-statement in mutually exclusive form,
since these conditions are easier to understand, and use theelse-block to trap invalid cases,

EXAMPLE 6.22 (Numerical ranges) Using compound boolean expressions we can rewrite
Example 6.13 as

double tax;
if (0 <= a && a < 10000)
{

tax = 0.05 * a;
}
else if (10000 <= a && a <= 100000)
{

tax = 0.10 * a;
}
else // a >= 100000
{

tax = 0.15 * a;
}

which is much easier to read.

6.11.2 Leap year problem

In a leap year February has 29 days instead of 28. There are twostatements that define when a
year is a leap year:

s1 = the year is divisible by 4 but not by 100 (for example, 1988 or 1992)

s2 = the year is divisible by 400 (for example, 1600 or 2000)

272 Making Decisions

If either of these statements is true then the year is a leap year, so if we lets be the statement “the
year is a leap year” thens is the compound statement

s = the year is a leap year= s1∨s2

We need to translates1 ands2 into logical expressions. They contain the following threesimpler
logical expressions:

a = year is divisible by 4

b = year is not divisible by 100

c = year is divisible by 400

Therefore, we can write (interpreting “but” as “and”)

s1 = a∧b,

s2 = c,

s = s1∨s2 = (a∧b)∨c.

Using these expressions we can write the pseudo-code algorithm shown in Figure 6.7. In this

ALGORITHM LeapYear(year)
a← year is divisible by 4
b← year is not divisible by 100
c← year is divisible by 400
IF (a∧b)∨c THEN

RETURN true (year is a leap year)
ELSE

RETURN false (year is not a leap year)
END IF

Figure 6.7: Pseudo-code algorithm for the leap year problem

pseudo-code algorithm we use the left arrow symbol to indicate assignment. In Java, ifyear is an
integer variable then

a translates toyear % 4 == 0
b translates toyear % 100 != 0
c translates toyear % 400 == 0

and we obtain the boolean leap year expression

(year % 4 == 0) && (year % 100 != 0) || (year % 400 == 0)

The&& operator will be performed first, since it has a higher precedence than|| .

EXAMPLE 6.23 (Leap year test) To test the leap year expression try the following statements
in theBeanShell workspace editor (select it from the File menu).

6.12 String comparison and equality 273

int year = 2004;
if ((year % 4 == 0) && (year % 100 != 0) || (year % 400 == 0))

print(year + " is a leap year");

From the editor’s “Evaluate” menu select “Eval in workspace” and you will see the message “2004
is a leap year” in the workspace. Try other years and select ”Eval in workspace” each time.

6.11.3 Short circuit evaluation

In Java the boolean expressionp && q is evaluated using what is calledshort circuit evaluation.
The idea is that ifp is evaluated and it isfalse , the entire expression will befalse , so there is no
need to evaluateq. However, ifp is true then it is necessary to evaluateq to obtain the truth value
of p && q. A similar rule is used forp || q . Herep is evaluated first and if it has the valuetrue
the entire expression istrue so there is no need to evaluateq. In Java the order of expressions in
the compound boolean expressionsp∧q andp∨q may be important even though in mathematics
the order is unimportant sincep∧q = q∧ p andp∨q = q∨ p.

EXAMPLE 6.24 (Short-circuit evaluation) If x andy are variables of typeint the if-statement

if (x != 0 && y/x > 2) {...}

does not result in a division by zero whenx is zero. The expressionx != 0 will be evaluated first
to false in this case, and the second expression will not be attempted. However, when the order
of the expressions is reversed, as in the if-statement

if (y/x > 2 && x != 0) {...}

an error will result whenx happens to be zero.

6.12 String comparison and equality

TheString class was introduced in Chapter 4. We now consider string comparison methods. In
Table 6.1 we introduced the four relational operators<, <=, >=, and> comparing two arithmetic
expressions, and the two equality operators,== and!= . We cannot use these operators to compare
two strings. In particular the== operator compares two string references for equality not the string
objects that they reference.

EXAMPLE 6.25 (Incorrect use of == for string comparison) To test this try the following
statements in theBeanShell workspace editor (select it from the File menu).

String s1 = "hello";
String s2 = "hello";
if (s1 == s2)

print("equal");
else

print("not-equal");

274 Making Decisions

and evaluate it in the work space. The result “not-equal” will be displayed no matter what strings
are used. The reason is that the variabless1 ands2 are notString objects. They are references to
String objects and will always have different values, even if they reference the same string object
(see Part (b) of Figure 4.13). It is the references that are being compared by the== operator not the
characters in the string objects.

6.12.1 Equals method for string omparison

In order to compareString objects themselves for equality, theString class has an instance
method calledequals with the prototype

public boolean equals(Object obj)

The argument is anObject type rather than aString type for technical reasons that we will
discuss in Chapter 10. when we study inheritance and polymorphism. An object of any class is of
typeObject and in particular a string is also of typeObject so we can use a string as an argument.
For now just assume that the argument is of typeString .

The prototype tells us that we can send theequals message to a string asking if it is equal to
the argument string. The result will be true if the two stringobjects are equal, which means they
have the same length and they contain the same characters. The comparison is case sensitive so
the string"abc" is different from the string"aBc" .

EXAMPLE 6.26 (String equality using equals method) If we change Example 6.25 to use
equals to obtain

String s1 = "hello";
String s2 = "hello";
if (s1.equals(s2))

print("equal");
else

print("not-equal");

then the if-statement works as expected. To test for inequality you can use the negation in an
if-statement of the form

if (! s1.equals(s2)) {...}

Heres1.equals(s2) is evaluated and! is applied to negate the result.

EXAMPLE 6.27 (Selecting menu choices)In an interactive program you may display a menu
of choices and then ask the user to select one of the choices. Suppose the choices are the strings
"addition" , "subtraction" , "multiplication" , or "division" . The statements

if (choice.equals("addition"))
// process addition choice here

else if (choice.equals("subtraction"))
// process subtraction choice here

6.12 String comparison and equality 275

else if (choice.equals("multiplication"))
// process multiplication choice here

else if (choice.equals("division"))
// process division choice here

else
// process invalid choice here

can be used to process the different choices.

6.12.2 Lexicographical ordering of strings

Sometimes we want to check two strings not to see if they are equal but to determine which one
comes first in thelexicographical ordering of strings. This ordering is defined by comparing
characters from the strings one at a time.

Each character in Java is internally represented by a 16-bitinteger, called acharacter code, us-
ing the Unicode system. The usual North American subset for the English language (punctuation,
digits ’0’ to ’9’ , uppercase letters’A’ to ’Z’ , and lowercase letters’a’ to ’z’), occupy the first
128 positions in this 16-bit code. This 128 character subsetis called the ASCII code. The next 128
codes contain various accented characters, used by languages such as German and French, and the
first 256 Unicode characters form what is called theISO-LATIN 1 character set.

The following simple class can be used to find out the codes corresponding to various charac-
ters.

ClassCharacterDecoder

book-projects/chapter6/strings

package chapter6.strings; // remove this line if you’re not using packages
/**

* Finding the code for a given character
*/

public class CharacterDecoder
{

/**
* Return integer code of a character
* @param c the character to decode
* @return the integer code of c
*/

public int code(char c)
{

int code = (int) c;
return code;

}
}

Here a typecast is used to convert the characterch to an integer value. The results for the printable
characters in the range 0 to 127 are shown in Table 6.4. To find the ASCII code for a character in
the table, add the number at the beginning of its row to the number at the top of its column. For

276 Making Decisions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
32 ! " # $ % & ’ () * + , - . /
48 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
64 @ A B C D E F G H I J K L M N O
80 P Q R S T U V W X Y Z [\] ˆ _
96 ‘ a b c d e f g h i j k l m n o

112 p q r s t u v w x y z { | } ˜

Table 6.4: ASCII codes for characters

example, the code for’Z’ is 80+10= 90. The first 32 codes (0 to 31) are not shown, since they
are non-printable control codes. For example, carriage return has code 13 and is denoted by’\r’ ,
line feed has code 10 and is denoted by’\n’ , and the tab character has code 9 and is denoted by
’\t’ .

In this code the digits’0’ to ’9’ have smaller codes than uppercase letters, which in turn have
smaller codes than the lowercase letters. The codes for’0’ to ’9’ are increasing, the codes for
’A’ to ’Z’ are increasing, and the codes for’a’ to ’z’ are increasing. This means that we can
apply the six comparison operators to characters in a relational expression and Java will use their
codes. This imposes an ordering on the character set so we cansay, for example, that’a’ < ’f’ ,
’A’ < ’C’ , ’A’ < ’a’ , ’5’ < ’A’ , ’5’ < ’6’ , and so on.

Using character codes to order strings

A string ordering can now be defined using the ordering of the string characters based on their
character codes. This is called the lexicographical order.You start comparing the two strings one
character at a time until either of the following conditionsare true:

1. the character in one string is different from the corresponding one in the other string

2. one of the strings ends before the other

In case 1 the string whose character has the smaller code at the first position where they differ is
said to precede the other (is “smaller than” the other) in thelexicographical ordering. For example,
“Frank” precedes “Fred”, since the “a” at index 2 of “Frank” has a smaller code than the “e” at
index 2 of “Fred”. As another example, “Bobby” comes after “Bob”. Their first three characters
match but then there are no more characters in “Bob” so we say that “Bobby” follows “Bob” (or
“Bob” precedes “Bobby”) in the lexicographical ordering. This is case 2, and the shorter string
always precedes the longer one.

6.12.3 compareTo method for string comparison

We have seen that we cannot use== and!= to compare strings for equality and inequality. Instead
we use theequals method. Similarly we cannot use<=, <, >, or>= to compare two strings. Instead
there is acompareTo instance method in theString class. It has the prototype

6.12 String comparison and equality 277

Boolean expression Meaning if true
s1.compareTo(s2) < 0 s1 precedess2
s1.compareTo(s2) <= 0 s1 precedes or is equal tos2
s1.compareTo(s2) > 0 s1 follows s2
s1.compareTo(s2) >= 0 s1 follows or is equal tos2
s1.compareTo(s2) == 0 s1 is equal tos2 (same ass1.equals(s2))
s1.compareTo(s2) != 0 s1 is not equal tos2 (same as!s1.equals(s2))

Table 6.5: Lexicographical string comparison usingcompareTo

public int compareTo(String s)

The return value indicates the result of the comparison. A negative value fors1.compareTo(s2)
means thats1 precedess2 , a zero value means thats1 and s2 are equal, and a positive value
means thats1 follows s2 . The boolean expressions that are used to compare strings are shown in
Table 6.5. Here is a simple string comparison class you can try in BlueJ.

ClassStringComparer

book-projects/chapter6/strings

package chapter6.strings; // remove this line if you’re not using packages
/**

* A simple class to illustrate how to compare two strings
*/

public class StringComparer
{

public String compare(String s1, String s2)
{

int result = s1.compareTo(s2);

if (result < 0)
return s1 + " precedes " + s2;

else if (result == 0)
return s1 + " equals " + s2;

else
return s1 + " follows " + s2;

}
}

You can also try the following example using theBeanShell workspace editor.

EXAMPLE 6.28 (String comparison using compareTo method)Using theBeanShell editor
type in thecompare method from theStringComparer class and evaluate it in the workspace.
Now try the statements

bsh % show();
<true>

278 Making Decisions

bsh % compare("one", "two");
<one precedes two>
bsh % compare("two", "one");
<two follows one>
bsh %

to experiment with thecompareTo method.

6.12.4 Case insensitive string comparison

Sometimes it is useful to do a case-insensitive string comparison. This means that lower case
letters are considered equivalent to their upper case counterparts. One way to do this is to convert
both strings to lower case and then usecompareTo as in the following expression

s1.toLowerCase()(s2.toLowerCase());

However, this is not necessary since there is acompareToIgnoreCase method in theString class
with prototype

public int compareToIgnoreCase(String s)

that does this case-insensitive comparison.

6.13 Boolean valued methods

Methods that returnboolean values are calledboolean valued methods. Theequals method in
theString class is a good example. There are other such methods in theString class.

EXAMPLE 6.29 (Boolean valued String methods) The equalsIgnoreCase method is like
theequals method but it ignores the case of the letters. It has the prototype

public boolean equalsIgnoreCase(String s)

Other examples are thestartsWith andendsWith instance methods that have the prototypes

public boolean startsWith(String prefix)
public boolean endsWith(String suffix)

The first returns true if the string receiving the message starts with the givenprefix , and the
second returns true if the string receiving the message endswith the givensuffix .

We can also write our own boolean valued methods as the following examples show.

EXAMPLE 6.30 (An isLeapYear method) For the leap year Example 6.23 we can write a
boolean valued method calledisLeapYear that takes the year as a formal argument and returns
true or false , depending on whether the year is a leap year. The method prototype is

public boolean isLeapYear(int y)

6.14 Error checking techniques 279

where the formal argumenty stands for the year. The method declaration is

public boolean isLeapYear(int y)
{

return (y % 4 == 0) && (y % 100 != 0) || (y % 400 == 0);
}

This method could easily be tested inBeanShell as follows

bsh % show();
<true>
bsh % boolean isLeapYear(int y)
{ return (y % 4 == 0) && (y % 100 != 0) || (y % 400 == 0); }
bsh % isLeapYear(2000);
<true>
bsh % isLeapYear(2003);
<false>
bsh % isLeapYear(2004);
<true>
bsh %

assuming thatshow() is on.

EXAMPLE 6.31 (A realRoots method) Given the quadratic equationax2 + bx+ c = 0, the
method

public boolean realRoots(double a, double b, double c)
{

return b*b - 4.0*a*c >= 0;
}

returnstrue if the equation has real roots andfalse otherwise.

6.14 Error checking techniques

A simple version of the bank account class was developed in Chapter 4, page 106. In that version
there were no checks for illegal values of the data fields. Forexample, the account number must
be positive, and the balance must not be negative. Also, it must not be possible to withdraw more
than the current balance, or deposit a negative amount.

We can use an if-statement to test for these illegal conditions. In general there are several ways
to do the error handling. For the class designer the easiest way is to do no error checking at all!
This places the entire burden of error checking on the user ofthe class. For example, to ensure that
a withdrawal is legal, the user would have to write statements such as

BankAccount myAccount = new BankAccount(123, "Peter Pasco e", 4050.00);
...
if (myAccount.getBalance() >= 5000)

280 Making Decisions

{
myAccount.withdraw(5000);

}

On the other hand the programmer could simply decide to use

myAccount.withdraw(5000);

without checking, and put the account in an illegal state with a negative balance.
It is never a good idea to leave error checking to the user of the class. It is the responsibility

of the class designer to ensure that a bank account object cannever be in an inconsistent state (bad
account number or negative balance). This principle is calleddata encapsulationand it ensures
data integrity. The ability to encapsulate data within an object and protect it is one of the most
important benefits of object-oriented programming.

Ensuring data integrity in a class can be accomplished by following some simple rules in de-
signing classes:

1. Make all data fields private.

2. Check the validity of all arguments in a constructor and report an error if any of them are
illegal.

3. Check the validity of method arguments, especially for methods that can change the values
of one or more data fields, and report an error if any of them areillegal.

4. Do not return references to private data fields. This is theunwanted side-effect problem
illustrated in Chapter 4 using theMPoint andMCircle classes.

6.14.1 Reporting errors

There are also several ways to report errors:

1. If an error occurs inside a constructor, such as an illegalargument,

(a) display an error message and exit the program,

(b) have the constructor “throw an exception” (to be discussed later)

2. If an error occurs inside a method, such as an illegal argument, leave the data fields un-
changed and either

(a) display an error message and exit the program,

(b) have the method “throw an exception” (to be discussed later),

(c) return a boolean value or other error indicator that can be checked by the user,

(d) do nothing and exit the method.

6.14 Error checking techniques 281

6.14.2 Using boolean return values and exit to report errors

We can use theBankAccount class to illustrate error reporting. For example, the originalwithdraw
method is

public void withdraw(double amount)
{

balance = balance - amount;
}

which does no error handling. It could be replaced by the boolean valued method

public boolean withdraw(double amount)
{

boolean amountValid = (0 <= amount) && (amount <= balance);
if (amountValid)
{

balance = balance - amount;
}
return amountValid;

}

which returnstrue if the amount is valid, andfalse otherwise. This method changes the balance
only if there is enough money. This ensures data integrity, but leaves the processing of the error to
the user. For example, the user could write statements such as

BankAccount myAccount = new BankAccount(123, "Andy Dalzie l", 4050.00);
...
boolean ok = myAccount.withdraw(5000);
if (! ok)
{

// report error here
// ask for a new withdrawal amount or cancel withdrawal

}

The important idea here is that the program can recover from the error by either asking for a new
withdrawal amount or canceling the withdrawal. Even if the user forgets to do the error checking,
by ignoring the return value as in

myAccount.withdraw(5000);

the data integrity of the object is maintained. Similarly, the originaldeposit method

public void deposit(double amount)
{

balance = balance + amount;
}

should not change the balance if a negative amount is used, soit could be replaced by

282 Making Decisions

public boolean deposit(double amount)
{

boolean amountValid = amount >= 0;
if (amountValid)
{

balance = balance + amount;
}
return amountValid;

}

which does not change the balance, in caseamount is negative.

6.15 Error reporting using exceptions

We now show how tothrow an exceptionto indicate illegal arguments in a constructor or method.
This is the most important error-handling technique.

6.15.1 Exception classes and objects

An exception is an object from an exception class that has error information in it. To throw one
means to suspend execution of the program and either processthe error or signal the caller of the
constructor or method that an error condition has occurred.The throw statement is used to throw
exceptions. It has the syntax

throw exceptionObject;

whereexceptionObjectis an exception object constructed from one of the exceptionclasses. There
are many kinds of exception classes in Java and we can even write our own.

6.15.2 Throwing exceptions in theBankAccount class

We now illustrate exceptions for illegal method and constructor arguments using theBankAccount
class. The exception class is calledIllegalArgumentException and it already exists in package
java.lang .

In our first attempt at theBankAccount class (page 106) the constructor declaration is

public BankAccount(int accountNumber, String ownerName, double initialBalance)
{

number = accountNumber;
name = ownerName;
balance = initialBalance;

}

We need to check for account numbers that are 0 or negative, names that have no object associated
with them or are empty strings, and negative initial balances. This can be done by throwing an
exception if one of these errors occur.

6.15 Error reporting using exceptions 283

Here is a version of the bank account constructor that constructs exception objects and throws
them. An exception constructor can take one argument, a string that specifies an appropriate error
message.

public BankAccount(int accountNumber, String ownerName, double initialBalance)
{

if (accountNumber <= 0)
throw new IllegalArgumentException("Account number must be positive");

if (ownerName.equals("") || ownerName == null)
throw new IllegalArgumentException("Owner name not defin ed");

if (initialBalance <= 0)
throw new IllegalArgumentException("Balance must be non- negative");

number = accountNumber;
name = ownerName;
balance = initialBalance;

}

Each if-statement checks one of the three arguments. We don’t need to useelse here: when an
exception is thrown control is immediately transferred outof the constructor to the method that
called it. SinceownerName is a reference to aString object, we can check if an object has been
defined, by comparing the reference with the special valuenull . If ownerName is null this means
that the caller has forgotten to initialize the reference for the string.

We can also use this technique to write the following versions of thewithdraw anddeposit
methods:

public void deposit(double amount)
{

if (amount < 0)
throw new IllegalArgumentException("Invalid amount for d eposit");

balance = balance + amount;
}

public void withdraw(double amount)
{

if (amount < 0 || amount > balance)
throw new IllegalArgumentException("Invalid amount for w ithdraw");

balance = balance - amount;
}

When an exception is thrown the Java interpreter immediately stops executing the method or
constructor in which the exception occurred and looks for anerror processing block called acatch
block. If it doesn’t find one it looks for a catch block in the caller of this method or constructor
and so on. Eventually, if the exception is not caught, the Java interpreter will catch it, display the
error message, and terminate the program.

In any case when throwing exceptions as in theBankAccount example the important idea is
that we do not need to concern ourselves with who catches the exception or how it is processed.

284 Making Decisions

We simply provide an informative error message. Here is the complete version of the bank account
class with error checking using exceptions.

ClassBankAccount

book-projects/chapter6/bank_account

package chapter6.bank_account; // remove this line if you’ re not using packages
/**

* A bank account object encapsulates the account number, own er name, and
* current balance of a bank account.
* This version checks for illegal method and constructor arg uments.
*/

public class BankAccount
{

private int number;
private String name;
private double balance;

/**
* Construct a bank account with given account number,
* owner name and initial balance.
* @param accountNumber the account number
* @param ownerName the account owner name
* @param initialBalance the initial account balance
* @throws IllegalArgumentException if account number is ne gative,
* owner name is null or empty, or if balance is negative.
*/

public BankAccount(int accountNumber, String ownerName, double initialBalance)
{

if (accountNumber <= 0)
throw new IllegalArgumentException("Account number must be positive");

if (ownerName.equals("") || ownerName == null)
throw new IllegalArgumentException("Owner name not defin ed");

if (initialBalance < 0)
throw new IllegalArgumentException("Balance must be non- negative");

number = accountNumber;
name = ownerName;
balance = initialBalance;

}

/**
* Deposit money in the account.
* @param amount the deposit amount. If amount <= 0 the
* account balance is unchanged.
* @throws IllegalArgumentException if deposit amount is ne gative
*/

public void deposit(double amount)
{

if (amount < 0)
throw new IllegalArgumentException("Invalid amount for d eposit");

balance = balance + amount;

6.15 Error reporting using exceptions 285

}

/**
* Withdraw money from the account.
* If account would be overdrawn the account balance is unchan ged.
* @param amount the amount to withdraw.
* @throws IllegalArgumentException if withdraw amount is i nvalid
*/

public void withdraw(double amount)
{

if (amount < 0 || amount > balance)
throw new IllegalArgumentException("Invalid amount for w ithdraw");

balance = balance - amount;
}

/**
* Return the account number.
* @return the account number.
*/

public int getNumber()
{

return number;
}

/**
* Return the owner name.
* @return the owner name.
*/

public String getName()
{

return name;
}

/**
* Return the account balance.
* @return the account balance.
*/

public double getBalance()
{

return balance;
}

/**
* string representation of this account.
* @return string representation of this account.
*/

public String toString()
{

return "BankAccount[" + number + ", " + name + ", " + balance + "] ";
}

}

286 Making Decisions

To test the error processing in this version ofBankAccount we can use a simple tester class such
as

ClassExceptionTester

book-projects/chapter6/bank_account

package chapter6.bank_account; // remove this line if you’ re not using packages
/**

* Showing uncaught exception messages;
*/

public class ExceptionTester
{

public void doTest()
{

BankAccount b = new BankAccount(123, "Fred", 100);
b.withdraw(200);

}

public static void main(String[] args)
{

new ExceptionTester().doTest();
}

}

If you execute this class inBlueJ the appropriatethrow statement will be highlighted in the
BankAccount source code. The following output shows what happens when the Java interpreter
processes an illegal argument exception.

Exception in thread "main" java.lang.IllegalArgumentExc eption:
Invalid amount for withdraw
at chapter6.bank_account.BankAccount.withdraw(BankAc count.java:58)
at chapter6.bank_account.ExceptionTester.doTest(Exce ptionTester.java:10)
at chapter6.bank_account.ExceptionTester.main(Except ionTester.java:15)

Our custom error message is displayed and there is useful information concerning the location of
the error. The error occurred on line 58 in theBankAccount class within the body of thewithdraw
method which was called from line 10 in theExceptionTester class, and this is within the body
of the doTest method. Finally, thedoTest method was called from line 15 which is within the
body of themain method. Thus, the exception processing traces the flow of execution until the
exception occurs.

6.15.3 Catching exceptions

Having the Java interpreter catch exceptions and terminateour program is rarely satisfactory, unless
we cannot recover from the error. To catch and process exceptions ourselves we use what is called
a try-catch statement. The simplest form is given by

try

6.15 Error reporting using exceptions 287

{
// statements to try

}
catch (...)
{

// statements to execute when something in try fails
}
// other statements

The idea here is that we put any statements that can throw exceptions in the try block. If no
exception is thrown the catch block is ignored and control passes to the other statements below the
try-catch statement as though the try-catch block was not there. However, if an exception is thrown
execution immediately leaves the try block and the statements in the catch block are executed.

For ourBankAccount example the catch block will have the form

catch (IllegalArgumentException e)
{

// statements to execute when try fails
}

Exceptions, like almost everything in Java, are objects. This catch block specifies the class to
which the exception belongs, and a name for the exception object. Multiple catch blocks can be
used if there is more than one type of exception. We can find outmore about the exception that
occurred by invoking thegetMessage method one. A string containing the error message will be
returned.

As a simple illustration the following class uses a try-catch block to display the error message
for the exception thrown by thewithdraw method.

ClassExceptionCatcher

book-projects/chapter6/bank_account

package chapter6.bank_account; // remove this line if you’ re not using packages
/**

* Catching an exception
*/

public class ExceptionCatcher
{

public void doTest()
{

try
{

BankAccount b = new BankAccount(123, "Fred", 100);
b.withdraw(200);

}
catch (IllegalArgumentException e)
{

System.out.println(e.getMessage());
}

288 Making Decisions

}

public static void main(String[] args)
{

new ExceptionCatcher().doTest();
}

}

Here the method call expressionb.withdraw(200) will throw an exception.
In this simple example we just display the error message using e.getMessage() : When the

doTest method is executed withinBlueJ our error message

Invalid amount for withdraw

is displayed in the terminal window. If you also want to tracethe location of the exception then
replace theprintln statement with the statement

e.printStackTrace();

In more realistic programs we could try to recover from the error and ask for another withdrawal
amount.

6.16 Paper, scissors, rock game (PSR)

As an example of if-statements, boolean-valued methods, and exception processing we consider
the paper, scissors, rock (PSR) game. This is a game for two players, called Player 1 and Player 2.
We can imagine that each player has a piece of paper (P), a pairof scissors (S), and a rock (R). At
the signal, each player will present one of these three items. The rules are simple.

6.16.1 Rules of the game

• If Player 1 chooses paper and Player 2 chooses rock, Player 1 wins (paper covers rock)

• If Player 1 chooses paper and Player 2 chooses scissors, Player 2 wins (scissors cut paper)

• If Player 1 chooses rock and Player 2 chooses scissors, Player 1 wins (rock breaks scissors)

• If both players choose the same item, then the game is a draw.

The nine possible combinations are shown in Table 6.6. The three rows correspond to Player 1’s
choices, and the columns correspond to Player 2’s choices.

6.16.2 Object-oriented PSR game

We can write an OOP version of this game using two classes: onecalledPSRPlayer that represents
a player, and one calledPSRGamethat represents the game.

6.16 Paper, scissors, rock game (PSR) 289

Player 2
Paper Scissors Rock

Paper Draw Player 2 Player 1
Player 1 Scissors Player 1 Draw Player 2

Rock Player 2 Player 1 Draw

Table 6.6: Table of outcomes for the paper, scissors, rock game

Designing thePSRPlayer class

We can represent the player choices using the characters’P’ for paper,’S’ for scissors, and’R’
for rock. Each player object represents the current choice so we can provide methods for getting
and setting the choice. This gives the class design

public class PSRPlayer
{

private char choice;
public PSRPlayer() {...}
public char getChoice() {...}
public void setChoice(char choice) {...}

}

Designing thePSRGame class

ThePSRGameclass needs to construct a game for two players and their choices (aggregation), play
a single round and report who won. Internally the class will determine the winner based on the
rules of the game. The class design is

public class PSRGame
{

private PSRPlayer p1, p2;

public static final int DRAW = 0;
public static final int WIN_PLAYER_ONE = 1;
public static final int WIN_PLAYER_TWO = 2;

public PSRGame(PSRPlayer p1, PSRPlayer p2) {...}
public int playRound() {...}

}

Here we have used theint return type onplayRound since there are three possible outcomes of a
round: player 1 wins, player 2 wins, or the round is a draw. We have defined three constants in the
class to represent these three outcomes, andplayRound will return one of them.

PSRPlayer implementation

ThePSRPlayer implementation is simple:

290 Making Decisions

ClassPSRPlayer

book-projects/chapter6/psr_game

package chapter6.psr_game; // remove this line if you’re no t using packages
/**

* This class represents a player in the PSR game
*/

public class PSRPlayer
{

private char choice; // the player’s choice

/**
* Construct a PSR game player
*/

public PSRPlayer()
{
}

/**
* get the player’s choice
* @return the player’s choice character
*/

public char getChoice()
{

return choice;
}

/**
* Set the choice made by the player
* @param choice the choice character
*/

public void setChoice(char choice)
{

this.choice = Character.toUpperCase(choice);
}

}

Here we have converted the player’s character to upper case to make the character choices case-
insensitive.

PSRGame implementation

The constructor implementation is simple and theplayRound method can be expressed in terms
of a boolean valuedisWin method as

public int playRound()
{

// throw exceptions here for invalid choices

if (isWin(p1, p2))
{

6.16 Paper, scissors, rock game (PSR) 291

return WIN_PLAYER_ONE;
}
else if (isWin(p2, p1))
{

return WIN_PLAYER_TWO;
}
else
{

return DRAW;
}

}

Here theisWin method returns true if the first player wins over the second player so it is called
twice to determine if a player wins. It can be implemented as astatic method that uses Table 6.6
to determine who wins. TheplayRound method is also a good place to check for illegal input
characters for the choices. We can do this by throwing an exception. The appropriate exception in
this case is calledIllegalStateException .

Finally, Table 6.6 shows that there are three ways that Player 1 can win, so we can simply use
a “logical or” to combine them to obtain the condition.

(pc1 == ’P’ && pc2 == ’R’) // row 1
|| (pc1 == ’S’ && pc2 == ’P’) // row 2
|| (pc1 == ’R’ && pc2 == ’S’) // row 3

wherepc1 andpc2 represent the choices of Player 1 and Player 2.
Here is the complete implementation.

ClassPSRGame

book-projects/chapter6/psr_game

package chapter6.psr_game; // remove this line if you’re no t using packages
/**

* Play one round of the PSR game with two players.
*/

public class PSRGame
{

public static final int WIN_PLAYER_ONE = 1;
public static final int WIN_PLAYER_TWO = 2;
public static final int DRAW = 0;

private PSRPlayer p1, p2;

/**
* Construct a game from two players
* @param p1 the first player
* @param p2 the second player
*/

public PSRGame(PSRPlayer p1, PSRPlayer p2)
{

292 Making Decisions

this.p1 = p1;
this.p2 = p2;

}

/**
* Return the result of one round of the game as one of
* the three public constants.
* @return outcome as one of the three public constants
*/

public int playRound()
{

if (isInvalidChoice(p1))
{

throw new IllegalStateException("Player 1: invalid choic e");
}

if (isInvalidChoice(p2))
{

throw new IllegalStateException("Player 2: invalid choic e");
}

if (isWin(p1, p2))
{

return WIN_PLAYER_ONE;
}
else if (isWin(p2, p1))
{

return WIN_PLAYER_TWO;
}
else
{

return DRAW;
}

}

/* Return true if the first player p1 wins over the second play er p2.
*/

private static boolean isWin(PSRPlayer p1, PSRPlayer p2)
{

char pc1 = p1.getChoice();
char pc2 = p2.getChoice();
return (pc1 == ’P’ && pc2 == ’R’) || (pc1 == ’S’ && pc2 == ’P’) ||

(pc1 == ’R’ && pc2 == ’S’);
}

private static boolean isInvalidChoice(PSRPlayer p)
{

char choice = p.getChoice();
return choice != ’P’ && choice != ’S’ && choice != ’R’;

}
}

6.16 Paper, scissors, rock game (PSR) 293

Testing the class withBlueJ

You can play the game inBlueJ as follows:

1. Construct two player objects calledp1 andp2.

2. Construct aPSRGameobject calledgame, usingp1 andp2 as arguments.

3. Select thesetChoice method from thePSRPlayer object menu for each player and make a
choice.

4. Select theplayRound choice from thePSRGameobject menu. The result 0, 1, or 2 will be
shown in a method result box.

5. Repeat steps 3 and 4 for another round.

Testing the class withBeanShell

The following example shows how the class can be tested usingBeanShell.

EXAMPLE 6.32 (PSR game)Try the statements inBeanShell

bsh % addClassPath("c:/book-projects/chapter6/psr_gam e");
bsh % PSRPlayer p1 = new PSRPlayer();
bsh % PSRPlayer p2 = new PSRPlayer();
bsh % PSRGame game = new PSRGame(p1, p2);
bsh % p1.setChoice(’p’);
bsh % p2.setChoice(’s’);
bsh % print(game.playRound());
2
bsh % p1.setChoice(’s’);
bsh % p2.setChoice(’p’);
bsh % print(game.playRound());
1
bsh % p1.setChoice(’p’);
bsh % p2.setChoice(’p’);
bsh % print(game.playRound());
0
bsh %

to play three rounds of the game.

Running the game using amain method

To play a round of this game using amain method inBlueJ, or outsideBlueJ from the command
line, requires that we learn how to get console (terminal) input from the user. We need to write a
special kind ofuser interfaceclass called aconsole interfaceto play one round of the game from
the command line as follows:

294 Making Decisions

Player 1, enter your choice: P, S, or R
p
Player 2, enter your choice: P, S, or R
s
Player 2 wins!

Here each player types a character and presses return in response to a prompt.

6.17 Console Input Using aScanner object

Before Java 1.5 getting console input was not trivial. Most people wrote a special class to do this.
Console input has been standardized in Java 1.5 with the introduction of theScanner class. It is
in a package calledjava.util and can be imported into any class by using theimport statement

import java.util.Scanner;

6.17.1 Some usefulScanner methods

This class has a constructor and methods with the following prototypes

• Scanner input = new Scanner(System.in);

Construct aScanner object calledinput and connect it for reading from the console.
There are many other types of constructors but this is the only one we need. TheSystem.in
object is used to get input from the keyboard in the console window just asSystem.out is
used to display output in the console window.

• public int nextInt()

Read the next number typed in the console window and return itas anint value.

• public long nextLong()

Read the next number typed in the console window and return itas along value.

• public float nextFloat()

Read the next number typed in the console window and return itas afloat value.

• public double nextDouble()

Read the next number typed in the console window and return itas adouble value.

• public String nextLine()

Read the rest of a line typed in the console window and return it as aString .

There are many other methods but these are the only ones we need.

6.17 Console Input Using aScanner object 295

6.17.2 One input per line input model

If you are not careful there are some pitfalls when using theScanner class for interactive input.
For example, the statements

Scanner input = new Scanner(System.in);
System.out.println("Enter your age");
int age = input.nextInt();
System.put.println("Enter your name");
String name = input.nextLine();

do not work as you may expect sincename will be the empty string. This is so because when you
enter the age and press the Enter key the newline is not read bythenextInt method. Instead it is
read by thenextLine method and the result is the empty string being assigned toname. The name
that you typed is left unread in the input buffer.

The following statements avoid this

Scanner input = new Scanner(System.in);
System.out.println("Enter your age");
int age = input.nextInt();
input.nextLine(); // eat the end of line
System.put.println("Enter your name");
String name = input.nextLine();

Following each numeric input method call by the statement

input.nextLine();

will eat the new line character (throw it away). This is called the one input per line interactive input
model.

6.17.3 Console interface class for the PSR game

Using theScanner class we can write a console-interface class for the PSR gamewhich can be
run both insideBlueJ and outsideBlueJ from the command line.

ClassPSRGameRunner

book-projects/chapter6/psr_game

package chapter6.psr_game; // remove this line if you’re no t using packages
import java.util.Scanner;
/**

* A console interface for one round of the PSRGame
*/

public class PSRGameRunner
{

public void run()
{

296 Making Decisions

Scanner input = new Scanner(System.in);
PSRPlayer p1 = new PSRPlayer();
PSRPlayer p2 = new PSRPlayer();
PSRGame game = new PSRGame(p1, p2);

System.out.println("Player 1, enter your choice: P, S, or R ");
char player1Choice = input.nextLine().charAt(0);
p1.setChoice(player1Choice);

System.out.println("Player 2, enter your choice: P, S, or R ");
char player2Choice = input.nextLine().charAt(0);
p2.setChoice(player2Choice);

int result = 0; // any initial value will do

try
{

result = game.playRound();
}
catch (IllegalStateException e)
{

System.out.println("Illegal input");
result = PSRGame.DRAW;

}

if (result == PSRGame.WIN_PLAYER_ONE)
System.out.println("Player 1 wins!");

else if (result == PSRGame.WIN_PLAYER_TWO)
System.out.println("Player 2 wins!");

else
System.out.println("It’s a draw");

}

public static void main(String[] args)
{

PSRGameRunner program = new PSRGameRunner();
program.run();

}
}

In therun method we first construct the objects needed to play a round. Then we use thenextLine
method and thesetChoice method to set each player’s character to the first character of the input
line.

If playRound throws an exception, we display a message and set the outcometo a draw. It is
necessary to declare theresult variable outside thetry block, otherwise it would be local to the
try block and undefined in the if-statement that displays theresult.

This PSRGameRunnerclass can be run from the command line or insideBlueJ using either the
main method or by constructing aPSRGameRunnerobject and choosing itsrun method.

6.18 Complex roots of a quadratic equation 297

6.18 Complex roots of a quadratic equation

We have written aQuadraticRootFinder class (page 256) that calculates the roots only if they
are real. We now generalize and find the roots in any case, realor complex.

Recall that a complex number has the forma+ bi wherea and b are called the real and
imaginary part of the complex number andi =

√
−1, i2 = −1. Given the quadratic equation

ax2 +bx+c = 0 the roots have non-zero imaginary part ifb2−4ac< 0 and are given by

r1 = c+di, r2 = c−di where c =− b
2a

, d =

√

|b2−4ac|
2a

An interesting way to find the roots is to first write a class called Complex that represents
complex numbers and then use it in a class calledComplexQuadraticRootFinder to find the
roots.

A simple design for theComplex class is

public class Complex
{

private double realPart;
private double imagPart;

public Complex(double real, double imag) {...}
public double getRealPart() {...}
public double getImagPart() {...}
public String toString() {...}

6.18.1 Complex class

Except for thetoString method the implementation is straightforward:

ClassComplex

book-projects/chapter6/root_finder

package chapter6.root_finder; // remove this line if you’r e not using packages
/**

* A simple class whose objects represent complex numbers by t heir
* real and imaginary parts.
*/

public class Complex
{

private double realPart;
private double imagPart;

/** Construct complex number with given real and imaginary p arts.
* @param real the real part of the complex number
* @param imag the imag part of the complex number
*/

public Complex(double real, double imag)

298 Making Decisions

{
realPart = real;
imagPart = imag;

}

/**
* Returns real part of this complex number.
* @return the real part of this complex number
*/

public double getRealPart()
{

return realPart;
}

/**
* Returns imaginary part of this complex number.
* @return the imaginary part of this complex number
*/

public double getImagPart()
{

return imagPart;
}

/** Returns a string representation of this complex number.
* @return a string representation of this complex number
* of the form a + b i, a - b i, or a in case b = 0
*/

public String toString()
{

if (imagPart > 0)
return realPart + " + " + imagPart + " i";

else if (imagPart < 0)
return realPart + " - " + Math.abs(imagPart) + " i";

else
return realPart + "";

}
}

The toString method displays the complex number in the forma+bi or a−bi depending on the
sign ofb.

Now theQuadraticRootFinder class (page 6.4.1) can easily be modified to give the complex
version:

ClassComplexQuadraticRootFinder

book-projects/chapter6/root_finder

package chapter6.root_finder; // remove this line if you’r e not using packages
/**

* An object of this class can calculate the complex roots of th e
* quadratic equation axˆ2 + bx + c = 0 given the coefficients a, b, and c.
*/

6.18 Complex roots of a quadratic equation 299

public class ComplexQuadraticRootFinder
{

private double a, b, c;
private Complex root1, root2;

/**
* Construct a quadratic equation root finder given the coeff icients
* @param aCoeff first coefficient in axˆ2 + bx + c
* @param bCoeff second coefficient in axˆ2 + bx + c
* @param cCoeff third coefficient of axˆ2 + bx + c
*/

public ComplexQuadraticRootFinder(double aCoeff, doubl e bCoeff, double cCoeff)
{

a = aCoeff;
b = bCoeff;
c = cCoeff;
doCalculations();

}

private void doCalculations()
{

double d1 = b*b - 4*a*c;
double d2 = Math.sqrt(Math.abs(d1));

if (d1 >= 0)
{

// real root case

double realPart1 = (-b - d2) / (2.0 * a);
double realPart2 = (-b + d2) / (2.0 * a);
root1 = new Complex(realPart1, 0.0);
root2 = new Complex(realPart2, 0.0);

}
else
{

// complex root case

double realPart = -b / (2.0 * a);
double imagPart = d2 / (2.0 * a);
root1 = new Complex(realPart, imagPart);
root2 = new Complex(realPart, -imagPart);

}
}

/**
* Return the first root as a complex number.
* @return the first root as a complex number
*/

public Complex getRoot1()
{

return root1;
}

300 Making Decisions

/**
* Return the second root as a complex number.
* @return the second root as a complex number
*/

public Complex getRoot2()
{

return root2;
}

/**
* Return the coefficient of xˆ2.
* @return the coefficient of xˆ2
*/

public double getA()
{

return a;
}

/**
* Return the coefficient of x.
* @return the coefficient of x
*/

public double getB()
{

return b;
}
/**

* Return the constant coefficient.
* @return the constant coefficient
*/

public double getC()
{

return c;
}

/**
* Change the value of the coefficient of xˆ2.
* @param value the new value for the coefficient of xˆ2
*/

public void setA(double value)
{

a = value;
doCalculations();

}

/**
* Change the value of the coefficient of x.
* @param value the new value for the coefficient of x
*/

public void setB(double value)
{

6.18 Complex roots of a quadratic equation 301

b = value;
doCalculations();

}

/**
* Change the value of the constant coefficient.
* @param value the new value for the constant coefficient.
*/

public void setC(double value)
{

c = value;
doCalculations();

}
}

The return type of thegetRoot1 andgetRoot2 methods is nowComplex .

Testing the class withBlueJ

To test the class inBlueJ perform the following steps.

1. Construct aComplexQuadraticRootFinder object calledfinder with values fora, b, c.

2. From the object menu selectgetRoot1() and click on<object-reference> .

3. Click “Get” button and name theComplex objectroot1 . It will appear on the object bench.

4. From the object menu selectgetRoot2() and click on<object-reference> .

5. Click “Get” button and name theComplex objectroot2 . It will appear on the object bench.

6. From the object menu ofroot1 androot2 select thetoString method to see the roots.

Testing the class withBeanShell

The following example shows how the class can be tested usingBeanShell.

EXAMPLE 6.33 (Complex roots)Try the statements inBeanShell

bsh % addClassPath("c:/book-projects/chapter6/root_fi nder");
bsh % ComplexQuadraticRootFinder finder = new
ComplexQuadraticRootFinder(3,4,5);
bsh % Complex r1 = finder.getRoot1();
bsh % Complex r2 = finder.getRoot2();
bsh % print(r1);
-0.6666666666666666 + 1.1055415967851332 i
bsh % print(r2);
-0.6666666666666666 - 1.1055415967851332 i
bsh %

to find the complex roots of a quadratic equation.

302 Making Decisions

Console interface

We can useScanner to write the following console interface calledComplexRunner for the com-
plex root finding class:

ClassComplexRunner

book-projects/chapter6/root_finder

package chapter6.root_finder; // remove this line if you’r e not using packages
import java.util.Scanner;
/**

* A simple runner class for finding complex roots of a quadrat ic equation
*/

public class ComplexRunner
{

public void run()
{

Scanner input = new Scanner(System.in);
System.out.println("Enter coefficient a");
double a = input.nextDouble();
input.nextLine(); // eat the end of line

System.out.println("Enter coefficient b");
double b = input.nextDouble();
input.nextLine(); // eat the end of line

System.out.println("Enter coefficient c");
double c = input.nextDouble();
input.nextLine(); // eat the end of line

ComplexQuadraticRootFinder finder = new ComplexQuadrati cRootFinder(a,b,c);

Complex root1 = finder.getRoot1();
Complex root2 = finder.getRoot2();

System.out.println("Root 1 is " + root1);
System.out.println("Root 2 is " + root2);

}

public static void main(String[] args)
{

ComplexRunner runner = new ComplexRunner();
runner.run();

}
}

This class can be run insideBlueJ using therun method and the terminal window, or from the
command line using themain method. Typical command-line output is

Enter coefficient a
3

6.19 Review exercises 303

Enter coefficient b
4
Enter coefficient c
5
Root 1 is -0.6666666666666666 + 1.1055415967851332 i
Root 2 is -0.6666666666666666 - 1.1055415967851332 i

6.19 Review exercises

◮ Review Exercise 6.1Define the following terms and give examples of each.

conditional execution boolean expression boolean literal
comparison expression comparison operator equality expression
equality operator relational expression relational operator
block flowchart absolute error
relative error conditional operator compound boolean expression
truth table short circuit evaluation lexicographical ordering
character code boolean valued method exception
throwing an exception catch block

◮ Review Exercise 6.2Develop a set of test data for program classPSRGameTester that will
guarantee that (1) every branch of thePSRGameprogram is tested, and (2) for all legal inputs the
program produces the correct output. This is called exhaustive testing and it constitutes a proof
that the program is correct. In most cases programs are too complicated for exhaustive testing.

◮ Review Exercise 6.3Write truth tables that verify deMorgan’s laws

∼ (a∧b) = (∼ a)∨ (∼ b)

∼ (a∨b) = (∼ a)∧ (∼ b)

◮ Review Exercise 6.4The operationp∨q is true if either ofp andq is true or both are true. The
exclusive orof p andq, denoted byp⊕q, excludes the case that both are true. Its truth table is
shown in Table 6.7. Using a truth table show that

p q p⊕q
false false false
false true true
true false true
true true false

Table 6.7: Truth table for the exclusive or

p⊕q ≡ (p∨q)∧∼ (p∧q)

wherea≡ b means thata andb are logically equivalent (they have the same truth table). This
shows that the exclusive or can be expressed in terms of the logical operators∧, ∨, and∼.

304 Making Decisions

◮ Review Exercise 6.5For theCircleCalculator class from Chapter 3 (page 63) what modifi-
cations would you make to include error processing using exceptions.

◮ Review Exercise 6.6For theTriangleCalculator class from Chapter 3 (page 64) what mod-
ifications would you make to include error processing using exceptions.

6.20 BeanShell exercises

The followingBeanShell exercises can be done using the Workspace Editor. First runBeanShell,
then choose “Workspace Editor” from the “File” menu to open the editor.

Now you can type statements into the editor and they won’t be executed as they are entered.
When you have finished entering statements choose “Evaluatein Workspace” from the “Evaluate”
menu. Now the statements will be executed. You can edit the statements and evaluate them again,
and so on.

This is useful for testing static methods. Type in the method, evaluate it then test it interactively
using the workspace.

◮ BeanShell Exercise 6.1Evaluate theabs method in Example 6.2 in the editor and try state-
ments such as the following in the workspace

bsh % double result = abs(3);
bsh % print(result);
3.0
bsh % result = abs(-3);
bsh % print(result);
3.0

◮ BeanShell Exercise 6.2Do BeanShell Exercise 6.1 using theabs method in Example 6.10.

◮ BeanShell Exercise 6.3RepeatBeanShell Exercise 6.1 for thecubeRoot method in Exam-
ple 6.3.

◮ BeanShell Exercise 6.4Do BeanShell Exercise 6.3 using thecubeRoot in Example 6.12.

◮ BeanShell Exercise 6.5Using the statements in Example 6.6, write a method in the editor
calledmax that takes twodouble values and returns their maximum. Test the method using the
workspace as inBeanShell Exercise 6.1.

◮ BeanShell Exercise 6.6Do BeanShell Exercise 6.5 using the statement in Example 6.11.

◮ BeanShell Exercise 6.7Convert Example 6.13 into a method calledcalculateTax that has
one argument, the amounta, and returns the tax calculated. Test your method as inBeanShell
Exercise 6.1.

◮ BeanShell Exercise 6.8Do BeanShell Exercise 6.7 using the if-statement in in Example 6.22.

6.21 Programming exercises 305

◮ BeanShell Exercise 6.9Convert Example 6.14 into a method calledletterGrade that has one
argument for the mark, and returns the letter grade as aString . Test your method as inBeanShell
Exercise 6.1.

◮ BeanShell Exercise 6.10Do BeanShell Exercise 6.9 using the if-statement in in Example 6.21.

◮ BeanShell Exercise 6.11Verify some of the results in Table 6.4 usingBeanShell statements
such as

bsh % print((int) ’a’);
97
bsh % print((int) ’A’);
65

6.21 Programming exercises

◮ Exercise 6.1 (A marks converter class)
Write a class calledMarksConverter that uses a method with prototype

public String letterGrade(int mark)

based on the if-statement in Example 6.21, to convert a mark to a letter grade. Indicate how to test
your class inBlueJ andBeanShell.

◮ Exercise 6.2 (A tax calculator class)
Write a class calledTaxCalculator that uses a method with prototype

public double calculateTax(double amount)

based on the if-statement in Example 6.22, to calculate the tax on a given amount of money.
Indicate how to test your class inBlueJ andBeanShell.

◮ Exercise 6.3 (A betterChangeHelper class)
Rewrite theChangeHelper class in Exercise 3.6, Chapter 3, so that zero amounts are notdisplayed.
You should also check that the amount received is not smallerthan the amount due.

◮ Exercise 6.4 (A betterCircleCalculator class)

(a) Write a new version of theCircleCalculator class from Chapter 3 (page 63) that uses an
exception in case there is an illegal argument in the constructor.

(b) Write a console-interface calledCircleCalculatorRunner that shows how to test this class
using theScanner class.

◮ Exercise 6.5 (A betterTriangleCalculator class)

(a) Write a new version of theTriangleCalculator class from Chapter 3 (page 64) that uses
exceptions in case there are illegal arguments

306 Making Decisions

(b) Write a console-interface calledTriangleCalculatorRunner that shows how to test this
class using theScanner class.

◮ Exercise 6.6 (Maximum of three numbers)
Write a class calledMaxThreeCalculator that computes the maximum of threedouble numbers
using the following class design.

public class MaxThreeCalculator
{

private double maximum; // maximum of x1, x2, and x3

public MaxThreeCalculator(double x1, double x2, double x3) {...}
public double getMaximum() { return maximum; }

}

Use two private methods with prototypes

private double max2(double n1, double n2)
private double max3(double n1, double n2, double n3)

It doesn’t matter whether these methods are static or not since they don’t access any instance data
fields. Themax2 method should return the maximum of two numbers and themax3 method should
usemax2 to return the maximum of three numbers. Finally,max3 can be called in the constructor
to calculate the value of the data fieldmaximumwhich can be returned by thegetMaximum method.

Give a set of test data that you would use to verify the correctness of your program.

◮ Exercise 6.7 (Finding the smallest of three strings)

(a) Write a class calledStringSorter that takes three strings and arranges them in increasing
lexicographical order using thecompareTo method in theString class. Use the class design

public class StringSorter
{

private String first, second, third;
public StringSorter(String x1, String x2, String x3) {...}
public String getFirst() { return first; }
public String getSecond() { return first; }
public String getThird() { return first; }

}

The constructor should sort the three stringsx1 , x2 , andx3 and assign them in sorted order
to first , second , andthird .

(b) Give a set of test data that you would use to verify the correctness of your program.

(c) Write a console-interface calledStringSorterTester that shows how to test this class
using theScanner class.

6.21 Programming exercises 307

◮ Exercise 6.8 (Finding the maximum balance for three bank accounts)
Write a class calledMaxMinAccount that finds the minimum and maximum balance for three
BankAccount objects. Use the class design

public class MaxMinAccount
{

private BankAccount min, max;
public MaxMinAccount(BankAccount b1, BankAccount b2, Ban kAccount b3) {...}
public BankAccount getMin() { return min; }
public BankAccount getMax() { return max; }

}

Heremin is a reference to the account with the minimum balance amongb1, b2, andb3, andmax
is a reference to the account with the maximum balance. The “get” methods return references to
these accounts.

◮ Exercise 6.9 (Multiple if-statement and decision tables)

(a) Multiple if-statements directly correspond to a decision table and vice versa. Such a table
lists a set of mutually exclusive rules for calculating somequantity. As an example, consider
the calculation of the sales commission received by a real estate agent for selling a house.
Here is the table.

Selling price p Commission
0≤ p≤ $100,000 3 percent
$100,000< p≤ $250,000 5 percent
$250,000< p≤ $500,000 7 percent
p > $500,000 10 percent

Write a class calledSalesCommissionCalculator having the structure

public class SalesCommissionCalculator
{

private double sellingPrice;
private double commission;

public SalesCommission(double sellingPrice) {...}

public double getSellingPrice() { return sellingPrice; }
public double getCommission() { return commission; }

}

that has a constructor that uses the selling price to construct a sales commission object and
calculate the commission. The two enquiry methods can be used to retrieve the selling price
and commission. The constructor should throw an exception if the selling price is negative.

Do the calculation of the commission from the selling price using a method with prototype

308 Making Decisions

public double commission(double sellingPrice)

that returns the commission. Now theSalesCommission constructor can simply call this
method.

(b) Use the following console-interface class to test your class.

import java.util.Scanner;
public class SalesCommissionRunner
{

public void run()
{

Scanner input = new Scanner(System.in);
System.out.println("Enter selling price");
double price = input.nextDouble();
input.nextLine();

try
{

SalesCommission sc = new SalesCommission(price);
System.out.println("Selling price: " + sc.getSellingPri ce());
System.out.println("Commission: " + sc.getCommission());

}
catch (IllegalArgumentException e)
{

System.out.println(e.getMessage());
}

}

public static void main(String[] args)
{

new SalesCommissionRunner().run();
}

}

◮ Exercise 6.10 (Calculating federal income tax)

(a) Using the previous exercise as a guide, write aFederalTaxCalculator class that computes
the Federal tax, given two amounts: the taxable income and the total non-refundable tax
credits. Here are the mutually exclusive rules:

1. If the taxable income is not greater than $29,590.00, the federal tax is 17 percent of the
taxable income.

2. If the taxable income is greater than $29,590.00 but not greater than $59,180.00, the
federal tax is $5030.00 on the first $29,590.00 and 26 percenton the remainder.

3. If the taxable income is greater than $59,180.00, the federal tax is $12,724.00 on the
first $59,180.00 and 29 percent on the remainder.

6.21 Programming exercises 309

From the amount calculated, subtract the total non-refundable tax credits to obtain the total
federal tax payable. If this amount is negative, the total federal tax payable is zero.

(b) Write a console-interface calledTaxCalculatorRunner that reads the taxable income and
the total non-refundable tax credits, computes the total federal tax payable, and displays the
result.

◮ Exercise 6.11 (Calculating roots of quadratic equation)
Modify the ComplexQuadraticRootFinder class to use in the real root case, the following for-
mulas

1. If b≥ 0 definer1 =− 1
2a

(

b+
√

b2−4ac
)

2. If b≤ 0 definer1 =− 1
2a

(

b−
√

b2−4ac
)

3. In either caser1r2 = c/a so the second root isr2 = c/(ar1)

Your class should also deal with special cases which arise when some of the coefficients are zero or
the roots are not real. For example, ifa = 0 andb = 0 then there is no equation, ifa = 0 andb 6= 0
then the equation is linear and there is one root. The class can provide boolean-valued methods
hasRealRoots , isLinear , isInvalidEquation that can be used by a runner class to determine
what to display.

Give a set of test cases for the various paths through your class. and write a suitable console-
interface class to test your class

◮ Exercise 6.12Roman numerals are still in use. In the motion picture industry the year a film is
released is given in roman numerals. Write a program calledRomanNumeralConverter to convert
year numbers in the range 1 to 3999 to a string of roman numerals. Use an instance method with
prototype

public String roman(int year)

For example the year 1998 is MCMXCVIII in roman numerals and the year 2003 is MMIII.
Hint: Use / and%to determine the thousands, hundreds, tens and units digitsof the number

and convert each part to roman numerals.

◮ Exercise 6.13 (Solving cubic equations)A mathematician has given you the pseudo-code
algorithm for finding the real roots of the cubic equationax3+bx2+cx+d = 0 shown in Figure 6.8.
According to the algorithm the equation has either one real root or three real roots. Write a program
class calledCubicSolver for this algorithm that has the following structure

public class CubicSolver
{

private double a, b, c, d; // axˆ3 + bxˆ2 + cx + d = 0
private double root1, root2, root3; // roots of equation
private boolean oneRealRoot; // true in one real root case

310 Making Decisions

ALGORITHM CubicSolver(a, b, c, d)
p← 1

3a2

[

3ac−b2
]

, q← 1
27a3

[

2b3−9abc+27a2d
]

∆← p3

27 + q2

4 , s← b
3a

IF ∆ > 0 THEN
f1←−q

2 +
√

∆, f2←−q
2−
√

∆

y1← (f1)1/3+(f2)1/3

x1← y1−s
RETURN x1

ELSE IF (∆ = 0)∧ (q = 0) THEN
x1←−s, x2←−s, x3←−s
RETURN x1, x2, x3

ELSE

m← 2
√

− p
3

θ← 1
3 arccos

(

3q
pm

)

y1←mcosθ, y2←mcos
(

θ+ 2π
3

)

, y3←mcos
(

θ+ 4π
3

)

x1← y1−s, x2← y2−s, x3← y3−s
RETURN x1, x2, x3

END IF

Figure 6.8: Pseudo-code algorithm for roots of a cubic equation

public CubicSolver(double aa, double bb, double cc, double dd) {...}
public boolean hasOneRealRoot() { return oneRealRoot; }
public boolean isCubic() { return a != 0.0; }
public double getRoot1() { return root1; }
public double getRoot2() { return root2; }
public double getRoot3() { return root3; }
public double getA() { return a; }
public double getB() { return b; }
public double getC() { return c; }
public double getD() { return d; }

private double cubeRoot(double x) {...}
}

where thecubeRoot method is from Example 6.12. TheQuadraticSolver class can be used if
isCubic returns false (coefficient ofx3 is zero).

Write a runner class to test the program and develop some testdata. Include a check by also
displaying the value ofax3+bx2 +cx+d for each root found (the value should be close to zero).

6.21 Programming exercises 311

BlueJ andBeanShell Edition Copyright 2002, 2005, 2007, Barry G. Adams

312 Making Decisions

Chapter 7

Repetition Structures
The while, do-while, and for-statements

Outline

The while-statement (while-loop)

String to integer conversion example

Square root and factorization examples

Sentinel controlled while-loops

Query controlled while-loops

Do-while statement (do-while loop)

General loop structures

For-statement (for-loop)

Computing big factorials

Loan repayment table example

Nested loops

Investment table example

Graphing a function

Recursion and loops

Recursive factorial and gcd examples

313

314 Repetition Structures

while (BooleanExpression)

{

Statements
}

Figure 7.1: A template for the while-statement

7.1 Introduction

In many algorithms we need to repeat the execution of a sequence of one or more statements several
times. For a known small number of repetitions you could simply write down the statements to
repeat several times. This is not practical if the number of repetitions is large and doesn’t work
at all if the number of repetitions is not known in advance. Therefore all high-level languages
provide one or morerepetition structures that specify a sequence of statements to be repeated
and a condition to continue or terminate the repetitions. A repetition structure is often called a
loop and is the third and last of the basic programming structures. The first two are thesequential
structure and theconditional structure.

In this chapter we introduce both the pseudo-code and Java forms of the three repetition struc-
tures: the while-statement, the do-while statement, and the for-statement. We will see that the
for-statement and the do-while statement are just special types of the while-statement that are pro-
vided for convenience.

The while and do-while statements are normally used when thenumber of repetitions is not
known in advance but depends on some condition. We discuss several important variations such as
the sentinel controlled while-loop, and the query controlled while-loop.

The for-statement is normally used when the number of repetitions can be determined in ad-
vance, either as a constant or as the value of an expression.

The connection between loops and simple recursion is also discussed.

7.2 The while-statement (while-loop)

If the number of repetitions is not known in advance but depends on some condition, given by a
boolean expression, then thewhile-statement(also called awhile-loop) can be used. In pseudo-
code it can be expressed as

WHILE BooleanExpressionDO
Statements

END WHILE

In Java the while-loop has the structure shown in Figure 7.1.BooleanExpressionis a boolean
valued expression andStatementsis a sequence of zero or more statements defining the block to
be repeated. As in the case of the if-statement, the parentheses surrounding the boolean expression
are necessary and the braces can be omitted only if there is one statement to be repeated.

7.2 The while-statement (while-loop) 315

�
��

@
@@

@
@@

�
��

Expr

Statements

?

?

- -

�

?

true

false

Figure 7.2: A flowchart for the execution of a while-statement

When the while-loop is encounteredBooleanExpressionis evaluated. If the value is true then
the statements in the block are executed, otherwise the while-loop is ignored and control resumes
below it. Each time the statements in the loop are executed the boolean expression is re-evaluated
to determine if the statements should be executed again.

Once the loop is entered the only way out is to have the statements in the body of the loop
change the value of one or more of the variables defining the boolean expression, causing it’s value
to become false. Otherwise we have what is called aninfinite loop.

A flowchart for the execution of the while-statement is shownin Figure 7.2. It clearly indicates
that to avoid an infinite loop there must be a statement in the body of the loop that eventually forces
the boolean expressionExpr to become false.

Here are some simple examples of while-loops.

EXAMPLE 7.1 (Counting up with a while-loop) The statements

int count = 1;
while (count <= 10)
{

System.out.print(count + " ");
count = count + 1; // or use count++

}

display1 2 3 4 5 6 7 8 9 10 . Initially, the expressioncount <= 10 is true sincecount is
initialized to 1. Therefore the loop is entered and1 is displayed. Sincecount is incremented
each time through the loop, the expressioncount <= 10 will become false when it reaches11.
Therefore the last number displayed is10. To try this example using theBeanShell workspace and
editor choose “Capture System in/out/err” from the “File” menu.

EXAMPLE 7.2 (Counting down with a while-loop) The statements

316 Repetition Structures

int count = 10;
while (count >= 1)
{

System.out.print(count + " ");
count = count - 1; // or use count--

}

count backwards beginning at10 and display10 9 8 7 6 5 4 3 2 1 . Whencount is decre-
mented to0 the boolean expressioncount >= 1 becomes false and the loop terminates. Therefore
the last number displayed is1. To try this example using theBeanShell workspace and editor
choose “Capture System in/out/err” from the “File” menu.

EXAMPLE 7.3 (Loop that may not terminate) Given the integern > 0 consider the loop

long k = n;
System.out.print(k);
while (k > 1)
{

if (k % 2 == 1) // k is odd
{

k = 3*k + 1;
}
else // k is even
{

k = k / 2;
}
System.out.print("," + k);

}

Here the value ofk is changing each time through the loop but it is not clear thatk will eventually
become 1 to stop the loop. In fact no one knows for arbitraryn > 0 if the loop will terminate. You
might become famous if you can prove this for any integern. If n = 8 the loop displays8,4,2,1
and stops, ifn = 7 the loop displays7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1 and
stops, and ifn = 27, then 112 numbers are displayed ending in 1. This loop alsoignores the fact
that the calculation of3*k + 1 may produce overflow. This can detected using the if-statement

if (k > 3074457345618258602L)
System.out.println("Overflow has occurred");

just before the calculation. The strange long integer literal here is the largest one such that3*k +
1 does not produce overflow.

EXAMPLE 7.4 (Drawing some horizontal lines) Suppose we want to draw 10 horizontal lines
each separated by 20 pixels. Each line should begin atx = 10 and end atx = 200. The top line
should havey = 10. Then the left end of linek has coordinates(10,10+ 20k) for k = 0,1, . . .9
and the right end has coordinates(200,10+20k) . Assuming thatg2D is the graphics context (see
Chapter 5), the while-loop

7.2 The while-statement (while-loop) 317

int k = 0;
while (k <= 9)
{

double y = 10.0 + 20.0*k; // y coordinate of line k
g2D.draw(new Line2D.Double(10,y,200,y));
k = k + 1; // or k++;

}

can be used to draw the lines. The temporary variabley is declared in the loop body so it is local
to the loop body.

A common error in examples like these is to forget to initialize the boolean expression before
entering the loop, or to forget to update it inside the loop. This often results in infinite loops.

7.2.1 Converting a digit string to an integer

Most computer languages provide methods for converting a numerical string to an integer or a
floating point number. In Java we have the following static methods.

• public int Integer.parseInt(String s)

Static method in theInteger class to converts to anint value and return it.

• public long Long.parseLong(String s)

Static method in theLong class to converts to a long value and return it.

• public float Float.parseInt(String s)

Static method in theFloat class to converts to a float value and return it.

• public double Double.parseDouble(String s)

Static method in theDouble class to converts to adouble value and return it.

Each of these methods throws aNumberFormatException if the strings is not a valid number of
the appropriate type. The classesInteger , Long , Double andFloat are calledwrapper classes.
They contain useful methods that operate on the corresponding primitive types.

As an example we show how to convert a digit string of the forms= c0c1 . . .cn−1 where theck

are the digit characters to an integer of the formd = d0d1 . . .dn−1 where each digitdk = ck− ’0’ is
obtained by subtracting the code of the character ’0’ from the code ofck. For example, the digits
’0’ to ’9’ have codes 48 to 57 so subtracting the code for ’0’ (48) from each gives the integers 0 to
9. The integer value of the string is accumulated in a loop using the formula

d = dn−1+10(dn−2+ · · ·+10(d1+10d0) · · ·)

A pseudo-code algorithm is given in Figure 7.3.

EXAMPLE 7.5 (Converting a string to an integer) The following method

318 Repetition Structures

ALGORITHM stringToInt (c0,c1, . . . ,cn−1)
value← 0
k← 0
WHILE k < n DO

value← (ck− ’0’)+10×value
k← k+1

END WHILE
RETURN value

Figure 7.3: Algorithm to convert a string to an integer

public int stringToInt(String s)
{

int numDigits = s.length();
int value = 0;
int k = 0;
while (k < numDigits)
{

value = (s.charAt(k) - ’0’) + 10 * value;
k = k + 1;

}
return value;

}

gives a Java implementation of the algorithm in Figure 7.3. In Java an automatic typecast is per-
formed to convert thechar type to theint type. ThestringToInt method is easily tested using
theBeanShell workspace and editor.

Here is a simple Java class that can be used to test the method in BlueJ.

ClassStringToIntConverter

book-projects/chapter7/conversion

package chapter7.conversion; // remove this line if you’re not using packages
/**

* A class to test the stringToInt method that converts a strin g to an int.
*/

public class StringToIntConverter
{

/**
* convert a string of digits to an int
* @param s the digit string to convert
* @return int value of digit string
*/

public int stringToInt(String s)

7.2 The while-statement (while-loop) 319

{
....

}
}

Here is a runner class that can be used from the command-line or within BlueJ.

ClassStringToIntRunner

book-projects/chapter7/conversion

package chapter7.conversion; // remove this line if you’re not using packages
import java.util.Scanner;
/**

* Runner class to test stringToInt method
*/

public class StringToIntRunner
{

public void run()
{

Scanner input = new Scanner(System.in);
StringToIntConverter converter = new StringToIntConvert er();
System.out.println("Enter digit string");
String digitString = input.nextLine();
int value = converter.stringToInt(digitString);
System.out.println("int value is " + value);

}

public static void main(String[] args)
{

new StringToIntRunner().run();
}

}

7.2.2 Square root algorithm using a while-loop

If we didn’t have theMath.sqrt function how could we calculate the square root of a non-negative
number? There are many algorithms to do this. A famous one, although not the most efficient, for
computing

√
a is to define the sequence of numbersx0,x1, . . . ,xn, . . ., using the formula

xn =
1
2

(

xn−1 +
a

xn−1

)

, for n = 1,2,3, . . .

This means that if we start with a value forx0 and substituten = 1 in this formula we get a value
for x1 defined in terms ofx0 by

x1 =
1
2

(

x0 +
a
x0

)

Then we can substituten = 2 to get a value forx2 defined in terms ofx1 by:

x2 =
1
2

(

x1 +
a
x1

)

320 Repetition Structures

ALGORITHM squareRoot (a)
xold ← 1
xnew← a
WHILE |(xnew−xold)/xnew|> 10−16 DO

xold ← xnew

xnew← 0.5× (xold +a/xold)
END WHILE
RETURN xnew

Figure 7.4: Algorithm to compute
√

a.

So if we start with a value forx0 we can compute the sequence of numbers. It can be shown that
these numbers get closer and closer to

√
a, for any starting valuex0 > 0.

As an example, compute an approximation to
√

2 usinga = 2, starting withx0 = 1. Then
x1 = (1/2)(1+2) = 3/2= 1.5,x2 = (1/2)(3/2+4/3)≈ 1.46667,x3≈ 1.41422, and so on. These
numbers get closer and closer to

√
2, which is approximately 1.41421.

A simple pseudo-code algorithm that uses the relative error(see Example 6.9) as a measure of
the closeness of successive iterations is given in Figure 7.4.

EXAMPLE 7.6 (Square root method) The following method

public double squareRoot(double a)
{

double xOld = 1;
double xNew = a;

while (Math.abs((xNew - xOld) / xNew) > 1E-16)
{

xOld = xNew;
xNew = 0.5 * (xOld + a / xOld);

}
return xNew;

}

gives a Java implementation of the algorithm in Figure 7.4. The squareRoot method is easily
tested using theBeanShell workspace and editor.

Here is a simple Java class that can be used to test the method in BlueJ.

ClassSquareRootCalculator

book-projects/chapter7/square_root

package chapter7.square_root; // remove this line if you’r e not using packages
/**

7.2 The while-statement (while-loop) 321

* A simple class to test the square root algorithm.
*/

public class SquareRootCalculator
{

/**
* Calculate the square root of a number.
* @param a the number to take square root of
* @return the square root of a.
*/

public double squareRoot(double a)
{

...
}

}

If you want to see the iterations and watch them converge insert the statement

System.out.println(xNew);

after the assignment toxNew in the while-loop. To check the results you could also print the value
of xNew * xNew just before thereturn statement to verify how close the result is to the input
valuea, or you can print the value ofMath.sqrt(a) .

Here is a runner class that can be used from the command-line.It squares the root as a check
and also compares the root withMath.sqrt .

ClassSquareRootRunner

book-projects/chapter7/square_root

package chapter7.square_root; // remove this line if you’r e not using packages
import java.util.Scanner;
/**

* Runner class to test squareRoot method
*/

public class SquareRootRunner
{

public void run()
{

Scanner input = new Scanner(System.in);
SquareRootCalculator calculator = new SquareRootCalcula tor();
System.out.println("Enter number");
double a = input.nextDouble();
input.nextLine(); // eat end of line
double root = calculator.squareRoot(a);
System.out.println("Square root of " + a + " is " + root);
System.out.println("Square of root is " + root * root);
System.out.println("Square root using Math.sqrt() is " + M ath.sqrt(a));

}

public static void main(String[] args)
{

new SquareRootRunner().run();

322 Repetition Structures

ALGORITHM doublingTime(x, r)
monthlyRate← r/1200
month← 0
value ← x
WHILE value< 2x DO

month←month+1
value ← value× (1+monthlyRate)

END WHILE
RETURN month

Figure 7.5: Pseudo-code algorithm for doubling your money

}
}

7.2.3 Double your money problem

Consider the following problem:

“How many months does it take to double an initial investment of x dollars if the
annual interest rate is r %, and interest is compounded monthly.”

To develop an algorithm we need to know that if you have an amount of moneyV, and it accumu-
lates interest at a rater for a period of time, then the interest at the end of the periodis rV , and
the value ofV at the end of the period isV + rV = V(1+ r). For our problem the annual rate of
r % percent is converted into the monthly rater/100/12 as a fraction so at the end of a month the
amount isV(1+ r/1200) whereV is the value at the end of the previous month. A pseudo-code
version of the doubling algorithm is shown in Figure 7.5.

EXAMPLE 7.7 (Double your money method) The following method

public int doublingTime(double initialValue, double annu alRate)
{

double value = initialValue;
double monthlyRate = annualRate / 100.0 / 12.0;
int month = 0;
while (value < 2.0 * initialValue)
{

month = month + 1;
value = value * (1.0 + monthlyRate);

}
return month;

}

gives a Java implementation of the algorithm in Figure 7.5. The doublingTime method can be
tested using theBeanShell workspace and editor.

7.2 The while-statement (while-loop) 323

Here is a simple Java class that can be used to test the method in BlueJ.

ClassDoubleYourMoney

book-projects/chapter7/money

package chapter7.money; // remove this line if you’re not us ing packages
/**

* A simple class for the double your money problem.
*/

public class DoubleYourMoney
{

/**
* Return the number of months to double your money.
* @param initialValue the initial investment amount
* @param annualRate annual interest rate in percent
* @return the number of months for initial amount to double
*/

public int doublingTime(double initialValue, double annu alRate)
{

...
}

}

Here is a runner class that can be used from the command-line.It also converts the total number
of months for doubling into years and months.

ClassDoubleYourMoneyRunner

book-projects/chapter7/money

package chapter7.money; // remove this line if you’re not us ing packages
import java.util.Scanner;
/**

* Runner class to test squareRoot method
*/

public class DoubleYourMoneyRunner
{

public void run()
{

Scanner input = new Scanner(System.in);
DoubleYourMoney calculator = new DoubleYourMoney();
System.out.println("Enter initial investment amount");
double amount = input.nextDouble();
input.nextLine(); // eat end of line
System.out.println("Enter annual rate in percent");
double rate = input.nextDouble();
input.nextLine(); // eat end of line
int totalMonths = calculator.doublingTime(amount, rate) ;
int years = totalMonths / 12;
int months = totalMonths % 12;
System.out.println("The amount doubles in "

324 Repetition Structures

ALGORITHM factor(n)
q← n // initial quotient
t ← 2 // initial trial factor
WHILE t ≤√q DO

IF t dividesq THEN
Savet as a factor ofq
q← q div t

ELSE
t← next trial factor

END IF
END WHILE
Saveq as last factor

Figure 7.6: Pseudo-code factorization algorithm

+ years + " years and " + months + " months");
}

public static void main(String[] args)
{

new DoubleYourMoneyRunner().run();
}

}

7.2.4 Factorization of an integer

The fundamental theorem of arithmetic states that every integer can be expressed uniquely as a
product of prime numbers arranged in increasing order. Recall that a prime number has no factors
other than itself and 1 (e.g., 18 is not prime since 6 is a factor but 17 is prime). This means that
every integern can be expressed uniquely as the product

n = pe1
1 × pe2

2 ×·· ·× pek
k , wherep1 < p2 < · · ·< pk are primes

For example

140931360 = 25×33×5×17×19×101

140931369 = 32×239×65519

We can write a method to do this factorization using a while-loop. The largest factort that an
integerq can have is

√
q so we can use this condition to terminate the while-loop. Thealgorithm

begins by usingt = 2 as the first trial factor andq = n as the first quotient. Ift is a factor ofq then
we save the factort and divide it out ofq to get the next quotient.

This gives the pseudo-code algorithm in Figure 7.6. To obtain the next trial factor we choose 3
if t is 2 otherwiset is odd and we can choose the next odd factort +2.

To write a Java method for this algorithm we can keep track of factors by appending them to a
string as they are obtained so that the output forn = 140931360 is expressed as the string

7.2 The while-statement (while-loop) 325

<2,2,2,2,2,3,3,3,5,17,19,101>

EXAMPLE 7.8 (Factorization method) The following method

public String factor(int n)
{

int q = n; // initial quotient
int t = 2; // initial trial factor
String factors = "<"; // string to hold factors

// a factor cannot be larger than square root of quotient
while (t <= q / t)
{

if (q % t == 0)
{

// t is a factor so append it to string and
// divide it out of quotient

factors = factors + t + ",";
q = q / t;

}
else
{

// t is not a factor so get the next trial factor.
// After 2 all trial factors will be odd.

t = (t == 2) ? 3 : t + 2;
}

}
factors = factors + q + ">";
return factors;

}

implements the algorithm in Figure 7.6 by returning the factors of n as a string. Thefactor
method can be tested using theBeanShell workspace and editor.

Here is a simple Java class that can be used to test the method in BlueJ.

ClassFactorizer

book-projects/chapter7/factors

package chapter7.factors; // remove this line if you’re not using packages
/**

* A class to test the factor method that finds all the prime fac tors
* of a number and returns them in a string.
*/

public class Factorizer

326 Repetition Structures

{
/**

* Find all the factors of a number.
* @param n the number to factor
* @return the string containing the factors
*/

public String factor(int n)
{

...
}

}

The following class can be used withinBlueJ or from the command-line to display the factorization
of 10 consecutive integers given the first one.

ClassFactorizerRunner

book-projects/chapter7/factors

package chapter7.factors; // remove this line if you’re not using packages
import java.util.Scanner;
/**

* A runner class to test Factorizer by displaying the factori zation
* of all numbers in a given range.
*/

public class FactorizerRunner
{

/** Factorize 10 numbers starting with a given number
* @param n the given number
* @return string of form <f1,f2,...,fn>
*/

public void displayFactors(int n)
{

Factorizer f = new Factorizer();

int k = n;
while (k <= n + 9)
{

String factors = f.factor(k);
System.out.println(k + " = " + factors);
k++;

}
}

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);
System.out.println("Enter first value of n");
int n = input.nextInt();
input.nextLine(); // eat end of line
new FactorizerRunner().displayFactors(n);

}
}

7.3 Sentinel-controlled while-loops 327

Some typical output is

java FactorizerRunner
Enter first value of n
140931360
140931360 = <2,2,2,2,2,3,3,3,5,17,19,101>
140931361 = <227,383,1621>
140931362 = <2,11,11,13,44797>
140931363 = <3,31,1515391>
140931364 = <2,2,7,157,32059>
140931365 = <5,571,49363>
140931366 = <2,3,23488561>
140931367 = <353,399239>
140931368 = <2,2,2,17616421>
140931369 = <3,3,239,65519>

7.3 Sentinel-controlled while-loops

Let us write a program that read a series of student marks using console input and calculates their
average. Assume that the number of marks entered by the user is not known in advance. Since the
value of a valid mark ranges from 0 to 100, we can design the program so that it stops asking the
user for numbers when the user enters a negative value to indicate the end of the input. This kind
of fictitious value, used to indicate the end of the input data, is often called asentinel value. If
the first mark entered is negative, then the while-loop is never executed. In this case we assign an
average of zero. The following method computes the average mark.

EXAMPLE 7.9 (Sentinel-controlled while-loop) The following method computes the average
of a list of marks and displays it.

public void averageMark()
{

Scanner input = new Scanner(System.in);
double sum = 0.0;
int numberOfMarks = 0;
double mark;

System.out.println("Enter mark (negative to quit)");
mark = input.nextDouble();
input.nextLine(); // eat end of line

while (mark >= 0.0)
{

if (mark <= 100.0)
{

sum = sum + mark;
numberOfMarks = numberOfMarks + 1;

328 Repetition Structures

}
else
{

System.out.println("Marks > 100 are invalid");
}
System.out.println("Enter mark (negative to quit)");
mark = input.nextDouble();
input.nextLine(); // eat end of line

}
System.out.println("Average mark is " + sum / numberOfMark s);

}

A common mistake in loops like this is to forget to read a new mark at the bottom of the loop
before returning to the top again. The result is an infinite loop.

7.3.1 AverageMarkCalculator class

Here is a simple class to test the method from the command lineor from withinBlueJ.

ClassAverageMarkCalculator

book-projects/chapter7/loops

package chapter7.loops; // remove this line if you’re not us ing packages
import java.util.Scanner;
/**

* A class to illustrate a sentinel-controlled while loop
*/

public class AverageMarkCalculator
{

/**
* Read marks and compute average mark
*/

public void averageMark()
{

...
}

public static void main(String[] args)
{

new AverageMarkCalculator().averageMark();
}

}

7.4 Query-controlled while-loops

In a query-controlled interactive loop the user is asked at the end of every iteration if there is
more data to enter. If the answer is yes, another iteration isperformed by reading new data and

7.4 Query-controlled while-loops 329

processing it. This kind of loop is needed when there is no sentinel value that can be used. For
example, a program that reads an arbitrary series of numberscannot use any one of them as a
sentinel value.

For interactive console input a boolean-valued method, similar to the following one, can be
used to test for-loop termination in a query-controlled loop.

public boolean moreValues()
{

System.out.println("Do you want to enter another value [Y/ N ?]");
String reply = input.nextLine();
return reply.equals("") || reply.toUpperCase().charAt(0) == ’Y’;

}

Here we assume thatinput is aScanner object. The method returnstrue if the user enters a blank
line or types something that begins withy or Y, indicating that the user wants to enter another value.
Short-circuit evaluation is used for the boolean expression

reply.equals("") || reply.toUpperCase().charAt(0) == ’Y ’

If the user enters a blank line,reply is empty andreply.equals("") is true, so the right operand
of the “or expression” is never evaluated. Therefore, the evaluation ofcharAt is never attempted
for an empty string.

Using this method, the query-controlled while-loop can be written as

while (moreValues())
{

// read a value here
// process the value here

}

This loop works even if there are no values to enter.

7.4.1 BankAccount example

We want to write a class that uses a query-controlled while-loop to find the bank account with the
maximum balance from a list of accounts entered using the console. The heart of the class is the
method

public BankAccount findMaxBalance()
{

BankAccount maxAccount = readAccount();
while (moreAccounts())
{

BankAccount next = readAccount();
if (next.getBalance() > maxAccount.getBalance())
{

maxAccount = next;
}

330 Repetition Structures

}
return maxAccount;

}

that finds the account with the maximum balance and returns a reference to it. This reference starts
out as a reference to the first account and each time an accountwith a larger balance is read the
maxAccount reference is updated to refer to this account. When the method exits all the account
objects, except the one with the maximum balance referencedby maxAccount , will be orphans (no
references to them) so they will be garbage collected.

Here is a Java class using this method that can be run withinBlueJ or from the command-line.

ClassMaxBalanceCalculator

book-projects/chapter7/loops

package chapter7.loops; // remove this line if you’re not us ing packages
import java.util.Scanner;
/**

* A class to illustrate the query-controlled while loop by re ading
* a list of accounts from the console and finding the one that
* has the maximum balance.
*/

public class MaxBalanceCalculator
{

Scanner input = new Scanner(System.in);

/**
* Read accounts from console
* @return reference to account having the maximum balance
*/

public BankAccount findMaxBalance()
{

BankAccount maxAccount = readAccount();
while (moreAccounts())
{

BankAccount next = readAccount();
if (next.getBalance() > maxAccount.getBalance())
{

maxAccount = next;
}

}
return maxAccount;

}

private boolean moreAccounts()
{

System.out.println("Do you want to enter another account [Y/N ?]");
String reply = input.nextLine();
return reply.equals("") || reply.toUpperCase().charAt(0) == ’Y’;

}

7.5 Do-while statement (do-while loop) 331

private BankAccount readAccount()
{

System.out.println("Enter account number");
int number = input.nextInt();
input.nextLine(); // eat end of line

System.out.println("Enter owner name");
String name = input.nextLine();

System.out.println("Enter balance");
double balance = input.nextDouble();
input.nextLine(); // eat end of line
return new BankAccount(number, name, balance);

}

public static void main(String[] args)
{

MaxBalanceCalculator calc = new MaxBalanceCalculator();
System.out.println("Account with maximum balance is " + ca lc.findMaxBalance());

}
}

In BlueJ use “Add class from files” to add theBankAccount class from thecustom-classes
project. The class also uses two private methods to read an account and do the query-controlled
test for another account.

7.5 Do-while statement (do-while loop)

In the while-loop the test for loop termination is always done at the top of the loop. There are
cases when we would like to do the test at the bottom of the loop. Several variations occur in
programming languages. In pseudo-code we could use the structure

REPEAT
Statements

WHILE BooleanExpression

which repeatsStatementswhile the boolean expression is true. Alternatively we could use the
negated form

REPEAT
Statements

UNTIL BooleanExpression

which repeatsStatementsuntil the boolean expression is true (or equivalently, while it is not true).
In either case, unlike the while-loop, the statements in theloop are always executed at least once.
In practice the do-while loop is not as common as the while-loop.

Languages such as Pascal and Modula-2 have a repeat-until statement. Others, C, C++ and Java
for example, have a repeat-while statement (called do-while) shown in Figure 7.7. The do-while
statement needs a semi-colon at the end of the while-part.

A flowchart for the execution of the do-while statement is shown in Figure 7.8.

332 Repetition Structures

do
{

Statements

}

while (BooleanExpression);

Figure 7.7: A template for the do-while statement

?
Statements

?

�
��

@
@@

@
@@

�
��

Expr

?

�true

6
-

false

Figure 7.8: A flowchart for the execution of a do-while statement

EXAMPLE 7.10 (Counting up with a do-while loop) The statements

int count = 1;
do
{

System.out.print(count + " ");
count = count + 1;

}
while (count <= 10);

display1 2 3 4 5 6 7 8 9 10 . After 10 is displayedcount is incremented to11, the boolean
expressioncount <= 10 becomes false and the loop exits. Try this example using theBeanShell
workspace and editor. Also choose “Capture System in/out/err” from the “File” menu.

EXAMPLE 7.11 (Counting down with a do-while loop) The statements

int count = 10;
do
{

System.out.print(count + " ");

7.6 General loop structures 333

count = count - 1;
}
while (count > 0);

display10 9 8 7 6 5 4 3 2 1 . After 1 is displayedcount is decremented to0, the boolean
expressioncount > 0 becomes false and the loop exits. Try this example using theBeanShell
workspace and editor. Also choose “Capture System in/out/err” from the “File” menu.

7.6 General loop structures

The while-loop makes the test at the top of the loop and the do-while loop makes it at the bottom
of the loop. It is possible to generalize and make the test somewhere in the middle of the loop. In
pseudo-code we could invent a general loop-structure such as

LOOP
StatementsA
IF BooleanExpressionTHEN EXIT
StatementsB

END LOOP

Here anIF statement with a specialEXIT statement is used to exit the loop somewhere in the
middle if BooleanExpressionis true. The while-loop is the special case that there is noStatementA
block and the repeat-until loop (do-while in negated form) is the special case when there is no
StatementBblock.

General loops like this can be hard to read since there could be several if-exit statements in the
loop. If possible you should always try to write your loops inthe while or do-while forms or using
the for-statement discussed next.

Java does not have aLOOP statement but it has abreak statement corresponding toEXIT so
we can write a general loop using the while-loop shown in Figure 7.9.

while(true)
{

StatementsA

if (BooleanExpression) break;

StatementsB
}

Figure 7.9: A template for a general loop structure.

334 Repetition Structures

7.7 For-statement (for-loop)

The for-statement (for-loop) is the last of the three repetition statements. It is used to repeat one
or more statements a fixed number of times, determined in advance, either as a constant or as the
value of an expression.

7.7.1 Pseudo-code for-loops for counting in steps

In pseudo-code the for-statement can be expressed as

FOR k← start TO endBY stepDO
Statements

END FOR

or

FOR k← start TO endBY −stepDO
Statements

END FOR

where we assume thatstep> 0. In the first case theBY part can be omitted in the most common
case thatstepis 1.

Herek is called the loop variable (or the loop counter). It is initialized to the valuestart and is
incremented or decremented automatically each time theStatementsblock is executed. The value
of stepdetermines how much is added to or subtracted from the loop counter each time the block
is executed. The two cases define an upward counting loop and adownward counting loop and can
be described as follows.

• BY step: In this case the values ofk arestart, start+step, start+2step, and so on, increasing
and ending with the last value such thatk≤ end. If start> endthe for-loop is ignored.

• BY −step: In this case the values ofk are start, start− step, start− 2step, and so on,
decreasing and ending with the last value such thatk ≥ end. If start < end the for-loop
is ignored.

The important special cases occur whenstep= 1 for which the loops count upward fromstart to
endin steps of 1 in the first case or downward fromstart to endin steps of 1 in the second case.

In Java the for-statement is needlessly complicated (to please C and C++ programmers) but we
can easily use it to model the pseudo-code versions even though there are more general versions.
A template is shown in Figure 7.10. As in the case of the while and do-while statements, the body
of the for-statement must be enclosed in braces if it contains more than one statement.

TheInitializationpart normally involves a numeric variable declaration withinitialization. This
variable is the loop counter.

The Testpart is a boolean expression which depends on the loop counter. If the value of the
condition is true, the statements in the body of the loop are executed.

If the statements in the loop are executed (becauseTestwas true initially) theUpdatestatement
is then executed. It’s purpose its to modify the loop counter(increase or decrease it). ThenTestis

7.7 For-statement (for-loop) 335

for (Initialization ; Test ; Update)

{

Statements

}

Figure 7.10: A template for the for-statement.

Initialization

�
��

@
@@

@
@@

�
��

Test

Statements

Update

?

?

?

�

- -

?

true

false

Figure 7.11: A flowchart for the execution of a for-statement

evaluated again to see if the loop statements should be executed again. EventuallyUpdateshould
modify the counter so thatTestwill be false and terminate the loop.

The flowchart for the for-loop is shown in Figure 7.11. The loop counter is commonly a variable
of type int although a variable of typedouble can also be used.

7.7.2 For-loops for counting in steps

The first case of the pseudo-code for-statement can be expressed in Java as

for (int k = start; k <= end; k = k + step)
{

// loop statements
}

If step is positive the values ofk count up fromstart , in steps ofstep , ending at the largest value
of k less than or equal toend . The initialization part is just an initialized variable declaration state-

336 Repetition Structures

ment for the loop counter variable which is local to the for-loop The test is a boolean expression
which will be true until the value ofk exceedsend . The update part, which can also be expressed
ask += step , adds the value ofstep to k each time through the loop.

Similarly, the second case of the pseudo-code for-statement can be expressed as

for (int k = start; k >= end; k = k - step)
{

// loop statements
}

If step is positive the values ofk count down fromstart , in steps ofstep , ending in the smallest
value ofk greater than or equal toend . The test is a boolean expression which will be true until
the value ofk is belowend .

EXAMPLE 7.12 (Counting up from 1 to 10) The for-statement

for (int k = 1; k <= 10; k++)
{

System.out.print(k + " ");
}

displays1 2 3 4 5 6 7 8 9 10 . It is equivalent to the while-loop in Example 7.1. The body of
the loop will be repeated 10 times sincek takes on the values 1 to 10. Here, the loop counterk
is incremented by 1 every time the body of the loop is executed. It is common to usek++ in the
update part of the for-loop, instead of the equivalent assignmentk = k + 1 .

EXAMPLE 7.13 (Counting down from 10 to 1) Similarly, the for-statement

for (int k = 10; k >= 1; k--)
{

System.out.print(k + " ");
}

displays10 9 8 7 6 5 4 3 2 1 . It is equivalent to the while-loop in Example 7.2.

EXAMPLE 7.14 (Counting down by 3) The for-statement

for (int k = 10 ; k > 0 ; k = k - 3)
{

System.out.print(k + " ");
}

displays10 7 4 1 . Each time the loop executesk is decremented by 3. Printing stops at 1 since
the next value ofk would be-2 which makesk > 0 is false.

EXAMPLE 7.15 (Drawing some horizontal lines) The statements in Example 7.4 that draw
10 horizontal lines can be more easily expressed as

7.8 Computing factorials 337

for (int k = 0; k <= 9; k++)
{

double y = 10.0 + 20.0*k; // y coordinate of line k
g2D.draw(new Line2D.Double(10,y,200,y));

}

using the for-loop.

EXAMPLE 7.16 (Computing 1+2+ · · ·+n) Given a value forn the for-loop

int sum = 0;
for (int k = 1; k <= n; k++)
{

sum = sum + k;
}

computes the sum of the firstn integers.

We shall see in the remainder of this Chapter and in Chapter 8 that the for-loop has many applica-
tions.

7.8 Computing factorials

We can use a for-loop to computen!. For values of typeint we can do this before overflow only
if 0 ≤ n≤ 12. This range can be extended using thelong data type (see Exercise 7.1). We can
also calculate large factorials using objects from theBigInteger class in packagejava.math that
represent arbitrarily large integers and perform arithmetic operations on them limited only by the
amount of memory available.

7.8.1 Computing the factorial of an integer

For a non-negative integern, the factorial ofn, denoted byn!, is defined by

n! =

{

1×2×·· ·×n, n > 0
1, n = 0

We can write a method that uses a for-loop to computen!. The algorithm is simple: initialize a
product variable to 1, multiply it by 2, multiply it by 3, and so on, until it is multiplied by n. There
will be n−1 multiplications:

EXAMPLE 7.17 (Method for n!) The following method

int factorial(int n)
{

int product = 1;
for (int k = 2; k <= n; k++)
{

338 Repetition Structures

product = product * k;
}
return product;

}

calculatesn! and returns it. Theproduct variable successively takes on the values2 = 1*2 , 6 =
2*3 , 24 = 6*4 , etc. Forn = 0, or n = 1, the loop will not be executed even once, becausek <=
n is false if k is 2, so the final value ofproduct will be 1. This agrees with the definition ofn!.
The method can easily be tested using theBeanShell editor and workspace. In particular you can
verify thatn must be in the range 0≤ n≤ 12.

Here is a simple tester class that can be used inBlueJ using a modified method that throws an
exception ifn is outside the range 0≤ n≤ 12.

ClassFactorialCalculator

book-projects/chapter7/factorial

package chapter7.factorial; // remove this line if you’re n ot using packages
/**

* A simple class to test the factorial method.
*/

public class FactorialCalculator
{

/**
* Calculate n!.
* @param n value for n!
* @return n!
* @throws IllegalArgumentExeception if n is outside the ran ge
* 0 <= n <= 12.
*/

public int factorial(int n)
{

if (n < 0 || n > 12)
{

throw new IllegalArgumentException("n! is only defined fo r n = 0..12");
}
int product = 1;
for (int k = 2; k <= n; k++)
{

product = product * k;
}
return product;

}
}

For command-line testing outsideBlueJ the following class can be used.

ClassFactorialRunner

book-projects/chapter7/factorial

7.8 Computing factorials 339

package chapter7.factorial; // remove this line if you’re n ot using packages
import java.util.Scanner;
/**

* Testing factorial method from commmand line
*/

public class FactorialRunner
{

public void run()
{

Scanner input = new Scanner(System.in);
FactorialCalculator calc = new FactorialCalculator();
System.out.println("Enter value of n");
int n = input.nextInt();
System.out.println(n + "! = " + calc.factorial(n));

}

public static void main(String[] args)
{

new FactorialRunner().run();
}

}

7.8.2 Computing factorials using theBigInteger class

Java has aBigInteger class in thejava.math package which represents arbitrarily large integers
and arithmetic operations limited only by the amount of available memory. We can use it to calcu-
late large factorials. Each integer is represented as aBigInteger object. To convert a normalint
or long integer to aBigInteger object there is the static method calledvalueOf with prototype

public static BigInteger valueOf(long val)

For example,

BigInteger bigI = BigInteger.valueOf(1);

converts the integer value 1 to a big integer. There is also a constructor that takes a string as an
argument and uses it to construct a big integer object. It hasthe prototype

public BigInteger(String val)

For example,

BigInteger bigI = new BigInteger("111111111111111111111 1111111111111111111");

converts the given number string (too big even for typelong) to a big integer.
There areadd , subtract , multiply and divide methods for big integers. Themultiply

method has prototype

public BigInteger multiply(BigInteger val)

For example, the following statements multiply two big integer objectsb1 andb2 to produce a new
object which is assigned tob3.

340 Repetition Structures

BigInteger b3 = b1.multiply(b2);

Finally, we need a way to convert a big integer result to a string, so that we can display it. To do
this there is atoString method with prototype

public String toString()

There are many other methods in theBigInteger class (see Java class documentation) but we
don’t need them to compute big factorials.

To define and initialize theproduct variable to 1 we can use the staticvalueOf method:

BigInteger product = BigInteger.valueOf(1);

To obtain a big integer object representing the integer loopcounterk we can use thevalueOf
method:

BigInteger bigK = BigInteger.valueOf(k);

We don’t need to make the loop counterk into a big integer. To multiplyproduct by bigK in the
loop use

product = product.multiply(bigK);

EXAMPLE 7.18 (Big integer method for n!) The following method

BigInteger bigFactorial(int n)
{

BigInteger product = BigInteger.valueOf(1);
for (int k = 2; k <= n; k++)
{

BigInteger bigK = BigInteger.valueOf(k);
product = product.multiply(bigK);

}
return product;

}

is theBigInteger version ofn!.

To test this method we need a way to display the large answers.For example, 200! has 375
digits (toString returns a string of 375 characters). To do this we can break the string into blocks
of a given number of characters per line using the method

private void displayLongString(String s, int width)
{

int length = s.length();
int numberOfLines = length / width;

for (int k = 0; k < numberOfLines; k++)
{

7.8 Computing factorials 341

System.out.println(s.substring(k * width, (k+1) * width));
}
if (length % width != 0) // display a final partial line

System.out.println(s.substring(numberOfLines * width));
}

which displayswidth characters ofs per line by extracting substrings.
Here is a class that uses this method to test thebigFactorial method.

ClassBigFactorialCalculator

book-projects/chapter7/factorial

package chapter7.factorial; // remove this line if you’re n ot using packages
import java.math.BigInteger;
/**

* Compute n factorial using BigInteger arithmetic.
*/

public class BigFactorialCalculator
{

/**
* Compute factorials using BigInteger arithmetic and displ ay them.
* @param n the value whose factorial is to be calculated.
*/

public void displayFactorial(int n)
{

String s = bigFactorial(n).toString();
System.out.println("Number of digits is " + s.length());
System.out.println(n + "! = ");
displayLongString(s, 60);

}

/* Compute n factorial using BigInteger arithmetic
*/
private BigInteger bigFactorial(int n)
{

...
}

/* Display the string s, width characters per line
*/

private void displayLongString(String s, int width)
{

...
}

}

For command-line testing the following class can be used.

ClassBigFactorialRunner

book-projects/chapter7/factorial

342 Repetition Structures

package chapter7.factorial; // remove this line if you’re n ot using packages
import java.util.Scanner;
/**

* Testing big factorial method from command line
*/

public class BigFactorialRunner
{

public void run()
{

Scanner input = new Scanner(System.in);
BigFactorialCalculator calc = new BigFactorialCalculato r();
System.out.println("Enter value of n");
int n = input.nextInt();
calc.displayFactorial(n);

}

public static void main(String[] args)
{

new BigFactorialRunner().run();
}

}

The output for 200! is

java BigFactorialRunner
Enter value of n
200
200! =
788657867364790503552363213932185062295135977687173 263294742
533244359449963403342920304284011984623904177212138 919638830
257642790242637105061926624952829931113462857270763 317237396
988943922445621451664240254033291864131227428294853 277524242
407573903240321257405579568660226031904170324062351 700858796
178922222789623703897374720000000000000000000000000 000000000
000000000000000

7.9 Expressing the for-loop as a while-loop

The for-loop shown in Figure 7.10 can be expressed as the while-loop shown in Figure 7.12, but
the for-loop is simpler in these cases.

EXAMPLE 7.19 (Comparing the for and while-loops)The for-loop and while-loop for calcu-
lating factorials are

Using a for-loop Using a while-loop
product = 1; product = 1;
for (int k = 2; k <= n; k++) int k = 2;
{ while (k <= n)

product = product * k; {
} product = product * k;

7.10 Loan repayment table 343

Initialization

while (Test)

{
Statements

Update

}

Figure 7.12: A for-loop expressed as a while-loop

k++;
}

Note that the initialization ofk to 2 has to be done before the while-statement. Also, the update
statementk++ is in the body of the while-loop. Since we know that the loop will executen - 2
times the for-loop is more appropriate and easier to write.

7.10 Loan repayment table

We want to write a program that solves the following problem

“Given the amount of a loan (principal), the number of years topay back the loan,
the number of payments per year, and the annual interest rate, produce a loan repay-
ment table for each payment period showing the principal repaid and the principal
remaining.”

We need some financial mathematics to solve this problem. Letus define the following quantities

A the amount of the loan (principal)
y the number of years to pay back the loan
m the number of payments per year (periods per year)
j the annual interest rate as a decimal number

Using these quantities we need to compute the following quantities.

n = my, the total number of payments,

i =
j

m
, the interest rate per payment period as a decimal number,

R =
A

a(n, i)
, the payment made at the end of each payment period,

where

a(n, i) =
1− (1+ i)−n

i

344 Repetition Structures

Payment Periodic Payment of Principal Remaining
Number Repayment interest Repaid Principal

A
1 R I1 = iA P1 = R− iA A1 = A−P1

2 R I2 = iA1 P2 = R− iA1 A2 = A1−P2

3 R I3 = iA2 P3 = R− iA2 A3 = A2−P3

· · · · · · · · · · · · · · ·

Table 7.1: A loan repayment table

ALGORITHM LoanRepayment(loanAmount, years, paymentsPerYear, annualRate)
n← paymentsPerYear× years
i ← annualRate/ paymentsPerYear
payment← loanAmount/ a(n, i)
principalRemaining← loanAmount
FOR paymentNumber← 1 TO n DO

interest← principalRemaining× i
principalRepaid← payment− interest
principalRemaining← principalRemaining− principalRepaid
OUTPUT paymentNumber, payment, interest,

principalRepaid, principalRemaining
END FOR

Figure 7.13: Pseudo-code loan repayment algorithm

The loan repayment table has the form shown in Table 7.1. The following properties of the table
can be used as checks

1. P1, P2, P3, . . . , satisfyP2/P1 = P3/P2 = · · ·= 1+ i
2. In each row the entries in columns 3 and 4 sum toR
3. The total of column 2 is the total amount paid
4. The total of column 3 is the total interest paid
5. The total of column 4 isA, the amount of the loan
6. The entry in column 5 should be 0 aftern payments

A pseudo-code algorithm for producing the table is shown in Figure 7.13.

7.10.1 Right justifying numbers in a field of given width

We want to produce a nicely formatted table that looks like

Payment Payment Interest Principal Principal
Number Paid Repaid Remaining

7.10 Loan repayment table 345

------- ------- -------- --------- ---------
1 1295.05 500.00 795.05 9204.95
2 1295.05 460.25 834.80 8370.16

...
9 1295.05 120.40 1174.64 1233.38

10 1295.05 61.67 1233.38 0.00

with the columns right-justified in fields and numbers displayed with two digits after the decimal
point. We can use theString.format method from Chapter 4.2.5 to do this. The format code%7d
can be used to format the first column of integers and the code%12.2f can be used to format the
remaining fields.

7.10.2 StringBuilder class

We want to make our class general so we do not produce the tableusing System.out.print
statements. Instead we will return the entire table as a big formatted string. That way when we
discuss graphical user interfaces (GUI’s) in a later Chapter, whereSystem.out.print has no
meaning, we can use our loan repayment class unchanged.

Since there are a lot of string manipulations it is more appropriate to use theStringBuilder
class in packagejava.lang . This is a mutable version of theString class that is more efficient to
use when performing a lot of string manipulations. The constructor and method prototypes from
this class that we need are

• public StringBuilder(int size)

Construct an empty string buffer with space forsize characters initially. The size will
expand as needed.

• public void append(String s)

Append the given strings to the end of the buffer (like+ for string concatenation). There are
several versions ofappend that haveint anddouble and other types of arguments. In any
case the argument is converted to a string and appended to thestring buffer.

• public String toString()

Convert the string buffer to aString object. We usually do this when we are finished
creating the string buffer.

7.10.3 Loan repayment table class

The public interface of our class is

public class LoanRepaymentTable
{

public LoanRepaymentTable(double a, int y, int p, double r) {...}
public String toString() {...}

}

346 Repetition Structures

Here a is the amount of the loan,y is the number of years for repayment,p is the number of
payments per year andr is the annual rate in percent. ThetoString method will return the table
as one big string. The complete class is

ClassLoanRepaymentTable

book-projects/chapter7/loan_repayment

package chapter7.loan_repayment; // remove this line if yo u’re not using packages
/**

* A class to compute a loan repayment table, given the loan amo unt, the
* number of years to repay the loan, the number of payments mad e per year,
* and the annual interest rate in percent.
*/

public class LoanRepaymentTable
{

private double loanAmount; // initial amount of the loan
private int years; // years to pay back the loan
private int paymentsPerYear;
private double annualRate; // as a fraction
private String table; // the loan repayment table

/**
* Construct a loan repayment table.
* @param a the given amount of the loan
* @param y the number of years to pay it back
* @param p the number of payments per year
* @param r the annual interest rate in percent
*/

public LoanRepaymentTable(double a, int y, int p, double r)
{

loanAmount = a;
years = y;
paymentsPerYear = p;
annualRate = r / 100.0; // convert percent to a fraction
computeTable();

}

/**
* Return the loan repayment table.
* @return the loan repayment table.
*/

public String toString()
{

return table;
}

/* Construct the entire table as one big string that
contains newlines to break the table into lines

*/
private void computeTable()
{

7.10 Loan repayment table 347

int n = paymentsPerYear * years;
double i = annualRate / paymentsPerYear;
double payment = loanAmount / a(n,i);
double principalRemaining = loanAmount;
double interest;
double principalRepaid;

// append headings

StringBuilder buffer = new StringBuilder(1000);

buffer.append("Payment Payment Interest Principal Princ ipal\n");
buffer.append(" Number Paid Repaid Remaining\n");
buffer.append("------- ------- -------- --------- ----- ----\n");

// Calculate table and append rows to buffer

double totalInterestPaid = 0.0;
double totalPrincipalPaid = 0.0;
for (int paymentNumber = 1; paymentNumber <= n; paymentNumb er++)
{

interest = principalRemaining * i;
principalRepaid = payment - interest;
principalRemaining = principalRemaining - principalRepa id;

buffer.append(String.format("%7d", paymentNumber));
buffer.append(String.format("%12.2f", payment));
buffer.append(String.format("%12.2f", interest));
buffer.append(String.format("%12.2f", principalRepai d));
buffer.append(String.format("%12.2f", principalRemai ning));
buffer.append("\n");

totalInterestPaid += interest;
totalPrincipalPaid += principalRepaid;

}

double totalLoanCost = totalInterestPaid + totalPrincipa lPaid;
buffer.append("\n");
buffer.append("Total interest paid is " +

String.format("%.2f", totalInterestPaid) + "\n");
buffer.append("Total premium paid is " +

String.format("%.2f", totalPrincipalPaid) + "\n");
buffer.append("Total cost of loan is " +

String.format("%.2f", totalLoanCost) + "\n");
table = buffer.toString();

}

private double a(int n, double i)
{

return (1.0 - Math.pow(1.0 + i, -n)) / i;
}

}

348 Repetition Structures

Most of the work is done by thecomputeTable method which is called by the constructor. It
initializes aStringBuilder object calledbuffer and appends rows of the table and new line
characters. When the calculations are complete the buffer is returned from the method as the
instance data fieldtable which can be obtained using thetoString method.

7.10.4 Console user interface

Here is a runner class that can be used inBlueJ and from the command line.

ClassLoanRepaymentTableRunner

book-projects/chapter7/loan_repayment

package chapter7.loan_repayment; // remove this line if yo u’re not using packages
import java.util.Scanner;
/**

* Class for running LoanRepaymentTable from console.
*/

public class LoanRepaymentTableRunner
{

public void run()
{

Scanner input = new Scanner(System.in);
System.out.println("Enter loan amount");
double a = input.nextDouble();
input.nextLine();
System.out.println("Enter number of years");
int y = input.nextInt();
input.nextLine();
System.out.println("Enter number of payments per year");
int p = input.nextInt();
input.nextLine();
System.out.println("Enter annual interest rate in percen t");
double r = input.nextDouble();
input.nextLine();

LoanRepaymentTable table = new LoanRepaymentTable(a,y,p ,r);
System.out.println(table);

}

public static void main(String[] args)
{

new LoanRepaymentTableRunner().run();
}

}

The entire table is displayed in the console or terminal window by the single statement

System.out.println(table);

The console output for a $10,000 loan, at 10% per year, for a period of 5 years, with payments
twice a year is

7.11 Nested loops 349

java LoanRepaymentTableRunner
Enter loan amount
10000
Enter number of years
5
Enter number of payments per year
2
Enter annual interest rate in percent
10
Payment Payment Interest Principal Principal

Number Paid Repaid Remaining
------- ------- -------- --------- ---------

1 1295.05 500.00 795.05 9204.95
2 1295.05 460.25 834.80 8370.16
3 1295.05 418.51 876.54 7493.62
4 1295.05 374.68 920.36 6573.25
5 1295.05 328.66 966.38 5606.87
6 1295.05 280.34 1014.70 4592.17
7 1295.05 229.61 1065.44 3526.73
8 1295.05 176.34 1118.71 2408.02
9 1295.05 120.40 1174.64 1233.38

10 1295.05 61.67 1233.38 0.00

Total interest paid is 2950.46
Total premium paid is 10000.00
Total cost of loan is 12950.46

7.11 Nested loops

One of the statements in the body of a loop could be another loop statement. We say that the
inner loop is nested within the outer loop. The inner loop will be executed for each iteration of the
outer one. Nested for-loops are quite common for processingdata which has a two-dimensional
representation as a number of rows and columns. We consider several simple examples:

EXAMPLE 7.20 (5 rows of 10 circles) Suppose we want to draw the grid of circles shown in
Figure 7.14. Assuming that the radius of each circle is 20, then the top left corner coordinates of
the bounding boxes are(40 * column, 40 * row) whererow goes from 0 to 4 andcolumn goes
from 0 to 9. The width of each box is 40. Therefore, the following nested loop draws the circles,
assuming thatg2D is aGraphics2D reference.

double size = 40.0;
for (int row = 0; row <= 4; row++)
{

double yTopLeft = size * row;
for (int column = 0; column <= 9; column++)
{

double xTopLeft = size * column;
g2D.draw(new Ellipse2D.Double(xTopLeft, yTopLeft, size , size));

}

350 Repetition Structures

Figure 7.14: 5 rows of 10 circles touching each other

}

For each value ofrow , the inner loop draws an entire row of 10 circles indexed by the value of
column .

EXAMPLE 7.21 (Square pattern) You can experiment with nested loops using console output.
For example, the nested loop statement

for (int row = 1; row <= 4; row++)
{

for (int column = 1; column <= 10; column++)
{

System.out.print("*");
}
System.out.println();

}

displays the rectangular pattern

with 4 rows of 10 asterisks. Try this example using theBeanShell workspace and editor.

EXAMPLE 7.22 (Triangular pattern) In Example 7.20 and Example 7.21 the inner loop index
column did not depend on the outer loop indexrow . In the nested loop

for (int row = 1; row <= 4; row++)
{

for (int column = 1; column <= row; column++)
{

System.out.print("*");
}

7.11 Nested loops 351

System.out.println();
}

the inner loop index depends on the outer one and the following triangular pattern is displayed.

*
**

For the first iteration of the outer loop (row = 1), the inner loop index goes from 1 to 1 so one
asterisk is displayed. For the second iteration of the outerloop (row = 2), the inner loop index
goes from 1 to 2, so two asterisks are displayed. Thus, each row contains one more asterisk than
the preceding one. The total number of asterisks displayed is 1+2+ · · ·+n = n(n+1)/2, which
is 10 in this case. Try this using theBeanShell workspace and editor.

EXAMPLE 7.23 (Doubly-nested loop for computing powers) The following loop structure
computes the second to fifth powers of the numbers one 1 to 10. For a givenn defining a row of
the table the row contains the numbersn, n2, n3, n4 andn5. Thusn is the outer loop row index and
p, the power, is the inner loop column index. The double loop isgiven by

int val;
for (int n = 1; n <= 10; n++)
{

System.out.printf("%5d", n);

val = n;
for (int p = 2; p <= 5; p++)
{

val = val * n;
System.out.printf("%8d", val);

}
System.out.println();

}

The output is

1 1 1 1 1
2 4 8 16 32
3 9 27 81 243
4 16 64 256 1024
5 25 125 625 3125
6 36 216 1296 7776
7 49 343 2401 16807
8 64 512 4096 32768
9 81 729 6561 59049

10 100 1000 10000 100000

For rown each value in the inner loop is obtained from the one to its left by multiplying byn. We
never need to use theMath.pow method.

352 Repetition Structures

7.11.1 Investment table

Let us write a program to print a table showing the value of an investment for different interest
rates and different numbers of years. More specifically,

“Given an initial investment amount, compute a future value table for different rates
from a minimum rate of 4% to a maximum rate of 10% in steps of 0.5%, and for an
investment time of 5 to 30 years in steps of 5 years. The rows ofthe table correspond
to the rates, and the columns correspond to the number of years.”

For example, if the initial investment is $1000 the following table shows the value of the invest-
ment, with some rows omitted:

RATE 5 YEARS 10 YEARS 15 YEARS 20 YEARS 25 YEARS 30 YEARS
4.00 1221.00 1490.83 1820.30 2222.58 2713.77 3313.50
4.50 1251.80 1566.99 1961.56 2455.47 3073.74 3847.70
....
9.50 1605.01 2576.06 4134.59 6636.06 10650.94 17094.86

10.00 1645.31 2707.04 4453.92 7328.07 12056.94 19837.40

For example, at 4.5% an investment of $1000 is worth $3073.74after 25 years. This table can
be produced by a nested for-loop. The outer loop goes over therows of the table, and the inner
loop goes over the columns. We can generalize and use variables for the investment amount, the
minimum rate, the maximum rate, the rate step from one row to the next, the minimum number of
years, the maximum number of years, and the year step from onecolumn to the next. The nested
loop structure has the form

double small = 0.00001;
for (double rate = minRate; rate <= maxRate + small; rate += ra teStep)
{

...
for (int years = minYears; years <= maxYears; years += yearSt ep)
{

...
}
...

}

The outer loop goes over the rows of the table and the inner loop goes across the columns in a row.
We add a small constant tomaxRate in case there is roundoff error to forcemaxRate to be reached.

The formula for the future valueF of an amountA, with a yearly rate ofr percent, compounded
monthly, forn years is

F = A
(

1+
r

1200

)12n

We can use this formula to write the following method for calculating the future value.

private double futureValue(double presentValue, double y earlyRate, int years)

7.11 Nested loops 353

{
double monthlyRate = yearlyRate / 100.0 / 12.0;
return presentValue * Math.pow(1.0 + monthlyRate, 12 * year s);

}

As in theLoanRepaymentTable class we use aStringBuilder to accumulate the table as a string
and we use theString.format method to line everything up in columns. The complete class is
given by

ClassInvestmentTable

book-projects/chapter7/investment

package chapter7.investment; // remove this line if you’re not using packages
/**

* A class that produces an investment table for a given initia l investment.
*/

public class InvestmentTable
{

private double minRate, maxRate, rateStep; // range and ste p for rows
private int minYears, maxYears, yearStep; // range and step for columns
private double initialValue; // initial value of investmen t
private String table; // the investment table

/**
* Construct table for given initial investment, rate range, and year range.
* @param minRate rate (percent per year) for first table row
* @param maxRate rate (percent per year) for last table row
* @param rateStep step size in percent between table rows
* @param minYears number of years for first column
* @param maxYears number of years for last column
* @param yearStep step size in years between table columns
* @param initialValue initial value of the investment
*/

public InvestmentTable(double minRate, double rateStep, double maxRate,
int minYears, int yearStep, int maxYears, double initialVa lue)

{
this.minRate = minRate;
this.maxRate = maxRate;
this.rateStep = rateStep;
this.minYears = minYears;
this.maxYears = maxYears;
this.yearStep = yearStep;
this.initialValue = initialValue;
computeTable();

}

/**
Return the investment table.
@return the table

*/

354 Repetition Structures

public String toString()
{

return table;
}

private void computeTable()
{

/* append table heading */

StringBuilder buffer = new StringBuilder(1000);
buffer.append(" RATE");
for (int years = minYears; years <= maxYears; years += yearSt ep)
{

String head = String.format("%2d YEARS", years);
buffer.append(String.format("%12s", head));

}
buffer.append("\n");

/* Calculate and append rows of table */

double small = 0.00001;
for (double rate = minRate; rate <= maxRate + small; rate += ra teStep)
{

buffer.append(String.format("%6.2f", rate));
for (int years = minYears; years <= maxYears; years += yearSt ep)
{

double value = futureValue(initialValue, rate, years);
buffer.append(String.format("%12.2f", value));

}
buffer.append("\n");

}
table = buffer.toString();

}

private double futureValue(double presentValue, double y earlyRate, int years)
{

double monthlyRate = yearlyRate / 100.0 / 12.0;
return presentValue * Math.pow(1.0 + monthlyRate, 12 * year s);

}
}

7.11.2 Console user interface

Here is a runner class that can be used inBlueJ and from the command line.

ClassInvestmentTableRunner

book-projects/chapter7/investment

package chapter7.investment; // remove this line if you’re not using packages
import java.util.Scanner;
/**

7.11 Nested loops 355

* Console runner class for InvestmentTable.
* This version allows all table parameters to be specified.
*/

public class InvestmentTableRunner
{

public void run()
{

Scanner input = new Scanner(System.in);

System.out.println("Enter minimum rate in percent");
double minRate = input.nextDouble();
input.nextLine();
System.out.println("Enter table rate step");
double rateStep = input.nextDouble();
input.nextLine();
System.out.println("Enter maximum rate in percent");
double maxRate = input.nextDouble();
input.nextLine();

System.out.println("Enter minimum number of years");
int minYears = input.nextInt();
input.nextLine();
System.out.println("Enter table year step");
int yearStep = input.nextInt();
input.nextLine();
System.out.println("Enter maximum number of years");
int maxYears = input.nextInt();
input.nextLine();

System.out.println("Initial investment");
double amount = input.nextDouble();
input.nextLine();
InvestmentTable table = new InvestmentTable(minRate, rat eStep, maxRate,

minYears, yearStep, maxYears, amount);
System.out.println(table);

}

public static void main(String[] args)
{

new InvestmentTableRunner().run();
}

}

Typical console output is

java InvestmentTableRunner
Enter minimum rate in percent
2
Enter table rate step
0.5
Enter maximum rate in percent

356 Repetition Structures

5
Enter minimum number of years
1
Enter table year step
1
Enter maximum number of years
5
Initial investment
1000

RATE 1 YEARS 2 YEARS 3 YEARS 4 YEARS 5 YEARS
2.00 1020.18 1040.78 1061.78 1083.21 1105.08
2.50 1025.29 1051.22 1077.80 1105.06 1133.00
3.00 1030.42 1061.76 1094.05 1127.33 1161.62
3.50 1035.57 1072.40 1110.54 1150.04 1190.94
4.00 1040.74 1083.14 1127.27 1173.20 1221.00
4.50 1045.94 1093.99 1144.25 1196.81 1251.80
5.00 1051.16 1104.94 1161.47 1220.90 1283.36

7.12 Plotting the graph of a function

As another example of a for-loop let us write a graphics program to plot a functionf (x) for xL ≤
x≤ xR. To draw the graph we have to approximate the curve by many line segments and draw each
line segment. If we choose small enough line segments the graph will look smooth. Therefore, we
divide the interval[xL,xR] into n equal size subintervals using the points

x0 = xL, x1 = xL +dx, . . . , xi = xL + idx, . . . , xn = xR = xL +ndx,

wheredx = (xR− xL)/n. The graph betweenxi andxi+1 is shown in Figure 7.15. It shows the

(xi , f (xi)) s

(xi+1, f (xi+1))s
����������

f (xi)

f (xi+1)

(xi ,0) (xi+1,0)

Figure 7.15: Approximating part of a function with a line segment

curve and the line segment that is used to approximate it. On this interval we need to draw a line
from the point(xi , f (xi)) to the point(xi+1, f (xi+1)). A pseudo-code algorithm for drawing the
graph of f (x) is shown in Figure 7.16. Here each time a line segment is drawnits right end point
becomes the left end point of the next line segment. This is accomplished with the assignment
(x0,y0)← (x,y).

7.12 Plotting the graph of a function 357

ALGORITHM DrawGraph(xL, xR, n)
dx← (xR−xL)/n
(x0,y0)← (xL,yL)
FOR i← 1 TO n DO

(x,y)← (xL,+idx, f (xL,+idx))
Draw line from(x0,y0) to (x,y)
(x0,y0)← (x,y)

END FOR

Figure 7.16: Pseudo-code graph drawing algorithm

As an example, let us write a class to draw the graph of sinx from xL = −2π to xR = 2π. The
natural world coordinate system is one that has this range onthex-axis, and the range−1 to 1 on
they-axis.

We can use theGraphicsFrame class and theworldTransform method from theBarGraph3
class in Chapter 5 (page 239). The bounding box for the world coordinate system can be defined
using

private double xLeft = -2 * Math.PI;
private double xRight = 2 * Math.PI;
private double yBottom = -1.0;
private double yTop = 1.0;

ThepaintComponent method has the basic structure

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;

int w = getWidth();
int h = getHeight();

int numPoints = 100;
double b = 1.1;
AffineTransform world = worldTransform(xLeft, xRight, yB ottom*b, yTop*b, w, h);
g2D.transform(world);

// choose a line thickness here
// Draw the x and y axes here
// Draw the graph of sin x here

}

Hereb provides a 10% border in they direction so the graph doesn’t touch the edge of the window.
Recall that any transformation of user space involving a scaling also transforms the line thick-

ness. We want our lines to be one pixel in size so we need to calculate the width and height of a
pixel in the world system and use the smallest of them as our pixel size. Sinceh pixels vertically

358 Repetition Structures

correspond toyTop - yBottom units in the world andw pixels horizontally correspond toxRight
- xLeft units we obtain

double pixelHeight = (yTop - yBottom) / h;
double pixelWidth = (xRight - xLeft) / w;
double pixelSize = Math.min(pixelHeight, pixelWidth);

Now we can set the line size using

g2D.setStroke(new BasicStroke((float)pixelSize));

Alternatively, if we want a one pixel line we can use0F as the argument ofBasicStroke (see
Chapter 5).

The axes can be drawn in blue using

Line2D.Double xAxis = new Line2D.Double(xLeft,0,xRight, 0);
Line2D.Double yAxis = new Line2D.Double(0,yBottom,0,yTo p);
g2D.setPaint(Color.blue);
g2D.draw(xAxis);
g2D.draw(yAxis);

Finally, the graph can be drawn in black usingPoint2D.Double objects calledp0 andp1 for the
points(x0,y0) and(x,y) shown in the pseudo-code algorithm:

double dx = (xRight - xLeft) / numPoints;
Point2D.Double p0 = new Point2D.Double(xLeft, Math.sin(x Left));
g2D.setPaint(Color.black);
for (int i = 1; i <= numPoints; i++)
{

double x = xLeft + i*dx;
double y = Math.sin(x);
Point2D.Double p1 = new Point2D.Double(x,y);
g2D.draw(new Line2D.Double(p0,p1));
p0 = p1;

}

7.12.1 SineGraph class

Here is the complete class. The graph is shown in Figure 7.17.

ClassSineGraph

book-projects/chapter7/sine_graph

package chapter7.sine_graph; // remove this line if you’re not using packages
import custom_classes.GraphicsFrame; // remove this line if you’re not using packages
import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

7.12 Plotting the graph of a function 359

Figure 7.17:SineGraph output window

/**
* Use the GraphicsFrame class to draw the graph
* of a sine curve from -2*Math.PI to 2*Math.PI.
* An affine transformation is used to transform the coordina te system.
*/

public class SineGraph extends JPanel
{

// define bounding box for graph in world coordinate system

private double xLeft = -2 * Math.PI;
private double xRight = 2 * Math.PI;
private double yBottom = -1.0;
private double yTop = 1.0;

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;

int w = getWidth();
int h = getHeight();

int numPoints = 100;

// Make a world coordinate system to go from xLeft*b to xRight *b in the
// x direction and yBottom*b to yTop*b in the y direction, whe re b is
// chosen to leave a 10 percent border in y direction

double b = 1.1;
AffineTransform world = worldTransform(xLeft, xRight,

yBottom*b, yTop*b, w, h);
g2D.transform(world);

// find out the size of a pixel and use it to scale the
// line thickness to one pixel. pixelHeight and pixelWidth
// are the pixel width and height in the world system.

360 Repetition Structures

// Choose their minimum as the width of lines.

double pixelHeight = (yTop - yBottom) / h;
double pixelWidth = (xRight - xLeft) / w;
double pixelSize = Math.min(pixelHeight, pixelWidth);
g2D.setStroke(new BasicStroke((float)pixelSize));

// Another way to get one pixel lines is to use 0F as the brush si ze

// Draw the x and y axes

Line2D.Double xAxis = new Line2D.Double(xLeft,0,xRight, 0);
Line2D.Double yAxis = new Line2D.Double(0,yBottom,0,yTo p);
g2D.setPaint(Color.blue);
g2D.draw(xAxis);
g2D.draw(yAxis);

// Determine the distance on the x-axis between successive p oints

double dx = (xRight - xLeft) / numPoints;

// Set the starting point on the curve to the leftmost point.

Point2D.Double p0 = new Point2D.Double(xLeft, Math.sin(x Left));

// Draw numPoints line segments. The x coordinates of their r ight end
// points are xLeft+dx, xLeft+2*dx, ... and so on. After draw ing a
// segment reset the starting point p0 for the next line segme nt.

g2D.setPaint(Color.black);
for (int i = 1; i <= numPoints; i++)
{

double x = xLeft + i*dx;
double y = Math.sin(x);
Point2D.Double p1 = new Point2D.Double(x,y);
g2D.draw(new Line2D.Double(p0,p1));
p0 = p1;

}
}

private AffineTransform worldTransform(double xMin, dou ble xMax,
double yMin, double yMax, int w, int h)

{
double sx = (w-1) / (xMax - xMin); // scale factor in x directio n
double sy = (h-1) / (yMax - yMin); // scale factor in y directio n
AffineTransform at = new AffineTransform();
at.translate(0, h-1); // move origin to bottom left corner o f JPanel
at.scale(sx, -sy); // -sy reverses y axis
at.translate(-xMin, -yMin); //make (xMin,yMin) the lower left corner
return at;

}

7.13 Recursion and loops 361

public void draw()
{

new GraphicsFrame("Graph of sin x", new SineGraph(), 301, 2 01);
}

public static void main(String[] args)
{

new SineGraph().draw();
}

}

7.13 Recursion and loops

7.13.1 What is recursion?

Recursion is a problem solving technique that expresses a problem (algorithm) in terms of one or
more smaller versions of itself. These smaller versions are, in turn, expressed in terms of smaller
versions of themselves, and so on. The smaller versions of the problem at each stage are called the
recursive cases. This process continues until we arrive at one or more cases which can be solved
directly. These cases are calledbase cases.

7.13.2 Examples of recursive definitions

The simplest forms of recursion have a close connection withloops. Many functions in mathemat-
ics have non-recursive definitions expressed in terms of loops and recursive definitions that do not
have explicit loops: the looping process is managed by the recursion process itself, as it breaks the
problem into smaller subproblems.

We give three examples.

EXAMPLE 7.24 (Recursive definition ofn!) In Section 7.8.1 we gave a non-recursive defini-
tion of n!. A recursive definition is

0! = 1, 1! = 1 (base cases,n = 0,1)
n! = n(n−1)! (recursive cases,n > 1)

The base cases are 0! and 1!. The recursive cases expressn! in terms of(n−1)!, a smaller version
of itself.

EXAMPLE 7.25 (Recursive definition of the Fibonacci numbers) The Fibonacci numbers
Fn,n = 0,1, . . . are defined by

F0 = 0, F1 = 1 (base cases,n = 0,1)
Fn = Fn−1+Fn−2 (recursive cases,n > 1)

Here there are two simple base cases and the recursive cases expressFn as the sum of two smaller
versions,Fn−1 andFn−2

362 Repetition Structures

EXAMPLE 7.26 (Recursive definition of the greatest common divisor)The greatest common
divisor of two integersm andn is denoted by gcd(m,n). It is the largest integer that divides both
m and n. We can assume thatm≥ 0 andn ≥ 0 since gcd(m,n) = gcd(|m|, |n|). Under these
assumptions a recursive definition for gcd(m,n) is

gcd(m,0) = m (base cases,n = 0)
gcd(m,n) = gcd(n,mmodn) (recursive cases,n > 0)

We could also assume thatm≥ n since gcd(m,n) = gcd(n,m), although the recursive definition
works in either case. The base cases, whenn = 0, do not involve recursion. The recursive cases
involve smaller versions of gcd(m,n) sincem modn is smaller thann so the second argument,n,
decreases until the base case is reached atn = 0. For example

gcd(2436,1015) = gcd(1015,2436 mod 1015) = gcd(1015,406)

= gcd(406,1015 mod 406) = gcd(406,203)

= gcd(203,406 mod 203) = gcd(203,0)

= 203

so gcd(2436,1015) = 203.

7.13.3 Recursive factorial method

To see the connection with loops recall that the non-recursive version of the factorial function in
programFactorialCalculator (page 338) involved a for-loop. Using the recursive definition in
Example 7.24 the recursive version of this function is givenin the following example.

EXAMPLE 7.27 (Recursive method forn!)

int factorial(int n)
{

if (n == 0 || n == 1) // base cases
return 1;

else // recursive case
return n * factorial(n-1);

}

Notice that the function calls itself but with a smaller version of the argument. Eventually the
function will be called with 1 as a argument and the base case will stop the recursion. There is no
loop in this version of the factorial function. The recursive process itself does the looping: each of
the pending returns does one of the multiplications. Of course, if the base case is omitted then we
have what is called infinite recursion, corresponding to an infinite loop.

The following class can be used to test the recursive factorial function.

7.13 Recursion and loops 363

ClassFactorialCalculator

book-projects/chapter7/recursion

package chapter7.recursion; // remove this line if you’re n ot using packages
/**

* A simple class to test recursive version of factorial metho d.
*/

public class FactorialCalculator
{

/**
* Calculate n factorial using recursive algorithm.
* @param n value for n factorial
* @return n factorial
* @throws IllegalArgumentExeception if n is outside the ran ge
* 0 <= n <= 12.
*/

public int factorial(int n)
{

if (n < 0 || n > 12)
{

throw new IllegalArgumentException("n! is only defined fo r n = 0..12");
}

if (n == 0 || n == 1) // base cases
return 1;

else // recursive cases
return n * factorial(n-1);

}
}

A runner class for testing the method from the command line isgiven by

ClassFactorialRunner

book-projects/chapter7/recursion

package chapter7.recursion; // remove this line if you’re n ot using packages
import java.util.Scanner;
/**

* Testing recursive factorial method from commmand line
*/

public class FactorialRunner
{

public void run()
{

Scanner input = new Scanner(System.in);
FactorialCalculator calc = new FactorialCalculator();
System.out.println("Enter value of n");
int n = input.nextInt();
System.out.println(n + "! = " + calc.factorial(n));

}

364 Repetition Structures

public static void main(String[] args)
{

new FactorialRunner().run();
}

}

To see how the recursive process works let us calculate 4!. The steps are

4! → 4 ·3!
→ 4 ·3 ·2!
→ 4 ·3 ·2 ·1! base case
→ 4 ·3 ·2 ·1
→ 4 ·3 ·2
→ 4 ·6
→ 24

The recursive calls end with the base case, then the pending returns do all the multiplications.

7.13.4 Recursive gcd method

The following example gives a method for the recursive gcd algorithm in Example 7.26.

EXAMPLE 7.28 (Recursive method forgcd(m,n))

int gcd(int m, int n)
{

if (n == 0)
return m;

else
return gcd(n, m % n);

}

In casem= n = 0 the method returns 0 even though gcd(0,0) is not normally defined. Insert the
statements

m = Math.abs(m);
n = Math.abs(n);

if you want the method to also work in case one or both ofm andn are negative.

The following class can be used to test the recursive gcd function.

ClassGcdCalculator

book-projects/chapter7/recursion

7.13 Recursion and loops 365

package chapter7.recursion; // remove this line if you’re n ot using packages
/**

* A simple class to test recursive version of gcd method.
*/

public class GcdCalculator
{

/**
* Calculate gcd(m,n) using recursive algorithm.
* m >= 0 and n >= 0. Algorithm produces gcd(0,0) = 0
* even though gcd(0,0) is undefined.
* @return gcd(m,n)
*/

public int gcd(int m, int n)
{

if (n == 0)
return m;

else
return gcd(n, m % n);

}
}

A runner class for testing the method from the command line isgiven by

ClassGcdRunner

book-projects/chapter7/recursion

package chapter7.recursion; // remove this line if you’re n ot using packages
import java.util.Scanner;
/**

* Testing recursive gcd method from commmand line
*/

public class GcdRunner
{

public void run()
{

Scanner input = new Scanner(System.in);
GcdCalculator calc = new GcdCalculator();
System.out.println("Enter value of m");
int m = input.nextInt();
input.nextLine();
System.out.println("Enter value of n");
int n = input.nextInt();
input.nextLine();

System.out.println("gcd(" + m + ", " + n + ") = " + calc.gcd(m,n));
}

public static void main(String[] args)
{

new GcdRunner().run();
}

}

366 Repetition Structures

7.13.5 Non-recursive and recursive sum methods

As another example of the connection between loops and recursion consider the problem of writing
a method to compute the sum

S(a,b) = a+(a+1)+ · · ·+(b−1)+b

of the integers betweena andb for a≤ b. Pretending that we don’t know the answer

S(a,b) =
b(b+1)

2
− (a−1)a

2
=

(b+a)(b−a+1)

2

the non-recursive solution is to use a for-loop as in the simple method

public int sum(int a, int b)
{

int s = 0;
for (int k = a; k <= b; k++)
{

s = s + k;
}
return s;

}

We can also give a recursive definition of this sum in terms of smaller sums:

“The sum of the numbers from a to b is the first number plus the sumof the remaining
numbers.”

The smaller version of the problem is “sum of the remaining numbers”, since there is one less
number in this sum, and the base case occurs when there is a single number to sum. Assuming that
a≤ b we have the following recursive definition

S(a,a) = a (base cases,b = a)
S(a,b) = a+S(a+1,b) (recursive cases,b > a)

Here is a recursive method to compute the sum:

public int sum(int a, int b)
{

if (a == b) // base case
return a;

else
return a + sum(a+1, b);

}

7.14 Common loop errors

There are several errors that commonly occur when writing loops.

7.15BeanShell exercises 367

7.14.1 Misplaced semi-colon

Referring to Example 7.1, consider the simple while-loop

int count = 1;
while (count <= 10);
{

System.out.print(count + " ");
count = count + 1; // or use count++

}

Instead of displaying1 2 3 4 5 6 7 8 9 10 nothing is displayed and the program doesn’t stop.
There is a semi-colon at the end of the line containingwhile . This is not a syntax error! This
line is a complete while-loop with no body. Sincecount <= 10 is true it will always be true and
the empty loop will never exit. The statements enclosed in braces are not part of the loop and will
never be executed.

7.14.2 Off by one errors

It is important to test loops to make sure the loop variables begin and end with the required values.
It is easy to be “off by one” and have a loop that executes one less time or one more time. These
logical errors can be difficult to find.

7.15 BeanShell exercises

The followingBeanShell exercises can be done using the Workspace Editor. First runBeanShell,
then choose “Workspace Editor” from the “File” menu to open the editor. If you want to use
System.out.println then it is also necessary to choose “Capture System in/out/err” from the
“File” menu.

Now you can type statements into the editor and they won’t be executed as they are entered.
When you have finished entering statements choose “Evaluatein Workspace” from the “Evaluate”
menu. Now the statements will be executed. You can edit the statements and evaluate them again,
and so on.

This is useful for testing static methods. Type in the method, evaluate it then test it interactively
using the workspace.

◮ BeanShell Exercise 7.1Write some statements to compute the sumSn = 1+2+ · · ·+n using

(a) a for-loop that counts up,

(b) a for-loop that counts down,

(c) a while-loop that counts up,

(d) a while-loop that counts down,

(e) a do-while loop that counts up,

(f) a do-while loop that counts down.

368 Repetition Structures

Test your statements using theBeanShell editor and workspace.

◮ BeanShell Exercise 7.2Repeat Exercise 7.1 for the sumOn = 1+3+5+ · · ·+(2n−1) of the
first n odd numbers.

◮ BeanShell Exercise 7.3Repeat Exercise 7.1 for the sumEn = 2+4+6+ · · ·+2n of the firstn
even numbers.

◮ BeanShell Exercise 7.4Write a method with prototype

int power(int m, int k)

that uses a for-loop to computemk for k≥ 0. Test your method using theBeanShell editor and
workspace.

◮ BeanShell Exercise 7.5Write a method with prototype

double power(double m, int k)

that uses a single for-loop to computemk wherek is any integer (positive or negative). Hint:
distinguish the casesk < 0 andk≥ 0, multiplyingm by itself k−1 times ifk > 0 but multiplying
1/mby itself−k times ifk < 0. Test your method using theBeanShell editor and workspace.

7.16 Programming exercises

◮ Exercise 7.1 (Computing factorials with the long data type)
Write a version ofFactorialCalculator calledLongFactorialCalculator that uses thelong
data type for calculatingn!. Also write a runner class calledLongFactorialRunner . What is the
largest value ofn that can be used before overflow occurs?

◮ Exercise 7.2 (Number digits inn!)
The number of digitsd in n! is 1+ ⌊p⌋ wheren! = 10p. Taking logarithms to base 10 gives the
formula

d = 1+ ⌊log102+ log103+ · · ·+ log10n⌋

Write a method calledfactorialDigits and a tester class for this formula and test it using
BigFactorialRunner . In theMath class there is the functionfloor with prototype

public static long floor(double n)

and there is the logarithm function to baseewith prototype

public static double log(double n)

To get logarithms to base 10 use the formula log10n =
logen
loge10

.

7.16 Programming exercises 369

◮ Exercise 7.3 (Trailing zeros inn!)
It can be shown that the number of trailing zeros inn! is

n div 5+n div 52+n div 53+ · · ·+n div 5k + · · ·

Terms in the sum with 5k > n do not contribute sincen div 5k is zero. Write a class called
TrailingZeros that uses theint data type to compute this sum. Use a while-loop with con-
dition 5k ≤ n in a method with prototype

int zeros(int n)

that returns the number of zeros. Also use a method with prototype

public int power(int m, int k)

that computesmk (k > 0) using a for-loop and can be used aspower(5,k) by thezeros method.
You can useBigFactorialTester to test this formula.

◮ Exercise 7.4 (Powers of two)
Write a class calledPowersOfTwoCalculator that computes and displays, for a given value of
n, the firstn powers of 2, namely 21,22, . . . ,2n. Do not use theMath.pow function. The program
output forn = 4 should look like

Enter the largest power
4
2ˆ1 = 2
2ˆ2 = 4
2ˆ3 = 8
2ˆ4 = 16

What is the largest power that you can compute as anint ?

◮ Exercise 7.5 (Powers of two using BigInteger objects)
Try the previous exercise by writing a class calledBigPowersOfTwo that usesBigInteger objects.

◮ Exercise 7.6 (Computing integer powers)
Write a class calledIntegerPowerCalculator that tests the method inBeanShell Exercise 7.5
for computing integer powers. Also write a runner classIntegerPowerRunner that can be run
from the command line.

◮ Exercise 7.7 (Computingeusing a series)
The base of the natural logarithms has the representation

e=
1
0!

+
1
1!

+
1
2!

+
1
3!

+ · · ·+ 1
k!

+ · · ·

as an infinite sum. Then-th partial sum of this series is defined as

Sn =
1
0!

+
1
1!

+
1
2!

+ · · ·+ 1
n!

, n≥ 0

370 Repetition Structures

As n increases these partial sums get closer and closer to the value ofe. Thenth term in this series
is tn = 1/n!. Write a class calledExpCalculator that uses a for-loop to compute these sums for
0≤ n≤ nMax Where the value ofnMax is input by the user. You do not need to compute any
factorials. Instead use the fact that

tk
tk−1

=
(k−1)!

k!
=

(k−1)!
k(k−1)!

=
1
k

to write tk = tk−1/k, wheret0 = 1. This expresses each term in terms of the preceding one. Then
the partial sumSk can be expressed in terms of the preceding one usingSk = Sk−1+ tk andS0 = 1.
Now you can use a loop based on the pseudo-code algorithm in Figure 7.18 which displays the

ALGORITHM ExpCalculator(nMax)
s← 1.0
OUTPUT 0, s
t← 1.0
FOR k← 1 TO nMaxDO

s← s+ t
t← t/k
OUTPUT k, s

END FOR

Figure 7.18: Partial sum algorithm fore

partial sum number (0, 1, 2, . . . ,nMax) and the partial sum. Heres denotes a partial sum andt
denotes a term. Your program should also display the approximate value ofe using the constant
Math.E .

◮ Exercise 7.8 (Computingex using a series)
Adapt the pseudo-code algorithm of Exercise 7.7 to compute partial sums of the series forex given
by

ex = 1+
x
1!

+
x2

2!
+

x3

3!
+ · · ·+ xk

k!
+ · · ·

using a class calledExpXCalculator . The input is nowx andnMax. Compare your results by
displayingMath.exp(x) after the last partial sum is displayed. Consider cases suchasx = 0.01,
x = 0.1, x = 1, andx = 10 and determine how many terms in the sum are needed to get agreement
with Math.exp(x) .

◮ Exercise 7.9 (Computingsinx and cosx using a series)
Adapt the pseudo-code algorithm of Exercise 7.7 to compute partial sums of the series for sinx and
cosx given by

sinx = x− x3

3!
+

x5

5!
+ · · ·+ (−1)kx2k+1

(2k+1)!
+ · · ·

7.16 Programming exercises 371

cosx = 1− x2

2!
+

x4

4!
+ · · ·+ (−1)kx2k

(2k)!
+ · · ·

using classes calledSinXCalculator andCosXCalculator . The input is nowx andnMax. Com-
pare your results by displayingMath.sin(x) andMath.cos(x) after the last partial sum is dis-
played. Consider cases such asx= 0.01,x= 0.1,x= 1, andx= 10 and determine how many terms
in the sum are needed to get agreement withMath.sin(x) andMath.cos(x) .

◮ Exercise 7.10 (A triangle of asterisks)
Write a class calledTriangleRight that inputs a value ofn defining the number of rows in the
triangle and displays output like

*
**

which is the casen = 4.

◮ Exercise 7.11 (Another triangle of asterisks)
Write a class calledTriangleCenter that inputs a value ofn defining the number of rows in the
triangle and displays output like

*

which is the casen = 4.

◮ Exercise 7.12 (Reversing a string)
Write a program class calledReverseString that tests a method calledreverse with prototype

public String reverse(String s)

The method returns a string that is the reverse ofs . For example, ifs is "Help" the string returned
is "pleH" . Use a for-loop that implements the steps shown in the table

i reverse
0 "h" ← "h" + ""
1 "eh" ← "e" + "h"
2 "leh" ← "l" + "eh"
3 "pleh" ← "p" + "leh"

in the case thats is "Help" .

372 Repetition Structures

◮ Exercise 7.13 (Nested while-loops)
Write a complete class calledMarksCalculator that reads a series of integer marks for a number
of students using a negative mark to signal the end of the marks for each student. The program
then calculates and prints the average of the marks for each student as adouble number. After
calculating and printing each average, the program asks if the user wants to enter marks for another
student. A reply of “N” or “n” terminates the program. For anyother reply the program continues
with the next student. Use the following loop structure:

while (moreStudents)
{

...
while (mark >= 0)
{

...
}
...

}

Some typical program output is

Enter marks for a student terminated by a negative mark
65
85
90
-3
The average for this student is 80
Do you want to enter marks for another student [Y/N]?
Y
Enter marks for a student terminated by a negative mark
55
75
70
-2
The average for this student is 66.67
Do you want to enter marks for another student [Y/N]?
N

◮ Exercise 7.14 (Recursive calculation of Fibonacci numbers)
The Fibonacci numbers were defined recursively in Example 7.25. Write a method with prototype

public int fibonacci(int n)

to compute Fibonacci numbers using this recursive definition. Put your method in a class called
RFibonacciCalculator to test the method.

◮ Exercise 7.15 (Non-recursive calculation of Fibonacci numbers)
Do the previous exercise using a non-recursive method. Hint: each Fibonacci number is just the
sum of the previous two numbers so keep track of two successive numbers so you can calculate the
next one.

7.16 Programming exercises 373

◮ Exercise 7.16 (Recursive binary gcd algorithm)
Here is an interesting recursive definition of gcd(m,n) for m≥ n≥ 0 that uses only simple sub-
traction and division by 2 operations.

(a) If m< n then swapmandn.

(b) If m= 0 then gcd(m,n) = n (base case).

(c) If n = 0 then gcd(m,n) = m (base case).

(d) If m andn are both even then gcd(m,n) = 2gcd(m/2,n/2).

(e) If m is odd andn is even then gcd(m,n) = gcd(m,n/2).

(f) If m is even andn is odd then gcd(m,n) = gcd(m/2,n).

(g) If m andn are both odd then gcd(m,n) = gcd((m−n)/2,n).

Repeat the previous exercise using this definition and writea class calledBinaryGcdCalculator
to test your method.

◮ Exercise 7.17 (A non-recursive gcd algorithm)
Using the non-recursive pseudo-code algorithm for calculating gcd(m,n) shown in Figure 7.19,
write a method with prototype

ALGORITHM gcd(m,n)
a←m
b← n
r← a modb
WHILE r 6= 0 DO

a← b
b← r
r← a modb

END WHILE
RETURN b

Figure 7.19: Pseudo-code non-recursive gcd algorithm

public int gcd(int m, int n)

Write a program calledGcdTester , similar toFactorialTester , to test the method.

◮ Exercise 7.18 (A non-recursive gcd algorithm using subtraction)
Another interesting non-recursive pseudo-code algorithmfor calculating gcd(m,n) that only uses
subtraction is shown in Figure 7.20, wherem> 0 andn > 0. Write a method with prototype

public int gcd(int m, int n)

374 Repetition Structures

ALGORITHM gcd(m,n)
WHILE m 6= n DO

IF m> n THEN
m←m−n

ELSE
n← n−m

END IF
END WHILE
RETURN m

Figure 7.20: A pseudo-code gcd algorithm using subtraction

that uses this algorithm. Write a class calledGcdSubtractTester , similar toGcdTester in the
preceding exercise to test the method.

◮ Exercise 7.19 (Ackermann’s function)
Ackermann’s functionA(m,n), for integersm,n≥ 0, has the recursive definition

A(m,n) =

n+1, if m= 0
A(m−1,1), if n = 0, m> 0
A(m−1,A(m,n−1)), if m,n > 0

Write a method with prototype

public int Ackermann(int m, int n)

for this function. Use a class calledAckermannCalculator , similar to theFactorialCalculator
class, so that you can test it. EvaluateA(2,5) andA(3,3). What happens when you try to evaluate
A(4,4)?

◮ Exercise 7.20 (Pythagorean triples)
Pythagorean triples have the form(x,y,z) wherex, y, andzare positive integers satisfyingx2+y2 =
z2. They correspond to right angled triangles with integer sides x and y, containing the right
angle, and hypotenusez. Write a class calledPythagoreanTriples that displays all triples having
x≤ 100,y≤ 100, andz≤ 100. Generate only the triples in ordered form such thatx < y < z. For
example,(3,4,5) will be generated but(4,3,5) will not be generated.

◮ Exercise 7.21 (Unique Pythagorean triples)
In the previous exercise the triples (3,4,5), (6,8,10), and(9,12,15) are generated. Dividing the
numbers in the second triple by 2 gives the first triple and dividing the numbers in the third triple
by 3 also gives the first triple. For the triple (3,4,5) we havegcd(3,4) = 1, for the second triple
gcd(6,8)= 2, and for the third triple gcd(9,12) = 3. There aremany other cases like this.

Rewrite the program of the preceding exercise to generate only the triples(x,y,z) such that
gcd(x,y) = 1. You can use one of the gcd methods from the preceding exercises.

7.16 Programming exercises 375

◮ Exercise 7.22 (Generating prime numbers)
A prime number is an integern≥ 2 having no factors other than itself and 1. The first five prime
numbers are 2,3,5,7,11. Write a class calledPrimeGenerator that takes two numbersnMin and
nMaxas input and displays all prime numbersp such thatnMin≤ p≤ nMax.

◮ Exercise 7.23 (Drawing a grid of lines)
Write a graphics program calledGridMaker that draws horizontal and vertical lines to form a 10
by 10 array of cells (as in a spreadsheet program). If the output window is resized the grid should
expand or contract to fill it. An example is show in Figure 7.21. Here the cells are square but in

Figure 7.21: Output from theGridMaker class

general they will be rectangles.

◮ Exercise 7.24 (Drawing concentric circles)
Write a graphics program calledConcentricCircles that draws concentric circles in the output
window, each with a different color. Use console input to getthe number of circles from the user.
The largest circle should just fit the window even if the window is resized. Color the circles (draw
them from largest to smallest) using random colors obtainedusing the method

public Color randomColor()
{

float red = (float) Math.random();
float green = (float) Math.random();
float blue = (float) Math.random();
return new Color(red, green, blue);

}

which returns a randomColor object forsetPaint .
You may find the transformation

AffineTransform at = new AffineTransform();
at.translate(xMax/2.0, yMax/2.0);
g2D.transform(at);

376 Repetition Structures

Figure 7.22:ConcentricCircles output window

useful for moving the coordinate origin to the center of the window. A sample output window is
shown in Figure 7.22.

◮ Exercise 7.25 (Drawing a regular polygon)
The pentagon and hexagon were considered in Chapter 5. Writea RegularPolygon class that
draws a regularn-sided polygon (all sides equal). Use console input to get the value ofn from the
user. The polygon should appear centered in the window. Fillthe polygon with yellow and draw
it with a brush 2 pixels wide. Hint: Assuming a center at(0,0), then vertices of the polygon are
(xk,yk), k = 0, . . .n−1, wherexk = r coska, yk = r sinka, r is the radius and the anglea is given by
a = 2π/n radians. Ifn is large enough the polygon will look like a circle.

◮ Exercise 7.26 (Drawing a clock face)
Write a graphics program calledClockFace that draws a circular clock face. The circle should be
the largest one that fits the window. Draw tick marks every minute and double length tick marks
every five minutes.

◮ Exercise 7.27 (Drawing a ruler)
Write a graphics program calledRulerMaker that draws a picture of a ruler 10 cm wide, with
centimeter marks in red, shorter 0.5 centimeter marks in blue and shorter millimeter marks in
black.

◮ Exercise 7.28 (Graphing functions)
UsingSineGraph as a model write a class calledSineCosGraph that draws sinx and cosx on the
same graph using different colors.

◮ Exercise 7.29 (User interface for the PSRGame)
In Chapter 6 thePSRGameRunnerclass was a console user interface for one round of the game.
Write a better user interface that uses a query controlled while loop to play rounds of the game

7.16 Programming exercises 377

until the users decide to quit. When the game ends display howmany wins there were for each
player.

BlueJ andBeanShell Edition Copyright 2002, 2005, 2007, Barry G. Adams

378 Repetition Structures

Chapter 8

Array Data Types
Processing collections of objects

Outline

Mathematical sequences and subscript notation

Declaring and constructing arrays of primitive type

Sequential array processing

Declaring and constructing arrays of object type

String arrays and command-line arguments

Loan repayment and investment table examples

Arrays as method arguments and return values

Maximum array element algorithm

Linear search algorithm

Bubble sort algorithm

Efficient evaluation of a polynomial

A line graph using arrays

Two-dimensional arrays

Card deck application

379

380 Array Data Types

8.1 Introduction

In this chapter we introduce the array data types to organizea sequence of data items so that they
can be accessed using an index. The concept of an array is related to the subscript notation used
for sequences in mathematics. Java arrays are objects so we first learn how to construct arrays of
primitive types such asint anddouble and then we introduce arrays of object types (reference
types). Arrays are designed to be processed using loops, especially the for-loop, so we discuss
some array processing models and applications.

Some standard array processing algorithms are introduced:finding the maximum and minimum
values in an array, searching for an element in an array usingthe linear search algorithm, sorting
array elements in increasing order using the bubble sort algorithm, and the efficient evaluation of
a polynomial.

Arrays of points or lines are also useful in graphics programs and as an example we write a
class to draw a line graph given an array of points.

One-dimensional arrays can be generalized ton-dimensions and the important case of two-
dimensional arrays is discussed using a matrix as an example.

The main problem with arrays in Java is that they are not dynamic. This means that the size
of an array cannot be changed after it has been created so it isnecessary to either know the size
at compile-time or run-time. In later Chapters we will see how to use dynamic data types such as
ArrayList .

8.2 Mathematical sequences and subscript notation

In programming languages the concept of an array derives from the similar concept of a subscripted
variable in mathematics. A subscripted variable is useful when you want to define an ordered
sequence of numbers or variables. For example, ifx1, x2, . . . ,xn aren real numbers or variables then
〈x1,x2, . . . ,xn〉 denotes the ordered sequence formed from them. Each subscript j with 1≤ j ≤ n
is called an index. Sequences and subscripted variables arequite useful, as the following examples
show.

EXAMPLE 8.1 (Summation notation for sequences)If 〈x1,x2, . . . ,xn〉 is a sequence of real
numbers then their average is defined by

x1+x2 + · · ·+xn

n
=

1
n

n

∑
k=1

xk

where the summation symbol denotes the sum of the variablesxk in the sequence. At the bottom
of the summation symbol we put the index name and its initial value and at the top we put the final
value of the index. Thenxk is a typical term in the sum.

EXAMPLE 8.2 (Infinite sequences)Sequences can be infinite. In this case a rule defines each
value in the sequence. The geometric sequence〈a0,a1, . . . ,an, . . .〉 is defined, for some numberr
called the geometric ratio, byak = rak−1, for all integersk≥ 1. This defines each sequence value
in terms of the previous one.〈2,6,18,54, . . .〉 is an example witha0 = 2 andr = 3.

8.3 Declaring and constructing arrays 381

EXAMPLE 8.3 (Sequences of vertices)If the pointsvk = (xk,yk), k = 0, . . . ,n−1, are vertices
of ann-sided polygon then the polygon can be defined as the vertex sequence〈v0,v1, . . . ,vn−1〉.

EXAMPLE 8.4 (Matrix multiplication) Consider the 3×3 matrices

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 , B =

b11 b12 b13

b21 b22 b23

b31 b32 b33

 , C =

c11 c12 c13

c21 c22 c23

c31 c32 c33

 .

If C is the product ofA andB, denoted byC = AB, then the matrix elementci j in row i and column
j of C is defined by

ci j = ai1b1 j +ai2b2 j +ai3b3 j =
3

∑
k=1

aikbk j, i = 1,2,3, j = 1,2,3

in terms of the matrix elements ofA andB. Here we have a double subscript notation with the first
subscript identifying the row of the matrix and the second subscript identifying the column.

This rule for matrix multiplication can be generalized. Suppose thatA is anm× p matrix (m
rows,p columns), andB is a p×n matrix. Then

ci j = ai1b1 j + · · ·+aipbp j =
p

∑
k=1

aikbk j, 1≤ i ≤m, 1≤ j ≤ n,

are the matrix elements of them×n product matrixC = AB.

A finite sequence is represented in Java by an array. The mathematical subscript notationak

is denoted using square brackets bya[k] . Sequences like this are called one-dimensional arrays.
Matrices are examples of two-dimensional arrays and the mathematical notationai j is denoted
using two sets of square brackets bya[i][j] . Array indices in Java always begin at the value 0,
so if a is the name of an array withn elements then these elements are denoted bya[0] , a[1] , ...,
a[n-1] .

8.3 Declaring and constructing arrays

We have seen that there are two kinds of variables: variablesof primitive type and variables of
object type (reference type). The same is true for arrays. There are arrays of primitive type and
arrays of object type. In either case arrays are objects but the elements can be of a primitive type
such asint or double or references to objects such asBankAccount objects.

382 Array Data Types

8.3.1 Arrays of primitive type

Declaring array types

Corresponding to each primitive type there is an associatedarray type obtained by putting[] after
the primitive type name. This gives the array typesint[] , double[] , char[] , andboolean[]
for an array ofint , double , char , andboolean values, respectively, and similarly for the other
primitive types. For example, the statement

int[] score;

declares that the variablescore is the name of an array of integers. The type of this array isint[]
soscore is a reference to an array of integers. We say thatscore is anarray reference.

Constructing arrays

Once an array reference has been defined we can construct an array for it to reference. Since arrays
are objects this is done usingnew. For example we can associate a 5 element array withscore
using the statement

score = new int[5];

The keywordnew is followed by the type of the array elements and then brackets containing the
number of array elements. A common mistake is to assume that the 5 represents the highest index.
Since indices begin at 0, the highest index is always one smaller than the value specified afternew.
Therefore this statement allocates storage space for 5 integer variables denoted by

score[0], score[1], score[2], score[3], score[4]

It is possible to define both the array reference and the arrayin one statement using

int[] score = new int[5];

Assigning values to array elements

Once an array has been constructed values can be assigned to the elements using assignment state-
ments or array initializers.

EXAMPLE 8.5 (Array assignment) The statements

int[] score = new int[5];
score[0] = 1000;
score[1] = 3250;
score[2] = 2104;
score[3] = 675;
score[4] = 1454;

declare an array calledscore , construct the array, and assign values to the array elements using
assignment statements.

8.3 Declaring and constructing arrays 383

score
-r score

-r ?
?
?
?
?

score[0]

score[1]

score[2]

score[3]

score[4]

score
-r 1000

3250
2104
675

1454

score[0]

score[1]

score[2]

score[3]

score[4]

(a) (b) (c)

Figure 8.1: Constructing an array of integers

A pictorial representation of this three-step process is shown in Figure 8.1 for thescore array.
Part (a) shows the array reference before the array has been created, part (b) shows the situation
after the array has been created. The question marks indicate that at this stage no values have been
assigned to the elements. Finally, part (c) shows the array after the five assignment statements in
Example 8.5 have been executed.

Using array initializers

Assignment statements give values to array elements at run-time. If you know what the values
of the array elements are at compile-time (when you write theclass), or if you have an array
of constants, then it is more convenient to use anarray initializer to assign values. An array
initializer is a comma-separated list of values enclosed inbraces. It can be used as the right side of
an array declaration statement.

In the following three examplesnew is not used and the size of the array is not specified because
the compiler automatically constructs the array and determines the appropriate size using the list
of values in the initializer.

EXAMPLE 8.6 (Array initializers) The following statement uses an array initializer

int[] factorial =
{1,1,2,6,24,120,720,5040,40320,362880,3628800,39916 800,479001600};

to define and construct an array for the factorials of the numbers 0 to 12. It is shorthand accepted
by the compiler for

int[] factorial = new int[]
{1,1,2,6,24,120,720,5040,40320,362880,3628800,39916 800,479001600};

Thus, 0! isfactorial[0] which is 1, and 12! isfactorial[12] which is 479001600 . In this
example it would be better to use thefinal modifier to define the local array of constants

final int[] FACTORIAL =
{1,1,2,6,24,120,720,5040,40320,362880,3628800,39916 800,479001600};

384 Array Data Types

This informs the compiler that the values cannot be changed.We can also use

private static final int[] FACTORIAL =
{1,1,2,6,24,120,720,5040,40320,362880,3628800,39916 800,479001600};

which makes the constant array a static data field.

EXAMPLE 8.7 (Array initializers) If you need the number of days in each month the array

final int[] DAYS_IN_MONTH = {31,28,31,30,31,30,31,31,30 ,31,30,31};

is useful. A leap year test can be used to obtain the correct value for February.

EXAMPLE 8.8 (Array initializers) If you need the day of the year, for a given month and day
of the month, the array

final int[] DAY_NUMBER = {0,31,59,90,120,151,181,212,24 3,273,304,334};

is useful. Each entry is the number of days preceding the firstday of each month (0 days precede
January 1, 31 days precede February 1, etc.). For a leap year 1can be added for months beyond
February.

8.3.2 Calculating the number of days in a month

As a simple example let us write a class to solve the followingproblem.

“Given the year and the month what is the number of days in the month.”

The only problem here is to account for the fact that Februaryhas 29 days in a leap year and 28
days otherwise. We have already written anisLeapYear method in Chapter 6, Example 6.30. The
array in Example 8.7 can be used. This gives the statements

int days = DAYS_IN_MONTH[month-1];
if (isLeapYear(year) && month == 2) days++;

to calculatedays , the number of days in the month.
Notice thatmonth has a value in the range 1 to 12 but array indices always begin at zero so we

needed to usemonth-1 as the array index. This is an excellent example showing how arrays can
be used to “look up” values. Here is a complete class to test the calculations.

ClassDaysInMonthCalculator

book-projects/chapter8/simple_arrays

package chapter8.simple_arrays; // remove this line if you ’re not using packages
/**

* Compute the number of days in a month given the year and the mo nth.
*/

public class DaysInMonthCalculator

8.3 Declaring and constructing arrays 385

{
private static int[] DAYS_IN_MONTH = {31,28,31,30,31,30, 31,31,30,31,30,31};

/**
* Calculate number of days in a month
* @param year the year to use
* @param month the month in the range 1 to 12
*/

public int daysInMonth(int year, int month)
{

int days = DAYS_IN_MONTH[month-1];
if (isLeapYear(year) && month == 2) days++;
return days;

}

/**
* Return true of given year is a leap year else false.
* @param year the year to test
* @return true if year is a leap year else false
*/

public boolean isLeapYear(int year)
{

return (year % 4 == 0) && (year % 100 != 0) || (year % 400 == 0);
}

}

We have used thestatic modifier in the definition of the array because it is not associated with
any object. A suitable runner class that can be used from the console is given by

ClassDaysInMonthRunner

book-projects/chapter8/simple_arrays

package chapter8.simple_arrays; // remove this line if you ’re not using packages
import java.util.Scanner;
/**

* A runner class for DaysInMonthCalculator
*/

public class DaysInMonthRunner
{

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);
System.out.println("Enter year");
int year = input.nextInt();
input.nextLine();
System.out.println("Enter month (1 to 12)");
int month = input.nextInt();
input.nextLine();

DaysInMonthCalculator calculator = new DaysInMonthCalcu lator();

386 Array Data Types

if (calculator.isLeapYear(year))
System.out.println(year + " is a leap year");

System.out.println("Number of days in month is "
+ calculator.daysInMonth(year, month));

}
}

Declaring the size of an array at run-time

So far the size of our arrays has been declared at compile time. For example, thescore array has
size 5, theFACTORIALarray has size 13, and theDAYS_IN_MONTHarray has size 12. The following
example shows how to to define the size at run-time.

EXAMPLE 8.9 (Run-time array size) Assuming thatinput is aScanner object the statements

System.out.println("Enter number of vertices in polygon");
int size = input.nextInt();
int[] v = new int[size];

declare and construct an arrayv to holdsize elements where the value ofsize isn’t known until
the program is running.

Once the size of an array has been specified, either at compile-time or run-time, it cannot be
changed. In this sense arrays in Java are not dynamic. However, there are situations where it is
useful to havedynamic arrays that can be re-dimensioned at any time (increased or decreased in
size). In later Chapters we will introduce classes that are dynamic.

The length of an array

The length, or size, of an array is the number of elements in the array. Ifscore is an array then the
length can be determined using the special notationscore.length . This looks like a method call
but there are no parentheses. You can think oflength as a public instance data field for an array.
Thenscore.length is an example of a qualified name for this field. It is a common mistake to
usescore.length() since this is the correct syntax forString objects.

8.3.3 Sequential array processing

Arrays can easily be processed sequentially using a for-loop. In fact, this is the primary use of a
for-loop. For example, ifa is an array, the standard loop structure

for (int k = 0; k < a.length; k++)
{

// process array element a[k] here
}

8.3 Declaring and constructing arrays 387

can be used to access the array elementsa[k] one element at a time, starting witha[0] and ending
with a[a.length-1] . It is an error to use an array index that is out of bounds (negative or greater
thana.length - 1). The Java interpreter will throw anArrayIndexOutOfBoundsException for
an invalid array index.

EXAMPLE 8.10 (Sum and average of the elements of an array)Assuming that thescore
array has already been defined as an array ofdouble numbers, the statements

double sum = 0.0;
for (int k = 0; k < score.length; k++)
{

sum = sum + score[k];
}
double average = sum / (double) score.length;

calculate the sum and average of its elements.

EXAMPLE 8.11 (Displaying an array) The for-loop

for (int k = 0; k < FACTORIAL.length; k++)
{

System.out.println(k + "! = " + FACTORIAL[k]);
}

displays the factorials using the array declared in Example8.6.

EXAMPLE 8.12 (Reading arrays interactively) If input is aScanner object, statements sim-
ilar to

System.out.println("Enter the number of array elements") ;
int size = input.nextInt();
input.nextLine();
double[] score = new double[size];
for (int k = 0; k < score.length; k++)
{

System.out.println("Enter element " + k);
score[k] = input.nextDouble();
input.nextLine();

}

can be used to read the number of array elements, construct anarray of this size, and use a for-loop
to read values for the array elements.

8.3.4 Arrays of object type

So far we have considered only arrays whose elements are of a primitive type such asint or
double . It is also common to define arrays of object type. Each array element contains a reference

388 Array Data Types

b
-r b

-r rrr
b[0]

b[1]

b[2]

b
-r -r

HHHHHj

r
@

@
@

@
@R

r
123
Fred

150.50

345
Mary

375.00

987
Bill

75.50(a) (b) (c)

Figure 8.2: Constructing an array,b, of threeBankAccount objects

to an object of a specified type. Thus the array is not really anarray of objects, although this
terminology is common, it is an array of references to objects. Constructing such an array is a
three step process:

1. Declare an array reference variable.

2. Construct an array of references.

3. Construct some objects and assign their references to thearray elements.

As for arrays of primitive type, steps 1 and 2 can be done separately, or they can be done together.

EXAMPLE 8.13 (BankAccount array) The statements

BankAccount[] b;
b = new BankAccount[3];
b[0] = new BankAccount(123, "Fred", 150.50);
b[1] = new BankAccount(345, "Mary", 375.00);
b[2] = new BankAccount(987, "Bill", 75.50);

illustrate these three steps. The first statement definesb as a reference to an array whose elements
will be BankAccount object references. Next an assignment statement constructs the array of three
references and the last three assignment statements construct BankAccount objects and associate
them with the array of references. Thenew keyword is used in two ways here: first to construct the
array of references, and then to construct objects for the array elements to reference. The single
statement

BankAccount[] b = new BankAccount[3];

can also be used to declare the array reference and constructthe array.

The entire process is shown in Figure 8.2 for this example. Part (a) corresponds to

BankAccount[] b;

8.3 Declaring and constructing arrays 389

and part (b) corresponds to

b = new BankAccount[3];

At this stage we have the array of references indicated by theabsence of arrows in part (b). Finally
the assignment statements that construct threeBankAccount objects result in the picture in part (c),
showing three arrows referencing the threeBankAccount objects.

EXAMPLE 8.14 (Array initializers for object types) The statements

BankAccount[] b = { new BankAccount(123, "Fred", 150.50),
new BankAccount(345, "Mary", 375.00),
new BankAccount(987, "Bill", 75.50) };

use an array initializer. The result is the same as in Example8.13.

EXAMPLE 8.15 (Totaling bank balances) If b is an array ofBankAccount objects, as in the
preceding example, the statements

double totalBalance = 0.0;
for (int k = 0; k < b.length; k++)
{

totalBalance = totalBalance + b[k].getBalance();
}
double averageBalance = totalBalance / b.length;

calculate the total of all balances and the average balance for accounts in the array.

Point2D arrays

In graphics programming it is common to use objects of typePoint2D.Double and the following
example shows how to define an array of points.

EXAMPLE 8.16 (Array of Point2D objects) The statements

Point2D.Double[] p = new Point2D.Double[3];
p[0] = new Point2D.Double(0,0);
p[1] = new Point2D.Double(1,2);
p[2] = new Point2D.Double(2,4);

define an array for threePoint2D.Double objects corresponding to the points(0,0), (1,2), and
(2,4). The equivalent statement

Point2D.Double[] p = { new Point2D.Double(0,0), new Point2 D.Double(1,2),
new Point2D.Double(2,4) };

uses an array initializer.

EXAMPLE 8.17 (Connecting an array of points with lines) Given the arrayp of points in
Example 8.16 and a graphics contextg2D, the for-loop

390 Array Data Types

for (int k = 0; k < p.length - 1; k++)
{

g2D.draw(new Line2D.Double(p[k], p[k+1]));
}

connects the points with lines. Note that the largestk value isp.length - 2 sincen points define
n−1 line segments.

8.3.5 String arrays

String arrays are common. For example, suppose we want to convert a month number in the range
1 to 12 to a name such as"January" or "February" . Without arrays this can be done with a large
multiple if-statement. However, we can define a string arraycontaining the month names and use
the month number as an array index to “look-up” the name.

EXAMPLE 8.18 (Array of month names) The statement

final String[] MONTH_NAMES = { "January", "February", "Mar ch", "April",
"May", "June", "July", "August", "September", "October",
"November", "December" };

defines an array for the names of the 12 months. Now ifmonth is a month number in the range 1
to 12,MONTH_NAMES[month-1] is the name of the month.

EXAMPLE 8.19 (Array of day names) Similarly, the statement

final String[] DAY_NAMES = { "Sunday", "Monday", "Tuesday" , "Wednesday",
"Thursday", "Friday", "Saturday" };

defines an array of strings for the names of the days of the week.

Command-line arguments

We can now explain the formal argument of themain method of a runner class, which we have not
needed so far: it is an array ofString objects. This array is used to store command-line arguments.
When we write a main method such as

public static void main(String[] args)
{

// statements
}

we are specifying thatargs is the name of an array of strings. These strings are the command-
line arguments. When you use the Java interpreter to run a class the command-line arguments are
typed after the name of the class on the command line. Each argument is separated by one or more
spaces. For example, consider the following short class:

8.3 Declaring and constructing arrays 391

ClassCommandLineArguments

book-projects/chapter8/simple_arrays

package chapter8.simple_arrays; // remove this line if you ’re not using packages
/**

* To show how command line arguments can be read int a String ar ray that
* is available to the program. The command line arguments are available
* in the args array: args[0], args[1], ..., args[args.lengt h - 1].
*/

public class CommandLineArguments
{

public static void main(String[] args)
{

for (int k = 0; k < args.length; k++)
{

System.out.println("Argument " + k + " is " + args[k]);
}

}
}

When you run this class from the command line the first commandline argument after the class
name will beargs[0] , the second will beargs[1] , and so on. The number of command-line argu-
ments typed is given byargs.length . Theprintln statement simply displays these arguments.
Here is some sample output for two program runs:

java CommandLineArguments zero one two
Argument 0 is zero
Argument 1 is one
Argument 2 is two
java CommandLineArguments "zero one two"
Argument 0 is zero one two

The second example shows that spaces can be included in command-line arguments if the argument
is enclosed in double quotes.

Command-line arguments can be quite useful for console programs that require only a few
input items. For example, we can rewrite theLoanRepaymentTableRunner class from Chapter 7,
page 348, so that it gets its four input values from the command line. Here is the new version of
the class.

ClassLoanRepaymentTableRunner

book-projects/chapter8/loan_repayment

package chapter8.loan_repayment; // remove this line if yo u’re not using packages
/**

* Class for running LoanRepaymentTable from console using c ommand-line args
*/

public class LoanRepaymentTableRunner
{

public static void main(String[] args)

392 Array Data Types

{
if (args.length == 4)
{

double a = Double.parseDouble(args[0]); // loan amount
int y = Integer.parseInt(args[1]); // number of years
int p = Integer.parseInt(args[2]); // payments per year
double r = Double.parseDouble(args[3]); // annual rate in p ercent

LoanRepaymentTable table = new LoanRepaymentTable(a,y,p ,r);
System.out.println(table);

}
else
{

System.out.println(
"Args: amount years paymentsPerYear annualRate(percent) ");

}
}

}

Themain method checks to see if four command-line arguments were supplied, otherwise a mes-
sage is displayed indicating the format of the arguments. Therefore if you forget the meaning
of the arguments just run the class without any arguments. Iffour arguments are supplied the
command-line strings are converted to the four arguments needed by the constructor using the
staticInteger.parseInt andDouble.parseDouble methods in the wrapper classes introduced
in Section 7.2.1. The output shown in Chapter 7 can be produced using the command

java LoanRepaymentTableRunner 10000 5 2 10

As another example we can rewriteInvestmentTableRunner from Chapter 7 (page 354), to
use command-line arguments to obtain the seven constructorarguments. Here is the new version
of the class.

ClassInvestmentTableRunner

book-projects/chapter8/investment

package chapter8.investment; // remove this line if you’re not using packages
import chapter7.investment.InvestmentTable; // remove t his line if you’re not using packages
/**

* Class for running InvestmentTable from console using comm and-line args
*/

public class InvestmentTableRunner
{

public static void main(String[] args)
{

if (args.length == 7)
{

double minRate = Double.parseDouble(args[0]);
double rateStep = Double.parseDouble(args[1]);
double maxRate = Double.parseDouble(args[2]);

8.3 Declaring and constructing arrays 393

int minYears = Integer.parseInt(args[3]);
int yearStep = Integer.parseInt(args[4]);
int maxYears = Integer.parseInt(args[5]);

double amount = Double.parseDouble(args[6]);
InvestmentTable table =

new InvestmentTable(minRate, rateStep, maxRate,
minYears, yearStep, maxYears, amount);

System.out.println(table);
}
else
{

System.out.println(
"Args: minRate rateStep maxRate minYears yearStep maxYear s mount");

}
}

}

The output shown in Chapter 7 can be produced using the command

java InvestmentTableRunner 2 0.5 5 1 1 5 1000

8.3.6 Using arrays as method arguments and return values

An array can be used as a method argument, as shown in themain method where the argument is
an array of strings. When the method is called, a reference tothe array becomes a local variable
within the method. This means that it is sometimes possible to modify an array object from within
the method.

For example, if the array is of primitive type then the array elements can be modified. If the
array is of object type then the array references can be used to modify the associated objects if they
are mutable.

EXAMPLE 8.20 (Array sum method) In Example 8.10 we wrote statements to sum the ele-
ments of an array. It is easy to write a method calledsum that takes adouble array as a formal
argument, calculates the sum of the elements and returns it.The method prototype is

public double sum(double[] a)

The square brackets indicate thata is an array of double precision numbers. The complete method
declaration is

public double sum(double[] a)
{

double s = 0.0;
for (int k = 0; k < a.length; k++)
{

s = s + a[k];
}
return s;

}

394 Array Data Types

The array referencea becomes a local variable inside the method.

EXAMPLE 8.21 (Method that prints an array) The method

public void printArray(int[] a)
{

System.out.print("<" + a[0]);
for (int k = 1; k < a.length; k++)
{

System.out.print("," + a[k]);
}
System.out.print(">");

}

can be used to print an integer array in the format<1,2,3> .

EXAMPLE 8.22 (Method to connect an array of points with lines) The method

public void drawLines(Graphics2D g2D, Point2D.Double[] p)
{

for (int k = 0; k < p.length - 1; k++)
{

g2D.draw(new Line2D.Double(p[k], p[k+1]));
}

}

based on Example 8.17 can be used to connect the points with lines.

EXAMPLE 8.23 (Modifying elements of array arguments) To show that array elements can
be modified by a method, when the array is an argument, consider the following method

public void timesTwo(int[] a)
{

for (int k = 0; k < a.length; k++)
{

a[k] = 2 * a[k];
}

}

which multiplies the elements of an integer array by 2. If youcall this method using statements
such as

int[] myArray = {1,2,3,4,5};
timesTwo(myArray);
for (int k = 0; k < myArray.length; k++)
{

System.out.println(myArray[k]);
}

8.3 Declaring and constructing arrays 395

then the numbers printed are2, 4, 6, 8, and10, indicating that the array elements inmyArray were
changed by the method. This is what is expected since inside the methoda and myArray both
reference the same array.

EXAMPLE 8.24 (Reading an array interactively and returning it) The method

public int[] readArray()
{

Scanner input = new Scanner(System.in);
System.out.print("Enter size of array: ");
int size = input.nextInt();
input.nextLine();
int[] a = new int[size];
for (int k = 0; k < a.length; k++)
{

System.out.print("Enter element " + k + ": ");
a[k] = input.nextInt();
input.nextLine();

}
return a;

}

can be used to read an array using console input. The return type indicates that the method returns
a reference to an array. To call the method from within the same class use a statement such as

int[] testArray = readArray();

The method is responsible for reading the array size from theuser, constructing the array, asking
the user for the array elements, and returning a reference tothe array. It is important to realize that
a is a local variable, so it disappears when the method exits. However, the array is an object and it
doesn’t disappear since we are returning a reference to it asthe value of the method and assigning
it to testArray for example.

Testing an array processing method

The following simple class can be used to test anaverage method for finding the average of the
numbers in an array.

ClassAverage

book-projects/chapter8/array_average

package chapter8.array_average; // remove this line if you ’re not using packages
/**

* A simple class for testing the array average method
*/

public class Average
{

396 Array Data Types

/**
* Return the average of the elements of an array.
* @param a the array to average
* @return the average of the elements of array a
*/

public double average(double[] a)
{

double s = 0;
for (int k = 0; k < a.length; k++)
{

s = s + a[k];
}
return s / (double) a.length;

}
}

You can easily test this inBlueJ using the following steps.

1. Construct anAverage object calledavg .

2. From its method menu chooseaverage .

3. Enter an array initializer such as{1,2,3,4,5} in the input text box and the average will be
shown in the method result window.

To test the method from the command line we can use command-line arguments to enter the array
as shown in the following class.

ClassAverageRunner

book-projects/chapter8/array_average
package chapter8.array_average; // remove this line if you ’re not using packages
/**

* Command line tester for the Average class.
* Get array as command-line args.

*/
public class AverageRunner
{

public static void main(String[] args)
{

double[] a = new double[args.length]; // construct array
for (int k = 0; k < args.length; k++) // get its elements
{

a[k] = Double.parseDouble(args[k]); // convert string to d ouble
}
Average avg = new Average();
System.out.println("Average is " + avg.average(a));

}
}

Some typical output is

java AverageRunner 1 2 3 4 5
Average is 3.0

8.4 Some simple array algorithms 397

ALGORITHM FindMaximum(〈a0,a1, . . . ,an−1〉)
index← 0
FOR k← 1 TO n−1 DO

IF ak > aindexTHEN
index← k

END IF
END FOR
RETURN index

Figure 8.3: Pseudo-code algorithm for maximum array element

8.4 Some simple array algorithms

Many algorithms can be expressed using arrays. The simplestones are for finding the maximum
and minimum values in an array.

Searching and sorting are two of the most important processing operations performed by com-
puters so it is important to have efficient algorithms. Here we consider only the array version of
the simplest searching algorithm, called linear search, for finding a given element in an array.

Then we consider the array version of the simplest sorting algorithm called bubble sort. In a
later Chapter we cover searching and sorting in more detail using more efficient algorithms.

8.4.1 Algorithm for the maximum array element

The maximum problem can be stated as follows:

“Given the array〈a0, . . . ,an−1〉, determine an indexi such that 0≤ i≤ n−1 andai ≥ ak

for all k such that 0≤ k≤ n−1. Then the maximum value isai.”

The indexi is not unique since the maximum value may occur more than once.
The algorithm begins by assuming the maximum value is at index 0, then a loop is used to

process the remaining elements in the array. Each time a larger value is obtained the index is
updated. The pseudo-code algorithm is given in Figure 8.3. The final value ofindexis such that
aindex is the maximum value. This algorithm finds the first occurrence of the maximum. To find
the last occurrence change the inequality toak ≥ aindex. We could have written the algorithm to
directly return the maximum value instead of the index but this would be less general since the
position of the maximum would be unknown.

A similar pseudo-code algorithm for finding the minimum can be written by changing the
comparisonak > aindex to ak < aindex.

Here is a simple tester class for the Java implementation of this algorithm

ClassMaxFinder

book-projects/chapter8/array_algorithms

398 Array Data Types

package chapter8.array_algorithms; // remove this line if you’re not using packages
/**

* A simple class for testing the findMaximum method
*/

public class MaxFinder
{

/**
* Determines the maximum array element and returns its posit ion.
* @param a the array
* @return position of the first occurrence of the maximum
*/

public int findMaximum(double[] a)
{

int index = 0;
for (int k = 1; k <= a.length - 1; k++)
{

if (a[k] > a[index])
index = k;

}
return index;

}
}

This class can easily be tested inBlueJ as described above for theAverage class. The following
example shows how to test it inBeanShell.

EXAMPLE 8.25 (TestingfindMaximum in BeanShell) Try the statements

bsh % addClassPath("c:/book-projects/chapter8/array_a lgorithms");
bsh % MaxFinder f = new MaxFinder();
bsh % double[] a = new double[] {1,2,5,4,3};
bsh % int maxIndex = f.findMaximum(a);
bsh % print(maxIndex);
2
bsh % print(a[maxIndex]);
5

The result returned is 2, the index of the maximum value 5. InBeanShell it is necessary to use
new double[]{1,2,5,4,3} to specify the array argument.

To test the class from the command line we can use the simple runner class

ClassMaxFinderRunner

book-projects/chapter8/array_algorithms

package chapter8.array_algorithms; // remove this line if you’re not using packages
/**

* Command line tester for the MaxFinder class.
* Get array as command line args.
*/

8.4 Some simple array algorithms 399

public class MaxFinderRunner
{

public static void main(String[] args)
{

double[] a = new double[args.length]; // construct array
for (int k = 0; k < args.length; k++) // get its elements
{

a[k] = Double.parseDouble(args[k]); // convert string to d ouble
}
MaxFinder finder = new MaxFinder();
int indexMax = finder.findMaximum(a);
System.out.println("Index of maximum is " + indexMax);
System.out.println("Maximum value is " + a[indexMax]);

}
}

that uses command-line arguments.
We have used an array ofdouble numbers but the algorithm is easily modified to use an array

of any type for which the elements can be ordered and compared.
The following example gives the algorithm for an array ofBankAccount objects where the

ordering is defined by the account balance.

EXAMPLE 8.26 (Maximum bank account balance method)The method

public int findMaximum(BankAccount[] a)
{

int index = 0;
for (int k = 1; k <= a.length - 1; k++)
{

if (a[k].getBalance() > a[index].getBalance())
index = k;

}
return index;

}

returns the array index of the reference to the bank account that has the maximum balance.

Similarly, the following example gives the algorithm for anarray of strings.

EXAMPLE 8.27 (String array example) The method

public int findMaximum(String[] a)
{

int index = 0;
for (int k = 1; k <= a.length - 1; k++)
{

if (a[k].compareTo(a[index]) > 0)
index = k;

}
return index;

}

400 Array Data Types

ALGORITHM LinearSearch (〈a0,a1, . . . ,an−1〉,x)
index← 0
WHILE (index≤ n−1)∧ (aindex 6= x) DO

index← index+1
END WHILE
IF index> n−1 THEN

RETURN −1
ELSE

RETURN index
END IF

Figure 8.4: Pseudo-code linear search algorithm

returns the array index of the reference to the string that lexicographically follows all strings in the
array using thecompareTo method.

8.4.2 Linear search slgorithm

In a linear search of an array we are looking for a given valuex among the array elements. If we
find x we can return its index. Otherwise we can return the invalid index−1. The linear search
problem can be stated as follows:

“Given the array〈a0, . . . ,an−1〉 and a valuex to find, determine an indexi such that
ai = x and 0≤ i ≤ n−1. If such an index cannot be found let the index be−1.”

We cannot use a for-loop here since we do not know how many times the body of the loop will be
executed. The loop continues as long as there are elements inthe array left to examine and as long
as we have not found the element we are looking for. Therefore, we use a while-loop.

The pseudo-code algorithm is given in Figure 8.4. There are two ways the while-loop can
terminate. Ifindex≤ n−1 is false we have “gone off the end” of the array and the entireboolean
expression is false so the loop will exit. Because of short-circuit evaluation, the expressionaindex 6=
x will not be evaluated in this case. Otherwise the array indexcould be out of range. If the element
x is found then the expressionaindex 6= x will be false and the loop will exit. When the loop exits
we can testindex to see which exit was taken. Ifindex> n−1 then we did not findx so−1 is
returned. Otherwise,x was found andindexis returned.

It is easy to translate this pseudo-code algorithm into the following tester class for the corre-
sponding Java method.

ClassLinearSearcher

book-projects/chapter8/array_algorithms

package chapter8.array_algorithms; // remove this line if you’re not using packages
/**

8.4 Some simple array algorithms 401

* A simple class for testing the linearSearch method
*/

public class LinearSearcher
{

/**
* Find a given element in an array
* @param a the array
* @param x the element to search for
* @return position of the first occurrence of x or -1
* if x is not found.
*/

public int search(double[] a, double x)
{

int index = 0;
int n = a.length; // number of array elements
while (index < n && a[index] != x)
{

index = index + 1;
}
if (index >= n)

return -1;
else

return index;
}

}

This class can be tested usingBlueJ and the following example shows how to test the class using
BeanShell

EXAMPLE 8.28 (Testing linear search usingBeanShell) Try the statements

bsh % addClassPath("c:/book-projects/chapter8/array_a lgorithms");
bsh % LinearSearcher searcher = new LinearSearcher();
bsh % int index = searcher.search(new double[]{1,2,3,4,5} , 1);
bsh % print(index);
0
bsh % int index = searcher.search(new double[]{1,2,3,4,5} , 2);
bsh % print(index);
1
bsh % int index = searcher.search(new double[]{1,2,3,4,5} , 7);
bsh % print(index);
-1

to test the linear search algorithm. The final result shows that 7 was not found in the array.

A runner class for command-line testing is given by

ClassLinearSearcherRunner

book-projects/chapter8/array_algorithms

402 Array Data Types

package chapter8.array_algorithms; // remove this line if you’re not using packages
/**

* Command line tester for the LinearSearch class.
* Get array as command line args. Last command line
* argument is the element to search for

*/
public class LinearSearcherRunner
{

public static void main(String[] args)
{

double[] a = new double[args.length - 1]; // construct array
for (int k = 0; k < args.length - 1; k++) // get its elements
{

a[k] = Double.parseDouble(args[k]); // convert string to d ouble
}
double x = Double.parseDouble(args[args.length - 1]); // l ast argument is x

LinearSearcher searcher = new LinearSearcher();
int index = searcher.search(a, x);
System.out.println("Index of element is " + index);

}
}

8.4.3 Bubble sort algorithm

There are many sorting algorithms. The simplest is called bubble sort. It is not very efficient for
large arrays but it is the easiest to understand. More efficient algorithms will be considered in a
later Chapter.

For arrays the basic sorting problem is to rearrange the elements in increasing order, or in
decreasing order. For example, the array〈5,3,8,5,4,2,2〉 is not sorted. In increasing order the
sorted array is〈2,2,3,4,5,5,8〉. Similarly, the string array〈”one”, ”two” , ”three”〉 is not sorted. In
increasing lexicographic order the sorted array is〈”one”, ”three”, ”two” 〉.

Bubble sort is the easiest sorting algorithm to understand because of its intuitive nature. If the
elements of〈a0, . . . ,an−1〉 can be ordered the algorithm for increasing order is

• Pass1: Process the array elementsa0 to an−1 exchanging or swapping elements that are
out of order: ifa0 > a1, swap them, ifa1 > a2 swap them, . . . , ifan−2 > an−1 swap them.
After this first pass through the array the largest element will be in the last position, its
correct position. In other words the largest element “bubbles to the top” so we don’t need to
consider it again.

• Pass2: For the second pass process the elementsa0 to an−2, swapping elements that are out
of order. At the end of this pass the elementsan−2 andan−1 are in their correct positions.

• Passn−1: For the final passa2 to an−1 are in their correct position so we need only consider
a0 anda1: If a0 > a1 then swap these elements

If we denote the pass number byp then after pass 1 one element is in its correct position, after
pass 2 two elements are in their correct position and aftern−1 passesn−1 elements are in their

8.4 Some simple array algorithms 403

correct position. We can stop here since ifn−1 elements are in their correct position then the only
remaining element,a0 must be in its correct position as the smallest array element. This means
that the outer loop over the pass number ranges fromp = 1 to p = n−1.

At the start of pass numberp we have thep−1 elementsan−1−(p−1) to an−1 in their correct
positions so we need to compare the elementsa0 to an−1−p. Thus, the inner loop goes fromj = 0
to j = n−1− p. This gives the top level pseudo-code algorithm

FOR p← 1 TO n−1 DO
Compare pairs at positions(0,1),(1,2), . . .,(n−1− p,n− p)
swapping elements that are out of order.

END FOR

As an example, consider the array〈a0, . . . ,a7〉 given by〈44,55,12,42,94,18,6,67〉. The steps are
shown in Table 8.1, where boldface elements are in their correct position. A pseudo-code algorithm

Pass a0 a1 a2 a3 a4 a5 a6 a7

Start of pass 1 44 55 12 42 94 18 6 67
Start of pass 2 44 12 42 55 18 6 6794
Start of pass 3 12 42 44 18 6 5567 94
Start of pass 4 42 12 18 6 4455 67 94
Start of pass 5 12 18 6 4244 55 67 94
Start of pass 6 12 6 1842 44 55 67 94
Start of pass 7 6 12 18 42 44 55 67 94
End of pass 7 6 12 18 42 44 55 67 94

Table 8.1: Bubble sort example

for selection sort is given in Figure 8.5.

ALGORITHM bubbleSort(〈a0,a1, . . . ,an−1〉)
FOR p← 1 TO n−1 DO

FOR j← 0 TO n−1− p DO
IF a j > a j+1 THEN

swap(a j ,a j+1)
END IF

END FOR
END FOR

Figure 8.5: Pseudo-code bubble sort algorithm

Sorting an array of numbers

It is easy to translate this pseudo-code algorithm into the following tester class for the correspond-
ing Java method.

404 Array Data Types

ClassBubbleSorter

book-projects/chapter8/array_algorithms

package chapter8.array_algorithms; // remove this line if you’re not using packages
/**

* A simple class for testing the bubbleSort method.
* We use the double[] return type instead of void
* for the bubbleSort method so the method can be
* directly tested with BlueJ.
*/

public class BubbleSorter
{

/**
* Sort an array in increasing order
* @param a the array
*/

public double[] bubbleSort(double[] a)
{

int n = a.length;
for (int p = 1; p <= n - 1; p++) // loop over passes
{

for (int j = 0; j <= n - 1 - p; j++)
{

if (a[j] > a[j + 1])
{

double temp = a[j];
a[j] = a[j + 1];
a[j + 1] = temp;

}
}

}
return a;

}
}

Three assignment statements are needed to exchange (swap) two values, since it is necessary to
use a temporary variable to save the first element of the pair being swapped.

Normally the return type of thebubbleSort method would bevoid but we have made it
double[] here so that the class can be tested usingBlueJ as follows

1. Construct aBubbleSorter object.

2. From its object menu select thebubbleSort method

3. In the resulting “method call” window enter an array such as {5,4,1,6,2} in the text box.

4. You will get a “Method Result” window showing the array as an <object reference> so
click on it and then click the “Inspect” button to see the sorted array or click the “Get” button
to put a reference to the sorted array on the workbench.

The following example shows how to test the class usingBeanShell

8.4 Some simple array algorithms 405

EXAMPLE 8.29 (Testing bubble sort usingBeanShell) Try the statements

bsh % addClassPath("c:/book-projects/chapter8/array_a lgorithms");
bsh % BubbleSorter sorter = new BubbleSorter();
bsh % double[] a = {44,55,12,42,94,18,6,67};
bsh % sorter.bubbleSort(a);
bsh % print(a);
double[]: {6.0,12.0,18.0,42.0,44.0,55.0,67.0,94.0}

to test the bubble sort algorithm using the example given in Table 8.1

A runner class for command-line testing is given by

ClassBubbleSorterRunner

book-projects/chapter8/array_algorithms

package chapter8.array_algorithms; // remove this line if you’re not using packages
/**

* Command line tester for the BubbleSorter class.
* Get array as command line args.
*/

public class BubbleSorterRunner
{

public static void main(String[] args)
{

double[] a = new double[args.length]; // construct array
for (int k = 0; k < args.length; k++) // get its elements
{

a[k] = Double.parseDouble(args[k]); // convert string to d ouble
}
BubbleSorter sorter = new BubbleSorter();
System.out.println("Array to sort is " + arrayToString(a));
sorter.bubbleSort(a);
System.out.println("Sorted array is " + arrayToString(a));

}

public static String arrayToString(double[] a)
{

String s = "<" + a[0];
for (int k = 1; k < a.length; k++)

s = s + "," + a[k];
s = s + ">";
return s;

}
}

Here we have included anarrayToString method to make a string representation of an array
which can be displayed. Some typical output is

java BubbleSorterRunner 44 55 12 42 94 18 6 67
Array to sort is <44.0,55.0,12.0,42.0,94.0,18.0,6.0,67. 0>
Sorted array is <6.0,12.0,18.0,42.0,44.0,55.0,67.0,94. 0>

406 Array Data Types

Sorting an array of strings

We have written the bubble sort method to sort an array of typedouble[] but it can easily be
modified to sort arrays of other types. The following examplegives a method for sorting a string
array.

EXAMPLE 8.30 (Sorting an array of strings) The method

public void bubbleSort(String[] a)
{

int n = a.length;
for (int p = 1; p <= n - 1; p++) // loop over passes
{

for (int j = 0; j <= n - 1 - p; j++)
{

if (a[j].compareTo(a[j+1]) > 0)
{

String temp = a[j];
a[j] = a[j + 1];
a[j + 1] = temp;

}
}

}
}

sorts an array of strings in increasing lexicographical order.

Recall that a string array is not an array of string objects, it is an array of references to string
objects. Therefore the method does not swap string objects in memory. This would be very ineffi-
cient. Instead string references are swapped. The final result is a sorted array of string references
such that the string referenced bya[0] precedes the string referenced bya[1] , and so on.

8.5 Efficient evaluation of a polynomial

Polynomials are simple functions that occur in many applications. They can be represented by
arrays and we want to develop an efficient algorithm to evaluate them. A polynomial of degreen
is a functionp defined for each value ofx by

p(x) = a0+a1x+a2x2 + · · ·+anxn

in terms of the array〈a0,a1, . . . ,an〉 of n+1 coefficients withan 6= 0. An “obvious” way to calculate
p(x), givenx and the coefficient array, is

sum← a0

FOR k← 1 TO n DO
sum← sum+akxk

END FOR

8.5 Efficient evaluation of a polynomial 407

ALGORITHM EvaluatePolynomial(〈a0,a1, . . . ,an〉, x)
p← an

FOR k← n−1 TO 0 BY −1 DO
p← ak +xp

END FOR
RETURN p

Figure 8.6: Pseudo-code polynomial evaluation algorithm

However, this is not a very efficient algorithm:n multiplications to computeanxn, n−1 multipli-
cations to computean−1xn−1, and so on. The total number of multiplications is

n+(n−1)+ · · ·+1 =
n(n+1)

2
.

8.5.1 Horner’s algorithm

We can computep(x) with only n multiplications using Horner’s algorithm. To derive it, write the
polynomial in the nested form

p(x) = a0 +x(a1+a2x+ · · ·+anxn−1)

= a0 +x(a1+x(a2 + · · ·+anxn−2))

= a0 +x(a1+x(a2 + · · ·+x(an−2 +x(an−1 +xan)) · · ·))

and evaluate it from the “inside out” using the following scheme:

pn = an

pn−1 = an−1+xan = an−1 +xpn

pn−2 = an−2+x(an−1 +xan) = an−2+xpn−1

· · ·
pk = ak +xpk+1

· · ·
p1 = a1+xp2

p0 = a0+xp1

Then p0 is the value ofp(x). In the loop the subscriptk moves downward fromn−1 to 0 with
each iteration. However, we do not need to use subscripts onp since each value can be obtained
from the previous one usingp← ak +xp. The elegant pseudo-code algorithm shown in Figure 8.6
evaluates the polynomial using onlyn multiplications (the for-loop executesn times and there is
one multiplication each time).

408 Array Data Types

8.5.2 A class for polynomials

We can think of a polynomial as an object from a class calledPolynomial . Since each polynomial
is defined by its coefficient array then a reference to this array can be the private data field so
we need a constructor with an array argument. Also we includean eval method based on the
pseudo-code algorithm for evaluating a polynomial:

ClassPolynomial

book-projects/chapter8/polynomial

package chapter8.polynomial; // remove this line if you’re not using packages
/**

* A class that represents a polynomial using an array and
* shows how to use Horner’s rule to efficiently evaluate
* a polynomial p. A reference to the user’s array is kept
* as a data field and an eval method is
* provided for evaluating p at a given value of x.
*/

public class Polynomial
{

private double[] a; // the coefficient array

/**
* Construct a polynomial p with a given coefficient array
* @param coefficients the array of coefficients such that
* coefficients[k] is the coefficient of xˆk
*/

public Polynomial(double[] coefficients)
{

a = coefficients;
}

/**
* Evaluate the polynomial p.
* @param x the value to evaluate polynomial at.
* @return p(x) the value of p at x
*/

public double eval(double x)
{

int n = a.length - 1;
double p = a[n];
for (int k = n-1; k >= 0; k--)
{

p = a[k] + x*p;
}
return p;

}

/**
* Return a string representation of a polynomial in format
* a[0] + a[1]x + a[2]xˆ2 + ...

8.5 Efficient evaluation of a polynomial 409

*/
public String toString()
{

String p = (a[0] == 0) ? "" : "" + a[0];

for (int k = 1; k < a.length; k++)
{

String term = (k == 1) ? "x" : "xˆ" + k;

if (p.equals("") && a[k] != 0)
{

p = a[k] + term;
}
else
{

if (a[k] > 0)
{

p = p + " + " + a[k] + term;
}
else if (a[k] < 0)
{

p = p + " - " + Math.abs(a[k]) + term;
}

}
}
if (p.equals("")) p = "0";
return p;

}
}

The toString method returns a string representation of the polynomial using xˆn to representxn.
It is a little complicated because there are several cases. For example, if there is a first power we
want to display justx , notxˆ1 .

To construct the polynomialp defined byp(x) = 1+2x+3x2 we can use statements such as

double[] coeff = new double[] {1,2,3};
Polynomial p = new Polynomial(coeff);

or even the single statement

Polynomial p = new Polynomial(new double[] {1,2,3});

Now to evaluatep(3.5) we can use a statement such as

double val = p.eval(3.5);

8.5.3 Testing thePolynomial class

To test thePolynomial class inBlueJ perform the following steps.

1. Construct aPolynomial object and enter an array such as{1,0,3,0,5} in the input box.

410 Array Data Types

2. From its object menu select theeval method and enter1.5 .

3. In the resulting “Method Result” window the value33.0625 is shown.

4. From the object menu select thetoString method to see"1.0 + 3.0xˆ2 + 5.0xˆ4" in
the “Method Result” window.

The following example shows how to test the class usingBeanShell.

EXAMPLE 8.31 (Evaluating polynomials usingBeanShell) Try the statements

bsh % addClassPath("c:/book-projects/chapter8/polynom ial");
bsh % Polynomial p = new Polynomial(new double[]{1,0,3,0,5 });
bsh % print(p.eval(1.5));
33.0625
bsh % print(p);
1.0 + 3.0xˆ2 + 5.0xˆ4
bsh %

to test thePolynomial class for the examplep(x) = 1+3x2 +5x4.

To test thePolynomial class here is a runner class that gets the coefficients of a polynomial
followed by the value ofx as command-line arguments, constructs the polynomial, anddisplays it
and its value atx.

ClassPolynomialRunner

book-projects/chapter8/polynomial

package chapter8.polynomial; // remove this line if you’re not using packages
/**

* Class to test Polynomial using command-line arguments.
* If there are n arguments the first n-1 define the coefficien t
* array and the last one gives the value of x
*/

public class PolynomialRunner
{

public static void main(String[] args)
{

int n = args.length;

if (args.length >= 2)
{

// First n-1 args are the coefficients so construct
// a polynomial using them

double[] coefficients = new double[n-1];
for (int k = 0; k < n-1; k++)
{

coefficients[k] = Double.parseDouble(args[k]);

8.6 Line graph example using arrays 411

}
Polynomial p = new Polynomial(coefficients);

System.out.println("p(x) = " + p);

// Last argument is the value of x

double x = Double.parseDouble(args[n-1]);

// Evaluate the polynomial at x

System.out.println("p(" + x + ") = " + p.eval(x));
}
else
{

System.out.println("args: a0 a1 ... an x");
}

}
}

Here is some output for evaluating the polynomialp(x) = 1+3x2+5x4 at x = 1.5 andx = 3.5.

java PolynomialRunner 1 0 3 0 5 1.5
p(x) = 1.0 + 3.0xˆ2 + 5.0xˆ4
p(1.5) = 33.0625

java PolynomialRunner 1 0 3 0 5 3.5
p(x) = 1.0 + 3.0xˆ2 + 5.0xˆ4
p(3.5) = 788.0625

8.6 Line graph example using arrays

Many graphics programs require arrays to store points and lines. In this section we develop a
LineGraph class for representing line graphs. The class has an array ofpoints as an instance data
field and draws line segments from one point to the next to obtain a line graph.

Another example is a bar graph class that stores an array of height values for the bars in a
vertical bar graph and draws the bars (see Exercise 8.6). In each case the array data can be used to
calculate the bounding box of the graph so that an appropriate coordinate system can be chosen.

8.6.1 Line graph class

We want to draw a line graph given an array〈v0,v1, . . . ,vn−1〉 of n verticesvk = (xk,yk) specified
in order of increasingx-coordinate. Each pair of vertices is to be joined by a line segment and a
small circle should appear at each vertex. An example for seven vertices is shown in Figure 8.7.

We won’t assume any particular coordinate system. For example, a line graph can represent
a stock market’s closing average for several consecutive days or it might represent the daily high
temperatures for the month of June.

412 Array Data Types

�
�

�s(x0,y0)

��s A
A
A
A
A
A
A
A

s

�
�
�
�
�
��

s
@

@

s
B
B
BB

s
s(x6,y6)

Figure 8.7: Line graph for vertex array〈(x0,y0),(x1,y1), . . . ,(x6,y6)〉

Instead, to make the graph fit in the drawing window we will usethe array data to compute the
bounding box of the graph in the world coordinate system. Then we can use theworldTransform
method from theBarGraph3 class (Chapter 5, page 239) to transform world coordinates to default
user coordinates. TheLineGraph class will have the following specification.

public class LineGraph extends JPanel
{

private Point2D.Double[] v; // vertices of line graph
private double xMin, xMax, yMin, yMax; // bounding box of gra ph

/* Constructor for a given vertex array p */
public LineGraph(Point2D.Double[] p) {...}

public void paintComponent(Graphics g) {...}

/* Compute xMin, xMax, yMin, yMax */
private void computeBoundingBox() {...}

/* Perform the affine transformation */
private AffineTransform worldTransform(double xMin, dou ble xMax,

double yMin, double yMax, int w, int h) {...}
}

To make the class more reusable we do not input the vertices here. Instead we leave this to the user
of the class. ALineGraph object receives a reference to the the vertex array as the constructor
argument. EachLineGraph object represents a line graph such as the one shown in Figure8.8.

Choosing a coordinate system

The private methodcomputeBoundingBox needs to determine the smallest and largest of thex-
coordinates in the vertex array and similarly for they-coordinates. This can be done in one loop as
follows

private void computeBoundingBox()
{

xMin = v[0].getX();
xMax = v[0].getX();

8.6 Line graph example using arrays 413

yMin = v[0].getY();
yMax = v[0].getY();
for (int k = 1; k < v.length; k++)
{

double x = v[k].getX();
double y = v[k].getY();
if (x < xMin) xMin = x;
if (x > xMax) xMax = x;
if (y < yMin) yMin = y;
if (y > yMax) yMax = y;

}
}

We want to define a coordinate system slightly larger than this bounding box to allow for a 5%
border around the graph as shown in Figure 8.8. This is done inthepaintComponent method as
follows.

int w = getWidth(); // JPanel width in pixels
int h = getHeight(); // JPanel height in pixels
double bx = (xMax - xMin) * 0.05;
double by = (yMax - yMin) * 0.05;
AffineTransform world =

new worldTransform(xMin-bx, xMax+bx, yMin-by, yMax+by, w , h);
g2D.transform(world);
double pixelWidth = Math.abs(1 / world.getScaleX());
double pixelHeight = Math.abs(1 / world.getScaleY());
float thickness = (float) Math.min(pixelWidth, pixelHeig ht);
g2D.setStroke(new BasicStroke(thickness));

where we have also determined the dimensions of one pixel in the world coordinate system and set
the line width to one pixel.

Drawing the axes

If yMin≤ 0≤ yMaxthex-axis will be visible and similarly ifxMin≤ 0≤ xMaxthey-axis will be
visible. Therefore to draw the axes we use

g2D.setPaint(Color.blue);
if (yMin <= 0.0 && 0.0 <= yMax)
{

g2D.draw(new Line2D.Double(xMin,0,xMax,0));
}
if (xMin <= 0.0 && 0.0 <= xMax)
{

g2D.draw(new Line2D.Double(0,yMin,0,yMax));
}

414 Array Data Types

Drawing the line segments

If there aren verticesv0, . . . ,vn−1 then the first line segment joinsv0 to v1 and the last joinsvn−2 to
vn−1. Therefore the following loop draws the line segments.

g2D.setPaint(Color.black);
for (int k = 0; k < v.length - 1; k++)
{

double x1 = v[k].getX();
double y1 = v[k].getY();
double x2 = v[k+1].getX();
double y2 = v[k+1].getY();
g2D.draw(new Line2D.Double(x1,y1,x2,y2));

}

Drawing the circles at each vertex

If (x,y) is a vertex we want to draw a filled circle with radius 3 pixels centered at this vertex. The
following for-loop draws the circles.

double xr = 3 * pixelWidth;
double yr = 3 * pixelHeight;
g2D.setPaint(Color.red);
for (int k = 0; k < v.length; k++)
{

double x = v[k].getX();
double y = v[k].getY();
Ellipse2D.Double ellipse = new Ellipse2D.Double(x-xr, y- yr, 2*xr, 2*yr);
g2D.fill(ellipse);

}

The bounding box of the ellipse has bottom left corner at(x-xr,y-yr) and its width and height
are2*xr and2*yr , respectively. Putting everything together we obtain the following class.

ClassLineGraph

book-projects/chapter8/line_graph

package chapter8.line_graph; // remove this line if you’re not using packages
import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

/**
* Draw a line graph given its vertices (x,y).
* The axes are drawn if they are visible. A small circle is also shown
* at each vertex. Affine transformations are used to map the w orld
* coordinate system of the line graph to the device coordinat e system.
*/

8.6 Line graph example using arrays 415

public class LineGraph extends JPanel
{

private Point2D.Double[] v; // vertices of line graph
private double xMin, xMax, yMin, yMax; // bounding box of gra ph

/* Construct a line graph for a specified array of points
*/
public LineGraph(Point2D.Double[] p)
{

v = p;
computeBoundingBox();

}

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;
g2D.setRenderingHint(RenderingHints.KEY_ANTIALIASIN G,

RenderingHints.VALUE_ANTIALIAS_ON);

int w = getWidth(); // JPanel width in pixels
int h = getHeight(); // JPanel height in pixels

// Make a world coordinate system with a 5 percent border

double bx = (xMax - xMin) * 0.05;
double by = (yMax - yMin) * 0.05;

AffineTransform world = worldTransform(xMin-bx, xMax+bx , yMin-by, yMax+by, w, h);
g2D.transform(world);

// Width of a pixel in world space is (xMax - xMin + 2*bx) / (w-1)
// Height of a pixel in world space is (yMax - yMin + 2*by) / (h-1)
// But we can get these values from the affine transformation :

double pixelWidth = Math.abs(1 / world.getScaleX()); // pi xel width in world
double pixelHeight = Math.abs(1 / world.getScaleY()); // p ixel height in world

// Now we can calculate a line thickness relative that is two p ixels wide

float thickness = (float) Math.min(pixelWidth, pixelHeig ht);
g2D.setStroke(new BasicStroke(thickness));

// Draw the x-axis in blue if it is visible

g2D.setPaint(Color.blue);
if (yMin <= 0.0 && 0.0 <= yMax)
{

g2D.draw(new Line2D.Double(xMin,0,xMax,0));
}

// Draw the y-axis in blue if it is visible

416 Array Data Types

if (xMin <= 0.0 && 0.0 <= xMax)
{

g2D.draw(new Line2D.Double(0,yMin,0,yMax));
}

// draw the line segments connecting the vertices in black

g2D.setPaint(Color.black);
for (int k = 0; k < v.length - 1; k++)
{

double x1 = v[k].getX();
double y1 = v[k].getY();
double x2 = v[k+1].getX();
double y2 = v[k+1].getY();
g2D.draw(new Line2D.Double(x1,y1,x2,y2));

}

// We need to draw a small red circle
// about each point that has a radius of 3 pixels.

double xr = 3 * pixelWidth; // ellipse radius in x direction
double yr = 3 * pixelHeight; // ellipse radius in y direction

g2D.setPaint(Color.red);
for (int k = 0; k < v.length; k++)
{

double x = v[k].getX();
double y = v[k].getY();
Ellipse2D.Double ellipse = new Ellipse2D.Double(x-xr, y- yr, 2*xr, 2*yr);
g2D.fill(ellipse);

}
}

/* Compute the bounding box of the line graph.
The x range will be xMin <= x <= xMax
The y range will be yMin <= y <= yMax

*/
private void computeBoundingBox()
{

xMin = v[0].getX();
xMax = v[0].getX();
yMin = v[0].getY();
yMax = v[0].getY();
for (int k = 1; k < v.length; k++)
{

double x = v[k].getX();
double y = v[k].getY();
if (x < xMin) xMin = x;
if (x > xMax) xMax = x;
if (y < yMin) yMin = y;
if (y > yMax) yMax = y;

8.6 Line graph example using arrays 417

}
}

private AffineTransform worldTransform(double xMin, dou ble xMax,
double yMin, double yMax, int w, int h)

{
double sx = (w-1) / (xMax - xMin); // scale factor in x directio n
double sy = (h-1) / (yMax - yMin); // scale factor in y directio n
AffineTransform at = new AffineTransform();
at.scale(sx, -sy); // -sy reverses y axis
at.translate(-xMin, -yMax); // upper left corner (xMin,yM ax) to (0,0)
return at;

}
}

Here is a simple class that uses theGraphicsFrame class to draw a graph of 8 vertices.

ClassSimpleTester

book-projects/chapter8/line_graph

package chapter8.line_graph; // remove this line if you’re not using packages
import custom_classes.GraphicsFrame; // remove this line if you’re not using packages
import java.awt.geom.*;

/**
* Runner class for testing the LineGraph class
* by drawing a sample graph if 8 vertices.
*/

public class SimpleTester
{

public void runTest()
{

Point2D.Double[] v = new Point2D.Double[8];
v[0] = new Point2D.Double(-4, -1);
v[1] = new Point2D.Double(-3, 1);
v[2] = new Point2D.Double(-2, 0.5);
v[3] = new Point2D.Double(-1, 2);
v[4] = new Point2D.Double(1, 0.5);
v[5] = new Point2D.Double(3, 3);
v[6] = new Point2D.Double(4, 0.75);
v[7] = new Point2D.Double(6, 0.6);

new GraphicsFrame("A Simple Line Graph", new LineGraph(v) , 401, 301);
}

public static void main(String[] args)
{

new SimpleTester().runTest();
}

}

The output window is shown in Figure 8.8. The line graph is black, the small circles at each vertex

418 Array Data Types

Figure 8.8: Line graph fromSimpleTester

are red and the coordinate axesx = 0 andy = 0 are both visible.

8.6.2 Drawing a random line graph

As another example we use theLineGraph class to generate a random array of points. The only
problem here is that thex-coordinates must increase,x0 ≤ x1 ≤ ·· · ≤ xn−1, and this won’t be the
case. However, we can use a version of thebubbleSort method (page 404) to sort the vertex
array of randomly generatedPoint2D.Double objects in order of increasingx-coordinate before
drawing the graph.

We want the number of points in the vertex array to be a random integer in the range 5 to 100,
which can be done with the statements

int numVertices = (int) (96.0 * Math.random()) + 5;
Point2D.Double[] v = new Point2D.Double[numVertices];

recalling that therandom method generates random numbersr such that 0≤ r < 1. Also let us
randomly choose eachx or y coordinate to be in the range -10 to 10. This can be done with the
for-loop

for (int k = 0; k < v.length; k++)
{

double x = 20.0 * Math.random() - 10.0;
double y = 20.0 * Math.random() - 10.0;
v[k] = new Point2D.Double(x, y);

}

Now the vertex array can be used to construct aLineGraph object that is an argument to a
GraphicsFrame object. Thus, we have the following class to generate the graph.

8.6 Line graph example using arrays 419

ClassRandomTester

book-projects/chapter8/line_graph

package chapter8.line_graph; // remove this line if you’re not using packages
package custom_classes.GraphicsFrame; // remove this lin e if you’re not using packages
import java.awt.geom.*;

/**
* Test the LineGraph class by generating a random array of poi nts sorted
* in order of increasing x coordinate.
*/

public class RandomTester
{

public void runTest()
{

// random number of vertices in range 5 to 100

int numVertices = (int) (96.0 * Math.random()) + 5;
Point2D.Double[] v = new Point2D.Double[numVertices];

// Generate random points with coordinates in range -10 to 10
// and sort them on increasing x coordinate.

for (int k = 0; k < v.length; k++)
{

double x = 20.0 * Math.random() - 10.0;
double y = 20.0 * Math.random() - 10.0;
v[k] = new Point2D.Double(x, y);

}

bubbleSort(v);
new GraphicsFrame("A Random Line Graph", new LineGraph(v) , 401, 301);

}

/* Sort an array of points in increasing order of x-coordinat es.
*/
private void bubbleSort(Point2D.Double[] a)
{

int n = a.length;
for (int p = 1; p <= n - 1; p++)
{

for (int j = 0; j <= n - 1 - p; j++)
{

if (a[j].getX() > a[j + 1].getX())
{

Point2D.Double temp = a[j];
a[j] = a[j + 1];
a[j + 1] = temp;

}
}

}
}

420 Array Data Types

Figure 8.9: ARandomTester output window

public static void main(String[] args)
{

new RandomTester().runTest();
}

}

A typical output window is shown in Figure 8.9.

8.6.3 Converting arrays toGeneralPath objects

In Chapter 5 we used theGeneralPath class to construct custom shapes. We can use arrays of
points to constructGeneralPath objects and then draw or fill them. This technique could have
been used in theLineGraph class: rather than draw line segments one at a time we could have
used the following statements

GeneralPath p = new GeneralPath();
p.moveTo((float) v[0].getX(), (float) v[0].getY());
for (int k = 1; k < v.length; k++)
{

p.lineTo((float) v[k].getX(), (float) v[k].getY());
}
g2D.draw(p):

to define the pathp as aShape object and then draw it.

8.7 For-each loop

In some for loops that sequentially process the elements of an array the only purpose of the loop
index is to suceessively reference the next element in the array. For example, the following for
loop prints the elements of an arraya, one per line:

8.7 For-each loop 421

for (int k = 0; k < a.length; k++)
{

System.out.println(a[k]);
}

Here the loop indexk is used only to refer toa[k] . What we really need in this case is a loop
which says “iterate over the elements of the array from beginning to end and display each array
element”.

In Java 5 a special kind of for loop called the “for each” loop was introduced to deal with this
situation. It has the syntax

for (Type name: collection)
{

Statements
}

Herecollectionis the name of a collection of objects of the givenTypeand the variablename
will successively take on the value of the next element in thecollection (the only collection we
know at this stage is the array). This kind of for loop is sometimes called aniterator . Read the
colon as “in” so the loop says “for each name in the collection...”

For example, the for loop that prints elements can be expressed for an arraya of type int[] as

for (int elem : a)
{

System.out.println(elem);
}

This is much nicer. Here the first value ofelem is a[0] , the next value isa[1] and so on until the
last value isa[a.length-1] .

EXAMPLE 8.32 (Summing an integer array) The two methods

public int arraySum(int[] a) public int arraySum(int[] a)
{ {

int sum = 0; int sum = 0;
for (int k = 0; k < a.length; k++) for (int elem : a)
{ {

sum = sum + a[k]; sum = sum + elem;
} }
return sum; return sum;

} }

show how to sum the elements of an integer array using the ordinary for loop and the new one.

EXAMPLE 8.33 (Average balance in aBankAccount array) The method

public double averageBalance(BankAccount[] b)
{

422 Array Data Types

double sum = 0.0;
for (BankAccount account : b)
{

sum = sum + account.getBalance();
}
return sum / b.length;

}

returns the average bank balance in the given array of bank accounts

8.8 Methods with a variable number of arguments

In Java 5 it is possible to have methods with a variable numberof arguments. We have already
seen two such methods:String.format andprintf (see Chapter 4.2.5, page 102). The syntax
for the method prototype is

ReturnType methodName(initialArgumentList, Type... name)

For example theString.format method has prototype

public static format(String format, Object ... args)

In this case there is one initial argument to specify the format string. It is followed by a variable
number of arguments of typeObject . Hereargs refers to the variable part of the argument list.
Within the method it can be accessed as an array using the standard for loop or the for each loop.

EXAMPLE 8.34 (Min method with variable number of arguments) As an example here is a
method that takes a variable number of integer arguments andreturns the minimum value among
the arguments.

public int min(int ... args)
{

int minValue = Integer.MAX_VALUE;
for (int k = 0; k < args.length; k++)
{

if (args[k] < minValue) minValue = args[k];
}
return minValue;

}

Now we can call this method using expressions such asmin(4,3) , which uses two arguments, and
min(7,6,5,11) , which uses four arguments.

The following version uses the for each loop

8.9 Two-dimensional arrays 423

public int min(int ... args)
{

int minValue = Integer.MAX_VALUE;
for (int x : args)
{

if (x < minValue) minValue = x;
}
return minValue;

}

Herex takes on the valuesargs[0] , args[1] , and so on. If we had wanted to return the position
at which the first value of the minimum was found then we would need the index so the original
version of the for loop would be better.

8.9 Two-dimensional arrays

So far we have considered only one-dimensional arrays. Two-dimensional arrays are also com-
mon. They correspond to doubly subscripted variables that occur, for example, in matrices (see
Example 8.4). In mathematics the row and column indices normally start at 1 but we must take into
account that indices always start at 0 in Java. As for one-dimensional arrays, a two-dimensional
array can be initialized using assignment statements or an array initializer.

EXAMPLE 8.35 (Defining a 2×2 matrix with assignment statements)TheBeanShell state-
ments

bsh % double[][] a = new double[2][2]; // construct 2 by 2 arra y
bsh % a[0][0] = 1.0; // row 0, column 0
bsh % a[0][1] = 2.0; // row 0, column 1
bsh % a[1][0] = 3.0; // row 1, column 0
bsh % a[1][1] = 4.0; // row 1, column 1

declare a 2×2 matrixa in Java and initialize it to the matrix

[

1.0 2.0
3.0 4.0

]

. Here the first subscript

is called the row index and the second is called the column index. BeanShell does not know how
to print a 2-dimensional array but it can print the rows if youuseprint(a[0]) for row 0 and
print(a[1]) for row 1.

EXAMPLE 8.36 (Defining a 2×2 matrix with an initializer) The statement

double[][] a = { {1.0, 2.0}, {3.0, 4.0} };

declares the matrix in the preceding example using an array initializer (Java orBeanShell). This is
shorthand accepted by the compiler for

double[][] a = new double[][] { {1.0, 2.0}, {3.0, 4.0} };

424 Array Data Types

The initializer specifies the matrix one row at a time and it shows that a two-dimensional array
is really an array of row arrays. For example,a[0] is a reference to row 0, with column entries
a[0][0] anda[0][1] ; a[1] is a reference to row 1, with column entriesa[1][0] anda[1][1] .
Therefore the matrix is a one-dimensional array of rows.

EXAMPLE 8.37 (One-dimensional array of rows) We can generalize and think of a two-
dimensional array as a one-dimensional array of rows where each row is a one-dimensional array
of elements. In fact, each row can have a different number of elements in it. An array with unequal
row lengths is sometimes called aragged array. If all rows have the same length the array is
called arectangular matrix . If the number of rows and columns are the same the array is called a
square matrix.

For example, the statement

int[][] a = { {1}, {3,4,5}, {6,7,8,9} };

defines a two-dimensional array such that row 0 has one element, row 1 has three elements, and
row 2 has four elements. The number of rows is three and is given by a.length . Row 0 isa[0]
and its length isa[0].length (1 in this case), row 1 isa[1] and its length isa[1].length (3
in this case), and finally row 2 isa[2] and its length isa[2].length (4 in this case). Given a
two-dimensional arraya the loop

for (int r = 0; r < a.length; r++)
{

System.out.println("Row " + r + " has " + a[r].length + " eleme nts");
}

displays the number of elements in each row usinga.length as the number of rows and using
a[r].length as the length of rowr .

Try it in BeanShell using “Capture System in/out/err”.

bsh % int[][] a = { {1}, {3,4,5}, {6,7,8,9} };
bsh % for(int r = 0; r < a.length; r++)
{

System.out.println("Row " + r + " has " + a[r].length + " eleme nts");
}
Row 0 has 1 elements
Row 1 has 3 elements
Row 2 has 4 elements

EXAMPLE 8.38 (One-dimensional array of rows) The array in Example 8.37 can also be
constructed using

int[][] a = new int[3][]; // array of references to three rows
a[0] = new int[] {1}; // construct row 0
a[1] = new int[] {3,4,5}; // construct row 1
a[2] = new int[] {6,7,8,9}; // construct row 2

8.9 Two-dimensional arrays 425

which clearly shows that it is an array with three rows of various lengths. The statements

int[][] a = new int[3][];
a[0] = new int[1];
a[1] = new int[3];
a[2] = new int[4];

construct this array but do not assign any values to the arrayelements.

There are four one-dimensional arrays here (new is used four times) as shown in Figure 8.10.
The first is an array of three references to the rows (verticalarray in the figure). The elements of

r - 1

r - 3 4 5

r - 6 7 8 9

Figure 8.10: A two-dimensional array with different lengthrows

this array are references to rows containing 1, 3, and 4 elements respectively.

The same picture can be used to represent elements of object type. In this case where the
integers appear in the picture there would instead be arrowsdenoting references to the objects.

8.9.1 Multiplying matrices

As an example of two-dimensional array manipulation let us develop a class that multiplies an
m× p matrix A by an p×n matrix B to get them×n matrix C = AB called the product matrix.
Recall that the matrix multiplicationAB is defined only if the number of columns ofA is the same
as the number of rows ofB and we have denoted this number byp.

The formulas for the matrix elements ofC are given in Example 8.4 with indices beginning at
1. With indices beginning at zero the matrix elementsci j are given by

ci j = ai0b0 j + · · ·+ai,p−1bp−1, j =
p−1

∑
k=0

aikbk j, 0≤ i ≤m−1, 0≤ j ≤ n−1.

We need three nested for-loops to calculate the matrix elementsci j . The outer loop indexi goes
from 0 tom−1 wherem is the number of rows inA. The next loop indexj goes from 0 ton−1
wheren is the number of columns inB. This gives the loop structure

int m = a.length; // rows in A
int n = b[0].length; // columns in B
for (int i = 0; i <= m-1; i++)
{

426 Array Data Types

for (int j = 0; j <= n-1; j++)
{

// calculate c[i][j] here
}

}

We have useda.length to get the number of rows inA andb[0].length to get the number of
columns inB. This works sinceb is rectangular sob[k].length is the same for all row indicesk .

To calculatec[i][j] we need to use another loop to compute the sum ofp terms:

double sum = 0.0;
int p = b.length; // number of rows in B
for (int k = 0; k <= p-1; k++)
{

sum = sum + a[i][k] * b[k][j];
}
c[i][j] = sum;

Putting this loop inside the outer two loops gives the following triply-nested loop structure for
matrix multiplication:

int m = a.length; // rows in A
int n = b[0].length; // columns in B
int p = b.length; // number of rows in B
double[][] c = new double[m][n]; // create product matrix
for (int i = 0; i <= m-1; i++)
{

for (int j = 0; j <= n-1; j++)
{

double sum = 0.0;
for (int k = 0; k <= p-1; k++)
{

sum = sum + a[i][k] * b[k][j];
}
c[i][j] = sum;

}
}

A method to do this matrix multiplication would have the prototype

public double[][] multiply(double[][] a, double[][] b)

indicating that the arguments are matrices and the return value is a matrix. Here is a class contain-
ing the method which can be tested usingBlueJ or BeanShell.

ClassMatrixMultiplier

book-projects/chapter8/two_d_arrays

8.9 Two-dimensional arrays 427

package chapter8.two_d_arrays; // remove this line if you’ re not using packages
/**

* Class to illustrate matrix multiplication
*/

public class MatrixMultiplier
{

public double[][] multiply(double[][] a, double[][] b)
{

int m = a.length; // rows in A
int n = b[0].length; // columns in B
int p = b.length; // number of rows in B
double[][] c = new double[m][n]; // create product matrix

for (int i = 0; i <= m-1; i++)
{

for (int j = 0; j <= n-1; j++)
{

double sum = 0.0;
for (int k = 0; k <= p-1; k++)
{

sum = sum + a[i][k] * b[k][j];
}
c[i][j] = sum;

}
}
return c;

}
}

Testing the method inBlueJ

It is interesting to test themultiply method inBlueJ. As a simple test let us compute the matrix
product

C = AB=

[

1 2 3
4 5 6

]

1 2 3 4
5 6 7 8
4 3 2 1

=

[

23 23 23 23
53 56 59 62

]

Perform the following steps:

1. Create aMatrixMultiplier object calledmultiplier .

2. From its object menu select themultiply method.

3. In the input box for matrixa enter{{1,2,3},{4,5,6}} .

4. In the input box for matrixb enter{{1,2,3,4},{5,6,7,8},{4,3,2,1}} and click “OK”.

5. This gives the “Method Result” window showing<object-reference> for the return value
of the method which is the product matrix. Select the object reference, click the “Get” button
and give the object the namec . You will now have an array object on the workbench for the
product matrix.

428 Array Data Types

6. Right click on this object and choose “Inspect”. The resulting inspector window shows the
information

int length = 2
[0] = <object-reference>
[1] = <object-reference>

indicating that this object is an array of length 2 whose rowsare also object references.

7. Click on the first object reference, select “Get”, and givethis object the namerow0 . It will
appear on the work bench and is the first row of the product matrix.

8. Similarly click on the second object reference, select “Get”, and give this object the name
row1 . It will appear on the work bench and is the second row of the product matrix.

9. Right click on therow0 object and select “Inspect”. The resulting inspector window shows
the information

int length = 4
[0] = 23
[1] = 23
[2] = 23
[3] = 23

indicating that this object is an array of length 4 whose values are the first row of the product
matrix.

10. Similarly, right click on therow1 object and select “Inspect”. The resulting inspector window
shows the information

int length = 4
[0] = 53
[1] = 56
[2] = 59
[3] = 62

indicating that this object is an array of length 4 whose values are the second row of the
product matrix.

Testing the method inBeanShell

The following example shows another way to test the multiplymethod.

EXAMPLE 8.39 (Matrix multiplication using BeanShell) Try the following statements

bsh % addClassPath("c:/book-projects/chapter8/two_d_a rrays");
bsh % MatrixMultiplier mult = new MatrixMultiplier();
bsh % double[][] a = {{1,2,3},{4,5,6}};
bsh % double[][] b = {{1,2,3,4},{5,6,7,8},{4,3,2,1}};

8.9 Two-dimensional arrays 429

bsh % double[][] c = mult.multiply(a,b);
bsh % print(c.length);
2
bsh % print(c[0]);
double[]: {23.0,23.0,23.0,23.0,}
bsh % print(c[1]);
double[]: {53.0,56.0,59.0,62.0,}

to test the matrix multiplication method.

Testing matrix multiplication

The following runner class can be used to test the matrix multiplication method.

ClassMatrixMultiplierRunner

book-projects/chapter8/two_d_arrays

package chapter8.two_d_arrays; // remove this line if you’ re not using packages
import java.util.Scanner;
/**

* Class to test matrix multiplication.
* Compute matrix product C = AB where A is an m by p
* matrix, B is a p by n matrix and C is an m by n matrix.
*/

public class MatrixMultiplierRunner
{

public static void main(String[] args)
{

Scanner input = new Scanner(System.in);

// get matrix dimensions for A, B

System.out.println("Enter number of rows in A");
int m = input.nextInt();

System.out.println("Enter number of columns in A)");
System.out.println("which is also the number of rows in B") ;
int p = input.nextInt();

System.out.println("Enter number of columns in B)");
int n = input.nextInt();

double[][] a = new double[m][p];
double[][] b = new double[p][n];

// Get matrix elements of A one row at a time

System.out.println("Enter rows of A");
for (int i = 0; i < m; i++)
{

430 Array Data Types

for (int j = 0; j < p; j++)
{

a[i][j] = input.nextInt();
}

}

// Get matrix elements of B one row at a time

System.out.println("Enter rows of B");
for (int i = 0; i < p; i++)
{

for (int j = 0; j < n; j++)
{

b[i][j] = input.nextInt();
}

}

// Compute product matrix C and display all matrices

MatrixMultiplier mult = new MatrixMultiplier();
double[][] c = mult.multiply(a, b);
System.out.println("Matrix a:");
displayArray(a);
System.out.println("Matrix b:");
displayArray(b);
System.out.println("Matrix c:");
displayArray(c);

}

// Display a 2d-array one row at a time
private static void displayArray(double[][] a)
{

for (int row = 0; row < a.length; row++)
{

System.out.print("Row " + row + ": ");
for (int col = 0; col < a[0].length; col++)
{

System.out.print(a[row][col] + " ");
}
System.out.println();

}
}

}

and here is some sample output.

Enter number of rows in A
2
Enter number of columns in A)
which is also the number of rows in B
3
Enter number of columns in B)

8.9 Two-dimensional arrays 431

4
Enter rows of A
1 2 3
4 5 6
Enter rows of B
1 2 3 4
5 6 7 8
4 3 2 1
Matrix a:
Row 0: 1.0 2.0 3.0
Row 1: 4.0 5.0 6.0
Matrix b:
Row 0: 1.0 2.0 3.0 4.0
Row 1: 5.0 6.0 7.0 8.0
Row 2: 4.0 3.0 2.0 1.0
Matrix c:
Row 0: 23.0 23.0 23.0 23.0
Row 1: 53.0 56.0 59.0 62.0

8.9.2 Board games

Board games provide another example of the usefulness of two-dimensional arrays. The board is a
square or rectangular array of squares such as a chess board or a tic-tac-toe board. Each square can
be unoccupied, or it can contain a game piece (chess piece forexample, or an X or O in tic-tac-toe)
for one player or the other.

As an example consider the three by three board for a game of tic-tac-toe. We can use a
matrix of typeint[][] to represent the board. A matrix element value of zero indicates that the
corresponding square is unoccupied, a value of one indicates that an X is in the square and a value
of two indicates that an O is in the square. We can use a two-dimensional array of the form

int[][] board = new int[3][3];

Then, the top row of squares isboard[0][k] , for k = 0,1,2 , the middle row isboard[1][k] ,
for k=0,1,2 , and the bottom row isboard[2][k] , for k=0,1,2 .

To initialize the board before starting a new game the following nested loop can be used.

for (int row = 0; row < board.length; row++)
{

for (int column = 0; column < board.length; column++)
{

board[row][column] = 0;
}

}

There are many methods that can be written which would be useful in developing a complete
program for the game. For example, when a user selects a square to mark with an X or an O the
program should check to see if the attempted move is legal, a move being legal only if the chosen
square is unoccupied. Thus, we could write the following method.

432 Array Data Types

public boolean isLegalMove(int row, int column)
{

return board[row][column] == 0;
}

which returnstrue only if the chosen square is unoccupied.
Another useful method would be one that determines whether the board is full, indicating the

game is a draw if there is no winner:

public boolean isBoardFull()
{

for (int row = 0; row < board.length; row++)
{

for (int column = 0; column < board.length; column++)
{

if (board[row][column] == 0) return false; // found empty sq uare
}

}
return true; // didn’t find any empty squares

}

This method returnsfalse if there is at least one unoccupied square on the board.
Another important method would be one with prototype

public boolean isWinner(int player)

such thatisWinner(1) has the valuetrue if the player using X won the game andisWinner(2)
has the valuetrue if the player using Y won the game (see Exercise 8.5).

8.10 Card shuffling and dealing application

An interesting application of arrays is to represent playing cards and decks of cards as objects that
can be used in a card game. We first show how to represent a card as an object from aCard class
and then we show how to represent a deck of playing cards as an object from aCardDeck class
using an array ofCard objects.

We consider a standard deck of 52 cards arranged into four suits (Clubs, Diamonds, Hearts,
and Spades) each containing 13 cards (Ace, Two, ..., Jack, Queen, King) as shown in Figure 8.2.
Each row gives the 13 cards in a suit. The numbers 0 to 3 at the right give the suit number. The
numbers 0 to 12 at the top give the rank number of a card within asuit, and the numbers 0 to 51
at the left give the card index that will correspond to the index in the array representation of a card
deck.

8.10.1 Card class

According to Table 8.2 a card can be represented either by itsindex in the range 0 to 51 or by a
pair of numbers(rank,suit) where 0≤ rank≤ 12 and 0≤ suit≤ 3. To go from one representation
to the other we can use modular arithmetic as follows

8.10 Card shuffling and dealing application 433

0 1 2 3 4 5 6 7 8 9 10 11 12
0 to 12 A♣ 2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣ 0

13 to 25 A♦ 2♦ 3♦ 4♦ 5♦ 6♦ 7♦ 8♦ 9♦ 10♦ J♦ Q♦ K♦ 1
26 to 38 A♥ 2♥ 3♥ 4♥ 5♥ 6♥ 7♥ 8♥ 9♥ 10♥ J♥ Q♥ K♥ 2
39 to 51 A♠ 2♠ 3♠ 4♠ 5♠ 6♠ 7♠ 8♠ 9♠ 10♠ J♠ Q♠ K♠ 3

Table 8.2: A deck of playing cards

• Given indexin the range 0≤ index≤ 51, the rank and suit can be computed using the for-
mulasrank= indexmod 13 andsuit= indexdiv 13.

• Givenrank andsuit thenindexis given byindex= 13×suit+ rank.

For example, 2♠ hasindex= 40 sorank= 40mod 13= 1 andsuit= 40 div 13= 3. Conversely,
given the rank and suit thenindex= 13×3+1 = 40.

Card class design

For theCard class we choose the specification

public class Card
{

public Card(int rank, int suit) {...}
public Card(int index) {...}
public String getRankName() {...}
public String getSuitName() {...}
public String getCardName() {...}
public String toString() {...}

}

Here we have two constructors, one for each of the two ways to represent a card. Also there are
“get methods” to return various string representations. The getRankName method will return a
string such as"Ace" or "King" , thegetSuitName method will return a string such as"Clubs"
or "Spades" , thegetCardName method returns a compact string representation such as"A-C" for
A♣ or "K-S" for K♠, and the standardtoString method returns the same string asgetCardName .

Card class implementation

We now have enough information to write the class:

ClassCard

book-projects/chapter8/card_deck

package chapter8.card_deck; // remove this line if you’re n ot using packages
/**

434 Array Data Types

* A Card object encapsulates a standard playing card in terms
* of 4 suits and 13 ranks. Each card can also be described in
* terms of an index in the range 0 to 51:
* <pre>
* index 0 to 12: A-C, 2-C, 3-C, ..., K-C
* index 13 to 25: A-D, 2-D, 3-D, ..., K-D
* index 26 to 38: A-H, 2-H, 3-H, ..., K-H
* index 39 to 51: A-S, 2-S, 3-S, ..., K-S</pre>
* The index, rank (0-12) and suit (0-3) are related by
* <pre>
* index = 13*suit + rank
* suit = index / 13
* rank = index % 13</pre>
*/

public class Card
{

private static String[] ranks
= { "Ace", "Two", "Three", "Four", "Five", "Six", "Seven",

"Eight", "Nine", "Ten", "Jack", "Queen", "King" };

private static String rankLetter = "A23456789TJQK";

private static String[] suits
= { "Clubs", "Diamonds", "Hearts", "Spades" };

private static String suitLetter = "CDHS";

private int rank; // 0 to 12
private int suit; // 0 to 3
private int index; // 0 to 51

private String rankName; // "Ace", "Two", ... "King"
private String suitName; // "Clubs" ... "Spades"
private String cardName; // e.g. A-C for ace of clubs

/**
* Construct a card given its rank and suit.
* @param rank card rank in range 0 (Ace) to 12 (King)
* @param suit card suit in range 0 (Clubs} to 3 (Spades)
*/

public Card(int rank , int suit)
{

this.rank = rank;
this.suit = suit;
index = 13*suit + rank;
rankName = ranks[rank];
suitName = suits[suit];
cardName = rankLetter.substring(rank,rank+1) + "-"

+ suitLetter.substring(suit,suit+1);
}

/**

8.10 Card shuffling and dealing application 435

* Construct a card given its index.
* @param index card index in the range 0 (A-C) to 51 (K-S)
*/

public Card(int index)
{

this.index = index;
rank = this.index % 13;
suit = this.index / 13;
rankName = ranks[rank];
suitName = suits[suit];
cardName = rankLetter.substring(rank,rank+1) + "-"

+ suitLetter.substring(suit,suit+1);
}

/**
* Return the rank name of the card.
* @return rank name of card: "Ace" to "King"
*/

public String getRankName()
{

return rankName;
}

/**
* Return the suit name of the card.
* @return suit name if card: "Clubs" to "Spades"
*/

public String getSuitName()
{

return suitName;
}

/**
* Return the card name.
* @return the card name in format A-C to K-S
*/

public String getCardName()
{

return cardName;
}

/**
* Return a string representation of a card.
* @return a string representation of a card.
*/

public String toString()
{

return cardName;
}

}

Here we use two constant arrays for the names of the ranks and the names of the suits. The numeric
rank and suit values are used as indices into these arrays to determinerankName andsuitName .

436 Array Data Types

Similarly two strings are used to obtain single letter representations (using substring) of the rank
and suit which are used to determinecardName .

This class can now be tested either withBlueJ or with BeanShell. The following example
shows how to test it withBeanShell using Table 8.2 to check results.

EXAMPLE 8.40 (Testing theCard class) Try statements such as

bsh % addClassPath("c:/book-projects/chapter8/card_de ck");
bsh % Card c = new Card(35);
bsh % print(c.getCardName());
T-H
bsh % print(c.getRankName());
Ten
bsh % print(c.getSuitName());
Hearts
bsh % print(c);
T-H

to test theCard class.

8.10.2 CardDeck class

A CardDeck object represents a deck of 52Card objects.

CardDeck class design

The most fundamental operations for a deck of cards is to put the deck in some standard order
(done by the constructor), shuffle the deck, and deal a card. This gives the following specification.

public class CardDeck
{

public CardDeck() {...}
public void shuffle() {...}
public Card deal() {...}
public int cardsInDeck() {...}
public boolean empty() {...}
public String toString() {...}

}

Here the constructor creates a deck in the standard order given in Table 8.2, theshuffle method
shuffles the deck into some random order, thedeal method returns the top card and removes it
from the deck, thecardsInDeck method returns a number in the range 0 to 52 indicating how
many cards remain to be dealt, theempty method returns true if there are no more cards in the
deck, and thetoString method returns a string representation of the cards remaining in the deck.

8.10 Card shuffling and dealing application 437

CardDeck implementation

To implement the class we need an array ofCard objects as a private data field and an index that
keeps track of the array index of the current top card:

private static final int DECK_SIZE = 52;
private Card[] deck;
private int topCardIndex;

Here for a full decktopCardIndex will be zero. Each time a card is dealt this index is incremented
to refer to the new top card. When there are no cards remainingthe index has the value 52 which
is one more than the largest array index.

The constructor implementation

public CardDeck()
{

deck = new Card[DECK_SIZE];
initialize();

}

constructs the deck and calls a privateinitialize method which constructs 52 cards in standard
order:

private void initialize()
{

topCardIndex = 0;
for (int k = 0; k < DECK_SIZE; k++)
{

deck[k] = new Card(k);
}

}

The only tricky method isshuffle . We use theRandom class injava.util to generate random
integers:

Random rand = new Random();

Thenrand.nextInt(n) returns a random integer in the range 0 ton-1 . The following algorithm
can be used to shuffle the 52 cards.

• Step 0: Choose a random position from 0 to 51 and exchange the element at that index with
the element at position 0. This gives a random card in position 0.

• Step 1: Choose a random position from 1 to 51 and exchange the element at that index with
the element at position 1. This gives a random card in position 1.

• Stepk: Choose a random position fromk to 51 and exchange the element at that index with
the element at positionk. This gives a random card in positionk.

438 Array Data Types

• Step 50: Choose a random position from 50 to 51 and exchange the element at that index
with the element at position 50. This gives a random card in position 50. This is the last step
since the last card at position 51 will be random.

We can generate a random integer index in the rangek to 51 using

int index = rand.nextInt(DECK_SIZE - k) + k;

The rand operation here produces a random integer in the range 0 to 52−k−1 and we addk to
get a random integer in the rangek to 51. This gives the following implementation ofshuffle .

public void shuffle()
{

Random rand = new Random();
initialize();
for (int k = 0; k <= DECK_SIZE - 2; k++)
{

int index = rand.nextInt(DECK_SIZE - k) + k;
Card temp = deck[k];
deck[k] = deck[index];
deck[index] = temp;

}
}

To deal a card from the deck we need to return a reference to theCard object whose index is
topCardIndex and then we need to incrementtopCardIndex so that it references the next card.
If the deal method is called on an empty deck of cards it returnsnull :

public Card deal()
{

if (topCardIndex == DECK_SIZE) return null;
Card topCard = deck[topCardIndex];
topCardIndex++;
return topCard;

}

The other methods are easily implemented and we obtain the class

ClassCardDeck

book-projects/chapter8/card_deck

package chapter8.card_deck; // remove this line if you’re n ot using packages
import java.util.Random;
/**

* A CardDeck object represents a deck of 52 Card objects.
*/

public class CardDeck
{

8.10 Card shuffling and dealing application 439

private static final int DECK_SIZE = 52;
private Card[] deck;
private int topCardIndex;

/**
* Construct a deck of cards initialized in the standard order 0 to 51
*/

public CardDeck()
{

deck = new Card[DECK_SIZE];
initialize();

}

/**
* Return all the cards to the deck in standard order.
*/

public void initialize()
{

topCardIndex = 0;
for (int k = 0; k < DECK_SIZE; k++)
{

deck[k] = new Card(k);
}

}

/**
* Return all the cards in the deck to standard order and
* then shuffle them into a random order.
*/

public void shuffle()
{

Random rand = new Random();
initialize();
for (int k = 0; k <= DECK_SIZE - 2; k++)
{

int index = rand.nextInt(DECK_SIZE - k) + k;
Card temp = deck[k];
deck[k] = deck[index];
deck[index] = temp;

}
}

/**
* Deal a card from the deck.
* If there are no more cards null is returned.
* @return the card or null if there are no more cards.
*/

public Card deal()
{

if (topCardIndex == DECK_SIZE) return null;
Card topCard = deck[topCardIndex];
topCardIndex++;

440 Array Data Types

return topCard;
}

/**
* Return the number of cards remaining in the deck.
* @return the number of cards remaining in the deck.
*/

public int cardsInDeck()
{

return DECK_SIZE - topCardIndex;
}

/**
* Return true if deck is empty, false otherwise.
* @return true if deck is empty, false otherwise.
*/

public boolean empty()
{

return topCardIndex == DECK_SIZE;
}

/**
* Return a string representation of the cards remaining in th e deck.
*/

public String toString()
{

StringBuilder b = new StringBuilder(215);
for (int k = topCardIndex; k < DECK_SIZE; k++)
{

Card card = deck[k];
b.append(card.getCardName());
if ((k+1) % 13 == 0)

b.append("\n");
else

b.append(" ");
}
return b.toString();

}
}

The toString method uses theStringBuilder class introduced in Section 7.10.2 to produce a
string representation of the cards remaining in the deck, 13cards per line.

Testing the class inBlueJ

Try steps such as the following to test the class inBlueJ.

1. Construct aCardDeck object.

2. From its object menu selectshuffle then use thetoString method to see the first few cards
of the deck (the newlines in the string are replaced by spacesin BlueJ).

8.10 Card shuffling and dealing application 441

3. From the object menu select thedeal method. From the “Method Result” window select the
object reference and use “Get” to put theCard object on the workbench.

4. Use theCard object’s methods to see the card’s properties.

5. From theCardDeck object menu select thecardsInDeck method to verify that there are
now 51 cards in the deck.

Testing the class inBeanShell

EXAMPLE 8.41 (Testing theCardDeck class) Try statements such as

bsh % addClassPath("c:/book-projects/chapter8/card_de ck");
bsh % CardDeck deck = new CardDeck();
bsh % deck.shuffle();
bsh % print(deck);
T-S 7-S A-S Q-D 5-C 9-H 7-C 5-D 6-C 4-H J-C 5-S T-H
9-D K-H J-S 4-D K-D 3-C 3-H K-S T-D 8-D Q-H A-C 3-S
J-D A-D 8-H 9-S 7-H 4-S 5-H 8-C 2-H K-C Q-S T-C 6-D
8-S 3-D 7-D J-H 6-H 6-S 4-C 2-S 2-C 9-C 2-D Q-C A-H

bsh % Card top = deck.deal();
bsh % print(top);
T-S
bsh % print(deck.cardsInDeck());
51

to test theCardDeck class usingBeanShell.

Testing the class from the command line

The following simple class can be used to test the class from the command line.

ClassCardDeckTester

book-projects/chapter8/card_deck

package chapter8.card_deck; // remove this line if you’re n ot using packages
/**

* A simple test class for CardDeck class
*/

public class CardDeckTester
{

public void run()
{

CardDeck deck = new CardDeck();
System.out.println("Initilized deck:");
System.out.println(deck);
System.out.println("Shuffled deck:");

442 Array Data Types

deck.shuffle();
System.out.println(deck);

// Deal a few cards

Card card;
card = deck.deal();
System.out.println("dealing " + card.getCardName());
card = deck.deal();
System.out.println("dealing " + card.getCardName());

int count = 0;
while (! deck.empty())
{

Card c = deck.deal();
count++;
System.out.print(c.getCardName());
if (count == 13)
{

System.out.println();
count = 0;

}
else
{

System.out.print(" ");
}

}
if (count != 0) System.out.println();

}

public static void main(String[] args)
{

new CardDeckTester().run();
}

}

A while-loop is used to deal the cards and display them as theyare dealt, 13 cards per line. Here is
some typical output.

Initilized deck:
A-C 2-C 3-C 4-C 5-C 6-C 7-C 8-C 9-C T-C J-C Q-C K-C
A-D 2-D 3-D 4-D 5-D 6-D 7-D 8-D 9-D T-D J-D Q-D K-D
A-H 2-H 3-H 4-H 5-H 6-H 7-H 8-H 9-H T-H J-H Q-H K-H
A-S 2-S 3-S 4-S 5-S 6-S 7-S 8-S 9-S T-S J-S Q-S K-S

Shuffled deck:
9-S 7-D J-S 4-S 3-S 8-H 7-S T-D 4-C 9-C Q-C 6-H 2-S
5-C 2-C 8-C J-C 3-H 6-C Q-D Q-H 8-S 5-H 8-D K-D 3-C
T-C Q-S T-S J-D A-S 9-H 4-D 4-H K-C T-H 2-H 9-D A-C
5-S 2-D J-H A-D 7-C K-H 5-D K-S 3-D 7-H 6-S A-H 6-D

dealing 9-S
dealing 7-D

8.11 Review exercises 443

J-S 4-S 3-S 8-H 7-S T-D 4-C 9-C Q-C 6-H 2-S 5-C 2-C
8-C J-C 3-H 6-C Q-D Q-H 8-S 5-H 8-D K-D 3-C T-C Q-S
T-S J-D A-S 9-H 4-D 4-H K-C T-H 2-H 9-D A-C 5-S 2-D
J-H A-D 7-C K-H 5-D K-S 3-D 7-H 6-S A-H 6-D

8.11 Review exercises

◮ Review Exercise 8.1Draw pictures of an array of threeBankAccount objects that shows the
three steps in the creation process.

◮ Review Exercise 8.2Draw a picture that shows that a 2-dimensional array is an array of rows.

◮ Review Exercise 8.3Write a pseudo-code algorithm that adds corresponding elements of the
given arrays〈a0, . . . ,an−1〉 and〈b0, . . . ,bn−1〉 to produce the array〈c0, . . . ,cn−1〉, using the addition
formulack = ak +bk.

◮ Review Exercise 8.4Write a pseudo-code algorithm calledmax that finds the maximum ele-
ment in anm×n rectangular array〈a00, . . . ,amn〉 of numbers.

8.12 BeanShell exercises

The followingBeanShell exercises can be done using the Workspace Editor. First runBeanShell,
then choose “Workspace Editor” from the “File” menu to open the editor. If you want to use
System.out.println then it is also necessary to choose “Capture System in/out/err” from the
“File” menu.

Now you can type statements into the editor and they won’t be executed as they are entered.
When you have finished entering statements choose “Evaluatein Workspace” from the “Evaluate”
menu. Now the statements will be executed. You can edit the statements and evaluate them again,
and so on.

This is useful for testing static methods. Type in the method, evaluate it then test it interactively
using the workspace.

◮ BeanShell Exercise 8.1Write some statements to calculate 20 to 215 in a for-loop and store
them in an array calledpowerOfTwo such that 2k is stored inpowerOfTwo[k] .

◮ BeanShell Exercise 8.2Write some statements to calculaten! for n= 0 ton = 12 in a for-loop
and store them in an array calledfact such thatn! is stored infact[n] .

◮ BeanShell Exercise 8.3Write some statements to create an array of 3BankAccount objects
and write a for-loop to compute the total of their balances.

◮ BeanShell Exercise 8.4Translate the algorithm in Review Exercise 8.3 to a method with pro-
totype

public double[] add(double[] a, double[] b)

444 Array Data Types

The method should construct the array for the sum and return areference to it. Test the method
usingBeanShell.

◮ BeanShell Exercise 8.5Write a Java method calledmax with prototype

public double max(double[][] a)

that finds the maximum element in anm×n rectangular array〈a00, . . . ,amn〉 of numbers. Test the
method usingBeanShell.

◮ BeanShell Exercise 8.6Do a more general version of themax method inBeanShell Exer-
cise 8.5 that does not assume that array is rectangular. In other words each row can have a different
number of elements. Recall that the number of rows in a 2-dimensional matrixa is a.length and
the number of elements in rowk is a[k].length .

◮ BeanShell Exercise 8.7Write a method with prototype

public boolean same(double[][] a)

that returns true if all the elements in the arraya are the same and false otherwise.

◮ BeanShell Exercise 8.8Write a method with prototype

public Polynomial add(Polynomial p1, Polynomial p2}

that adds twoPolynomial objects and returns the sum as aPolynomial object. (If polynomialp1

has degreemand polynomialp2 has degreen, then their sum has degrees= max(m,n))

8.13 Programming exercises

◮ Exercise 8.1 (Reversing the elements of an array)
Write a method with prototype

public void reverse(int[] a)

that reverses the elements of the arraya in place (without creating another array). Write a class to
test the method using theIntArrayIO class for input and output. Hint: swap elements from the
end with elements from the beginning in a for-loop.

◮ Exercise 8.2 (A student mark histogram)
Write a method with prototype

public int[] markHistogram(int[] marks)

wheremarks is an array of marks in the range 0 to 100. The method creates a new arrayh of
length 6 such thath0 is the number of marksmwith 0≤m< 50,h1 is the number of marksmwith
50≤m< 59,h2 is the number of marksm with 60≤m< 69, and so on untilh5 is the number of
marksm with 90≤ m≤ 100. This array is returned as the value of the method. Write aclass to
test the method by reading an array of marks and displaying the number of marks in each range.

8.13 Programming exercises 445

◮ Exercise 8.3 (Sorting bank accounts)
Write a program calledSortBankAccounts that

1. asks the user how many bank accounts will be entered,

2. reads the data for that many bank accounts and stores them in an array,

3. sorts the array in decreasing order by balance and displays the sorted array,

4. sorts the array in increasing lexicographical order according to the owner name and displays
the sorted array.

◮ Exercise 8.4 (Pascal’s triangle)
Write a program calledPascalTriangleMaker that reads an integer valuen with n≥ 0. computes
the binomial coefficients

(

n
k

)

= C(n,k) =
n!

k!(n−k)!
, n≥ 0, k = 0, . . .n,

the number ofk-element subsets of ann-element set, using the recurrence relation

C(n,k) = C(n−1,k)+C(n−1,k−1), with C(n,0) = 1, C(n,n) = 1,

which expresses a value in rown in terms of two neighboring values in the preceding rown−
1. Store the calculated coefficients in a two-dimensional ragged array: rown should haven+ 1
elements in it to storeC(n,0), C(n,1), . . . ,C(n.n). Display the array in the triangular form

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

How large cann be before integer overflow occurs?

◮ Exercise 8.5 (An isWinner method for tic-tac-toe)
We have represented a tic-tac-toe board by a two-dimensional array calledboard . Write a method
calledisWinner with prototype

public boolean isWinner(int player)

If the value ofplayer is 1, corresponding to X, the method should return true if this player has
won the game with three X’s in a row, or in a column, or in one of the two diagonals. Similarly, if
the value ofplayer is 2, corresponding to O, the method should return true if this player has won
the game.

Test your method by including it in a class calledTicTacToeTester that gets the 9 square
values, one row at a time, as command-line arguments and displays either that the player using X
has won, the player using Y has won, or the game is a draw (boardis full but there is no winner).
For example, here is the output for three program runs.

446 Array Data Types

java TicTacToeTester 2 2 1 2 1 0 1 0 0
Player using X is the winner
java TicTacToeTester 1 1 2 1 2 0 2 0 0
Player using O is the winner
java TicTacToeTester 2 2 1 1 1 2 2 1 2
The game is a draw

◮ Exercise 8.6 (A bar graph class)
Using theLineGraph class as a model write a similarBarGraph class for a graph of vertical
bars filled with random colors and outlined in black. The bar heights are stored in an arrayh =
〈h0,h1, . . . ,hn−1〉. In the world coordinate system the width of each bar is 1 unit, so the top left
corner of bari has coordinates(i,hi).

Write a runner class calledBarGraphRunner that uses command-line arguments to test the
BarGraph class. For the command

java BarGraphRunner 1 2 3 4 5 4 3 2 1

A typical output window is shown in Figure 5.20.

◮ Exercise 8.7 (Drawing a pentagon using arrays)
Rewrite theDrawPentagon program from Chapter 5 using arrays of points and for-loops.An array
for the five vertices of the pentagon can be declared using

private Point2D.Double[] v = new Point2D.Double[5];

◮ Exercise 8.8 (Drawing a pentagonal star)
Write a program calledPentagonalStar to draw a five pointed star, similar to the one shown in
Figure 8.11, as follows. Define the pentagonal angles and vertices of the inner pentagon by

αk =
π

180
(72k+54), vk = (r1cosαk, r1sinαk), k = 0, . . . ,4

Define the pentagonal star angles and vertices by

βk =
π

180
(72k+90), wk = (r2cosβk, r2sinβk), k = 0, . . . ,4

The two radii,r1 andr2, are connected by the formula

r1 =

(

sina
cosb

)

r2, wherea =
(π

180

)

18, andb =
(π

180

)

36

The radiusr2 is the radius of the circumscribed circle for the star, and the smaller radiusr1 is the
radius of the pentagon inside the star (formed from the 5 vertices of the star that are closest to the
center).

Choose an appropriate coordinate system and value forr2 and draw the pentagonal star as 10
lines between the following 10 pairs of vertices:

v0w0, w0v1, v1w1, w1v2, v2w2, w2v3, v3w3, w3v4, v4w4, w4v0

8.13 Programming exercises 447

Figure 8.11: Output of thePentagonalStar program

◮ Exercise 8.9 (Drawing a duck as an array of lines)
The following class

public class Duck
{

public static double minX = 0.0;
public static double maxX = 29.0;
public static double minY = 0.7;
public static double maxY = 17.0;

public static double[] x = {
0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.4, 17.0,

17.3, 17.8, 18.5, 20.0, 22.0, 24.0, 26.0, 28.0, 29.0, 28.8,
27.2, 25.0, 23.0, 21.5, 21.1, 21.5, 22.8, 24.1, 25.1, 25.2,
24.2, 22.1, 20.8, 18.0, 16.0, 14.0, 12.0, 10.0, 8.0, 6.1,

4.2, 3.0, 1.3, 0.0
};

public static double[] y = {
8.8, 7.6, 7.1, 7.4, 8.0, 8.9, 9.6, 9.9, 9.4, 9.7,

12.0, 14.0, 16.1, 17.0, 17.0, 16.0, 13.9, 13.1, 13.2, 12.3,
11.5, 11.5, 11.5, 11.2, 10.5, 9.0, 8.0, 7.0, 5.1, 3.6,

1.9, 1.1, 0.9, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 2.1,
2.9, 4.1, 6.0, 8.8

};
}

448 Array Data Types

defines a duck as a two arrays ofx andy coordinates. Write a class calledDrawDuck that draws the
duck using a transformed coordinate system. Draw the duck asa GeneralPath object, outline it
in black and fill it with green. The output window is shown in Figure 8.12

Figure 8.12: A duck using arrays of points

◮ Exercise 8.10 (Returning multiple values from a method)
If we want to find both the maximum and minimum values in an array of integers we could use the
findMinimum andfindMaximum methods in classIntArrayMaxMin . This is inefficient since both
values can be found using one for-loop. We would like to writea method calledfindMaxMin that
returns both values but a Java method can only return one value. To do this we invent a small class

public class IntRange
{

public int min;
public int max;

}

with two public data fields and no methods. Now thefindMaxMin method can be written with
prototype

public IntRange findMaxMin(int[] a)

so that it returns anIntRange object. The method can be called using a statement such as

IntRange r = findMaxMin(a);

Then the minimum and maximum values can be obtained asr.min andr.max since public data
fields can be accessed directly using the dot notation without the need for get methods. Write
this method and test it: you could put it inIntArrayMaxMin as astatic method and modify
MaxMinCalculator to test it.

8.13 Programming exercises 449

◮ Exercise 8.11 (Counting the number of times the maximum occurs)
Write a pseudo-code algorithm that takes an array〈a0, . . . ,an−1〉 as input and returns the number
of times the maximum array element occurs in the array. The obvious algorithm would use one
for-loop to find the maximum value followed by another for-loop to count how many times the
maximum occurs. Instead, write your algorithm using only a single for-loop, translate it into a
method with prototype

public int countMax(double[] a)

and write a tester class for it.

◮ Exercise 8.12Write a class calledPolynomialAdder that uses theadd method fromBeanShell
Exercise 8.8 to add two polynomials.

◮ Exercise 8.13Write a class that can produce monthly calendars of the form

July 2003
S M T W T F S

1 2 3 4 5
6 7 8 9 10 11 12

13 14 15 16 17 18 19
20 21 22 23 24 25 28
27 28 29 30 31

Internally store a calendar as a 2-dimensional array with 6 rows and 7 columns. Store 0’s in
positions that should be blank and store the day (1 to 31) in other positions. Use this array to print
the calendar. You can use theCalendarMonth class in Chapter 4 (page 133) to determine on which
day is the first of the month and how many days are in the month.

BlueJ andBeanShell Edition Copyright 2002, 2005, 2007, Barry G. Adams

450 Array Data Types

Chapter 9

Inheritance and Interfaces
Polymorphism for Classes and Interfaces

Outline

What is inheritance?

Rules for declaring subclasses

Simple examples of subclasses

Polymorphism

Abstract classes and polymorphism

The Object Class

Final classes

Interfaces

Multiple interfaces

Implementing the Shape interface

Turtle graphics class

Writing turtle graphics programs

Numerical applications of interfaces

451

452 Inheritance and Interfaces

9.1 Introduction

There are two hierarchies in object-oriented programming that help manage the complexity of large
software systems.

The first is the object hierarchy considered in Chapter 4, that uses aggregation (composition)
to construct more complex objects in terms of simpler ones, which in turn can be used to construct
even more complex objects, and so on.

The second is the class hierarchy defined by inheritance. With inheritance we can define a
subclass of a class (the superclass) that inherits all the functionality (methods) of the superclass.
Some of these methods can be retained, or they can be overridden by providing new versions in the
subclass, and new methods (functionality) can be added. This leads to a class inheritance hierarchy.
TheObject class is implicitly at the top of any inheritance hierarchy.

Java has only single-inheritance hierarchies for classes,which means that a subclass can inherit
from only one superclass, but there are special important kinds of classes called interfaces, which
we will also discuss, that permit a very useful form of multiple inheritance.

Abstract classes are also introduced. An abstract class declares one or more abstract methods
but not their implementations and possibly other methods that do have implementations. It is up
to the subclasses of an abstract class to provide implementations for the abstract methods. An
Employee class hierarchy will be used as an example.

The related and important concept of polymorphism is also introduced. This permits all objects
from classes in an inheritance hierarchy to be considered ofthe “same” type, which results in a
uniform processing of objects in the hierarchy, without regard to the particular subclasses the
objects really belong to, using the polymorphic methods of the class. The particular class that the
object belongs to is not determined until run-time.

A polymorphic method is a method appearing in each subclass in an inheritance hierarchy
with the same prototype. Each subclass can have its own version of this method. For an abstract
class any abstract method is polymorphic. As an example we show how methods in anEmployee
hierarchy can be used to process employee salaries polymorphically.

A more general and often more important form of polymorphismis also possible using inter-
faces. An interface is like a special kind of abstract class that declares only method prototypes
(no implementations). One can also have interface hierarchies where a subinterface inherits from
a superinterface.

An important example is theShape interface for defining geometrical shapes, drawing, and
filling them (see Chapter 5). We will show how to make our ownShape objects.

Any class that implements the methods of an interface is saidto implement the interface. Unlike
classes interfaces also permit a useful form of multiple inheritance since it is possible for a class to
implement several interfaces.

The difference compared to an inheritance hierarchy is thatthe set of classes that implement
a particular interface do not need to be related in any other way. In particular they do not need to
form a class inheritance hierarchy. Nevertheless, like classes in an inheritance hierarchy, they can
be considered to be of the “same type”, namely the interface type. This leads to a more general
form of polymorphism within this set of classes that implement the interface.

9.2 What is inheritance? 453

9.2 What is inheritance?

Inheritance defines a relationship between two classes. One is called thesuperclassand the other
is called thesubclass. Sometimes the superclass is called the parent class and thesubclass is
called the child class. This relationship sets up an inheritance hierarchy since a superclass can be
a subclass of another class and so on until a class at the top ofthe hierarchy is reached that is the
superclass of all lower classes. We say that the subclass inherits from the superclass. In Java the
specialObject class is at the top of all inheritance hierarchies. It is the ultimate superclass of all
Java classes in the sense that an object from any class is a kind of Object .

We also express the superclass-subclass relationship in Java by saying that one class (the sub-
class)extendsthe other class (the superclass). We have already seen examples of inheritance since
our classes in Chapter 5 all extend theJPanel class. Most of the complex functionality of display-
ing a window containing our graphics output was provided byJPanel and its superclasses and we
did not need to understand how it works.

The importance of the inheritance hierarchy in the management of complex software is that
each subclass can be constructed incrementally from its immediate superclass. This promotes code
reuse since a subclass only specifies how its objects differ from those of the parent class. Thus,
we take a given class and extend it to provide some additionalfunctionality which can be specified
in the subclass in three basic ways: (1) declare new data fields, (2) declare new methods, and
(3) provide new versions of existing superclass methods (called overriding a superclass method).
Of course all the public methods of the superclass that were not overridden in the subclass are
automatically available in the subclass.

EXAMPLE 9.1 (Domestic animal hierarchy) We are familiar with many hierarchies such
as family trees and classification systems in biology. Let usconsider the part of the animal
kingdom that contains domestic animals. At the top of this hierarchy we have a class called
DomesticAnimal which specifies features common to all domestic animals. There are many sub-
classes. Two important ones are theDog andCat classes. These three classes are called abstract
classes since they do not describe real animals. There are noDomesticAnimal , Dog, or Cat ob-
jects, only dogs or cats of particular breeds such asTerrier or Persian . Dogs and cats in each
subclass have features which distinguish them from dogs andcats in other subclasses. For exam-
ple, Cheshire cats are always grinning and they can make themselves invisible, unlike cats in other
classes. A part of theDomesticAnimal hierarchy is shown in Figure 9.1 as a tree diagram.

EXAMPLE 9.2 (Bank account inheritance hierarchy) TheBankAccount class used in Chap-
ter 9 has instance data fields for an account number, owner name, and balance. Suppose we want
to consider bank accounts that have a joint owner. We can extend theBankAccount class to ob-
tain a subclass calledJointBankAccount . This class provides a new instance data field for the
joint owner and a new method calledgetJointName to return the joint owner name. Also, the
toString method needs to be overridden to include the new data field. All other methods from the
BankAccount class, such aswithdraw anddeposit , are automatically available in the subclass
and do not need to be overridden. Extending the existing class is a lot easier than writing a com-
pletely new class from scratch that has considerable overlap with the existingBankAccount class.
The bank account hierarchy diagram is shown in Figure 9.2 which uses a more compact way to

454 Inheritance and Interfaces

Terrier Bulldog Persian Cheshire

Dog Cat

DomesticAnimal

�
�

@
@

�
�

@
@

�
�

@
@

Figure 9.1: Part of the domestic animal inheritance hierarchy

Object

BankAccount

JointBankAccount

Figure 9.2: Bank account inheritance hierarchy

represent tree diagrams than Figure 9.1. The diagram shows thatJointBankAccount is a subclass
of BankAccount which is a subclass ofObject . Since theObject class is always at the top of any
hierarchy we won’t normally show it on inheritance diagrams.

EXAMPLE 9.3 (Employee inheritance hierarchy) We can classify the various kinds of em-
ployees in a company using inheritance. At the top of the hierarchy is a class calledEmployee that
represents everything common to all employees, such as name, employee number, and the date
the employee was hired. This class is called thebase class. In this example it is also a generic
or abstract class. To obtain real employee classes we need tomake subclasses for each kind of
employee. For example, different kinds of real employees can be distinguished by the method for
calculating their monthly salary: aManager object has a fixed monthly salary and deductions, an
HourlyWorker has hours worked, an hourly rate and deductions, aPartTimeWorker is the same
but with no deductions, and aCommissionWorker has a fixed monthly salary and deductions, plus
a commission that is a certain percentage of monthly sales. One way to design the class hierarchy
is shown in Figure 9.3.

9.2.1 The “is-a” and “has-a” relationships

The aggregation and class inheritance hierarchies can be used to define two relationships between
objects.

Inheritance is often called the “is-a” or “is-a-type-of” relationship. For example, in the bank
account hierarchy aJointBankAccount object is a kind ofBankAccount object. In the employee
hierarchy aManager object is a kind ofEmployee object. In theDomesticAnimal hierarchy a
Terrier is a kind ofDog and aDog is a kind ofDomesticAnimal .

9.3 Rules for declaring subclasses 455

Employee

Manager

HourlyWorker

PartTimeWorker

CommissionWorker

Figure 9.3: Employee inheritance hierarchy

public class SubclassNameextends ClassName
{

declarations for new data fields, if any

Constructor declarations (they are never inherited)

Method declarations for new methods, if any

Method declarations for overridden methods, if any

}

Figure 9.4: A template for a simple Java subclass declaration.

Aggregation is often called the “has-a” relationship. For example, in theCircle class from
Chapter 4, page 122, which was used to illustrate aggregation, we say that aCircle object “has a”
Point object, namely the center of the circle.

Deciding which of the two hierarchies to use in a given situation can be determined by stating
relationships between classes and objects in terms of the “is-a” and ”has-a” relationships. For
example, it does not make sense to say that aCircle object “is a ”Point object.

9.3 Rules for declaring subclasses

In Java the keywordextends is used to denote the subclass relationship. To indicate that a class
with nameSubclassNameis a subclass ofClassNamewe use a class declaration whose template
is shown in Figure 9.4. The first line is like a normal class declaration except for the keyword
extends which is followed by the name of the class to be extended (the superclass). As men-
tioned above, the subclass declaration only specifies how the subclass differs from the superclass
according to the following basic rules (you can refer back tothese rules as you read the Chapter):

456 Inheritance and Interfaces

1. A data field of the superclass is automatically a data field of a subclass. It is an error to
declare it again in a subclass. Direct access to superclass data fields by a subclass follows
the rules

(a) A public data field can be directly accessed by any class, subclass or not.

(b) A private data field can never be directly accessed by any other class.

(c) A protected data field can be directly accessed by a subclass but not by anyclass
outside the hierarchy. Protected means public for subclasses and private for other
classes.

2. A subclass may declare new data fields.

3. Superclass constructors are never inherited so a subclass must provide its own constructors.
In doing so, a subclass constructor may call a superclass constructor, as its first statement,
using the syntaxsuper(actualArgList) to construct the superclass part of an object.

4. A subclass may declare new methods.

5. A subclass may declare a new version of any public or protected superclass method to pro-
vide additional or new functionality not provided by the superclass method. This is called
method overriding. In doing so, a subclass method can call the superclass version of the
method using the syntax

super. methodName(actualArgList).

6. Public or protected superclass methods that are not overridden by the subclass are automati-
cally available to the subclass and are never declared againin the subclass.

9.4 Simple examples of subclasses

We now consider some simple examples to illustrate the rules.

9.4.1 Graphics programs

The simple graphics classes in Chapter 5 use inheritance. Recall that each graphics class had the
structure

public class MyGraphicsClass extends JPanel
{

public void paintComponent(Graphics g)
{

super.paintComponent(g)
Graphics2D g2D = (Graphics2D) g;
// additional statements to draw on the panel

}

9.4 Simple examples of subclasses 457

Component

Container

JComponent

JPanel

MyGraphicsClass

Figure 9.5: Part of the GUI component hierarchy

// other methods
}

Here we are extending a class calledJPanel which is part of the class hierarchy shown in Fig-
ure 9.5. Our class, indicated byMyGraphicsClass , is shown at the bottom of the hierarchy. The
reason that our graphics classes were fairly small is that most of the work of supporting the com-
plex graphical user interface is done by classes higher up inthe hierarchy. All we do is extend
JPanel and override itspaintComponent method and use

super.paintComponent(g)

at the beginning of our method to let the superclass do its share of the work. In some of our graphics
classes we also used thegetWidth andgetHeight methods to return the width and height of the
drawing panel in pixels. If you look in theJPanel class documentation you won’t find these
methods. However, you will find them higher up the hierarchy in theJComponent class so they
are automatically inherited by our class. This is the power of inheritance. The GUI component
hierarchy will be considered in more detail in Chapter 10.

9.4.2 Extending a circle calculator class

Consider the following version of theCircleCalculator class from Chapter 3, page 63.

ClassCircleCalculatorA

book-project/chapter9/geometry

package chapter9.geometry;
/**

* A simple class whose objects know how to calculate
* the area of a circle given its radius.
*/

public class CircleCalculatorA
{

protected double radius;
private double area;

458 Inheritance and Interfaces

/**
* Construct a circle.
* @param r the radius of the circle
*/

public CircleCalculatorA(double r)
{

radius = r;
area = Math.PI * radius * radius;

}

/**
* @return the radius of the circle
*/

public double getRadius()
{

return radius;
}

/**
* @return the area of the circle
*/

public double getArea()
{

return area;
}

}

This class computes only the area of the circle. Theradius data field declaration, which was
private , is nowprotected so that subclasses can access it directly.

Suppose we also want to compute the circumference of the circle. Using inheritance we can
create a subclass calledCircleCalculatorB that extendsCircleCalculatorA and also calcu-
lates the circumference. A constructor for this subclass will call the superclass constructor to
compute the area, and then it will do its part and calculate the circumference. A new data field for
the circumference and a corresponding inquiry method are needed.

ClassCircleCalculatorB

book-project/chapter9/geometry

package chapter9.geometry;
/**

* A class whose objects know how to calculate
* the area and circumference of a circle given its radius.
*/

public class CircleCalculatorB extends CircleCalculator A
{

private double circumference; // new instance data field

/**
* Construct a circle
* @param r the radius of the circle

9.4 Simple examples of subclasses 459

*/
public CircleCalculatorB(double r)
{

super(r);
circumference = 2.0 * Math.PI * radius;

}

/**
* @return the circumference of the circle
*/

public double getCircumference()
{

return circumference;
}

}

The important statement in the constructor is

super(r);

which calls the superclass constructor for the argumentr . The effect is to construct the superclass
part of aCircleCalculatorB object. This constructor call must be the first statement in the
constructor. If the first statement in the constructor is nota super statement the default statement

super();

is automatically inserted by the compiler. In our case the default statement is not appropriate since
our superclass constructor has one argument, the radius of the circle.

In the superclass we could have left theradius data field private but then the subclass could
not use it directly in the formula for the circumference: thestatement

circumference = 2.0 * Math.PI * radius;

would now be illegal since it tries to access a private data field of another class. However the
subclass could still calculate the circumference but the statement

circumference = 2.0 * Math.PI * getRadius();

would be required.
In the subclass we did not include thegetRadius() andgetArea() methods: all public and

protected methods of a superclass are automatically available in all subclasses.
The following class can be used to test the two classes.

ClassCircleCalculatorTester

book-project/chapter9/geometry

package chapter9.geometry;
public class CircleCalculatorTester
{

public void doTest()

460 Inheritance and Interfaces

Figure 9.6: Inheritance in BlueJ is indicated by a solid arrow

{
CircleCalculatorB circle = new CircleCalculatorB(3.0);
double radius = circle.getRadius();
double area = circle.getArea();
double circ = circle.getCircumference();
System.out.println("Radius: " + radius);
System.out.println("Area: " + area);
System.out.println("Circumference: " + circ);

}

public static void main(String[] args)
{

new CircleCalculatorTester().doTest();
}

}

BlueJ project for the circle calculator classes

In BlueJ the inheritance relationship is indicated by a solid arrow from the subclass to the parent
class as shown in Figure 9.6 for the classesCircleCalculatorA andCircleCalculatorB .

The object menu for aCircleCalculatorA object is shown in Figure 9.7(a) and the object
menu for aCircleCalculatorB object is shown in Figure 9.6(b) as a two level menu. The first
level shows the new method that has been added byCircleCalculatorB and the second level
shows the two methods that have been inherited fromCircleCalculatorA .

9.4.3 Extending theBankAccount class

We now want to make a subclass of theBankAccount class from Chapter 6, page 284 which is
repeated here:

9.4 Simple examples of subclasses 461

(a) (b)

Figure 9.7: (a)CircleCalculatorA object menu, (b)CircleCalculatorB object menu

ClassBankAccount

book-project/chapter9/bank_account

package chapter9.bank_account;
/**

* A bank account object encapsulates the account number, own er name, and
* current balance of a bank account.
* This version checks for illegal method and constructor arg uments.
*/

public class BankAccount
{

private int number;
private String name;
private double balance;

/**
* Construct a bank account with given account number,
* owner name and initial balance.
* @param accountNumber the account number
* @param ownerName the account owner name
* @param initialBalance the initial account balance
* @throws IllegalArgumentException if account number is ne gative,
* owner name is null or empty, or if balance is negative.
*/

public BankAccount(int accountNumber, String ownerName, double initialBalance)
{

if (accountNumber <= 0)
throw new IllegalArgumentException("Account number must be positive");

if (ownerName.equals("") || ownerName == null)
throw new IllegalArgumentException("Owner name not defin ed");

if (initialBalance < 0)
throw new IllegalArgumentException("Balance must be non- negative");

number = accountNumber;
name = ownerName;
balance = initialBalance;

}

/**
* Deposit money in the account.
* @param amount the deposit amount. If amount <= 0 the

462 Inheritance and Interfaces

* account balance is unchanged.
* @throws IllegalArgumentException if deposit amount is ne gative
*/

public void deposit(double amount)
{

if (amount < 0)
throw new IllegalArgumentException("Invalid amount for d eposit");

balance = balance + amount;
}

/**
* Withdraw money from the account.
* If account would be overdrawn the account balance is unchan ged.
* @param amount the amount to withdraw.
* @throws IllegalArgumentException if withdraw amount is i nvalid
*/

public void withdraw(double amount)
{

if (amount < 0 || amount > balance)
throw new IllegalArgumentException("Invalid amount for w ithdraw");

balance = balance - amount;
}

/**
* Return the account number.
* @return the account number.
*/

public int getNumber()
{

return number;
}

/**
* Return the owner name.
* @return the owner name.
*/

public String getName()
{

return name;
}

/**
* Return the account balance.
* @return the account balance.
*/

public double getBalance()
{

return balance;
}

/**
* string representation of this account.

9.4 Simple examples of subclasses 463

* @return string representation of this account.
*/

public String toString()
{

return "BankAccount[" + number + ", " + name + ", " + balance + "] ";
}

}

The new class will be calledJointBankAccount . It will have a new data field for the name of
the joint owner.

Most of theBankAccount methods can be used unchanged in the subclass. The only one we
need to override istoString since the subclass version needs to display the new data fieldfor the
joint owner. We need one new method,getJointName , to return the name of the joint owner. The
class will have the structure

public class JointBankAccount extends BankAccount
{

// new data field for joint owner name goes here
// constructors go here
// new getJointName method goes here
// overridden version of toString goes here.

}

For the new data field we can use the declaration

private String jointName;

The three data fields in theBankAccount class are private so they cannot be directly modified by
our subclass. However, they can be accessed using the inquiry methods.

Constructors are never inherited so we need to include a constructor that has four arguments,
one for each of the four fields. It has the form

public JointBankAccount(int accountNumber, String owner Name,
String jointOwnerName, double initialBalance)

{
// initialize the four data fields here

}

We seem to run into a problem here. We would like to use the assignment statements

this.number = accountNumber;
this.name = ownerName;
this.jointName = jointOwnerName;
this.balance = initialBalance;

in the body of the constructor but the three fields declared inthe superclass are private, since they
are managed entirely by the superclass. The way around this is to usesuper to call the superclass
constructor and let it initialize the superclass part of aJointBankAccount object. This gives the
constructor declaration

464 Inheritance and Interfaces

public JointBankAccount(int accountNumber, String owner Name,
String jointOwnerName, double initialBalance)

{
super(accountNumber, ownerName, initialBalance); // sup erclass part
this.jointName = jointOwnerName; // subclass part

}

The super statement is a call to the superclass constructor to initialize the superclass part (data
fields) of a subclass object. Thus, there is no need for the subclass to directly access or change
these data fields.

The overriddentoString method can also usesuper.toString() to call the superclass ver-
sion so that it can return its part of the string representation. Then the string expression

"JointBankAccount[" + super.toString() + ", " + jointName + "]";

can be used to provide a string representation of a subclass object. Here is the complete subclass
declaration:

ClassJointBankAccount

book-project/chapter9/bank_account

package chapter9.bank_account;
/**

* A type of BankAccount that includes a joint owner in additio n to
* the owner provided by BankAccount
*/

public class JointBankAccount extends BankAccount
{

private String jointName;

/**
* Construct a joint bank account with given account number,
* owner name, joint owner name and initial balance.
* @param accountNumber the account number
* @param ownerName the account owner name
* @param jointOwnerName the account joint owner
* @param initialBalance the initial account balance
* @throws IllegalArgumentException if account number is ne gative,
* owner or joint owner name is null or empty, or if balance is ne gative.
*/

public JointBankAccount(int accountNumber, String owner Name, String jointOwnerName,
double initialBalance)

{
super(accountNumber, ownerName, initialBalance);

if (jointOwnerName.equals("") || jointOwnerName == null)
throw new IllegalArgumentException("Joint owner name not defined");

jointName = jointOwnerName;
}

9.4 Simple examples of subclasses 465

Figure 9.8: Bank account inheritance project

/**
* Return the joint owner name.
* @return the joint owner name.
*/

public String getJointName()
{

return jointName;
}

/**
* string representation of this account.
* @return string representation of this account.
*/

public String toString()
{

return "JointBankAccount[" + super.toString() + ", " + join tName + "]";
}

}

BlueJ project for the bank account classes

To test the two bank account classes they can be placed in aBlueJ project calledbankaccount as
shown in Figure 9.8. The solid arrow indicates that theJointBankAccount class is a subclass of
theBankAccount class.

In Figure 9.9 the object menu for each of the two classes is shown. TheJointBankAccount ob-
ject menu at the top level shows only the newgetJointName method and the overriddentoString
method and the second-level menu shows the methods inherited from theBankAccount class and
indicates thattoString was overridden by theJointBankAccount class.

466 Inheritance and Interfaces

(a) (b)

Figure 9.9: (a)BankAccount object menu, (b)JointBankAccount object menu showing the in-
herited methods from theBankAccount class.

9.5 Polymorphism

We can now introduce polymorphism, one of the most importantbenefits of inheritance. There
are two concepts: polymorphic types and polymorphic methods (the word polymorphism means
“many forms”).

9.5.1 Polymorphic types

A polymorphic type is a hierarchy of classes defined by inheritance (later we will see that interfaces
can also be used to define a polymorphic type). Each class is a subclass of the classes higher up
in the hierarchy. Even though the various subclasses are different from each other we can think of
them all as being of a similar type, namely the type of their top level superclass. SinceObject is
at the top of any hierarchy this means that every object is a type ofObject .

This is sometimes called the “is a”, “is a kind of”, or the “is atype of” relationship. We will see
that an important benefit of inheritance is that a superclassobject reference can hold a reference to
an object of any of its subclasses.

Polymorphic types in theBankAccount hierarchy

Consider the following statements:

BankAccount fred = new BankAccount(123, "Fred", 345.50);
JointBankAccount fredMary = new JointBankAccount(345, "F red", "Mary", 450.65);
BankAccount ellenFrank = new JointBankAccount(456, "Elle n", "Frank", 3450.99);

The first two statements construct aBankAccount object and aJointBankAccount object and
declare references to them. However, on the right side of thethird statement aJointBankAccount
object is created and its reference is then assigned toellenFrank , which is aBankAccount ref-
erence (superclass reference). This permits us to treat theellenFrank object as though it were a
BankAccount object. The converse is not true and the following statementgives a compiler error:

JointBankAccount fred = new BankAccount(123, "Fred", 345. 50);

9.5 Polymorphism 467

Thus, we cannot assign a superclass reference to a subclass reference. This is understandable since
we cannot say that a bank account object “is a” joint bank account object: it does not contain a
joint owner name field.

To use the superclassgetName method and the subclassgetJointName method forfredMary
it is only necessary to write statements such as

String owner = fredMary.getName();
String jointOwner = fredMary.getJointName();

This follows sincefredMary is declared as aJointBankAccount reference and thegetName
method is inherited from the superclass. However if we do thesame withellenFrank , namely

String owner = ellenFrank.getName();
String jointOwner = ellenFrank.getJointName();

the first statement is fine but the compiler complains for the second statement that there is no
getJointName method in theBankAccount class, which is true.

TheellenFrank object is being considered as aBankAccount object and has forgotten that it
is really aJointBankAccount object. This is a form ofobject amnesia: when an object reference
is assigned to a superclass reference the object forgets that it really belongs to the subclass. To
overcome the object amnesia it is only necessary to write

String jointOwner = ((JointBankAccount) ellenFrank).get JointName();

which uses a typecast. The extra parentheses are necessary here to indicate that the typecast should
be applied to theellenFrank object.

The following simple class illustrates the above ideas and can be used both inside and outside
theBlueJ environment.

ClassAccountTester

book-project/chapter9/bank_account

package chapter9.bank_account;
import custom_classes.BankAccount;
import custom_classes.JointBankAccount;

/**
* A simple class to illustrate typecasting
* in the BankAccount hierarchy
*/

public class AccountTester
{

public void doTest()
{

JointBankAccount fredMary = new JointBankAccount(123, "F red", "Mary", 1000);
BankAccount ellenFrank = new JointBankAccount(345, "Elle n", "Frank", 1000);

String jointName1 = fredMary.getJointName();
String jointName2 = ((JointBankAccount) ellenFrank).get JointName();

468 Inheritance and Interfaces

System.out.println("Joint name 1 is " + jointName1);
System.out.println("Joint name 2 is " + jointName2);

}

public static void main(String[] args)
{

new AccountTester().doTest();
}

}

Here we construct twoJointBankAccount objects but the second is assigned to aBankAccount
reference so it forgets that it is really aJointBankAccount object.

Examples of polymorphism

EXAMPLE 9.4 (Object class polymorphism) The statements

Object p = new Point(3,4);
Object c = new Circle((Point) p, 5);

show that aPoint object “is a type of”Object and aCircle object “is a type of”Object . Both
objects have forgotten their actual types so the statements

System.out.println("x coordinate of p is " + p.getX());
System.out.println("Center of c is " + c.getCenter());

give compiler errors since theObject class does not have these methods. The statements

System.out.println("x coordinate of p is " + ((Point) p).ge tX());
System.out.println("Center of c is " + ((Circle) c).getCen ter());

that use a typecast are necessary to remindp that it is aPoint andc that it is aCircle .

EXAMPLE 9.5 (Graphics and Graphics2D)
In thepaintComponent method (see Chapter 5) the statement

Graphics2D g2D = (Graphics2D) g;

illustrates how a subclass reference can be extracted from asuperclass reference. TheGraphics
class is an abstract class for basic graphics methods. Concrete subclasses are available for graphics
output devices such as the screen or a printer. When Java 2D was introduced this class was extended
to the abstract classGraphics2D which, as we have seen in Chapter 5, provides more graphics
functionality. When the system calls thepaintComponent method, whose argument is an objectg
from a subclass ofGraphics , it actually provides a reference to a subclass instance ofGraphics2D
which implements all the abstract methods. Therefore theGraphics referenceg can be typecast to
aGraphics2D referenceg2D which can be used in thepaintComponent method to access the new
Java 2D graphics methods. The original graphics methods canstill be accessed usingg instead of
g2D.

9.5 Polymorphism 469

9.5.2 Polymorphic methods

Another form of polymorphism is the ability of an instance method in a class hierarchy to have
many different forms, one for each subclass in the hierarchy. Such methods are calledpolymorphic
methodsand are made possible because we can override superclass methods in subclasses.

Do not confuse method overriding with method overloading, which has nothing to do with
polymorphism. Method overloading simply refers to the concept that several methods in the same
class can have the same name as long as they have distinguishable argument lists (signatures). In
method overriding the methods have the same name and the sameargument list but they are in
different subclasses.

We will see that objects from the subclasses in an inheritance hierarchy that has polymorphic
methods can be processed with these methods in a uniform manner, without regard to the particular
subclass of the object, and the particular version of the method.

EXAMPLE 9.6 (Point2D superclass) In graphics programs we used statements such as

Point2D.Double bottomRight = new Point2D.Double(300.0, 2 00.0);

SincePoint2D.Double is a subclass of thePoint2D class we can shorten this statement to

Point2D bottomRight = new Point2D.Double(300.0, 200.0);

which just usesPoint2D on the left side of the assignment. The same applies to the graphics
classes such asLine2D andEllipse2D .

A polymorphic bank account transfer method

Suppose we are processing bank transactions that transfer money from one account to another. We
can write a transfer method to do this. Without inheritance we would need four separate methods
with the prototypes

public void transfer(BankAccount from, BankAccount to, do uble amount)
public void transfer(BankAccount from, JointBankAccount to, double amount)
public void transfer(JointBankAccount from, BankAccount to, double amount)
public void transfer(JointBankAccount from, JointBankAc count to, double amount)

that specify the source account (from), the destination account (to) and how much to transfer
(amount), since there are four possibilities for the type of account. Since aJointBankAccount is
also aBankAccount object we need only one method

public void transfer(BankAccount from, BankAccount to, do uble amount)
{

from.withdraw(amount);
to.deposit(amount);

}

This is made possible by polymorphism. Because thewithdraw anddeposit methods are poly-
morphic within the bank account hierarchy, and because thetransfer method arguments are
declared to be of the base class type, we need only one form of the method.

470 Inheritance and Interfaces

For example, iffrom is a JointBankAccount object then the Java interpreter executes the
statement

from.withdraw(amount);

by first looking for awithdraw method in theJointBankAccount class. The method is not found
so the interpreter goes up the hierarchy one level to theBankAccount class, finds the method there,
and executes it.

The polymorphic toString method

In the bank account hierarchy, each class has its owntoString method: so this method has three
forms, one in theObject class, one in theBankAccount class, and one in theJointBankAccount
class. ThereforetoString is apolymorphic method. The following simple class illustrates this
idea.

ClassAccountTester2

book-project/chapter9/bank_account

package chapter9.bank_account;
import custom_classes.BankAccount;
import custom_classes.JointBankAccount;

/**
* A simple class to illustrate the polymorphic toString
* method in the BankAccount hierarchy
*/

public class AccountTester2
{

public void doTest()
{

BankAccount fred = new BankAccount(456, "Fred", 500);
JointBankAccount fredMary = new JointBankAccount(123, "F red", "Mary", 1000);
BankAccount ellenFrank = new JointBankAccount(345, "Elle n", "Frank", 1000);

System.out.println(fred);
System.out.println(fredMary);
System.out.println(ellenFrank);

}

public static void main(String[] args)
{

new AccountTester2().doTest();
}

}

The output is

BankAccount[456, Fred, 500.0]
JointBankAccount[BankAccount[123, Fred, 1000.0], Mary]
JointBankAccount[BankAccount[345, Ellen, 1000.0], Fran k]

9.6 Abstract classes and polymorphism 471

Even though the third account is assigned to the superclassBankAccount reference the run-time
system knows that the account is really aJointBankAccount so theprintln method calls the
toString method in this class.

Compile-time and run-time types

It is important to understand the difference between thecompile-time typeand therun-time type
of an object. The compile-time type is the type given explicitly in the class. This may or may not
also be the run-time type which is the actual type obtained using new and known to the run-time
system (Java Virtual Machine).

For example in the aboveAccountTester2 classfred hasBankAccount as both its compile-
time and run-time type. Similarly,fredMary hasJointBankAccount as its compile-time and
run-time type. However,ellenFrank has compile-time typeBankAccount but run-time type
JointBankAccount . Whenprintln is executed at run-time it is always the run-time type that
is used.

9.6 Abstract classes and polymorphism

We now introduce the concept of anabstract classand illustrate it with a simple employee inher-
itance hierarchy. An abstract class is a class that declaresat least one method without providing a
method body, i.e., no implementation is defined, only the method prototype. Each such method is
called anabstract method. The class is specified using theabstract keyword.

When you specify an abstract method you are forcing each non-abstract subclass to provide an
implementation (method body) for it having exactly the specified prototype. Thus, each abstract
method is polymorphic.

9.6.1 An employee inheritance hierarchy

We now develop Java classes for the employee hierarchy givenin Example 9.3 and Figure 9.3. The
five classes can be described as follows:

Employee An abstract class that encapsulates the name of the employee. It has two abstract
methods:grossSalary calculates and returns the gross monthly salary, andnetSalary
calculates and returns the net monthly salary (salary afterdeductions). It also has agetName
method to return the name and atoString method. It will have a constructor with the
prototype

public Employee(String name)

Manager An employee with a gross monthly salary from which 10% is deducted to get the net
monthly salary. It will implement thegrossSalary and netSalary methods, provide a
toString method, and have a constructor with the prototype

public Manager(String name, double salary)

472 Inheritance and Interfaces

HourlyWorker An employee whose gross monthly salary is determined by the number of hours
worked and the hourly wage. From this gross amount 5% is deducted to get the net monthly
salary. It will implement thegrossSalary andnetSalary methods, provide atoString
method, and have a constructor with the prototype

public HourlyWorker(String name, double hoursWorked, dou ble hourlyRate)

PartTimeWorker An employee like an hourly worker but with no deductions to get the net
monthly salary. It will implement thegrossSalary and netSalary methods, provide a
toString method, and have a constructor with the prototype

public PartTimeWorker(String name, double hoursWorked, d ouble hourlyRate)

CommissionWorker An employee who receives a base monthly salary like a managerbut a sales
bonus is added to get the gross monthly salary. The bonus is a specified percentage of
monthly sales. Thus, the gross monthly salary is

(base salary) + (monthly sales) * (commission rate in percen t / 100.0).

From this 10% is deducted to get the net monthly salary. It will implement thegrossSalary
andnetSalary methods, provide atoString method, and have a constructor with the pro-
totype

public CommissionWorker(String name, double baseSalary,
double monthlySales, double commissionRate)

9.6.2 Employee and Manager classes

We give declarations for the first two classes here and the remaining three classes are left as an
exercise (see Exercise 9.3).

ClassEmployee

book-project/chapter9/employee

package chapter9.employee;
/**

* An abstract class representing an employee.
* The abstract grossSalary and netSalary methods are polymo rphic.
*/

abstract public class Employee
{

private String name;

/** Construct the name part of an employee.
* @param name the name part of an employee
*/

public Employee(String name)
{

9.6 Abstract classes and polymorphism 473

this.name = name;
}

/** Return the employee name.
* @return the employee name
*/

public String getName()
{

return name;
}

/** Return the gross salary of an employee.
* @return gross salary of an employee
*/

abstract public double grossSalary();

/** Return the net salary of an employee.
* @return net salary of an employee
*/

abstract public double netSalary();
}

Since this is an abstract class we cannot construct anEmployee object so you may wonder why
we have declared a constructor in the class. The reason is so that subclasses can usesuper to call
the superclassEmployee constructor to initialize the private data field for the employee name (see
Manager class below).

Non-abstract subclasses ofEmployee must implement the two abstract methods. ForManager
we have the class declaration

ClassManager

book-project/chapter9/employee

package chapter9.employee;
/**

* A class for employees that are managers.
* The abstract grossSalary and netSalary methods are implem ented
* and the toString method is overridden.
*/

public class Manager extends Employee
{

private double gross; // gross monthly salary
private double net; // net monthly salary

/** Construct a manager object with given name and salary
* @param name the name of the manager
* @param salary the gross salary of a manager
*/

public Manager(String name, double salary)
{

super(name); // superclass is responsible for name
gross = salary;

474 Inheritance and Interfaces

net = 0.9 * gross;
}

/** Return the gross salary of a manager.
* @return the gross salary of a manager
*/

public double grossSalary()
{

return gross;
}

/** Return the net salary of a manager.
* @return the net salary of a manager
*/

public double netSalary()
{

return net;
}

/** Return the string representation of a manager.
* @return the string representation of a manager
*/

public String toString()
{

return "Manager[" + "name = " + getName() +
", gross = " + grossSalary() + ", net = " + netSalary() + "]";

}
}

9.6.3 Polymorphism in theEmployee hierarchy

There are three polymorphic methods in theEmployee hierarchy:grossSalary , netSalary , and
toString . Each of the four subclasses ofEmployee has its own version of these methods. We
can illustrate polymorphism by writing a class that stores some objects in an array ofEmployee
references and uses a loop to compute the total gross monthlysalary of all employees, the total net
monthly salary of all employees, and the total deductions. Here is a tester class containing amain
method.

ClassEmployeeProcessor

book-project/chapter9/employee

package chapter9.employee;
/**

* Illustrate polymorphism in the Employee hierarchy.
*/

public class EmployeeProcessor
{

private Employee[] staff;
private double totalGrossSalary;
private double totalBenefits;

9.6 Abstract classes and polymorphism 475

private double totalNetSalary;

/** Process an array of 5 employees and compute totals
* for gross salary, net salary, and benefits.
*/

public void doTest()
{

staff = new Employee[5];
staff[0] = new Manager("Fred", 800);
staff[1] = new Manager("Ellen", 700);
staff[2] = new HourlyWorker("John", 37, 13.50);
staff[3] = new PartTimeWorker("Gord", 35, 12.75);
staff[4] = new CommissionWorker("Mary", 400, 15000, 3.5);

/* Compute the total gross salary, net salary and benefits fo r all
employees without knowing the kinds of employees when we wri te
the class.

*/
totalGrossSalary = 0.0;
totalNetSalary = 0.0;
for (int i = 0; i < staff.length; i++)
{

totalGrossSalary = totalGrossSalary + staff[i].grossSal ary();
totalNetSalary = totalNetSalary + staff[i].netSalary();
System.out.println(staff[i]);

}
totalBenefits = totalGrossSalary - totalNetSalary;
System.out.println("Total gross salary: " + totalGrossSa lary);
System.out.println("Total benefits: " + totalBenefits);
System.out.println("Total net salary: " + totalNetSalary);

}

public static void main(String[] args)
{

new EmployeeProcessor().doTest();
}

}

The constructor first creates an array calledstaff of 5 references to base classEmployee ob-
jects. They can refer to objects of any subclass so the next step is to construct five subclass objects
and assign their references to the array elements. Finally,a simple loop, using the polymorphic
grossSalary , netSalary andtoString methods, displays the employee information and com-
putes the total gross and net salaries of all employees. Thisis possible because these two methods
were declared abstract in theEmployee class so all the non-abstract subclasses are guaranteed to
have implementations of them. Here is the output.

Manager[name = Fred, gross = 800.0, net = 720.0]
Manager[name = Ellen, gross = 700.0, net = 630.0]
HourlyWorker[name = John, gross = 499.5, net = 474.525]
PartTimeWorker[name = Gord, gross = 446.25, net = 446.25]
CommissionWorker[name = Mary, gross = 925.0, net = 832.5]

476 Inheritance and Interfaces

Total gross salary: 3370.75
Total benefits: 267.4749999999999
Total net salary: 3103.275

There are two important ideas here. The first is that it is not necessary to know anything about
the kind of employee being processed with each loop iteration when the class is written. The
system determines at run-time which kind of object is being used so the appropriate version of
each polymorphic method is selected. The second is that if new kinds of employees are added to
the hierarchy it is not necessary to make any modifications tothe polymorphic loop that calculates
the total gross and net salaries.

9.7 TheObject class

TheObject class is the ultimate parent of any Java class: an object of any Java class “is a type of”
Object . This class declares several useful methods that are automatically inherited by any class.
Here is a partial specification of theObject class

public class Object
{

public Object() {...}
public String toString() {...}
public boolean equals(Object obj) {...}
protected Object clone() {...}
Class <? extends Object> getClass() {...}
int hashCode() {...}
// several other methods

}

We have already used thetoString method and will discuss the others as needed.

9.7.1 Overriding Object class methods

Since theObject class is a superclass of all classes, any public or protectedmethods that it contains
are automatically available to any class or can be overridden.

Overriding the toString method

For example, if we do not include atoString method in our classes we can still use it, since
ultimately theObject class version will be called. This explains the output in Examples 4.15, 4.16,
and 4.17 from Chapter 4. Without atoString method thedoTest method inEmployeeProcessor
would produce the output

Manager@310d42
Manager@5d87b2
HourlyWorker@77d134
PartTimeWorker@47e553

9.7 TheObject class 477

CommissionWorker@20c10f
Total gross salary: 3370.75
Total benefits: 267.4749999999999
Total net salary: 3103.275

The strings produced are not very useful however; just the name of the class and a hexadecimal
number. This is understandable since theObject class method does not know much about the
Employee andManager classes and other classes in the hierarchy. Therefore most classes override
toString to provide a more meaningful string representation of an object.

Overriding the equals method

Similarly, theequals method provided in theObject class is not very useful since it just compares
two references rather than the objects referenced. TheObject class has no idea what kind of
objects you are using and what your definition of equality is,so subclasses normally override it.
For example, theString class in packagejava.lang has its own version ofequals which we
have used many times to compare two strings lexicographically.

To illustrate theequals method we can use thePoint class from Chapter 4, page 119. Let us
add anequals method to this class that compares two points using the definition that twoPoint
objects are equal if both theirx andy-coordinates are equal.

To test theequals method the newPoint class has the structure

public class Point
{

double x, y;
public Point(double x, double y) { this.x = x; this.y = y; }
public Point() { x = 0.0; y = 0.0; }
public double getX() { return x; }
public double getY() { return y; }
public String toString() { return "Point[" + x + ", " + y + "]"; }

public boolean equals(Object obj) { ... }
}

This class and the followingPointEqualsTester class are in a package calledchapter9.equals .

ClassPointEqualsTester

book-project/chapter9/equals

package chapter9.equals;
/**

* A tester class for equals method in Point class
*/

public class PointEqualsTester
{

public void doTest()
{

478 Inheritance and Interfaces

Point p = new Point(3,4);
Point q = new Point(3,4);
Point r = new Point(3,5);
if (p.equals(q))

System.out.println("p and q are equal");
else

System.out.println("p and q are not equal");

if (q.equals(r))
System.out.println("q and r are equal");

else
System.out.println("q and r are not equal");

}

public static void main(String[] args)
{

new PointEqualsTester().test();
}

}

First compile thePoint andPointTester classes without anequals method. This forces the
Object version to be used. The output from the tester class is

p and q are not equal
q and r are not equal

which simply tells us that the three referencesp, q, andr are different. This is not very useful. We
would like to havep.equals(q) return true to indicate that, even though the referencesp andq
are different, the two objects are equal. Here are two versions of theequals method.

The first is

public boolean equals(Point p)
{

if (obj instanceof Point)
{

Point p = (Point) obj;
return (x == p.x && y == p.y);

}
return super.equals(obj);

}

which uses theinstanceof operator to check ifobj has the correct type. Otherwise the type cast
would throw aClassCastException .

The second is

public boolean equals(Object obj)
{

if (obj == null) return false;
if (! this.getClass().equals(obj.getClass())) return fa lse;
Point p = (Point) obj;
return (x == p.x && y == p.y);

}

9.8 Final classes 479

where we use thegetClass method in theObject class to test if two objects have the same class.
In our case the if statement compares the class ofthis object with the class ofobj . If they are not
the same thenfalse is returned. Then the statement with the typecast will be executed only ifobj
really is aPoint object. A value oftrue will be returned only if thex andy coordinates of the
two points are the same.

With either version ofequals the output of the tester class is

p and q are equal
q and r are not equal

which shows that the point objects are being compared, not their references.
The version usinginstanceof is the correct one if the class is declared to be final (see below).

Otherwise the version usinggetClass should be used.

9.8 Final classes

A final class is one that cannot be extended so it can have no subclasses. Thefinal keyword is
used to indicate that a class is final. For example

public final MyFinalClass
{

// ...
}

is a final class so it would be a compiler error to try to write a class such as

public final MySubClass extends MyFinalClass
{

// ...
}

Final classes are usually more efficient. Also you gain more control over a class if its final since no
one can override the methods in a final class. Many of the standard classes are final for efficiency
and security. For example theString class is used everywhere and is declared to be final so it is
impossible to override thelength method and provide an incorrect value.

9.9 Interfaces

An interface is a kind of purely abstract class. It can contain only methodprototypes and constants.
No implementation of any of the methods can be provided. It isdeclared like a class using the
keywordinterface instead of the keywordclass :

public interface MyInterface
{

// method prototypes go here, if any
}

480 Inheritance and Interfaces

Unlike abstract classes, interfaces cannot declare constructors since there are no objects to con-
struct. Since all methods in an interface are abstract theabstract keyword is not needed. Also,
every method in an interface must be public so thepublic keyword is also redundant but often
included.

To make use of an interface we need to provide classes that “implement the interface”. Such
classes must provide complete declarations (implementations) for all the methods declared by the
interface. IfMyClass is a class that implements an interface calledMyInterface then the syntax
of this class declaration is

public class MyClass implements MyInterface
{

// data fields
// constructors
// methods not related to interface, if any
// Implementations of the interface methods

}

Here the keywordimplements is used instead ofextends.
The important idea here is that we can say that an object ofMyClass “is of type” MyInterface .

This is possible since we can declare interface references and assign to them references to any
object of any class that implements the interface. For example supposeMyClass1 andMyClass2
are classes that implementMyInterface . Then with the declarations

MyInterface myObject1 = new MyClass1(...);
MyInterface myObject2 = new MyClass2(...);

myObject1 “is a type of”MyInterface and so ismyObject2 . This means that polymorphism also
applies to interfaces in the sense that the classes that implement an interface form a polymorphic
type and the interface methods are polymorphic.

However, interfaces can be more flexible and general than class inheritance hierarchies since
the classes that implement an interface do not need to be related in any other way. In particular,
they do not have to belong to any class inheritance hierarchy.

It is also possible to have interface inheritance hierarchies. For example, we can extend
MyInterface to obtain a subinterface calledMySubinterface using

public interface MySubinterface extends MyInterface
{

// optionally the MyInterface prototypes can be included he re
// new method prototypes are included here

}

If a class wants to implementMySubinterface it must implement all the methods inMyInterface
as well as the new ones inMySubinterface . The method prototypes inMyInterface can also be
repeated inMyInterface .

Multiple inheritance is allowed for interfaces in the sensethat a class can implement several
interfaces but extend only one class. Therefore the generalstructure of a class declaration that
extends another class and implements several interfaces is

9.9 Interfaces 481

public class MyClass extends MySuperclass
implements MyInterface1, MyInterface2, ..., MyInterface N

{
// MyClass data fields
// MyClass constructors
// MyClass methods not related to the interfaces, if any
// Implementations of all interface methods

}

which indicates thatMyClass extendsMySuperclass and implementsN interfaces. Two interfaces
can have a method with the same name and argument types. Of course any class that implements
both interfaces can only provide one implementation of the common method. If this implemen-
tation does not make sense for both interfaces then it is not possible to implement both interfaces
with one class.

EXAMPLE 9.7 (Measurable interface) The interface

public interface Measurable
{

public double area();
public double perimeter();

}

declares two abstract methods calledarea andperimeter that are supposed to represent the area
and perimeter of a two-dimensional geometric object. Notice that the method prototypes are ter-
minated by a semi-colon to indicate that there is no implementation. This example illustrates that
an interface is a design specification. It specifies what it means for an object to be “measurable”:
it means that the area and perimeter of the object can be calculated.

EXAMPLE 9.8 (Scalable interface) The interface

public interface Scalable
{

public void scale(double s);
}

declares one abstract method calledscale that is supposed to scale a two-dimensional geometric
object by the factors in both directions. An object of any class that implements this interface is
said to be aScalable object.

EXAMPLE 9.9 (Extending theScalable interface) The interface

public interface Scalable2D extends Scalable
{

public void scale(double sx, double sy);
}

482 Inheritance and Interfaces

extends theScalable interface by providing the prototype for a more generalscale method that
can scale using different factors in each direction. This sets up an interface inheritance hierar-
chy. A class that implements theScalable2D interface must implement both versions of the
scale method. Objects of this class areScalable2D objects and through inheritance they are also
Scalable objects.

9.9.1 Implementing theMeasurable interface

Let us illustrate interface polymorphism by writing geometric Circle andRectangle classes that
implement theMeasurable interface in Example 9.7. A common error is to omit the ‘implements ’
clause on the class declaration. The class will still compile but its objects will not be measurable.

A measurable circle class

The following simpleCircle class (see Chapter 4, page 122 for a related class that uses aPoint
object for the circle center) implements theMeasurable interface by providing implementations
of thearea andperimeter interfaces.

ClassCircle

book-project/chapter9/interfaces

package chapter9.interfaces;
/**

* A class for measurable circles
*/

public class Circle implements Measurable
{

private double x, y; // coordinates of center
private double radius;

public Circle()
{

this(0,0,1);
}

public Circle(double xc, double yc, double r)
{

x = xc;
y = yc;
radius = r;

}

public double getX()
{

return x;
}

public double getY()

9.9 Interfaces 483

{
return y;

}

public double getRadius()
{

return radius;
}

public String toString()
{

return "Circle[x = " + x + ", y = " + y + ", radius = " + radius + "]";
}

// Implement the Measurable interface

public double area()
{

return Math.PI * radius * radius;
}

public double perimeter()
{

return 2.0 * Math.PI * radius;
}

}

If c is aCircle object we can say thatc “is of type” Measurable , orc is aMeasurable object.
In this case we could define a circlec1 using

Circle c1 = new Circle(0.0, 0.0, 1.0);

or we could define a circlec2 using

Measurable c2 = new Circle(0.0, 0.0, 1.0);

We use this statement in situations where we are only interested in the interface methods: withc1
we have access to all the methods of theCircle class, including those in the interface, but withc2
we have access, without a typecast, to only thearea andperimeter methods. For example, the
last of the statements

double a1 = c1.area();
double r1 = c1.getRadius();
double a2 = c2.area();
double r2 = c2.getRadius();

gives an error sincec2 , as aMeasurable object, has forgotten that it is also aCircle object (object
amnesia again). To fix this we need to typecast:

double r2 = ((Circle)c2).getRadius();

to remindc2 that it is also aCircle object.

484 Inheritance and Interfaces

A measurable rectangle class

The following simpleRectangle class implements theMeasurable interface since it provides
implementations of thearea andperimeter interfaces.

ClassRectangle

book-project/chapter9/interfaces

package chapter9.interfaces;
/**

* A class for measurable rectangles
*/

public class Rectangle implements Measurable
{

private double x, y; // coordinates of lower left corner
private double width, height; // width and height of rectang le

public Rectangle()
{

this(0,0,1,1);
}

public Rectangle(double x, double y, double w, double h)
{

this.x = x;
this.y = y;
width = w;
height = h;

}

public double getX()
{

return x;
}

public double getY()
{

return y;
}

public double getWidth()
{

return width;
}

public double getHeight()
{

return height;
}

public String toString()

9.9 Interfaces 485

{
return "Rectangle[x = " + x + ", y = " + y +

", width = " + width + ", height = " + height + "]";
}

// Implement the Measurable interface here

public double area()
{

return width * height;
}

public double perimeter()
{

return 2.0 * (width + height);
}

}

Polymorphism with the Measurable interface

The following class shows how to use a polymorphic loop to compute the total area and perimeter
of some measurable objects.

ClassMeasurableTester

book-project/chapter9/interfaces

package chapter9.interfaces;
/**

* Illustrating polymorphism with the Measurable interface
*/

public class MeasurableTester
{

private Measurable[] a = new Measurable[3];

public void test()
{

a[0] = new Circle(0,0,1);
a[1] = new Circle(1,1,2);
a[2] = new Rectangle(5,5,20,10);

double areaSum = 0.0;
double perimeterSum = 0.0;
for (int k = 0; k < a.length; k++)
{

areaSum = areaSum + a[k].area();
perimeterSum = perimeterSum + a[k].perimeter();
System.out.println(a[k]);
System.out.println("Perimeter = " + a[k].perimeter()

+ ", Area = " + a[k].area());
}
System.out.println("Total area is " + areaSum);

486 Inheritance and Interfaces

System.out.println("Total perimeter is " + perimeterSum) ;
}

public static void main(String[] args)
{

new MeasurableTester().test();
}

}

The program declares an array of typeMeasurable and then assigns references toCircle and
Rectangle objects to the array elements. The area and perimeter of these objects can then be
calculated in a polymorphic loop since anyMeasurable object hasperimeter andarea methods.
It is important thata is an array ofMeasurable type. The program output is

Circle[x = 0.0, y = 0.0, radius = 1.0]
Perimeter = 6.283185307179586, Area = 3.141592653589793
Circle[x = 1.0, y = 1.0, radius = 2.0]
Perimeter = 12.566370614359172, Area = 12.56637061435917 2
Rectangle[x = 5.0, y = 5.0, width = 20.0, height = 10.0]
Perimeter = 60.0, Area = 200.0
Total area is 215.70796326794897
Total perimeter is 78.84955592153875

9.9.2 Polymorphism with theShape interface

The graphics hierarchy shown in Chapter 5, Figure 5.6, is a hierarchy in which classes such as
Line2D andRectangle2D implement theShape interface. Therefore we can say that aLine2D
object “is of type”Shape . The Shape interface simply specifies the methods that a class must
implement in order to be called aShape . Also, theRectangularShape class is an example of
an abstract class that implements theShape interface. Its purpose is to provide a base class for
the classes that are specified using bounding rectangular boxes in their description. These are the
Rectangle2D , RoundRectangle2D , Ellipse2D , andArc2D classes. The polymorphicdraw and
fill methods in theGraphics2D class have prototypes

public void draw(Shape s);
public void fill(Shape s);

so they can take as an argument an object of any class, such asRectangle2D , that implements
the Shape interface. Without theShape polymorphism we would need separate draw and fill
commands for each kind of shape: e.g.,drawLine , drawRect , drawEllipse , and so on.

We can illustrate polymorphism in the set of classes implementing theShape interface.Shape
is an interface in packagejava.awt that declares 10 rather complicated methods that are needed
to draw and fill shapes. Classes such asLine2D.Double andRectangle2D.Double implement
this interface so each object from one of these classes is a type of Shape . Previously we defined
graphics objects using declarations such as

Line2D.Double line = new Line2D.Double(0.0,0.0,200.0,15 0.0);
Rectangle2D.Double rect = new Rectangle2D.Double(10.0,1 0.0,100.0,150.0);

9.9 Interfaces 487

Sinceline andrect are each a type ofShape , instead of these declarations we could have used

Shape line = new Line2D.Double(0.0,0.0,200.0,150.0);
Shape rect = new Rectangle2D.Double(10.0,10.0,100.0,150 .0);

Doing it this way permits a polymorphic processing of graphical objects using thedraw andfill
methods.

If we have an array of typeShape and assign various objects to it from classes that implement
the Shape interface then we can write a single polymorphic loop to process all the objects using
draw andfill . For example, let us declare an array ofShape references:

Shape[] shape = new Shape[5];

This is legal: even though there is no such thing as aShape object we can declare an array of
references to objects from classes that implement theShape interface. Therefore, we can use
statements such as

shape[0] = new Line2D.Double(0.0,0.0,200.0,150.0);

since aLine2D.Double object is a type ofShape . We can now draw all the shapes in one poly-
morphic loop such as

for (int k = 0; k < shape.length; k++)
{

g2D.draw(shape[k]);
}

without knowing the particular kinds of shape. Without polymorphism we would have to use a
giant if statement inside the loop (if the object is of type T1draw it this way, else if it is of type T2
draw it that way, else, ...). Here is a simple graphics program to illustrate this uniform processing
of geometrical objects.

ClassShapeTester

book-project/chapter9/shapetest

package chapter9.shapetest;
import custom_classes.GraphicsFrame;
/**

* Illustrating polymorphism within the Shape hierarchy.
*/

import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

public class ShapeTester extends JPanel
{

Shape[] shape = new Shape[5]; // array to hold Shape objects

public ShapeTester()

488 Inheritance and Interfaces

{
shape[0] = new Line2D.Double(0.0,0.0,200.0,150.0);
shape[1] = new Rectangle2D.Double(10.0,10.0,100.0,50.0);
shape[2] = new RoundRectangle2D.Double(120.0,20.0,60.0 ,30.0,40.0,40.0);
shape[3] = new Ellipse2D.Double(30.0,70.0,50.0,50.0);
shape[4] = new Ellipse2D.Double(130.0,100.0,50.0,25.0) ;

}

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;

// following statements resize the graphics when the frame i s resized

double xMax = getWidth() - 1;
double yMax = getHeight() - 1;
AffineTransform at = new AffineTransform();
at.translate(xMax / 2, yMax / 2);
at.scale(xMax / 200, yMax / 150);
at.translate(-100,-75);
g2D.transform(at);

for (int k = 0; k < shape.length; k++)
{

g2D.setPaint(Color.pink);
g2D.fill(shape[k]);
g2D.setPaint(Color.black);
g2D.draw(shape[k]);

}
}

public void draw()
{

new GraphicsFrame("Some shapes", this, 201, 151);
}

public static void main(String[] args)
{

new ShapeTester().draw();
}

}

The output is shown in Figure 9.10.

9.10 Multiple interfaces

It is possible for a class to implement more than one interface. As an example we consider three
interfaces that define methods useful in working with two-dimensional geometrical objects.

9.10 Multiple interfaces 489

Figure 9.10: Output ofShapeTester class

9.10.1 Interface specifications

The first is theMeasurable interface. It declares prototypes for methods that calculate the area
and perimeter of a geometrical object. The interface declaration is

Interface Measurable

book-project/chapter9/multiple_ interfaces

package chapter9.multiple_interfaces;
/**

* An interface for geometric objects that have
* an area and perimeter
*/

public interface Measurable
{

public double area();
public double perimeter();

}

Similarly, we declare aTranslatable interface which declares the prototype for a method that
translates an object by a given distance in thex andy directions. The interface declaration is

Interface Translatable

book-project/chapter9/multiple_ interfaces

package chapter9.multiple_interfaces;
/**

* An interface for geometric objects that can
* be translated in a given direction
*/

public interface Translatable
{

public void translate(double dx, double dy);
}

Finally we define aScalable interface which declares the prototype for a method that scales
an object by a given amount (zoom factor) in both directions.The interface declaration is

490 Inheritance and Interfaces

Interface Scalable

book-project/chapter9/multiple_ interfaces

package chapter9.multiple_interfaces;
/**

* An interface for geometric objects that can
* be scaled (made larger or smaller)
*/

public interface Scalable
{

public void scale(double s);
}

9.10.2 Classes that implement the interfaces

We can now design classes of geometrical objects that implement one or more of these interfaces.
As an example we modify ourCircle and Rectangle classes from Section 9.9.1 so that they
implement all three interfaces as follows

ClassCircle

book-project/chapter9/multiple_ interfaces

package chapter9.multiple_interfaces;
/**

* A class that implements multiple interfaces
*/

public class Circle implements Measurable, Translatable, Scalable
{

private double x, y; // coordinates of center
private double radius;

public Circle(double xc, double yc, double r)
{

x = xc;
y = yc;
radius = r;

}

// implementations of getX, getY, getRadius, toString go he re

// Implement the three interfaces

public double area()
{

return Math.PI * radius * radius;
}

public double perimeter()
{

return 2.0 * Math.PI * radius;

9.10 Multiple interfaces 491

}

public void translate(double dx, double dy)
{

x = x + dx;
y = y + dy;

}

public void scale(double s)
{

radius = radius * s;
}

}

ClassRectangle

book-project/chapter9/multiple_ interfaces

package chapter9.multiple_interfaces;
/**

* A class that implements multiple interfaces
*/

public class Rectangle implements Measurable, Translatab le, Scalable
{

private double x, y; // coordinates of lower left corner
private double width, height; // width and height of rectang le

public Rectangle(double x, double y, double w, double h)
{

this.x = x;
this.y = y;
width = w;
height = h;

}

// implementations of getX, getY, getWidth, getHeight, toS tring go here

// Implement the interfaces

public double area()
{

return width * height;
}

public double perimeter()
{

return 2.0 * (width + height);
}

public void translate(double dx, double dy)
{

x = x + dx;
y = y + dy;

492 Inheritance and Interfaces

}

public void scale(double s)
{

width = width * s;
height = height * s;

}
}

9.10.3 Typecasts with multiple interfaces

Suppose we want to do multiple polymorphism: process objects using methods of more than one
interface. We can use theMeasurable , Translatable , andScalable interfaces as an exam-
ple. The programMeasurableTester processedCircle andRectangle objects using only the
Measurable interface, so we declared an array

private Measurable[] a = new Measurable[3];

and used a single loop to calculate the area and perimeter of the objects. Similarly, if we just
wanted to scale the objects we could declare an array

private Scalable[] a = new Scalable[3];

Suppose that we want to both scale and translate objects in a single loop. We cannot declare a
Scalable array since it would be an error to applytranslate to a Scalable object and con-
versely we cannot declare aTranslatable array since it would be an error to applyscale to a
Translatable object.

Another solution is to use an array of typeObject :

private Object[] a = new Object[3];

and assignCircle andRectangle object references to it. Then we can write one loop to process
these objects. The only problem is that theCircle andRectangle objects suffer amnesia when
they are assigned to theObject array. Therefore, when we want to applytranslate to an object
we must remind the object, using a typecast, that it isTranslatable . Similarly, when we want
to applyscale we must use a typecast toScalable . Here is a short program that illustrates this
multiple polymorphism:

ClassMultipleInterfaceTester

book-project/chapter9/multiple_ interfaces

package chapter9.multiple_interfaces;
/**

* Illustrate multiple polymorphism of interfaces
*/

public class MultipleInterfaceTester
{

private Object[] a = new Object[3];

9.11 Implementing theShape interface 493

public void test()
{

a[0] = new Circle(0,0,1);
a[1] = new Circle(1,1,2);
a[2] = new Rectangle(5,5,20,10);

for (int k = 0; k < a.length; k++)
{

((Translatable) a[k]).translate(1,1);
((Scalable) a[k]).scale(2);
System.out.println(a[k]);

}
}

public static void main(String[] args)
{

new MultipleInterfaceTester().test();
}

}

In the first statement in the loopa[k] is typecast using

(Translatable) a[k]

to make aTranslatable object. Now we can apply thetranslate method to this object using

((Translatable) a[k]).translate(1,1);

The extra set of parentheses are necessary since “dot” has a higher precedence than the typecast.
Similarly, a[k] is typecast toScalable so that thescale method can be applied. The output is

Circle[x = 1.0, y = 1.0, radius = 2.0]
Circle[x = 2.0, y = 2.0, radius = 4.0]
Rectangle[x = 6.0, y = 6.0, width = 40.0, height = 20.0]

9.11 Implementing theShape interface

In Chapter 5 we used several classes such asRectangle2D andEllipse2D that we could draw and
fill using the polymorphicdraw and fill methods that acceptShape arguments. We now show
how to create our own classes that implement theShape interface.

9.11.1 Shape interface methods

If you look at the Java documentation you will see that theShape interface declares the following
10 methods:

public boolean contains(Point2D p);
public boolean contains(Rectangle2D r);

494 Inheritance and Interfaces

public boolean contains(double x, double y);
public boolean contains(double x, double y, double w, doubl e h);
public Rectangle getBounds();
public Rectangle2D getBounds2D();
public PathIterator getPathIterator(AffineTransform at);
public PathIterator getPathIterator(AffineTransform at , double flatness);
public boolean intersects(Rectangle2D r);
public boolean intersects(double x, double y, double w, dou ble h);

You probably have no idea what many of these methods mean, letalone how to implement them.
The good news is that you don’t have to know. Since theGeneralPath class implements them
we can design our own custom graphics classes that can be usedas arguments todraw andfill .
There are two ways to do this: using an adapter class that implementsShape or implementing the
Shape interface directly.

9.11.2 Extending aShapeAdapter class which implementsShape

Consider the following adapter class.

ClassShapeAdapter

book-project/chapter9/shapes

package chapter9.shapes;
import java.awt.*;
import java.awt.geom.*;

/**
* Extend this class to implement the Shape interface for
* defining geometrical objects.
*/

public class ShapeAdapter implements Shape
{

/** The path used to define the Shape */
protected GeneralPath path;

/** Construct an empty path */
public ShapeAdapter()
{

path = new GeneralPath();
}

/*
implementation of the Shape interface using the
implementation provided by GeneralPath.

*/

public boolean contains(Point2D p)
{ return path.contains(p); }
public boolean contains(Rectangle2D r)

9.11 Implementing theShape interface 495

{ return path.contains(r); }
public boolean contains(double x, double y)
{ return path.contains(x,y); }
public boolean contains(double x, double y, double w, doubl e h)
{ return path.contains(x,y,w,h); }
public java.awt.Rectangle getBounds()
{ return path.getBounds(); }
public Rectangle2D getBounds2D()
{ return path.getBounds2D(); }
public PathIterator getPathIterator(AffineTransform at)
{ return path.getPathIterator(at); }
public PathIterator getPathIterator(AffineTransform at , double flatness)
{ return path.getPathIterator(at, flatness); }
public boolean intersects(Rectangle2D r)
{ return path.intersects(r); }
public boolean intersects(double x, double y, double w, dou ble h)
{ return path.intersects(x,y,w,h); }

}

This is an example of an adapter class since it adapts aGeneralPath object by hiding its com-
plexity and provides a simple representation of a specific geometric object such as a triangle or a
polygon. Each method is implemented by simply returning what path ’s version of each method
produces.

Now if we have a graphics class such asMyGraphicsShape for drawing some geometric object
we can write this class in the form

public class MyGraphicsShape extends ShapeAdapter
{

// data fields, if any
// constructors using the inherited path object to define th e path
// methods, if any

}

SinceShapeAdapter implements theShape interface ourMyGraphicsShape class will automati-
cally implement it too.

Now we can use statements such a

Shape s = new MyGraphicsShape(....);
...
g2D.draw(s);

to construct and draw an object of our class.

9.11.3 Triangle2D class that usesShapeAdapter

As an example consider the followingTriangle2D class that extendsShapeAdapter and therefore
implements theShape interface.

496 Inheritance and Interfaces

ClassTriangle2D

book-project/chapter9/shapes

package chapter9.shapes;
import java.awt.geom.*;

/**
* A Triangle2D object is represented as 3 Point objects for
* the vertices and a path that can be used to draw or fill it.
* This version of the class also implements the Shape interfa ce
* by extending the ShapeAdapter class
*/

public class Triangle2D extends ShapeAdapter
{

private Point2D.Double v1, v2, v3; // the triangle vertices

/** Construct default triangle with vertices (0,0), (1,0), (0.5,1)
*/
public Triangle2D()
{

this(new Point2D.Double(0,0), new Point2D.Double(1,0),
new Point2D.Double(0.5,1));

}

/**
* Construct triangle with specified vertices.
* @param x1 x coordinate of vertex 1
* @param y1 y coordinate of vertex 1
* @param x2 x coordinate of vertex 2
* @param y2 y coordinate of vertex 2
* @param x3 x coordinate of vertex 3
* @param y3 y coordinate of vertex 3
*/

public Triangle2D(double x1, double y1, double x2, double y 2, double x3,
double y3)

{
this(new Point2D.Double(x1,y1), new Point2D.Double(x2, y2),

new Point2D.Double(x3,y3));
}

/**
* Construct triangle with specified points as vertices.
* @param p1 First vertex
* @param p2 Second vertex
* @param p3 Third vertex
*/

public Triangle2D(Point2D.Double p1, Point2D.Double p2, Point2D.Double p3)
{

v1 = (Point2D.Double) p1.clone();
v2 = (Point2D.Double) p2.clone();
v3 = (Point2D.Double) p3.clone();
path.moveTo((float) v1.x, (float) v1.y); // path inherite d from ShapeAdapter

9.11 Implementing theShape interface 497

path.lineTo((float) v2.x, (float) v2.y);
path.lineTo((float) v3.x, (float) v3.y);
path.closePath();

}
}

Here we have used theclone method in thePoint2D.Double class to make copies of the points
specified by the formal arguments so that eachTriangle2D object will have its own copies of
these points as instance data fields.

We can use this class in the followingRandomTriangles class that draws some random trian-
gles.

ClassRandomTriangles

book-project/chapter9/shapes

package chapter9.shapes;
import custom_classes.GraphicsFrame;
import java.awt.*;
import javax.swing.*;

/**
* Use the Triangle2D class to draw some random triangles.
* In this version a Triangle2D object is a Shape.
*/

public class RandomTriangles extends JPanel
{

private int numTriangles;

/**
* Construct object.
* @param n the number of triangles to draw
*/

public RandomTriangles(int n)
{

setNumTriangles(n);
setBackground(Color.white); // set panel background colo r

}

public void setNumTriangles(int n)
{

numTriangles = n;
}

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;
g2D.setRenderingHint(RenderingHints.KEY_ANTIALIASIN G,

RenderingHints.VALUE_ANTIALIAS_ON);

double w = getWidth(); // panel width in pixels

498 Inheritance and Interfaces

double h = getHeight(); // panel height in pixels

for (int k = 1; k <= numTriangles; k++)
{

// Generate random triangle that fits inside the panel

Triangle2D t = new Triangle2D(
w*Math.random(), h*Math.random(),
w*Math.random(), h*Math.random(),
w*Math.random(), h*Math.random());

// RGB values are in the range 0 to 255

Color c = new Color((int) (256*Math.random()),
(int) (256*Math.random()), (int) (256*Math.random()));

// Fill triangle with random color and outline it in black

g2D.setPaint(c);
g2D.fill(t); // t is now a Shape
g2D.setPaint(Color.black);
g2D.draw(t);

}
}

/** draw some random triangles.
*/

public void draw()
{

new GraphicsFrame("Random Triangles",
new RandomTriangles(numTriangles), 301, 201);

}

public static void main(String[] args)
{

int n;
if (args.length == 1)

n = Integer.parseInt(args[0]);
else

n = 10;
RandomTriangles tri = new RandomTriangles(n);
tri.draw();

}
}

Note that we do not useTriangle2D.Double (we are not providing bothFloat and Double
versions).

9.11.4 ImplementingShape directly

Since a class can only extend one other class we run into a problem if MyGraphicsShape is already
extending some class. In this case we can implement theShape interface directly. For example,

9.12 Turtle graphics class 499

public class MyGraphicsClass extends AnotherClass implem ents Shape
{

GeneralPath path;
// other data fields
// constructors and methods not in Shape interface
// implementation of the 10 shape methods go here using path

}

9.12 Turtle graphics class

As a final example of implementing theShape interface usingShapeAdapter we consider a turtle
model for producing line drawings known as “turtle graphics” which originated as part of the Logo
computer language.

We think of a turtle moving on a page. The turtle has a pen underneath which can be either up
or down. If the pen is down then a line is drawn on the page as theturtle moves. This drawing
model is similar to the one used by a pen plotter.

9.12.1 Specification of the class

The turtle can execute the following operations and motionsthat will correspond to instance meth-
ods in aTurtle2D class:

• There is ahomeoperation that puts the turtle in a default “home” position which we choose
to be the origin(0,0) with the turtle pointing north. When a turtle is constructedit is placed
in the home position. We will make(0,0) correspond to the center of the drawing panel.

• It can moveforward along a line a specified distance in the direction it is pointing. This
direction is called the turtle heading.

• It can back up (movebackward) by a specified distance along the line in the opposite direc-
tion from which it is pointing without changing its heading.

• It can rotateleft in place through a specified angle to change its heading. Thiscorresponds
to a counterclockwise rotation if the angle is positive.

• It can rotateright in place through a specified angle to change its heading. Thiscorresponds
to a clockwise rotation if the angle is positive.

• It can retract the pen so that nothing is drawn by theforwardandbackwardcommands.

• It can put its pen down so that drawing takes place.

TheTurtle2D class will use aGeneralPath objectpath , provided byShapeAdapter , to construct
the turtle’s path. The class specification is

500 Inheritance and Interfaces

public class Turtle2D extends ShapeAdapter
{

// data fields go here

// Construct turtle given an approximate bounding rectangl e.
// The home position is at the center of this rectangle.
public Turtle2D(double xTopLeft, double yTopLeft,

double width, double height) {...}

// move the turtle home
public void home() {...}

// rotate turtle by given angle counterclockwise
public void left(double angle) {...}

// rotate turtle by given angle clockwise
public void right(double angle) {...}

// move turtle forward a given distance
public void forward(double distance) {...}

// move turtle backward a given distance
public void backward(double distance) {...}

// move the pen up
public void penUp() {...}

// move the pen down
public void penDown() {...}

}

9.12.2 Implementation of the class

As data fields we need the turtle’s position(x,y), the turtle’s heading angle, and a boolean variable
penUp that is true if the pen is in the up position and false otherwise. We also need variables to
describe the bounding rectangle of the path produced by the turtle.

private double x, y;
private double heading; // in degrees
private boolean penUp;
private double xTopLeft, yTopLeft, width, height;

Thepath data field is inherited fromShapeAdapter .
To implement theforward method we need to use some trigonometry to express the coordi-

nates of a point(x1,y1) in terms of polar coordinates as

x1 = r cosθ
y1 = r sinθ

9.12 Turtle graphics class 501

- x

6
y

(0,0)
θ����������r (x1,y1) = (r cosθ, r sinθ)

r

Figure 9.11: Polar coordinates of a point(x1,y1)

wherer is the distance from(x1,y1) to the origin(0,0) andθ is the angle in radians measured from
thex-axis as shown in Figure 9.11. Since the turtle is at position(x,y), not (0,0) we can translate
the coordinates to obtain

x1 = x+ r cosθ
y1 = y+ r sinθ

as the new coordinates of the turtle corresponding toforward(r). Since(x1,y1) becomes the new
(x,y) we can write

x ← x+ r cosθ
y ← y+ r sinθ

Since we are dealing with a user space in Java 2D that has origin at the top left corner with the
y-axis pointing downward, we need to change to a minus sign on the right side of the equation for
y. This gives the method implementation

public void forward(double distance)
{

double radians = Math.toRadians(heading);
x = x + distance * Math.cos(radians);
y = y - distance * Math.sin(radians);
if (penUp)

path.moveTo((float)x, (float)y);
else

path.lineTo((float)x, (float)y);
}

We can call this method to obtainbackward :

public void backward(double distance)
{

forward(-distance);
}

502 Inheritance and Interfaces

We can now implementleft andright . Our first attempt atleft would be

public void left(double angle)
{

heading = heading + angle;
}

However if left is called many times the angle can become quite large and thesin andcos func-
tions will produce more round-off error. Therefore it is useful to always adjust the heading so that
it is between 0 degrees and 360 degrees each timeleft is called. This gives the implementation

public void left(double angle)
{

heading = heading + angle
while (heading > 360.0) heading = heading - 360.0;
while (heading < 0.0) heading = heading + 360.0;

}

and similarly forright , where the angle is subtracted from the heading.
Here is the complete class declaration that also includes two methods calledsetHeading and

setDirection for specifying an absolute rather than relative heading anddirection.

ClassTurtle2D

book-project/chapter9/shapes

package chapter9.shapes;

/**
* A class that defines Turtle objects for drawing on a panel.
* Each turtle object produces a Shape object which can be draw n
* using the draw method of a Graphics2D graphics context.
* <p>
* The approximate bounding rectangle for the turtle’s path i s
* specified in the constructor but the final rectangle will g enerally
* be different and can be obtained using the getBounds2D
* method of the Shape interface.
*/

public class Turtle2D extends ShapeAdapter
{

private double x, y; // coordinates of turtle
private double heading; // turtle direction in degrees
private boolean penUp; // turtle has a pen to draw with

// Definition of the bounding rectangle
private double xTopLeft, yTopLeft, width, height;

/**
* Construct a turtle that will draw a path.
* The turtle state is defined by its current position and head ing
* in degrees, and by its pen state (up or down).

9.12 Turtle graphics class 503

* <p>
* The turtle begins at (0,0) facing north with its pen down.
* @param xTopLeft top left x-coord of bounding rectangle
* @param yTopLeft top left y-coord of bounding rectangle
* @param width width of the bounding rectangle
* @param height of the bounding rectangle
*/

public Turtle2D(double xTopLeft, double yTopLeft,
double width, double height)

{
penUp = false;
this.xTopLeft = xTopLeft;
this.yTopLeft = yTopLeft;
this.width = width;
this.height = height;
home();

}

/**
* Move turtle to center, facing north
*/

public void home()
{

x = xTopLeft + width / 2.0; // x coord of center
y = yTopLeft + height / 2.0; // y coord of center
heading = 90.0; // north default
path.moveTo((float)x,(float)y); // set the position

}

/**
* Set the turtle at a global position without changing its hea ding.
* @param x x-coord of the position
* @param y y-coord of the position
*/

public void setPosition(double x, double y)
{

this.x = x;
this.y = y;
path.moveTo((float)x,(float)y);

}

/**
* Set the turtle to a specified heading without changing its p osition.
* @param heading angle in degrees (0 = east, 90 = north)
*/

public void setHeading(double heading)
{

this.heading = heading;
}

/**
* Rotate the turtle counterclockwise.

504 Inheritance and Interfaces

* @param angle rotation angle in degrees
*/

public void left(double angle)
{

heading = heading + angle;
while (heading > 360.0) heading = heading - 360.0;
while (heading < 0.0) heading = heading + 360.0;

}

/**
* Rotate the turtle clockwise.
* @param angle rotation angle in degrees
*/

public void right(double angle)
{

heading = heading - angle;
while (heading > 360.0) heading = heading - 360.0;
while (heading < 0.0) heading = heading + 360.0;

}

/**
* Advance turtle a given distance along its heading.
* @param distance the distance to advance. A negative
* value would move the turtle backward.
*/

public void forward(double distance)
{

double radians = Math.toRadians(heading);

x = x + distance * Math.cos(radians);

// negative sign in y since we have a user space with
// origin at top left corner of panel and a y-axis
// pointing downward.

y = y - distance * Math.sin(radians);

if (penUp)
path.moveTo((float)x, (float)y);

else
path.lineTo((float)x, (float)y);

}

/**
* Advance turtle a given distance backward from its heading.
* @param distance the distance to move backward. A negative
* value would move the turtle forward.
*/

public void backward(double distance)
{

forward(-distance);

9.12 Turtle graphics class 505

}

/**
* Set the turtle’s pen in the up position.
* In this state forward and backward move turtle without draw ing.
*/

public void penUp()
{

penUp = true;
}

/**
* Set the turtle’s pen in the down position.
* In this state forward and backward move turtle with drawing .
*/

public void penDown()
{

penUp = false;
}

}

9.12.3 Writing turtle graphics programs

We can use theGraphicsFrame class to write turtle graphics programs. Here is a simple template:

import custom_classes.GraphicsFrame;
import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;

public class MyTurtleGraph extends JPanel
{

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;

// Construct a turtle for the entire drawing panel
Turtle2D t = new Turtle2D(0,0, getWidth(), getHeight());

// insert turtle graphics commands here to construct turtle path

g2D.draw(t); // draw the turtle’s path
}

public static void main(String[] args)
{

new GraphicsFrame("MyTurtleGraph", new MyTurtleGraph() , 301, 301);
}

506 Inheritance and Interfaces

}

EXAMPLE 9.10 (Drawing a box) Since the turtle starts at(0,0) pointing north, the statements

for (int k = 1; k <= 2; k++)
{

t.forward(10);
t.right(90);
t.forward(20);
t.right(90);

}

define a rectangle with lower left corner at(0,0) and upper right corner at(20,10).

EXAMPLE 9.11 (Drawing a pentagon) The statements

for (int k = 1; k <= 5; k++)
{

t.forward(80);
t.right(72);

}

show how easy it is to draw a pentagon with a vertex at(0,0).

Here is a class calledPentagonSpinner that draws pentagons rotated about the lower left corner.
Each time the pentagon is drawn the turtle rotates 36 degreesbefore drawing the next one.

ClassPentagonSpinner

book-project/chapter9/shapes

package chapter9.shapes;
import custom_classes.GraphicsFrame;
import java.awt.*;
import javax.swing.*;

/**
* Use A Turtle2D object to draw a pentagon and spin it.
*/

public class PentagonSpinner extends JPanel
{

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;
g2D.setPaint(Color.blue);
g2D.setStroke(new BasicStroke(2.0f));
Turtle2D t = new Turtle2D(0,0, getWidth(), getHeight());

for (int k = 1; k <= 10; k++)

9.12 Turtle graphics class 507

{
drawPentagon(t);
t.left(36);

}

g2D.draw(t);
}

public void drawPentagon(Turtle2D t)
{

for (int k = 1; k <= 5; k++)
{

t.forward(80);
t.right(72);

}
}

public void draw()
{

new GraphicsFrame("Spinning Pentagons", this, 301, 301);
}

public static void main(String[] args)
{

new PentagonSpinner().draw();
}

}

The output is shown in Figure 9.12. The turtle graphics modelmakes it easy to draw pictures like
this.

Figure 9.12: Output forPentagonSpinner program.

508 Inheritance and Interfaces

9.12.4 Recursive turtle graphics programs

Many interesting pictures can be drawn using recursive turtle graphics methods. Here is a method
that draws the branches of a tree.

public void tree(double length)
{

if (length < 1) return;

t.right(45);
t.forward(length);
tree(length / 1.7);
t.backward(length);
t.left(90);
t.forward(length);
tree(length / 1.7);
t.backward(length);
t.right(45);

}

The turtle is pointing north by default so it first rotates right by 45 degrees and draws the right
branches, then it backs up and rotates left by 90 degrees and draws the left branches. Finally, it
rotates right by 45 degrees so it is pointing north again. Therecursion is controlled by the length
of the branches. At each recursive step the branch length decreases and the recursion is stopped if
the length becomes less than 1. Here is a class that uses this method.

ClassRecursiveTreeMaker

book-project/chapter9/shapes

package chapter9.shapes;
import custom_classes.GraphicsFrame;
import java.awt.*;
import javax.swing.*;

/**
* Use a Turtle2D object to draw a recursive tree.
*/

public class RecursiveTreeMaker extends JPanel
{

Turtle2D t; // reference to the turtle

public void paintComponent(Graphics g)
{

super.paintComponent(g);
Graphics2D g2D = (Graphics2D) g;
g2D.setColor(Color.blue);
g2D.setStroke(new BasicStroke(2.0f));
t = new Turtle2D(0,0, getWidth(), getHeight());

9.13 Numerical applications of interfaces 509

t.backward(100); // make the tree trunk
t.forward(100);
tree(50); // make tree branches
g2D.draw(t);

}

/**
* Recursive method for drawing the branches of a tree.
* At each step the branch length decreases.
* When it gets small enough the recursion is stopped.
*/

public void tree(double length)
{

if (length < 1) return;

t.right(45); // position turtle for right side

t.forward(length); // draw right branches
tree(length / 1.7);
t.backward(length);

t.left(90); // position turtle for left side

t.forward(length); // draw left branches
tree(length / 1.7);
t.backward(length);

t.right(45); // position turtle for right side
}

public void draw()
{

new GraphicsFrame("Recursive Tree", this, 225, 225);
}

public static void main(String[] args)
{

new RecursiveTreeMaker().draw();
}

}

The output window is shown in Figure 9.13.

9.13 Numerical applications of interfaces

In numerical analysis it is quite common to work with many kinds of functions and it is necessary
to write algorithms that have functions as their input. In Java this means that we need a way to
use a function as a method argument. This can be done in an elegant fashion using interfaces. We
illustrate this with two examples: (1) a class containing methods that display a table of values of a
function and (2) a class containing methods to do function iteration.

510 Inheritance and Interfaces

Figure 9.13: Output window for the RecursiveTreeMaker class

9.13.1 Displaying a table of values of a function

Suppose we have a functionf with values f (x) and we want to display a table of its values at
the pointsxstart,xstart+1, . . . ,xend. Assume that thex values are equally spaced so they have the
form xstart, xstart + h, xstart + 2h, . . . , xend, whereh is the distance between successivex values.
Givenxstart andxend thex values for the table can be expressed asxk = xstart +kh,k = 0, . . . ,n and
xend= xstart +nh, wheren is the number of steps andn+1 is the number of table values. A simple
method for computing a table of values is

public void table(double xStart, double xEnd, double h)
{

int numSteps = (int) Math.round((xEnd - xStart) / h);
for (int k = 0; k <= numSteps; k++)
{

double x = xStart + k*h;
System.out.println(x + " " + f(x));

}
}

We also need a method to define the functionf . For example, iff (x) = e−x then we can write the
method

public double f(double x)
{

return Math.exp(-x);
}

to return values of this function.

9.13 Numerical applications of interfaces 511

What happens if we want to produce a table for another function? We run into a problem since
the function namef is built-in to our table method. We would have to change the body of the
function f and re-compile the class containing it. Thus our table method is not reusable because
the function is not supplied as an argument.

The solution is to write a function as an object from a class that implements a function interface.
For example, we can use the following interface to representa double-valued function of a double
variable.

Interface DoubleFunction

book-project/chapter9/functions

package chapter9.functions;
public interface DoubleFunction
{

/**
* Return value of a function f(x) at a given x.
* @param x value at which to evaluate the function
* @return the value f(x) of the function
*/

public double value(double x);
}

This interface represents all functions that have onedouble argument and return onedouble value.
Any class that implements this interface must provide an implementation of thevalue method that
gives the value of the function. An object of this class ‘is a’DoubleFunction . Now we can write
the table method in a class calledTableMaker using aDoubleFunction argument as

ClassTableMaker

book-project/chapter9/functions

package chapter9.functions;
public class TableMaker
{

private String fmt; // format code

/**
* Construct a table maker with formatting
* @param fmt the format code for printing
*/

public TableMaker(String fmt)
{

this.fmt = fmt;
}

/**
* Display a table of the function f.
* @param f the function
* @param xStart starting value of x

512 Inheritance and Interfaces

* @param xEnd ending value of x
* @param h step size between teble entries
*/

public void table(DoubleFunction f, double xStart, double xEnd, double h)
{

int numSteps = (int) Math.round((xEnd - xStart) / h);
for (int k = 0; k <= numSteps; k++)
{

double x = xStart + k*h;
System.out.printf(fmt, x, f.value(x));

}
}

}

Here we have included a simple formatting code for each line of the table. For example

TableMaker maker = new TableMaker("%5.2f %10.5f\n");

The important idea here is that the first argument of thetable method can be an object of any class
that implements theDoubleFunction interface so thistable method is reusable. We simply use
f.value(x) in the method body to obtain the value of the function atx .

For example, the functionsf (x) = e−x andg(x) = cosx can be represented as objects of the
following two simple classes that implement theDoubleFunction interface.

ClassExpMinusFunction

book-project/chapter9/functions

package chapter9.functions;
/**

* Class for the function exp(-x)
*/

public class ExpMinusFunction implements DoubleFunction
{

public double value(double x)
{

return Math.exp(-x);
}

}

ClassCosFunction

book-project/chapter9/functions

package chapter9.functions;
/**

* Class for the function cos(x)
*/

public class CosFunction implements DoubleFunction
{

public double value(double x)
{

9.13 Numerical applications of interfaces 513

return Math.cos(x);
}

}

The following tester class shows how to produce tables for these two functions.

ClassTableMakerTester

book-project/chapter9/functions

package chapter9.functions;
public class TableMakerTester
{

public void doTest()
{

TableMaker maker = new TableMaker("%5.2f %10.5f\n");
DoubleFunction exp = new ExpMinusFunction();
DoubleFunction cos = new CosFunction();

System.out.println("Table of exp(-x)");
maker.table(exp, 0.0, 0.5, 0.1);
System.out.println("Table of cos(x)");
maker.table(cos, 0.0, 0.5, 0.1);

}

public static void main(String[] args)
{

TableMakerTester tester = new TableMakerTester();
tester.doTest();

}
}

The output is

Table of exp(-x)
0.00 1.00000
0.10 0.90484
0.20 0.81873
0.30 0.74082
0.40 0.67032
0.50 0.60653

Table of cos(x)
0.00 1.00000
0.10 0.99500
0.20 0.98007
0.30 0.95534
0.40 0.92106
0.50 0.87758

9.13.2 Function iteration

The iterates of a functionf (x) form a sequencex0, x1,. . . ,xn,. . . , defined byxk = f (xk−1). Here we
assume thatx0 is given. We also require that all the valuesxk are defined (they are in the domain
of definition of the functionf). We are interested in the long-term behaviour of the sequence for

514 Inheritance and Interfaces

a given functionf and initial valuex0. There are three possibilities: (1) the sequence converges,
(2) the sequence diverges, (3) the sequence neither converges nor diverges. The third case can be
quite interesting.

For example, if you choose the functionf (x) = 0.5(x+2/x) and iterate it starting withx0 = 1
then the sequence converges to

√
2:

x0 = 1, x1 = 0.5(x0+2/x0) = 1.5, x2 = 0.5(x1+2/x1) = 1.41666..., . . .

If f (x) = 2x then the sequence clearly diverges.
An interesting case illustrating the third possibility isf (x) = 3.83x(1−x). Here the sequence

of iterates neither converges nor diverges. Instead it eventually repeats in a periodic manner in
groups of 3. For example the sequence eventually looks like

0.9574165975188731, 0.15614931568360532, 0.5046664874084134,

0.9574165975188731, 0.15614931568360532, 0.5046664874084134,

0.9574165975188731, 0.15614931568360532, 0.5046664874084134, ...

Here is a class containing two methodsiterate and iterate2 that can be used to iterate a
function. Theiterate method computes and displays the sequencex0,x1, . . . ,xn−1 anditerate2
lets you skip iterationsx0,x1, . . .xskip−1 before displaying the sequencexskip,xskip+1, . . .xskip+n−1.
Each method has aDoubleFunction argument to specify the function to iterate.

ClassFunctionIterator

book-project/chapter9/functions

package chapter9.functions;
/**

* This class shows how to iterate a function f(x)
* using the DoubleFunction interface.
*/

public class FunctionIterator
{

/**
* Compute iterates of a function.
* @param f the function to iterate
* @param x0 the initial value of x
* @param n number of iterations to display
* The values x(0),...,x(n-1) are displayed
*/

public void iterate(DoubleFunction f, double x0, int n)
{

double x = x0;
System.out.println(x);
for (int k = 1; k < n; k++)
{

x = f.value(x);
System.out.println(x);

}
}

9.13 Numerical applications of interfaces 515

/**
* Compute iterates of a function, skiping the first few.
* @param f the function to iterate
* @param x0 the initial value of x
* @param skip the number of iteration to skip before display
* @param n the number of iterations to display
* The values x(0),...,x(skip-1) are skipped, then the value s
* x(skip), ..., x(skip+n-1) are displayed.
*/

public void iterate2(DoubleFunction f, double x0, int skip , int n)
{

double x = x0;
for (int k = 0; k < skip; k++) x = f.value(x);
iterate(f, x, n);

}
}

Here is a tester class that shows how to iterate the functions0.5(x+2/x) and 3.83x(1−x) using
inner classes to define the functions.

ClassFunctionIteratorTester

book-project/chapter9/functions

package chapter9.functions;
public class FunctionIteratorTester
{

public void doTest()
{

FunctionIterator f = new FunctionIterator();
DoubleFunction sqrt = new Sqrt();

System.out.println("5 Iterates of sqrt");
f.iterate(sqrt, 1.0, 5);

// Test iterate2 with a period 3 function
// skip 10000 iterates and display 10

DoubleFunction period3 = new Period3();
System.out.println("Skip 10000 iterates of 3.83*x*(1-x) ");
f.iterate2(period3, 0.1, 10000, 6);

}

private static class Sqrt implements DoubleFunction
{

public double value(double x)
{

return 0.5*(x + 2/x);
}

}

516 Inheritance and Interfaces

private static class Period3 implements DoubleFunction
{

public double value(double x)
{

return 3.83*x*(1-x);
}

}

public static void main(String[] args)
{

new FunctionIteratorTester().doTest();
}

}

The output is

5 Iterates of sqrt
1.0
1.5
1.4166666666666665
1.4142156862745097
1.4142135623746899
Skip 10000 iterates of 3.83*x*(1-x)
0.9574165975188731
0.15614931568360532
0.5046664874084134
0.9574165975188731
0.15614931568360532
0.5046664874084134

Sometimes functions contain parameters. For example, we can find the square root of the
numbera≥ 0 by iterating the functionfa(x) = 0.5(x+ a/x) and we can generalize the period 3
example tofa(x) = ax(1− x). The following example shows how to do the parametrized square
root function

ClassSquareRootIterator

book-project/chapter9/functions

package chapter9.functions;
public class SquareRootIterator
{

public void doTest()
{

FunctionIterator f = new FunctionIterator();
DoubleFunction sqrt = new Sqrt(3.0);
f.iterate(sqrt, 1.0, 7);

}

private static class Sqrt implements DoubleFunction
{

private double a;

public Sqrt(double a)

9.14 Review exercises 517

{
this.a = a;

}

public double value(double x)
{

return 0.5*(x + a/x);
}

}

public static void main(String[] args)
{

new SquareRootIterator().doTest();
}

}

The output for
√

3 is

1.0
2.0
1.75
1.7321428571428572
1.7320508100147274
1.7320508075688772
1.7320508075688772

The trick is to include a constructor in theSqrt class that sets the value of the private data fielda
defining the parameter. This parameter is set using

DoubleFunction sqrt = new Sqrt(3.0);

9.14 Review exercises

◮ Review Exercise 9.1Define the following terms and give examples of each.

inheritance polymorphism polymorphic type
polymorphic method adapter class abstract class
abstract method interface multiple inheritance
subclass superclass Object class
extends this(...) super
protected toString Shape interface
equals base class final class

◮ Review Exercise 9.2Write a tester class calledAmnesia similar toCircleCalculatorTester
on page 459 but with the following test method.

public void test()
{

CircleCalculatorA circle = new CircleCalculatorB(3.0);
double circumference = circle.getCircumference();
System.out.println("Circumference: " + circumference);

}

518 Inheritance and Interfaces

Explain what happens? Replace the line defining the circumference by

double circumference = ((CircleCalculatorB)circle).get Circumference();

and explain why this works.

9.15 Programming exercises

◮ Exercise 9.1 (Inheritance using TriangleCalculator)
In Chapter 3 we considered a class calledCircleCalculator and in Chapter 9 we wrote the
classCircleCalculatorA which calculates only the area and then we extended this class to
CircleCalculatorB which calculated the circumference.

Do something similar with theTriangleCalculator class from Chapter 3, page 64 as follows:

• Write a class calledTriangleCalculatorA that computes only the third side lengthc and
the three anglesalpha , beta andgamma. Also include atoString method.

• Write a class calledTriangleCalculatorB that extendsTriangleCalculatorA by addi-
tionally calculating the perimeter and the area.

• Write a tester class calledTriangleCalculatorTester that tests the two classes.

◮ Exercise 9.2 (Polymorphic bank account transfer method)
Write a tester class for the polymorphic bank accounttransfer method (see page 469).

◮ Exercise 9.3 (Completing the Employee class hierarchy)
Complete the remaining three classes in theEmployee hierarchy and test the class hierarchy using
EmployeeProcessor , page 474.

◮ Exercise 9.4 (Completing the Employee class hierarchy)
Remove thetoString methods from the four classes in theEmployee hierarchy and put the fol-
lowing toString method into theEmployee class.

public String toString()
{

return getClass().getName() + "[" + "name = " + getName() +
", gross = " + grossSalary() + ", net = " + netSalary() + "]";

}

Compile the class and useEmployeeProcessor , page 474 to test it. Can you explain why this
toString method works.

◮ Exercise 9.5 (Another way to design the Employee hierarchy)
Sometimes there is more than one way to design a hierarchy. For example, in theEmployee
hierarchy we could say that a part time worker is an hourly worker (one without deductions). This
gives the hierarchy shown in Figure 9.14. Modify the classesof the preceding exercise to use this
hierarchy.

9.15 Programming exercises 519

Employee

Manager

HourlyWorker

PartTimeWorker

CommissionWorker

Figure 9.14: Another possible Employee inheritance hierarchy

◮ Exercise 9.6 (A student employee hierarchy)
Write a class calledPerson and three subclasses calledStudent (a subclass ofPerson), Employee
(a subclass ofPerson) andStudentEmployee (a subclass ofStudent) as follows

(a) ThePerson class encapsulates three private data fields: aname of type String , a social
insurance number of typeString and a year of birth of typeint . The class should include
a constructor, get methods for the private data fields and atoString method.

(b) TheStudent class is a subclass ofPerson . A student is a person with a major (MATH,
COSC, etc.) and a student number. Provide a constructor, theappropriate get methods and a
toString method.

(c) TheEmployee class is a subclass ofPerson . An employee is a person with a monthly salary.
Provide a constructor, the appropriate get methods and atoString method.

(d) TheStudentEmployee class is a subclass ofStudent . A student employee is a student with
a salary. Provide a constructor, the appropriate get methodand atoString method.

◮ Exercise 9.7 (Equals method for bank account classes)
Write the equals method for theBankAccount and JointBankAccount classes assuming that
two accounts are equal if they have the same account number.

◮ Exercise 9.8 (Using the Translatable interface)
Write a class calledTranslatableTester , similar toMeasurableTester , that declares an array
of type Translatable . Write the for-loop so that it translates each object by (1,1) and displays
results.

◮ Exercise 9.9 (Using the Scalable interface)
Write a class calledScalableTester , similar to MeasurableTester , that declares an array of
typeScalable . Write the for-loop so that it scales each object by a factor of 2 and displays results.

◮ Exercise 9.10 (An Employable interface)
Do theEmployee hierarchy in Section 9.6 using anEmployable interface instead of an inheritance
hierarchy. This interface is defined by

520 Inheritance and Interfaces

public interface Employable
{

/**
* Return the gross monthly salary.
* @return the gross monthly salary
*/

public double grossSalaray();
/**

* Return the net monthly salary.
* @return the net monthly salary
*/

public double netSalary();
}

Now there is no abstractEmployee class. Instead, each of the classesManager , HourlyWorker ,
PartTimeWorker , and CommissionWorker will need to implement theEmployable interface.
Each class must now have aname field and agetName method since we no longer have the
Employee class to manage the name for us.

Modify the tester classEmployeeProcessor to use an array ofEmployable references instead
of an array ofEmployee references. We now have an array of references to objects from classes
that implement theEmployable interface instead of an array of references to objects that extend
the abstractEmployee class.

Discuss any advantages or disadvantages of these two approaches to polymorphism.

◮ Exercise 9.11 (An equals method for the Circle class)
Write anequals method for theCircle class from Chapter 4.4.5, page 122

◮ Exercise 9.12 (Colored circles)
Consider the followingPoint andCircle andColor classes:

public class Point
{ private double x, y;

public Point() {...}
public Point(double x, double y) {...}
public double getX() {...}
public double getY() {...}
public String toString() {...}

}

public class Circle
{ private Point center;

private double radius;
public Circle() {...}
public Circle(double x, double y, double radius) {...}
public Circle(Point center, double radius) {...}
public Point getCenter() {...}
public double getRadius() {...}

9.15 Programming exercises 521

public String toString() {...}
}

public class Color
{ private int red, green, blue;

public Color() {...}
public Color(int red, int green, int blue) {...}
public int getRed() {...}
public int getGreen() {...}
public int getBlue() {...}
public String toString() {...}

}

Write a class calledColoredCircle that extendsCircle by adding a new data field for the circle
color and has constructors

public ColoredCircle() {...}
public ColoredCircle(double x, double y, double radius, Co lor color) {...}
public ColoredCircle(Circle circle, Color color) {...}
public ColoredCircle(Point center, double radius, Color c olor {...}

Assuming thatColor andCircle are immutable classes (objects cannot be modified after con-
struction) write theColoredCircle class so that it is also immutable.

◮ Exercise 9.13 (A polygon Shape class)
Write aPolygon2D class that extends theShapeAdapter class (it implements theShape interface).
Rewrite theRandomPolygon program class (page 497) so that it uses thePolygon2D class.

◮ Exercise 9.14 (A pentagon Shape class)
Write aPentagon2D class that extends theShapeAdapter class and defines regular pentagons (5
sided polygons with all sides equal and central angle between consecutive vertices of 72 degrees).
Each pentagon should be defined in user space by the coordinates of its center and the radius of
the circumscribed circle, rather then the coordinates of its five vertices. Include a constructor of
the form

public Pentagon2D(double xCenter, double yCenter, double radius,
double angle)

whereangle is the angle in degrees of one of the vertices. See Chapter 8, Exercise 8.8 for the
definitions of the pentagonal angles and vertices. Write a test program usingGraphicsFrame that
draws some pentagons.

◮ Exercise 9.15 (A happy face Shape class)
Write aHappyFace2D class based on the happy face programs developed in Chapter 5that extends
theShapeAdapter class. Use the bounding box to define the size of the face. Include some flexi-
bility in the constructors that lets the user define the face using either the bounding rectangle or the
center and radius. Also let the user choose the colors. Writea test program usingGraphicsFrame
that draws some happy faces.

522 Inheritance and Interfaces

◮ Exercise 9.16 (A house Shape class)
Write a House2D class that extends theShapeAdapter class. A house has a frame, door, win-
dows and chimney. Include some flexibility in the constructors that lets the user define the house
using the bounding rectangle and choose the fill colors, for example. Write a test program using
GraphicsFrame that draws some houses.

◮ Exercise 9.17 (Polymorphism in the Shape hierarchy)
Write a class that uses theShape objectsPentagon2D , HappyFace2D , House2D, andPolygon2D
from the previous exercises to illustrate polymorphism. Todo this define an array ofShape objects,
store some of these objects in the array, and use thedraw method in a loop to draw a picture.

◮ Exercise 9.18 (A general polygon spinner program)
The PentagonSpinner program only spins pentagons and only 10 times using an angleof 36
degrees (10 times 36 is a full circle). Write aPolygonSpinner program based on this class that
spins a regular polygon. The program should read the number of sides and the spinning angle as
command line arguments.

◮ Exercise 9.19 (Modifying RecursiveTreeMaker)
TheRecursiveTreeMaker class uses fixed values of 45 and 90 degrees for the angles and 1.7 for
the branch length reduction factor. Rewrite the class so that it reads these three values as command
line arguments.

◮ Exercise 9.20 (Function iteration)
Using a class similar toSquareRootIterator write a class calledLogisticIterator that can
be used to iterate the functionfa(x) = ax(1− x). Experiment with the long-term beaviour of the
iterations for various values ofs in the range 0≤ a≤ 4. We have already considered the case
a = 3.83.

◮ Exercise 9.21 (Newton’s method for root finding)
If f (x) is differentiable with derivative denoted byf ′(x) then a root off (x) = 0 can often be
calculated using the iteration scheme

xn+1 = xn−
f (xn)

f ′(xn)
, n = 0,1, . . .

starting with a good initial guessx0.
Write a class calledRootFinder that contains a method callednewton that calculates and

displays the iterations. This method will need twoDoubleFunction arguments, one forf (x) and
another for the derivativef ′(x). Other arguments can be used to specify the intial guess and the
maximum number of iterations. Also specify a toleranceε such that the iteration process is stopped
when either the maximum number of iterations is reached or|xn+1−xn| ≤ ε.

Write a tester class that illustrates several examples.

BlueJ andBeanShell Edition Copyright 2002, 2005, 2007, Barry G. Adams

Chapter 10

Graphical Interface Design
Graphical applications and applets

Outline

Basic structure of a GUI application

GUI components and the greeting application

Inner classes as event handlers

Numeric fields and the temperature application

Multi-line text fields (TextArea)

Investment application

Using inheritance to design smarter text fields

GUI for the LoanRepaymentTable class

Unit conversion application

Inheritance and listener interfaces

Average mark calculator

GUI version of the RandomTriangles class

Inheritance and theGraphicsFrame class

Applets

523

524 Graphical Interface Design

10.1 Introduction

There are three kinds of Java programs: Console applications, GUI applications, and applets. So
far we have written only console applications. They are programs that use the console window as
the user interface. All input is obtained either from command-line arguments or using theScanner
class. Even our graphics applications beginning in Chapter5 were of this form.

In this chapter we introduce graphical user interface (GUI)concepts and design and we write
some GUI applications. They run in the window environment and have buttons to click, boxes
in which to type, boxes in which to display textual output, and other components as well, such
as panels containing graphics. We will also see that a GUI is an event-driven environment whose
programming model is quite different from what we are used towith console applications. In order
for our programs to respond to events such as pressing the enter key in an input box, clicking a
button, clicking or dragging the mouse, it is necessary to write special methods, defined by event
listener interfaces, that the system will call when these events occur.

Applets are the third kind of Java program. They always have aGUI but an applet is a special
class that is designed to be run by a Web browser. Most of what we learn about GUI applications
is also valid for applets so we briefly consider some applet examples and show how they can be
tested using a special applet viewer program before runningthem with a web browser.

10.2 Basic structure of a GUI application

A GUI application class is a subclass of theJFrame class. We will call such a class a GUI applica-
tion. A main method is used to construct an application object. TheGraphicsFrame class used in
Chapter 5 is an example. AJFrame object is a top-level component that appears as a window with
a frame around it containing a title bar at the top. There are also buttons to minimize, maximize,
or close the frame. By default the interior of the frame is empty. We will learn how to place other
components inside the frame that respond to user actions such as pressing the Enter key after some
text has been typed in a box or using the mouse to click a button.

10.2.1 Basic template for GUI applications

Here is a class template that we will use for our simple GUI applications:

ClassApplicationTemplate

book-project/chapter10/simple

package chapter10.simple;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

/**
* Use this class as a template for simple GUI applications.

10.2 Basic structure of a GUI application 525

*/
public class ApplicationTemplate extends JFrame implemen ts ActionListener
{

// Declare instance variables for GUI components here
// Declare any other instance or class variables here

public ApplicationTemplate()
{

setTitle("Put your frame title here");

// Statements to create GUI components go here
// Statements to add them to the frame go here
// statements to add action listeners go here

setSize(400,300); // size of the frame
}

/**
* This method is called when an action event occurs.
* @param e the action event that occurred
*/

public void actionPerformed(ActionEvent e)
{

// statements to process action events go here
}

/** Construct an application and make it visible
*/

public static void main(String[] args)
{

JFrame f = new ApplicationTemplate();
f.setVisible(true);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

This is not the most general form of a GUI application class but it will suffice for many of the
examples in this chapter. For now, let us give a brief overview of each part of the template:

• There are severalimport statements that are needed to access the GUI classes and the Swing
user interface components (the new platform-independent GUI components).

• The class extendsJFrame which is a top-level component that provides the basic func-
tionality of a window with a frame around it, a title bar with atitle in it, and minimize,
maximize and close buttons. It is a container for other GUI components that implements
the ActionListener interface to provide for responses to user interaction. We will also
consider approaches to event handling using other classes to implement listener interfaces
instead of the application class itself.

• The data field variables are declared at the top of the class. They can be instance variables
for the names of GUI component objects, other instance variables, or class variables and
constants.

526 Graphical Interface Design

• Themain method is responsible for constructing an application object as aJFrame and the
setVisible statement makes it visible. Without this statement the frame would remain
invisible when the application is running. Also we specify that the application should exit
whenever the close button is clicked.

• The constructor is responsible for initializing the application by creating the GUI compo-
nents and initializing other data field variables. It can also provide a title for the frame
using thesetTitle method and provide the width and height in pixels of the frameusing
the setSize method. The constructor is also be responsible for adding the various event
listeners to the appropriate components.

• Finally, we need to write what is called “event processing code”. In the simplest cases, when
a button is clicked, or the Enter key is pressed while typing text in a box, the component
calls anactionPerformed method. Our event processing code will go in the body of this
method.

The ApplicationTemplate class can be compiled and run as usual with thejavac and java
commands or fromBlueJ by right clicking on the class rectangle and selecting themain method.
When the interpreter executes the statements in themain method the frame is created and made
visible. Of course this application doesn’t do anything so you will see only an empty 400 by 300
pixel frame. Clicking the close box closes the window and terminates the program. To make the
GUI application useful we need to learn how to put some graphical user interface components in
the window and have them respond to user actions.

10.3 GUI components and the greeting application

10.3.1 Greeting application design

The Java GUI is object-oriented. This means that each GUIcomponentyou see on the screen is
an object from some class (these components are sometime called widgets). The simplest GUI
components are objects from theJLabel , JButton , JTextField , andJTextArea classes. These
classes all haveJComponent as one of their superclasses.

Our first application will be a simple class calledGreeting1 that asks the user to enter a name
in a text field and press the Enter key when done. Then a greeting is displayed in another text
field. The greeting is the wordHello followed by the name typed. Figure 10.1 shows what the
application looks like when the name has been typed. After the Enter key is pressed the application
is shown in Figure 10.2. You can easily identify three component objects in the frame: (1) a prompt
string, (2) an input box for typing the name, and (3) an outputbox for displaying the greeting. The
boxes are called text fields.

10.3.2 Determining what GUI components are needed

First we need to decide which GUI components are needed. We will use the following three
components

10.3 GUI components and the greeting application 527

Figure 10.1: Greeting application before Enter key is pressed

Figure 10.2: Greeting application after Enter key is pressed

• A JTextField object calledinput which defines the field in which the name can be typed
(white box in Figure 10.1 or Figure 10.2).

• A JLabel object calledprompt which provides a place on the screen to display a label or
prompt string defining what this field should contain.

• AnotherJTextField object calledoutput which defines a field on the screen in which the
greeting can be displayed (gray outlined box in Figure 10.1 or Figure 10.2).

Later we will also useJButton objects which are buttons that respond to mouse clicks.
Now we can declare instance variables for these three components as follows

private JLabel prompt;
private JTextField input;
private JTextField output;

These variables are the names of the GUI component objects.

10.3.3 Creating the GUI components

In theGreeting1 constructor we can create the objects as follows

prompt = new JLabel("Enter your name and press Enter");
input = new JTextField(20);
output = new JTextField(20);
output.setEditable(false);

These statements define aJLabel object with the given string as label and twoJTextField objects
that can hold about 20 characters each. By default a text fieldpermits input. In our case theoutput

528 Graphical Interface Design

Figure 10.3: Greeting application illustrating the flow layout

field should not accept input so thesetEditable method is used with theoutput field. A false
argument indicates that input is not allowed and atrue argument indicates that input is allowed.
You can visually distinguish an output-only text field from an input field.

10.3.4 Choosing a layout manager for the GUI components

The laying out of the GUI components is done by alayout manager object. Several types of
layout managers are available and they are very convenient since it is not necessary to specify the
coordinates and sizes of components or determine how they change if the frame is resized.

The default layout manager for aJFrame is calledBorderLayout . However, we want to use
the FlowLayout manager. It lays out the components in left to right order in the frame, moving
components to the next line when there is no room on the current line for the next component. It’s
just like putting text on a page using word wrap. When the right margin is reached a new line is
begun. Here we are laying out components instead of text.

In the application frames shown in Figure 10.1 and Figure 10.2 there are two objects on the
first line (theprompt and input objects) and one on the second line (theoutput object). If you
resize the application window with the mouse then the objects flow (hence the nameFlowLayout
manager) to accommodate the new size. For example, a narrower size produces the layout shown
in Figure 10.3 having three rows with one object per row.

10.3.5 Adding GUI components to the frame

Once a layout manager has been chosen it is specified using thesetLayout method and then the
add method is used to specify the components to the layout manager. The components are added
to the content pane of the frame. In our greeting example we need to use the following statements
to add components.

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(prompt);
cp.add(input);
cp.add(output);

A JFrame is composed of several layers called panes. The only pane we need to work with is
the content pane: when adding components to aJFrame we must add them to the frame’s content

10.3 GUI components and the greeting application 529

Event
Occurs

Button click
handler method

Enter key
handler method

Mouse click
handler method

Mouse drag
handler method

�
�

�
�

�
�3

������1

PPPPPPqQ
Q

Q
Q

Q
Qs

Figure 10.4: When an event occurs the component calls the appropriate event handler

pane. The first line gets the frame’s content pane which is aContainer object and declarescp to
be a reference to it. The next line specifies that aFlowLayout manager should be used. The last
three lines add the three components to the container. The order is important since it specifies the
left to right, top to bottom order that the layout manager will use.

10.3.6 Sending events to listeners

The final step in our GUI design is to indicate what should happen when the Enter key is pressed.
This is calledevent-driven programming. In this style of programming we decide what events
we want to process, for example, clicking a button with the mouse, pressing Enter in a text field, or
dragging the mouse. We must provide some methods that the component can call to process each
kind of event. This programming model is quite different from that which we have been doing
so far (e.g., get some input, call a method to do some calculations, call a method to display some
results).

In event-driven programming we supply methods to handle events but we do not call them our-
selves (we have already seen two examples: we have writtenmain methods andpaintComponent
methods but we never call them). Instead the component callsthem when the event occurs. This is
illustrated in Figure 10.4. When an event occurs, represented by the box on the left, the component
calls the appropriate event handler method. Four such methods are indicated by the four boxes on
the right. The arrows represent the calling of the method.

The information describing each event is stored in an event object. For example, when the user
clicks a button or presses the Enter key in a text field, the event is called an action event and the
information describing this event is stored in anActionEvent object.

How does the component which receives the event know which event handler object contains
the method it should call? The answer is simple. Each event handler implements one of the
EventListener interfaces. In the case of a button or a text field this is theActionListener
interface. For the mouse it could be one or both of theMouseListener or MouseMotionListener
interfaces.

Internally the component maintains a list of references to the event handler objects that want

530 Graphical Interface Design

GUI Component

listenerList

-

...

�
�

�
�

�
��

������*

-

Event handler
object

Event handler
object

Event handler
object

Figure 10.5: Adding listeners (event handlers) to a GUI component

to listen for events generated by the component. This is illustrated in Figure 10.5. When the
event occurs the component uses its list of listeners to find the event handling objects that have the
appropriate method to call.

In our greeting example theJTextField object calledinput needs to know that our applica-
tion wants to listen for events generated by the pressing of the Enter key. This is done using the
statement

input.addActionListener(this);

TheaddActionListener method simply adds a listener to the list of listeners maintained by the
JTextField object and in this case the application class itself, referred to bythis , is the listener:
the first line of ourGreeting1 class specifies that the class implements theActionListener
interface.

Finally we need to know that any class that implements theActionListener interface must
provide an implementation of theactionPerformed event handling method having the form

public void actionPerformed(ActionEvent e)
{

// statements to process action events go here
}

When the Enter key is pressed after entering text in aJTextField object this method is called.
TheActionEvent object argument describes the details of the event. In particular it can be used to
determine which component generated the action event. In our example we have only one compo-
nent generating action events, so we do not need to use theActionEvent objecte. Nevertheless,
it must be present as an argument since it is part of the interface specification.

10.3.7 Writing event processing code

We are almost finished with our introductoryGreeting1 application. We just need to put some
statements into the body of theactionPerformed method that will display the greeting in the

10.3 GUI components and the greeting application 531

box associated with theoutput object. This is easy becauseJTextField objects have agetText
method which returns the text in the field as aString object and asetText method which takes a
String object argument and sets the field to that text. These methodshave prototypes

public String getText(); // return text from a text field
public void setText(String text); // display given text in a text field

Therefore the body of theactionPerformed method is

String name = input.getText();
output.setText("Hello " + name);

which could even be done with the single statement

output.setText("Hello " + input.getText());

In terms of the message passing terminology we send thegetText message to theinput object
and thesetText message to theoutput object so these two text field objects communicate by
message passing. Here is the complete application class:

ClassGreeting1

book-project/chapter10/simple

package chapter10.simple;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

/**
* Using the enter key to trigger an event.
*/

public class Greeting1 extends JFrame implements ActionLi stener
{

private JLabel prompt;
private JTextField input;
private JTextField output;

public Greeting1()
{

setTitle("Greeting1 (enter key event)");

prompt = new JLabel("Enter your name and press Enter");
input = new JTextField(20);
output = new JTextField(20);
output.setEditable(false);

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(prompt);
cp.add(input);

532 Graphical Interface Design

cp.add(output);

input.addActionListener(this);
setSize(450,100);

}

/**
* This method is called when enter key is pressed.
* @param e the action event that occurred
*/

public void actionPerformed(ActionEvent e)
{

String name = input.getText();
output.setText("Hello " + name);

}

/** Construct an application and make it visible
*/

public static void main(String[] args)
{

JFrame f = new Greeting1();
f.setVisible(true);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

It is important to realize that theinput andoutput variables must be declared as data fields since
they are needed in both the constructor and theactionPerformed method.

However, theprompt declaration could have been moved inside the constructor asa local
variable using

JLabel prompt = new JLabel("Enter your name and press Enter");

since it is not needed outside the constructor. In fact we could go further and not give it a name at
all by replacing

cp.add(prompt);

with the statement

cp.add(new JLabel("Enter your name and press Enter"));

As a matter of style it is best to declare all GUI variables as data fields, as we have done in the
greeting application.

10.3.8 Using a button in the greeting application

As a variation of theGreeting1 application let us use a button object, instead of the Enter key,
to generate the action event that produces the greeting in the output field. We will call it the
Greeting2 application. The application frame is shown in Figure 10.6.We can modifyGreeting1
to obtainGreeting2 . First add a reference to aJButton using

10.3 GUI components and the greeting application 533

Figure 10.6: Greeting application containing a button

private JButton done;

In the constructor define the button using

done = new JButton("Done");

which specifies that the button should have the given string displayed on it. Also add it to the frame
using

cp.add(done);

and finally, replace the statement

input.addActionListener(this);

with the statement

done.addActionListener(this);

to specify that our application will listen for button clickevents. Here is the revised application
class.

ClassGreeting2

book-project/chapter10/simple

package chapter10.simple;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

/**
* Using a button to trigger an event.
*/

public class Greeting2 extends JFrame implements ActionLi stener
{

private JLabel prompt;
private JTextField input;
private JTextField output;
private JButton done;

534 Graphical Interface Design

public Greeting2()
{

setTitle("Greeting2 (button event)");

prompt = new JLabel("Enter name and press Enter");
input = new JTextField(20);
output = new JTextField(20);
output.setEditable(false);
done = new JButton("Done");

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(prompt);
cp.add(input);
cp.add(done);
cp.add(output);

done.addActionListener(this);
setSize(450,100);

}

/**
* This method is called when done button is clicked.
* @param e the action event that occurred
*/

public void actionPerformed(ActionEvent e)
{

String name = input.getText();
output.setText("Hello " + name);

}

/** Construct an application and make it visible
*/

public static void main(String[] args)
{

JFrame f = new Greeting2();
f.setVisible(true); // make frame visible
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

Now pressing the Enter key has no effect since there are no listeners attached to theinput field.
We could also specify that either pressing the Enter key or thedone button should cause the action
event. This can be done by adding both as listeners (the list in Figure 10.5 has two entries):

input.addActionListener(this);
done.addActionListener(this);

Now theactionPerformed method will be called in either case.

10.3 GUI components and the greeting application 535

Figure 10.7: Greeting application containing an exit button

10.3.9 Multiple types of action event responses

As another modification to theGreeting1 application let us include anexit button on the frame.
When it is pressed the application should be terminated in the same manner as pressing the close
box. As inGreeting1 the Enter key can be used to signal that the greeting should bedisplayed
in theoutput field. We will call this applicationGreeting3 . The application frame is shown in
Figure 10.7. Now we run into a problem writing theactionPerformed method. This method can
be called either when the Enter key is pressed or when theexit button is clicked. Since the actions
are different in each case we need to know which event occurred. This is where theActionEvent
object method argument is useful. We can ask this object which component signaled the event
using thegetSource method in theActionEvent class. TheactionPerformed method is now
given by

public void actionPerformed(ActionEvent e)
{

if (e.getSource() == input) // enter was pressed
{

String name = input.getText();
output.setText("Hello " + name);

}
else // exit button must have been clicked
{

System.exit(0); // exit program
}

}

Thus, if getSource returns the referenceinput then we know the Enter key was pressed. If it
returns the referenceexit we know theexit button was pressed.

Another possibility is to use thegetActionCommand method which returns the string on the
button:

public void actionPerformed(ActionEvent e)
{

if (e.getActionCommand().equals("Exit"))
System.exit(0) // exit program

else
{

String name = input.getText();

536 Graphical Interface Design

output.setText("Hello " + name);
}

}

Here is the complete application class.

ClassGreeting3

book-project/chapter10/simple

package chapter10.simple;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

/**
* Distinguish different kinds of events
* using the getSource() method in ActionEvent class.
*/

public class Greeting3 extends JFrame implements ActionLi stener
{

private JLabel prompt;
private JTextField input;
private JTextField output;
private JButton exit;

public Greeting3()
{

setTitle("Greeting3 (text field and button events)");

prompt = new JLabel("Enter name and press Enter");
input = new JTextField(20);
output = new JTextField(20);
output.setEditable(false);
exit = new JButton("Exit");

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(prompt);
cp.add(input);
cp.add(output);
cp.add(exit);

input.addActionListener(this);
exit.addActionListener(this);
setSize(450,100);

}

/**
* This method is called when the enter key is pressed in the
* input field or when the exit button is clicked.

10.3 GUI components and the greeting application 537

* @param e the action event that occurred
*/

public void actionPerformed(ActionEvent e)
{

if (e.getSource() == input) // enter was pressed
{

String name = input.getText();
output.setText("Hello " + name);

}
else // exit button must have been clicked
{

System.exit(0); // exit program
}

}

/** Construct an application and make it visible
*/

public static void main(String[] args)
{

JFrame f = new Greeting3();
f.setVisible(true);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

10.3.10 Using inner classes to specify event handlers

There is another elegant way to process events that uses inner classes to specify event handlers. An
inner class is defined inside another class (called the outerclass). An important feature of inner
classes is that they can directly access the data fields of theouter class. We will write a variation
of Greeting3 calledGreeting4 that uses inner classes for event handlers. For example, an inner
class to handle the pressing of the Enter key in theinput field is

public class EnterKeyHandler implements ActionListener
{

public void actionPerformed(ActionEvent e)
{

String name = input.getText();
output.setText("Hello " + name);

}
}

This class contains only theactionPerformed method and this method refers to theinput and
output variables defined in the outer class, namely theGreeting4 class. We could have made
this class an external class in its own file but it would not have access to theinput andoutput
variables – and this is the power of inner classes.

Similarly we write another inner class to handle the closingof the window when the exit button
is pressed:

public class ExitButtonHandler implements ActionListene r

538 Graphical Interface Design

{
public void actionPerformed(ActionEvent e)
{

System.exit(0); // exit program
}

}

We need to add objects of these classes as action listeners sowe replace the two statements

input.addActionListener(this);
exit.addActionListener(this);

from Greeting3 with the statements

input.addActionListener(new EnterKeyHandler());
exit.addActionListener(new ExitButtonHandler());

since the application class (this) is no longer handling these events. Therefore it is important
to remove the phraseimplements ActionListener from the Greeting4 class header and to
remove theactionPerformed method from theGreeting4 class since the inner classes are now
implementing theActionListener interface. Here is the application class.

ClassGreeting4

book-project/chapter10/simple

package chapter10.simple;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

/**
* Using inner classes for event handlers
*/

public class Greeting4 extends JFrame
{

private JLabel prompt;
private JTextField input;
private JTextField output;
private JButton exit;

public Greeting4()
{

setTitle("Greeting4 (text field and button events)");

prompt = new JLabel("Enter name and press Enter");
input = new JTextField(20);
output = new JTextField(20);
output.setEditable(false);
exit = new JButton("Exit");

10.3 GUI components and the greeting application 539

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(prompt);
cp.add(input);
cp.add(output);
cp.add(exit);

input.addActionListener(new EnterKeyHandler());
exit.addActionListener(new ExitButtonHandler());
setSize(450,100);

}

/**
* The actionPerformed method of this inner class will be call ed
* whenever the enter key is pressed in the input field.
*/

public class EnterKeyHandler implements ActionListener
{

public void actionPerformed(ActionEvent e)
{

String name = input.getText();
output.setText("Hello " + name);

}
}

/**
* The actionPerformed method of this inner class will be call ed
* whenever the exit button is clicked.
*/

public class ExitButtonHandler implements ActionListene r
{

public void actionPerformed(ActionEvent e)
{

System.exit(0); // exit program
}

}

/** Construct an application and make it visible
*/

public static void main(String[] args)
{

JFrame f = new Greeting4();
f.setVisible(true); // make frame visible
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

Now an if-statement that usesgetSource is not required to determine the component that triggered
the event. TheEnterKeyHandler object is associated only with theinput component so its
actionPerformed method can only be called when the Enter key is pressed.

540 Graphical Interface Design

Figure 10.8: The temperature conversion application frame

External names for inner classes

When you compile theGreeting4 class you will get the following threeclass files:

Greeting4.class
Greeting4$EnterKeyHandler.class
Greeting4$ExitButtonHandler.class

For inner classes the compiler makes up names consisting of the outer class name, followed by the
$ sign followed by the inner class name.

10.4 Numeric fields and the temperature application

The field of aJTextField object always contains a string. ThegetText andsetText methods
are used to get and set the string in the field. For the temperature conversion application the input
field will correspond to a temperature in degrees Celsius andthe output field will correspond to a
temperature in degrees Fahrenheit. When the Enter key is pressed in the input text field, the input
temperature is converted to Fahrenheit and displayed in theoutput text field. The application frame
is shown in Figure 10.8 after the Enter key has been pressed. Since the input field contains a string
we need to convert this string to adouble number. Also when the conversion calculation has been
performed the Fahrenheit temperature must be converted back to a string so that it can be displayed
usingsetText in the output field. These conversions are easily performed.

10.4.1 Numeric and string conversions

Converting numbers to strings

A number can be converted to a string by simply concatenatingit with the empty string. For
example, ifn is anint , float or double number, either of the following expressions convert it to
a string.

"" + n
String.valueOf(n)

Therefore if you want to display a numbern in a JTextField calledoutput use either of the
statements

output.setText("" + n);
output.setText(String.valueOf(n));

10.4 Numeric fields and the temperature application 541

Converting strings to numbers

Conversely, it is easy to convert strings to numbers. For example, to convert a strings to an int
number or adouble number you can use the expressions

Integer.parseInt(s)
Double.parseDouble(s)

Therefore ifinput is the name of aJTextField object then the string in it can be returned as an
int value using the statement

int i = Integer.parseInt(input.getText().trim());

or it can be returned as adouble value using the statement

double d = Double.parseDouble(input.getText().trim());

In these statementstrim is used to remove any leading or trailing spaces that may havebeen typed.
These would give an error in the conversion of the string to a number.

Later we will show how theJTextField class can be extended to anInputJTextField class
that hasgetInt andgetDouble methods to perform these conversions automatically.

Using numeric fields in the temperature application

For the temperature application we need to get the string that the user types in the input box, convert
it to a double number, compute the corresponding Fahrenheit temperatureand convert it back to
a string which can be displayed in the output field. This can bedone by placing the following
statements in theactionPerformed method.

double tc = Double.parseDouble(input.getText().trim()) ;
double tf = (9.0/5.0) * tc + 32.0;
output.setText("" + tf);

10.4.2 Temperature application

We can now easily modify theGreeting4 class to produce the temperature application: we need
a JLabel object calledprompt to label the input field, aJTextField calledinput for the Celsius
input temperature, and aJTextField called output for the converted Fahrenheit temperature.
Here is the application class.

ClassTemperature

book-project/chapter10/simple

package chapter10.simple;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

542 Graphical Interface Design

/**
* Converting a Celsius temperature to a Fahrenheit.
*/

public class Temperature extends JFrame
{

private JLabel prompt;
private JTextField input;
private JTextField output;

public Temperature()
{

setTitle("Celsius to Fahrenheit Conversion");
setSize(325,100);

prompt = new JLabel("Enter Celsius temperature, press Ente r");
input = new JTextField(10);
output = new JTextField(10);
output.setEditable(false);

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(prompt);
cp.add(input);
cp.add(output);

input.addActionListener(new EnterKeyHandler());
}

/**
* The actionPerformed method of this inner class will be call ed
* whenever the enter key is pressed in the input field.
*/

public class EnterKeyHandler implements ActionListener
{

public void actionPerformed(ActionEvent e)
{

double tc = Double.parseDouble(input.getText().trim()) ;
double tf = (9.0/5.0)*tc + 32.0;
output.setText("" + tf);

}
}

/** Construct an application and make it visible
*/

public static void main(String[] args)
{

JFrame f = new Temperature();
f.setVisible(true);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

10.5 Multi-line text fields 543

10.5 Multi-line text fields

10.5.1 JTextArea objects

A JTextField object is limited to displaying one line of text. If the text is too long for the field it
can be scrolled left or right. To obtain a multi-line field it is necessary to use aJTextArea compo-
nent object which appears as a rectangular area in the window. These objects do not automatically
provide for scrolling up and down or left and right in case thetext does not fit the rectangular area.
Therefore the text area will be added to aJScrollPane object to provide the scroll bars if needed.

10.5.2 Investment application

As an illustration let us develop an application for displaying the future value of an investment
given an annual rater in percent, and an initial investment amounta. We will assume that interest
is compounded monthly so the future valuef of the investment aftern years (12n months) is

f = a
(

1+
r

1200

)12n

The application will provide input fields for the rater and the initial amounta and will display the
future value for years 1 to 30 in aJTextArea object. The Enter key cannot be used to signal that
the input has been entered since there are now two input fields. Instead we will use a button to
signal that the results should be calculated.

We need 6 component objects: a label calledprompt1 and its associated input field called
rateField for the annual rater, another label calledprompt2 and its associated input field called
amountField for the initial amounta, a button calledcalculate to press when the input data has
been entered, and finally an output text area calledoutput to display the iterations. The application
frame should appear as in Figure 10.9 after the data has been entered and thecalculate button
has been pressed. The following statements declare references to the six GUI objects:

private JLabel prompt1;
private JLabel prompt2;
private JTextField rateField;
private JTextField amountField;
private JButton calculate;
private JTextArea output;

In the constructor they can be initialized using the statements

prompt1 = new JLabel("Enter annual rate in %");
rateField = new JTextField("12", 10);
prompt2 = new JLabel("Enter initial amount");
amountField = new JTextField("1000", 10);
calculate = new JButton("Calculate");
output = new JTextArea(10,20); // 10 rows and 20 columns
output.setEditable(false);

Here we have used another variation of theJTextField constructor that has two arguments: the
first is a string that should appear in the field initially, andthe second is the approximate field width
in characters. In our example the default initial rate is12 and the default initial amount is1000 .

544 Graphical Interface Design

Figure 10.9: The investment application

Using panels to design GUI layouts

In Figure 10.9 the two input boxes and their prompts line up inthe form of a two by two grid. If
you add the components to the application using the statements

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(prompt1);
cp.add(rateField);
cp.add(prompt2);
cp.add(amountField);
cp.add(calculate);
cp.add(output);

you won’t be able to achieve this grid style layout by resizing the frame. Also, as mentioned above,
if the text area becomes too small text will be lost since the text area object does not scroll.

To obtain the grid style layout for the first four GUI components it is first necessary to use a
JPanel object that uses aGridLayout manager. The purpose of aJPanel object is to organize
components. The following statements can be used to obtain the layout shown in Figure 10.9.

JPanel p = new JPanel();
p.setLayout(new GridLayout(2,2));
p.add(prompt1); // add prompt to panel in row 1, column 1
p.add(rateField); // add rateField to panel in row 1, column 2
p.add(prompt2); // add prompt2 to panel in row 2, column 1
p.add(amountField); // add amountField to panel in row 2, co lumn 2

10.5 Multi-line text fields 545

The first two statements define aJPanel object that will lay out its four components using a 2 by 2
grid specified by aGridLayout manager. Instead of six components we now have only three: the
panel, the calculate button and the output text area.

These three components can be added to the content pane of theframe using theFlowLayout
manager with the statements

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(p); // add the panel
cp.add(calculate);
cp.add(new JScrollPane(output));

The last statement constructs aJScrollPane object for theoutput text area and adds it to the
content pane. Now scroll bars will appear in either or both directions if needed.

Doing the calculations

The heart of the investment application is a method calleddoIterations which obtains the
yearlyRate and initialAmount by getting the strings in the two input fields and converting
them todouble numbers. Then a for-loop is used to calculate the future value at the end of each
year for 30 years:

private void doIterations()
{

NumberFormat currency = NumberFormat.getCurrencyInstan ce();
double yearlyRate =

Double.parseDouble(rateField.getText().trim());
double initialAmount =

Double.parseDouble(amountField.getText().trim());

output.setText(""); // clear text in area

double amount = initialAmount;
for (int year = 1; year <= 30; year++)
{

amount = futureValue(amount, yearlyRate, 1);
output.append(currency.format(amount) + "\n");

}
}

Here we use acurrency object that knows how to format numbers. In an English localenumbers
are formatted with commas separating the thousands, a dollar sign prefix, and rounding to the
nearest cent. To make theNumberFormat class available it is necessary to use theimport statement

import java.text.NumberFormat;

at the top of the class.

546 Graphical Interface Design

There are two methods which can be used to display text in a text area. ThesetText method
works the same as for text fields. It replaces all the text in the text area by the given text. It is used
in the above method to clear any text from a previous calculation:

output.setText("");

To display text in the text area we do not use the familiarprint and println console output
methods. Instead theappend method is used. It adds text at the end of any text already displayed
in the area. To obtain a new line it is necessary to use"\n" in the string. Therefore, in the
doIterations method the statement

output.append(currency.format(amount) + "\n");

is used to display the amount and move to the next line.
Finally, an inner class can be used to implement theActionListener interface.
Here is the complete investment application class.

ClassInvestment

book-project/chapter10/investment

package chapter10.investment;
import java.text.NumberFormat;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

/**
* A gui application for the future value of an investment
*/

public class Investment extends JFrame
{

private JLabel prompt1;
private JLabel prompt2;
private JTextField rateField;
private JTextField amountField;
private JButton calculate;
private JTextArea output;

public Investment()
{

setTitle("Investment");
setSize(325,320);

prompt1 = new JLabel("Enter annual rate in %");
rateField = new JTextField("12", 10);
prompt2 = new JLabel("Enter initial amount");
amountField = new JTextField("1000", 10);
calculate = new JButton("Calculate");
output = new JTextArea(10,20); // 10 rows and 20 columns

10.5 Multi-line text fields 547

output.setEditable(false);

// Make 2 by 2 grid for prompts and inputs

JPanel p = new JPanel();
p.setLayout(new GridLayout(2,2));
p.add(prompt1);
p.add(rateField);
p.add(prompt2);
p.add(amountField);

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(p);
cp.add(calculate);
cp.add(new JScrollPane(output));

calculate.addActionListener(new CalculateButtonHandl er());
doIterations(); // do calculations for default initial val ues

}

private void doIterations()
{

NumberFormat currency = NumberFormat.getCurrencyInstan ce();
double yearlyRate =

Double.parseDouble(rateField.getText().trim());
double initialAmount =

Double.parseDouble(amountField.getText().trim());

output.setText(""); // clear text in area

double amount = initialAmount;
for (int year = 1; year <= 30; year++)
{

amount = futureValue(amount, yearlyRate, 1);
output.append(currency.format(amount) + "\n");

}
}

private static double futureValue(double amount,
double yearlyRatePercent, int years)

{
double monthlyRate = yearlyRatePercent / 100.0 / 12.0;
double a =

amount * Math.pow(1.0 + monthlyRate, 12 * years);
return a;

}

/**
* The actionPerformed method of this inner class will be call ed
* whenever the calculate button is clicked.
*/

548 Graphical Interface Design

public class CalculateButtonHandler implements ActionLi stener
{

public void actionPerformed(ActionEvent e)
{

doIterations();
}

}

/** Construct an application and make it visible
*/

public static void main(String[] args)
{

JFrame f = new Investment();
f.setVisible(true);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

When thecalculate button is clicked the system will call theactionPerformed method and the
calculations will be performed. An interesting feature in this program is thedoIterations call
at the end of the constructor. This means that when the application runs it will do the calculations
automatically for the given default values without having to click the button.

10.6 Using inheritance to design smarter text fields

One of the deficiencies of aJTextField object is that it only provides agetText method to return
the text in the field as a string. In many applications, such asInvestment , the fields are interpreted
either asint or double values. It would be nice to havegetInt andgetDouble methods that
would automatically convert the data typed in a text field to an int value and adouble value,
respectively. Also, if a user types a non-numeric value in a field that is expecting a numeric value
then aNumberFormatException occurs. A simple way to prevent this is to catch the exception
and simply replace the invalid input typed in the field by the number 0 or an error string.

We can easily obtain a smarter text field by using inheritanceto extend theJTextField class.
We will call our subclassInputJTextField . To make it more complete we will also provide
getLong andgetFloat methods for converting to thelong andfloat types and we will provide a
getString method which is likegetText except that leading and trailing spaces will be removed.

10.6.1 Structure of theJTextField class

According to the documentation for theJTextField class its basic structure is

public class JTextField extends JTextComponent implement s SwingConstants
{

public JTextField() {...}
public JTextField(String text) {...}
public JTextField(int columns) {...}
public JTextField(String text, int columns) {...}

10.6 Using inheritance to design smarter text fields 549

// other methods that will be inherited
}

Since constructors are not inherited we can design our subclass to have the same four kinds of
constructors. Therefore our subclass will have the structure

public class InputJTextField extends JTextField
{

public InputJTextField() {...}
public InputJTextField(String text) {...}
public InputJTextField(int columns) {...}
public InputJTextField(String text, int columns) {...}

// Here are our new methods

public int getInt() {...}
public long getLong() {...}
public float getFloat() {...}
public double getDouble() {...}
public String getString() {...}

}

Since we are not introducing any new data fields the constructors can easily be implemented with
the appropriatesuper constructor call expression. To implementgetInt we can use atry-catch
block:

public int getInt()
{

try
{

return Integer.parseInt(getText().trim());
}
catch (NumberFormatException e)
{

setText("0");
return 0;

}
}

The other three get methods are similar and the complete class is

ClassInputJTextField

book-project/custom_classes

package custom_classes;
import javax.swing.*;

/**

550 Graphical Interface Design

* An InputJTextField is just like a JTextField but it provide s methods
* for reading int, long, float and double numbers in the field :
* getInt(), getLong(), getFloat(), and getDouble() return the contents
* of the TextField as in int, long, float, or a double.
* A clear() method for clearing the text in the field is also pr ovided
* <p>
* EXAMPLE
* <pre>
* InputJTextField field = new InputJTextField(20);
* ...
* int n = field.getInt(); // return field as an int
* long l = field.getLong(); // return field as a long
* float f = field.getFloat(); // return field as a float
* double d = field.getDouble(); // return field as a double
* </pre>
* For completeness a method for getting a string is also
* provided. getString() corresponds to getText() except th at leading and
* trailing blanks are removed.
*/

public class InputJTextField extends JTextField
{

public InputJTextField()
{

super();
}

public InputJTextField(String s)
{

super(s);
}

public InputJTextField(int columns)
{

super(columns);
}

public InputJTextField(String s, int columns)
{

super(s, columns);
}

/**
* Return contents of the field as an int.
* @return the contents of the field as an int
*/

public int getInt()
{

try
{

return Integer.parseInt(getText().trim());
}

10.6 Using inheritance to design smarter text fields 551

catch (NumberFormatException e)
{

setText("0");
return 0;

}
}

/**
* Return contents of the field as a long int.
* @return the contents of the field as a long int
*/

public long getLong()
{

try
{

return Long.parseLong(getText().trim());
}
catch (NumberFormatException e)
{

setText("0");
return 0;

}
}

/**
* Return the contents of the field as a float.
* @return the contents of the field as a float
*/

public double getFloat()
{

try
{

return Float.parseFloat(getText().trim());
}
catch (NumberFormatException e)
{

setText("0");
return 0;

}
}

/**
* Return the contents of the field as a double.
* @return the contents of the field as a double
*/

public double getDouble()
{

try
{

return Double.parseDouble(getText().trim());
}
catch (NumberFormatException e)

552 Graphical Interface Design

{
setText("0");
return 0;

}
}

/**
* Return the contents of the field as a String
* with leading and trailing blanks are removed.
* @return the contents of the field as a String
* with leading and trailing spaces removed.
*/

public String getString()
{

return getText().trim();
}

}

We can use this class to write a new version of theInvestment application: Simply replace the
two JTextField objectsrateField andamountField with InputJTextField objects. In the
doIterations method replace the second and third statements with

double yearlyRate = rateField.getDouble();
double initialAmount = amountField.getDouble();

10.7 GUI for the loan repayment class

In Chapter 7 (page 346) we developed theLoanRepaymentTable class that produced a loan repay-
ment table. The table was produced as one big string and returned using thetoString method. We
wrote an application class calledLoanRepaymentTableRunner (page 348) to run the class either
from the console (command prompt or terminal window) or fromBlueJ.

10.7.1 GUI version of the loan repayment class

Now we want to produce a GUI version calledLoanRepaymentTableGUI . The important idea is
that theLoanRepaymentTable class from Chapter 7 can be used unchanged for the GUI version:
it’s a “plug and play” component.

To make a GUI for this class we need four input fields, a calculate button to trigger the
calculations, and a text area to hold the table output. When the calculate button is clicked the
actionPerformed method is called and all calculations are done using the method

public void doCalculations()
{

double a = loanAmountField.getDouble();
int y = yearsField.getInt();
int p = paymentsPerYearField.getInt();
double r = annualRateField.getDouble();
LoanRepaymentTable table = new LoanRepaymentTable(a,y,p ,r);

10.7 GUI for the loan repayment class 553

output.setText(table.toString());
}

wherea is the loan amount,y is the number of years,p is the number of payments per year, and
r is the annual interest rate in percent. These values are obtained from fourInputJTextField
objects. Then ifoutput is the name of aJTextArea object the loan repayment table’stoString
method can be used to display the table in the text area.

We also need to set the font that displays text in the output area. The default font is not a
mono-spaced font so the columns will not line up properly. The statement

output.setFont(new Font("Courier", Font.PLAIN, 11));

is used to change the output text area font to Courier, which is a mono-font, using plain style (rather
than bold) and using a size of 11 points. Here is the complete GUI class.

ClassLoanRepaymentTableGUI

book-project/chapter10/loan_repayment

package chapter10.loan_repayment;
import custom_classes.InputJTextField;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

/**
* GUI interface for the LoanRepaymentTable class
*/

public class LoanRepaymentTableGUI extends JFrame
{

private JLabel loanAmountLabel;
private InputJTextField loanAmountField;
private JLabel yearsLabel;
private InputJTextField yearsField;
private JLabel paymentsPerYearLabel;
private InputJTextField paymentsPerYearField;
private JLabel annualRateLabel;
private InputJTextField annualRateField;

private JButton calculate;
private JTextArea output;

public LoanRepaymentTableGUI()
{

setTitle("Loan Repayment");
setSize(500,450);

// Construct the four input text fields and their labels

loanAmountLabel = new JLabel("Loan amount", JLabel.CENTE R);

554 Graphical Interface Design

loanAmountField = new InputJTextField("10000", 10);

yearsLabel = new JLabel("Years", JLabel.CENTER);
yearsField = new InputJTextField("10", 5);

paymentsPerYearLabel = new JLabel("Payments/year", JLab el.CENTER);
paymentsPerYearField = new InputJTextField("2", 5);

annualRateLabel = new JLabel("Annual rate %", JLabel.CENT ER);
annualRateField = new InputJTextField("10", 10);

// Construct button that causes calculations to be performe d

calculate = new JButton("Calculate");

// Construct the output text area and choose a mono-spaced fo nt
// so the columns will line-up properly

output = new JTextArea(20,60); // 10 rows and 20 columns
output.setEditable(false);
output.setFont(new Font("Courier", Font.PLAIN, 11));

// Add input fields and labels to a panel in a 2 by 4 grid

JPanel p = new JPanel(new GridLayout(2,4));
p.add(loanAmountLabel);
p.add(loanAmountField);
p.add(yearsLabel);
p.add(yearsField);
p.add(paymentsPerYearLabel);
p.add(paymentsPerYearField);
p.add(annualRateLabel);
p.add(annualRateField);

// Add panel, button, and scrollable text area to frame’s con tent pane

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(p);
cp.add(calculate);
cp.add(new JScrollPane(output));

// Add the listeners to the button

calculate.addActionListener(new CalculateButtonHandl er());

// initialize calculations for default set of input values

doCalculations();
}

10.8 Unit conversion application 555

public void doCalculations()
{

double a = loanAmountField.getDouble();
int y = yearsField.getInt();
int p = paymentsPerYearField.getInt();
double r = annualRateField.getDouble();
LoanRepaymentTable table = new LoanRepaymentTable(a,y,p ,r);
output.setText(table.toString());

}

/**
* A class to implement the actionPerformed method which will be called
* when the calculate button is pressed.
*/

public class CalculateButtonHandler implements ActionLi stener
{

public void actionPerformed(ActionEvent e)
{

doCalculations();
}

}

public static void main(String[] args)
{

JFrame f = new LoanRepaymentTableGUI();
f.setVisible(true);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

The output window is shown in Figure 10.10.
We have used a two-argumentJLabel constructor (see documentation) whose second argument

is one of these constants indicating that the label should becentered in its field. The default value
used by the one-argument constructor isJLabel.RIGHT .

10.8 Unit conversion application

As another interesting problem let us write an application calledConversions to convert numbers
from one unit to another. There will be an input text field for the number to convert and an output
text field for the converted result. We can use our customInputJTextField for the input field.
Each type of conversion, such as centimeters to inches or miles to kilometers will be represented
by a button. We will implement twelve different types of conversions using three rows of four
buttons. The initial application frame is shown in Figure 10.11. The frame contains aJPanel
containing 16 components laid out in a four by four grid usinga GridLayout manager. The first
row is different from the others and the remaining rows can each have 4 buttons. Corresponding to
these buttons there will be an array of strings for the buttonnames and an array ofdouble numbers
for the conversion factors.

Here are the private data fields for ourConversions class:

556 Graphical Interface Design

Figure 10.10:LoanRepaymentTableGUI application

private InputJTextField input; // source amount
private JTextField output; // converted amount
private JLabel inputLabel;
private JLabel outputLabel;

private String[] buttonNames = {"in to cm", "cm to in", "ft to cm",
"cm to ft", "mi to km", "km to mi", "gal to li", "li to gal",
"lb to gm", "gm to lb", "oz to gm", "gm to oz"};

private double[] factor = {2.54, 1/2.54, 30.5,
1/30.5, 1.609, 1/1.609, 3.785, 1/3.785,
453.6, 1/453.6, 28.3495, 1/28.3495};

The four fields in the top row are declared first. They provide for the input text field, the output text
field and labels for each of them. Next come the arrays for the 12 types of conversions. The first,
buttonNames , provides an array of button labels indicating the type of conversion. The next gives
the conversion factor to use. For example the factor2.54 is the conversion factor from inches to
centimeters.

These components are constructed and initialized inside the Conversions constructor. The

10.8 Unit conversion application 557

Figure 10.11:Conversions application

labels and text fields are constructed with the statements

inputLabel = new JLabel("Input", JLabel.CENTER);
input = new InputJTextField("1", 10);
outputLabel = new JLabel("Output", JLabel.CENTER);
output = new JTextField(10);

Next we need to determine how many rows of buttons there are (3rows for 12 types of con-
versions). To make it easy to modify the application to include more or less than 12 types of
conversions the number of rows can be computed using

int rows = buttonNames.length / 4;
if (buttonNames.length % 4 != 0)

rows++;

Next we can define aJPanel with GridLayout manager and lay out the first row of compo-
nents:

JPanel p = new JPanel();
p.setLayout(new GridLayout(rows + 1, 4));
p.add(inputLabel);
p.add(input);
p.add(outputLabel);
p.add(output);

Finally we can use a loop to construct the buttons, use a custom JButtonHandler inner class
to associate buttoni with an actionPerformed method, add the buttons to the panel, and then
add the panel to the content pane of the frame:

for (int i = 0; i < buttonNames.length; i++)
{

JButton b = new JButton(buttonNames[i]);
b.addActionListener(new JButtonHandler(i));
p.add(b);

}
Container contentPane = getContentPane();
contentPane.add(p);

558 Graphical Interface Design

Notice that theJButtonHandler class has a constructor with one argument,i , which is the index
of the button. It is not necessary to have an array of buttons and button handlers since the panel will
keep track of the buttons and to assign a handler to buttoni we usenew JButtonHandler(i) .
The inner class is given by

public class JButtonHandler implements ActionListener
{

private int buttonIndex;

public JButtonHandler(int index)
{

buttonIndex = index;
}

public void actionPerformed(ActionEvent e)
{

double in = input.getDouble();
double out = in * factor[buttonIndex];
output.setText(String.format("%.5f", out));

}
}

Thus, the index encapsulated by an object of this class can beused as an index into the array of
conversion factors in theactionPerformed method so the conversion from input units to output
units is given by

double out = in * factor[buttonIndex];

If we had not included a constructor having the button index as argument then we would need an
array of buttons, one handler for all buttons, and a for-loopin its actionPerformed method that
usesgetSource to determine which button was clicked.

10.8.1 Conversions class

Here is the complete application class:

ClassConversions

book-project/chapter10/conversions

package chapter10.conversions;
import custom_classes.InputJTextField;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
* Conversion from one system of units to another using button s

10.8 Unit conversion application 559

*/
public class Conversions extends JFrame
{

private InputJTextField input; // source amount
private JTextField output; // converted amount
private JLabel inputLabel;
private JLabel outputLabel;

private String[] buttonNames = {"in to cm", "cm to in", "ft to cm",
"cm to ft", "mi to km", "km to mi", "gal to li", "li to gal",
"lb to gm", "gm to lb", "oz to gm", "gm to oz"};

private double[] factor = {2.54, 1/2.54, 30.5,
1/30.5, 1.609, 1/1.609, 3.785, 1/3.785,
453.6, 1/453.6, 28.3495, 1/28.3495};

public Conversions()
{

setTitle("Conversion Calculator");

// instead of setSize we could use f.pack()
// in the main method

// setSize(450,150);

inputLabel = new JLabel("Input", JLabel.CENTER);
input = new InputJTextField("1", 10);

outputLabel = new JLabel("Output", JLabel.CENTER);
output = new JTextField(10);
output.setEditable(false);

input.setBackground(Color.blue);
input.setForeground(Color.white);
output.setBackground(Color.blue);
output.setForeground(Color.white);

// determine number of rows of buttons

int rows = buttonNames.length / 4;
if (buttonNames.length % 4 != 0)

rows++;

// Construct a panel with a grid layout for the top input/outp ut
// row and the rows of buttons.

JPanel p = new JPanel();
p.setLayout(new GridLayout(rows + 1, 4));
p.add(inputLabel);
p.add(input);
p.add(outputLabel);
p.add(output);

560 Graphical Interface Design

// Construct buttons, add listeners to them, and add them to t he panel
// Each listener constructor has an argument defining the bu tton number.

for (int i = 0; i < buttonNames.length; i++)
{

JButton b = new JButton(buttonNames[i]);
b.addActionListener(new JButtonHandler(i));
p.add(b);

}

// Finally, add the panel to the frame’s content pane

Container cp = getContentPane();
cp.add(p);

}

/**
* Handler for button i, i=0,1,2,... Each instance encapsula tes a
* button index which is an index into the conversion factor ar ray.
*/

public class JButtonHandler implements ActionListener
{

private int buttonIndex;

public JButtonHandler(int index)
{

buttonIndex = index;
}

public void actionPerformed(ActionEvent e)
{

double in = input.getDouble();
double out = in * factor[buttonIndex];
output.setText(String.format("%.5f", out));

}
}

public static void main(String[] args)
{

JFrame f = new Conversions();
f.pack();
f.setVisible(true);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

10.9 Inheritance and listener interfaces

In Chapter 10 we discussed inheritance, polymorphism and interfaces. We now give further exam-
ples using the GUI classes.

10.9 Inheritance and listener interfaces 561

10.9.1 ActionListener interface

We have seen that an event handler for processing button clicks or the pressing of the Enter key in a
text field is an object from a class that implements theActionListener interface. This means that
such an event handler “is a type of”ActionListener . To add an event handler to a component,
such as a button or text field, we use the component’saddActionListener method which has the
prototype

public void addActionListener(ActionListener obj)

The argument here is polymorphic in the sense thatobj can be an object from any class that
implements theActionListener interface. This interface is defined in thejava.awt.event
package (its full name isjava.awt.event.ActionListener) as

public interface ActionListener extends EventListener
{

public void actionPerformed(ActionEvent e);
}

Therefore a class that implements theActionListener interface only needs to implement the
actionPerformed method.

This example also shows that interfaces, like classes, can be extended:ActionListener ex-
tends theEventListener interface. If you look at documentation for theEventListener super-
interface you will see that it has the form

public interface EventListener
{
}

There are no methods to implement here: theEventListener interface simply serves as the su-
perinterface for all listener interfaces such asActionListener andWindowListener and many
others as well. It is called a “tagging interface”.

10.9.2 WindowListener interface

We have closed our GUI applications using the statement

f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

The WindowListener interface specifies a more general way to specify what happens when a
window is closed, opened, minimizes and restored.

This interface defines methods which are called when a window, such as aJFrame , is opened
or closed using the minimize, maximize, and close buttons.

The WindowListener interface in packagejava.awt.event is more complicated than the
ActionListener interface because it declares seven methods instead of one.It is defined by

public interface WindowListener extends EventListener
{

562 Graphical Interface Design

public void windowClosing(WindowEvent e);
public void windowActivated(WindowEvent e);
public void windowClosed(WindowEvent e);
public void windowDeactivated(WindowEvent e);
public void windowDeiconified(WindowEvent e);
public void windowIconified(WindowEvent e);
public void windowOpened(WindowEvent e);

}

Any class that implements this interface must implement allseven methods. This can be incon-
venient since normally we don’t need all seven methods. Normally we are only interested in the
windowClosing method.

As a convenience theWindowAdapter class in packagejava.awt.event is available as an
adapter class. It implements the interface by simply providing empty bodies for the seven methods:

public class WindowAdapter implements WindowListener
{

public void windowClosing(WindowEvent e) {}
public void windowActivated(WindowEvent e) {}
public void windowClosed(WindowEvent e) {}
public void windowDeactivated(WindowEvent e) {}
public void windowDeiconified(WindowEvent e) {}
public void windowIconified(WindowEvent e) {}
public void windowOpened(WindowEvent e) {}

}

Thus we can implement theWindowListener interface with a customWindowCloser class ob-
tained by simply by extending theWindowAdapter class in packagejava.awt.event and over-
riding just thewindowClosing method:

import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
public class WindowCloser extends WindowAdapter
{

public void windowClosing(WindowEvent e)
{

System.exit(0);
}

}

We could have used this class in our GUI programs by includingthe statement

addWindowListener(new WindowCloser());

The prototype for theaddWindowListener method of theWindow class, a superclass ofJFrame ,
is

public void addWindowListener(WindowListener obj)

10.10 Average mark calculator 563

10.10 Average mark calculator

We now write a GUI application to calculate the average mark for a student and illustrate how
event-driven programming can be used to avoid nested loops typical of ordinary programs that
repeatedly process data.

We assume that each student has marks for several tests. We want to enter the marks and
compute the average and then process another set of marks foranother student.

10.10.1 Console version of average mark calculator

If we write a console application we need to use nested loops as the following program shows:

ClassMarkAverageConsole

book-project/chapter10/mark_average

package chapter10.mark_average;
import java.util.Scanner;

/**
* A console application for calculating mark averages.
* A series of marks for a student are entered and terminated by a
* negative sentinel mark. Then the user is asked if a set of mar ks
* for another student is to be entered. No loops are needed in G UI version.
*/

public class MarkAverageConsole
{

public MarkAverageConsole()
{

Scanner input = new Scanner(System.in);

// Outer loop processes one of more students

boolean moreStudents = true;
while (moreStudents)
{

// Inner loop processes marks for a student

double sumMarks = 0;
int numMarks = 0;
System.out.println("Enter marks for a student (neg mark to quit)");
double mark = input.nextDouble();
input.nextLine();

while (mark >= 0)
{

sumMarks = sumMarks + mark;
numMarks = numMarks + 1;
mark = input.nextDouble();
input.nextLine();

564 Graphical Interface Design

}
double avg = sumMarks / numMarks;
System.out.println(String.format("Average is %.1f", av g));

System.out.println("More students Y/N ?");
char reply = input.nextLine().toUpperCase().charAt(0);
if (reply == ’N’) moreStudents = false;

}
}

public static void main(String[] args)
{

new MarkAverageConsole();
}

}

10.10.2 GUI version of average mark calculator

For the GUI version of this program no loops are required. Theevent-driven programming model
takes care of this automatically. We can use a button insteadof a sentinel value. Clicking this
button is the signal that the marks for a student have been entered and the average should be
computed. Then if an average for another student is desired anew set of marks can be entered.
Figure 10.12 shows what the GUI application will look like after one set of marks has been entered
and Figure 10.13 shows the situation after another set of marks has been entered.

Figure 10.12:MarkAverage window for one set of marks

Each time a mark is entered in the input text field it is copied to the output text area. When the
button is clicked the average is calculated and displayed. Then another set of marks can be entered.
As shown in Figure 10.13, the output area automatically scrolls if necessary.

The application contains four components: a label, a field for entering a mark, a button, and a
text area. These components can be declared using

private JLabel prompt;

10.10 Average mark calculator 565

Figure 10.13:MarkAverage window for two sets of marks

private InputJTextField markField;
private JButton calculate;
private JTextArea output;

and created in the constructor using

prompt = new JLabel("Enter next mark", JLabel.CENTER);
markField = new InputJTextField("", 10);
calculate = new JButton("Calculate Average");
output = new JTextArea(10,15); // 10 rows and 10 columns
output.setEditable(false);

A 3 row and 1 column grid layout panel can be used to organize the label, text field and button in
a vertical line. This panel and the text area can be added to the content pane using a flow layout
manager:

JPanel p = new JPanel();
p.setLayout(new GridLayout(3,1));
p.add(prompt);
p.add(markField);
p.add(calculate);
Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(p);
cp.add(new JScrollPane(output));
pack();

We have added the output text field to aJScrollPane object so that vertical scroll bars will appear
if necessary. We have not usedpack before. There are two ways to specify the size of the frame that
holds our components. We have been usingsetSize to do this in our previous GUI applications.
Another way is to usepack instead ofsetSize . This causes the window to be sized to fit the
preferred size and layout of the components. We have not usedpack previously since its effect

566 Graphical Interface Design

with the flow layout manager would be to try to put all components on one line and this would not
have looked good. However for theMarkAverageGUI application it has the effect of putting the
three by one panel and the text area side by side in a frame thatjust fits and this is what we want.
If desired the window can also be resized to move the text areabelow the button.

The next step is to add action listeners for the button click and for the pressing of the Enter key
in the text field. We can use the following inner classes to do this:

public class NextMarkFieldHandler implements ActionList ener
{

public void actionPerformed(ActionEvent e)
{

addMark();
}

}

public class CalculateButtonHandler implements ActionLi stener
{

public void actionPerformed(ActionEvent e)
{

calculateAverage();
}

}

TheaddMark method will be called when the Enter key is pressed. It simplyadds the mark to the
running sum, increments a counter for the number of marks, copies the mark to the output text
area, and clears the input text field in preparation for entering the next mark:

private void addMark()
{

double mark = markField.getDouble();
sumMarks = sumMarks + mark;
numMarks++;
markField.setText("");
output.append(mark + "\n");

}

Finally, thecalculateAverage method computes the average mark for a student and displays the
result in the output text field rounded to two decimal places:

private void calculateAverage()
{

double avg = sumMarks / numMarks;
output.append(String.format("Average is %.1f\n", avg)) ;
initialize();

}

It also calls aninitialize method defined by

10.10 Average mark calculator 567

private void initialize()
{

numMarks = 0;
sumMarks = 0.0;
markField.setText("");

}

that prepares for the computation of an average for another student. This method can also be used
in the constructor to initialize the GUI. Here is the complete application class:

ClassMarkAverageGUI

book-project/chapter10/mark_average

package chapter10.mark_average;
import custom_classes.InputJTextField;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

/**
* GUI version of MarkAverageConsole.
*/

public class MarkAverageGUI extends JFrame
{

private JLabel prompt;
private InputJTextField markField;
private JButton calculate;
private JTextArea output;

private double sumMarks = 0.0;
private int numMarks = 0;

public MarkAverageGUI()
{

setTitle("Average Mark Calculator");

prompt = new JLabel("Enter next mark", JLabel.CENTER);
markField = new InputJTextField("", 10);
calculate = new JButton("Calculate Average");
output = new JTextArea(10,15); // 10 rows and 10 columns
output.setEditable(false);

JPanel p = new JPanel();
p.setLayout(new GridLayout(3,1));
p.add(prompt);
p.add(markField);
p.add(calculate);

Container cp = getContentPane();
cp.setLayout(new FlowLayout());

568 Graphical Interface Design

cp.add(p);
cp.add(new JScrollPane(output));

/* Pack causes the window to be sized to fit the preferred size and
layouts of its components.

*/
pack();

markField.addActionListener(new NextMarkFieldHandler ());
calculate.addActionListener(new CalculateButtonHandl er());
initialize();

}

// Prepare for calculation of average for a new student

private void initialize()
{

numMarks = 0;
sumMarks = 0.0;
markField.setText("");

}

private void calculateAverage()
{

double avg = sumMarks / numMarks;
output.append(String.format("Average is %.1f\n", avg)) ;
initialize();

}

private void addMark()
{

double mark = markField.getDouble();
sumMarks = sumMarks + mark;
numMarks++;
markField.setText("");
output.append(mark + "\n");

}

public class NextMarkFieldHandler implements ActionList ener
{

public void actionPerformed(ActionEvent e)
{

addMark();
}

}

public class CalculateButtonHandler implements ActionLi stener
{

public void actionPerformed(ActionEvent e)
{

calculateAverage();
}

10.11 GUI version of theRandomTriangles class 569

}

public static void main(String[] args)
{

JFrame f = new MarkAverageGUI();
f.setVisible(true);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

10.11 GUI Version of theRandomTriangles class

In Chapter 9 we wrote aRandomTriangles class (page 497) using a command line argument to
get the number of random triangles to draw. If no command lineargument was supplied then 10
triangles were drawn. SinceRandomTriangles is a JPanel then, rather than use command line
arguments and putting this panel in aGraphicsFrame , we can use a text field to input the number
of triangles to draw and use a button to signal that the windowshould be refreshed to use the
number in this text field. Thus, the GUI components are the graphics panel, a label, a text field and
a button.

10.11.1 ControlPanel class

We can think of the last three components as forming a controlpanel which we can place along
the bottom of the frame as shown in Figure 10.14. Above it we can place theRandomTriangles
graphics panel. The control panel will be an object from aControlPanel class that extends

Figure 10.14: The random triangles GUI using aControlPanel and aJPanel

JPanel . It contains aJLabel , anInputJTextField , and aJButton object, and will communicate

570 Graphical Interface Design

with the application class using agetValue method that returns the value typed in the text field.
The class is given by

ClassControlPanel

book-project/chapter10/random_triangles

package chapter10.random_triangles;
import custom_classes.InputJTextField;
import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
import javax.swing.*;
import javax.swing.event.*;

/**
* A control panel containing a prompt, input text field and a b utton.
*/

public class ControlPanel extends JPanel
{

private JButton button;
private JLabel prompt;
private InputJTextField inputField;

public ControlPanel(String promptString, String buttonL abel, int value)
{

button = new JButton(buttonLabel);
prompt = new JLabel(promptString);
inputField = new InputJTextField("" + value, 5);

// Use grid layout to make text field and button the same size

JPanel p = new JPanel();
p.setLayout(new GridLayout(1,2));
p.add(inputField);
p.add(button);

// put prompt and grid into flow layout (centered is default)

setLayout(new FlowLayout());
add(prompt);
add(p);

}

public void addActionListener(ActionListener a)
{

button.addActionListener(a);
}

public int getValue()
{

return inputField.getInt();

10.11 GUI version of theRandomTriangles class 571

}
}

Panels don’t have action listeners. They are just used to organize the layout of components and
for drawing graphics. However we need anaddActionListener method here because our panel
should respond when the button is clicked. It is easy to writethis method: we can have it just add
the listener to the button.

We have also madeControlPanel more general than it needs to be in this application by using
general arguments in the constructor. This class could be reused in any situation where there is a
labeled text field and a button to control it.

Now we need to write theRandomTrianglesGUI application class. It contains an object called
trianglePanel from theRandomTriangles class and aControlPanel calledcontrolPanel . It
can implement theActionListener interface and repaint the graphics panel when the draw button
is clicked. TheRandomTriangles class from Chapter 9 can be used unchanged.

This is an excellent example showing how two interacting objects: thecontrolPanel object
has agetValue method to return the value typed in the text field and thetrianglePanel object
has asetNumTriangles method to set the number of triangles that should be drawn. Thus, they
can communicate using the statement

trianglePanel.setNumTriangles(controlPanel.getValue ());

This gives the following inner class with anactionPerformed method which will be called when-
ever the control panel’s button is clicked.

public class ControlPanelHandler implements ActionListe ner
{

public void actionPerformed(ActionEvent e)
{

trianglePanel.setNumTriangles(controlPanel.getValue ());
trianglePanel.repaint();

}
}

The repaint method will cause the graphics panel’spaintComponent method to be called and
this will draw a new set of triangles.

To arrange that the graphics panel fills the entire frame above the control panel we will use a
BorderLayout for theRandomTrianglesGUI class. ABorderLayout manager uses five areas of
the screen (north, south, east, west, and center) to lay out components. It is not necessary to use
all five regions. In any case the center region always expandsto use all space not required by the
border regions. Therefore the control panel can be added in the south region and the graphics panel
can be added to the center region. Here is the complete class.

ClassRandomTrianglesGUI

book-project/chapter10/random_triangles

package chapter10.random_triangles;

572 Graphical Interface Design

import chapter9.shapes.RandomTriangles;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
* Show how to place a graphics panel in a frame and have
* it controlled using a control panel rather than console inp ut.
*/

public class RandomTrianglesGUI extends JFrame
{

private ControlPanel controlPanel;
private RandomTriangles trianglePanel;

public RandomTrianglesGUI()
{

setTitle("Random Triangles GUI");
controlPanel = new ControlPanel("Number of triangles", "d raw", 10);
trianglePanel = new RandomTriangles(10);

Container cp = getContentPane();
cp.setLayout(new BorderLayout());
cp.add(trianglePanel, BorderLayout.CENTER);
cp.add(controlPanel, BorderLayout.SOUTH);

controlPanel.addActionListener(new ControlPanelHandl er());
setSize(400,400);

}

/**
* The actionPerformed method of this inner class will be call ed
* whenever the control panel’s button is clicked.
*/

public class ControlPanelHandler implements ActionListe ner
{

// When the control panel’s button is clicked, get the value t yped
// in the text field and give it to the RandomTriangles object using
// its setNumTriangles method.

public void actionPerformed(ActionEvent e)
{

trianglePanel.setNumTriangles(controlPanel.getValue ());
trianglePanel.repaint();

}
}

public static void main(String[] args)
{

JFrame f = new RandomTrianglesGUI();
f.setVisible(true);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

10.12 Inheritance and theGraphicsFrame class 573

}
}

This application class shows why we needed to include anaddActionListener method in the
ControlPanel class. We could have designed all the components into this class and not used a
separateControlPanel class, but using this class shows how to separate the user interaction part
of the application from the output part (graphics display).

Many of the graphics programs we have written since Chapter 5could now be rewritten, using
RandomTrianglesGUI as a model, to get their input from the GUI rather than the command line
or aScanner object.

10.12 Inheritance and theGraphicsFrame class

We have used theGraphicsFrame class many times since it made simple graphics programs easy
to write. It is another good example of inheritance. Recall from Chapter 5 that classes using
GraphicsFrame have the overall structure

public class MyClass extends JPanel
{

// data fields go here

public void main(String[] args)
{

new GraphicsFrame("Title goes here", new MyClass(), 401, 3 01);
}

// other methods go here
}

Here theGraphicsFrame constructor arguments are a title string, an instance of thegraphics panel
classMyClass , and its width and height in pixels. Now aMyClass object “is a”JPanel object and
a JPanel object “is a”JComponent object so theGraphicsFrame class has the specification

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class GraphicsFrame extends JFrame
{

public GraphicsFrame(String title, JComponent c, int w, in t h) {...}

// other methods if needed go here
}

The constructor implementation is

public GraphicsFrame(String title, JComponent c, int w, in t h)

574 Graphical Interface Design

{
super();
setTitle(title);
c.setPreferredSize(new Dimension(w,h));
getContentPane().add(c);
pack();
center();
setVisible(true);
setDefaultCloseOperation(WindowConstants.DISPOSE_ON _CLOSE);
}

There are a few new features here. First thesetPreferredSize method is used on the
JComponent called c to set the preferred size of the component usingw and h. This method
requires aDimension object as argument. TheDimension class injava.awt is just a simple class
that lets you specify the width and height of components using a single object variable rather than
two integer values.

It is also convenient for returning a pair of width and heightvalues as the value of a method (see
getSize in thecenter method below). The data fieldswidth andheight are public variables so
if d is aDimension object thend.width is the width andd.height is the height.

Next c is added to the center of the content pane of the frame. Recallthat the default layout
manager for a frame isBorderLayout not FlowLayout . This layout manager identifies north,
south, east, west, and center positions of a frame or other component, so we specify that the
component should go in the center of the frame. Since there are no other components for north,
south, east, or west, the component fills all the space in the frame.

Next it is necessary to usepack to indicate that the frame should be chosen just large enough
to contain the added components (onlyc in our case).

Finally, since frames normally appear in the top left cornerof the screen and we want them to
appear in the center of the screen, a localcenter method is called to do this.

10.12.1 GraphicsFrame class

Here is the complete class.

ClassGraphicsFrame

book-project/custom_classes

package custom_classes;
import java.awt.*;
import javax.swing.*;

/**
* A simple class to set up a graphics frame on which to draw grap hics.
*/
public class GraphicsFrame extends JFrame

{
/**

10.13 Applets 575

* Construct a graphics frame with drawing surface of width w p ixels and
* height h pixels.
* @param title title appearing in the window title bar.
* @param c the component on which to draw (normally a JPanel ob ject).
* @param w width of drawing surface in pixels.
* @param h height of drawing surface in pixels.
*/

public GraphicsFrame(String title, JComponent c, int w, in t h)
{

super();
setTitle(title);
c.setPreferredSize(new Dimension(w,h));
getContentPane().add(c);
pack();
center();
setVisible(true);
setDefaultCloseOperation(WindowConstants.DISPOSE_ON _CLOSE);

}

private void center()
{

Dimension screenSize = getToolkit().getScreenSize();
Dimension frameSize = getSize();
int xLocation = (screenSize.width - frameSize.width) / 2;
int yLocation = (screenSize.height - frameSize.height) / 2 ;
setLocation(xLocation, yLocation);

}
}

The center method uses some fancy tricks to get the screen size and frame size asDimension
objects using thegetToolkit method and thensetLocation to position the top left corner of the
frame so that the frame is centered in the screen.

10.13 Applets

Java application classes are divided into two categories. The first consists of the console and GUI
applications that we have written so far. The second consists of GUI applets. It is also possible to
write a class that functions both as a GUI application and as an applet.

Applets are special GUI classes that are executed by a Web browser instead of thejava inter-
preter. They are compiled in the same way as other Java classes using thejavac command or using
BlueJ. Each applet is specified on a web page using a special HTML applet tag which specifies the
class file to run and the width and height in pixels of the applet. This area corresponds to the
JPanel that we have used in our graphical programs. When the browserfinds this tag it allocates
the required rectangular area on the screen, loads the specified applet class file (byte codes) and
runs the applet. The applet can also be run directly fromBluej.

A template for the simple applets we shall discuss is given by

import java.awt.*;
import java.awt.event.*;

576 Graphical Interface Design

import java.awt.geom.*;
import javax.swing.*;
public class MyApplet extends JApplet
{

// declare variables and GUI components

public void init()
{

// code to execute when the applet is initialized
}

public void start() {...}
public void stop() {...}
public void destroy() {...}

// other methods can go here
}

This is not the most general form of an applet. There are no constructors in an applet. Instead
we override theinit method ofJApplet . When the browser runs an applet it executes theinit
method to initialize and display the applet. Therefore any code that normally goes in a constructor
is now placed in theinit method.

There are other methods that are essential for some applets.The browser calls thestart
method each time the user loads the page containing the applet, and it calls thestop method when
the browser loads a new page. Thedestroy method is called by the browser to perform any clean-
up tasks when an applet is being terminated. Many other applet-specific methods are available.
For the simplest applets only theinit method is required.

10.13.1 RGB color applet

As an example, let us write an applet calledRGBColorApplet that lets us type in three RGB color
codes in the range 0 to 255 and display the corresponding color. We will write our class so that
it functions both as a GUI application and an applet. We can test applets without using a web
browser. A specialappletviewer program is provided as part of the Java 2 SDK. This program
is like a “no-frills” browser whose sole purpose is to test applets. It can be run from the command
line. This requires that we write a shortHTML file that has an applet tag containing the name
of the class file,RGBColorApplet.class in our case, and the width and height in pixels of the
rectangular panel for the applet and optionally three parameters to describe the initial RGB color
values.

For example if you write the following simpleHTML file calledTestRGBColorApplet.html
that contains

<html>
<body>
<applet code = "RGBColorApplet.class" width="400" height ="150">
<param name = "redValue" value = "125">

10.13 Applets 577

<param name = "greenValue" value = "205">
<param name = "blueValue" value = "125">
</applet>
</body>
</html>

then the command

appletviewer TestRGBColorApplet.html

tellsappletviewer to look in theHTML file for the applet tag giving the class to load and the size
of the applet. The applet tag can also be used to parameterizean applet by specifying the initial
values of some variables using name-value pairs. Here we usethreePARAMtags. Each specifies
a string for the name of the parameter and a value for this parameter. The applet can read these
values using itsgetParameter method. This is analogous to the command line arguments for
console applications.

Unlike the Java interpreter, theappletviewer program and the web browser completely ignore
any classpath you have set since it is doubtful that someone half way around the world will be using
your classpath. Only the directory containing the applet class file is searched for custom packages,
so in our case we put all required files in the directory that containsRGBColorApplet.class .

TheRGBColorApplet window is shown in Figure 10.15. We will write the applet so that it can

Figure 10.15:RGBColorApplet in the applet viewer window

also be run as GUI application using the standard Java interpreter. It is very easy to do this for any
applet. Then the command to run the application is

java RGBColorApplet

and the output window is shown in Figure 10.16.

Laying out the components

The figures show that the frame contains two top-level panels. The top panel is called the control
panel, and the large bottom panel is called the color panel. These two panels are declared using

578 Graphical Interface Design

Figure 10.16:RGBColorApplet as a GUI application

private JPanel controlPanel;
private JPanel colorPanel;

The control panel also contains three panels, each containing a color label and an input text field,
and a color button.

The control panel’s three labels, three text fields, and color button are declared using

private JLabel redLabel;
private JLabel greenLabel;
private JLabel blueLabel;
private InputJTextField redField;
private InputJTextField greenField;
private InputJTextField blueField;
private JButton colorButton;

The color panel will show the selected color as its background color when the button is clicked.
To get the red, green and blue background rectangles for the labels and text fields it is necessary

to put each label and text field in its own panel and set the background color of the panel. Therefore
in the init method we can construct the control panel and its components. For example, the
following statements define the red label, text field, and itsred panel.

redLabel = new JLabel("Red", JLabel.CENTER);
redLabel.setForeground(Color.black);
redField = new InputJTextField(redValue, 4);
JPanel pRed = new JPanel();
pRed.add(redLabel);
pRed.add(redField);
pRed.setBackground(Color.red);

The variableredValue will be a string containing the initial red value. It is obtained from the
PARAMtag specified in the applet tag. Similarly we can define panelspGreen andpBlue . The
button is constructed using

colorButton = new JButton("Color");

10.13 Applets 579

The control panel uses theFlowLayout manager and can be constructed with the statements

controlPanel = new JPanel();
controlPanel.setLayout(new FlowLayout());
controlPanel.add(pRed);
controlPanel.add(pGreen);
controlPanel.add(pBlue);
controlPanel.add(colorButton);

and the color panel can be constructed with the statement

colorPanel = new JPanel();

Next, the control panel and the color panel need to be added tothe applet. We can use the
BorderLayout manager and put the control panel in the north position and the color panel in the
center position so that it fills the remaining space. The statements to do this are

Container cp = getContentPane();
cp.setLayout(new BorderLayout());
cp.add(controlPanel, "North");
cp.add(colorPanel, "Center");

Finally, theinit method needs to add a listener to the button. We will do this using an inner class
and the statement

colorButton.addActionListener(new ColorButtonHandler ());

The inner class needs anactionPerformed method to read the three color codes from the input
text fields and use them to set a new background color for the color panel. This class is given by

public class ColorButtonHandler implements ActionListen er
{

public void actionPerformed(ActionEvent e)
{

changeColor();
}

}

where thechangeColor method is given by

public void changeColor()
{

int red = redField.getInt();
int green = greenField.getInt();
int blue = blueField.getInt();
Color c = new Color(red, green, blue);
colorPanel.setBackground(c);
repaint();

}

580 Graphical Interface Design

The repaint method is important since it tells the event manager that it should request an update
of the components on the screen to reflect the new background color. This has the effect of calling
thepaintComponent method of the panel.

Since an applet does not have a frame inside the browser window we can put a one pixel border
rectangle around the applet panel. For applets this is not done using thepaintComponent method
but with thepaint method. Therefore we include

public void paint(Graphics g)
{

super.paint(g);
Graphics2D g2D = (Graphics2D) g;
Shape border = new Rectangle2D.Double(0,0,getWidth()-1, getHeight()-1);
g2D.setPaint(Color.black);
g2D.draw(border);

}

You can see this border in Figure 10.15 and Figure 10.16.
Finally, we need to read the three initial values for the red,green, and blue components from

the parameter fields in the applet tag. This is done in theinit method using

try // in case we run it as an application
{

// try to get parameters from applet tag

redValue = getParameter("redValue");
greenValue = getParameter("greenValue");
blueValue = getParameter("blueValue");

// if they are null assign default values

if (redValue == null) redValue = "125";
if (greenValue == null) greenValue = "205";
if (blueValue == null) blueValue = "125";

}
catch (NullPointerException e)
{

redValue = "125";
greenValue = "205";
blueValue = "125";

}

The argument of thegetParameter method specifies the parameter name as a string as defined by
the name part of the parameter tag and the return value is the value of this parameter as specified
by the value part of the parameter tag. Thetry block is necessary in case the applet tag has no
parameter tags or in case it is run as an application using themain method.

This is all we need to write an applet. But if we also want to runthe applet as a standalone
application we need amain method that can create a frame and put our applet in it. This can be
done as follows:

10.13 Applets 581

public static void main(String[] args)
{

RGBColorApplet a = new RGBColorApplet();
a.setSize(400,150);
a.init();
JFrame f = new JFrame();
Container cp = f.getContentPane();
cp.add(a);
f.addWindowListener(new WindowCloser());
f.setTitle("RGB colors");
f.setSize(400,175);
f.setVisible(true);

}

We are in effect writing a “no-frills” appletviewer or browser here. First an applet object is con-
structed and initialized by calling itsinit method. Then aJFrame object calledf is created and
the applet object is added to its content pane.

Finally, we add a window listener, a title, a size for the frame, and we make the frame visible.
For a pure applet class we do not need to worry about closing the frame since the applet viewer or
the browser takes care of this. Here is the complete applet class:

ClassRGBColorApplet

book-project/chapter10/applets

package chapter10.applets;
import custom_classes.InputJTextField;
import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
import javax.swing.*;

/**
* An applet for calculating RGB color values that can also be
* run as an application.
*/

public class RGBColorApplet extends JApplet
{

private JLabel redLabel;
private JLabel greenLabel;
private JLabel blueLabel;
private InputJTextField redField;
private InputJTextField greenField;
private InputJTextField blueField;
private JPanel controlPanel;
private JPanel colorPanel;
private JButton colorButton;

// Applet parameters specified in applet tag

582 Graphical Interface Design

private String redValue, greenValue, blueValue;

public void init()
{

try // in case we run it as an application
{

// try to get parameters from applet tag

redValue = getParameter("redValue");
greenValue = getParameter("greenValue");
blueValue = getParameter("blueValue");

// if they are null assign default values

if (redValue == null) redValue = "125";
if (greenValue == null) greenValue = "205";
if (blueValue == null) blueValue = "125";

}
catch (NullPointerException e)
{

redValue = "125";
greenValue = "205";
blueValue = "125";

}

// Put red label and text field in panel
// and set panel’s background color

redLabel = new JLabel("Red", JLabel.CENTER);
redLabel.setForeground(Color.black);
redField = new InputJTextField(redValue, 4);
JPanel pRed = new JPanel();
pRed.add(redLabel);
pRed.add(redField);
pRed.setBackground(Color.red);

// Similarly for a green label and text field

greenLabel = new JLabel("Green", JLabel.CENTER);
greenLabel.setForeground(Color.black);
greenField = new InputJTextField(greenValue,4);
JPanel pGreen = new JPanel();
pGreen.add(greenLabel);
pGreen.add(greenField);
pGreen.setBackground(Color.green);

// Similarly do a blue label and text field

blueLabel = new JLabel("Blue", JLabel.CENTER);
blueLabel.setForeground(Color.black);
blueField = new InputJTextField(blueValue, 4);
JPanel pBlue = new JPanel();

10.13 Applets 583

pBlue.add(blueLabel);
pBlue.add(blueField);
pBlue.setBackground(Color.blue);

colorButton = new JButton("Color");

// Construct the control panel and add color panels to it

controlPanel = new JPanel();
controlPanel.setLayout(new FlowLayout());
controlPanel.add(pRed);
controlPanel.add(pGreen);
controlPanel.add(pBlue);
controlPanel.add(colorButton);

// Construct a color panel

colorPanel = new JPanel();

// Add control panel and color panel to the applet’s content p ane
// using a border layout. The control panel is at the top of the
// frame and the color panel fills the remainder of the frame.

Container cp = getContentPane();
cp.setLayout(new BorderLayout());
cp.add(controlPanel, BorderLayout.NORTH);
cp.add(colorPanel, BorderLayout.CENTER);

colorButton.addActionListener(new ColorButtonHandler ());
changeColor();

}

/**
* Put a one pixel black rectangle around applet panel
*/

public void paint(Graphics g)
{

super.paint(g);
Graphics2D g2D = (Graphics2D) g;
int xMax = getWidth() - 1;
int yMax = getHeight() - 1;
Shape border = new Rectangle2D.Double(0,0,xMax,yMax);
g2D.setPaint(Color.black);
g2D.draw(border);

}

/**
* Inner class containing actionPerformed method to be calle d when
* the color button in the control panel is clicked
*/

public class ColorButtonHandler implements ActionListen er
{

584 Graphical Interface Design

public void actionPerformed(ActionEvent e)
{

changeColor();
}

}

// Get RGB values, set background of the color panel to this co lor.

private void changeColor()
{

int red = redField.getInt();
int green = greenField.getInt();
int blue = blueField.getInt();
Color c = new Color(red, green, blue);
colorPanel.setBackground(c);
repaint();

}

public static void main(String[] args)
{

// Construct an applet object and initialize it

RGBColorApplet a = new RGBColorApplet();
a.setSize(400,150);
a.init();

// Construct frame and add applet to its content pane

JFrame f = new JFrame();
Container cp = f.getContentPane();
cp.add(a);
f.setTitle("RGB colors");
f.setSize(400,175);
f.setVisible(true);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

10.13.2 Running applets fromBlueJ

It is easy to run and test applets fromBlueJ. In the BlueJ project in Figure 10.17 the notation
<<applet>> in the yellow class rectangle indicates that this class is anapplet. When you right
click on the rectangle the menu shown in Figure 10.18 appears.

To run the applet simply choose the “Run Applet” menu choice and the dialog box shown in
Figure 10.19 appears. Here we can specify the applet tag. We have specified values for the three
parameters and we have chosen a width of 400 pixels and a height of 200 pixels for the applet.

When you click OKBlueJ will create a smallHTML file, RGBColorApplet.html , with the
same name as the class having the contents

<html>

10.13 Applets 585

Figure 10.17:RGBColorApplet in a BlueJ project

Figure 10.18:RGBColorApplet class menu

Figure 10.19: DefiningRGBColorApplet applet parameters

586 Graphical Interface Design

<!-- This file automatically generated by BlueJ Java Develo pment -->
<!-- Environment. It is regenerated automatically each tim e the -->
<!-- applet is run. Any manual changes made to file will be los t -->
<!-- when the applet is next run inside BlueJ. Save into a -->
<!-- directory outside of the package directory if you want t o -->
<!-- preserve this file. -->

<head>
<title>RGBColorApplet Applet</title>

</head>
<body>

<h1>RGBColorApplet Applet</h1>
<hr>
<applet code="RGBColorApplet.class"

width=400
height=200
codebase="."
alt="Your browser understands the <APPLET> tag
but isn’t running the applet, for some reason."

>
<PARAM NAME = redValue VALUE = 125>
<PARAM NAME = greenValue VALUE = 205>
<PARAM NAME = blueValue VALUE = 125>

Your browser is ignoring the <APPLET> tag!
</applet>
<hr>

</body>
</html>

and runs the appletviewer using this file.

10.13.3 Running Java applets in a browser

The followingHTML file shows how the applet tag can be used:

<html>
<head>
<title>An RGB color applet</title>
</head>

<body>

<h1>The RGBColorApplet in a browser window</h1>

<applet code = "RGBColorApplet.class" width="400" height ="150">
<param name = "redValue" value = "125">
<param name = "greenValue" value = "205">

10.13 Applets 587

Figure 10.20:RGBColorApplet running in Internet Explorer

<param name = "blueValue" value = "125">
</applet>

<p>
If you don’t see the applet you need to download the Java Plugi n
from Sun’s web site.
</p>

</body>
</html>

When you load this file into your browser the applet will startrunning as shown in Figure 10.20.

10.13.4 Launching Java applications from an applet

It is also possible to run a java application from an applet. As a simple example we write a small
applet calledApplicationLauncher that contains only a button whose purpose is to launch the
RandomTrianglesGUI application, considered earlier in this chapter, when the button is clicked.
The application appears in a separate frame and can be closedand terminated by clicking the applet
button again. The button will act like a toggle between launching the application and terminating
the application. When theHTML page containing the button is replaced by a new page or when the
browser is closed the application will also be terminated.

A picture of the applet running in Internet Explorer is shownin Figure 10.21 and theHTML file
shown in the browser window is

<html>
<title>Launching an application from an applet</title>

588 Graphical Interface Design

Figure 10.21:ApplicationLauncher running in Internet Explorer

<body>
<h2>Launching an application using an applet button</h2>
<table>
<tr>
<td>
When the button is clicked for the first time the RandomTrian gleGUI
application is launched in a frame. The next time the button i s clicked
the application is terminated.
The button text changes to reflect the action.
</td>
<td>
<APPLET CODE = "ApplicationLauncher.class" WIDTH=200 HEI GHT=50>
</APPLET>
</td>
</tr>
</table>
</body>
</html>

Here is the applet class.

ClassApplicationLauncher

book-project/chapter10/random_triangles

package chapter10.random_triangles;

10.13 Applets 589

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
* Show how to launch GUI application from a JApplet
* using a button. When the button is clicked the frame appears .
* When the button is clicked again the frame is destroyed.
*/

public class ApplicationLauncher extends JApplet impleme nts ActionListener
{

JFrame f;
JButton launchButton;

public void init()
{

f = null;
launchButton = new JButton("Launch application");
Container cp = getContentPane();
cp.setLayout(new BorderLayout());
cp.add(launchButton, "Center");
launchButton.addActionListener(this);

}

/**
* This method is called when browser terminates the applet.
*/

public void destroy()
{

if (f != null) f.dispose();
}

/**
* This method is called when the launcher button is clicked.
* The button acts like a toggle.
*/

public void actionPerformed(ActionEvent e)
{

if (f == null) // create application, display it
{

f = new RandomTrianglesGUI();
f.setVisible(true);
launchButton.setText("Terminate application");

}
else // dispose of frame to terminate application
{

f.dispose();
f = null;
launchButton.setText("Launch application");

}
}

}

590 Graphical Interface Design

The init method simply creates a button which fills the area allocatedfor the applet since the
border layout is used. TheactionPerformed method can detect whether the application object
exists by testing its reference to see if it isnull , in which case it creates the application in aJFrame
and makes it visible. Otherwise the application is terminated. The text on the button is changed
dynamically using thesetText method to indicate what happens when the button is clicked. It is
necessary to dispose of the application using thedispose method when the browser is closed or
visits a new page.

10.14 Review exercises

◮ Review Exercise 10.1Define the following terms and give examples of each.

GUI component event listener
event-driven programming text field text area
listener list EventListener ActionListener
ActionEvent WindowListener WindowEvent
JFrame JComponent JPanel
JLabel JButton JTextField
InputJTextField JTextArea JScrollPane
layout manager FlowLayout BorderLayout
GridLayout content pane addActionListener
addWindowListener inner class add
getSource actionPerformed SwingConstants
CloseableJFrame Applet

10.15 Programming exercises

◮ Exercise 10.1 (GUI version of DoubleYourMoney)
Write a GUI version of the doubling your money program (Chapter 7, page 323). Provide two
InputJTextField objects for getting the initial investment and the annual interest rate in percent.
Use a button that will perform the calculations when it is clicked and display the results in a
scrollableJTextArea object.

◮ Exercise 10.2 (A GUI version of InvestmentTable)
We did a GUI version of the loan repayment program calledLoanRepaymentTableGUI , page 553,
using the reusableLoanRepaymentTable class which returned the table usingtoString .

Write a GUI version of the investment program using theInvestmentTable class, Chapter 7,
page 353, that returns the table usingtoString Your application frame should look as close as
possible to the frame shown in Figure 10.22.

◮ Exercise 10.3 (GUI version of ChangeMaker)
Write a GUI version of a change maker program calledChangeMakerGUI . Your application frame

10.15 Programming exercises 591

Figure 10.22:InvestmentTable application

Figure 10.23:ChangeMaker application

592 Graphical Interface Design

should look as close as possible to the frame shown in Figure 10.23. The checkout person en-
ters the amount due and the amount received by the customer. When the calculate button is
pressed the change is displayed as shown in the text area. Usean inner class to implement the
ActionListener interface.

◮ Exercise 10.4 (A better GUI version of ChangeMaker)
Make a better version ofChangeMakerGUI that does not display zero values. For example, for the
values shown in Figure 10.23 the dollars and nickels rows would not be shown at all. Also this
version should check the input carefully: amounts entered should be non-negative and the amount
received should be greater or equal to the amount due. Display appropriate messages in the text
area for illegal input.

◮ Exercise 10.5 (A modification to RGBColorApplet)
Modify RGBColorApplet so that pressing the enter key in any of the three text fields also triggers
a repaint of the color panel.

◮ Exercise 10.6 A GUI application version of RGBColorApplet)
TheRGBColorApplet class was written to work both as an applet and a GUI application. Write a
version calledRGBColorGUI that works only as an application.

◮ Exercise 10.7 (An applet version of InvestmentTableGUI)
Write an applet version ofInvestmentTableGUI called InvestmentTableApplet and write an
HTML file for it using HTMLConverter so that it will run in a browser (you can modify the file
RGBColorApplet.html to useInvestmentTableApplet.class and change the width and height
values).

◮ Exercise 10.8 (Launching applications using applet buttons)
UsingApplicationLauncher as a guide, page 588, write an applet calledProgramLauncher that
contains several buttons. Each button should launch an application class in a frame. Use some of
the applications in this chapter.

BlueJ andBeanShell Edition Copyright 2002, 2005, 2007, Barry G. Adams

Chapter 11

Files and Streams
Data processing with sequential files

Outline

File concepts

Reading and writing sequential files

Binary and text file structures

InputStream and OutputStream hierarchies

Reader and Writer hierarchies

File I/O error handling using exceptions

Reading and writing byte streams

Reading and writing character streams

FileCopier and FileSearcher programs

ByteViewer program for viewing bytes in a file

Text files ofBankAccount objects

ArrayList class

Binary object files of BankAccount objects

593

594 Files and Streams

11.1 Introduction

In this chapter we introduce files and streams and some applications that use them. Streams are
sequences of data items that can be connected to a file. First,a detailed survey of some of the built-
in stream and file classes is given. These are low-level classes for processing streams of bytes and
characters. We also show how to do higher-level text file processing usingBankAccount objects
as a standard example. Our approach is to use inheritance andextend the built-in classes to read
and writeBankAccount objects. Polymorphic binary object files for reading and writing serialized
objects are introduced using theBankAccount andJointBankAccount classes as examples.

11.2 File concepts

11.2.1 What is a file?

A file is an organized collection of data on an external storage device such as a disk (floppy disk,
hard disk, CD-ROM). It is referenced by its name. Files are independent of the programs that create
and manipulate them as opposed to data stored in the main computer memory (RAM memory),
which is available only while the program is running. This data is lost when the program exits or
when the computer is turned off. Thus, files provide long termdata storage. Also, their size can be
larger than the available memory.

For example, if a student marks program creates an array of student marks for the assignments
and tests in a course then this array is created in memory and will be lost when the program exits.
Since it is important to keep this array for a longer time, it is necessary to write it to a file. The
marks program can then read the file at a later time for furtherprocessing such as correcting errors,
adding new marks, or computing averages.

11.2.2 File organization on a sisk

In order to work with files it is helpful to have some understanding of how they are organized on a
disk and how to communicate with the operating system (OS) inorder to read and write them.

Computer memory is normally organized as a large sequentialcollection of bytes, each of
which has an address. On the other hand each surface of a disk is organized into concentric tracks,
and each track is composed of a number of sectors, each of which can hold a fixed number of bytes.
Each file occupies a certain number of sectors which are not necessarily consecutive. In order for
the OS to keep track of each file stored on a disk it keeps a file allocation table (FAT) on the disk.
There is an entry in the FAT for each file that gives information such as the name of the file, the
size of the file, and the location on the disk (track and sectornumber) of the first sector allocated to
the file. Each sector contains a reference to the next sector (link to the next sector) so the complete
file can be accessed by following these links. New files can be written to a disk by locating unused
sectors to store the data and linking them together.

11.2 File concepts 595

11.2.3 Efficient file access using buffering

Another important consideration when using files is that accessing data on a disk is thousands of
times slower than accessing data stored in main memory (milliseconds versus nanoseconds).

Since file access times are much greater than memory access times it is important that files
are accessed efficiently. For each file that is currently being read or written the operating system
maintains information about the file in a data structure called a file control block (FCB). The FCB
resides in memory and contains a data buffer to hold the next block of bytes from the file and
all information necessary to communicate with the file (e.g., file name, size of file in bytes, file
access rights). Fortunately we do not need to know the detailed structure of an FCB since high
level languages provide convenient functions for working with files at a high level. The OS is
responsible for the lower level file operations and the FCB.

The OS does not read or write single bytes at a time. Instead, it is much more efficient to use
the data buffer associated with the FCB to read or write one data buffer at a time. For example, if
the size of the data buffer is 4096 bytes, then that many bytesare read or written at a time. This
method of doing file input/output (I/O) one data buffer at a time, rather than one byte at a time, is
called buffered I/O.

11.2.4 File access rights

Other properties of a file are its access rights. Unless you are writing an OS, your application
programs do not directly access files on the disk. Instead, they make higher level I/O requests to
the OS. This gives the OS a chance to do the I/O efficiently and also check that the application
program has permission to access the file. Each file created bythe OS is given a set of permissions
to indicate who has read access and write access to the file. Some files have read-only access and
others have read/write access.

11.2.5 Reading and writing sequential files

A sequential fileis a sequence of data items stored on a disk that can only be accessed one item at
a time sequentially, from the first item to the last item, in the order in which the items were written
to the file.

Reading a sequential file

Reading a sequential file means to transfer data items from the file to your application program as
follows:

(1) The program makes a request to the OS to open a file for reading.

(2) If the program has permission to read the file the OS allocates an FCB containing a data
buffer. This is called “opening the file for reading”.

(3) The program makes a read request to the OS for a data item.

596 Files and Streams

(4) If the data buffer is empty the OS fills it with data from thefile if there is more data to read
and transfers data to the program from the buffer. If end of file (EOF) has been reached the
OS sends an EOF message to the program indicating that there is no more data to read.

(5) If the program wants to read more data items steps (3) and (4) are repeated, otherwise the
program should close the file (deallocate the FCB for the file).

This gives the following simple pseudo-code model for reading a sequential file:

Open the file for reading.
Read a data item from the file.
WHILE not at end of fileDO

Process the data item.
Read the next data item.

END WHILE
Close the file

Your program may request data one byte at a time but this does not mean that the disk is accessed
for each byte. Instead, if the buffer is not empty then the byte will be given to your program from
the buffer, a much faster memory-to-memory transfer.

Also, if your program could only request that data be read onebyte a a time, it would still be
inefficient for your program to read a large file in a big loop and we will see that an extra level of
input buffering is usually available to application programs.

Writing a sequential file

Similarly, writing a sequential file means to transfer data items from your application program to
the file as follows:

(1) The program makes a request to the OS to open a file for writing.

(2) If the program has permission to write the file the OS allocates an FCB containing a data
buffer. This is called “opening the file for writing”. Normally, this erases a file that already
exists although it is possible to indicate that you want to append data to an existing file rather
than erase it and create a new file with the same name.

(3) The program makes a write request to the OS and provides a data item to be written.

(4) The OS transfers data from the program to the data buffer.If the buffer becomes full, the
OS writes the entire buffer to the disk and empties the bufferin preparation for more write
requests.

(5) If the program wants to write more data items steps (3) and(4) are repeated, otherwise the
program should close the file (deallocate the FCB for the file). Normally, closing a file writes
to the disk any data left in the buffer. This is called flushingthe buffer. Sometimes a separate
flush operation is provided by the OS. Thus, it is important toclose files so that all data is
written to the file.

11.2 File concepts 597

This gives the following simple pseudo-code model for writing a sequential file:

Open the file for writing.
WHILE there are data items to writeDO

Write the next data item.
END WHILE
Close the file

As for reading, if your program could only request that data be written one byte a a time, it would
still be inefficient for your program to write a large file in a loop and we will see that an extra level
of output buffering is usually available to application programs.

11.2.6 File access methods

At the lowest level files are collections of bytes. These bytes may be organized into higher level
structures. For example, a database file consists of a numberof records, each composed of a
number of fields, and each field is composed of a number of bytes. The two most important kinds
of file access are sequential access and random (direct) access.

Sequential access files

As mentioned above a sequential file is accessed one item at a time, in the order in which the items
are written (for example, an item may be a byte, an encoded Unicode character, or a database
record). If the item is a byte we say that the file is a sequential file of bytes.

The fundamental read operation available for a sequential file open for input is to read the next
item from the file. Similarly, the fundamental write operation for a sequential file open for output
is to write the next item to the file. A sequential file can be opened either for reading or for writing
but not both at the same time. For example, to switch from writing to reading it is necessary to first
close the output file and then open it again as an input file for reading from the beginning.

To read then-th item from a sequential file it is always necessary to read the firstn−1 items.
This is a natural structure for many kinds of files. For example, if you want to read a file one item
at a time and write a new file containing only the lines of the file having a given search pattern,
then a sequential file is appropriate. Here the items are the lines in the file so we can read lines one
at a time and if the pattern is present write the line to the output file.

Random access files

On the other hand, if it is necessary to make many modifications (e.g., insertions, deletions, up-
dates) to random records in a file the sequential access method is very inefficient. For example, to
make a new version of a file that has an updated version of item number 100, it is necessary to read
the first 99 items from the input file, copy them to an output file, read item 100, modify it, write
item 100 to the output file, and then write the remaining itemsof the input file to the output file.
This may be fine for modifying a few items that occur in a known sequence but not for modification
of random items in an on-line airline reservation system or an account database for a bank.

598 Files and Streams

For this reason there is a kind of file called arandom accessor direct accessfile that is
organized as a file of fixed size records. Each record must havea fixed size so that its position in
the file can be calculated as a multiple of the record size. Thefile can be open for both reading and
writing at the same time and each record can be read or writtensimply by referring to its record
number in the file. For example, to update record 100 it is onlynecessary to read record 100,
modify it and write it back to the file in the place it was read from. Random access files are like
arrays where any item can be accessed by specifying its arrayindex.

Java has support for both sequential and random access files but only sequential files will be
considered in this chapter.

11.3 File structure

Every file at the lowest level is just a sequence of bytes. Usually this sequence has a structure
imposed on it and a meaning determined by the program that wrote the file in the first place.

For example, files are often classified astext files or binary files. As opposed to a binary file,
a text file is meant to be “human readable”. When you use a standard text editor, as opposed to
a word processor, you are working with a text file. Binary filescannot be created or edited with
these editors.

11.3.1 Text file structure

For the English language the bytes of a text file are commonly interpreted as 7-bit ASCII codes
(0 to 127) for the various control, alphanumeric, and punctuation characters. For many languages
there are accented characters so this 7-bit code is extendedto the 8-bit LATIN-1 code. Some of the
extra codes in the range 128 to 255 are used to denote letters with accents.

Since text files are files of lines, one or more special bytes are needed to indicate where each
line ends. In Unix this is the new line character (code 10, denoted by\n in Java). For the Mac
OS this character is carriage return (code 13, denoted by\r in Java) and for Windows 95/98/XP a
carriage return followed by a line feed is used. Thus, text files are files of codes corresponding to
the readable characters with occasional end of line indicators.

However, for many other languages 8-bit codes are not big enough, so the Unicode standard
was created to extend the ASCII and LATIN-1 codes. Unicode characters use 16-bit codes. The
first 128 characters are the 7-bit ASCII codes and the next 128codes are the extension to LATIN-1.
This leaves a lot of codes for other languages. In Java a text file is called a character file and it uses
an encoding for a Unicode character set. For example, ASCII and LATIN-1 can be encoded using
a single byte per character instead of two but the Chinese languages are pictographic and would
require two bytes per character.

We will see that Java has I/O classes for reading or writing text files that contain encoded Uni-
code characters. Thechar andString data types represent characters internally using Unicode.
That’s why thechar type is a 16-bit data type, whereas for most older computer languages it is an
8-bit type.

11.3 File structure 599

11.3.2 Binary file structure

Although it is common to think of a text file as a special kind ofbinary file we prefer to use the term
“binary file” to refer to a file that is not a text file. For example, the byte-code files produced by
the Java compiler are binary files. If you try to load them intoa text editor you will see gibberish.
There are many other kinds of binary files. We will see that Java has I/O classes for reading
and writing binary files, the primitive data types in binary form, and even classes for reading and
writing serialized objects in binary form.

EXAMPLE 11.1 (Binary and text representations of an integer) To illustrate the difference
between text and binary files let us look at how theint value 123526 is stored. Internally, since an
int is 32-bits, it is stored as the four bytes (expressed in binary)

00000000 00000001 11100010 10000110

which represent 0×2563 +1×2562+226×2561 +134×2560. In a binary file it would also be
stored this way.

However, in a text file it would be stored as the character string "123526" . If the text file used
ASCII codes then the stored value would occupy six bytes, onefor each of the ASCII codes. The
ASCII codes for ”0” to ”9” in decimal are 48 to 57 so the number is stored as the 6 bytes (expressed
in binary: 31,32,33,35,32,36 hex)

00110001 00110010 00110011 00110101 00110010 00110110

These are very different representations: in a binary file every int value occupies 4 bytes but as a
character string the number of bytes varies from 1 byte for single character numbers like"1" all
the way to 10 bytes for the largestint number string"2147483647" . Internally, in thechar and
String data types, characters are represented by Unicode so each character in the string"123526"
would occupy two bytes. For the ASCII code the first byte wouldbe zero. This gives the full 12-
byte Unicode representation

00000000 00110001 00000000 00110010 00000000 00110011
00000000 00110101 00000000 00110010 00000000 00110110

where the first byte of each 16-bit character is zero. Since the first byte is always 0 for the Unicode
representation of the ASCII code it would be wasteful to use 12 bytes to store the numeric string
instead of 6 bytes. Therefore, Unicode ASCII characters arenormally stored in files using a simple
single-byte encoding per character by dropping the zero bytes. For languages with more than 256
characters a more complicated encoding would be needed.

11.3.3 Streams

A stream is a sequence of items such as bytes or characters. If the items are bytes the stream is
called abyte streamand if they are characters it is called acharacter stream. Streams are more
general than files in the sense that a stream doesn’t need to beconnected to a file. Streams are
objects in Java. File concepts such as opening a file for reading, reading from a file, opening a file

600 Files and Streams

for writing, writing to a file, closing a file, flushing a file, binary file and text file, also apply to
streams. If a stream is connected to a file it is called afile stream.

Input streams are objects that act as a source or input for a sequence of items that can be input
one item at a time using read methods. Similarly, output streams are objects that act as as sink or
output for a sequence of items that can be output one item at a time using write methods.

Streams can also be connected together. For example, the output of one stream can be used as
the input to another stream. Thus, a sequential file is represented simply as a stream connected to
a file at one end: the source for an input stream is a file and the sink for an output stream is a file.

11.4 Java stream and file I/O class hierarchies

Java has two class hierarchies for byte stream I/O. The abstract InputStream class is at the top
of the input hierarchy and the abstractOutputStream class is at the top of the output hierarchy.
The classes in these hierarchies are shown in Figure 11.1. Each class name has the wordStream
in it. These classes are used to do I/O with byte streams without any interpretation of the bytes.
FileInputStream and FileOutputStream are the only file stream classes. They are used to
connect other streams to files to provide file input and output, respectively.

Similarly, there are two class hierarchies for character (text) stream I/O. The abstractReader
class is at the top of the input hierarchy and the abstractWriter class is at the top of the output
hierarchy. The classes in these hierarchies are shown in Figure 11.2. Each class name has the
word Reader or Writer in it. These classes are used for doing I/O with character streams using a
Unicode encoding (output) or decoding (input). TheFileReader andFileWriter classes can be
used to connect character streams to files to provide text fileinput and output, respectively.

Two of the classes also have the word stream in their name:InputStreamReader is used to
read a byte stream and decode it as a character stream andOutputStreamWriter is used to write
a character stream and encode it as a byte stream. These two classes are needed in order to work
with character streams since at the lowest level files in Javaare byte streams. We will see that
these converter classes are not normally used explicitly since theFileReader andFileWriter
convenience classes use them internally to do the conversion.

Since streams and files are objects in Java, we first need to usethe class constructors to construct
and open them. We will see that some of the class constructorsand methods can throw exceptions
from theIOException class hierarchy if the opening of the stream or file fails, or aread or write
operation fails.

11.4.1 InputStream hierarchy

Each class in theInputStream hierarchy has methods for reading bytes from a byte stream. Only
FileInputStream is associated with a file. It is the only class in the hierarchywhose constructors
can specify a file as an argument. Most of the stream classes have anInputStream object as an
argument so the various streams in this hierarchy can be connected together to perform byte stream
input.

The most important classes in theInputStream hierarchy are theFileInputStream class and
theBufferedInputStream class.

11.4 Java stream and file I/O class hierarchies 601

InputStream (Abstract)

ByteArrayInputStream

FileInputStream

FilterInputStream

BufferedInputStream

DataInputStream

LineNumberInputStream

PushbackInputStream

ObjectInputStream

PipedInputStream

SequenceInputStream

StringBufferInputStream

OutputStream (Abstract)

ByteArrayOutputStream

FileOutputStream

FilterOutputStream

BufferedOutputStream

DataOutputStream

PrintStream

ObjectOutputStream

PipedOutputStream

Figure 11.1: TheInputStream andOutputStream hierarchies for byte stream I/O. All classes are
in the java.io package and each class extends from the abstractInputStream or OutputStream
class

EXAMPLE 11.2 (Opening an input file as a byte stream)FileInputStream has a construc-
tor with prototype

public FileInputStream(String fileName) throws FileNotF oundException

A new feature called athrows clause is present at the end of this prototype and will be explained
in more detail later. Here it means that when the constructoris called to create (open) a file for
reading it will throw an exception of typeFileNotFoundException , a subclass ofIOException ,
if there is an error finding or opening the file. The declaration

FileInputStream fin = new FileInputStream("inFile.dat") ;

will construct a file object calledfin and open a file calledinFile.dat for reading. Thefin
object can now be used to read a stream of bytes from the file.

602 Files and Streams

Reader (Abstract)

BufferedReader

LineNumberReader

CharArrayReader

FilterReader (Abstract)

PushbackReader

InputStreamReader

FileReader

PipedReader

StringReader

Writer (Abstract)

BufferedWriter

CharArrayWriter

FilterWriter (Abstract)

OutputStreamWriter

FileWriter

PipedWriter

StringWriter

PrintWriter

Figure 11.2: TheReader andWriter hierarchies for character stream I/O. All classes are in the
java.io package and each class extends from the abstractReader or Writer class

TheFileInputStream class does not provide for buffering at the application program level so
it can result in inefficient input unless buffering is added.This can be done by connecting it to a
BufferedInputStream , as shown in the following example.

EXAMPLE 11.3 (Buffering an input byte stream) BufferedInputStream has a constructor
with prototype

public BufferedInputStream(InputStream in)

This constructor has anInputStream as an argument so it can be used to buffer any stream that is
a subclass. In particular aFileInputStream “is a” InputStream so we can provide buffered file
input using

FileInputStream fin = new FileInputStream("inFile.dat") ;
BufferedInputStream in = new BufferedInputStream(fin);

Normally, it is not necessary to reference thefin variable anymore so it is common to use anony-
mous objects and combine these two declarations:

11.4 Java stream and file I/O class hierarchies 603

BufferedInputStream in =
new BufferedInputStream(new FileInputStream("inFile.d at"));

The in object can now be used to read a buffered stream of bytes from the file.

11.4.2 OutputStream hierarchy

Each class in theOutputStream hierarchy has methods for writing bytes to a byte stream. Only
FileOutputStream is associated with a file. It is the only class in the hierarchywhose construc-
tors can specify a file argument. Most of the stream classes have anOutputStream object as an
argument so the various streams in this hierarchy can be connected together to perform byte stream
output.

The most important classes in theOutputStream hierarchy are theFileOutputStream class
and theBufferedOutputStream class.

EXAMPLE 11.4 (Opening an output file as a byte stream) FileOutputStream has a con-
structor with prototype

public FileOutputStream(String fileName) throws FileNot FoundException

The declaration

FileOutputStream fout = new FileOutputStream("outFile.d at");

will construct a file object calledfout and open a file calledoutFile.dat for writing. The fout
object can now be used to write a stream of bytes to the file.

TheFileOutputStream class does not provide for buffering at the application program level
so it can provide inefficient output unless buffering is added. This can be done by connecting it to
a BufferedOutputStream , as shown in the following example.

EXAMPLE 11.5 (Buffering an output byte stream) BufferedOutputStream has a construc-
tor with prototype

public BufferedOutputStream(OutputStream out)

This constructor has anOutputStream as an argument so it can be used to buffer any stream that
is a subclass. In particular aFileOutputStream “is a” OutputStream so we can provide buffered
file output using

FileOutputStream fout = new FileOutputStream("outFile.d at");
BufferedOutputStream out = new BufferedOutputStream(fou t);

Normally, it is not necessary to reference thefout variable anymore so it is common to use anony-
mous objects and combine these two declarations:

BufferedOutputStream out =
new BufferedOutputStream(new FileOutputStream("outFil e.dat"));

Theout object can now be used to write a buffered stream of bytes to the file.

604 Files and Streams

11.4.3 Reader hierarchy

Each class in this hierarchy has methods for reading characters from a character stream or file. In
theReader hierarchy theInputStreamReader andFileReader classes are associated with files.
The other classes are associated with streams and can take aReader object as an argument so the
various streams in this hierarchy can be connected togetherto perform character stream input.

Since every file is a byte stream at the lowest level it is first necessary to use an object from the
FileInputStream class to connect to the file. This defines a byte stream which must be connected
to an InputStreamReader to do the decoding from bytes to characters. This class assumes a
default encoding was used to write the file, although there isa constructor that can specify another
encoding.

EXAMPLE 11.6 (Opening an input file as a character stream) InputStreamReader has a
constructor with prototype

public InputStreamReader(InputStream in)

so the declaration

InputStreamReader in =
new InputStreamReader(new FileInputStream("inFile.dat "));

will construct a character file stream object calledin and open a file calledinFile.dat for read-
ing.

Since this is such a common operation when working with character streams a convenience
class calledFileReader is provided to do this connection. It’s constructor has the prototype

public FileReader(String fileName) throws FileNotFoundE xception

Using this class we can construct a character stream input file using the simpler declaration

FileReader in = new FileReader("inFile.dat");

In either case thein object can be used to read a character stream from the file.

EXAMPLE 11.7 (Buffering an input character stream) BufferedReader has a constructor
with prototype

public BufferedReader(Reader in)

This constructor has aReader as an argument so it can be used to buffer any stream that is a
subclass. In particular aFileReader “is a” Reader so we can provide buffered input using

FileReader fin = new FileReader("inFile.dat");
BufferedReader in = new BufferedReader(fin);

Normally it is not necessary to reference thefin variable anymore so it is common to use anony-
mous objects and combine these two declarations:

11.4 Java stream and file I/O class hierarchies 605

BufferedReader in =
new BufferedReader(

new InputStreamReader(
new FileInputStream("inFile.dat")));

or equivalently, using theFileReader convenience class

BufferedReader in = new BufferedReader(new FileReader("i nFile.dat"));

The in object can now be used to read a buffered character stream from the file.

11.4.4 Writer hierarchy

Each class in this hierarchy has methods for writing characters to a character stream or file. In the
Writer hierarchy theOutputStreamWriter and FileWriter classes are associated with files.
The other classes are associated with streams and can take aWriter object as an argument so the
various streams in this hierarchy can be connected togetherto perform character stream output.

Since every file is a byte stream at the lowest level it is first necessary to use an object from
the FileOutputStream class to connect to the file. This defines a byte stream which must be
connected to anOutputStreamWriter to do the encoding from characters to bytes. This class
assumes a default encoding is used to write the file, althoughthere is a constructor that can specify
another encoding.

EXAMPLE 11.8 (Opening an output file as a character stream)OutputStreamWriter has
a constructor with prototype

public OutputStreamWriter(OutputStream out)

so the declaration

OutputStreamWriter out =
new OutputStreamWriter(new FileOutputStream("outFile. dat"));

will construct a file stream object calledout and open a file calledoutFile.dat for writing.

Since this is such a common operation when working with character streams a convenience
class calledFileWriter is provided to do this connection. It’s constructor has the prototype

public FileWriter(String fileName) throws IOException

Using this class we can construct a character stream output file using the simpler declaration

FileWriter out = new FileWriter("outFile.dat");

In either case theout object can now be used to write a character stream to the file.

EXAMPLE 11.9 (Buffering an output character stream) BufferedWriter has a constructor
with prototype

606 Files and Streams

public BufferedWriter(Writer out)

This constructor has aWriter as an argument so it can be used to buffer any stream that is a sub-
class. Therefore a buffered output character stream object, out , connected to the fileoutFile.dat
can be constructed using

FileOutputStream fout = new FileOutputStream("outFile.d at");
OutputStreamWriter s = new OutputStreamWriter(fout);
BufferedWriter out = new BufferedWriter(s);

Normally it is not necessary to reference the intermediate stream variablesfout and s so it is
common to use anonymous objects and write

BufferedWriter out =
new BufferedWriter(

new OutputStreamWriter(
new FileOutputStream("outFile.dat")));

or equivalently, using theFileWriter convenience class

BufferedWriter out = new BufferedWriter(new FileWriter(" outFile.dat"));

In either case theout object can be used to write a buffered character stream to thefile.

11.4.5 File class

An object of theFile class injava.io can be used to represent a file. It can be used as an argument
to constructors that take a file name as a string. For example,we can define aFile object from a
given file name using

File outFile = new File("outFile.dat");

and then use

BufferedWriter out = new BufferedWriter(new FileWriter(o utFile));

TheFile class is useful because it has methods that can determine whether a file exists, delete a
file, or rename a file, for example.

11.4.6 Summary

In summary, to open a byte stream for buffered reading or writing we can use

BufferedInputStream in =
new BufferedInputStream(new FileInputStream(inFile));

BufferedOutputStream out =
new BufferedOutputStream(new FileOutputStream(outFile));

and to open a character stream for buffered reading or writing we can use

BufferedReader in = new BufferedReader(new FileReader(in File));
BufferedWriter out = new BufferedWriter(new FileWriter(o utFile));

HereinFile andoutFile can be either strings representing the file names orFile objects.

11.5 File I/O error handling using exceptions 607

java.lang.Throwable

java.lang.Exception

java.lang.RunTimeException

java.lang.IllegalArgumentException

java.lang.NumberFormatException

java.lang.IllegalStateException

java.util.NoSuchElementException

Figure 11.3: Part of the unchecked exception sub-hierarchyof RunTimeException .

11.5 File I/O error handling using exceptions

11.5.1 Unchecked exceptions

We have used exceptions such asIllegalArgumentException and NumberFormatException
before and we have shown how to throw them, or catch them usinga try -catch block. Exceptions
like these are calledunchecked exceptionsand are subclasses ofRunTimeException . Part of this
exception hierarchy is shown in Figure 11.3. It is not necessary to catch unchecked exceptions. The
compiler doesn’t check whether they are caught or not. If they are not caught the Java interpreter
will do it at run-time. That’s why they are subclasses ofRunTimeException .

11.5.2 Checked exceptions

Other kinds of exceptions are calledchecked exceptions. In particular most of the methods in
the I/O classes can throw an exception of typeIOException or one of its subclasses. Part of this
exception hierarchy is shown in Figure 11.4. For a checked exception it is necessary either to catch
the exception or to indicate that it can be thrown in what is called thethrows clause of a method
or constructor. Failure to do this results in a compiler error: the compiler checks so that’s why they
are called checked exceptions.

EXAMPLE 11.10 (The throws clause in a constructor) One of theFileInputStream class
constructors has the prototype

public FileInputStream(String fileName) throws FileNotF oundException

This prototype explicitly indicates, using athrows clause at the end of the prototype, that a
FileNotFoundException may be thrown when the constructor is called to create (open)a file
for reading.

608 Files and Streams

java.lang.Throwable

java.lang.Exception

java.io.IOException

java.io.EOFException

java.io.FileNotFoundException

Figure 11.4: Part of the checked exception sub-hierarchy ofIOException .

The Java documentation always tell you whether a method can throw a checked exception or
not. It is not necessary to include athrows clause for unchecked exceptions, but if you are writing
a method that can throw a checked exception and you don’t catch it and you omit thethrows
clause the compiler will give you a nice error message telling you that you should either catch
the exception or indicate it in the throws clause. Of course if you do catch the exception then the
throws clause is not used.

11.6 Reading and writing byte streams

When a byte stream is opened for reading using a stream constructor, there are various read meth-
ods for reading bytes sequentially from the stream. If the stream is connected to a file then these
methods will read bytes from the file. Similarly, when a byte stream is opened for writing there are
various write methods for writing bytes sequentially to thestream and if the stream is connected
to a file these methods will write bytes to the file.

11.6.1 Reading bytes from an input byte stream

The abstractInputStream class declares three methods for reading bytes from a streamand a
method for closing a stream. The prototypes are

public abstract int read() throws IOException
public int read(byte[] b) throws IOException
public int read(byte[] b, int startPos, int numBytes) throw s IOException
public void close() throws IOException

There are other methods in this class which we have not indicated. All of these methods can
throw anIOException . The firstread method is abstract so theInputStream class is abstract.
The other tworead methods can read arrays of bytes or parts of arrays. They are not abstract
since they are implemented using the single byteread method. The non-abstract subclasses of
InputStream shown in Figure 11.1 must implement the single byteread method. Then any of

11.6 Reading and writing byte streams 609

the threeread methods declared in theInputStream class can be used. Through inheritance this
provides a uniform interface for reading a byte stream.

The single byteread method does not return the byte read as a value of typebyte but as a
value of typeint in the range 0 to 255. The reason is that the method is designedto signal end
of file by a special return value. If the return type wasbyte there would be no special byte value
since all 256 byte values could be present in the stream or file. However, anint (32-bits) can hold
the byte value as an integer in the range 0 to 255 and a return value of−1 can be used to indicate
end of file. All read methods in the byte stream classes use this convention.

EXAMPLE 11.11 (Byte at a time input model) The following statements show how to con-
struct aFileInputStream object associated with a file and process it as a byte stream, one byte at
a time:

FileInputStream in = new FileInputStream(inFile);
int n = in.read();
while (n != -1)
{

// process the byte value in n here
n = in.read(); // try to read another byte

}

There is another more compact way that can often be used to write the while-loop:

FileInputStream in = new FileInputStream(inFile);
int n;
while ((n = in.read()) != -1)
{

// process the byte value in n here
}

Here we do both the reading and the end of file testing inside the condition using an assignment
statement: the value ofn = in.read() is n and this is compared with the value−1. The ex-
tra set of parentheses around the assignment is necessary since != has a higher precedence than
assignment.

EXAMPLE 11.12 (Buffered byte at a time input model) For more efficiency we can buffer
the input stream and use the statements

BufferedInputStream in =
new BufferedInputStream(new FileInputStream(inFile));

int n;
while ((n = in.read()) != -1)
{

// process the byte value in n here
}

610 Files and Streams

EXAMPLE 11.13 (Byte array input model) Another reading model is to shorten the number
of times the body of the while-loop is executed by using theread method that reads an array of
bytes at a time:

BufferedInputStream in =
new BufferedInputStream(new FileInputStream(inFile));

byte[] b = new byte[1024];
int numBytes;
while ((numBytes = in.read(b)) != -1)
{

// process b[0] to b[numBytes-1] here
}

This version ofread will try to read a block of 1024 bytes at a time, otherwise it will read less
than that number. In particular fewer bytes will be read for the last block unless the file size is an
exact multiple of 1024 bytes. In either case, if end of file is not indicated, the method return value
indicates how many bytes were actually read and stores them in the specified arrayb.

11.6.2 Writing bytes to an output byte stream

The abstractOutputStream class declares three methods for writing bytes to an output stream, a
method for flushing a stream, and a method for closing a stream. The prototypes are

public abstract void write(int b) throws IOException
public void write(byte[] b) throws IOException
public void write(byte[] b, int startPos, int numBytes) thr ows IOException
public void flush() throws IOException
public void close() throws IOException

All of these methods can throw anIOException . The first write method is abstract so the
OutputStream class is abstract. It assumes that the byte to be written is the lower 8-bits of an
int value. The other twowrite methods can write arrays of bytes or parts of arrays. They are
not abstract since they are implemented using the single byte write method. The non-abstract
subclasses ofOutputStream shown in Figure 11.1 must implement the single bytewrite method.
Then any of the threewrite methods declared in theOutputStream class can be used. Through
inheritance this provides a uniform interface for writing abyte stream.

EXAMPLE 11.14 (Reading and writing bytes) Here are some statements that open an input
and an output file given their names, read the bytes from the input file, process them in some
manner, and write the results to the output file:

File inFile = new File("in.dat");
File outFile = new File("out.dat");
BufferedInputStream in =

new BufferedInputStream(new FileInputStream(inFile));
BufferedOutputStream out =

11.6 Reading and writing byte streams 611

new BufferedOutputStream(new FileOutputStream(outFile));
int n;
while ((n = in.read()) != -1)
{

// process byte value in n here
out.write(n); // write it to the output file

}
in.close(); // don’t forget to close files
out.close();

In the simplest case where no processing is done these statements just copy the input file to the
output file like a file copy command. A more efficient version would use the byte arrayread and
write methods. In this case the loop can be expressed in the form

byte[] b = new byte[1024];
int numBytes;
while ((numBytes = in.read(b)) != -1)
{

// process b[0] to b[numBytes-1] here
out.write(b, 0, numBytes); // write them to the output file

}

Here we have to use the version ofwrite that writes out only the firstnumBytes bytes of the array
(third argument is the number of bytes to write beginning at index 0 in the array), sincenumBytes
may not be 1024 each time, especially when the last buffer is read, unless the file size is a multiple
of 1024 bytes.

11.6.3 File copy program

Here is a program class calledFileCopier that uses command line arguments to get the input and
output file names and writes a copy of the input file to the output file.

ClassFileCopier

book-project/chapter11/file_apps

package chapter11.file_apps;
import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

/**
* A byte stream (binary) file copy program.
*/

612 Files and Streams

public class FileCopier
{

private File inFile;
private File outFile;

/**
* Construct an object for given file objects.
* @param inFile the input file object
* @param outFile the output file object
*/

public FileCopier(File inFile, File outFile)
{

this.inFile = inFile;
this.outFile = outFile;

}

/** Perform the byte file copy in blocks of 4096 bytes.
*/
public void copyFile()
{

final int END_OF_FILE = -1;
BufferedInputStream in = null;
BufferedOutputStream out = null;
try
{

in = new BufferedInputStream(new FileInputStream(inFile));
out = new BufferedOutputStream(new FileOutputStream(out File));

byte[] b = new byte[4096];
int numBytes;

while ((numBytes = in.read(b)) != END_OF_FILE)
{

// write bytes b[0] to b[numBytes-1]
out.write(b, 0, numBytes);

}
}
catch (FileNotFoundException e)
{

System.out.println("Input file does not exist");
}
catch (IOException e)
{

System.out.println("Unknown IO error");
}
finally // always executed
{

try
{

if (in != null) in.close();
if (out != null) out.close();

}

11.6 Reading and writing byte streams 613

catch (IOException e)
{

System.out.println("Error closing files");
}

}
}

public static void main(String[] args)
{

if (args.length == 2)
{

File inFile = new File(args[0]);
File outFile = new File(args[1]);
FileCopier copier = new FileCopier(inFile, outFile);
copier.copyFile();

}
else
{

System.out.println("args: inFileName outFileName");
}

}
}

In thecopyFile method we catch all possible errors using atry - catch - finally block. In this
case it is not necessary to includethrows clauses on any methods. Thefinally block will always
be executed, whether or not any exceptions are thrown, so we use it to close any open files.

To try this program from the command line navigate to thebook-project directory and use
the command

java chapter11.file_apps.FileCopier files/in.dat files /out.dat

wherein.dat is the name of an existing file, assumed to be in a subdirectorycalledfiles of the
book-project directory, andout.dat is the name of the output file.

One deficiency in our program is that if the output file alreadyexists then its contents will be
lost. A better program would warn the user and ask if the output file should be replaced. TheFile
class has methods to do this.

Another way to get file names is with aJFileChooser object. Here is a version ofFileCopier
that uses it.

ClassFileCopyChooser

book-project/chapter11/file_apps

package chapter11.file_apps;
import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

614 Files and Streams

import javax.swing.JFileChooser;

/**
* A byte stream (binary) file copy program.
*/

public class FileCopyChooser
{

private File inFile;
private File outFile;

/**
* Construct an object for given file objects.
* @param inFile the input file object
* @param outFile the output file object
*/

public FileCopyChooser(File inFile, File outFile)
{

this.inFile = inFile;
this.outFile = outFile;

}

/** Perform the byte file copy in blocks of 4096 bytes.
*/

public void copyFile()
{

final int END_OF_FILE = -1;
BufferedInputStream in = null;
BufferedOutputStream out = null;
try
{

in = new BufferedInputStream(new FileInputStream(inFile));
out = new BufferedOutputStream(new FileOutputStream(out File));

byte[] b = new byte[4096];
int numBytes;

while ((numBytes = in.read(b)) != END_OF_FILE)
{

// write bytes b[0] to b[numBytes-1]
out.write(b, 0, numBytes);

}
}
catch (FileNotFoundException e)
{

System.out.println("Input file does not exist");
}
catch (IOException e)
{

System.out.println("Unknown IO error");
}
finally // always executed
{

11.6 Reading and writing byte streams 615

try
{

if (in != null) in.close();
if (out != null) out.close();

}
catch (IOException e)
{

System.out.println("Error closing files");
}

}
}

public static void main(String[] args) throws IOException
{

// NOTE: When using FileChooser it is necessary to use
// file objects everywhere, not file names

JFileChooser chooser = new JFileChooser();
int returnValue;

// Choose an input file object

returnValue = chooser.showOpenDialog(null);
if (returnValue == JFileChooser.ERROR_OPTION ||

returnValue == JFileChooser.CANCEL_OPTION)
{

// no input file was chosen
return;

}
File inFile = chooser.getSelectedFile();

// Choose an output file object

returnValue = chooser.showSaveDialog(null);
if (returnValue == JFileChooser.ERROR_OPTION ||

returnValue == JFileChooser.CANCEL_OPTION)
{

// no output file was chosen
return;

}
File outFile = chooser.getSelectedFile();

FileCopyChooser program = new FileCopyChooser(inFile, ou tFile);
program.copyFile();

}
}

Here aJFileChooser object is created. When theshowOpenDialog method is called a dialog
box appears and you can navigate to any file and select it. A return code can be used to determine
whether the user selected a file or cancelled without choosing a file. The selected input file can
be obtained using thegetSelectedFile method, which returns aFile object that is used in
theFileInputStream constructor. Similarly, theshowSaveDialog method is used to specify an

616 Files and Streams

output file in theFileOutputStream constructor.
If you want the file name without the full path you can use thegetName method in theFile

class.

11.7 Reading and writing character streams

A byte stream whose bytes are encoded Unicode characters is called a character stream (also
called a text stream). Such character streams are intended to be “human-readable”. As mentioned
previously they are composed of lines separated by one or more end of line characters. Subclasses
of the Reader andWriter classes are used to process the underlying byte streams as character
streams.

When a character stream is opened for reading using a stream constructor, there are various
read methods for reading characters sequentially from the stream. If the stream is connected to a
file these methods will read characters from the file. Similarly, when a character stream is opened
for writing there are various write methods for writing characters sequentially to the stream and if
the stream is connected to a file they will write characters tothe file.

11.7.1 Reading characters from an input stream

The abstractReader class declares three methods for reading characters from a stream and a
method for closing a stream. The prototypes are

public abstract int read() throws IOException
public int read(char[] c) throws IOException
public int read(char[] c, int startPos, int numChars) throw s IOException
public abstract void close() throws IOException

There are other methods in this class which we have not indicated. All of these methods can throw
an IOException . The firstread method is abstract so that is why theReader class is abstract.
The other tworead methods can read arrays of characters or parts of arrays. These methods are
not abstract since they are implemented using the single characterread method. The non-abstract
subclasses ofReader shown in Figure 11.2 must implement the single characterread method.
Then any of the threeread methods declared in theReader class can be used. Through inheritance
this provides a uniform interface for reading a character stream.

The single characterread method does not return the character read as a value of typechar
(16-bits) but as a value of typeint in the range 0 to 65535. The reason is that the method is
designed to signal end of file by a special return value. If thereturn type waschar , there would
be no special return value since all 65536 character values could be present in the stream or file.
However, anint (32-bits) can hold thechar value as an integer in the range 0 to 65535 and the
return value -1 can be used to indicate end of file. All read methods in the character stream classes
use this convention.

EXAMPLE 11.15 (Character at a time input model) The statements

11.7 Reading and writing character streams 617

FileReader in = new FileReader(inFile);
int n;
while ((n = in.read()) != -1)
{

// process the char value in n here
}

show how to construct aFileReader for a file and process it as a character stream, one character at
a time. The underlying byte stream is decoded into to a character stream assuming that the stream
was written using a default Unicode encoding scheme.

EXAMPLE 11.16 (Buffered character at a time input model) For more efficiency we can use
the statements

BufferedReader in = new BufferedReader(new FileReader(in File));
int n;
while ((n = in.read()) != -1)
{

// process the char value in n here
}

to buffer the input stream.

EXAMPLE 11.17 (Character array input model) Another reading model is to shorten the
number of times the body of the while-loop is executed by using theread method that reads an
array of characters at a time:

BufferedReader in = new BufferedReader(new FileReader(in File));
char[] c = new char[1024];
int numChars;
while ((numChars = in.read(c)) != -1)
{

// process characters c[0] to c[numChars-1] here
}

This version of read will try to read a block of 1024 characters at a time, otherwise it will read fewer
than this number. In particular, less characters will be read for the last block unless the file size is
an exact multiple of 1024 characters. In either case, if end of file is not indicated, the method return
value indicates how many characters were actually read and stores them in the specified arrayc .

EXAMPLE 11.18 (Line at a time input model) The most useful feature ofBufferedReader
is that, in addition to the usualReader class methods, it is the only class that has areadLine
method with prototype

public String readLine() throws IOException

618 Files and Streams

that can read a line at a time into a string. This makes sense since character streams are streams of
lines. The end of line separator character(s) are not storedin the string. If there are no more lines
to read from the stream then the method returnsnull as an end of file indicator. Therefore, for
buffered character stream processing we also have the convenient model

BufferedReader in = new BufferedReader(new FileReader(in File));
String line;
while ((line = in.readLine()) != null)
{

// process the line here
}

for reading a file a line at a time.

11.7.2 Writing characters to an output stream

The abstractWriter class declares five methods for writing characters to an output stream, a
method for flushing a stream, and a method for closing a stream. The prototypes are

public void write(int c) throws IOException
public abstract void write(char[] c, int startPos,

int numChars) throws IOException
public void write(char[] c) throws IOException
public void write(String s, int startPos, int numChars) thr ows IOException
public void write(String s) throws IOException
public abstract void flush() throws IOException
public abstract void close() throws IOException

All of these methods can throw anIOException . Here the single characterwrite method is not
abstract but one of the array writing methods is abstract so theWriter class is abstract. The single
characterwrite method assumes that the character to be written is the lower 16-bits of anint
value. There are twowrite methods that can write arrays of characters or parts of arrays. Also,
there are two similarwrite methods that can write a string or part of a string. The non-abstract
subclasses ofWriter shown in Figure 11.2 must implement the abstract methods so any of the
five write methods declared in theWriter class can be used. Through inheritance this provides a
uniform interface for writing a character stream.

EXAMPLE 11.19 (Reading and writing characters) Here are some statements that read the
characters from an input file, process them in some manner andwrite the results to an output file:

File inFile = new File("inFile.dat");
File outFile = new File("outFile.dat");
BufferedReader in = new BufferedReader(new FileReader(in File));
BufferedWriter out = new BufferedWriter(new FileWriter(o utFile));

int n;
while ((n = in.read()) != -1)

11.7 Reading and writing character streams 619

{
// process char value in n here
out.write(n); // write it to output file

}
in.close(); // don’t forget to close files
out.close();

A more efficient version would use theread andwrite methods that use achar array. In this case
the loop could be expressed in the form

char[] c = new char[1024];
int numChars;
while ((numChars = in.read(c)) != -1)
{

// process c[0] to c[numChars-1] here
out.write(c, 0, numChars); // write them to output file

}

Here we have to use the version ofwrite that writes out only the firstnumChars characters of the
array (third argument is the number of characters to write beginning at index 0 in the array), since
numChars may not be 1024 each time, especially when the last buffer is read, unless the file size
is a multiple of 1024 characters.

PrintWriter class

We are familiar withSystem.out . It is actually aPrintStream object that is an anachronism since
this class doesn’t understand Unicode (early versions of Java did not treat Unicode consistently).
It does however have the familiar and very usefulprint andprintln methods which know how
to output all the standard data types such as values ofint anddouble types formatted in “human-
readable” form. Thewrite methods in theBufferedWriter class do not know how to do this.
We would like to be able to useprint andprintln to write data to character streams and files.
To do this there is a class calledPrintWriter in theWriter hierarchy that has these methods and
also understands Unicode.

EXAMPLE 11.20 (Using PrintWriter) We can use aPrintWriter in conjunction with a
BufferedWriter and aFileWriter to write formatted data to a file as the following statements
show:

Scanner console = new Scanner(System.in);
PrintWriter out =

new PrintWriter(new BufferedWriter(new FileWriter(outF ile)));
System.out.println("What is your name?");
String name = console.nextLine();
System.out.println("How old are you?");
int age = console.nextInt();
console.nextLine(); // eat end of line
out.println(name);

620 Files and Streams

out.println(age);
out.close();

HereSystem.out writes to the console and theout object writes to a file. Thus, the person’s name
and age are written to the fileoutFile using theout object.

11.7.3 Simple search program

As an example of character stream processing suppose we wantto read a character file (text file) a
line at a time and write to an output file only those lines that contain a given search pattern.

To do this we can use aBufferedReader to read each line of the file as a string using
readLine , an use theindexOf method in theString class to search the line for the pattern.
If the pattern is found we use aPrintWriter to write the line to the output file. Assuming thatin
is the input file reader object andout is the output file writer object, the following simple while
loop does the line at a time processing and conversion:

String line;
while ((line = in.readLine()) != null)
{

if (line.indexOf(pattern) >= 0)
out.println(line);

}
in.close(); // don’t forget to close the files
out.close();

Here is a program class for searching a text file.

ClassFileSearcher

book-project/chapter11/file_apps

package chapter11.file_apps;
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;

/**
* A character stream file searcher class.
* The input file is read a line at a time.
* Only the lines containing a specified pattern are written t o
* the output file.
*/

public class FileSearcher
{

File inFile; // the input file object

11.7 Reading and writing character streams 621

File outFile; // the output file object
String pattern; // the pattern to search for

/** Construct a searcher object given file names and pattern .
* @param inFile the input file object
* @param outFile the output file object
* @param pattern the pattern to find in lines of input file
*/

public FileSearcher(File inFile, File outFile, String pat tern)
{

this.inFile = inFile;
this.outFile = outFile;
this.pattern = pattern;

}

/**
* Perform the file search one line at a time.
*/

public void searchFile() throws IOException
{

BufferedReader in = new BufferedReader(new FileReader(in File));
PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter(outFile)));
String line;
while ((line = in.readLine()) != null)
{

// if pattern is found write line to output file
if (line.indexOf(pattern) >= 0)

out.println(line);
}
in.close();
out.close(); // don’t forget this

}

public static void main(String[] args) throws IOException
{

if (args.length == 3)
{

File inFile = new File(args[0]);
File outFile = new File(args[1]);
FileSearcher searcher = new FileSearcher(inFile, outFile , args[2]);
searcher.searchFile();

}
else
{

System.out.println("args: inFileName outFileName patte rn");
}

}
}

This class shows that we can avoid using anytry blocks and let the java interpreter catch all
exceptions as long as we use thethrows clause on themain method and on thesearchFile
method.

622 Files and Streams

Figure 11.5: TheByteViewer GUI showingByteViewer.class

You can run this class from the command line using

java chapter11.files.FileSearcher files/in.dat files/o ut.dat hello

or from BlueJ by constructing aFileSearcher object and using itssearchFile method.

11.8 Viewing byte contents of files

A binary file is not in “human-readable” form but we can view any file (binary or text) one byte at
a time by writing a program that reads the file a byte at a time and shows the code for each byte as
a decimal number in the range 0 to 255 or as a hex code00 to FF. Let us write a program called
ByteViewer that does this using the hex codes for each byte.

We will use a GUI interface that usesJFileChooser to get the input file name. Then we
will use aBufferedInputStream to read the input file as a byte stream and write the “human-
readable” version to aJTextArea placed inside aJScrollPane . The GUI window is shown in
Figure 11.5. Here the hex codes of the bytes in the file are displayed 16 per line. This is done by
reading the file a block at a time using a block size of 16 bytes.Assuming thatoutput is the name
of theJTextArea , the file processing loop is given by

BufferedInputStream in =
new BufferedInputStream(new FileInputStream(inFile));

byte[] b = new byte[16];
int numBytes;
output.setText("");
while ((numBytes = in.read(b)) != -1)
{

for (int k = 0; k < numBytes; k++)
{

output.append(byteToHex(b[k]) + " ";
}
output.append("\n");

11.8 Viewing byte contents of files 623

}
in.close();

The only tricky part is thebyteToHex method which takes a byte value and converts it to a two
character hex string. This is complicated by the fact that a byte is signed (values are treated as in
the range -128 to 127 instead of 0 to 255). We first need to convert the byte value to an integer
value in order to use thetoHexString method in theInteger class. To convert abyte valueb to
an int valuei it is necessary to use the magic statement

int i = b & 0x000000FF;

This cancels the sign extension which occurs when a signed value in the range -128 to 127 is
converted to an integer. Then the integer will contain a value in the range 0 to 255. Therefore the
method is given by

private String byteToHex(byte b)
{

int i = b & 0x000000FF;
String hex = Integer.toHexString(i).toUpperCase();
if (hex.length() == 1) hex = "0" + hex;
return hex;

}

11.8.1 ByteViewer class

Here is the complete class:

ClassByteViewer

book-project/chapter11/file_apps

package chapter11.file_apps;
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.Font;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.BufferedInputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;

import javax.swing.JButton;
import javax.swing.JFileChooser;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;

624 Files and Streams

/**
* GUI application to display the contents of a file
* as a sequence of byte values given by their hexadecimal
* value in the range 00 to FF.
*/

public class ByteViewer extends JFrame
{

private JTextArea output; // bytes are displayed here
private JFileChooser chooser;
private String titleBar = "Byte Viewer";

/** Construct the GUI */
public ByteViewer()
{

setTitle(titleBar);
JButton view = new JButton("Select File");
output = new JTextArea(20,50);
output.setEditable(false);
output.setFont(new Font("Courier New", Font.BOLD, 14));
chooser = new JFileChooser();

JPanel p = new JPanel();
p.setLayout(new FlowLayout());
p.add(view);

Container cp = getContentPane();
cp.setLayout(new BorderLayout());
cp.add(p, BorderLayout.NORTH);
cp.add(new JScrollPane(output), BorderLayout.CENTER);

view.addActionListener(new ViewButtonHandler());
}

private class ViewButtonHandler implements ActionListen er
{

public void actionPerformed(ActionEvent e)
{

viewFile();
}

}

private void viewFile()
{

// Get the file to view

int status = chooser.showOpenDialog(null);
if (status == JFileChooser.ERROR_OPTION ||

status == JFileChooser.CANCEL_OPTION)
{

return;
}

11.8 Viewing byte contents of files 625

File inFile = chooser.getSelectedFile();
setTitle(titleBar + " ["+ inFile.getName() + "]");

BufferedInputStream in = null;
try
{

in = new BufferedInputStream(new FileInputStream(inFile));

// Read file one byte at a time and display the bytes
// as hexadecimal numbers, 16 per line

byte[] b = new byte[16];
int numBytes;
output.setText("");
while ((numBytes = in.read(b)) != -1)
{

for (int k = 0; k < numBytes; k++)
{

output.append(byteToHex(b[k]) + " ");
}
output.append("\n");

}
in.close();

}
catch (IOException e)
{

// must catch it because a throws clause cannot be
// put on the actionPerformed method
e.printStackTrace();

}
}

/* Convert a byte value, b, to a 2 character hex string
* of form "HH" where each H is a hex digit 0 to 9, A to F
*/

private String byteToHex(byte b)
{

int i = b & 0x000000FF; // cancel sign-extension
String hex = Integer.toHexString(i).toUpperCase();
if (hex.length() == 1) hex = "0" + hex;
return hex;

}

public static void main(String[] args)
{

ByteViewer viewer = new ByteViewer();
viewer.pack(); // instead of setSize
viewer.setVisible(true);
viewer.setDefaultCloseOperation(JFrame.EXIT_ON_CLOS E);

}
}

626 Files and Streams

You can run this class from the command line or fromBlueJ by constructing aByteViewer object
and using itsview method.

11.9 Text files ofBankAccount objects

In this section we consider two ways to represent a database of BankAccount objects using a
sequential text file. The results can easily be generalized to other kinds of objects. Each object is
represented in the file by a record containing a number of fields. Each field corresponds to one of
the object’s data fields. The following text file formats willbe illustrated:

File of multi-line records Each line of the file corresponds to one data field. A typical bank
account record would occupy three lines of the file, for example

1399527077
Cecil Patterson
22158.11

These lines specify the account number, name, and balance ofan account.

File of single-line field separated recordsEach line corresponds to one object (record). The
three fields are separated by a special character (delimiter). We cannot use a space as delim-
iter since owner names may have spaces in them. Therefore we choose the colon character
so the above record example would appear in the file as the line

1399527077:Cecil Patterson:22158.11

For each of these file formats we could design areadAccount method to read aBankAccount
object from a file and awriteAccount method to write aBankAccount object to a file. We
consider here only the single-line colon-separated format. Since the files are text files we will use
inheritance and extend theBufferedReader andPrintWriter classes to do account I/O.

11.9.1 Reading and writing single-line records

To make it easy to read and write bank account objects one at a time it is useful to write meth-
odsreadAccount andwriteAccount for bank account objects. To develop these methods let us
assume prototypes of the form

public BankAccount readAccount()
public void writeAccount(BankAccount a)

implying that these will be instance methods in some class. Here thereadAccount method
returns a reference to the nextBankAccount object read from aBufferedReader . We use a
BufferedReader because our file is a text file of lines and this class has areadLine method. Sim-
ilarly, the writeAccount method writes an account to aPrintWriter since it has theprintln
methods.

11.9 Text files ofBankAccount objects 627

Implementing the writeAccount method

ThewriteAccount method is simple. It just needs to write out the three accountfields on one line
separated by a colon using theprintln method:

public void writeAccount(BankAccount a)
{

out.println(a.getNumber() + ":" + a.getName() + ":" + a.get Balance());
}

where we are assuming thatout is aPrintWriter object.

Implementing the readAccount method

At first sight thereadAccount method seems complicated. We can usereadLine to read a
line as a record but how do we extract the three colon separated fields? There is a class called
StringTokenizer in the java.util package that is designed precisely to solve this problem.
The name arises from the fact that a tokenizer breaks its input into pieces called tokens. This class
has a constructor of the form

public StringTokenizer(String s, String delimiters)

and a method of the form

public String nextToken()

The idea here is thatnextToken() returns the next field of the strings using the characters in
delimiters as field separators. Therefore, we can read a line of the file with colon-separated
fields and construct aStringTokenizer object for it using

StringTokenizer t = new StringTokenizer(line, ":");

Now t.nextToken() returns the next field inline as a string so our first attempt atreadAccount
is

public BankAccount readAccount()
{

String field1, field2, field3;
String line = in.readLine();
if (line == null) return null; // end of file encountered
StringTokenizer t = new StringTokenizer(line, ":");
field1 = t.nextToken(); // account number
field2 = t.nextToken(); // account owner name
field3 = t.nextToken(); // account balance
int number = Integer.parseInt(field1.trim());
double balance = Double.parseDouble(field3.trim());
return new BankAccount(number, field2.trim(), balance);

}

628 Files and Streams

However, we should check for errors. We can use the fact that aNoSuchElementException
is thrown bynextToken if there are no more fields in the line to return. This is an unchecked
exception. Here is a better version incorporating error checking.

public BankAccount readAccount(BufferedReader in) throw s IOException,
EOFException

{
int number = 0;
double balance = 0.0;

String field1, field2, field3;
String line = in.readLine();

// Check for normal end of file and return null to indicate eof

if (line == null) return null;

StringTokenizer t = new StringTokenizer(line, ":");

// Check for a partial record

try
{

field1 = t.nextToken();
field2 = t.nextToken();
field3 = t.nextToken();

}
catch (NoSuchElementException e)
{

throw new EOFException("Partial record encountered");
}

// check that numeric fields are valid using NumberFormatEx ception
// (an unchecked exception) and rethrow it if they are not.

try
{

number = Integer.parseInt(field1.trim());
}
catch (NumberFormatException e)
{

throw new NumberFormatException("Invalid account number ");
}

try
{

balance = Double.parseDouble(field3.trim());

11.9 Text files ofBankAccount objects 629

}
catch (NumberFormatException e)
{

throw new NumberFormatException("Invalid bank balance") ;
}

return new BankAccount(number, field2.trim(), balance);
}

11.9.2 Finding a home forreadAccount and writeAccount

An input stream of bank accounts is like aBufferedReader with an extrareadAccount method
and an output stream of bank accounts is like aPrintWriter that has an extrawriteAccount
method. This suggests that we extendBufferedReader to obtain aBufferedAccountReader
class and that we extendPrintWriter to obtain aPrintAccountWriter class. Then we can
connect files to these streams usingFileReader andFileWriter .

11.9.3 Extending theBufferedReader class

TheBufferedAccountReader subclass ofBufferedReader has the structure

public class BufferedAccountReader extends BufferedRead er
{

public BufferedAccountReader(Reader in) {...}
public BankAccount readAccount()

throws IOException, EOFException {...}
}

Here we have used one of the same constructor prototypes thatare present in theBufferedReader
class (see Java class documentation, there are other constructors that could also be provided). We
accept all methods fromBufferedReader , in particular thereadLine method, and we simply add
our newreadAccount method. The constructor can simply make a call tosuper so the complete
class is

ClassBufferedAccountReader

book-project/chapter11/bank_account

package chapter11.bank_account;
import custom_classes.BankAccount;
import java.io.BufferedReader;
import java.io.EOFException;
import java.io.IOException;
import java.io.Reader;
import java.util.NoSuchElementException;
import java.util.StringTokenizer;

/**

630 Files and Streams

* A class to read <code>BankAccount</code> objects from a bu ffered
* text stream. Each <code>BankAccount</code> object is rep resented
* by one line in the file having a format such as
* <pre>
* 122234422:Frank Johnson:345.56
* </pre>
* Here the colon character is used to separate the account num ber
* from the name and the balance. The following loop can be used to
* process a file of <code>BankAccount</code> objects.
* <pre>
* BufferedAccountReader in =
* new BufferedAccountReader(new FileReader(inFile));
* BankAccount a = in.readAccount();
* while (a != null)
* {
* // process account a here
* in.readAccount(); // read next account
* }
* </pre>
* In many cases the while loop can be shortened to
* <pre>
* while ((a = in.readAccount()) != null)
* {
* // process account a here
* }
* </pre>
*/

public class BufferedAccountReader extends BufferedRead er
{

/**
* Create a buffering <code>BufferedAccountReader</code> input stream
* that uses a default-sized input buffer.
* @param in A <code>Reader</code>
*/

public BufferedAccountReader(Reader in)
{

super(in);
}

/**
* Read a <code>BankAccount</code> object.
* @return the <code>BankAccount</code> read or <code>null </code>
* if end of file occurred.
* @throws <code>EOFException</code> if a partial record is found
* @throws <code>IOException</code> if an I/O error occurs
* @throws <code>NumberFormatException</code> if an inval id numeric
* field is encountered.
*/

public BankAccount readAccount() throws IOException, EOF Exception
{

int number = 0;

11.9 Text files ofBankAccount objects 631

double balance = 0.0;

String field1, field2, field3;
String line = readLine();

// Check for normal end of file and return null to indicate eof

if (line == null) return null;

StringTokenizer t = new StringTokenizer(line, ":");

// Check for a partial record

try
{

field1 = t.nextToken();
field2 = t.nextToken();
field3 = t.nextToken();

}
catch (NoSuchElementException e)
{

throw new EOFException("Partial record encountered");
}

// check that numeric fields are valid using NumberFormatEx ception
// (an unchecked exception) and rethrow it if they are not.

try
{

number = Integer.parseInt(field1.trim());
}
catch (NumberFormatException e)
{

throw new NumberFormatException("Invalid account number ");
}

try
{

balance = Double.parseDouble(field3.trim());
}
catch (NumberFormatException e)
{

throw new NumberFormatException("Invalid bank balance") ;
}

return new BankAccount(number, field2.trim(), balance);
}

}

Notice that we usereadLine directly here (this.readLine()) since it is inherited from the parent
class.

632 Files and Streams

11.9.4 Extending thePrintWriter class

ThePrintAccountWriter subclass ofPrintWriter has the structure

public class PrintAccountWriter extends PrintWriter
{

public PrintAccountWriter(Writer out) {...}
public PrintAccountWriter(OutputStream out) {...}
public void writeAccount(BankAccount a) {...}

}

Here we have used only two of the constructor prototypes thatare present in thePrintWriter
class (see Java class documentation). We need the one that takes anOutputStream as a parameter
since we also want to be able to write to the standard outputSystem.out using aPrintWriter .

We accept all methods fromPrintWriter , in particular theprint andprintln methods, and
we simply add our newwriteAccount method. The constructors can simply make a call tosuper
so the complete class is

ClassPrintAccountWriter

book-project/chapter11/bank_account

package chapter11.bank_account;
import custom_classes.BankAccount;
import java.io.OutputStream;
import java.io.Writer;
import java.io.PrintWriter;

/**
* A class to write <code>BankAccount</code> objects to a
* <code>PrintWriter</code> text stream. Each <code>BankA ccount</code>
* object is written in the single-line colon-separated form at that
* <code>AccountBufferedReader</code> can read.
*/

public class PrintAccountWriter extends PrintWriter
{

/**
* Create a new <code>PrintAccountWriter</code>, without a utomatic line
* flushing from an existing <code>Writer</code>.
* @param out A character output stream
*/

public PrintAccountWriter(Writer out)
{

super(out);
}

/**
* Create a new <code>PrintAccountWriter</code>, without a utomatic line
* flushing, from an existing <code>OutputStream</code>.
* This convenience constructor creates the necessary inter mediate
* <code>OutputStreamWriter</code>, which will convert ch aracters

11.10 Bank account text file processing 633

* into bytes using the default character encoding.
* @param out An output stream
*/

public PrintAccountWriter(OutputStream out)
{

super(out);
}

/**
* Write fields in the single-line colon-separated format un derstood
* by <code>BufferedAccountReader</code>.
* @param a the <code>BankAccount</code>
*/

public void writeAccount(BankAccount a)
{

println(a.getNumber() + ":" + a.getName() + ":" + a.getBala nce());
}

}

Notice that we useprintln directly here (this.println) since it is inherited from the parent
class.

11.10 Bank account text file processing

We can now illustrate howBankAccount database files can be processed sequentially using the
BufferedAccountReader andPrintAccountWriter classes. We assume the existence of a small
file of 10 BankAccount objects calledaccounts.txt containing

139952707:Cecil Patterson:22158.11
105870087:Woody Adamson:797.71
201756613:David Irving:941.38
643908962:Gerry Laforge:63606.09
442753562:Mary Lavigne:34434.45
218560951:Mike Tessier:70366.62
969167302:Dave Jenkins:899.24
670350355:Carol Schwartz:5643.45
707959408:Kim Flintstone:15418.01
176306464:Bob Stevenson:5921.03

To useBufferedAccountReader we can connect it to an account file using the declaration

BufferedAccountReader in =
new BufferedAccountReader(new FileReader(inFile));

Similarly, to usePrintAccountWriter we can buffer it and connect it to an account file using the
declaration

PrintAccountWriter out =
new PrintAccountWriter(new BufferedWriter(new FileWrit er(outFile)));

634 Files and Streams

EXAMPLE 11.21 (Reading one record at a time with a while loop) A model for reading an
account file to do some sequential processing is

BufferedAccountReader in =
new BufferedAccountReader(new FileReader(inFile));

BankAccount a = in.readAccount();
while (a != null)
{

// process account a here
a = in.readAccount(); // read next account

}
in.close();

Often this can be written in the compact form

BufferedAccountReader in =
new BufferedAccountReader(new FileReader(inFile));

BankAccount a;
while ((a = in.readAccount()) != null)
{

// process account a here
}
in.close();

Thus, using inheritance andnull to indicate end of file has given us a very simple processing
model.

EXAMPLE 11.22 (Displaying a database file in the terminal window) The simplest kind of
processing is to read aBankAccount database file and just display its contents in the terminal
window (command prompt window). We need to useSystem.out to display data on the console.
This object is from thePrintStream class which is not aPrintWriter . However, it can easily be
converted to one using the declaration

PrintWriter out = new PrintWriter(System.out);

SincePrintAccountWriter is a subclass we can use

PrintAccountWriter out = new PrintAccountWriter(System. out);

Therefore the statements

BufferedAccountReader in =
new BufferedAccountReader(new FileReader(inFile));

PrintAccountWriter out = new PrintAccountWriter(System. out);
BankAccount a;
while ((a = in.readAccount()) != null)
{

out.writeAccount(a);

11.10 Bank account text file processing 635

}
in.close();
out.close();

will display a database file in the terminal window.

EXAMPLE 11.23 (Copying a database file)The statements

BufferedAccountReader in =
new BufferedAccountReader(new FileReader(inFile));

PrintAccountWriter out =
new PrintAccountWriter(new BufferedWriter(new FileWrit er(outFile)));

BankAccount a;
while ((a = in.readAccount()) != null)
{

out.writeAccount(a);
}
in.close();
out.close();

will make a copy of a database file.

In these three examples we didn’t need to buffer the input since BufferedAccountReader , as a
subclass ofBufferedReader , is buffered.

11.10.1 Finding the maximum balance among the accounts

We now write a class to read an account file and find the maximum balance among all accounts.
To do this we can read the first account and assume it has the maximum balance, and then read the
remaining accounts and compare balances. The following statements do this kind of processing.

// read first account and assume it has maximum balance
BankAccount a = in.readAccount();
double maxBalance = a.getBalance();
while (a != null)
{

if (a.getBalance() > maxBalance)
{

maxBalance = a.getBalance();
}
a = in.readAccount();

}
in.close();

Here is the complete program that finds the maximum balance and displays it.

636 Files and Streams

ClassMaxBalanceCalculator

book-project/chapter11/bank_account

package chapter11.bank_account;
import custom_classes.BankAccount;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;

/**
* Read bank accounts from a file and display the maximum balan ce
*/

public class MaxBalanceCalculator
{

private File inFile;

/** Construct object for given file object
* @param inFile the input file object
*/

public MaxBalanceCalculator(File inFile)
{

this.inFile = inFile;
}

/** Read the file, calculate maximum balance and display it.
* @throws java.io.FileNotFoundException
* @throws java.io.IOException
*/

public void findMaxBalance() throws FileNotFoundExcepti on, IOException
{

BufferedAccountReader in = null;
try
{

in = new BufferedAccountReader(new FileReader(inFile));

BankAccount a = in.readAccount();
double maxBalance = a.getBalance();

while (a != null)
{

if (a.getBalance() > maxBalance)
{

maxBalance = a.getBalance();
}
a = in.readAccount();

}
in.close();
System.out.println("Max balance is " + maxBalance);

}
finally
{

11.10 Bank account text file processing 637

if (in != null) in.close();
}

}

public static void main(String[] args)
throws FileNotFoundException, IOException

{
if (args.length == 1)
{

File inFile = new File(args[0]);
MaxBalanceCalculator calc = new MaxBalanceCalculator(in File);
calc.findMaxBalance();

}
else
{

System.out.println("args: inFileName");
}

}
}

11.10.2 Account processing

As another bank account processing example consider the problem of reading a file of bank ac-
counts such asaccounts.txt and writing a new file containing only the accounts whose balances
are less than $1000.

EXAMPLE 11.24 (Under 1000 processor)Assuming thatin represents the input file andout
represents the output file, the statements

BankAccount a = in.readAccount();
while (a != null)
{

if (a.getBalance() < 1000.0)
out.writeAccount(a);

a = in.readAccount();
}
in.close();
out.close();

write the output file.

11.10.3 Reading database files into arrays

If a BankAccount database file is not too large it may be possible to read it intoan array of
BankAccount objects in memory and process the objects using the array. Statements such as the
following could be used as a processing model.

BufferedAccountReader in =
new BufferedAccountReader(new FileReader(inFile));

638 Files and Streams

BankAccount[] accounts = new BankAccount[1000];
BankAccount b;
int index = 0;
while ((b = in.readAccount()) != null)
{

accounts[index] = b; // store account reference in array
index = index + 1;

}
int numAccounts = index;
in.close();

The final value ofindex will be the number of accounts in the file so we can now process the
accounts in the array using a for-loop of the form

for (int k = 0; k < numAccounts; k++)
{

// process account[k] here
}

The problem here is that, without reading the entire file and counting the accounts, we have no
way of knowing how big to make the array. The size problem can be overcome by using one of
the Java Collection classes calledArrayList that provides dynamic lists whose size automatically
expands as needed.

11.10.4 The DynamicArrayList<E> Class

A better approach is to use a dynamic array: an array whose size can be adjusted at run-time
as needed. The array data structure in Java is not dynamic. Once the size has been specified it
cannot be changed. However, there is a generic collection class calledArrayList<E> in package
java.util that implements theList<E> interface and has a size that is automatically increased
as needed. It is generic because it stores objects of elementtypeE. Here we are using the generic
features of Java 5. In previous versions anArrayList always stored objects of typeObject . This
type can still be used in Java 5 but results in an unsafe type warning. We will use only following
methods (there are many others).

• public ArrayList()

Constructor for anArrayList object with elements of typeE that has space initially for
10 elements.

• public ArrayList(int initialCapacity)

Constructor for anArrayList object with elements of typeE that has space initially for
initialCapacity elements.

• public int size()

Return the current number of elements inthis list.

11.10 Bank account text file processing 639

• public void add(E element)

Add a newelement of typeE at the end ofthis list.

• public E get(int i)

Return the element of typeE at positioni in this list (positions begin at 0).

• public void set(int i, E element)

Replace the element at positioni of this list by the givenelement.

The syntax is not as convenient as the square bracket notation used for indexing arrays but the
dynamic properties of the list are more important here.

EXAMPLE 11.25 (Reading accounts into an array list) The following statements show how
to read an account file into a list object of typeArrayList<BankAccount> :

BufferedAccountReader in =
new BufferedAccountReader(new FileReader(inFileName)) ;

List<BankAccount> accounts = new ArrayList<BankAccount> (100);
BankAccount b;
while ((b = in.readAccount()) != null)
{

accounts.add(b);
}

Here the array list starts out with space for 100 account references and theadd method adds a new
entry at the end of the list. If more than 100 accounts are readthe list is automatically expanded to
hold the additional accounts.

EXAMPLE 11.26 (Processing an array list) The following statements show how to sequen-
tially process the accounts that were read into a list and add$100 to each balance.

List<BankAccount> accounts = new ArrayList<BankAccount> (100);
...
for (int k = 0; k < accounts.size(); k++)
{

BankAccount b = accounts.get(k);
b.deposit(100);
accounts.set(k, b);

}

Here theget method is used to return a reference to an account given its index in the list and the
set method is used to update the object at each index.

Of course, if we can process all accounts in the database file in one pass, as we read the file,
then there is no need to store the file in an array or a list. However, if it is necessary to examine the
accounts all at once, or more than once, such as in a sorting algorithm or a binary search algorithm,

640 Files and Streams

then the list approach would be useful. This would be the caseif you wanted to sort a database file
and it fits in an array or a list in memory.

Here is a simple class that illustrates how to store accountsin a list, sort them by name using
the bubble sort algorithm (see Chapter 8, Page 404), and display the sorted list.

ClassListProcessor

book-project/chapter11/bank_account

package chapter11.bank_account;
import custom_classes.BankAccount;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

/**
* Read bank accounts from a file into an ArrayList and process them.
* In this example the accounts are simply written to the termi nal
* window from the list. Since lists are dynamic we don’t need t o
* specify the maximum number of accounts as we did using an arr ay.
*/

public class ListProcessor
{

private File inFile;

/** Define a list processor for a file.
* @param inFile the input file object
*/

public ListProcessor(File inFile)
{

this.inFile = inFile;
}

/** Read the list, sort it and write it to terminal
* @throws FileNotFoundException
* @throws IOException
*/

public void processList()
throws FileNotFoundException, IOException

{ // An ArrayList ’is a’ list
List<BankAccount> accounts = new ArrayList<BankAccount> ();
BufferedAccountReader in = null;
PrintAccountWriter out = null;

try
{

in = new BufferedAccountReader(new FileReader(inFile));

BankAccount b;

11.10 Bank account text file processing 641

while ((b = in.readAccount()) != null)
{

accounts.add(b); // add reference to end of list
}

// Now sort the list

bubbleSort(accounts);

// Now write the list to standard output

out = new PrintAccountWriter(System.out);
for (int k = 0 ; k < accounts.size(); k++)
{

out.writeAccount(accounts.get(k));
}

}
finally
{

if (in != null) in.close();
if (out != null) out.close();

}
}

/**
* Sort an array list of bank accounts in increasing order by na me.
* @param a the list to sort
*/

private void bubbleSort(List<BankAccount> a)
{

int n = a.size();
for (int p = 1; p <= n - 1; p++) // loop over passes
{

for (int j = 0; j <= n - 1 - p; j++)
{

String name1 = a.get(j).getName();
String name2 = a.get(j+1).getName();
if (name1.compareTo(name2) > 0)
{

BankAccount temp = a.get(j);
a.set(j, a.get(j+1));
a.set(j + 1, temp);

}
}

}
}

public static void main(String[] args)
throws FileNotFoundException, IOException

{
if (args.length == 1)
{

642 Files and Streams

File inFile = new File(args[0]);
ListProcessor processor = new ListProcessor(inFile);
processor.processList();

}
else
{

System.out.println("args: inFileName");
}

}
}

For the sample text fileaccounts.txt the output is

176306464:Bob Stevenson:5921.03
670350355:Carol Schwartz:5643.45
139952707:Cecil Patterson:22158.11
969167302:Dave Jenkins:899.24
201756613:David Irving:941.38
643908962:Gerry Laforge:63606.09
707959408:Kim Flintstone:15418.01
442753562:Mary Lavigne:34434.45
218560951:Mike Tessier:70366.62
105870087:Woody Adamson:797.71

which shows that the accounts are sorted by name.

EXAMPLE 11.27 (Using primitive types with ArrayList) The elements that can be stored
in anArrayList object must be objects of some typeE. The primitive types such asint or double
are not objects so they cannot be directly used. However every primitive type has a corresponding
object type. For example,int anddouble have the wrapper classesInteger andDouble .

To make a list of integers we can use statements such as

List<Integer> numbers = new ArrayList<Integer>();
numbers.add(new Integer(1)); \\ list is [1]
numbers.add(new Integer(2)); \\ list is [1,2]
int k = (numbers.get(1)).intValue(); \\ rturn value 2
numbers.set(1, new Integer(3)); \\ list is [1,3]

Converting back and forth between theint andInteger types is clumsy so the concepts of auto-
boxing and unboxing were introduced in Java 5 so the above statements can be expressed as

List<Integer> numbers = new ArrayList<Integer>();
numbers.add(1); \\ list is [1]
numbers.add(2); \\ list is [1,2]
int k = numbers.get(1); \\ return value 2
numbers.set(1, 3); \\ list is [1,3]

For example, in theadd method1 is automatically converted tonew Integer(1) by the compiler
(auto boxing) and in theget method theintValue method is automatically applied to convert the
Integer object back to theint type (auto unboxing). Note however, that it is necessary to use
List<Integer> and notList<int> .

11.11 Binary object files using Polymorphism 643

11.11 Binary object files using polymorphism

In Chapter 9 we made aJointBankAccount class which was a subclass ofBankAccount . Suppose
we now want to create files containing both kinds of accounts.We could do this by modifying our
text database structure so that the kind of account was indicated by a code. For example, the
single-line format could be modified to have an extra numericfield at the beginning: a value of
1 could represent a single owner account and a value of 2 couldrepresent a joint owner account.
Two sample records might be

1:121233123:Fred Flintstone:134.56
2:332423232:Barney Rubble:Betty Rubble:3434.45

Then we would need to modify thereadAccount method in theBufferedAccountReader class
to read the first field and use an if-statement to determine whether to read three more fields and
construct aBankAccount object or to read four more fields and construct aJointBankAccount
object. Then thereadAccount method would return aBankAccount reference in either case.
An if-statement would also be needed inwriteAccount . If we added new types of accounts
BufferedAccountReader andPrintAccountWriter would have to be modified again.

There is a better way in Java calledobject serialization that keeps track of all the objects in
any hierarchy. To serialize an object means to write out all its data fields in some binary format. If
some of the fields are objects then their fields are also serialized and written out, and so on. This is
a powerful polymorphic way to write objects to a file and thereis anObjectOutputStream class
that will do this. For each kind of object you want to write it is only necessary to specify that its
class implements theSerializable interface. For theBankAccount class this is done with the
modified class declaration

public class BankAccount implements java.io.Serializabl e
{

// everything else here is same as before
}

TheSerializable interface has no methods to implement. It simply serves as a tag which says
“you have the right to serialize my objects”. These rights are automatically granted to all subclasses
such asJointBankAccount .

11.11.1 Writing serialized objects to a file

To write aBankAccount or JointBankAccount object in serialized form to a file is very easy. It
is only necessary to construct anObjectOutputStream , connect it to the file using a declaration
such as

ObjectOutputStream out =
new ObjectOutputStream(new FileOutputStream(outFile)) ;

and use itswriteObject method, which has the prototype

public void writeObject(Object obj) throws IOException

644 Files and Streams

to write an object to the file. Any kind of serializable objectcan be written since the argument is
of typeObject .

For our bank account example the easiest way to write some bank account objects to a binary
object file is to first put them in a list and then write the list to the file.

EXAMPLE 11.28 (Writing an ArrayList object to a file) Assuming thataccounts is a list
of typeArrayList<BankAccount> the statements

ObjectOutputStream out =
new ObjectOutputStream(new FileOutputStream(outFile)) ;

out.writeObject(accounts);
out.close();

write it to a binary object file.

Here is a short class that writes a mixture of bank account andjoint bank account objects to a
file after putting them into a list.

ClassAccountListObjectWriter

book-project/chapter11/bank_account

package chapter11.bank_account;
import custom_classes.BankAccount;
import custom_classes.JointBankAccount;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectOutputStream;
import java.util.ArrayList;
import java.util.List;

/**
* Store some BankAccount and JointBankAccount objects in an ArrayList
* and write the list object to file as a serialized object
*/

public class AccountListObjectWriter
{

private File outFile;
private List<BankAccount> accounts;

/** Define an object for some bank accounts.
* @param outFile the name of the output file object
*/

public AccountListObjectWriter(File outFile)
{

this.outFile = outFile;
accounts = new ArrayList<BankAccount>();

accounts.add(new BankAccount(1234, "Cecil Patterson", 2 2158.11));
accounts.add(new BankAccount(3215, "Woody, Adamson", 79 7.71));

11.11 Binary object files using Polymorphism 645

accounts.add(new JointBankAccount(5424, "Wilma Flintst one",
"Fred Flintstone", 4524.56));

accounts.add(new BankAccount(6632, "David Irving", 941. 38));
accounts.add(new BankAccount(7614, "Gerry Laforge", 636 06.09));
accounts.add(new BankAccount(5337, "Mary Lavigne", 3443 4.45));
accounts.add(new JointBankAccount(5423, "Barney Rubble ",

"Betty Rubble", 4524.56));
accounts.add(new BankAccount(6206, "Mike Tessier", 7036 6.62));
accounts.add(new BankAccount(5210, "Dave Jenkins", 899. 24));
accounts.add(new BankAccount(5313, "Carol Schwartz", 56 43.45));
accounts.add(new BankAccount(7079, "Kim Flintstone", 15 418.01));
accounts.add(new BankAccount(1763, "Bob Stevenson", 592 1.03));
accounts.add(new JointBankAccount(5422, "Carol Schwart z",

"Dave Jenkins", 47894.23));
}

/** Process the list and write list object to output file
* @throws IOException
*/

public void writeAccountList() throws IOException
{

ObjectOutputStream out = null;
try
{

// Write the list to a file as an object

out = new ObjectOutputStream(new FileOutputStream(outFi le));
out.writeObject(accounts);

}
finally
{

if (out != null) out.close();
}

}

public static void main(String[] args) throws IOException
{

if (args.length == 1)
{

File outFile = new File(args[0]);
AccountListObjectWriter writer = new AccountListObjectW riter(outFile);
writer.writeAccountList();

}
else
{

System.out.println("args: outFileName");
}

}
}

Run this program to produce a file calledaccounts.obj . You won’t be able to view this file with
a text editor.

646 Files and Streams

11.11.2 Reading serialized objects from a file

To readBankAccount or JointBankAccount objects from an object file such asaccounts.obj is
also very easy. This is calledobject deserialization. Simply construct anObjectInputStream ,
connect it to the file using a declaration such as

ObjectInputStream in =
new ObjectInputStream(new InputFileStream(inFile));

and use itsreadObject method, which has the prototype

public Object readObject() throws ClassNotFoundExceptio n, IOException

to read objects from the file. Since any kind of object can be stored in the file,readObject returns
anObject type so it will be necessary to perform a typecast to recover the actual type of object. If
you typecast to the wrong kind of object then aClassNotFoundException is thrown.

EXAMPLE 11.29 (Reading anArrayList object from a binary object file) The statements

ObjectInputStream in =
new ObjectInputStream(new InputFileStream(inFile));

List<BankAccount> accounts = (List) in.readObject();
in.close();

show how easy it is to read the list object created byAccountListObjectWriter .

Here is a class that reads the list from the binary object file,displays the accounts and computes
the total balance of all accounts. The system knows which accounts are bank account objects and
which are joint bank account objects.

ClassAccountListObjectReader

book-project/chapter11/bank_account

package chapter11.bank_account;
import custom_classes.BankAccount;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.util.List;

/**
* Read account list object that was written by WriteAccountL istObject
* and display accounts in terminal window.
*/

public class AccountListObjectReader
{

private File inFile;

11.11 Binary object files using Polymorphism 647

/** Construct an object for a given file object.
* @param inFile the binary input file object
*/

public AccountListObjectReader(File inFile)
{

this.inFile = inFile;

}

/** Read the array list and display them in the terminal windo w
* and compute the total balance of all accounts.
* @throws ClassNotFoundException
* @throws FileNotFoundException
* @throws IOException
*/

public void processAccountList()
throws ClassNotFoundException, FileNotFoundException, IOException

{
ObjectInputStream in = null;
try
{

// Read the array list of BankAccount objects and
// display them on standard output. Also compute the
// total balance of all accounts and display it

in = new ObjectInputStream(new FileInputStream(inFile)) ;

List<BankAccount> accounts = (List) in.readObject();
in.close();

double totalBalance = 0.0;
for (int k = 0; k < accounts.size(); k++)
{

BankAccount b = accounts.get(k);
totalBalance = totalBalance + b.getBalance();
System.out.println(b);

}
System.out.println("Total balance is " + totalBalance);

}
finally
{

if (in != null) in.close();
}

}

public static void main(String[] args)
throws ClassNotFoundException, FileNotFoundException, IOException

{
if (args.length == 1)
{

File inFile = new File(args[0]);
AccountListObjectReader reader = new AccountListObjectR eader(inFile);

648 Files and Streams

reader.processAccountList();
}
else
{

System.out.println("args: inFileName");
}

}
}

The output of the program is

BankAccount[1234, Cecil Patterson, 22158.11]
BankAccount[3215, Woody, Adamson, 797.71]
JointBankAccount[BankAccount[5424, Wilma Flintstone, 4 524.56], Fred Flintstone]
BankAccount[6632, David Irving, 941.38]
BankAccount[7614, Gerry Laforge, 63606.09]
BankAccount[5337, Mary Lavigne, 34434.45]
JointBankAccount[BankAccount[5423, Barney Rubble, 4524 .56], Betty Rubble]
BankAccount[6206, Mike Tessier, 70366.62]
BankAccount[5210, Dave Jenkins, 899.24]
BankAccount[5313, Carol Schwartz, 5643.45]
BankAccount[7079, Kim Flintstone, 15418.01]
BankAccount[1763, Bob Stevenson, 5921.03]
JointBankAccount[BankAccount[5422, Carol Schwartz, 478 94.23], Dave Jenkins]
Total balance is 277129.44

Reading more than one object at a time

Instead of putting the account objects into a list we could have written them directly to the binary
object file one at at time using a loop. Then the binary object file will contain more than one object
and it is necessary to read the file using a loop.

ThereadObject method does not usenull to indicate end of file since anull value can appear
in a binary object file. Instead, it throws anEOFException which is a subclass ofIOException .
Therefore a typical processing loop to read an entire objectfile and check exceptions has the
following structure

try
{

while (true)
{

// use in.readObject() here to return next object
}

}
catch (EOFException e)
{

// nothing to do here, normal end of file
}
catch (ClassNotFoundException e)

11.12 Review exercises 649

{
// display message here

}
finally
{

if (in != null) in.close(); // may throw IOException
}

The while-loop is not really infinite: when theEOFException is thrown we jump out of it to the
first catch block. There is nothing to do in this case. We could close the file but this is done in
the finally block. TheClassNotFoundException is a checked exception so if you don’t want
to catch it you can put it in thethrows clause of the containing method.

Here are some statements that read a file ofBankAccount objects using a while-loop, and
display them in readable form in the terminal window with thepolymorphictoString method
used byprintln .

try
{

while (true) // not really an infinite loop
{

BankAccount b = (BankAccount) in.readObject();
System.out.println(b);

}
}
catch (EOFException e) // normal end of file comes here
{

// nothing to do, this is the normal exit
}
catch (ClassNotFoundException e)
{

// indicate error
}
finally // guaranteed to execute before control leaves the m ethod
{

if (in != null) in.close(); // can throw IOException
}

It is important to note that if new subclasses are added to thehierarchy these statements do not need
to be changed in order to process objects of the new subclasses: the while-loop is polymorphic.
Another important feature of serialization and deserialization is that we do not have to worry about
designing a database file format.

11.12 Review exercises

◮ Review Exercise 11.1Define the following terms and give examples of each.

650 Files and Streams

file stream input stream
output stream buffering sequential file
random access file reading a sequential file writing a sequential file
text stream or file binary stream or file byte stream or file
character stream or file Unicode InputStream hierarchy
OutputStream hierarchy Reader hierarchy Writer hierarchy
FileInputStream FileOutputStream BufferedInputStream
BufferedOutputStream FileReader InputStreamReader
BufferedReader OutputStreamWriter FileWriter
unchecked exception throws clause checked exception
IOException EOFException FileNotFoundException
PrintWriter object serialization object deserialization
ObjectInputStream ObjectOutputStream

◮ Review Exercise 11.2Write statements that use a while-loop to read a file a byte at atime and
write the bytes to another file.

◮ Review Exercise 11.3Write statements that use a while-loop to read a file using blocks of 4096
bytes at a time and write the bytes to another file.

◮ Review Exercise 11.4Write statements that use a while-loop to read a file a character at a time
and write the characters to another file.

◮ Review Exercise 11.5Write statements that use a while-loop to read a file using blocks of 4096
characters at a time and write the characters to another file.

◮ Review Exercise 11.6Write statements that use a while-loop to read a character file a line at a
time and write the lines to another file.

◮ Review Exercise 11.7Write statements that use object serialization and a for-loop to write an
array ofBankAccount or JointBankAccount objects to a file.

◮ Review Exercise 11.8Write statements that use object deserialization and a while-loop to read
an an object file ofBankAccount or JointBankAccount objects.

11.13 Exercises

◮ Exercise 11.1 (Line ending characters usingByteViewer)
UseByteViewer to verify the lines of a text file in Windows end in carriage return and line feed
(0D 0A hex, 13, 10 decimal) and line in Unix end with linefeed only.

◮ Exercise 11.2 (Dos to Unix text file conversion)
Using theBufferedInputStream andFileInputStream classes, write a class calledDosToUnix
that converts a Dos text file to a Unix text file. Hint: Read the file one byte at a time and write all
characters to the output file except carriage return characters.

11.13 Exercises 651

◮ Exercise 11.3 (Unix to Dos text file conversion)
Using theBufferedInputStream andFileInputStream classes, write a class calledUnixToDos
that converts a Unix text file to a Dos text file. Hint: Each timea line feed is encountered write a
carriage return and a line feed character to the output file.

◮ Exercise 11.4 (Changing the separator character)
Write a program class calledChangeSeparator that converts an account file in the single-line text
format to a new file using a different separator character. Use command line arguments for the
separator character, input file name, and output file name.

◮ Exercise 11.5 (account statistics)
Write a program class calledAccountStatistics that reads aBankAccount database file in the
single-line text format, computes the minimum balance, themaximum balance, the average bal-
ance, the total amount in all accounts, and displays the results. All processing should be done with
a single while-loop. Test your program usingaccounts.txt .

◮ Exercise 11.6 (account statistics)
Same as previous exercise but use the serialized object format which allows for bothBankAccount
andJointBankAccount objects in the file. Use the binary object file calledaccounts.obj created
by AccountListObjectWriter to test your class.

◮ Exercise 11.7 (accounts with balances below a threshold)
Write a class calledUnder1000Processor that uses the serialized object format which allows for
both bank account and joint bank account objects in the file. The class reads the fileaccounts.obj
and produces an output file in binary object format that contains only the accounts that have a
balance less tham 1000.

◮ Exercise 11.8 (A phone book database)
Let us design a file format for a phone book. Each entry for a person is defined by the last name,
first name, address, and phone number. Here is a file calledphonebook.txt containing ten records
in the single-line colon-separated format:

Garson:Dan:325 Albert St:524-8266
Lafreniere:John:433 Colborne St:522-1114
Roberts:Clarice:123 Grand River St:524-4531
Best:Ringo:250 Paris St:524-9137
Robbins:Chris:29 North Park Rd:523-9493
James:Clifford:72 North Park Rd:523-4394
McDonald:Ed:95 Regent St:524-6383
Damon:Andy:170 Abbey Road:522-9228
Perez:Louise:212 Ramsey Lake Rd:524-2220
Jones:Kim:63 York St:524-9971

We can write a class calledPhoneBookEntry whose objects represent each entry:

652 Files and Streams

public class PhoneBookEntry implements java.io.Serializ able
{

private String lastName;
private String firstName;
private String address;
private String phoneNumber;

public PhoneBookEntry(String last, String first, String a ddr,
String number)

{
lastName = last;
firstName = first;
address = addr;
phoneNumber = number;

}

public String toString()
{

return lastName + ":" + firstName + ":" +
address + ":" + phoneNumber;

}

// Enquiry methods to retrieve data fields

public String getLastName() { return lastName; }
public String getFirstName() { return firstName; }
public String getAddress() { return address; }
public String getPhoneNumber() { return phoneNumber; }

}

We make the class serializable in case we also want to use it with the binary object format supported
by ObjectInputStream andObjectOutputStream .

(a) As in the case of the bank account example, write aBufferedPhoneBookReader class that
is similar toBufferedAccountReader except that instead of areadAccount method it has
a readPhoneBookEntry method to read an entry from a stream.

(b) Similarly, write aPrintPhoneBookWriter class that is similar toPrintAccountWriter
except that instead of awriteAccount method it has awritePhoneBookEntry method to
write an entry to a stream.

(c) To test your classes write a simple copy program calledPhoneBookCopy which makes a
copy of a phone book database file.

◮ Exercise 11.9 (Binary database format)
It is possible to write the standard types such asint anddouble to a file in binary rather than
text format using theDataInputStream andDataOutputStream classes, which implement the
DataInput andDataOutput binary I/O interfaces.

11.13 Exercises 653

(a) Find out how these classes work and extend them to classesAccountInputStream and
AccountOutputStream that can read and write binary files ofBankAccount objects.

(b) Write a conversion program calledConvertToBinary that reads an account database in
single-line text format and writes it in the binary format defined by your new classes. You
can use a loop of the form

BufferedAccountReader in =
new BufferedAccountReader(new FileReader(inFileName)) ;

AccountOutputStream out = new AccountOutputStream(
new BufferedOutputStream(new FileOutputStream(outFile Name)));

BankAccount a;
while ((a = in.readAccount()) != null)
{

out.writeAccount(a);
}
in.close();
out.close();

Test your program usingaccounts.txt to create a binary version calledaccounts.bin .

(c) Write a program calledMaxBalanceBinary that, like MaxBalance , readsaccounts.bin
and displays the maximum balance.

(d) Use theByteViewer program to have a look ataccounts.bin . Can you discover how
integers are stored in binary format? Hint: what is the connection between the first account
number1399527077 and the first four bytes values (decimal)83, 107 , 22, and165 in the file

◮ Exercise 11.10 (Searching for patterns)
Consider the following problem: “Search a text file for the lines containing a given pattern (string)
and display only the lines containing the pattern”. To do this write a program class calledSearch
that takes the pattern string and the file name as command linearguments. For example, running
Search on the fileaccounts.txt usingDav as the pattern should produce

java Search Dav accounts.txt
2017566133:David Irving:3941.38
969167302 :Dave Jenkins:1199.24

Use the followingBufferedSearchReader class that extends theBufferedReader class and
overrides thereadLine method so that it returns only lines containing the pattern:

import java.io.IOException;
import java.io.Reader;
import java.io.BufferedReader;

public class BufferedSearchReader extends BufferedReade r
{

String pattern;

654 Files and Streams

public BufferedSearchReader(Reader in, String pattern)
{

super(in);
this.pattern = pattern;

}

public String readLine() throws IOException
{

String line = super.readLine();
boolean done = false;

// skip any lines that don’t contain the pattern

while ((line != null) && ! done)
{

if (line.indexOf(pattern) != -1)
done = true;

else
line = super.readLine();

}
return line;

}
}

◮ Exercise 11.11 (A simple student marks database)
Consider the following file format for student marks in a course:

Johnson, Frank:0134567:56:65:33:67:45
Nicholson, Al :0023458:67:87:56:76:90

Here there are six fields per record. The format is last name, comma, and first name for the first
field, followed by the student number, followed by a list of 5 marks out of 100 percent.

(a) Write a class calledStudent that represents this structure. EachStudent object has a name,
student number, and an array of 5 integer marks.

(b) Write aMarksReader class to read files with this format. LikeBufferedAccountReader it
should provide a method calledreadStudent for reading one student record.

(c) Write a program calledClassAverages that reads a student marks file and writes two output
files. The first output file has the following format without the student names.

Student Number Term Marks Final Term Mark
0134567 56, 65, 33, 67, 45 53
0023458 67, 87, 56 ,78, 90 76

The averages are computed using floating point division withrounding to the nearest integer. This
file can be printed and posted so that students can check theirmarks. Hint: Just use aPrintWriter

11.13 Exercises 655

connected to a file to do the output. You will find theFormat class useful for formatting the output
in columns

The second output file has the following format

Student Name Student Number Term Marks Final Term Mark
Johnson, Frank 0134567 56, 65, 33, 67, 45 53
Nicholson, Al 0023458 67, 87, 56 ,78, 90 76

that differs from the preceding one only by including an extra column containing the student names
in the format last name, comma, space, and first name. The teacher can keep this version for
recording the marks.

◮ Exercise 11.12 (Transaction file processing)
Suppose we have aBankAccount database file in the single-line colon-separated format (called
the master file) and another file called the transaction file that contains lines of the form

126534:D:37.50
452324:W:450.00
...

Each line represents a transaction. The first field is the account number, the second field is a
transaction code (D for deposit andWfor withdrawal), and the third field is the amount that is
withdrawn or deposited.

(a) Write a class calledTransaction that uses three data fields to encapsulate a transaction.

(b) Write a class calledTransactionReader that extendsBufferedReader by providing a
readTransaction method with prototype

public Transaction readTransaction()

that reads one line from a transaction file and returns it as aTransaction object.

(c) Assuming that the transaction file and the master accountfile are each sorted in order of
increasing account number, write a program class calledUpdateMasterAccounts that reads
a transaction file and a master file, and uses the transaction file to produce a new updated
master file. A pseudo-code algorithm is given in Figure 11.6.

656 Files and Streams

ALGORITHM UpdateMasterFile(trans,master,newMaster)
INPUT transaction filetrans, master filemaster
INPUT new master filenewMaster
Read record fromtrans
Read record frommaster
WHILE not end of file ontransDO

WHILE masteraccount number< transaccount numberDO
Write masterrecord tonewMasterfile
Read next record frommasterfile

END WHILE
Usetransrecord to updatemasterrecord
Write updatedmasterrecord tonewMasterfile
Read next record fromtransfile
Read next record frommasterfile

END WHILE
WHILE not end of file onmasterDO

Write masterrecord tonewMasterfile
Read next record frommasterfile

END WHILE

Figure 11.6: Pseudo-code transaction processing algorithm

BlueJ andBeanShell Edition Copyright 2002, 2005, 2007, Barry G. Adams

Chapter 12

Searching and Sorting Algorithms
With an Introduction to Algorithm Efficiency

Outline

Minimum and maximum algorithms

Linear and binary search algorithm

Running times for linear and binary search

Selection and insertion sort

Running time for selection and insertion sort

Simulation to compare selection and insertion sort

Mergesort

File merge example

Quicksort

Running time for mergesort and quicksort

Simulation to compare mergesort and quicksort

Generic sorting

Sorting strings in lexicographical order

Comparing bank account objects

657

658 Searching and Sorting Algorithms

12.1 Introduction

In this chapter we study some important searching and sorting algorithms with an emphasis on ef-
ficiency and recursion. Searching and sorting are two of the most important processing operations
performed by computers so it is important to have efficient algorithms. Some of the material from
Chapter 8, Section 8.4, is repeated here in a more general form.

First we consider some simple variations of algorithms for finding the minimum or maximum
values in an array ofn elements and for doing a linear search of an array for a given value. To
measure the efficiency of an algorithm we introduce a specialmathematical order notation that can
be used to measure the “running time” without worrying aboutthe effects of particular computer
hardware and software. Using this notation we see that thesesimple algorithms areO (n) which
means that for largen an upper bound on their running time is proportional ton, the number of
elements to search. For each algorithm we can have three kinds of behavior: best case, average
case, and worst case.

Next we consider both recursive and non-recursive versionsof the binary search algorithm for
a sorted array and determine the running time. It will be clear that binary search is much more
efficient for large arrays than linear search since we can show it is O (logn), whereas linear search
is O (n).

Next we consider the efficiency of four popular sorting algorithms. Two of these, selection
sort and insertion sort, are called quadratic sorting algorithms because they areO (n2). The other
two, mergesort and quicksort areO (nlogn). This means that they are much more efficient for
large arrays than the quadratic algorithms. The mergesort and quicksort algorithms are naturally
recursive. We also show how to empirically compare sorting algorithms using a simulation.

Initially our algorithms are developed using arrays of typeint[] but there are many other kinds
of arrays that we might want to search or sort. Rather than rewrite each algorithm for different types
of arrays we develop generic searching and sorting classes that work with arrays of typeObject[]
using theComparable andComparator interfaces to define an ordering for the elements.

12.2 Minimum and maximum algorithms

We have considered these algorithms in Chapter 8, Section 8.4, and now want to generalize them
so that a specified subarray, rather than the entire array, issearched. Asubarray of an array
〈a0, . . . ,an−1〉 is defined to be any sequence of elements〈astart, . . . ,aend〉 with 0≤ start≤ end≤
n−1. The entire array is the subarray havingstart = 0 andend= n−1.

The minimum problem can be stated formally as follows:

“Given the array〈a0, . . . ,an−1〉 and the index valuesstart andenddefining a subarray,
determine an indexi such thatstart≤ i ≤ endandai ≤ ak for all k such thatstart≤
k≤ end.”

The indexi is not unique since the minimum value may occur at several places in the subarray.
Even for a simple algorithm like this there are several variations. Do we return the minimum value
or the position at which the minimum value occurs? If we return the index do we return the index
for the first occurrence of the minimum or the last occurrence?

12.2 Minimum and maximum algorithms 659

ALGORITHM FindMinimum(〈a0,a1, . . . ,an−1〉, start, end)
index← start
FOR k← start+1 TO endDO

IF ak < aindex THEN
index← k

END IF
END FOR
RETURN index

Figure 12.1: Pseudo-code algorithm for minimum array element

Let us first design the algorithm to return the position of thefirst occurrence of the minimum.
We begin by assuming the minimum value is at indexstart and then use a loop to process the
remaining elements in the subarray fromstart+ 1 to end. Each time a smaller value is obtained
the index is updated. When the loop terminates the index willbe the position of the first occurrence
of the minimum. The pseudo-code algorithm is given in Figure12.1. The final value ofindex is
the smallest index of the subarray such thataindex is the minimum value of the elements in the
subarray.

Here are three variations offindMinimum in Java.

(a) Return index of first occurrence:

int findMinimum(int[] a, int start, int end)
{

int index = start;
for (int k = start + 1; k <= end; k++)
{

if (a[k] < a[index])
index = k;

}
return index;

}

(b) Return index of last occurrence:

int findMinimum(int[] a, int start, int end)
{

int index = start;
for (int k = start + 1; k <= end; k++)
{

if (a[k] <= a[index])
index = k;

}
return index;

}

660 Searching and Sorting Algorithms

The only difference is the use of<= instead of< in the comparison of array elements.

(c) Return the minimum value itself. It is the simplest algorithm if the position is not required.

int findMinimum(int[] a, int start, int end)
{

int min = a[start];
for (int k = start + 1; k <= end; k++)
{

if (a[k] < min)
min = a[k];

}
return min;

}

To obtain afindMaximum method for finding the maximum simply reverse the inequalityin the
if-statement.

EXAMPLE 12.1 (Using findMinimum method, versions (a) and (b))The statements

int[] scores = {56, 32, 27, 98, 27, 57, 68, 28, 45, 65};
int pos = findMinimum(score, 0, score.length - 1);
System.out.println("Position of minimum is " + pos);
System.out.println("Minimum value is " + scores[pos]);

find the minimum value in thescores array. For version (a) the values printed are2 for pos and
27 for the minimum value. For version (b) the value4 instead of2 for pos is printed. This method
can be tested inBeanShell by entering the method into the workspace editor and choosing ”Eval
in workspace”.

We have used an array of integers here although an array of anytype for which elements can
be compared can be used. For example, to find the minimum balance in an array ofBankAccount
objects and return the index of its first occurrence use the method

int findMinimumBalance(BankAccount[] a, int start, int en d)
{

int index = start;
for (int k = start + 1; k <= end; k++)
{

if (a[k].getBalance() < a[index].getBalance())
index = k;

}
return index;

}

12.3 Running time of an algorithm 661

12.3 Running time of an algorithm

In order to compare two algorithms to see if one is more efficient than the other we need to measure
the running time of each algorithm. One way to do this is to implement the algorithms and write
a program that calculates their running time for various arrays and array sizes. The problem here
is that the running time will depend on the particular hardware and software (processor, operating
system, compiler, language). Faster computers or more efficient compilers will give lower running
times.

We need a hardware/software-independent theoretical way to measure the running time of an
algorithm in terms of the size of the problem and the number oftimes selected statements in the
algorithm are executed.

For example, the running time offindMinimum depends on the number of array elements that
are searched to find the minimum value. It is clear that findingthe minimum in a million element
array will take longer than for a 10 element array. If you timefindMinimum for various array sizes,
n, you will find that asn increases the running time increases linearly withn: searching a 10000
element array takes about twice as long as a 5000 element array which takes about twice as long
as a 2500 element array, and so on. We say thatfindMinimum is a linear algorithm.

This means that for largen the running time will have the formT(n) = an+b for some con-
stantsa andb. If n is large we can omitb in comparison toan. It is the fact thatT(n) is proportional
to n, for largen, that is important here, not the constantsa andb which depend on the particular
hardware/software environment. To remove this dependencyon a andb we simply say that all
algorithms whose running time is at mostan+ b, such asfindMinimum , are of ordern and we
write T(n) = O (n) to indicate that an upper bound on the running time is proportional ton. This
is often called the “Big Oh” notation.

To derive this result mathematically we need some representative statements to count in the
findMinimum algorithm. In this way we reduce the running time calculation to a counting problem.
For example, we can use the number of times the if-statement inside the for loop is executed (the
number of comparisons). This is the number of times the for loop is executed, namelyend−
start+1, and this is just the number,n, of elements in the subarray. ThereforeT(n) = n. We could
choose other measures such as the total number of comparisons and the total number of assignment
statements but then we would have difficulty calculating theexact number of operations since
the number of times the assignment statement inside the if-statement is executed depends on the
elements in the array. In any case this number would still have an upper bound of the forman+b
soT(n) = O (n) although this is more difficult to show.

We can also define thebest, average, andworst case behavior of an algorithm. For the linear
search algorithm each can be shown to beO (n). For other algorithms the worst case behavior is of-
ten easy to determine but the average behavior can be difficult since it depends on the probabilistic
distribution of the elements in the array. In any case the worst case behavior gives an upper bound
on the running time.

EXAMPLE 12.2 (Mathematical definition of O) We can give a precise definition of theO
notation as follows: Given two functionsf andg we say thatf (n)=O (g(n)) if there exist constants
c > 0 andN > 0 such that 0≤ f (n) ≤ cg(n) for all n > N. It is important to realize thatO (n) is
not a function. It represents an infinite set of functions. Therefore you should really interpret

662 Searching and Sorting Algorithms

T(n) = O (n) to meanT(n) ∈ O (n). There are other measures of the rate of growth of a function
denoted byΩ(g(n)), for a lower bound, andΘ(g(n)), for both upper and lower bounds, that we
will not consider here.

EXAMPLE 12.3 (Example of O calculations) It is easy to show thatan+ b is O (n). Let
c = a+ 1. Thenan+ b≤ cn if b≤ n. Therefore letN be any integer greater thanb and we will
havean+b≤ cn whenevern > N. This shows for example thatn, 2n 3n+1/n are allO (n).

EXAMPLE 12.4 (Example ofO calculations) Let us show thatn2+3n+1 isO (n2). Letc= 2.
Thenn2+3n+1≤ 2n2 if n2≥ 3n+1 which is true ifn > 4. Therefore letN = 4 andn2+3n+1
is O (n2) for all n > 4.

12.4 Searching algorithms

The linear search algorithms was briefly discussed in Chapter 8, Section 8.4. Here we consider
the linear search algorithm and both recursive and non-recursive versions of the much superior
binary search algorithm and we obtain upper bounds on their running times. We will develop these
algorithms for arrays of typeint[] although it is easy to modify them to search other types of
arrays.

The Java method for each of these three algorithms has a prototype of the form

public static int search(int[] a, int x, int start, int end)

wherea is the array to search,x is the element to search for in the subarray defined bystart and
end , and the return value is either the position at whichx is found or -1 ifx is not found.

12.4.1 Linear search algorithm

The findMinimum andfindMaximum algorithms are examples of search algorithms since we are
searching for the smallest or largest value. An important variation is to search for a given value.
We now generalize the results in Chapter 8, Section 8.4, so that the linear search is applied to a
subarray rather than the entire array.

In a linear search of a subarray we are looking for a given valuex among the array elements in
the subarray. If we find it then we can return the array index atwhich it is found, otherwise we can
return the invalid index value−1. The linear search problem can be stated as follows:

“Given the array〈a0, . . . ,an−1〉, the index valuesstart andend defining a subarray
〈astart, . . . ,aend〉, and a valuex to find, determine an indexi such thatai = x andstart≤
i ≤ end. If such an index cannot be found let the index be−1.”

A while loop is appropriate here since we do not know how many times the body of the loop will
be executed. We need to stop executing the body if the elementwe are looking for is found. The
loop continues as long as we are within the subarray and as long as we have not found the element
we are looking for. The pseudo-code algorithm is given in Figure 12.2. There are two ways the
while loop can terminate. Ifindex≤ end is false then we have “gone off the end” of the subarray

12.4 Searching algorithms 663

ALGORITHM LinearSearch(〈a0,a1, . . . ,an−1〉, x, start, end)
index← start
WHILE index≤ end∧aindex 6= x DO

index← index+1
END WHILE
IF index> endTHEN

RETURN −1
ELSE

RETURN index
END IF

Figure 12.2: Pseudo-code linear search algorithm

ALGORITHM LinearSearch(〈a0,a1, . . . ,an−1〉, x, start, end)
index← start
WHILE index≤ endDO

IF aindex= x THEN
RETURN index

END IF
index← index+1

END WHILE
RETURN −1

Figure 12.3: Alternate Pseudo-code linear search algorithm

and the entire boolean expression is false so the loop will exit. The expressionaindex 6= x will not
be evaluated in this case, assuming short-circuit evaluation as in Java (in an expression likea∧b if
a is falseb is never evaluated). Otherwise the array index could be out of range. If the elementx
is found then the expressionaindex 6= x will be false and the loop will exit. When the loop exits we
can testindexto see which exit was taken. Ifindex> endthen we did not findx so−1 is returned.
Otherwisex was found andindexis returned.

An alternate version that may be easier to understand is shown in Figure 12.3. As for the
findMinimum method there are other variations. We could run the loop backwards and find the
last occurrence ofx rather than the first occurrence. Or, if the position is not required, aboolean
return type can have the value true ifx is found and false otherwise.

Order of linear search

Since the while loop exits immediately ifx is found, the best case behavior will occur ifx is the
first element in the subarray. The running time will not depend at all on the size,n, of the array. To
indicate that the running time does not depend onn we writeT(n) = O (1).

664 Searching and Sorting Algorithms

Step Left subarray Middle value Right subarray
1 3 5 7 11 21 47 56 63 84 89
2 47 56 63 84 89
3 empty 47 56
4 empty 56 empty

Table 12.1: Binary search example

The worst case behavior will occur ifx is found at the last position in the subarray orx is not
found. In this case every element in the subarray is examined. Definingn = end−start+1, the
body of the while loop will be executedn times. Therefore the worst case behavior isT(n) = O (n).
The average case behavior will depend on the values of the array elements and a probabilistic
argument shows thatT(n) = O (n) in this case too.

12.4.2 Recursive binary search algorithm

The linear search algorithm is anO (n) algorithm so it is not useful for largen. If we can assume that
the array elements are sorted in increasing order (or decreasing order) then we can write a much
better algorithm called the binary search algorithm because it continually divides the problem size
(number of elements to search) in half until the element is found. This division process is often
called bisection. On the other hand each iteration of the linear search algorithm would eliminate
only one element.

To develop the recursive algorithm we start with an array〈a0, . . . ,an−1〉 sorted in increasing
order. The half to be searched at each step will be a subarray of the form

〈astart, . . . ,aend〉, whereastart ≤ astart+1≤ ·· · ≤ aend

We want to determine ifx is found in the subarray. To begin the bisection process we look at the
middle element,amid, of the subarray which we define by the indexmid = (start+end)/2. This
will be the middle element if there is an odd number of elements in the subarray and the leftmost
of the two middle elements if there is an even number of elements. There are two base cases and
two recursive cases to consider:

1. If start > end, the subarray is empty andx is not found (base case).

2. If x = amid, thenx has been found (base case).

3. If x < amid, search left subarray〈astart, . . . ,amid−1〉 for x (recursive case).

4. If x > amid, search right subarray〈amid+1, . . . ,aend〉 for x (recursive case).

As an example, lets try to find 56 in the ten element array〈3,5,7,11,21,47,56,63,84,89〉. The
bisection results are shown in Table 12.1. The important feature of this algorithm is that the number
of elements remaining to be searched is cut in half at each step.

The running time is proportional to the total number of bisections that are made and this is
proportional to the number of comparisons ofx with amid. The best case behavior occurs when we

12.4 Searching algorithms 665

n log2n = (lnn/ ln2)
10 3
100 7
1000 10
106 20
109 30
1040 133

Table 12.2: Comparison ofn and log2n

are searching for the element at the middle. Then the algorithm isO (1). In the worst case, which
we now consider, the element is either found at the last bisection step, when both left and right
subarrays are empty, or it is not found.

For a 10 element array there are never more than 4 bisections:the number of elements remain-
ing to search at each step is 10→ 5→ 3→ 2→ 1. For linear search there could be as many as 10
comparisons. For a 1000 element array the number of elementsremaining to be searched at each
step is

1000→ 500→ 250→ 125→ 63→ 32→ 16→ 8→ 4→ 2→ 1

so there are never more than 10 bisections versus as many as 1000 comparisons for linear search.
Similarly, for a 1,000,000 element array at most 20 bisections are needed versus as many as
1,000,000 comparisons for linear search. It is clear that binary search is far superior to linear
search. Later we will show that the order of binary search isO (log2n). Table 12.2 shows how
much fastern increases compared to log2n: if it took 30 units of time to search a billion element
array then a linear search could take as many as 109 units of time. Calculators usually have buttons
for the base 10 logarithms, log10n, or basee logarithms, logen = lnn, but it is easy to calculate
logarithms in other bases using the identity

logbx = logcx/ logcb

Therefore, usingb= 2, c= e, andx= n we have log2n = logen/ loge2= lnn/ ln2 as shown in the
table.

We can now write a pseudo-code binary search algorithm. The bisection process terminates
when the indicesstart andendsatisfystart > end. This corresponds to an empty subarray. The
algorithm is given in Figure 12.4. Recalling that recursionis a problem solving technique for
which a problem is solved in terms of one or more smaller versions of itself and one or more non-
recursive base cases, we see that this algorithm is naturally recursive: the problem of searching a
subarray is expressed in terms of the two smaller problems ofsearching either the left half subarray
or the right half subarray. The base case occurs when the subarray is empty and this occurs when
start > end.

12.4.3 Non-recursive binary search algorithm

It is also easy to develop a non-recursive version of binary search. For a subarray〈astart, . . . ,aend〉
we need to keep two indiceslow andhigh that define the half〈alow, . . . ,ahigh〉 to be searched next.

666 Searching and Sorting Algorithms

ALGORITHM BinarySearch(〈astart, . . . ,aend〉, x)
IF start≤ endTHEN

mid← (start+end)/2
IF x = amid THEN

RETURN mid
ELSE IF x < amid THEN

RETURN BinarySearch(〈astart, . . . ,amid−1〉, x)
ELSE

RETURN BinarySearch(〈amid+1, . . . ,aend〉, x)
END IF

END IF
RETURN −1 // x not found

Figure 12.4: Pseudo-code recursive binary search algorithm

1 3 5 7 11 21 47 56 63 84 89
low = 0 high= 10

low = 6 high= 10
low = 6 high= 7

low,high= 7

Table 12.3: Low and high indices for non-recursive binary search, showing howlow moves to the
right andhighmoves to the left.

Initially we let low = start andhigh= end. Thenmid is calculated and if the left half is chosen
highneeds to be adjusted tohigh= mid−1. If the right half is chosen themlow needs to adjusted
to low = mid+1. As the bisection proceedslow moves to the right andhigh moves to the left so
we can use a while loop that continues as long aslow≤ high. This is illustrated in Table 12.3 for
finding 56 in the array〈1,3,5,7,11,21,47,56,63,84,89〉with start = 0 andend= 10.

A pseudo-code algorithm for the non-recursive binary search algorithm is shown in Figure 12.5.

12.4.4 Running time of binary search algorithm

The results in Table 12.2 suggest that the worst case behavior of binary search isO (log2n) (which
is alsoO (logbn) for any baseb). We now sketch the proof using the recursive version. Letn be
the number of elements to search and letT(n) be the running time forn elements defined as the
number of bisections required. This will be the number of times the if-statement is executed. To
simplify the proof we also assume thatn is a power of 2:n = 2m for somem. Then we can search
a subarray ofn elements using one bisection to determine which half to use andT(n/2) bisections

12.4 Searching algorithms 667

ALGORITHM NRBinarySearch(〈astart, . . . ,aend〉, x)
low← start
high← end
WHILE low≤ high DO

mid← (start+end)/2
IF x < amid THEN

high←mid−1
ELSE IF x > amid THEN

low←mid+1
ELSE

RETURN mid
END IF

END WHILE
RETURN −1

Figure 12.5: Pseudo-code non-recursive binary search algorithm

to search this half. This gives the following recurrence relation connectingT(n) andT(n/2):

T(n) = T(n/2)+1, with initial conditionT(1) = 1.

Substitutingn/2 for n givesT(n/2) = T(n/22)+1. Continuing

T(n) = T(n/2)+1

= T(n/22)+1+1 = T(n/22)+2

= T(n/23)+1+2 = T(n/23)+3

· · ·
= T(n/2m)+m

= T(1)+m

= 1+m

= 1+ log2n, sincen = 2m

= O(log2n)

Therefore binary search is anO (logn) algorithm and, as Table 12.2 shows, is much superior to
linear search. Ifn is not a power of two we can use⌈n/2k⌉ at each stage instead ofn/2k, noting
that 2k ≤ n≤ 2k+1 for somek (⌈x⌉ denotes the smallest integer greater than or equal tox).

12.4.5 Class of static searching methods

The three search algorithms can easily be translated into Java. We place them in a class called
IntArraySearch as static methods:

668 Searching and Sorting Algorithms

ClassIntArraySearch

book-project/chapter12/searching

package chapter12.searching;

/**
* Static methods for searching an integer array
*/

public class IntArraySearch
{

/**
* Search subarray for a given element using linear search alg orithm.
* @param a The array to search
* @param x The value to search for
* @param start Index defining start of subarray
* @param end Index defining end of subarray
* @return If <code>x</code> is found the first array index su ch that
* <code>x = a[i]</code> else <code>-1</code> to indicate fa ilure.
*/

public static int linearSearch(int[] a, int x, int start, in t end)
{

int i = start;
while ((i <= end) && (a[i] != x))

i++;
if (i <= end)

return i;
else

return -1;
}

/**
* Search subarray for a given element using the recursive
* binary search algorithm. It is assumed that the array is sor ted
* in increasing order.
* @param a The array to search
* @param x The value to search for
* @param start Index defining start of subarray
* @param end Index defining end of subarray
* @return If <code>x</code> is found the first array index su ch that
* <code>x = a[i]</code> else <code>-1</code> to indicate fa ilure.
*/

public static int rBinarySearch(int[] a, int x, int start, i nt end)
{

if (start <= end)
{

int mid = (start + end) / 2;
if (x < a[mid])

return rBinarySearch(a, x, start, mid - 1); // search a[star t] to a[mid-1]
else if (x > a[mid])

return rBinarySearch(a, x, mid + 1, end); // search a[mid+1] to a[end]
else

return mid; // x found and x = a[mid]

12.4 Searching algorithms 669

}
return -1; // x not found

}

/**
* Search a subarray for a given element using the non-recursi ve
* binary search algorithm. It is assumed that the array is sor ted
* in increasing order.
* @param a The array to search
* @param x The value to search for
* @param start Index defining start of subarray
* @param end Index defining end of subarray
* @return If <code>x</code> is found the first array index su ch that
* <code>x = a[i]</code> else <code>-1</code> to indicate fa ilure.
*/

public static int nrBinarySearch(int[] a, int x, int start, int end)
{

int low = start;
int high = end;
while (low <= high)
{

int mid = (low + high) / 2;
if (x < a[mid])

high = mid - 1; // search left half a[low] to a[high-1]
else if (x > a[mid])

low = mid + 1; // search right half a[mid+1] to a[high]
else

return mid; // x found and x = a[mid]
}
return -1; // x not found

}
}

12.4.6 Testing the search algorithms

To test these classes we use the followingIntArraySearchTester class:

ClassIntArraySearchTester

book-project/chapter12/searching

package chapter12.searching;
import java.util.Scanner;

/**
* Test the linear and binary searching algorithms.
*/

public class IntArraySearchTester
{

/** Test the search algorithms.
*/

public void doTest()

670 Searching and Sorting Algorithms

{
Scanner input = new Scanner(System.in);

// read the array

System.out.print("Enter number of integers in array: ");
int size = input.nextInt(); input.nextLine();
int[] testArray = new int[size];
for (int k = 0; k < testArray.length; k++)
{

System.out.print("Enter element " + k + ": ");
testArray[k] = input.nextInt(); input.nextLine();

}

// Read element to find and the subarray start, end indices

System.out.print("Enter element to find: ");
int x = input.nextInt(); input.nextLine();
System.out.print("Enter start index for subarray: ");
int start = input.nextInt(); input.nextLine();
System.out.print("Enter end index for subarray: ");
int end = input.nextInt(); input.nextLine();

// Search the array and display results for each algorithm

int pos;
pos = IntArraySearch.linearSearch(testArray, x, start, e nd);
displayResult(pos, x);
pos = IntArraySearch.rBinarySearch(testArray, x, start, end);
displayResult(pos, x);
pos = IntArraySearch.nrBinarySearch(testArray, x, start , end);
displayResult(pos, x);

}

public void displayResult(int pos, int x)
{

if (pos < 0)
System.out.println("Element " + x + " was not found");

else
System.out.println("Element " + x + " was found at position " + pos);

}

public static void main(String[] args)
{

new IntArraySearchTester().doTest();
}

}

12.5 Sorting algorithms 671

12.5 Sorting algorithms

We now consider four well-known sorting algorithms appliedto a subarray of an integer array. The
first two, selection sort and insertion sort, are quadratic algorithms. Their worst and average case
behavior isO (n2). The other two, quicksort and mergesort, are much superior for large arrays since
they have average case behaviorO (nlogn). Mergesort also has worst case behaviorO (nlogn) but
requires a temporary array for storage, and quicksort has worst case behaviorO (n2) but requires
no temporary array.

We design our algorithms to sort arrays of integers in increasing order. For example, the array
〈5,3,8,5,4,2,2〉 is not sorted. In increasing order the sorted array is〈2,2,3,4,5,5,8〉. Later we
show how to do generic sorting using arrays of typeObject[] .

The Java methods for each of these four algorithms has a prototype of the form

public static void sort(int[] a, int start, int end)

wherea is the array〈a0, . . . ,an−1〉 and the subarray〈astart, . . . ,aend〉 to sort is defined bystart
andend .

12.5.1 Selection sort algorithm

The selection sort algorithm is one of the easiest sorting algorithms to understand because of its
intuitive nature. We apply it to the subarray〈astart, . . . ,aend〉 of the array〈a0, . . . ,an−1〉 whose
elements have an order defined for them. The algorithm for increasing order is

1. Find the smallest of the elements in〈astart, . . . ,aend〉 and exchange (swap) it with the element
astart at positionstart. Now astart is the smallest element in the subarray and it is in the
correct position.

2. Find the smallest of the elements in the remaining subarray 〈astart+1, . . . ,aend〉 and exchange
(swap) it with the elementastart+1 at positionstart+1. Now astart and astart+1 are the
two smallest elements in the original subarray and they are in the correct position (astart ≤
astart+1).

3. Repeat, using smaller subarrays until the last subarray to sort is〈aend−1,aend〉.

This gives the top level pseudo-code algorithm

FOR i← start TO end−1 DO
Find the indexk of the smallest element in subarray〈ai, . . . ,aend〉
Exchange (swap) elements at positionsi andk.

END FOR

As an example, consider the array〈a0, . . . ,a7〉 given by〈44,55,12,42,94,18,6,67〉and usestart=
0, end= 7. The steps are shown in Table 12.5 where underlined elements are in their correct
position. The complete pseudo-code algorithm for selection sort is given in Figure 12.6.

Note carefully in the outer for loop that the last value ofi is end−1 since the last subarray to
examine is〈aend−1,aend〉, but in the inner for loop the last value ofj is endsince we must search

672 Searching and Sorting Algorithms

Step a0 a1 a2 a3 a4 a5 a6 a7 operation
1 44 55 12 42 94 18 6 67 swap 6 with 44
2 6 55 12 42 94 18 44 67 swap 12 with 55
3 6 12 55 42 94 18 44 67 swap 18 with 55
4 6 12 18 42 94 55 44 67 swap 42 with itself
5 6 12 18 42 94 55 44 67 swap 44 with 94
6 6 12 18 42 44 55 94 67 swap 55 with itself
7 6 12 18 42 44 55 94 67 swap 67 with 94)
8 6 12 18 42 44 55 67 94 (done)

Table 12.4: Selection sort example

ALGORITHM selectionSort(〈a0,a1, . . . ,an−1〉, start, end)
FOR i← start TO end−1 DO

k← i
FOR j ← i +1 TO endDO

IF a j < ak THEN
k← j

END IF
END FOR
temp← ak

ak← ai

ai ← temp
END FOR

Figure 12.6: Pseudo-code selection sort algorithm

12.5 Sorting algorithms 673

each subarray until the last element. Also, three assignment statements are needed to exchange
(swap) two values, since it is necessary to use a temporary variable to save the first element of the
pair being swapped.

As we did for the searching algorithms, it is easy to translate this pseudo-code algorithm into
the following static method calledselectionSort .

public static void selectionSort(int[] a, int start, int en d)
{

for (int i = start; i < end; i++)
{

// find position k of minimum element among
// the elements a[i] to a[end]

int k = i;
for (int j = i+1; j <= end; j++)
{

if (a[j] < a[k])
k = j;

}

// swap the smallest element found (it’s a[k]) with a[i]

int temp = a[k];
a[k] = a[i];
a[i] = temp;

}
}

This sort method is placed in a class calledIntArraySort (see Section 12.5.13, page 696).

12.5.2 Running time for selection sort

One measure of the running time is the number of times the if statement is executed in the inner
loop. This is the number of times the loop is executed and thisin turn depends on the outer loop
index. We can assume that there aren array elements son= end−start+1. We can use the results
in Table 12.5 to do the counting. Adding the entries in the last column gives the running time

T(n) = n−1+n−2+n−3+ · · ·+1 = 1+2+3+ · · ·+n−1.

If you don’t know the formula for this common sum write it twice, once forward and once back-
ward, as follows

T(n) = 1 + 2 + 3 + · · · + n−1
T(n) = n−1 + n−2 + n−3 + · · · + 1.

Now add to obtain 2T(n) = n+n+ ...+n = n(n−1) sincen is repeatedn−1 times. Therefore

T(n) =
n(n−1)

2
=

1
2

n2− 1
2

n = O (n2).

674 Searching and Sorting Algorithms

outer loop index inner loop index inner loop executions
start start+1, . . . ,end end−start = n−1
start+1 start+2, . . . ,end end−start−1 = n−2
start+2 start+3, . . . ,end end−start−2 = n−3
.
end−1 end, . . . ,end 1

Table 12.5: Counting inner loop executions for selection sort

Since the inner and outer for loop indices do not depend on theactual array elements, according to
our definition of the running time, the best, average, and worst case behavior of selection sort are
all O (n2). Of course the actual running time is sensitive to the distribution of elements in the array
since this affects the number of times the assignment statement is executed in the if statement.

12.5.3 Insertion sort algorithm

Insertion sort is another intuitive algorithm and is performed by poker or bridge players when they
arrange their cards in order. To understand this algorithm think of dividing the subarray to be
sorted into two subarrays, a left one calledL which is already sorted and a right one calledRwhich
is unsorted. If the initial subarray is〈astart, . . . ,aend〉 then its two parts are

L = 〈astart〉, R = 〈astart+1, . . . ,aend〉
since a one-element part is always sorted. We begin by takingthe first element ofR and moving it
to its proper place in the left part to give

L = 〈astart,astart+1〉, R = 〈astart+2, . . . ,aend〉
whereastart≤ astart+1. Next we moveastart+2 to its proper place inL. After several steps we arrive
at the general situation

L = 〈astart, . . .ai−1〉, R = 〈ai, . . . ,aend〉
for which astart ≤ astart+1 ≤ ·· · ≤ ai−1. Rather than movingai left, by swapping, until it is in its
proper position inL we can moveai−1 to the right one place if it is larger thanai , ai−2 to the right
one place if it is larger thanai and so on until we obtain a “hole” inL into which we can drop
ai . This “move and drop” technique is more efficient than swapping since it involves less data
movement.

The following example illustrates this for the arrayA = 〈44,55,12,42,94,18,6,67〉. Starting
with L = 〈44〉 andR= 〈55,12,42,94,18,6,67〉we see that 55 is already in its correct position with
respect to 44 so the next step isL = 〈44,55〉 andR= 〈12,42,94,18,6,67〉. Continuing we obtain
Figure 12.7. The vertical bars indicate the division between the subarraysL andR at each step.
The complete pseudo-code algorithm for insertion sort is given in Figure 12.8. At stepi the sorted
part isL = 〈astart, . . . ,ai−1〉 and the unsorted part isR= 〈ai, . . . ,aend〉. In this step a hole forx= ai

is opened up by movingai−1, ai−2, . . . to the right in the while loop if they are greater thanx.
We can translate this pseudo-code algorithm to the following method calledinsertionSort

which will later be placed in theIntArraySort class along with the other sorting algorithm.

12.5 Sorting algorithms 675

step array operation
a0 a1 a2 a3 a4 a5 a6 a7

1 44 | 55 12 42 94 18 6 67 put 55 inL
2 44 55 | 12 42 94 18 6 67 put 12 inL
3 12 44 55 | 42 94 18 6 67 put 42 inL
4 12 42 44 55 | 94 18 6 67 put 94 inL
5 12 42 44 55 94 | 18 6 67 put 18 inL
6 12 18 42 44 55 94 | 6 67 put 6 inL
7 6 12 18 42 44 55 94 | 67 put 67 inL
8 6 12 18 42 44 55 67 94 done

Figure 12.7: An insertion sort example for〈44,55,12,42,94,18,6,67〉.

ALGORITHM insertionSort(〈a0,a1, . . . ,an−1〉, start, end)
FOR i← start+1 TO endDO

x← ai

j← i−1
WHILE j ≥ start∧x < a j DO

a j+1← a j

j = j−1
END WHILE
a j+1← x

END FOR

Figure 12.8: Pseudo-code insertion sort algorithm

public static void insertionSort(int[] a, int start, int en d)
{

for (int i = start+1; i <= end; i++)
{

// Sorted part of array is a[start], ..., a[i-1]
// Unsorted part is a[i], ..., a[end]

int x = a[i]; // left element of unsorted part
int j = i-1; // right index of sorted part

// move elements right until position for x is found.

while ((j >= start) && (x < a[j]))
{

a[j+1] = a[j]; // move a[j] one place to the right
j--;

}

676 Searching and Sorting Algorithms

outer loop index inner loop index inner loop executions
start+1 start, . . . ,start 1
start+2 start, . . . ,start+1 2
start+3 start, . . . ,start+1 3
.
end start, . . . ,end−1 end−start

Table 12.6: Counting inner loop executions for worst case insertion sort

a[j+1] = x; // drop x into the hole found
}

}

This sort method is placed in a class calledIntArraySort (see Section 12.5.13, page 696).

12.5.4 Running time for insertion sort

For this algorithm let us use the number of times the statements inside the while loop are executed
to determine the running time. This is a more difficult problem than for selection sort since the
number of times the while loop is executed depends on the array. Therefore we will calculate
the worst case behavior. The inner loop will be executed the maximum number of times ifj is
decremented to the beginning of the array each time. This occurs when the array is sorted in reverse
order. For example,〈10,9,8,7,6,5,4,3,2,1〉. In this case we obtain the results in Table 12.6, again
usingn = end−start+1. Adding the entries in the last column gives

T(n) = 1+2+ · · ·+end−start =
n(n−1)

2
= O (n2).

Clearly the worst case running time isO (n2). It can be shown that the average time is alsoO (n2).
The best case behavior occurs when the initial array is already sorted. Then the statements in the
while loop are never executed. Since the outer loop is executedn−1 times the best case behavior
is O (n).

12.5.5 Simulation to compare selection and insertion sort

Simulations are important in the analysis of algorithms andcomputer systems since it is not always
possible to obtain good theoretical estimates. Also it may be necessary to optimize an algorithm
for a particular computer system. Even though we can analyzeselection sort and insertion sort
and determine their average behavior isO (n2), it is useful to compare them on a given computer
system to see which is faster. Since the worst case behavior of insertion sort compares with the
average case behavior of selection sort we expect that insertion sort is a little faster even though
both algorithms areO (n2) (a more careful theoretical analysis confirms this).

It is easy to write a simulation program to estimate the running time of a sorting algorithm. We
simply generate random arrays and average the times over a certain number of trials. We can use
theRandomclass injava.util to generate random integers. For example, if we define

12.5 Sorting algorithms 677

Random rand = new Random(1234);

then each callrand.nextInt() generates the next random number in the sequence determinedby
the seed1234 . Each seed generally produces a different sequence of integers. To time the selection
sort algorithm we can use the statements

long startTime = System.nanoTime();
IntArraySort.selectionSort(array, 0, array.length - 1);
long endTime = System.nanoTime();
double sortTime = (endTime - startTime) / 1E9; // seconds

Here is a class that can be used to time the selection sort and insertion sort algorithms algorithm.
Note that we have run one extra trial and not counted the first one since the Java compiler will do
some ”just in time” compiling after the first run of a block of code:

ClassQuadraticSortTimer

book-project/chapter12/sorting

package chapter12.sorting;
import java.util.Scanner;
import java.util.Random;

/**
* Estimate the average time of the selection and insertion
* sort algorithms using a given array size and number of trial s
* to average
*/

public class QuadraticSortTimer
{

/**
* Perform a sorting simulation to compare insertion
* sort and selection sort and display results.
*/

public void doTest()
{

Scanner input = new Scanner(System.in);
String sortType = "";

// Get the sorting algorithm

System.out.println("Selection sort: 1");
System.out.println("Insertion sort: 2");
System.out.println("Enter 1 or 2");
int choice = input.nextInt(); input.nextLine();

// Get size of array and number of trials to average

System.out.print("Enter size of array: ");
int size = input.nextInt(); input.nextLine();
System.out.print("Enter number of trials to average: ");

678 Searching and Sorting Algorithms

int numTrials = input.nextInt(); input.nextLine();
Random rand = new Random(1234);
int[] array = new int[size];

double timeSum = 0.0;
for (int trial = 1; trial <= numTrials + 1; trial++)
{

// fill array with random integers

for (int k = 0; k < array.length; k++)
array[k] = rand.nextInt();

// compute the time for this trial

long endTime = 0L, startTime = 0L;
if (choice == 1)
{

sortType = "Selection sort";
startTime = System.nanoTime(); // nanoseconds
IntArraySort.selectionSort(array, 0, array.length - 1);
endTime = System.nanoTime();

}
else
{

sortType = "Insertion sort";
startTime = System.nanoTime(); // nanoseconds
IntArraySort.insertionSort(array, 0, array.length - 1);
endTime = System.nanoTime();

}

if (trial > 1) // skip first trial (do numTrials trials)
{

double sortTime = (endTime - startTime)/ 1E9; // seconds
System.out.println("Sort time: " + sortTime + " seconds");
timeSum = timeSum + (double) sortTime;

}
}

// Compute average time over all trials

double averageTime = timeSum / (double) numTrials;

// Display the results

System.out.println();
System.out.println(sortType);
System.out.println("Array size (n): " + size);
System.out.println("Number of trials: " + numTrials);
System.out.println("Average running time: " + averageTim e + " seconds");
double nSquared = (double) size * (double) size;
double ratio = averageTime / nSquared;
System.out.println("average / nˆ2: " + ratio);

12.5 Sorting algorithms 679

sizen selection sort T(n)/n2 insertion sort T(n)/n2

5,000 0.41 sec 1.64×10−8 0.25 sec 1.01×10−8

10,000 2.07 sec 2.07×10−8 1.02 sec 1.02×10−8

20,000 8.50 sec 2.12×10−8 4.36 sec 1.09×10−8

30,000 19.5 sec 2.16×10−8 10.0 sec 1.11×10−8

40,000 34.7 sec 2.17×10−8 18.8 sec 1.17×10−8

50,000 53.6 sec 2.15×10−8 29.0 sec 1.16×10−8

100,000 213.0 sec 2.13×10−8 125.0 sec 1.25×10−8

Table 12.7: Comparing average times for selection sort and insertion sort.

}

public static void main(String[] args)
{

QuadraticSortTimer timer = new QuadraticSortTimer();
timer.doTest();

}
}

This class can be used to calculate the average running time of these algorithms. This is done by
generating random arrays of integers, calculating the timeit takes to sort them, adding up the times
and dividing by the total number of trials ,and displaying the final result for the average time.

Since theO (n2) algorithms have running time proportional ton2 for largen it would also be
useful to estimate the constanta such that

T(n) = an2, approximately for largen.

We can do this by displaying the ratioT(n)/n2, which should be a good estimate of the constanta
for largen.

Some results of running this programs on a particular computer system are shown in Table 12.7.
To estimate the average running time 10 trials were averaged. If we didn’t know that both of these
algorithms wereO (n2) we could use this data to check it empirically. For selectionsort the ratio
T(n)/n2 varies from 1.64×10−8 to 2.13×10−8. These values are approximately constant so we
have the empirical formula

T(n) = 2.1×10−8 n2, approximately for largen

using 2.1×10−8 as an estimate for the constanta. Similarly for insertion sort the ratioT(n)/n2

varies from 1.01×10−8 to 1.25×10−8. This gives the empirical formula

T(n) = 1.2×10−8 n2, approximately for largen

In this range insertion sort is almost twice as fast as selection sort on this computer system.

680 Searching and Sorting Algorithms

12.5.6 Mergesort

Mergesort is a naturally recursive algorithm for sorting a subarray by dividing it into two halves.
If the initial subarray is〈astart, . . . ,aend〉 then the two halves are

L = 〈astart, . . . ,amid〉, R= 〈amid+1, . . . ,aend〉

wheremid = (start+end)/2. Like the recursive binary search algorithm it is a “divideand con-
quer” algorithm. We apply mergesort to each half (smaller versions of the problem) and then we
assume that there is some function calledmerge that will merge the two sorted halves together
into a sorted subarray. The base case for the recursion occurs if start = endsince a one element
subarray is already sorted. This gives the following simpleJava method:

public static void mergeSort(int[] a, int start, int end)
{

if (start == end)
return; // one-element subarray is already sorted

int mid = (start + end) / 2;
mergeSort(a, start, mid); // mergesort the left half
mergeSort(a, mid+1, end); // mergesort the right half
merge(a, start, mid, end); // merge the two halves

}

Before we consider how to solve the merge problem let us assume that themerge method has
been written and look at the recursive process. The two recursive calls tomergeSort simply di-
vide the array into smaller and smaller subarrays until theyhave only one element. Then merge
recombines each pair of sorted subarrays into a larger sorted subarray. An example for the array
〈8,1,6,4,10,5,3,2,22〉 is shown in Figure 12.9. The top half of the diagram shows how the re-
cursive calls break the array into subarrays. The first valueof mid is (0+8)/2 = 4 so we get the
subarrays〈8,1,6,4,10〉 and〈5,3,2,22〉. The second subarray is not generated until the left sub-
array has been fully subdivided in the left part of the diagram. The top half of the diagram shows
how the recursive process divides the initial array into oneelement subarrays and the bottom half
shows how the merge method recombines these subarrays to eventually produce the original array
in sorted form. For example, the first merge step on the left combines the one-element subar-
rays〈8〉 and〈1〉 to obtain the sorted subarray〈1,8〉 and the last merge step combines the sorted
subarrays〈1,4,6,8,10〉 and〈2,3,5,22〉 to give the sorted array〈1,2,3,4,5,6,8,10,22〉.

12.5.7 Merge algorithm for two sorted subarrays

The merge problem is interesting by itself. We can state it for arrays as follows:

“Given a subarray〈astart, . . . ,aend〉 partitioned by an indexsplit with start≤ split ≤
end, such that the subarrays〈astart, . . . ,asplit〉 and〈asplit+1, . . . ,aend〉 are each sorted
in increasing order, sort the entire subarray〈astart, . . . ,aend〉 into a temporary array
〈t0, . . . , tend−start+1〉 such thatt0≤ t1≤ . . .≤ tend−start+1.”

12.5 Sorting algorithms 681

8, 1, 6, 4, 10, 5, 3, 2, 22

�
�

@
@

8,1,6,4,10

�
�

@
@

5,3,2,22

�
�

@
@

8,1,6

�
�

A
A

4,10

�
�

A
A

5,3

�
�

A
A

2,22

�
�

A
A

8,1

�
�

A
A

6
�
�
�
�
�
�
�
�
�
�

4
C
C
C
C
C
C
C
C
C
C

10
�
�
�
�
�
�
�
�
�
�

5
C
C
C
C
C
C
C
C
C
C

3
�
�
�
�
�
�
�
�
�
�

2
C
C
C
C
C
C
C
C
C
C

22
�
�
�
�
�
�
�
�
�
�

8 1
A
A

�
�

1,8

@
@
1,6,8

@
@

4,10

�
�

3,5

@
@

2,22

�
�

1,4,6,8,10

@
@

2,3,5,22

�
�

1, 2, 3, 4, 5, 6, 8, 10, 22

Figure 12.9: Mergesort example for the array〈8,1,6,4,10,5,3,2,22〉

682 Searching and Sorting Algorithms

1 -1

8
3

-12
6

-

15
7

-

17
8

-

1

2

8

9

10

12

15

17

19

21

23

25

2
2

� 9
4

�

10
5

�

19
9

�

21
10

�

23
11

�

25
12

�

Figure 12.10: Merging the subarrays〈1,8,12,15,17〉 and 〈2,9,10,19,21,23,25〉 to obtain the
sorted subarray〈1,2,8,9,10,12,15,17,19,21,23,25〉.

For example, the unsorted array〈1,8,12,15,17,2,9,10,19,21,23,25〉 with split = 4 is such
that the left subarray〈1,8,12,15,17〉 and the right subarray〈2,9,10,19,21,23,25〉are each sorted.
We want to obtain the sorted subarray〈1,2,8,9,10,12,15,17,19,21,23,25〉. The temporary array
will be 〈t0, . . . , t11〉. The merge process for this example is quite simple, as shownin Figure 12.10.
Here the left subarray is shown vertically on the left and theright subarray is shown vertically on
the right. The temporary array is shown in the center. The arrows indicate the data movement and
the numbers above the horizontal lines indicate the step number.

The algorithm simply compares the current element from the left subarray with the current
element from the right subarray and moves the smaller into the current position in the temporary
array. First 1 is compared with 2 so 1 is moved into the first position in the temporary array. Then
the next element, 8, of the first subarray is compared with 2 so2 is moved into the next position
in the subarray. This process continues until one or both subarrays are exhausted. In the example
this occurs first for the left array at step 8. Then the remaining elements 19, 21, 23, and 25 in the
right subarray are copied to the temporary array. Finally the temporary array is copied back to the
original array. A top level pseudo-code algorithm is shown in Figure 12.11.

Since the first while loop will exhaust at least one of the leftor right subarrays, only one of
the remaining while loops will be executed to copy any remaining elements. The running time of
merge isO (n).

To write a Java method for this algorithm we need three index variables,i initialized tostart
indexes elements of the left subarray,j initialized to split + 1 indexes elements of the right
subarray, andk initialized to 0 indexes elements of the temporary arrayt . Assuming these initial-

12.5 Sorting algorithms 683

ALGORITHM merge(〈a0,a1, . . . ,an−1〉, start, split, end)
t← 〈t0, . . . , tend−start+1〉
WHILE neither〈astart, . . . ,asplit〉 nor 〈asplit+1, . . . ,aend〉 is exhaustedDO

Compare pairs of elements and copy smallest to temp arrayt
END WHILE
WHILE elements remain in〈astart, . . . ,asplit〉 DO

Copy them tot
END WHILE
WHILE elements remain in〈asplit+1, . . . ,aend〉 DO

Copy them tot
END WHILE
〈astart, . . . ,aend〉 ← 〈t0, . . . , tend−start+1〉

Figure 12.11: Pseudo-code merge algorithm for two subarrays

izations the first while loop can be expressed as

while (i <= split && j <= end)
{

if (a[i] < a[j]) // element in left subarray is smaller
{

t[k] = a[i]; // move it to temp array t
i++; // index next element in left subarray

}
else // element in right subarray is smaller
{

t[k] = a[j]; // move it to temp array t
j++; // index next element in right subarray

}
k++; // in either case index next position in t

}

After this loop executes either both subarrays are exhausted (if they have the same size) or there
are elements in one of them that remain to be copied. The following loop will execute only if there
are elements remaining in the left subarray:

while (i <= split)
{

t[k] = a[i];
k++;
i++;

}

and the following loop will execute only if there are elements remaining in the right subarray:

while (j <= end)

684 Searching and Sorting Algorithms

{
t[k] = a[j];
k++;
j++;

}

Finally the temporary array can be copied back to the original array using the for loop

for (k = 0; k < end - start + 1; k++)
a[start + k] = t[k];

This can be done a little more efficiently using the specialarraycopy method in theSystem class:

System.arraycopy(t, 0, a, start, end - start + 1);

Later themergeSort and merge methods will be placed in a class calledIntArraySort (see
Section 12.5.13, page 696).

public static void mergeSort(int[] a, int start, int end)
{

if (start == end)
return; // one-element subarray is already sorted

int mid = (start + end) / 2;
mergeSort(a, start, mid); // merge sort left half
mergeSort(a, mid+1, end); // merge sort right half
merge(a, start, mid, end); // merge the two halves

}

public static void merge(int[] a, int start, int split, int e nd)
{

int n = end - start + 1; // number of elements to merge
int[] t = new int[n]; // temporary storage required
int i = start; // index of elements in left subarray
int j = split + 1; // index of elements in right subarray
int k = 0; // index into temporary storage

// merge elements from left and right subarray to temp array
// until one or both of the subarrays are exhausted

while (i <= split && j <= end)
{

if (a[i] < a[j]) // element in left subarray is smaller
{

t[k] = a[i]; // move it to temp array t
i++; // index next element in left subarray

}
else // element in right subarray is smaller
{

12.5 Sorting algorithms 685

t[k] = a[j]; // move it to temp array t
j++; // index next element in right subarray

}
k++; // in either case index next position in t

}

// copy any remaining elements from left subarray to t

while (i <= split)
{

t[k] = a[i];
i++;
k++;

}

// copy any remaining elements from right subarray to t

while (j <= end)
{

t[k] = a[j];
j++;
k++;

}

// copy elements to a from temporary array t. Can also use
// System.arraycopy(t, 0, a, start, end-start+1);

for (k = 0; k < n; k++)
a[start+k] = t[k];

}

If you like compact code the three loops in themerge method can be expressed as

while (i <= split && j <= end)
if (a[i] < a[j]) t[k++] = a[i++];
else t[k++] = a[j++]

while (i <= split) t[k++] = a[i++];
while (j <= end) t[k++] = a[j++];
for (k=0; k < n; k++) a[start+k] = t[k];

Here we make use of the fact that an expression likea[i++] means to first usei as an index and
then increment it. Therefore an assignment such as

t[k++] = a[i++];

is equivalent to the three assignment statements

t[k] = a[i];
k = k + 1;
i = i + 1;

686 Searching and Sorting Algorithms

It should also be noted thata[i++] is quite different froma[++i] which incrementsi before using
it as an array index.

12.5.8 Running time for mergesort

The calculation of the running time for mergesort is similarto the previous calculation for the
recursive binary search. LetT(n) be the running time for a subarray of sizen. Then themergeSort
method shows that

T(n) = T(n/2)+T(n/2)+ time to do merge

The merge algorithm isO (n) since each while loop executes inO (n) time. The number of times
each loop is executed depends only on the array size and not the actual array elements. Therefore
let us assume that its running time isan+b and thatn = 2m for somem. Then

T(n) = 2T(n/2)+an+b

= 2
[

2T(n/22)+a
n
2

+b
]

+an+b

= 22T(n/22)+2an+(1+2)b

= 22
[

2T(n/23)+a
n
22 +b

]

+2an+(1+2)b

= 23T(n/23)+3an+(1+2+22)b

...

= 2mT(n/2m)+anm+(1+2+ · · ·+2m−1)b

= 2mT(n/2m)+anm+(2m−1)b

Substitutingn = 2m and usingT(1) = 1 we obtain

T(n) = n+anlog2n+(n−1)b

= O (nlog2n)

= O (nlogn)

for any logarithmic base. It can be shown that the best, worst, and average behavior are all
O (nlogn) for mergesort. The only disadvantage is that a temporary array is required, of the same
size as the subarray to be sorted.

So far we have seen algorithms that areO (f (n)) for f (n) = logn, f (n) = n, f (n) = nlogn, and
f (n) = n2, in order of fastest increase asn→ ∞, as shown in Table 12.8.

12.5.9 File merge example

The merge part of mergesort is useful by itself. For example,it can be used to merge two sorted
files into a single larger sorted file. The algorithm in this case is simpler than the array merge used
in mergesort. No temporary storage is required. We simply read a record from each file, compare
the fields that define the order of the records, and write the smaller record to the output file. This

12.5 Sorting algorithms 687

log2n n nlog2n n2

3.32 10 33.22 102

6.64 102 664.39 104

9.97 103 9.97×103 106

13.29 104 1.33×105 108

16.61 105 1.66×106 1010

19.93 106 1.99×107 1012

23.25 107 2.33×108 1014

26.58 108 2.66×109 1016

29.90 109 2.99×1010 1018

Table 12.8: Growth rates for log2n, n, nlog2n, andn2.

continues until one or both files are exhausted. Then if thereare any records remaining in one of
the input files they are written to the output file.

As an example consider files ofBankAccount objects, using the single-line colon-separated
format discussed in Chapter 12, that are sorted in order of increasing account number. For example,
if the first file isaccounts1.dat :

175:Linda Kerr:8008.43
424:Mary Barber:35135.5
932:Harry Garfield:4723.1
1134:Alfred Vaillancourt:51914.93
1345:Amy Flintstone:81507.31
2489:Barney Lafreniere:66568.5
7123:Jean Ebert:53361.25
7845:Marc Gardiner:7541.32
9243:Dan Sinclair:4151.34
9546:Peter Jensen:16146.29

and the second file isaccounts2.dat :

310:Don Laing:12337.39
417:Marc Tyler:3455.42
811:Amanda Schryer:3541.15
1219:Gilles Olivier:84285.23
1765:Patricia Innes:4494.43
9623:Remi Martin:19732.12
9754:Patricia Schneider:40066.76
9912:Mike Laforge:5798.0

then the merged output file is

175:Linda Kerr:8008.43
310:Don Laing:12337.39
417:Marc Tyler:3455.42

688 Searching and Sorting Algorithms

424:Mary Barber:35135.5
811:Amanda Schryer:3541.15
932:Harry Garfield:4723.1
1134:Alfred Vaillancourt:51914.93
1219:Gilles Olivier:84285.23
1345:Amy Flintstone:81507.31
1765:Patricia Innes:4494.43
2489:Barney Lafreniere:66568.5
7123:Jean Ebert:53361.25
7845:Marc Gardiner:7541.32
9243:Dan Sinclair:4151.34
9546:Peter Jensen:16146.29
9623:Remi Martin:19732.12
9754:Patricia Schneider:40066.76
9912:Mike Laforge:5798.0

Here is a class that does this file merge using command line arguments for the names of the two
input files and the merged output file.

ClassFileMerger

book-project/chapter12/merge

package chapter12.merge;
import custom_classes.BankAccount;
import java.io.IOException;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;

/**
* This class uses the merge algorithm to read two bank account
* files that are each sorted in order of increasing account nu mber
* and merge them into a single sorted file.
*/

public class FileMerger
{

private File inFile1;
private File inFile2;
private File outFile;

/** Create an object for given filenames.
* @param inFile1 the first input file object
* @param inFile2 the second input file object
* @param outFile the output file object
*/

public FileMerger(File inFile1, File inFile2, File outFil e)
{

this.inFile1 = inFile1;
this.inFile2 = inFile2;

12.5 Sorting algorithms 689

this.outFile = outFile;
}

/** Merge the two input files according to increasing accoun t number.
* @throws IOException
*/

public void mergeFiles() throws IOException
{

BufferedAccountReader in1 =
new BufferedAccountReader(new FileReader(inFile1));

BufferedAccountReader in2 =
new BufferedAccountReader(new FileReader(inFile2));

PrintAccountWriter out =
new PrintAccountWriter(new FileWriter(outFile));

// Read records until end of file is reached on one or both file s
// and merge them to the output file.

BankAccount b1 = in1.readAccount(); // get account from 1st file
BankAccount b2 = in2.readAccount(); // get account from 2nd file

while (b1 != null && b2 != null)
{

if (b1.getNumber() < b2.getNumber())
{

out.writeAccount(b1); // write account from 1st file
b1 = in1.readAccount(); // read next account from 1st file

}
else
{

out.writeAccount(b2); // write account from 2nd file
b2 = in2.readAccount(); // read next account from 2nd file

}
}

// If there are records remaining in 1st file write them to out put file.

while (b1 != null)
{

out.writeAccount(b1);
b1 = in1.readAccount();

}

// If there are records remaining in 2nd file write them to out put file.

while (b2 != null)
{

out.writeAccount(b2);
b2 = in2.readAccount();

}

in1.close();

690 Searching and Sorting Algorithms

in2.close();
out.close();

}

public static void main(String[] args) throws IOException
{

if (args.length == 3)
{

File inFile1 = new File(args[0]);
File inFile2 = new File(args[1]);
File outFile = new File(args[2]);
FileMerger merger = new FileMerger(inFile1, inFile2, outF ile);
merger.mergeFiles();

}
else
{

System.out.println("args: inFileName1 inFileName2 outF ileName");
System.exit(1);

}
}

}

12.5.10 Quicksort

The “divide and conquer” method used in binary search and mergesort is also the basis of the
quicksort algorithm. Dividing is easy for binary search. The middle element is always used, an
O (1) operation, and the dividing is anO (logn) operation. This gives theO (logn) running time.
For mergesort the middle element is also used. Here the merging is anO (n) operation and again
the dividing isO (logn). This gives theO (nlogn) running time.

For the quicksort algorithm the dividing isO (logn) but it is based on a partitioning method
for dividing the array into two parts determined by choosinga pivot element. Like merge, this
partitioning is anO (logn) operation but the partitioning operation is not intuitive at all compared
to the one defined by merge. For quicksort the two parts are notnecessarily of equal size. In
fact it is possible to have one part contain one element and the other part to contain the remaining
elements at each stage in the recursive division process. This becomes anO (n2) operation and
is the reason that quicksort has anO (nlogn) average case behavior but only anO (n2) worst case
behavior.

Partitioning an array

To understand quicksort we first define a partition of the subarray 〈astart, . . . ,aend〉 with respect to
some arbitrary elementx in this subarray called the pivot element as

L = 〈astart, . . . ,asplit〉, R= 〈asplit+1, . . . ,aend〉, x = asplit

where the left and right subarrays are such that each elementy in L satisfiesy≤ asplit and each
elementy in Rsatisfiesy≥ asplit. Thus, every element inL is less than or equal to the pivot element
and every element inR is greater than or equal to the pivot element. We have included the pivot

12.5 Sorting algorithms 691

8, 1, 6, 4, 10, 5, 3, 2, 22

�
�

@
@

2, 1, 6, 4, 8, 5, 3, 10

�
�

@
@

22

3, 1, 2, 4

�
�

@
@

8, 5, 6, 10

�
�

@
@

1 3, 2, 4

�
�

@
@

5 8, 6, 10

�
�

@
@

2 3, 4

�
�

@
@

6 8, 10

�
�

@
@

3 4 8 10

Figure 12.12: Partitioning subarrays for quicksort. The pivot for each subarray is underlined.

element inL for convenience, although it is in its correct position and will not be included inL in
the recursive algorithm. Unlike mergesort this does not mean thatL andR are each sorted and the
pivot element does not have to be the middle element of the subarray.

For example, consider the array〈8,1,6,4,10,5,3,2,22〉 and let us choose the middle element
10 as the pivot at each stage defined by the positionmid= (start+end)/2. Then an initial partition
is defined byL = 〈2,1,6,4,8,5,3,10〉, R= 〈22〉. Each element inL is less than or equal to every
element inR. SinceRhas only one element it is already sorted. We now partitionL using its middle
element 4 as pivot. This gives the subarrays〈3,1,2,4〉 and〈8,5,6,10〉. Continuing we obtain the
results shown in Figure 12.12. Since the partitioning is done in place, then 1 is in position 0, 2 is
in position 1 and so on until we arrive at 22 in position 8. If weread the one-element arrays from
left to right we see that the array is now sorted.

Given an algorithm for partitioning a subarray, it is easy toquicksort the array recursively: par-
tition the subarray into theL andRsubarrays and recursively quicksortL andRuntil any remaining
subarrays have one element (base case). Because of the defining property of a partition the result
will be a sorted array. Therefore the recursive quicksort method for a subarray〈astart, . . . ,aend〉 has
the top level recursive structure given by the Java method

public void quickSort(int[] a, int start, int end)
{

if (start < end)
{

int split = partition(a, start, end);
quickSort(a, start, split-1); // sort left part a[start] to a[split-1]
quickSort(a, split+1, end); // sort right part a[split+1] t o a[end]

}

692 Searching and Sorting Algorithms

}

where thepartition method returns the index,split , defining the two parts of the subarray.
Since the pivot is in its correct position it is not included in the subarrays for either of the recursive
calls tosort .

An implementation of partition

Designing an algorithm to perform partitioning is not easy.Essentially we need to scan the array
from left to right and swap elements that are in the wrong subarray. There are several versions.
Some use two index pointers, one beginning at the left and moving to the right and the other
beginning at the right and moving to the left. The elements atthese positions are compared and
swapped if necessary. The simplest version uses only one index and can be written in Java as

int partition(int a[], int start, int end)
{

// choose middle element as pivot and move it to
// the start of the subarray temporarily.

swap(a, (start + end)/2, start);
int pivot = a[start];

// partition the elements a[start+1] to a[end].
// lastLeft is the index of the last element in the left subarr ay.
// The elements a[start] to a[lastLeft] are
// less than or equal to the pivot value.

int lastLeft = start;
for (int j = start+1; j <= end; j++)
{

if (a[j] < pivot)
{

lastLeft++; // move partition index left
swap(a, j, lastLeft); // and swap element there with a[j]

}
}

// move the pivot back to its correct position

swap(a, start, lastLeft);
return lastLeft;

}

where theswap method is defined as

void swap(int[] a, int i, int j)
{

12.5 Sorting algorithms 693

lastLeft loop indexj a0 a1 a2 a3 a4 a5 a6 a7 operation
- - 2 1 6 4 8 5 3 10 initial array
0 1 4 1 6 2 8 5 3 10 swap 4 and 2
1 1 1 swap 1 and 1
1 2 none
2 3 2 6 swap 6 and 2
2 4 none
2 5 none
3 6 3 6 swap 6 and 3
3 7 4 1 2 3 8 5 6 10 none, loop ends
3 - 3 1 2 4 8 5 6 10 swap 4 and 3

Figure 12.13: Partitioning〈2,1,6,4,8,5,3,10〉 into subarrays〈3,1,2,4〉 and〈8,5,6,10〉.

int temp = a[i];
a[i] = a[j];
a[j] = temp;

}

Initially the pivot element is swapped with the first elementof the subarray. Then the index pointer,
lastLeft , is initialized. It will move to the right and at the end of theloop will be the correct
position of the pivot element. The last step is to swap the pivot into this position.

As an example consider partitioning the array〈2,1,6,4,8,5,3,10〉, using the pivot element 4,
to obtain〈3,1,2,4,8,5,6,10〉which gives the partitionL = 〈3,1,2,4〉, R= 〈8,5,6,10〉. The steps
are shown in Figure 12.13. Here the first line of the table shows the initial array. The next line
shows the array after the pivot element 4 in position 3 is swapped with the element, 2, in position
0. The next 7 lines correspond to the seven iterations of the for loop at the end of each iteration
showing only elements that have been swapped. The last line corresponds to swapping the pivot
element to its correct position given by the final value oflastLeft to obtain the partition〈3,1,2,4〉
and〈8,5,6,10〉.

ThequickSort andpartition methods are placed in a class calledIntArraySort (see Sec-
tion 12.5.13, page 696).

12.5.11 Running time for quicksort

Since the partition algorithm isO (n) and the dividing should beO (logn) as in mergesort, we
expect quicksort to be anO (nlogn) algorithm. On average this is true, as shown below, but there
are cases where the algorithm degenerates toO (n2). This occurs when the partitions at each step
have one element in one part and the remaining elements in theother part. For example, since we
are using the middle element as the pivot at each step, suppose the pivot is always the smallest
element in the subarray. Then, since the elements of the leftpart are always less than or equal to
the pivot, we will always have a left part with just one element (assuming there are no duplicates
among the array elements). In this worst case the partitioning and the division processes are each

694 Searching and Sorting Algorithms

O (n) so quicksort becomes anO (n2) algorithm.
The analysis of the average running time is the same as for mergesort. On average we expect

that the partitioning of ann element subarray produces left and right parts withn/2 elements in
each. This gives the recurrence relation

T(n) = T(n/2)+T(n/2)+ time to partition

= 2T(n/2)+an+b

This is the same recurrence relation obtained for mergesortso the average case behavior of quick-
sort is alsoO (nlogn).

12.5.12 Simulation to compare mergesort and quicksort

We have compared the running times of theO (n2) selection and insertion sort algorithms and we
now do the same for theO (nlogn) algorithms, mergesort and quicksort, using the following class:

ClassFasterSortTimer

book-project/chapter12/sorting

package chapter12.sorting;
import java.util.Scanner;
import java.util.Random;

/**
* Estimate the average time of the merge and quick
* sort algorithms using a given array size and number of trial s
* to average
*/

public class FasterSortTimer
{

/**
* Perform a sorting simulation to compare insertion
* sort and selection sort and display results.
*/

public void doTest()
{

Scanner input = new Scanner(System.in);
String sortType = "";

// Get the sorting algorithm

System.out.println("Merge sort: 1");
System.out.println("Quick sort: 2");
System.out.println("Enter 1 or 2");
int choice = input.nextInt(); input.nextLine();

// Get size of array and number of trials to average

System.out.print("Enter size of array: ");

12.5 Sorting algorithms 695

int size = input.nextInt(); input.nextLine();
System.out.print("Enter number of trials to average: ");
int numTrials = input.nextInt(); input.nextLine();
Random rand = new Random(1234);
int[] array = new int[size];

double timeSum = 0.0;
for (int trial = 1; trial <= numTrials + 1; trial++)
{

// fill array with random integers

for (int k = 0; k < array.length; k++)
array[k] = rand.nextInt();

// compute the time for this trial

long endTime = 0L, startTime = 0L;
if (choice == 1)
{

sortType = "Merge sort";
startTime = System.nanoTime(); // nanoseconds
IntArraySort.mergeSort(array, 0, array.length - 1);
endTime = System.nanoTime();

}
else
{

sortType = "Quick sort";
startTime = System.nanoTime(); // nanoseconds
IntArraySort.quickSort(array, 0, array.length - 1);
endTime = System.nanoTime();

}

if (trial > 1) // skip first trial (do numTrials trials)
{

double sortTime = (endTime - startTime) / 1E9; // seconds
System.out.println("Sort time: " + sortTime + " seconds");
timeSum = timeSum + (double) sortTime;

}
}

// Compute average time over all trials

double averageTime = timeSum / (double) numTrials;

// Display the results

System.out.println();
System.out.println(sortType);
System.out.println("Array size (n): " + size);
System.out.println("Number of trials: " + numTrials);
System.out.println("Average running time: " + averageTim e + " seconds");
double nLogn = size * Math.log(size);

696 Searching and Sorting Algorithms

sizen merge sort T(n)/nlnn quicksort T(n)/nlnn
5,000 0.034 sec 8.031×10−7 0.0090 sec 2.000×10−7

10,000 0.070 sec 7.589×10−7 0.0192 sec 2.085×10−7

20,000 0.136 sec 6.876×10−7 0.0369 sec 1.863×10−7

30,000 0.216 sec 6.981×10−7 0.0482 sec 1.558×10−7

40,000 0.294 sec 6.927×10−7 0.0704 sec 1.661×10−7

50,000 0.312 sec 5.760×10−7 0.0860 sec 1.590×10−7

100,000 0.654 sec 5.681×10−7 0.1740 sec 1.508×10−7

500,000 3.365 sec 5.128×10−7 0.9850 sec 1.501×10−7

1,000,000 7.009 sec 5.074×10−7 2.0860 sec 1.510×10−7

5,000,000 36.68 sec 5.145×10−7 12.11 sec 1.570×10−7

10,000,000 – – 25.82 sec 1.600×10−7

Table 12.9: Comparing average times for mergesort and quicksort.

double ratio = averageTime / nLogn;
System.out.println("average / n log n: " + ratio);

}

public static void main(String[] args)
{

FasterSortTimer timer = new FasterSortTimer();
timer.doTest();

}
}

Some results of running these programs on the same computer are shown in Table 12.9. For large
n we have approximately

T(n) = 5.1×10−7 nlnn, for mergesort

T(n) = 1.6×10−7 nlnn, for quicksort

showing that quicksort, on average, is more than 3 times faster than mergesort. Because mergesort
requires a temporary array we ran out of memory trying it withn = 107. Either algorithm is
considerably faster than selection or insertion sort as a comparison with Table 12.7 shows.

12.5.13 Class of static sorting methods

Here is theIntArraySort class containing the four sorting algorithms that we have developed.

ClassIntArraySort

book-project/chapter12/sorting

package chapter12.sorting;

12.5 Sorting algorithms 697

/**
* Sorting methods for arrays of integers
*/

public class IntArraySort
{

/**
* Sort a subarray in increasing order using selection sort.
* @param a The array
* @param start Index defining start of subarray
* @param end Index defining end of subarray
*/

public static void selectionSort(int[] a, int start, int en d)
{

for (int i = start; i < end; i++)
{

// find position k of minimum element among
// the elements a[i] to a[end]

int k = i;
for (int j = i+1; j <= end; j++)
{

if (a[j] < a[k])
k = j;

}

// swap the smallest element found (it’s a[k]) with a[i]

int temp = a[k];
a[k] = a[i];
a[i] = temp;

}
}

/**
* Sort a subarray in increasing order using insertion sort.
* @param a The array
* @param start Index defining start of subarray
* @param end Index defining end of subarray
*/

public static void insertionSort(int[] a, int start, int en d)
{

for (int i = start+1; i <= end; i++)
{

// Sorted part of array is a[start], ..., a[i-1]
// Unsorted part is a[i], ..., a[end]

int x = a[i]; // left element of unsorted part
int j = i-1; // right index of sorted part

// move elements right until position for x is found.

while ((j >= start) && (x < a[j]))

698 Searching and Sorting Algorithms

{
a[j+1] = a[j]; // move a[j] one place to the right
j--;

}
a[j+1] = x; // drop x into the hole found

}
}

/**
* Sort a subarray in increasing order using merge sort.
* @param a The array
* @param start Index defining start of subarray
* @param end Index defining end of subarray
*/
public static void mergeSort(int[] a, int start, int end)
{

if (start == end)
return; // one-element subarray is already sorted

int mid = (start + end) / 2;
mergeSort(a, start, mid); // merge sort left half
mergeSort(a, mid+1, end); // merge sort right half
merge(a, start, mid, end); // merge the two halves

}

/**
* Merge two sorted subarrays into a sorted subarray.
* The merge part of merge sort that takes the sorted subarrays
* a[start] to a[split] and a[split+1] to a[end] and merges th em into
* the sorted subarray a[start] to a[end].
* @param a The array
* @param start Index defining start of left subarray a[start] to a[mid].
* @param split Index defining end of left subarray
* @param end Index defining end of right subarray a[mid+1] to a[end]
*/
public static void merge(int[] a, int start, int split, int e nd)
{

int n = end - start + 1; // number of elements to merge
int[] t = new int[n]; // temporary storage required
int i = start; // index of elements in left subarray
int j = split + 1; // index of elements in right subarray
int k = 0; // index into temporary storage

// merge elements from left and right subarray to temp array
// until one or both of the subarrays are exhausted

while (i <= split && j <= end)
{

if (a[i] < a[j]) // element in left subarray is smaller
{

t[k] = a[i]; // move it to temp array t
i++; // index next element in left subarray

}

12.5 Sorting algorithms 699

else // element in right subarray is smaller
{

t[k] = a[j]; // move it to temp array t
j++; // index next element in right subarray

}
k++; // in either case index next position in t

}

// copy any remaining elements from left subarray to t

while (i <= split)
{

t[k] = a[i];
i++;
k++;

}

// copy any remaining elements from right subarray to t

while (j <= end)
{

t[k] = a[j];
j++;
k++;

}

// copy elements to a from temporary array t. Can also use
// System.arraycopy(t, 0, a, start, end-start+1);

for (k = 0; k < n; k++)
a[start+k] = t[k];

}

/**
* Sort a subarray in increasing order using quicksort.
* @param a The array
* @param start Index defining start of subarray
* @param end Index defining end of subarray
*/

public static void quickSort(int[] a, int start, int end)
{

if (start < end)
{

int split = partition(a, start, end);
quickSort(a, start, split-1); // sort left part a[start] to a[split-1]
quickSort(a, split+1, end); // sort right part a[split+1] t o a[end]

}
}

/**
* Partition a subarray using the middle element as pivot.
* This version of partition is due to Lomuto.

700 Searching and Sorting Algorithms

* @param a The array
* @param start Index of first subarray element
* @param end Index of last subarray element
* @return index <code>split</code> such that the left
* subarray is <code>a[start]</code> to <code>a[split]</c ode>,
* with <code>a[split]</code> being the pivot,
* and the right subarray is <code>a[split+1]</code>
* to <code>a[end]</code>.
*/

public static int partition(int a[], int start, int end)
{

// choose middle element as pivot and move it to
// the start of the subarray temporarily.

swap(a, (start + end)/2, start);
int pivot = a[start];

// partition the elements a[start+1] to a[end].
// lastLeft is the index of the last element in the left
// subarray. The elements a[start] to a[lastLeft] are
// less than or equal to the pivot value.

int lastLeft = start;
for (int j = start+1; j <= end; j++)
{

if (a[j] < pivot)
{

lastLeft++; // move partition index right
swap(a, j, lastLeft); // and swap element there with a[j]

}
}

swap(a, start, lastLeft); // move pivot to its correct posit ion
return lastLeft;

}

/*
* Swap two array elements given by their indices i, j.
*
*/

private static void swap(int[] a, int i, int j)
{

int temp = a[i];
a[i] = a[j];
a[j] = temp;

}
}

12.5.14 Testing the sorting algorithms

The followingSortTester class can be used to test the sorting algorithms.

12.5 Sorting algorithms 701

ClassSortTester

book-project/chapter12/sorting

package chapter12.sorting;
import java.util.Scanner;

/**
* Test the sort algorithms.
*/

public class SortTester
{

public void doTest()
{

Scanner input = new Scanner(System.in);

// Read the array to sort

System.out.print("Enter number of integers in array: ");
int size = input.nextInt(); input.nextLine();
int[] testArray = new int[size];
for (int k = 0; k < testArray.length; k++)
{

System.out.print("Enter element " + k + ": ");
testArray[k] = input.nextInt(); input.nextLine();

}

// Read the indices that define the array slice

System.out.print("Enter start index for subarray: ");
int start = input.nextInt(); input.nextLine();
System.out.print("Enter end index for subarray: ");
int end = input.nextInt(); input.nextLine();

// sort the array using each method and display the sorted arr ay

int[] testArrayCopy;

testArrayCopy = arrayCopy(testArray);
IntArraySort.selectionSort(testArrayCopy, start, end) ;
System.out.println("Selection sort: Sorted subarray is");
printArray(testArrayCopy, start, end);

testArrayCopy = arrayCopy(testArray);
IntArraySort.insertionSort(testArrayCopy, start, end) ;
System.out.println("Insertion sort: Sorted subarray is");
printArray(testArrayCopy, start, end);

testArrayCopy = arrayCopy(testArray);
IntArraySort.mergeSort(testArrayCopy, start, end);
System.out.println("Merge sort: Sorted subarray is");
printArray(testArrayCopy, start, end);

702 Searching and Sorting Algorithms

testArrayCopy = arrayCopy(testArray);
IntArraySort.quickSort(testArrayCopy, start, end);
System.out.println("Quick sort: Sorted subarray is");
printArray(testArrayCopy, start, end);

}

private void printArray(int[] a, int start, int end)
{

System.out.print("[");
for (int k = start; k <= end; k++)
{

System.out.print(a[k]);
if (k < end) System.out.print(",");

}
System.out.print("]");
System.out.println();

}

private int[] arrayCopy(int[] a)
{

int[] copy = new int[a.length];
for (int k = 0; k < a.length; k++)

copy[k] = a[k];
return copy;

}

public static void main(String[] args)
{

new SortTester().doTest();
}

}

12.6 Generic object sorting

So far our sorting algorithms inIntArraySort work only with arrays of typeint[] . To sort
arrays of double numbers we would have to rewrite all of them to use typedouble[] . Also we
have assumed that the arrays are to be sorted in increasing order but we may want to sort in
decreasing order which would require another set of classes.

The solution for versions of Java up to 1.4 is to write genericobject algorithms that sort arrays
of typeObject[] . Then an array of elements of any object type can be sorted since the elements
are also of typeObject . The only problem is that we must ensure that only objects of the desired
type are stored in the array and we must typecast to obtain theactual type from the object type.

In Java 5 generic parametric types were introduced so we can use a type parameter such asE
for the element type and use an array specified asE[] . The advantage is that the compiler can now
check that only elements of typeE are stored in the array. When the checking is complete the type
E can be converted by the compiler to typeObject .

In either case (Java 1.4 or Java 5) it is necessary to have somegeneric object comparison

12.6 Generic object sorting 703

method that can compare two objects to define which comes first(total ordering). For example, in
the InsertionSort method there is the if-statement

if (a[j] < a[k])
k = j;

The boolean expressiona[j] < a[k] will not work if we want to compare objects. Forint and
double numbers there are predefined operators such as< that define an order. For objects we need
to define the order ourselves. For example, we could sort an array ofBankAccount objects in order
of increasing bank balance, or we could do it in order of increasing account number, or even in
lexicographical order using the owner name.

12.6.1 TheComparator interface

There is an interface calledComparator in packagejava.util that has acompare method that
can be used to define a total order on objects of some typeT in Java 5:

public interface Comparator<T>
{

public int compare(T obj1, T obj2);
}

Prior to Java 5 this interface was given by

public interface Comparator
{

public int compare(Object obj1, Object obj2);
}

Herecompare returns a negative value ifobj1 is “less than”obj2 , 0 if obj1 is equal toobj2 ,
and a positive value ifobj1 is “greater than”obj2 . This is the same convention used by the
compareTo method in theString class. Then, iff is an object from a class that implements this
interface the generic form of the above if-statement is

if (f.compare(a[j], a[k]) < 0)
k = j;

The opposite order can be defined simply by reversing the negative and positive return values.
Now we can rewrite all our sorting methods to use an argument array of typeObject[] (type

E[] in Java 5) and an extra argument to specify an object implementing theComparator interface
(Comparator<E> in Java 5).

For example, in Java 1.4 the selection sort method would now look like:

public static void selectionSort(Object[] a, int start, in t end, Comparator f)
{

for (int i = start; i < end; i++)
{

// find position k of minimum element among

704 Searching and Sorting Algorithms

// the elements a[i] to a[end]

int k = i;
for (int j = i+1; j <= end; j++)
{

if (f.compare(a[j],a[k]) < 0)
k = j;

}

// swap the smallest element found (it’s a[k]) with a[i]

Object temp = a[k];
a[k] = a[i];
a[i] = temp;

}
}

and in Java 5 it would look like

public static <E> void selectionSort(E[] a,int start,int e nd, Comparator<E> f)
{

for (int i = start; i < end; i++)
{

// find position k of minimum element among
// the elements a[i] to a[end]

int k = i;
for (int j = i+1; j <= end; j++)
{

if (f.compare(a[j],a[k]) < 0)
k = j;

}

// swap the smallest element found (it’s a[k]) with a[i]

E temp = a[k];
a[k] = a[i];
a[i] = temp;

}
}

Here we specify the type before thevoid keyword (this is always done for static methods) and
then we specify the array typeE[] and useComparator<E> to specify the comparator type. Also,
when swapping two elements we use the typeE for the temporary variable.

12.6 Generic object sorting 705

12.6.2 GenericArraySort class

We can put all our generic sorting algorithms in a static class calledGenericArraySort . Here we
show only the Java 5 version.

ClassGenericArraySort

book-project/chapter12/generic

package chapter12.generic;
import java.util.Comparator;

/**
* Generic sorting methods for arrays of generic type that
* use a Comparator object to define the sort order.
*/

public class GenericArraySort
{

/**
* Sort a subarray in a specified order using selection sort.
* @param a The array
* @param start Index defining start of subarray
* @param end Index defining end of subarray
* @param f A Comparator object defining the sort order
*/

public static <E> void selectionSort(E[] a,
int start, int end, Comparator<E> f)

{
for (int i = start; i < end; i++)
{

// find position k of minimum element among
// the elements a[i] to a[end]

int k = i;
for (int j = i+1; j <= end; j++)
{

if (f.compare(a[j], a[k]) < 0)
k = j;

}

// swap the smallest element found (it’s a[k]) with a[i]

swap(a, k, i);
}

}

/**
* Sort a subarray in a specified order using insertion sort.
* @param a The array
* @param start Index defining start of subarray
* @param end Index defining end of subarray
* @param f A Comparator object defining the sort order

706 Searching and Sorting Algorithms

*/
public static <E> void insertionSort(E[] a,

int start, int end, Comparator<E> f)
{

for (int i = start+1; i <= end; i++)
{

// Sorted part of array is a[start], ..., a[i-1]
// Unsorted part is a[i], ..., a[end]

E x = a[i]; // left element of unsorted part
int j = i-1; // right index of sorted part

// move elements right until position for x is found.

while ((j >= start) && (f.compare(x,a[j]) < 0))
{

a[j+1] = a[j]; // move a[j] one place to the right
j--;

}
a[j+1] = x; // drop x into the hole found

}
}

/**
* Sort a subarray in a specified order using merge sort.
* @param a The array
* @param start Index defining start of subarray
* @param end Index defining end of subarray
* @param f A Comparator object defining the sort order
*/
public static <E> void mergeSort(E[] a,

int start, int end, Comparator<E> f)
{

if (start == end)
return; // one-element subarray is already sorted

int mid = (start + end) / 2;
mergeSort(a, start, mid, f); // merge sort left half
mergeSort(a, mid+1, end, f); // merge sort right half
merge(a, start, mid, end, f); // merge the two halves

}

/**
* Merge two sorted subarrays into a sorted subarray.
* The merge part of merge sort that takes the sorted subarrays
* a[start] to a[split] and a[split+1] to a[end] and merges th em into
* the sorted subarray a[start] to a[end].
* @param a The array
* @param start Index defining start of left subarray a[start] to a[mid].
* @param split Index defining end of left subarray
* @param end Index defining end of right subarray a[mid+1] to a[end]
* @param f A Comparator object defining the sort order
*/

12.6 Generic object sorting 707

public static <E> void merge(E[] a,
int start, int split, int end, Comparator<E> f)

{
int n = end - start + 1; // number of elements to merge
E[] t = (E[]) new Object[n]; // temporary storage required
int i = start; // index of elements in left subarray
int j = split + 1; // index of elements in right subarray
int k = 0; // index into temporary storage

// merge elements from left and right subarray to temp array
// until one or both of the subarrays are exhausted

while (i <= split && j <= end)
{

if (f.compare(a[i],a[j]) < 0) // element in left subarray is smaller
{

t[k] = a[i]; // move it to temp array t
i++; // index next element in left subarray

}
else // element in right subarray is smaller
{

t[k] = a[j]; // move it to temp array t
j++; // index next element in right subarray

}
k++; // in either case index next position in t

}

// copy any remaining elements from left subarray to t

while (i <= split)
{

t[k] = a[i];
i++;
k++;

}

// copy any remaining elements from right subarray to t

while (j <= end)
{

t[k] = a[j];
j++;
k++;

}

// copy elements to a from temporary array t. Can also use
// System.arraycopy(t, 0, a, start, end-start+1);

for (k = 0; k < n; k++)
a[start+k] = t[k];

}

708 Searching and Sorting Algorithms

/**
* Sort a subarray in a specified order using quicksort.
* @param a The array
* @param start Index defining start of subarray
* @param end Index defining end of subarray
* @param f A Comparator object defining the sort order
*/

public static <E> void quickSort(E[] a,
int start, int end, Comparator<E> f)

{
if (start < end)
{

int split = partition(a, start, end, f);
quickSort(a, start, split-1, f); // sort left part a[start] to a[split-1]
quickSort(a, split+1, end, f); // sort right part a[split+1] to a[end]

}
}

/**
* Partition a subarray using the middle element as pivot.
* This version of partition is due to Lomuto.
* @param a The array
* @param start Index of first subarray element
* @param end Index of last subarray element
* @param f A Comparator object defining the sort order
* @return index <code>split</code> such that the left
* subarray is <code>a[start]</code> to <code>a[split]</c ode>,
* with <code>a[split]</code> being the pivot,
* and the right subarray is <code>a[split+1]</code>
* to <code>a[end]</code>.
*/

public static <E> int partition(E a[],
int start, int end, Comparator<E> f)

{
// choose middle element as pivot and move it to
// the start of the subarray temporarily.

swap(a, (start + end)/2, start);
E pivot = a[start];

// partition the elements a[start+1] to a[end].
// lastLeft is the index of the last element in the left
// subarray. The elements a[start] to a[lastLeft] are
// less than or equal to the pivot value.

int lastLeft = start;
for (int j = start+1; j <= end; j++)
{

if (f.compare(a[j],pivot) < 0)
{

lastLeft++; // move partition index right
swap(a, j, lastLeft); // and swap element there with a[j]

12.6 Generic object sorting 709

}
}

swap(a, start, lastLeft); // move pivot to its correct posit ion
return lastLeft;

}

/*
* Swap two array elements given by their indices i, j.
*
*/

private static <E> void swap(E[] a, int i, int j)
{

E temp = a[i];
a[i] = a[j];
a[j] = temp;

}
}

12.6.3 Sorting strings in lexicographical order

As an example, suppose you want to sort an array of strings in increasing lexicographical order.
First define this order in the following simple class that implements theComparator interface:

ClassStringComparator

book-project/chapter12/generic

package chapter12.generic;
import java.util.Comparator;

/**
* An implementation of the Comparator interface for strings
* in lexicographical order.
*/

public class StringComparator implements Comparator<Str ing>
{

/**
* Compare two strings lexicographically
* @param s1 first string
* @param s2 second string
* @return -1 if s1 precedes s2, 0 if s1 is equal
* to s2, and 1 if s1 follows s2
*/

public int compare(String s1, String s2)
{

return s1.compareTo(s2);
}

}

Note that we have usedComparator<String> to indicate that the comparator object is comparing
two strings and we have used thecompareTo method in theString class to do the comparison.

710 Searching and Sorting Algorithms

Then the following statement can be used to sort a subarray ofa string array calleds using selection
sort.

GenericArraySort.selectionSort(s, start, end, new Strin gComparator());

The entire string array can be sorted using

GenericArraySort.selectionSort(s, 0, s.length - 1, new St ringComparator());

To sort an array of strings in decreasing lexicographical order we could use the following class:

ClassStringDecreasingComparator

book-project/chapter12/generic

package chapter12.generic;
import java.util.Comparator;

/**
* An implementation of the Comparator interface for strings
* in reverse lexicographical order.
*/

public class StringDecreasingComparator implements Comp arator<String>
{

/**
* Compare two strings in reverse lexicographical order
* @param s1 first string
* @param s2 second string
* @return -1 if s2 precedes s1, 0 if s1 is equal
* to s2, and 1 if s2 follows s1
*/

public int compare(String s1, String s2)
{

return s2.compareTo(s1);
}

}

Here is a complete program that sorts an array of strings using all of the sorting methods.

ClassGenericStringSortTester

book-project/chapter12/generic

package chapter12.generic;
import java.util.Comparator;
import java.util.Scanner;

/**
* Using the generic version of the sorting algorithms to sort
* an array of strings in increasing and decreasing
* lexicographical order.
*/

12.6 Generic object sorting 711

public class GenericStringSortTester
{

public void doTest(Comparator<String> comp)
{

Scanner input = new Scanner(System.in);

// Read the array

System.out.print("Enter number of strings in array: ");
int size = input.nextInt(); input.nextLine();
String[] testArray = new String[size];
for (int k = 0; k < testArray.length; k++)
{

System.out.print("Enter string element " + k + ": ");
testArray[k] = input.nextLine();

}

// Read the indices that define the array slice

System.out.print("Enter start index for subarray: ");
int start = input.nextInt(); input.nextLine();
System.out.print("Enter end index for subarray: ");
int end = input.nextInt(); input.nextLine();

// sort the array using each method and display the sorted arr ay

String[] testArrayCopy;

testArrayCopy = arrayCopy(testArray);
GenericArraySort.selectionSort(testArrayCopy, start, end, comp);
System.out.println("Selection sort: Sorted subarray is");
printArray(testArrayCopy, start, end);

testArrayCopy = arrayCopy(testArray);
GenericArraySort.insertionSort(testArrayCopy, start, end, comp);
System.out.println("Insertion Sort: Sorted subarray is");
printArray(testArrayCopy, start, end);

testArrayCopy = arrayCopy(testArray);
GenericArraySort.mergeSort(testArrayCopy, start, end, comp);
System.out.println("Merge sort: Sorted subarray is");
printArray(testArrayCopy, start, end);

testArrayCopy = arrayCopy(testArray);
GenericArraySort.quickSort(testArrayCopy, start, end, comp);
System.out.println("Quick sort: Sorted subarray is");
printArray(testArrayCopy, start, end);

}

private <E> void printArray(E[] a, int start, int end)
{

System.out.print("[");

712 Searching and Sorting Algorithms

for (int k = start; k <= end; k++)
{

System.out.print(a[k]);
if (k < end) System.out.print(",");

}
System.out.print("]");
System.out.println();

}

private String[] arrayCopy(String[] a)
{

String[] copy = new String[a.length];
for (int k = 0; k < a.length; k++)

copy[k] = a[k];
return copy;

}

public static void main(String[] args)
{

System.out.println("Output for normal sort order");
new GenericStringSortTester().doTest(new StringCompar ator());
System.out.println("Output for reverse sort order");
new GenericStringSortTester().doTest(new StringDecrea singComparator());

}
}

Some output is

Output for normal sort order
Enter number of strings in array: 4
Enter string element 0: one
Enter string element 1: two
Enter string element 2: three
Enter string element 3: four
Enter start index for subarray: 0
Enter end index for subarray: 3
Selection sort: Sorted subarray is
[four,one,three,two]
Insertion Sort: Sorted subarray is
[four,one,three,two]
Merge sort: Sorted subarray is
[four,one,three,two]
Quick sort: Sorted subarray is
[four,one,three,two]
Output for reverse sort order
Enter number of strings in array: 4
Enter string element 0: one
Enter string element 1: two
Enter string element 2: three
Enter string element 3: four

12.6 Generic object sorting 713

Enter start index for subarray: 0
Enter end index for subarray: 3
Selection sort: Sorted subarray is
[two,three,one,four]
Insertion Sort: Sorted subarray is
[two,three,one,four]
Merge sort: Sorted subarray is
[two,three,one,four]
Quick sort: Sorted subarray is
[two,three,one,four]

12.6.4 ComparingBankAccount objects

As another example, if you want to sort an array ofBankAccount objects in order of increasing
account number, the following class defines the order.

ClassAccountNumberComparator

book-project/chapter12/generic

package chapter12.generic;
import custom_classes.BankAccount;
import java.util.Comparator;

public class AccountNumberComparator implements Compara tor<BankAccount>
{

public int compare(BankAccount b1, BankAccount b2)
{

return b1.getNumber() - b2.getNumber();
}

}

Here we use a subtraction so that a negative number is returned in caseb1 has a smaller account
number thanb2.

Similarly, if you want to sort in order of increasing balanceuse the class

ClassAccountBalanceComparator

book-project/chapter12/generic

package chapter12.generic;
import custom_classes.BankAccount;
import java.util.Comparator;

public class AccountBalanceComparator implements Compar ator<BankAccount>
{

public int compare(BankAccount b1, BankAccount b2)
{

double diff = b1.getBalance() - b2.getBalance();

714 Searching and Sorting Algorithms

if (diff < 0.0) return -1;
else if (diff == 0.0) return 0;
else return 1;

}
}

Here is class to test these sort orders.

ClassBankAccountSortTester

book-project/chapter12/generic

package chapter12.generic;
import custom_classes.BankAccount;
import custom_classes.JointBankAccount;

public class BankAccountSortTester
{

public void doTest()
{

BankAccount[] b = new BankAccount[3];
b[0] = new BankAccount(321, "Fred", 150.0);
b[1] = new BankAccount(234, "Gord", 350.0);
b[2] = new JointBankAccount(123,

"Jack", "Jill", 200.0);

GenericArraySort.selectionSort(b, 0, 2,
new AccountNumberComparator());

System.out.println("Order: number");
for (int k = 0; k < 3; k++)

System.out.println(b[k]);

System.out.println("Order: balance");
GenericArraySort.selectionSort(b, 0, 2,

new AccountBalanceComparator());
for (int k = 0; k < 3; k++)

System.out.println(b[k]);
}
public static void main(String[] args)
{

new BankAccountSortTester().doTest();
}

}

12.7 TheArrays Class For Searching and Sorting

There is a class calledArrays in packagejava.util that has many static methods for searching
and sorting arrays. Normally you should use these methods. However, it is important to know how
to develop, test, compare and determine the efficiency of searching and sorting algorithms so the
algorithms developed in this chapter have pedagogical value.

12.7Arrays class 715

The generic versions of these searching and sorting methodsrequire that a total order be defined
on the array elements. This can be done in two ways:

• The array elements belong to some class that implements theComparable interface. The
order defined by this interface is called the natural order. The String class implements
Comaparable .

• If the class does not implement theComparable interface or a different order is desired then
we use a class that implements theComparator interface and use an object from this class
as a method argument to specify the order.

We have considered theComparator interface in theGenericArraySort class on page 705.

12.7.1 Comparable interface

TheComparable interface resides in packagejava.lang (not java.util like Comparator):

public interface Comparable
{

public int compareTo(Object obj)
}

In Java 5 this interface is defined as

public interface Comparable<E>
{

public int compareTo(E element)
}

This interface, likeComparator , defines a total ordering on the objects of some class. However it
is used in a different way. To useComparable to order the objects of some class it is necessary
that this class implement theComparable interface (String for example).

12.7.2 Searching algorithms in thejava.util.Arrays class

TheArrays class in packagejava.util contains the following searching algorithms:

• static int binarySearch(double[] a, double key)

Search thedouble arraya for the valuekey and return the index at which the value is
found. If the value is not found then return the negative value−k−1 wherek is the position
at whichkey would need to be inserted to keep the array in sorted order

There are similar methods for arrays of all primitive types (boolean , char , byte , short ,
int , long , float , anddouble)

• static int binarySearch(Object[] a, double key)

This is the generic object version with array typeObject[]. The actual array element type
must implement theComparable interface.

716 Searching and Sorting Algorithms

• static <E> int binarySearch(E[] a, E key,
Comparator<? super E> c)

This is the Java 5 version that uses a generic method with an array of typeE and a comparator
for E or any superclass ofE. If the comparator argumentc is null then the natural sort order
provided byE is used, assuming thatE implements theComparable<E> interface.

EXAMPLE 12.5 (Searching usingArrays.binarySearch) Using anull object for the
comparator the statements

String[] names = {"Bill", "Fred", "Gord", "Harry"};
System.out.println(Arrays.toString(names));
int k = Arrays.binarySearch(names, "Fred", null);
System.out.println("Index for Fred is " + k);
k = Arrays.binarySearch(names, "Bob", null);
System.out.println("Index for Bob is " + k);

produce the output

[Bill, Fred, Gord, Harry]
Index for Fred is 1
Index for Bob is -2

which shows that Fred was found at index 1. Bob was not found but the correct sorted location
would bek where−k−1 =−2, sok =−1+2 = 1 (at position 1).

12.7.3 Sorting algorithms in thejava.util.Arrays class

TheArrays class in packagejava.util also contains the following sorting algorithms:

• static void sort(double[] a)

Sort thedouble arraya in increasing numerical order. There are similar methods for arrays
of all primitive types (boolean , char , byte , short , int , long , float , anddouble)

• static void sort(double[] a, int fromIndex, int toIndex)

Sort thedouble arraya in increasing numerical order using the subarray beginningat index
fromIndex and ending at indextoIndex - 1, not toIndex. There are similar meth-
ods for arrays of all primitive types (boolean , char , byte , short , int , long , float , and
double)

• static void sort(Object[] a)
static void sort(Object[] a, int fromIndex, int toIndex)

These are the generic object version with array typeObject[]. The actual element type
must implement theComparable interface.

12.8 Exercises 717

• static <E> void sort(E[] a, Comparator<? super E> c)
static <E> void sort(E[] a, int fromIndex, int toIndex,

Comparator<? super E> c)

These are the Java 5 versions that uses a generic method with an array of typeE and a
comparator for any typeE or any superclass ofE.

EXAMPLE 12.6 (Sorting using Arrays.sort) Using aStringDecreasingComparator
(see page 710) and the natural order the statements

String[] names = {"Harry", "Gord", "Fred", "Bill"};
System.out.println(Arrays.toString(names));
Arrays.sort(names, null);
System.out.println(Arrays.toString(names));
Arrays.sort(names, new StringDecreasingComparator());
System.out.println(Arrays.toString(names));

produce the output

[Harry, Gord, Fred, Bill]
[Bill, Fred, Gord, Harry]
[Harry, Gord, Fred, Bill]

which shows that the original string array (ordered in decreasing order) has been sorted in the
natural increasing order and then this string array has beensorted in decreasing order to give back
the original string array.

12.8 Exercises

◮ Exercise 12.1 (Recursive version offindMinimum)
Write a recursive version of thefindMinimum method that has the prototype

int findMinimum(int[] a, int start, int end)

and returns the first index at which the minimum occurs

◮ Exercise 12.2 (Another recursive version offindMinimum)
Write a recursive version of thefindMinimum method that returns the minimum rather than the
index.

◮ Exercise 12.3 (Searching for all occurrences of a given element)
Write a pseudo-code algorithm that finds all occurrences of agiven element in a subarray of a given
array. The algorithm should return an array containing the indices at which the element occurs.
Write a Java method with prototype

int[] findAllElements(int[] a, int x, int start, int end)

718 Searching and Sorting Algorithms

that implements this algorithm, wherea is the array,x is the element to search for, andstart and
end define the subarray. For example, if the array is〈4,3,8,65,32,65,17,65〉, the subarray is the
entire array, and the element to search for is 65, then the array of indices returned is〈3,5,7〉.

◮ Exercise 12.4 (Recursive binary search for String arrays)
Write a recursive binary search method with prototype

static int binarySearch(String[] s, String target, int sta rt, int end)

that searches the subarrays[start] to s[end] of a String array s for a giventarget string.
Assume that the string array is sorted in increasing lexicographical order.

◮ Exercise 12.5 (Modified binary search algorithm)
Modify the recursive and non-recursive binary search algorithms so they work like the ones in the
Arrays class in case the element is not found. This means that instead of returning−1 when the
element is not found the algorithm should return−k−1 wherek is the array position at which the
element could be inserted to keep the array sorted. The value−k−1 is chosen so that the result
returned is always negative when an element is not found (theminimum value ofk would be 0)
and always non-negative when the element is found.

Implement this algorithm as a Java method for searching an array of strings with prototype

static int binarySearch(String[] a, String key)

Implement this algorithm as a Java 5 method for searching anArrayList<String> of strings with
prototype

static int binarySearch(ArrayList<String> a, String key)

◮ Exercise 12.6 (Insertion into an ordered list)
Use the Java 5 version of binary search from Exercise 12.5 to write a method with prototype

static int insertInOrderedList(ArrayList<String> a, Str ing key)

If key is not found then it should be inserted into the list in the correct position to keep the list
sorted. The return value is the position ofkey in the list. Hint: theArrayList<T> class has a
method with prototype

public void add(int k, T element)

that inserts anelement of typeT into the list at indexk .

◮ Exercise 12.7 (Reversing the sort order)
Suppose you have a subarray of typeint[] that is already sorted in increasing order. Write anO (n)
algorithm that will sort it in decreasing order. Write a Javamethod calledreverseSortOrder with
prototype

void reverseSortOrder(int[] a, int start, int end)

for this algorithm.

12.8 Exercises 719

◮ Exercise 12.8 (Comparing running times on your computer)
Reproduce the running time results in Table 12.7 and Table 12.9 using your computer.

◮ Exercise 12.9 (A version ofGenericArraySort for ArrayList<E> objects)
Write a version of theGenericArraySort class calledGenericArrayListSort with methods
that sort anArrayList<E> object instead of an array object of typeE[] .

◮ Exercise 12.10 (AGenericArraySearch class)
Using theGenericArraySort class as a guide, write a class calledGenericArraySearch that
implements generic versions of the linear, recursive binary, and non-recursive binary search algo-
rithms that were written for arrays of typeint[] .

◮ Exercise 12.11 (A version ofGenericArraySearch for ArrayList<E> objects)
Write a version of theGenericArraySearch class calledGenericArrayListSearch with meth-
ods that search anArrayList<E> object instead of an array object of typeE[] .

◮ Exercise 12.12 (Sorting a file ofBankAccount objects)
Using theGenericArrayListSort class write a class calledAccountSorter that reads a file
of BankAccount objects in the single-line colon-separated format into anArrayList object and
writes a new file that is sorted in order of increasing accountnumber using the quicksort method
in theGenericArrayListSort class from Exercise 12.9.

◮ Exercise 12.13 (Sorting a phone book file)
Using theGenericArraySort class write a program class calledPhoneBookSorter that reads
a file of PhoneBookEntry objects (see Chapter 11 exercises) in the single-line colon-separated
format into anArrayList<PhoneBookEntry> object and writes a new file that is sorted in lexi-
cographical order on the name using the quicksort method in the GenericArrayListSort class
from Exercise 12.9.

◮ Exercise 12.14 (UsingGenericArraySort to sort arrays of primitive type)
How can you useGenericArraySort to sort an array of typeint[] or of typedouble[] , noting
that int anddouble are primitive types, notObject types? Write a Java program class called
DoubleSortTester that reads an array of typedouble[] and sorts it using one of the sort methods
in GenericArraySort HINT: Use theDouble wrapper class.

◮ Exercise 12.15 (Sorting arrays of rectangles)
Write a Rectangle class that has private data fields for the height and width of the rectangle, a
constructor for a rectangle, given its width and height, getmethods for the width and height, a
toString method, and a method to return the area of the rectangle.

The class should implement theComparable<Rectangle> interface using the area to define
the order: one rectangle is less than another if it has a smaller area. Two rectangles are equal if
they have the same area.

Also write aRectangleComparator class that implements theComparator<Rectangle> in-
terface to define the following ordering of rectangles. One rectangle is less than another if its width
is smaller. In case the widths are the same then use the heightand define one rectangle to be less

720 Searching and Sorting Algorithms

than another of the same width if the height is smaller. In case both the height and the width are
the same then the rectangles are equal.

Write a tester class calledRectangleSortTester that constructs an array ofRectangle ob-
jects and uses the sorting methods in theArrays class to sort the array using the order defined by
theComparable<Rectangle> interface. Use the order defined byRectangleComparator .

◮ Exercise 12.16 (Comparing two versions of partition)
Here is a different version of thepartition method for arrays of typeint[] than the one we have
used in quicksort.

public static int partition(int a[], int start, int end)
{

int left = start;
int right = end;

// choose middle element as pivot and move it to
// the end of the array temporarily

swap(a, (start + end)/2, end);
int pivot = a[end];

while (left < right)
{

// search left part for element larger than pivot
while (left < right && a[left] <= pivot) left++;

// search right part for element smaller than pivot
while (left < right && a[right] >= pivot) right--;

// if we find a pair of elements in the wrong parts
// swap them and look for more

if (left < right)
{

swap(a, left, right);
left++; // look for more

}
}
swap(a, left, end); // put pivot back in correct position
return left;

}

Test the running time of the two versions to see if one is faster than the other.

◮ Exercise 12.17 (Graphical simulation of sorting algorithms)
Write a graphical simulation for one of the sorting algorithms. First choose an initial random array
of n integers. Next scale the values so that the largest one is theheight of the highest vertical bar

12.8 Exercises 721

that will fit. Then each integer in the array can be drawn as a vertical bar using the array index as a
horizontal coordinate. Now apply a sorting algorithm and after each iteration update the bar graph
by calling therepaint method. When the sort finishes the bar heights should increase from left to
right.

BlueJ andBeanShell Edition Copyright 2002, 2005, 2007, Barry G. Adams

722 Searching and Sorting Algorithms

Chapter 13

Introduction to Data Types and Structures
Abstract Data Types and the Java Collections Framework

Outline

Abstract data types

Implementing an ADT

Java Collections Framework (JCF)

Collection<E> and Set<E> interfaces

Set implementations and examples

List<E> and ListIterator<E> interfaces

List implementations and examples

Map data type

Map<K,V> interface

Map implementations and examples

Recursion examples using maps

Collections utility class

Sorting examples

723

724 Introduction to Data Types and Structures

13.1 Introduction

In this chapter we consider abstract data types and their implementations. Simple examples include
a fixed size bag ADT, a dynamic size bag ADT and a dynamic size array ADT. In each case
simple versions of these ADTs are designed using Java interfaces and implemented using array
data structures.

Next we give an overview of some of the important ADTs such as sets, lists and maps that are
part of the Java Collections Framework (JCF). Here we concentrate on using the ADTs and not on
how they are implemented, which is left for a course on data structures.

13.2 Abstract data types

A data type is a set of values (the data) and a set of operations defined on the data. Animplemen-
tation of a data type is an expression of the data and operations in terms of a specific programming
language such as Java or C++. Anabstract data type(ADT) is a specification of a data type in a
formal sense without regard to any particular implementation or programming language. Finally,
a realization of an ADT involves two parts

• the interface, specification, or documentation of the ADT: what is the purpose of each oper-
ation and what is the syntax for using it.

• the implementation of the ADT: how is each operation expressed using thedata structures
and statements of a programming language.

The ADT itself is concerned only with the specification or interface details, not the implementation
details. This separation is important. In order to use an ADTthe client or user needs to know only
what the operations do, not how they do it. Ideally this meansthat the implementation can be
changed, to be more efficient for example, and the user does not need to modify programs that use
the ADT since the interface has not changed.

With object-oriented programming languages such as Java and C++ there is a natural corre-
spondence between a data type and a class. The class defines the set of operations that are permis-
sible: they are the public methods of the class. The data is represented by the instance data fields.
Each object (instance of the class) encapsulates a particular state: set of values of the data fields.

In Java the separation of specification and implementation details can easily be obtained using
the Javadoc program which produces the specification (public interface) for each class. The user
can simply read this documenation to find out how to use the class. It is also possible to use
a Java interface for the specification of an ADT since this interface contains no implementation
details, only method prototypes: any class that implementsthe interface provides a particular
implementation of the ADT.

13.2.1 Classification of ADT operations

The various operations (methods) that are defined by an ADT can be grouped into several cate-
gories, depending on how they affect the data of an object:

13.2 Abstract data types 725

Create operation

It is always necessary to create an object before it can be used. In Java this is done using the class
constructors.

Copy operation

The availability of this operation depends on the particular ADT. In many cases it is not needed or
desired. If present, the meaning (semantics) of the operation also depends on the particular ADT.
In some cases copy means make a true copy of the object and all its data fields, and all their data
fields, and so on, and in other cases it may mean to simply make anew reference to an object.
In other words, the reference to the object is being copied, not the object itself. In this case there
is only one object and it is shared among all the references toit. This makes sense for objects
that occupy large amounts of memory and in many other cases aswell. Both types of operation
can even be included in the same ADT. In some languages the copy operation can have explicit
and implicit versions. In Java the implicit operation, defined by assignment or method argument
passing, always copies references but it is possible to makeother kinds of explicit copies using a
copy constructor or by overriding theclone method inherited from theObject class.

Destroy operation

Since objects take up space in memory it is necessary to reclaim this space when an object is no
longer needed. This operation is often called thedestroyoperation. In Java there is no explicit
destroy operation since the built-in garbage collector takes on this responsibility: when there are
no more references to an object it is eventually garbage-collected.

Modification operations

Every object of an ADT encapsulates data and for some ADTs we need operations that can modify
this data. These operations act on objects and change one or more of their data fields. Sometimes
they are calledmutator operations. If an ADT has no mutator operations then the state cannot
be changed after an object has been created and the ADT is saidto beimmutable, otherwise it is
mutable.

Inquiry operations

An inquiry operation inspects or retrieves the value of a data field without modification. It is
possible to completely hide all or part of the internal stateof an object simply by not providing the
corresponding inquiry operations.

13.2.2 Pre- and post-conditions

To document the operations of an ADT pre-conditions and post-conditions can be used.

726 Introduction to Data Types and Structures

Pre-conditions They are the conditions that must be true before an operationis exe-
cuted in order that the operation is guaranteed to complete successfully. These condi-
tions can be expressed in terms of the state of the object before the operation is applied
to the object. A pre-condition may or may not be needed.

Post-conditions They are the conditions that will be true after an operation completes
successfully. These conditions can be expressed in terms ofthe state of the object after
the operation has been applied to the object.

Together the pre- and post-conditions form a contract between the implementer of the method and
the user of the method.

13.2.3 Simple ADT examples

The simplest examples of ADTs are the numeric, character, and boolean types. Most programming
languages have realizations of them as fundamental types which are used to build more complex
structured ADTs. Some typical types in these categories are

An integer ADT

Mathematically the data values here can be chosen as all integersn such that−∞≤ n≤∞. Another
possibility is to consider only non-negative integersn satisfying 0≤ n≤ ∞.

A typical set of operations might be the standard arithmeticoperationsadd, subtract, multiply,
integer quotientand integer remainder, boolean valued operations such asequal, notEqual, and
the relational operators<, ≤, >,≥. An assignment operation would also be needed.

These are infinite data types since there are an infinite number of integers. Therefore any
realization would need to restrict the data values to a finitesubset. Some common possibilities
are 8-bit, 16-bit, 32-bit, or 64-bit representations whichmay be signed or unsigned (non-negative
values).

For example, in Java there is an 8-bitbyte type with range−27 ≤ n≤ 27−1, a 16-bitshort
type with range−215≤ n≤ 215−1, a 32-bitint type with range−231≤ n≤ 231−1, and a 64-bit
long type with range−263≤ n≤ 263−1.

A floating point ADT

Here the data values are floating point numbers. In scientificnotation a floating point number
would have the formx = m×10e wherem is the mantissa ande is the exponent.

A typical set of operations would be similar to those for integers except the divide operation is
now a floating point division. An assignment operation wouldalso be needed.

For example, in Java there is a single precision 32-bitfloat type and a double precision 64-bit
double type. The standard IEEE representation is complicated but necessary to ensure that floating
point arithmetic is portable. Most processors support thisstandard. A single precision numberx is
either 0,−3.40×1038≤ x≤−1.40×10−45 or 1.40×10−45≤ x≤ 3.40×1038. A double precision
numberx is either 0,−1.80×10308≤ x≤−4.94×10−324 or 4.94×10−324≤ x≤ 1.80×10308.

13.2 Abstract data types 727

A character ADT

Here the data is the set of characters from some character setsuch as ASCII or Unicode. Internally
each character is represented by an unsigned integern in the range 0≤ n≤ N for someN.

A typical set of operations might include operations to convert from upper case to lower case
and vice versa, operations to compare two characters to see if they are equal or to see if one pre-
cedes another in the lexicographical ordering defined on thecharacters, or an assignment operation.

For example, in Java thechar type is an unsigned 16-bit integer type with Unicode character
coden satisfying 0≤ n≤ 65535.

A boolean ADT

Here there are only two data values which can be denoted by false and true. Other possibilities are
to use 0 for false and 1 for true, or 0 for false and any non-zeronumber for true.

A typical set of operations would be an assignment operation, an operation to test for false and
one to test for true.

13.2.4 Some common structured ADTs

A structured ADT is one that is defined in terms of another ADT using to some data structure. For
example, an array of integers would be defined in terms of an integer ADT and a string ADT would
be defined in terms of a character ADT. These two structured ADTs are the most common and are
available in most programming languages.

The array ADT

An array consists ofn elements[a0,a1, . . . ,an−1]. Here the data consists of these arrays and each
array elementak belongs to some other ADT. The subscriptk is called the array index. The starting
index may be 0, 1, or user defined. In C++ and Java array indicesbegin at index 0.

The basic array operations are toget the value of thek-th element andseta new value for the
k-th element. In C++ and Java thegetoperation is denoted byx = a[k] and thesetoperation is
denoted bya[k] = x . This also means that an array is a mutable ADT.

The standard array ADT is of fixed size: once created its size cannot be changed. The standard
arrays in C++ and Java are of this type. However we will see that it is easy to create a dynamic
array ADT (resizable) which can be expanded in size if neededto accommodate more elements.

The string ADT

Strings are like arrays of characters but the operations canbe quite different. Both mutable and im-
mutable string ADTs are common. For example, in Java theString class represents an immutable
fixed size ADT and theStringBuilder class represents a dynamic mutable ADT.

Some immutable string operations are toget thek-th character, construct a substring, construct
upper case or lower case versions, and compare two strings using the lexicographical order defined
on the underlying character set.

728 Introduction to Data Types and Structures

Some mutable operations are tosetthek-th character to a new value, andappenda character
or string to the end of a string.

13.2.5 User defined ADT examples

We are not limited to the standard ADTs that have implementations already available in a computer
language or a system defined library of ADTs. We can write our own specifications for an ADT
and implement it in any language. Here we give two examples. We will show how to implement
them in Java.

A dynamic array ADT

Here the data elements are arrays[a0,a1, . . . ,an−1]. This is a mutable ADT and the basic oper-
ations would beget, to get thek-th array element, andset, to set a new value for thek-th array
element. Also the array size can be increased automaticallyas needed (doubled in size when full,
for example) or by applying some expand operation that increases the array size by a specified
amount.

A bag ADT

Here the data elements are bags. Each bag is a container that holds a collection of elements of
some type. There is no defined order on the bag elements as there are for arrays. In mathematics a
bag is often called a multi-set (no order, but duplicate elements are allowed) in contrast to sets for
which there can be no duplicates.

Bags are usually designed to be mutable and dynamic so a basicset of operations areadd, to
add another element to a bag,remove, to remove a specified element from a bag, andcontains
which tests if a specified element is in a bag.

13.3 Implementing an ADT

We now show how to implement the bag and dynamic array ADTs. The first step is to write a
specification or design of the data type, indicating what each operation does. This could be done
with a Java interface followed by the design of the class implementing the interface, indicating
each constructor and method body by{... }.

Whether an interface is being used or not the class design should always include constructor
prototypes since they are never included in an interface.

Once the design is finished it is possible to write some statements that use the ADT to ‘try out’
the syntax of the operations as given by the instance method prototypes. Finally, the implemen-
tation must be written (data fields, constructor and method bodies). This involves choosing some
data structure to represent the data encapsulated by the objects.

In Java all data types except for the eight primitive ones (byte , short , int , long , float ,
double , boolean , char) are expressed as objects from some class. This presents a problem in the
design of a generic type since generic types must be object types (reference types) and we cannot

13.3 Implementing an ADT 729

directly use theint type as a generic type. To allow primitive types to be used as objects there are
wrapper classes in Java for each primitive type. For examplethe Integer class can be used as an
object version of theint type. In Java 5 auto boxing and unboxing make this easy.

Finally, when the implementation is complete, its operations must be tested.

13.3.1 Implementation of theBag<E> ADT

First we write a fixed size implementation of the bag ADT called FixedBag<E> using the generic
type E for the elements in the bag. This means that once constructedfor a given maximum size
(number of elements) this size cannot be changed. Then we will make a simple modification to
obtain a dynamic version calledDynamicBag<E> .

Designing theBag<E> ADT

Here we illustrate the use of an interface to specify the design of an ADT. Both the fixed size and
dynamic versions of the ADT will implement the following interface.

Interface Bag<E>

book-project/chapter13/bags

package chapter13.bags;
/**

* A simple mutable generic bag ADT.
* @param <E> type of elements in the bag
*/

public interface Bag<E>
{

/**
* Return current number of elements in this bag.
* @return current number of elements in this bag
*/

int size();

/**
* Return true if this bag is empty else false.
* @return true if this bag is empty else false
*/

boolean isEmpty();

/**
* Add another element to this bag if there is room.
* @param element the element to add
* @return true if add was successful else false.
*/

boolean add(E element);

/**
* Remove a given element from this bag.
* @param element the element to remove

730 Introduction to Data Types and Structures

* @return true if the element was removed.
* A false return value occurs if element was
* not in this bag.
*/

boolean remove(E element);

/**
* Check if a given element is in this bag.
* @param element the element to check
* @return true if element is in this bag else false
*/

boolean contains(E element);
}

We have not included thepublic modifier on the method prototypes in the interface. It is redun-
dant since all methods in an interface are public.

Designing a fixed size implementation

The fixed size bag implementation has the form

public class FixedBag<E> implements Bag<E>
{

// instance data fields will go here

public FixedBag(int bagSize) {...}
public FixedBag() {...}
public FixedBag(FixedBag<E> b) {...}

public int size() {...}
public boolean isEmpty() {...}
public boolean add(E element) {...}
public boolean remove(E element) {...}
public boolean contains(E element) {...}

public String toString() {...}
}

Javadoc comments have been omitted. They are shown later in the final version of the class. Here
we have three constructors. The first specifies the maximum number of elements that can be added
to the bag and the no-arg constructor gives a bag with a maximum size of 10 elements. The third
constructor is called acopy constructor. Its purpose is to construct a copy of the bag given by the
argumentb.

The toString method is used to return a string representation of the elements in the bag. We
didn’t need to include thetoString prototype in theBag<E> interface since every class inherits a
toString method.

Also, for this fixed size implementation theadd method would return false if the bag is already
full.

13.3 Implementing an ADT 731

According to this design we can construct a bag containing a maximum of 5 integers and add
the integers 1, 2, and 3 to it using the statements

Bag<Integer> b = new FixedBag<Integer>(5);
b.add(1); b.add(2); b.add(3);
System.out.println(b);

Autoboxing is being used here: the compiler understands that b.add(1) means to replace1 by the
wrapper class objectnew Integer(1) and useb.add(new Integer(1)) .

It is important to use the interface type on the left side of the constructor statement. This makes
it easier to switch to another implementation class, such asa dynamic one in this case. This is
sometimes called “programming to an interface”.

Our bag design is minimal. For example it is not possible withthis design to take a bag of
integers and remove all even integers or display the bag elements one per line. This would require
an iterator and will be discussed later.

EXAMPLE 13.1 (Filling a fixed size bag) The statements

Bag<Integer> bag = new FixedBag<Integer>(10);
for (int k = 1; k <= 10; k++)

bag.add(k);

construct a fixed bag of size 10 and fill it with the numbers 1 to 10.

EXAMPLE 13.2 (Filling a fixed size bag) The statements

Bag<Integer> bag = new FixedBag<Integer>(10);
int k = 1;
while (bag.add(k))

k++;

construct a fixed bag of size 10 and fill it with the numbers 1 to 10 using theadd method to detect
when the bag is full.

Choosing a data structure

The next step is to choose a data structure to hold the bag elements. Here we choose a fixed
size array calleddata such that if the number of elements currently in the bag issize then
these elements are stored indata[0] , data[1] , . . . , data[size-1] and the remaining array ele-
mentsdata[size] , . . . ,data[data.length-1] are free for storing more elements. Therefore we
choose the following instance data fields for the bag data.

private E[] data;
private int size;

As elements are added to the bag they are stored in the next available place in the array. Thus at
any stage the array consists of two parts: the used partdata[0] to data[size-1] and the unused
partdata[size] to data[data.length-1] .

732 Introduction to Data Types and Structures

Implementing the constructors

The first constructor implementation is

public FixedBag(int bagSize)
{

data = (E[]) new Object[bagSize];
size = 0;

}

and the second constructor calls this one. When constructing an array of generic type it is necessary
to use the actualObject type for the array elements and typecast it to the typeE. For various
technical reasons related to the way generic types were added to the Java language the statement

data = (E[]) new E[bagSize];

is illegal.
Finally, the copy constructor is given by

public FixedBag(FixedBag<E> b)
{

size = b.size();
data = (E[]) new Object[b.data.length];
for (int k = 0; k < size; k++)

data[k] = b.data[k];
}

Here we first construct an array of the same maximum sizeb.data.length of the arrayb. Then
the bag elements inb are copied into this array.

Implementing the methods

The add method first checks if there is room for the new element. Sincesize represents the
number of elements currently in thedata array then the new element can usedata[size] . The
implementation is

public boolean add(E element)
{

if (size == data.length) // full bag
return false;

data[size] = element;
size = size + 1;
return true;

}

The remove method needs to use a loop to search for the element to remove.If the element is
found at positionk in the array then the obvious way to remove it is to use a for-loop to copy
the array elementsdata[k+1] , . . . ,data[size-1] down one location to overwrite the element at
positionk . This requires another loop.

13.3 Implementing an ADT 733

A more efficient way is to realize that a bag is not an ordered structure so the array ordering
does not need to be preserved. Therefore we can just overwrite the element at positionk with the
last array element at positionsize-1 . This effectively removes the element at positionk . This
gives the implementation

public boolean remove(E element)
{

for (int k = 0; k < size; k++)
{

if (data[k].equals(element))
{

data[k] = data[size-1];
size = size - 1;
return true;

}
}
return false; // not found

}

It is necessary to use theequals method defined for element typeE to properly test for element
equality. The testdata[k] == element will not work. A class that does not have a properly
definedequals method can not be used as the element type. The wrapper classes and theString
class all haveequals methods.

The remaining methods are easily implemented and the complete implementation class is

ClassFixedBag<E>

book-project/chapter13/bags

package chapter13.bags;
/**

* A simple fixed size bag implementation.
* @param <E> type of elements in the bag
*/

public class FixedBag<E> implements Bag<E>
{

// This version uses a fixed array for the bag

private E[] data;
private int size;

/**
* Create a bag for a given maximm number of elements.
* @param bagSize the maximum number of elements
*/

public FixedBag(int bagSize)
{

data = (E[]) new Object[bagSize];
size = 0;

}

734 Introduction to Data Types and Structures

/**
* Create a default bag for a maximum of 10 elements
*/

public FixedBag()
{

this(10);
}

/**
* Construct a bag that is a copy of a given bag.
* The copy has the same maximum size as bag b.
* @param b the bag to copy
*/

public FixedBag(FixedBag<E> b)
{

size = b.size();
data = (E[]) new Object[b.data.length];
for (int k = 0; k < size; k++)

data[k] = b.data[k];
}

public int size()
{

return size;
}

public boolean isEmpty()
{

return size == 0;
}

public boolean add(E element)
{

if (size == data.length)
return false;

data[size] = element;
size = size + 1;
return true;

}

public boolean remove(E element)
{

for (int k = 0; k < size; k++)
{

if (data[k].equals(element))
{

// nice trick
data[k] = data[size-1];
size = size - 1;
return true;

}

13.3 Implementing an ADT 735

}
return false; // not found

}

public boolean contains(E element)
{

for (int k = 0; k < size; k++)
if (data[k].equals(element))

return true;
return false; // not found

}

/**
* Return a string representation of this bag.
* @return a string representation of this bag.
*/

public String toString()
{

StringBuilder sb = new StringBuilder();
sb.append("[");
if (size != 0)
{

sb.append(data[0]);
for (int k = 1; k < size; k++)
{

sb.append(",");
sb.append(data[k]);

}
}
sb.append("]");
return sb.toString();

}
}

We have not included comments for the interface methods since they are already given in the
Bag<E> interface.

Converting to a dynamic implementation

We now convert the fixed size implementation to a dynamic one.This can easily be done by
modifying theadd method to automatically expand thedata array whenever it it is full. The new
version ofadd is

public boolean add(E element)
{

if (size == data.length)
resize();

data[size] = element;
size = size + 1;
return true;

}

736 Introduction to Data Types and Structures

Here we call aresize method that increases the capacity as follows: (1) make a newdata array
twice the size of the current one, (2) copy the current data array to the beginning of the new one,
(3) reassign thedata reference to the new array (the old one will be garbage collected).

This gives the following private method.

private void resize()
{

int newCapacity = 2 * data.length;
E[] newData = (E[]) new Object[newCapacity]; // step 1
for (int k = 0; k < data.length; k++) // step 2

newData[k] = data[k];
data = newData; // step 3

}

Here is the complete implementation.

ClassDynamicBag<E>

book-project/chapter13/bags

package chapter13.bags;
/**

* A simple dynamic bag implementation.
* @param <E> the type of elements in the bag
*/

public class DynamicBag<E> implements Bag<E>
{

private E[] data;
private int size;

/**
* Create a bag with a given initial capacity.
* @param initialCapacity the initial capacity of this bag
*/

public DynamicBag(int initialCapacity)
{

data = (E[]) new Object[initialCapacity];
size = 0;

}

/**
* Create a default bag with an initial capacity of 10 elements .
*/

public DynamicBag()
{

this(10);
}

/**
* Construct a bag that is a copy of a given bag.
* The copy has the same current maximum size as bag b.

13.3 Implementing an ADT 737

* @param b the bag to copy
*/

public DynamicBag(DynamicBag<E> b)
{

size = b.size();
data = (E[]) new Object[b.data.length];
for (int k = 0; k < size; k++)

data[k] = b.data[k];
}

public int size() {...} // same as for FixedBag
public boolean isEmpty() {...} // same as for FixedBag

public boolean add(E element)
{

if (size == data.length)
resize();

data[size] = element;
size = size + 1;
return true;

}

public boolean remove(E element) {...} // same as for FixedB ag
public boolean contains(E element) {...} // same as for Fixe dBag

private void resize()
{

// Make a new array twice as big as current one,
// copy data to it and make data reference the new one.

int newCapacity = 2 * data.length;
E[] newData = (E[]) new Object[newCapacity];
for (int k = 0; k < data.length; k++)

newData[k] = data[k];
data = newData;

}

public String toString() {...} // same as for FixedBag
}

13.3.2 Implementation of theDynamicArray ADT

We have written aFixedBag<E> ADT but we will not consider aFixedArray<E> ADT since the
built-in array type is a fixed size implementation.

Unlike a bag, an array is an ordered ADT. There is a first element, a second element, and so on
so there is an index associated with each array element.

Designing theArray ADT

As for the Bag ADT we can use the following interface to designa simple array ADT

738 Introduction to Data Types and Structures

Interface Array<E>

book-project/chapter13/arrays

package chapter13.arrays;
/**

* A simple generic array ADT.
* @param <E> type of elements in the array
*/

public interface Array<E>
{

/**
* Return current number of elements in this array.
* @return current number of elements in this array
*/

int size();

/**
* Return true if this array is empty else false.
* @return true if this array is empty else false
*/

boolean isEmpty();

/**
* Add another element to end of this array.
* @param element the element to add to end at position size().
* @return true if add was successful else false.
*/

boolean add(E element);

/**
* Get the element at a given index (0,1,...).
* @param index the index of the element
* @return the element at the index
* @throws ArrayIndexOutOfBoundsException if the
* index is out of the range 0 <= index < size()
*/

E get(int index);

/**
* Set a new value for a given array element.
* @param index the index of the array element
* @param element the new value of the element
* @throws ArrayIndexOutOfBoundsException if the
* index is out of the range 0 <= index < size()
*/

void set(int index, E element);
}

Here we have anadd method that adds an element at the end of the array (positionsize()). It is
important that we specify that the element be added at the endof the array. This was not necessary
for the bag ADT.

13.3 Implementing an ADT 739

The element at positionk can be obtained using theget method and theset method can be
used to give a new value to the object associated with position k . If an indexk is outside the range
0 <= k < size() then anArrayIndexOutOfBounds exception is thrown.

The operations defined for an array ADT are quite different than those for a bag ADT since the
array ADT is an ordered collection of elements and there is noassumed order for the elements in
the bag. Theget andset methods were not part of the bag ADT since there is no concept of an
index for the elements in a bag.

This is a minimal array interface and there are many other methods such as aremove method
that removes the element at a given index, andindexOf that returns the index of a given elememt.

Designing a dynamic implementation

The dynamic array implementation has the form

public class DynamicArray<E> implements Array<E>
{

private E[] data;
private int size;

public DynamicArray(int initialCapacity) {...}
public DynamicArray() {...}
public DynamicArray(DynamicArray<E> a) {...}

public int size() {...}
public boolean isEmpty() {...}
public boolean add(E element) {...}
public E get(int index) {...}
public void set(int index, E element) {...}
public String toString() {...}

}

Here we use the same data structure, a fixed array, as for the bag implementations. The constructors
are very similar to theDynamicBag constructors.

Using the design

Now we can try out some statements for our dynamic array design.

EXAMPLE 13.3 (Resizing a dynamic array) The following statements test that an array is
resized when it becomes full. Autoboxing is used to convert integers to theInteger object type.

Array<Integer> a = new DynamicArray<Integer>(3);
a.add(1); a.add(2); a.add(3); a.add(4);
System.out.println("Array size is " + a.size());
System.out.println(a);

Here the initial capacity is 3. When we add the 4-th number thecapacity is doubled to 6 and the
number 4 is added to the array, which now has size 4 and room fortwo more elements.

740 Introduction to Data Types and Structures

EXAMPLE 13.4 (Summing the elements in a dynamic array) Unlike the bag we can loop
over the elements in the array by using theget method. Here we construct an integer array and
sum its elements using the following statements.

Array<Integer> a = new DynamicArray<Integer>(3);
a.add(1); a.add(2); a.add(3); a.add(4);
int sum = 0;
for (int k = 0; k < a.size(); k++)

sum = sum + a.get(k);
System.out.println("The sum of the elements is " + sum);

Compare these statements with the following ones that do thesame thing with a standard array:

int[] a = new int[4];
a[0] = 1; a[1] = 2; a[2] = 3; a[3] = 4;
int sum = 0;
for (int k = 0; k < a.length; k++)

sum = sum + a[k];

Here we need to use the exact size of 4.

EXAMPLE 13.5 (Swapping two elements of an array) Assuming thatstr is an array of
strings, the statements

String temp = str.get(i);
str.set(i, str.get(j));
str.set(j, temp);

swap the strings at positionsi andj .

Implementing the constructors and methods

This is the same as forDynamicBag<E> and the implementation of theget andset methods are
simple so we have the following class.

ClassDynamicArray<E>

book-project/chapter13/arrays

package chapter13.arrays;
/**

* A simple dynamic array implementation.
* @param <E> type of elements in the array
*/

public class DynamicArray<E> implements Array<E>
{

private E[] data;
private int size;

13.3 Implementing an ADT 741

/**
* Create an array for a given initial capacity.
* @param initialCapacity the initial capacity
*/

public DynamicArray(int initialCapacity)
{

data = (E[]) new Object[initialCapacity];
size = 0;

}

/**
* Create a default array for an initial capacity of 10 element s.
*/

public DynamicArray()
{

this(10);
}

/**
* Construct an array that is a copy of a given array.
* The copy has the same capacity as array a.
* @param a the array to copy
*/

public DynamicArray(DynamicArray<E> a)
{

size = a.size();
data = (E[]) new Object[a.data.length];
for (int k = 0; k < size; k++)

data[k] = a.data[k];
}

public int size()
{

return size;
}

public boolean isEmpty()
{

return size == 0;
}

public boolean add(E element) {...} // same as for DynamicBa g

public E get(int index)
{

if (0 <= index && index < size)
return data[index];

else
throw new ArrayIndexOutOfBoundsException("index out of b ounds");

}

public void set(int index, E element)

742 Introduction to Data Types and Structures

Iterable<E>

Collection<E>

Set<E> List<E>

SortedSet<E>

Map<K,V>

6

SortedMap<K,V>

Iterator<E>

6

ListIterator<E>

6

66

6

Figure 13.1: JCF related interface hierarchy

{
if (0 <= index && index < size)

data[index] = element;
else

throw new ArrayIndexOutOfBoundsException("index out of b ounds");
}

private void resize() {...} // same as for DynamicBag
public String toString() {...} // same as for FixedBag

}

13.4 Java Collections Framework (JCF)

Many ADTs collect together elements of some data type. The simplest examples we have con-
sidered are the bag ADT and the array ADT. We define acollection as a data type that organizes
a group of related objects called the elements of the collection and provides operations on them.
There are often restrictions on the elements that belong to aspecific kind of collection and on the
way the elements can be accessed.

13.4.1 Interface hierarchy

In Java collections are represented by classes that implement theCollection<E> interface or one
of its extended interfaces such asSet<E> or List<E> . These interfaces and others make up what is
called the JCF (Java Collections Framework) and their relationship is shown in Figure 13.1. Here
the arrow means “extends”. For example theSet<E> interface extendsCollection<E> .

A set is an example of a collection whose elements have the following two properties: (1) no
defined order and (2) duplicate elements are not allowed. This corresponds to the mathematical
definition of a set.

13.4 Java Collections Framework (JCF) 743

public interface Collection<E> extends Iterable<E>
{

// Query operations
int size();
boolean isEmpty();
boolean contains(Object obj);
Iterator<E> iterator();
Object[] toArray();
<T> T[] toArray(T[] a);

// Modification Operations
boolean add(E element); // optional
boolean remove(Object obj); // optional

// Bulk Operations
boolean containsAll(Collection<?> c);
boolean addAll(Collection<? extends E> c); // optional
boolean removeAll(Collection<?> c); // optional
boolean retainAll(Collection<?> c); // optional
void clear(); // optional

// Comparison and hashing
boolean equals(Object obj);
int hashCode();

}

Figure 13.2: TheCollection<E> interface

A bag is another example of a collection that, like a set, imposes no defined order on its ele-
ments but does allow duplicate elements. In mathematics a bag is called a multi-set. The bag is the
simplest kind of collection class since it imposes no restrictions or structure on its elements.

Arrays and lists are collections in which the elements do have a defined order. There is a first
element, a second element, and so on, and duplicates are allowed. In mathematics an array or list
is often called a sequence.

We shall give a survey of the most important classes in the Java Collections Framework (JCF).
Our goal is not to understand the implementation of these classes, which is left to a data structures
course, but to learn how to use them. Of course, we should not need to understand implementation
details in order to use a class.

The most important interface in the JCF is theCollection<E> interface which represents the
basic design and methods any collection class should have. Aclass that implements this interface
“is a” collection. A summary of this interface is given in Figure 13.2. It also extends another
interface calledIterable<E> , given in Figure 13.3 and this interface contains one methodcalled
iterator which returns an object from a class that implements theIterator<E> interface shown
in Figure 13.4. We now discuss these three interfaces.

744 Introduction to Data Types and Structures

public interface Iterable<E>
{

Iterator<E> iterator();
}

Figure 13.3: TheIterable<E> interface

public interface Iterator<E>
{

boolean hasNext();
E next();
void remove(); // optional

}

Figure 13.4: TheIterator<E> interface

13.4.2 Traversing a collection with an iterator

An important operation on a collection is to be able to traverse it. This means to examine or process
elements in the collection one at a time using some kind of loop. This is the purpose of aniterator .

Our simpleBag<E> interface did not define an iterator so for classes such asFixedBag<E> and
DynamicBag<E> there was no way to process the elements one by one in some order. We could do
this for theDynamicArray<E> class only because we had an indexed collection so we could use a
standard for-loop to traverse an array as shown in Example 13.4.

In the JCF an iterator is an object of some class that implements theIterator<E> interface
shown in Figure 13.4. A collection class will normally not implement this interface directly. In-
stead it will provide aniterator() method that returns an object of some class that implements
theIterator<E> interface. This is the case for theCollection<E> interface shown in Figure 13.2
(under query operations).

In the Iterator<E> interface thehasNext() method is used to stop the iteration process and
thenext() method returns the current element in the collection and advances to the next one. This
means that we can callnext() repeatedly as long ashasNext() returns true.

EXAMPLE 13.6 (Using an iterator to traverse a collection) We can use statements such as
the following to process the elements.

Collection<E> c = new ACollectionClass<E>(...);
c.add(e1); c.add(e2); c.add(e3); // ...
Iterator<E> iter = c.iterator();
while(iter.hasNext())
{

E element = iter.next();
// do something here with element

}

13.4 Java Collections Framework (JCF) 745

HereACollectionClass is any class that implements theCollection<E> interface.

The Iterator<E> interface also contains aremove operation which is listed as optional. If
an implementing class does not support the removal of elements from the collection then an
UnsupportedOperationException will be thrown. Such an iterator is said to be immutable.

EXAMPLE 13.7 (Using an iterator as a filter) The following statements show how an iterator
can be used as afilter by removing elements from the collection that satisfy some condition.

Collection<E> c = new ACollectionClass<E>(...);
c.add(e1); c.add(e2); c.add(e3); // ...
Iterator<E> iter = c.iterator();
while(iter.hasNext())
{

E element = iter.next();
if (removal condition is true)
{

iter.remove();
}

}

Here it is important that theremove() method is used after a call tonext() .

EXAMPLE 13.8 (Using an iterator as a filter without remove) If removal is not supported
then a filter can be written by creating a new collection containing only the elements that were not
removed:

Collection<E> c = new ACollectionClass<E>(...);
c.add(e1); c.add(e2); c.add(e3); // ...
// create a new empty collection
Collection<E> newCollection = new ACollectionClass<E>() ;
Iterator<E> iter = c.iterator();
while(iter.hasNext())
{

E element = iter.next();
if (removal condition is NOT true)

newCollection.add(element);
}

Here the original collection is not changed.

An important property of an iterator is that it does not expose any internal details of the collec-
tion and the data structures used in the implementation. This is important since it means that the
implementation of the collection class can be changed without changing the iterator.

746 Introduction to Data Types and Structures

13.4.3 Iterable<E> interface

The Iterable<E> interface is related to the for-each loop introduced in Java5. If a class imple-
ments this interface then it provides aniterator() method defining an iterator and the for-each
loop can be applied as follows

EXAMPLE 13.9 (Using a for-each loop as an immutable iterator)The for-each loop has the
syntax

for (E element : c)
{

// do something here with element
}

Herec is any object from a class that implements theIterable<E> interface. In particular it can
be of typeCollection<E> . The for-each loop cannot access theremove() method so it can only
be used for immutable traversals.

EXAMPLE 13.10 (Using an iterator with a standard array type) The built-in array type also
implementsIterable<E> so it is possible to process an array using statements such as

String[] s = new String[3];
s[0] = "one"; s[1] = "two"; s[2] = "three";
for (String str : s)
{

// do something here with the string str
}

This is useful as a replacement for the standard for-loop that does not actually use its index in the
body of the loop. The for-each loop requires no index.

13.5 Collection<E> and Set<E> interfaces

13.5.1 Collection<E> interface

We now summarize the methods in theCollection<E> interface in Figure 13.2. For more com-
plete descriptions see the Java API documentation. As shownin the figure the operations can be
divided into four categories: (1) Query operations, (2) Modification operations, (3) Bulk opera-
tions, and (4) Comparison and hashing.

Some methods are optional. If a class does not want to implement an optional method the
method must throw anUnsupportedOperationException if it is called. Note that the optional
operations are precisely the ones which may modify this collection, so if a class implements
none of these methods then it is implementing immutable collections. Here is a summary of the
Collection<E> methods.

Note that thecontains andremove methods have an argument of typeObject instead ofE.
This is conventional since these methods do not add new elements to the collection. However, the

13.5Collection<E> andSet<E> interfaces 747

add method must have an argument of typeE to guarantee that the collection will only contain
elements of typeE.

• int size()

Return the number of elements inthis collection.

• boolean isEmpty()

Returns true if there are no elements inthis collection else returns false.

• boolean contains(Object obj)

Returns true ifthis collection contains elementobj else returns false.

• Iterator<E> iterator()

Return an iterator of typeIterator<E> for this collection. This is the method that is
necessary to implement theIterable<E> interface.

• Object[] toArray()

Convert the elements inthis collection to an array ofObject type.

For example, ifc is a collection of strings then the statement

Object[] s = c.toArray();

converts the collection of strings to the arrays of objectss[0] , . . . , s[s.length-1] . To
recover the strings it is necessary to use a typecast on each component such as

String str = (String) s[k];

• <T> T[] toArray(T[] a)

This is a parametrized method for typeT that returns an arrayT[] of typeT.

If the parametrized type of the collection isT as indicated by the argumenta then this method
converts the elements ofthis collection to an array of typeT which is the run-time type of
the array. If the collection does not contain elements of typeT an exception is thrown.

For example, ifc is a collection of strings then the statement

String[] s = c.toArray(new String[c.size()]);

converts the collection of strings to the arrays of stringss[0] , . . . ,s[s.length-1] .

• boolean add(E element)

Returns true ifthis collection was changed (elementwas added) after calling the method
else returns false. This is an optional operation.

• boolean remove(Object obj

Returns true ifthis collection was changed (obj was found and removed) after calling the
method else returns false. This is an optional operation.

748 Introduction to Data Types and Structures

public interface Set<E> extends Collection<E>
{

// The Collection<E> interface methods can go here
// The Set<E> interface introduces no new methods

}

Figure 13.5: TheSet<E> interface

• boolean containsAll(Collection<?> c)

Returns true ifthis collection contains all the elements in collectionc else returns false.
The notationCollection<?> means a collection of any type (? is a wild card).

• boolean addAll(Collection<? extends E> c)

Adds all of the elements ofc to this collection. Returns true ifthis collection was mod-
ified after calling the method else returns false. The notationCollection<? extends
E> means a collection of any type that extends or implements thetypeE. In this context
extends means “extends or implements”. This is an optional operation.

• boolean removeAll(Collection<?> c)

Returns true ifthis collection was modified (one or more elements ofcwere removed from
this collection) after calling the method else returns false. This is an optional operation.

• boolean retainAll(Collection<?> c)

Retains only the elements inthis collection that are also inc. Returns true if this collection
was modified after calling the method else returns false. This is an optional operation.

• void clear()

Remove all elements ofthis collection to give an empty collection. This is an optional
operation.

• boolean equals(Object obj)
int hashCode()

These are methods in theObject class that can be overridden. Theequals method tests
if two collections have the same elements.

13.5.2 Set<E> interface

TheCollection<E> interface describes what is called a bag or multi-set since there is no structure
imposed on the elements in the collection.

TheSet<E> interface is given in Figure 13.5. It extendsCollection<E> but does not introduce
any new methods. However the documentation of some of the methods changes since a set is a
collection that does not contain duplicates. For example, the contains method will return false

13.6 Set Implementations and examples 749

if the elementobj is already inthis set and theadd method will not change the collection if the
elementobj is already inthis set.

Similarly theaddAll method will only add tothis set the elements of the collectionc that are
not already inthis set.

Set theory interpretation of the bulk set methods

The bulkSet<E> methods can be used to implement the basic set theory operations of subset, set
difference, intersection, and union.

subset/supersetIf a andb are two sets thena⊆ b (or equivalentlyb⊇ a) means thata is a
subset ofb (or equivalentlyb is a superset ofa). In other words every element ina is also an
element ofb.

This can be expressed usingcontainsAll . If a andb are two sets (objects from a class that
implementsSet<E>) thena.containsAll(b) returns true only ifa⊇ b, socontainsAll
is the superset operation.

set differenceIf a andb are two sets thena−b is the difference: set of all elements ina that
are not inb. A destructive version is represented bya.removeAll(b) , which replacesa by
a−b.

set union If a andb are two sets thena∪b is their union: set of all elements ina or b or
both. A destructive version is represented bya.addAll(b) , which replacesa by a∪b.

set intersectionIf a andb are two sets thena∩b is their intersection: set of all elements that
are ina and inb. A destructive version is represented bya.retainAll(b) , which replaces
a by a∩b.

To obtain non-destructive versions (a is not changed) it is necessary to make a copy ofa and apply
the operation to the copy.

13.6 Set Implementations and examples

The JCF includes several implementations of theSet<E> interface. We will consider three of
them: HashSet<E> , LinkedHashSet<E> , andTreeSet<E> . TheHashSet<E> implementation is
the fastest but if a total order can be defined on the elements of the set thenTreeSet<E> can be used
to maintain the set in sorted order unlikeHashSet<E> which maintains no order. If the element
order is not important useHashSet<E> . TheLinkedHashSet<E> class maintains the elements in
the order they were added to the set.

13.6.1 HashSet<E> implementation of Set<E>

A summary of theHashSet<E> implementation is given in Figure 13.6. We will not discuss any
implementation details. There are four constructors. The first constructor with no arguments

750 Introduction to Data Types and Structures

public class HashSet<E> extends AbstractSet<E>
implements Set<E>, Cloneable, Serializable

{
public HashSet() {... }
public HashSet(int initialCapacity) {... }
public HashSet(Collection<? extends E> c) {... }
public HashSet(int initialCapacity, float loadFactor) {... }

public Object clone() {... }

// implementations of Set interface methods go here
}

Figure 13.6: TheHashSet<E> class

public class LinkedHashSet<E> extends HashSet<E>
implements Set<E>, Cloneable, Serializable

{
public LinkedHashSet() {... }
public LinkedHashSet(int initialCapacity) {... }
public LinkedHashSet(Collection<? extends E> c) {... }
public LinkedHashSet(int initialCapacity, float loadFac tor) {... }

public Object clone() {... }

// implementations of Set interface methods go here
}

Figure 13.7: TheLinkedHashSet<E> class

constructs an empty set with a default initial capacity of 16elements. The second constructor
specifies a given initial capacity.

The third one is called aconversion constructorand is very useful. It creates a set of element
typeE from any given collectionc which may have any element type which extends or implements
the typeE. This constructor can also be used as a copy constructor ifc has typeE.

We will not use the fourth constructor. It is used to optimizethe hash table implementation.

13.6.2 LinkedHashSet<E> implementation of Set<E>

A summary of theLinkedHashSet<E> implementation is given in Figure 13.7. The constructors
are identical to the ones inHashSet<E> .

13.6.3 TreeSet<E> implementation of SortedSet<E> and Set<E>

A summary of theTreeSet<E> implementation is given in Figure 13.8. Note thatTreeSet<E>

13.6 Set Implementations and examples 751

public class TreeSet<E> extends AbstractSet<E>
implements SortedSet<E>, Cloneable, Serializable

{
public TreeSet() {... }
public TreeSet(Collection<? extends E> c) {... }
public TreeSet(Comparator<? super E> c) {... }
public TreeSet(SortedSet<E> s) {... }

public Object clone() {... }

// implementations of SortedSet interface methods go here
// SortedSet extends the Set interface

}

Figure 13.8: TheTreeSet<E> class

implements theSortedSet<E> interface which extends theSet<E> interface soTreeSet<E> also
extendsSet<E> . We will not need the extra methods provided by theSortedSet<E> interface.

There are four constructors. The first provides an empty set.As elements are added they will
sorted according to the natural order of the elements of typeE (E must implementComparable<E>).

The second is aconversion constructorsimilar to the one inHashSet<E> . It creates a sorted
set of element typeE from any given collectionc which may have typeE or any element type which
extends or implements the typeE.

The third constructor provides aComparator argument which has typeE or any type that is
a super type ofE. It’s purpose is to define the total order to be used byTreeSet<E> . If this
constructor is not used then the natural ordering defined by the element typeE is used. In this case
the typeE must implement theComparable<E> interface.

The last constructor is a copy constructor which makes a copyof any sorted set.

13.6.4 Simple set examples

EXAMPLE 13.11 (Removing duplicates from a collection) Suppose we have a collectionc
of strings and we want to obtain a new collection that isc with duplicates removed. The following
statement does this

Set<String> noDups = new HashSet<String>(c);

using the conversion constructor.

EXAMPLE 13.12 (Random sets of elements)The following statements create a set of 10 inte-
gers generated randomly in the range 1 ton wheren > 9.

Random random = new Random();
Set<Integer> randomSet = new TreeSet<Integer>();
while (randomSet.size() < 10)
{

752 Introduction to Data Types and Structures

randomSet.add(random.nextInt(n) + 1);
}

Here we simply try to add elements until the set has size 10. Itis important to haven > 9 or
the loop will be infinite since there are no sets of size 10 containing only numbers in the range
1≤ k≤ 9.

EXAMPLE 13.13 (Using HashSet to compute set union)The statements

Set<String> s1 = new HashSet<String>();
s1.add("one"); s1.add("two"); s1.add("three");
Set<String> s2 = new HashSet<String>();
s2.add("four"); s2.add("five"); s2.add("six");

define two sets of strings and the statements

Set<String> union = new HashSet<String>(s1);
union.addAll(s2);
System.out.println(union);

create a copy ofs1 and useaddAll to compute the union of the two sets without modifying either
s1 or s2 . The result displayed is

[one, two, five, four, three, six]

The output shows there is no specific order.

If you replaceHashSet by LinkedHashSet everywhere the result displayed is

[one, two, three, four, five, six]

Now the order is the same as the order in which the strings wereadded to the set.

If you replaceHashSet by TreeSet everywhere the result displayed is

[five, four, one, six, three, two]

Now the elements appear in alphabetical order.

EXAMPLE 13.14 (Using an iterator as a filter) The statements

Set<Integer> s = new HashSet<Integer>();
s.add(1); s.add(2); s.add(3); s.add(3); s.add(4); // [1,2 ,3,4]
Iterator<Integer> iter = s.iterator(); // ask s for an itera tor
while (iter.hasNext())
{

int k = iter.next();
if (k % 2 == 0)

iter.remove();
}
System.out.println(s);

13.6 Set Implementations and examples 753

use an iterator to remove all the even integers from the sets of integers. The print statement
displays[1,3] .

EXAMPLE 13.15 (Use an iterator as a filter) The following statements

Set<Integer> s = new HashSet<Integer>();
s.add(1); s.add(2); s.add(3); s.add(3); s.add(4); // [1,2 ,3,4]
Iterator<Integer> iter = s.iterator(); // ask s for an itera tor
Set<Integer> evenSet = new HashSet<Integer>();
Set<Integer> oddSet = new HashSet<Integer>();
while (iter.hasNext())
{

int k = iter.next();
if (k % 2 == 0)

evenSet.add(k);
else

oddSet.add(k);
}
System.out.println(evenSet);
System.out.println(oddSet);

use an iterator to create two new sets froms , one containing the even integers ins and the other
containing the odd integers ins . The print statements display[2,4] and[1,3]

13.6.5 Removing duplicates from a list of words

Using sets we can easily write a program that removes duplicate words in a list of words. Simply
read the words and add them to a set. Any duplicates will not beadded.

ClassRemoveDuplicateWords

book-project/chapter13/sets

package chapter13.sets;
import java.io.File;
import java.io.FileNotFoundException;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Scanner;
import java.util.Set;

/**
* Remove duplicate words from a file of words.
*/

public class RemoveDuplicateWords
{

public void doTest() throws FileNotFoundException
{

Scanner input = new Scanner(new File("files/words.txt")) ;

754 Introduction to Data Types and Structures

Set<String> uniqueSet = new HashSet<String>();
Iterator<String> iter = input;
while(iter.hasNext())
{

uniqueSet.add(iter.next());
}
input.close();
System.out.println(uniqueSet.size() + " unique words fou nd:");
System.out.println(uniqueSet);

}

public static void main(String[] args) throws FileNotFoun dException
{

new RemoveDuplicateWords().doTest();
}

}

Here we use the fact that theScanner class implements theIterator<String> interface. As each
word is read an attempt is made to add it to the set. You can try this program using a file such as

all all
words words
are are duplicated duplicated

The output is

4 unique words found:
[words, all, duplicated, are]

You may get a different order since we are using aHashSet . For output in alphabetic order use
TreeSet . For a related problem see Exercise 13.10.

13.7 List<E> and ListIterator<E> interfaces

A list is a collection of elements arranged in some linear order. It has a first element, a second
element and so on. According to Figure 13.1 theList<E> interface extendsCollection<E> so
you can think of a list as an ordered collection of elements. TheList<E> interface is summarized in
Figure 13.9. As for theCollection<E> interface the operations that can modify a list are indicated
as optional so an implementation for immutable lists would not implement these operations.

For traversing lists theIterator<E> interface has been extended to provide a two way iterator
calledListIterator<E> summarized in Figure 13.10.

13.7.1 List<E> interface

The methods from theCollection<E> class have basically the same meaning in theList<E>
interface except that theadd andaddAll methods now specify that these operations append the
elements to the end of the list and theremove method specifically removes the first occurrence of
the element.

13.7List<E> andListIterator<E> interfaces 755

public interface List<E> extends Collection<E>
{

// The Collection<E> interface methods can go here

// Positional Access Operations
E get(int index);
E set(int index, E element); // optional
void add(int index, E element); // optional
E remove(int index); // optional
boolean addAll(int index, Collection<? extends E> c); // op tional

// Search Operations
int indexOf(Object obj);
int lastIndexOf(Object obj);

// List Iterators
ListIterator<E> listIterator();
ListIterator<E> listIterator(int index);

// View
List<E> subList(int fromIndex, int toIndex);

}

Figure 13.9: TheList<E> interface

public interface ListIterator<E> extends Iterator<E>
{

// Query Operations
boolean hasNext();
E next();
boolean hasPrevious();
E previous();

int nextIndex();
int previousIndex();

// Modification Operations
void remove(); // optional
void set(E element); // optional
void add(E element); // optional

}

Figure 13.10: TheListIterator<E> interface

756 Introduction to Data Types and Structures

We now summarize the extra methods introduced by theList<E> interface of Figure 13.9.
The additional methods fall into four categories: (1) positional access operations that locate list
elements using an index, (2) search operations that find a list element given its index, (3) list
iterators that begin at the start of a list or at some other position, and (4) a view operation that
returns a sublist.

• E get(int index)

Return the element inthis list at position given byindex. If index < 0 orindex >=
size() an index out of bounds exception is thrown.

• E set(int index, E element)

Replace the element at positionindex by the given element. The element being replaced
is returned. Ifindex < 0 or index >= size() an IndexOutOfBoundsException is
thrown. This is an optional operation.

• void add(int index, E element)

Add a new element tothis list at positionindex. The elements originally beginning
at positionindex are moved up to higher indices to accommodate the new element. If
index < 0 orindex > size() an index out of bounds exception is thrown. Note that
index = size() is allowed here, corresponding to adding after the last element. This is
an optional operation.

• boolean addAll(int index, Collection<? extends E> c)

Add all the elements in the given collectionc to this list beginning at the given position
index. The elements originally beginning at positionindex are moved up to higher in-
dices to accommodate the new elements. The restrictions onindex are the same as for the
add method. This is an optional operation.

• int indexOf(Object obj)

Return the index of the first occurrence of the given objectobj in this list. If obj was
not found then−1 is returned.

• int lastIndexOf(Object obj)

Return the index of the last occurrence of the given objectobj in this list. If obj was not
found then−1 is returned.

• ListIterator<E> listIterator()
ListIterator<E> listIterator(int index)

Returns aListIterator<E> object. For the no-arg version the iterator will start at the
beginning ofthis list. The second version will start at positionindex in this list. The
restrictions onindex are the same as forget.

• List<E> subList(int fromIndex, int toIndex)

Returns a sublist ofthis list beginning and ending at the given indices. If the indices are
not in range anIndexOutOfBoundsException is thrown.

13.8List<E> implementations and examples 757

e0 e1 e2 en

6 6 6 6 6 6

0 1 2 3 n n+1

r r r

Figure 13.11: Indices for the list[e0,e1,e2, . . . ,en] lie between elements.

13.7.2 ListIterator<E> interface

As shown in Figure 13.10 theListIterator<E> interface extendsIterator<E> so that the list
can be traversed in either direction. TheIterator<E> part provides iteration in the forward direc-
tion usinghasNext() andnext() and the new methods provide iteration in the backward direction
usinghasPrevious() andprevious() .

During iteration theadd , remove , andset methods are available. They operate on the current
element of the list (last element returned bynext() or previous()). For add the element is
inserted immediately before the next element that would be returned bynext() , if any, and after
the next element that would be returned byprevious() .

When using a list iterator it is helpful to think of list indices as lying between the list elements
as shown in Figure 13.11. Thus, a call tonext() returns the element to the right of the index and
advances to the next higher index. Similarly, a call toprevious() returns the element to the left
of the index and advances to the next lower index.

13.8 List<E> implementations and examples

The JCF includes two general purpose implementations of theList<E> interface:ArrayList<E>
andLinkedList<E> .

13.8.1 ArrayList<E> implementation of List<E>

TheArrayList<E> class implements a dynamic array ADT and is the best implementation if you
need positional access to the list using a 0-based index. Accessing an element given its index
is anO(1) operation. Thus this is a random access structure like the built-in array class. The
ArrayList<E> class is summarized in Figure 13.12.

There are three constructors. The no-arg constructor provides a resizable list with initial space
for 10 elements and the second constructor provides a resizable list with the specified initial ca-
pacity.

The third constructor is a conversion constructor that creates anArrayList<E> from the given
collectionc in the order defined by the collection’s iterator.

The dynamic increase in the size of the list occurs automatically as needed. Two methods are

758 Introduction to Data Types and Structures

public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, Serializab le

{
// Constructors
public ArrayList() {... }
public ArrayList(int initialCapacity) {... }
public ArrayList(Collection<? extends E> c) {... }

// Implementation of List<E> interface methods go here

// Extra methods
public Object clone() {... }
public void ensureCapacity(int minCapacity) {... }
public void trimToSize() {... }

}

Figure 13.12: TheArrayList<E> class

supplied for resizing the list under program control. TheensureCapacity method can be used
to expand the size to a specified amount if necessary and thetrimToSize method can be used to
downsize the list so that its capacity is the same as its size.

Our DynamicArray<E> class (see page 740) is a very simple version ofArrayList<E> .

13.8.2 LinkedList<E> implementation of List<E>

The LinkedList<E> implementation uses a linked list data structure (discussed in a data struc-
tures course). For random access (using an index) this implementation is inefficient (O(n)). If
you mostly want to add and remove elements using the list iterator (access relative to the current
element) then this implementation is efficient (O(1)) whereas theArrayList<E> implementation
would be inefficient. TheLinkedList<E> class is summarized in Figure 13.13.

There are two constructors. The no-arg constructor createsan empty list. There is no need to
specify a capacity since one of the properties of a linked list is that it can grow and shrink one
element at a time in a very efficient manner.

The second constructor is a conversion constructor that creates a linked list from the given
collectionc in the order defined by the collection’s iterator.

13.8.3 Simple list examples

EXAMPLE 13.16 (Converting a collection to a list) The statement

List<String> list = new ArrayList<String>(c);

uses the conversion constructor to convert any collectionc of strings to anArrayList of strings
in the order given by the collection’s iterator.

EXAMPLE 13.17 (Appending to a list) The statement

13.8List<E> implementations and examples 759

public class LinkedList<E> extends AbstractSequentialLi st<E>
implements List<E>, Queue<E>, Cloneable, Serializable

{
// Constructors
public LinkedList() {... }
public LinkedList(Collection<? extends E> c) {... }

// Implementation of List<E> interface methods go here
// Queue<E> related methods go here

// Extra methods
public Object clone() {... }
public void addFirst(E element) {... }
public void addLast(E element) {... }
public E getFirst() {... }
public E getLast() {... }
public E removeFirst() {... }
public E removeLast() {... }

}

Figure 13.13: TheLinkedList<E> class

list1.addAll(list2);

appendslist2 to the end oflist1 .

The statements

List<String> list3 = new ArrayList<String>(list1);
list3.addAll(list2);

append two lists to create a new list without modifying either list1 or list2 .

EXAMPLE 13.18 (Swapping (exchanging) two list elements)Given a list of strings the fol-
lowing statements

String temp = list.get(i); // String temp = list[i];
list.set(i, list.get(j)); // list[i] = list[j];
list.set(j, temp); // list[j] = temp;

use the indexed list operationsget andset to swap the elements at positionsi and j . The com-
ments show the statements that would be used iflist were an array instead of a list.

The polymorphic static method

public static <E> void swap(List<E> list, int i, int j)
{

E temp = list.get(i);
list.set(i, list.get(j));
list.set(j, temp);

760 Introduction to Data Types and Structures

}

can be used to swap two elements of any list.

13.8.4 Book inventory example

Here we create a simple book inventory system. Each book is represented as an object from aBook
class and the books in the store are represented as a list of typeArrayList<Book> ,

Each book has data fields for a title, author, price, and the number of books in stock. We want
to process a list of books and remove books that are not in stock. The books removed can be stored
in another reorder list. TheBook class is given by

ClassBook

book-project/chapter13/lists

package chapter13.lists;
/**

* Book objects have a title, author, price, quantity in stock .
* Books can also be ordered by increasing order of title.
*/

public final class Book implements Comparable<Book>
{

private String title;
private String author;
private double price;
private int inStock;

/**
* Construct a book from given data.
* @param title the title of the book.
* @param author the author of the book.
* @param price the retail price of the book.
* @param inStock the number of books in stock.
*/

public Book(String title, String author, double price, int inStock)
{

this.title = title;
this.author = author;
this.price = price;
this.inStock = inStock;

}

/**
* Return the author of the book.
* @return the author of the book.
*/

public String getAuthor()
{

return author;
}

13.8List<E> implementations and examples 761

/**
* Return the number of books in stock.
* @return the number of books in stock.
*/

public int getInStock()
{

return inStock;
}

/**
* Return the retail price of the book.
* @return the retail price of the book.
*/

public double getPrice()
{

return price;
}

/**
* Return the title of the book.
* @return the title of the book.
*/

public String getTitle()
{

return title;
}

/**
* Return a string representation of a book.
* @return a string representation of a book.
*/

public String toString()
{

return "Book[" + title + "," +
author + "," + price + "," + inStock + "]";

}

/**
* Compare this book to another book using the title.
* @param b the book to compare with this book
* @return negative, zero, positive results
*/

public int compareTo(Book b)
{

return title.compareTo(b.title);
}

/**
* Return true if this book has the same title as obj.
* @param obj the book to compare with this book
* @return true if this book has same title as obj

762 Introduction to Data Types and Structures

*/
public boolean equals(Object obj)
{

if (obj == null || getClass() != obj.getClass())
return false;

return title.equals(((Book) obj).title);
}

public int hashCode()
{

return title.hashCode();
}

}

We have implemented theComparable<Book> interface that defines the natural order with the
compareTo method to be alphabetical order by title. Anequals method has also been provided
and the correspondinghashCode is obtained using the hash code of the title string. Choosinghash
codes is best left to a course on data structures. Here we use the hash code already defined in the
String class.

The following static method can be used to produce the two lists.

public static List<Book> reOrderBooks(List<Book> list)
{

List<Book> reOrderList = new LinkedList<Book>();
Iterator<Book> iter = list.iterator();
while (iter.hasNext())
{

Book b = iter.next();
if (b.getInStock() == 0)
{

reOrderList.add(b);
iter.remove();

}
}
return reOrderList;

}

Here list is the given list to split. AreOrderList is created and the iteratoriter is used to
traverse the given list, removing elements with an in stock value of 0. Each element removed is
added toreOrderList which is returned by the method. Note that we have usedIterator<Book>
instead ofListIterator<Book> since the extra methods inListIterator<Book> are not used
here.

We have usedLinkedList here instead ofArrayList since we access the list only relatively
using the iterator’sadd andremove methods which are efficient.

Here is a short program that can be used to test the method.

ClassBookList

book-project/chapter13/lists

13.8List<E> implementations and examples 763

package chapter13.lists;
import java.util.LinkedList;
import java.util.Iterator;
import java.util.List;

public class BookList
{

/**
* Modify original list so it contains only books
* in stock and create a new list that contains books
* which are out of stock.
*/

public void processBookList()
{

List<Book> list = new LinkedList<Book>();
list.add(new Book("Dead Souls", "Ian Rankin", 25.95 ,10)) ;
list.add(new Book("Stranger House", "Reginald Hill", 29. 50 ,0));
list.add(new Book("Not Safe After Dark", "Peter Robinson" , 32.99 ,10));
list.add(new Book("Original Sin", "P. D. James", 39.95 ,0));
list.add(new Book("Fleshmarket Close", "Ian Rankin", 25. 00 ,0));

List<Book> reOrderList = reOrderBooks(list);
System.out.println("Re-order list:");
displayList(reOrderList);
System.out.println("List in stock:");
displayList(list);

}

/**
* Create lists of books in stock and reorder list.
* @param list the book list
* @return the list of books to be ordered.
* The original list now contains only books that are instock.
*/

public static List<Book> reOrderBooks(List<Book> list)
{

List<Book> reOrderList = new LinkedList<Book>();
Iterator<Book> iter = list.iterator();
while (iter.hasNext())
{

Book b = iter.next();
if (b.getInStock() == 0)
{

reOrderList.add(b);
iter.remove();

}
}
return reOrderList;

}

public static <E> void displayList(List<E> list)
{

764 Introduction to Data Types and Structures

for (E element : list)
System.out.println(element);

}

public static void main(String[] args)
{

BookList books = new BookList();
books.processBookList();

}
}

A for-each loop is used to display the books, one per line and the output is

Re-order list:
Book[Stranger House,Reginald Hill,29.5,0]
Book[Original Sin,P. D. James,39.95,0]
Book[Fleshmarket Close,Ian Rankin,25.0,0]
List in stock:
Book[Dead Souls,Ian Rankin,25.95,10]
Book[Not Safe After Dark,Peter Robinson,32.99,10]

13.8.5 Insertion in a sorted list

An easy way to maintain a list in some sorted order is to start with an empty list and as elements
are added to the list put them in the correct position so that the list remains sorted. In this way we
avoid sorting altogether.

To develop the algorithm suppose that[e0,e1, . . . ,en] is a list that is sorted in some order. If we
want to add an elemente to the list in its proper sorted position then we need to iterate through the
list and comparee with eachek. The iteration continues until we arrive at an elementek such that
e≤ ek. Then the proper place fore is beforeek. There are two special cases: (1) list is empty so
create a one-element list, (2) we never find thate≤ ek so the elemente must be added at the end
of the list.

Let us assume that we have a sorted list of integers. Then we can write the following method
to do the insertion.

public static void
insertInSortedIntegerList(List<Integer> list, Integer newElement)
{

ListIterator<Integer> iter = list.listIterator();

if (!iter.hasNext()) // empty list so make a 1-element list
{

iter.add(newElement);
return;

}

while(iter.hasNext())
{

13.8List<E> implementations and examples 765

int ek = iter.next();
if (newElement <= ek)
{

iter.previous(); // backup
iter.add(newElement);
return;

}
}
iter.add(newElement); // add after end of list

}

It is important to note thatprevious() is needed since to find the correct position usingnext()
we need to add the element at the position to its left soprevious() backs up the iterator. If we
come out of the while loop then we need to add the new element tothe end of the list.

Statements such as the following can be used to test the method:

List<Integer> list = new ArrayList<Integer>();
list.add(4); list.add(6); list.add(8);
System.out.println(list);
insertInSortedIntegerList(list,9);
System.out.println(list);

The result is the list[4,6,8,9] .
We can convert this method to the following polymorphic generic one with typeE.

public static <E extends Comparable<E>>
void insertInSortedList(List<E> list, E newElement)
{

ListIterator<E> iter = list.listIterator();

if (!iter.hasNext()) // empty list so make a 1-element list
{

iter.add(newElement);
return;

}

while(iter.hasNext())
{

E element = iter.next();
if (newElement.compareTo(element) <= 0)
{

iter.previous(); // backup
iter.add(newElement);
return;

}
}
iter.add(newElement); // add after end of list

}

766 Introduction to Data Types and Structures

Here we specify that the generic type must extend or implement the Comparable<E> interface.
Then instead of using<= we use thecompareTo method of theComparable<E> interface.

This example can also be done using aLinkedList<E> , which may be more efficient than an
ArrayList<E> in this case, since any modifications to the input list are done using only relative
access and the list iterator operations areO(1).

Here is a short program that can be used to test the method for lists of typeString andBook
both of which implement theComparable interface.

ClassSortedListExample

book-project/chapter13/lists

package chapter13.lists;
import java.util.ArrayList;
import java.util.List;
import java.util.ListIterator;

public class SortedListExample
{

public void doTest()
{

// Try it on a list of strings

List<String> strList = new ArrayList<String>();
strList.add("Fred"); strList.add("Jane"); strList.add ("Mike");
System.out.println(strList);
insertInSortedList(strList, "Gord");
System.out.println(strList);
insertInSortedList(strList,"Carol");
System.out.println(strList);
insertInSortedList(strList,"Bob");
System.out.println(strList);
insertInSortedList(strList,"Susan");
System.out.println(strList);

// Try it on a list of books

List<Book> list = new ArrayList<Book>();
insertInSortedList(list, new Book("Dead Souls", "Ian Ran kin", 25.95 ,10));
insertInSortedList(list, new Book("Stranger House", "Re ginald Hill", 29.50 ,0));
insertInSortedList(list,

new Book("Not Safe After Dark", "Peter Robinson", 32.99 ,10));
insertInSortedList(list, new Book("Original Sin", "P. D. James", 39.95 ,0));
insertInSortedList(list, new Book("Fleshmarket Close", "Ian Rankin", 25.00 ,0));
displayList(list);

}

public static <E extends Comparable<E>>
void insertInSortedList(List<E> list, E newElement)
{

ListIterator<E> iter = list.listIterator();

13.8List<E> implementations and examples 767

if (!iter.hasNext()) // empty list so make a 1-element list
{

iter.add(newElement);
return;

}
// Note: when we know where to insert
// the new element we have gone one
// position too far so previous is needed.
while(iter.hasNext())
{

E element = iter.next();
if (newElement.compareTo(element) <= 0)
{

iter.previous(); // backup
iter.add(newElement);
return;

}
}
iter.add(newElement); // add after end of list

}

public static <E> void displayList(List<E> list)
{

for (E element : list)
System.out.println(element);

}

public static void main(String[] args)
{

SortedListExample example = new SortedListExample();
example.doTest();

}
}

The sorted output is

[Fred, Jane, Mike]
[Fred, Gord, Jane, Mike]
[Carol, Fred, Gord, Jane, Mike]
[Bob, Carol, Fred, Gord, Jane, Mike]
[Bob, Carol, Fred, Gord, Jane, Mike, Susan]
Book[Dead Souls,Ian Rankin,25.95,10]
Book[Fleshmarket Close,Ian Rankin,25.0,0]
Book[Not Safe After Dark,Peter Robinson,32.99,10]
Book[Original Sin,P. D. James,39.95,0]
Book[Stranger House,Reginald Hill,29.5,0]

768 Introduction to Data Types and Structures

13.9 Map data type

Maps are one of the most important data types. A map is a function f that associates elements of
one setK called the domain of the map to elements of another setV called the range of the map.
Each element of the domain is often called akey and the corresponding element of the range is
often called thevalue.

A map can be denoted byf : K→V or as a set ofkey-value pairs(k,v) denoted in the finite
case by the set

f = {(k1,v1),(k2,v2), . . . ,(kn,vn)}.

of n pairs. We can also denote the pair(k,v) by vk which looks like array notation except the
subscripts do not need to be integers.

The keys themselves form the setK = {k1,k2, . . . ,kn} since no two keys can be the same. Since
two or more keys can be associated with the same value, the values do not form a set, they form a
collection.

13.9.1 Name-age example

As a simple example consider a set of names as the domain and the set of ages as the range. Then
the following map associates names of people with their age.

age= {(Jane,12),(Fred,10),(Mary,15),(Bob,10)}.

Then, for example, using standard function notation, age(Fred) = 10 and age(Mary) = 15. A map
can be visualized as a two-column table as shown in Figure 13.14. Here the keys go in the first

Bob 10

Mary 15

Fred 10

Jane 12

Name Age

Figure 13.14: A two-column representation of the name-age map

column and the corresponding values go in the second column.

13.9.2 Basic map operations

The basic operations on a map are

add Add a new key-value pair to the map (a map should be resizable).

delete Remove a key-value pair given its key.

13.9 Map data type 769

replace Replace the value in a key-value pair with a new value given its key.

search Search for (“look up”) the value associated with a given key.

The most important operation on a map is to be able to efficiently “look up” the value associated
with a given key. A naive approach to this would be to use an array data structure to store the
key-value pairs and, given a key, use a linear search to find the ordered pair containing this key and
hence the value. This searching method would beO(n).

A much better approach is to use a data structure called a hashtable that uses a hash code to
make lookup much more efficient than linear search. In fact look up is normally anO(1) operation.

13.9.3 Hash tables and codes

We consider a very simple case of a hash table which is the implementation data structure for a
map. In our case the keys and values are both integers. Suppose we have an array with indices 0
to 10 as shown in Figure 13.15 that can hold the key-value pairs. Here we assume that each array

v132

0 1 2

v102

3

v15

4

v5

5

v257

6 7

v558

8 9

v32

10

Figure 13.15: A simple hash table of size 11 usingh(k) = k mod 11. Herevk is the value associated
with keyk.

location can hold one key-value pair and the notationvk indicates that the value associated with
keyk is vk and we assume that the values are non-negative integers. There is room for 11 pairs and
some of them are shown in the figure. Empty array locations areunused.

For each key we need a function to transform the key into an array index which can then be
used to obtain the value associated with this key.

In general the range of values (non-negative integers in this case) is much greater than the size
of the array so we cannot just store the pair with keyk in the location with indexk. To be specific
let us assume that each keyk satisfies 0≤ k≤ 1000. What we need is a functionh(k) called a hash
function that produces an integer hash code for each keyk. This code can then be converted to an
array indexi in the range 0≤ i ≤ 10 usingi = h(k) mod 11. We consider only the simplest case
which ish(k) = k so that the array index of keyk is i = k mod 11.

Suppose we start with an empty array and begin inserting pairs with keys 15, 558, 32, 132, 102,
and 5. Then the corresponding array indices are 15 mod 11= 4, 558 mod 11= 8, 32 mod 11= 10,
132 mod 11= 0, 102 mod 11= 3, and 5 mod 11= 5, as shown in Figure 13.15.

No problems are encountered since all the remainders are different. However when we try to
insert a pair with key 257 then 257 mod 11= 4 and location 4 is already occupied by the pairv15
having key 15. This is inevitable as we insert new pairs sincethere are many more keys than array
indices. This situation is called acollision and we need acollision resolution policy to decide
where to store the pair. The simplest policy is to find the nexthighest empty location and store the

770 Introduction to Data Types and Structures

pair there. In our example this means that pairv257, which would have gone in the location with
index 4, now goes in the location with index 6, as shown in Figure 13.15. In general we would
assume that the array indices wrap around with index 0 following index 10. If there is no free
location this means that the array is full and would need to beexpanded by doubling its size for
example.

13.10 TheMap<K,V> interface

The JCF has aMap<K,V> interface that defines the basic operations on maps. This interface is
parametrized with two generic types. The typeK is the key type and the typeV is the value type.
They can be any object type. The methods in theMap<K,V> interface are shown in Figure 13.16.
An interesting feature of this interface is that it containsan inner interface to represent the entries
(pairs) in the map. Detailed descriptions of these operations are given in the Java API documenta-
tion which is summarized here.

• int size();

Return the number of pairs (entries) currently stored inthis map.

• boolean isEmpty();

Return true ifthis map is empty (contains no entries).

• boolean containsKey(Object key);

Return true if an entry with the givenkey is in this map.

• boolean containsValue(Object value);

Return true if an entry with the givenvalue is in this map.

• V get(Object key);

Return the value associated with the givenkey. This is the “look up” operation. A return
value ofnull either indicates that there is no entry with this key or thereis an entry but its
value isnull .

• V put(K key, V value);

Add a new pair (entry) to the map with givenkey andvalue. If the entry was already in
this map then the old value is replaced byvalue and the old value is returned. Otherwise
a new entry is added tothis map andnull is returned. This is an optional operation.

• V remove(Object key);

If the entry with the givenkey is in this map then it is removed and its value is returned.
Otherwisenull is returned. This is an optional operation.

• void putAll(Map<? extends K, ? extends V> t);

All the entries in the mapt are put intothis map. The types of the mapt can beK andV
or any types that extend or implementK andV. This is an optional operation.

13.10 TheMap<K,V> interface 771

public interface Map<K,V>
{

// Query Operations
int size();
boolean isEmpty();
boolean containsKey(Object key);
boolean containsValue(Object value);
V get(Object key);

// Modification Operations
V put(K key, V value); // optional
V remove(Object key); // optional

// Bulk Operations
void putAll(Map<? extends K,? extends V> t); // optional
void clear(); // optional

interface Entry<K,V>
{

K getKey();
V getValue();
V setValue(V value); // optional
boolean equals(Object obj);
int hashCode();

}

// Views
Set<K> keySet();
Collection<V> values();
Set<Map.Entry<K, V>> entrySet();

// Comparison and hashing
boolean equals(Object obj);
int hashCode();

}

Figure 13.16:Map interface

772 Introduction to Data Types and Structures

• void clear();

Remove all the entries fromthis map. The result is the empty map. This is an optional
operation.

• interface Entry<K,V>

This is an inner interface that defines a map entry (pair). To refer to such an entry use the
typeMap.Entry<K,V> .

– K getKey();

Return the key ofthis entry.

– V getValue();

Return the value ofthis entry.

– V setValue(V value);

Set a new value forthis entry. This is an optional operation.

– boolean equals(Object obj);

Return true ifobj is equal tothis entry.

– int hashCode()

Return the hash code ofthis entry.

• Set<K> keySet();

Return the keys inthis map as a set.

• Collection<V> values();

Return the values inthis map as a collection.

• Set<Map.Entry<K,V>> entrySet();

Return the entries ofthis map as a set of elements of typeMap.Entry<K,V>.

• boolean equals(Object obj);

Return true ifobj is a map equal tothis map.

• int hashCode()

Return the hash code ofthis map.

13.11 Map implementations and examples

The JCF has several implementations of theMap<K,V> interface. We will consider three of them
that are similar to the corresponding ones for sets:HashMap<K,V> , LinkedHashMap<K,V> , and
TreeMap<K,V> .

13.11 Map implementations and examples 773

public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable

{
public HashMap() {... }
public HashMap(int initialCapacity) {... }
public HashMap(Map<? extends K,? extends V> m) {... }
public HashMap(int initialCapacity, float loadFactor) {... }

public Object clone() {... }

// Implementations of Map interface methods go here
}

Figure 13.17: TheHashMap<K,V> class

public class LinkedHashMap<E> extends HashMap<K,V>
implements Map<K,V>, Cloneable, Serializable

{
public LinkedHashMap() {... }
public LinkedHashMap(int initialCapacity) {... }
public LinkedHashMap(int initialCapacity, float loadFac tor) {... }
public LinkedHashMap(int initialCapacity, float loadFac tor, boolean accessOrder) {... }
public LinkedHashMap(Map<? extends K,? extends V> m) {... }

public Object clone() {... }

// Implementations of Map interface methods go here
// Other methods go here

}

Figure 13.18: TheLinkedHashMap<K,V> class

13.11.1 HashMap<K,V> implementation of Map<K,V>

TheHashMap<K,V> implementation is the fastest but it does not maintain any order to the entries
in the map. A class summary is shown in Figure 13.17.

There are four constructors. The first constructor with no arguments constructs an empty map
with a default initial capacity of 16 elements. The second constructor specifies a given initial
capacity. The third one is called a conversion constructor and can be used as a copy constructor.
We will not use the fourth constructor. It is used to optimizethe hash table implementation.

13.11.2 LinkedHashMap<K,V> implementation of Map<K,V>

The LinkedHashMap<K,V> implementation maintains the order in which keys are added to the
map. A class summary is shown in Figure 13.18.

774 Introduction to Data Types and Structures

public class TreeMap<K,V> extends AbstractMap<K,V>
implements SortedMap<K,V>, Cloneable, Serializable

{
public TreeMap() {... }
public TreeMap(Comparator<? super K> c) {... }
public TreeMap(Map<? extends K,? extends V> m) {... }
public TreeMap(SortedMap<K,? extends V> m) {... }

public Object clone() {... }

// implementations of SortedMap interface go here
// SortedMap extends the Map interface

}

Figure 13.19: TheTreeMap<K,V> class

13.11.3 TreeMap<K,V> implementation of Map<K,V>

The TreeMap<K,V> implementation provides a sorted order based on the naturalordering of the
keys as given by theComparable<K> interface implemented byK. A class summary is shown in
Figure 13.19. TheSortedMap<K,V> interface extends theMap<K,V> interface to provide extra
methods related to the sort order (See Java API documentation).

13.11.4 Simple map examples

Here we give some simple examples to illustrate map operations using the name-age example.

EXAMPLE 13.19 (Constructing a name-age map)The statements

Map<String,Integer> age = new HashMap<String,Integer>() ;
age.put("Jane", 12);
age.put("Fred", 10);
age.put("Mary", 15);
age.put("Bob", 10);
System.out.println(age);

create the name-age map shown in Figure 13.15 using autoboxing from int to Integer . The
no-arg constructor uses a default size of 16 entries for the map. The output is

{Bob=10, Jane=12, Fred=10, Mary=15}

and shows that the insertion order is not preserved by theHashMap implementation. If you change
the implementation toLinkedHashMap then the output is

{Jane=12, Fred=10, Mary=15, Bob=10}

which is in the order of insertion into the map. Finally, if you change the implementation to
TreeMap then the output is

13.11 Map implementations and examples 775

{Bob=10, Fred=10, Jane=12, Mary=15}

which is sorted in increasing order of the names (keys).

EXAMPLE 13.20 (Finding the age of a given person)The statements

String name = "Mary";
int a = age.get(name);
System.out.println("Age of " + name + " is " + a);

return the age of Mary.

EXAMPLE 13.21 (Using get if name is not in the map)The statements

String name = "Gord";
int a = age.get(name);

throw aNullPointerException . Since Gord is not in the mapget returnsnull which cannot be
unboxed to anint so the exception is thrown. This only happens with the primitive types. Without
the auto unboxing the statements

String name = "Gord";
Integer a = age.get(name);
System.out.println("Age of " + name + " is " + a);

return anull value fora and no exception is thrown.

EXAMPLE 13.22 (Checking if a map contains a key)The statements

String name = "Jill";
if (age.containsKey(name))

System.out.println(name + " was found");
else

System.out.println(name + " was not found");

show that Jill was not found in the map.

EXAMPLE 13.23 (Update a value given its key)The statements

String name = "Fred";
age.put(name, 15);
System.out.println("New age of " + name + " is " + age.get(nam e));

update the age of Fred from 10 to 15 and display it. The statements

String name = "Fred";
int currentAge = age.get(name);
age.put(name, currentAge + 1);
System.out.println("New age of " + name + " is " + age.get(nam e));

776 Introduction to Data Types and Structures

add 1 year to Fred’s age and display it.

EXAMPLE 13.24 (Deleting an entry given its key) The statements

String name = "Fred";
if (age.containsKey(name))

age.remove(name);
System.out.println(age);

delete Fred from the map and display the resulting map

{Bob=10, Jane=12, Mary=15}

which shows that Fred is no longer an entry in the map

EXAMPLE 13.25 (Iterating over the keys of a map) To get an iterator over the keys in a map
we first get the keys as a set and then ask this set for an iterator. The statements

Set<String> keys = age.keySet();
Iterator<String> iter = keys.iterator();
while (iter.hasNext())
{

String name = iter.next();
int a = age.get(name);
System.out.println(name + " -> " + a);

}

use the iterator to display the name-age pairs using an “arrow” notation, one per line.

EXAMPLE 13.26 (Iterating over the keys using a for-each loop)The statements

for (String name : age.keySet())
{

System.out.println(name + " -> " + age.get(name));
}

use the for-each loop to display the name-age pairs using an “arrow” notation, one per line.

EXAMPLE 13.27 (Use the for-each loop to compute average age)The statements

Set<String> keys = age.keySet();
double sum = 0.0;
for (String name : keys)
{

sum += age.get(name);
}
System.out.println("Average age is " + sum / keys.size());

compute the average age. Thesize method is used to find the number of keys in the map.

13.11 Map implementations and examples 777

EXAMPLE 13.28 (Use an iterator and theMap.Entry interface) The statements

Set<Map.Entry<String,Integer>> entries = age.entrySet();
Iterator<Map.Entry<String,Integer>> iter = entries.ite rator();
while (iter.hasNext())
{

Map.Entry<String,Integer> entry = iter.next();
System.out.println(entry.getKey() + " -> " + entry.getVal ue());

}

iterate over the map entries. First we get theentries set of typeMap.Entry<String,Integer>
using the inner interface of theMap<String,Integer> interface. Then we ask it for an iterator
over the entries. Each entry hasgetKey() andgetValue() methods. The loop displays the entries
using arrow notation.

The for-each loop

for (Map.Entry<String,Integer> entry : age.entrySet())
{

System.out.println(entry.getKey() + " -> " + entry.getVal ue());
}

can be used as long as the mutable iterator operations are notrequired.

EXAMPLE 13.29 (Adding 1 year to all the ages)The statements

Set<Map.Entry<String,Integer>> entries = age.entrySet();
Iterator<Map.Entry<String,Integer>> iter = entries.ite rator();
while (iter.hasNext())
{

Map.Entry<String,Integer> entry = iter.next();
entry.setValue(entry.getValue() + 1);

}
System.out.println(entries);

use theentrySet() iterator to add 1 to all the ages.

13.11.5 Hours worked example

As a useful example of a map suppose we have a file calledhours.txt whose lines contain a
person’s name and the number of hours they have worked. An example might be

Fred:10
Gord:20
Fred:30
Mary:15
Gord:13
Mary:4
Mary:6

778 Introduction to Data Types and Structures

There can be more than one entry per person and we want to display the total hours worked by
each person in the format

Fred -> 40.0
Mary -> 25.0
Gord -> 33.0

indicating that Fred has worked 40 hours (10 + 30), Gord has worked 33 hours (20 + 13), and Mary
has worked 25 hours (15 + 4 + 6).

We can produce this list by reading the file into a map with the names as keys and the hours
worked as the values. Each time we read a line we check if the name is already in the map. If it is
not we create a new entry, and if it is already in the map we update the number of hours by adding
the new value.

Before reading the file we create the following map:

Map<String,Double> map = new HashMap<String,Double>();

If you want the names to be ordered alphabetically then replaceHashMap by TreeMap .
Then ifnameandhours are the values read from the file the map is updated using the statements

if (map.containsKey(name)) // update hours worked
{

double currentHours = map.get(name);
map.put(name, currentHours + hours);

}
else // new entry
{

map.put(name, hours);
}

To read the lines of the file we can use thesplit method in theString class, so ifline is a line
read from the file then

String[] s = line.split(":");

will read the name and hour values as strings intos[0] ands[1] , using colon as the delimiter.
Here is the complete program.

ClassHoursWorked

book-project/chapter13/maps

package chapter13.maps;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

13.11 Map implementations and examples 779

/**
* A map example: file contains names and hours worked in the fo rmat
* name:hours
* A person may appear several times in the file and we want to
* determine the total hours each person has worked.
*
* We read this file a line at a time and separate the name and hou rs.
* The name is used as the key in a hash table and the hours is the
* value if the key is new else the hours are updated. The result
* is a map containing the total hours worked for each person.
*
* If a TreeMap is used instead of a HashMap the names will be
* ordered in increasing alphabetic order.
*/

public class HoursWorked
{

private static final File IN_FILE = new File("files/hours. txt");

public void processFile() throws IOException
{

Map<String,Double> map =
new HashMap<String,Double>();

BufferedReader in =
new BufferedReader(new FileReader(IN_FILE));

String line;

while ((line = in.readLine()) != null)
{

// Each line of the file contains a name and a number
// of hours worked separated by a colon which can be
// preceded by zero or more spaces.

String[] s = line.split(":");
String name = s[0].trim();
double hours = Double.parseDouble(s[1].trim());

// Echo for checking

System.out.println(name + ":" + hours);

// put entries in map and update hours

if (map.containsKey(name)) // update hours worked
{

double currentHours = map.get(name);
map.put(name, currentHours + hours);

}
else // new entry
{

map.put(name, hours);
}

780 Introduction to Data Types and Structures

}
in.close();

// Display the map, one entry per line

System.out.println("Map is");
for (String name : map.keySet())
{

double hours = map.get(name);
System.out.println(name + " -> " + hours);

}
}

public static void main(String[] args) throws IOException
{

HoursWorked tester = new HoursWorked();
tester.processFile();

}
}

13.11.6 Favorites map with maps as values

We now do an example of a map whose values are also maps. This example is extended in the end
of chapter exercises.

In our case we want a map structure that can record the favorite song, food, golfer, etc, asso-
ciated with each person. Thus, the key-value pairs of the primary map are names and references
to favorite maps. The key-value pairs of each favorite map are the category names, such as food,
song and golfer, and the values are the preferences.

Using set theory notation an example of such a map of maps is

favorites = {(Bob, f1),(Fred, f2),(Gord, f3)}
f1 = {(food,salad),(golfer,Vijay Singh),(song,White Wedding)}
f2 = {(food,steak),(golfer,Tiger Woods),(song,Satisfaction)}
f3 = {(food,spaghetti),(golfer,Phil Mickelson),(song,Money)}

This example is also shown using tables in Figure 13.20. It iseasy to construct these maps in Java.
The favorites map is given by

Map<String,Map<String,String>> favorites =
new HashMap<String, Map<String,String>>();

which is a map from strings to maps from strings to strings. Now the favorite maps are given by

Map<String,String> f1 = new HashMap<String,String>();
f1.put("golfer", "Vijay Singh");
f1.put("song", "White Wedding");
f1.put("food", "salad");

Map<String,String> f2 = new HashMap<String,String>();

13.11 Map implementations and examples 781

song Money

golfer Phil Mickelson

food spaghetti

song Satisfaction

golfer Tiger Woods

food steak

song White Wedding

golfer Vijay Singh

food salad

category preference

Gord HHHHHHHHHHj

Fred -

Bob ����������*

name favorite

favorites

6

Figure 13.20: A map of maps. The keys of the first map are names.The values are favorite maps
whose keys are the categories and values are the preferences.

f2.put("golfer", "Tiger Woods");
f2.put("song", "Satisfaction");
f2.put("food", "steak");

Map<String,String> f3 = new HashMap<String,String>();
f3.put("golfer", "Phil Mickelson");
f3.put("song", "Money");
f3.put("food", "spaghetti");

Finally we associate these maps as values of the favorites map:

favorites.put("Bob", f1);
favorites.put("Fred", f2);
favorites.put("Gord", f3);

It is easy to perform operations on this map. For example, to display Fred’s favorite map use

System.out.println(favorites.get("Fred"));

To display Bob’s favorite golfer use

System.out.println(favorites.get("Fred").get("golfe r"));

To change Fred’s favorite food to chicken use

favorites.get("Fred").put("food", "chicken");

782 Introduction to Data Types and Structures

EXAMPLE 13.30 (For-each loop for favorites map) The statements

for (String name : favorites.keySet())
{

System.out.println(name);
System.out.println(favorites.get(name));

}

produce the output

Bob
{golfer=Vijay Singh, food=salad, song=White Wedding}
Fred
{golfer=Tiger Woods, food=steak, song=Satisfaction}
Gord
{golfer=Phil Mickelson, food=spaghetti, song=Money}

which show the favorite maps one per line. To obtain an alphabetical order replace theHashMap
implementation byTreeMap .

EXAMPLE 13.31 (Nested for-each loops for favorites map)The statements

for (String name : favorites.keySet())
{

System.out.println("favorites for " + name + ":");
Map<String,String> favorite = favorites.get(name);
for (String category : favorite.keySet())
{

String preference = favorite.get(category);
System.out.println(" " + category + ": " + preference);

}
}

produce the display

favorites for Bob:
food: salad
golfer: Vijay Singh
song: White Wedding

favorites for Fred:
food: steak
golfer: Tiger Woods
song: Satisfaction

favorites for Gord:
food: spaghetti
golfer: Phil Mickelson
song: Money

using nested for-each loops to iterate over the maps. The outer loop iterates over each person and
the inner loop iterates over all categories in each favoritemap.

13.12 Recursion examples using maps 783

13.12 Recursion examples using maps

Consider a sequence[sm,sm+1,sm+2, . . . ,sn,sn+1, . . .] with starting indexm which is often taken to
be 0. Such sequences are often defined by recurrence relations of the formsn = f (sn−1), which
is a first order recurrence relation since the calculation ofsn depends on the previous term in the
sequence, or of the formsn = f (sn−1,sn−2), which is a second-order recurrence relation since the
calculation ofsn depends on the previous two terms of the sequence. As a simpleexample, the
recurrence relationsn = nsn−1 with s0 = 1 can be solved to getsn = n!.

Here we consider two recurrence relations, the Fibonacci sequence and the Q-sequence.

13.12.1 The Fibonacci sequence

An important second-order sequence is the Fibonacci sequence defined recursively by

Fn = Fn−1 +Fn−2, whereF0 = F1 = 1.

There is a closed form expression for the general termFn but it is not useful for the calculation of
terms in the sequence. An efficient non-recursive method is easily written to calculate the terms in
the sequence and the following recursive method can also be used

public long fib(int n)
{

if (n == 0 || n == 1)
return 1L;

else
return fib(n-1) + fib(n-2);

}

This method is very inefficient because each term is calculated many times. For example, in the
calculation off30 the termf10 is calculated recursively 10,946 times.

We can avoid this duplication by a technique called memoization. In our case this means that
we can use a map to remember the terms as they are calculated. When we calculate a term for the
first time we store it in a map of typeMap<Integer,Long> . Then whenever this term is needed
again we simply look up its value in the map. Here is a class that calculates Fibonacci numbers
using a map:

ClassFibonacci

book-project/chapter13/maps

package chapter13.maps;
import java.util.Map;
import java.util.HashMap;
import java.util.Scanner;

public class Fibonacci
{

Map<Integer,Long> m;

784 Introduction to Data Types and Structures

public void calculate()
{

// Create map and initialize it
// for fib(0)= 1 and fib(1)= 1

m = new HashMap<Integer,Long>();
m.put(0,1L);
m.put(1,1L);

Scanner input = new Scanner(System.in);
System.out.println("Enter n");
int n = input.nextInt();

long startTime = System.nanoTime();
System.out.println(fib(n));
long time = System.nanoTime() - startTime;

double seconds = (double) time * 1e-9;
System.out.println(seconds);

}

public long fib(int n)
{

if (! m.containsKey(n))
m.put(n, fib(n-1) + fib(n-2));

return m.get(n);
}

public static void main(String[] args)
{

new Fibonacci().calculate();
}

}

Note that before callingfib we construct the map and initialize it by putting the entriesfor F0 = 1
andF1 = 1 into it.

The fib method first checks to see if the termFn is in the map. If it isn’t the recursive formula
is used to calculate it and put it in the map, otherwise it is looked up in the map and returned.

We have included statements that determine the time in seconds taken to compute a Fibonacci
number. A similar class could be written for the recursive version without using a map. Of course
the results depend on the particular computer. In one test the calculation ofF46 took 53.8 seconds
without using a map and 3.43×10−4 seconds using a map.

13.12.2 The Q-sequence

As another more complicated example which doesn’t have a simple non-recursive algorithm con-
sider the sequence

Q(n) = Q(n−Q(n−1))+Q(n−Q(n−2)), whereQ(1) = 1,Q(2) = 1

13.12 Recursion examples using maps 785

where we use the more readable function notationQ(n) = Qn. The following recursive method can
be used to compute the terms in the sequence.

public int q(int n)
{

if (n <= 2)
return 1;

else
return q(n - q(n-1)) + q(n - q(n-2));

}

The following class uses a map to calculate the terms:

ClassQSequence

book-project/chapter13/maps

package chapter13.maps;
import java.util.Map;
import java.util.HashMap;
import java.util.Scanner;

public class QSequence
{

Map<Integer,Integer> m;

public void calculate()
{

// Create map and initialize it
// for q(1) = 1 and q(2) = 1

m = new HashMap<Integer,Integer>();
m.put(1,1);
m.put(2,1);

Scanner input = new Scanner(System.in);
System.out.println("Enter n");
int n = input.nextInt();
long startTime = System.nanoTime();
System.out.println(q(n));
long time = System.nanoTime() - startTime;
double seconds = (double) time * 1e-9;
System.out.println(seconds);

}

public int q(int n)
{

if (! m.containsKey(n))
m.put(n, q(n - q(n-1)) + q(n - q(n-2)));

return m.get(n);
}

786 Introduction to Data Types and Structures

public static void main(String[] args)
{

new QSequence().calculate();
}

}

In one test the calculation ofQ(45) took 75.8 seconds without using a map and 4.35×10−4 seconds
using a map.

13.13 Collections utility class

TheCollections class is like theMath class: it is a set of useful static methods such as sorting
and searching for operating on sets, lists, and maps in the JCF. There are 50 methods in this class
and we summarize only a few. For a complete description see the Java API documentation.

• static <T> int binarySearch(List<? extends
Comparable<? super T>> list, T key))

Searchlist of typeT for the givenkey. The list must be in the order specified by the
Comparable interface implemented by the list. Returns the zero-based index wherekey
was found or (-index - 1) whereindex is the location wherekey could be inserted.

• static <T> int binarySearch(List<? extends T> list, T key,
Comparator<? super T> c)

Like the above version ofbinarySearch except using the specified implementation of
Comparator to define the order. (list does not need to implementComparable in this
version).

• static <T extends Comparable<? super T>>
void sort(List<T> list)

Sort the givenlist into increasing order using the implementation of theComparable
interface provided bylist.

• static <T> void sort(List<T> list,
Comparator<? super T> c)

Like the above version ofsort except using the specified implementation ofComparator
to define the order. (list does not need to implementComparable in this version).

There is also anArrays class injava.util that provides a similar set of static methods that
operate on arrays instead of collections.

13.13.1 Book list sorting example

In this example we consider two ways to use thesort method in theCollections class to sort a
list of Book objects (see page 760).

13.13 Collections utility class 787

TheBook class implementsComparable<Book> which defines the natural order to be increas-
ing alphabetical order by book title. This means that we can sort a book list in this order simply by
using

Collections.sort(list);

wherelist is a list of books.
If we want to use an order other than the natural order it is necessary to write a class that imple-

ments theComparator<Book> interface. For example, if we want to sort in increasing alphabetic
order by author then following class can be used

ClassBookComparator

book-project/chapter13/lists

package chapter13.lists;
import java.util.Comparator;

public class BookComparator implements Comparator<Book>
{

/**
* Compare this book to another book using the author.
* @param b1 the first book
* @param b2 the second book
* @return negative, zero, positive results
*/

public int compare(Book b1, Book b2)
{

return b1.getAuthor().compareTo(b2.getAuthor());
}

}

Now we can use the statement

Collections.sort(list, new BookComparator());

to sort by author. Here is a class that illustrates these two sorting methods:

ClassSortBookList

book-project/chapter13/lists

package chapter13.lists;
import java.util.Collections;
import java.util.ArrayList;
import java.util.List;

public class SortBookList
{

public void processBookList()
{

788 Introduction to Data Types and Structures

// A simple list of books

List<Book> list = new ArrayList<Book>();
list.add(new Book("Dead Souls", "Ian Rankin", 25.95 ,10)) ;
list.add(new Book("Stranger House", "Reginald Hill", 29. 50 ,0));
list.add(new Book("Not Safe After Dark", "Peter Robinson" , 32.99 ,10));
list.add(new Book("Original Sin", "P. D. James", 39.95 ,0));
list.add(new Book("Fleshmarket Close", "Ian Rankin", 25. 00 ,0));

// Sort using the sort method in the Collections class
// The order uses titles (Book implements Comparable)

Collections.sort(list);
System.out.println("List sorted by title:");
displayList(list);

// Now use a Comparator the sorts using the author

Collections.sort(list, new BookComparator());
System.out.println("List sorted by author:");
displayList(list);

}

public static <E> void displayList(List<E> list)
{

for (E element : list)
System.out.println(element);

}

public static void main(String[] args)
{

SortBookList books = new SortBookList();
books.processBookList();

}
}

The output is

List sorted by title:
Book[Dead Souls,Ian Rankin,25.95,10]
Book[Fleshmarket Close,Ian Rankin,25.0,0]
Book[Not Safe After Dark,Peter Robinson,32.99,10]
Book[Original Sin,P. D. James,39.95,0]
Book[Stranger House,Reginald Hill,29.5,0]
List sorted by author:
Book[Dead Souls,Ian Rankin,25.95,10]
Book[Fleshmarket Close,Ian Rankin,25.0,0]
Book[Original Sin,P. D. James,39.95,0]
Book[Not Safe After Dark,Peter Robinson,32.99,10]
Book[Stranger House,Reginald Hill,29.5,0]

13.14 Programming exercises 789

13.14 Programming exercises

◮ Exercise 13.1 (A randomremove method)
Modify theBag<E> interface on page 729 by adding a randomremove method with prototype

E remove();

that removes a random element from this bag and returns it. Ifthe bag is empty thennull
is returned. Write the method implementation (it will be thesame for bothFixedBag<E> and
DynamicBag<E>). You can use theRandomclass injava.util that has anextInt method.

◮ Exercise 13.2 (An indexedadd method)
For theArray<E> interface add a method with prototype

void add(int k, E element);

that adds the givenelement at indexk . The method should throwIndexOutOfBoundsException
if k < 0 or k > size() .

The element originally at positionk and all following elements need to be moved up one place
to create a place for the new element. The special case whenk has the valuesize() corresponds
to adding the element at the end of the array.

Write the implementation of this method for theDynamicArray<E> implementation of the
Array<E> interface.

◮ Exercise 13.3 (An indexedremove method)
For theArray<E> interface add a method with prototype

E remove(int k);

that removes the element at indexk by shifting all following elements down one place. The element
removed is returned.

Write the implementation of this method for theDynamicArray<E> implementation of the
Array<E> interface.

◮ Exercise 13.4 (AnindexOf method)
Modify theArray<E> interface on page 738 to include anindexOf method with prototype

int indexOf(E element);

that returns the index of the first occurrence of the given elementE or −1 if the element is not
found. Write the method implementation forDynamicArray<E> .

◮ Exercise 13.5 (Generating random sets of numbers)
Using the idea in Example 13.12, write a method with prototype

Set<Integer> randomSet(int n, int a, int b, Random random);

that returns a set ofn integers randomly chosen in the rangea to b inclusive using theRandomclass
in java.util .

790 Introduction to Data Types and Structures

◮ Exercise 13.6 (Generating Lotto 649 numbers using sets)
Using Exercise 13.5 write a class calledLotto649 that generatesn sets of 6 numbers in the range
1 to 49 and displays them.

◮ Exercise 13.7 (Generating Lotto 649 numbers without using sets)
Without using the JCF write a class calledLotto649NoSets that generates n sets of 6 numbers in
the range 1 to 49 and displays them.

◮ Exercise 13.8 (Password generator using sets)
We want to generate a set of unique passwords. Each password is made from the lower and
upper case letters and the digits and has a specified length. Write a class to do this. The input
is the number of passwords in the set and the number of characters in each password (same for all
passwords in the set). Some sample output is

d6rIH hX9Av Ki4SK wDAWx olWhW TVU7Y hGDSw VZecI ga7Sy 0DEij
7aDws T0urW MMjk9 JDAHZ vRb1x lGz3q ibiuE H7nbF CB6zY EGzuX
Dhiou mLtkI Eud22 wNbVo iIhLZ Zc73V taPFL wPJGZ nOy9x DPx9F
leJv3 KhmqQ y23g0 ey3Kr VQvq1

corresponding to a set size of 35 with 5 characters in each password. Display 10 passwords per
line except possibly for the last line.

◮ Exercise 13.9 (Printing a collection one element per line)
The standardtoString method creates a string which, when displayed, is all on one line. Write a
static polymorphic method with prototype

public static <E> void printCollection(Collection<E> c)

that prints the elements one per line.

◮ Exercise 13.10 (Removing duplicate words)
Write a class similar toRemoveDuplicateWords on Page 753 and calledUniqueWords that creates
two sets. The first is a set of unique words as defined in theRemoveDuplicateWords class, and
the second is a set of duplicate words (words that appeared more than once in the input file). From
these sets create a set of words that did not have any duplicates in the input. For example for the
input

a b c d a b e

the output should be

3 unique words found:
[c,d,e]
2 duplicate words found:
[a,b]

◮ Exercise 13.11 (Adapter class version of the Bag ADT)
Write an adapter class implementationArrayBag<E> of the Bag<E> interface on page 729 that
adapts anArrayList<E> object. The adapter class has the following structure

13.14 Programming exercises 791

import java.util.ArrayList;

/**
* An adapter class implementation of Bag<E>
*/

public class Bag<E>
{

// This is an adapter class version of the
// bag ADT that uses an ArrayList

private ArrayList<E> bag;

public Bag() {...}
public Bag(int initialCapacity) {...}

/**
* Copy constructor.
* @param b the bag to copy
*/

public Bag(Bag<E> b) {...}

public int size() {...}
public boolean isEmpty() {...}

public boolean add(E element) {...}
public boolean remove(E element) {...}
public boolean contains(E element) {...}

public String toString()
{

return "Bag" + bag.toString();
}

}

Here all methods are implemented using thebag object instance data field of typeArrayList<E> .

◮ Exercise 13.12 (Memory tester game)
Write a class calledMemoryTester that uses theDynamicBag<Integer> class and the algorithm
shown in Figure 13.21.

Here is some typical output assuming that there are 5 numbersto guess and the numbers are in
the range 1 to 10

Bag[9,9,8,5,4]
Enter guesses for the 5 numbers in range 1 to 10
9 9 7 5 3
You have 3 guesses correct
Enter guesses for the 5 numbers in range 1 to 10

792 Introduction to Data Types and Structures

ALGORITHM MemoryGame()
Make a bag that can hold 5 integers.
Generate 5 random integers in the range 1 to 10

and add them to the bag.
LOOP

Make a copy of the original bag
Ask user for 5 guesses of numbers in the bag

and remove the guesses from the bag copy if possible.
IF bag copy is now emptyTHEN

EXIT LOOP
END IF
Determine how many guesses are correct.
Tell user how many guesses are correct.

END LOOP
Congratulate user on winning the game.

Figure 13.21: Memory game algorithm

9 9 8 5 5
You have 4 guesses correct
Enter guesses for the 5 numbers in range 1 to 10
8 8 7 4 3
You have 2 guesses correct
Enter guesses for the 5 numbers in range 1 to 10
9 9 8 5 4
Congratulations all guesses are correct

Here the first line actually shows the answer so that you can check your class. When it is working
you can remove this display.

◮ Exercise 13.13 (Cities and Countries map)
We start with the following text filecities.txt

Toronto:Canada
Chicago:USA
Frankfort:Germany
Sudbury:Canada
Venice:Italy
Acapulco:Mexico
Berlin:Germany
Barcelona:Spain
Los Angeles:USA
Vancouver:Canada
Rome:Italy

13.14 Programming exercises 793

Miami:USA
London:UK
Mexico City:Mexico
Madrid:Spain
Florence:Italy

that is a list of cities and their countries. In general each country can appear several times.
We want to read this file a line at a time and produce a filecountries.txt having the form

Canada -> [Sudbury, Toronto, Vancouver]
Germany -> [Berlin, Frankfort]
Italy -> [Florence, Rome, Venice]
Mexico -> [Acapulco, Mexico City]
Spain -> [Barcelona, Madrid]
UK -> [London]
USA -> [Chicago, Los Angeles, Miami]

The output has the form of a map fromString to List<String> :

Map<String,List<String>> map = new TreeMap<String,List< String>>();

which will arrange the countries in sorted order.
Write a class calledCities to solve this problem. You can use anArrayList<String> for

each list. See Section 13.11.5 for a simpler example, To sortthe lists for each country, before using
PrintWriter to write the results to a file, use the staticsort method in theCollections class.

◮ Exercise 13.14 (Another version of the cities and countriesmap)
Write a version of theCities class from the previous exercise calledCities2 that produces the
same output but expects its input in the compact form

Toronto:Canada, Chicago:USA, Frankfort:Germany, Sudbur y:Canada
Venice:Italy, Acapulco:Mexico, Berlin:Germany
Barcelona:Spain, Los Angeles:USA, Vancouver:Canada
Rome:Italy, Miami:USA, London:UK
Mexico City:Mexico, Madrid:Spain, Florence:Italy

that permits multiple entries per line in the input file separated by commas (use a nested loop with
the outer loop usingsplit(",") in the outer loop andsplit(":") in the inner loop.

◮ Exercise 13.15 (Favorites map using data file)
We want to read a text filefavorites.txt such as

Fred:golfer:Tiger Woods
Bob:food:salad
Fred:food:steak
Bob:song:White Wedding
Gord:golfer:Phil Mickelson
Fred:song:Satisfaction
Bob:golfer:Vijay Singh
Gord:song:Money
Gord:food:spaghetti

794 Introduction to Data Types and Structures

and produce the display shown in Example 13.31 which also corresponds to the favorites map
given in Figure 13.20.

Write a class calledFavorites that does the processing using the map structure of Sec-
tion 13.11.6. Also see Example 13.30 and Example 13.31.

◮ Exercise 13.16 (ArrayList version of an address book)
The purpose of this exercise is to write a GUI version of an address book program that uses an
ArrayList to hold the address book entries. Each entry is an object froman inner class called
AddressBookEntry . An entry is really two strings, one called thekey for the name of the person
and another called thevalue representing the address information.

Now we need to write a class calledAddressBook that manages the address book. This class
will be used by the GUI classAddressBookGUI . TheAddressBook class has the following struc-
ture which you must complete as indicated by theTODOlines.

public class AddressBook
{

private List<AddressBookEntry> list; // the list of addres s book entries
private String fileName; // name of file containing the list
private String fileStatus; // Status or error message or emp ty

/**
* Construct an empty address book with a given initial
* size. No attempt is made to read an address book from
* a binary object file so this constructor is mainly
* used for debugging.
* @param initialSize the initial address book size
*/

public AddressBook(int initialSize)
{

list = new ArrayList<AddressBookEntry>(initialSize);
fileName = "";
fileStatus = "";

}

/**
* Make an address book from the data in a binary object file,
* if the file exists, else construct a new address book. Error s
* are recorded as strings that can be retrieved using the
* fileStatus() method.
*/

public AddressBook(String inFileName)
{

fileName = inFileName;
read();

}

/**

13.14 Programming exercises 795

* Read the address book from a binary object file. If
* a binary object file does not exist then create a new
* address book.
* Errors are recorded as strings that can be retrieved using t he
* fileError() method.
*/

public void read()
{

// If no error then the string is empty
fileStatus = "";

ObjectInputStream in = null;
try
{

in = new ObjectInputStream(new FileInputStream(fileName));
list = (List<AddressBookEntry>) in.readObject();
fileStatus = "Address book file has been loaded";

}
catch (FileNotFoundException e)
{

// make a new address book if input file not found.
list = new ArrayList<AddressBookEntry>();
fileStatus = "New address book list has been created";

}
catch (ClassNotFoundException e)
{

fileStatus = "Invalid address book file";
}
catch (IOException e)
{

fileStatus = "Unknown error reading address book file";
}
finally // make sure the file was closed
{

try
{

if (in != null) in.close();
}
catch (IOException e)
{

fileStatus = "Unknown error closing address book file";
}

}
}

/**

796 Introduction to Data Types and Structures

* Write the address book as a binary object file.
* Errors are recorded as strings that can be retrieved using t he
* fileError() method.
*/

public void write()
{

fileStatus = "Address book has been saved in file";
ObjectOutputStream out = null;
try
{

out = new ObjectOutputStream(new FileOutputStream(fileN ame));
out.writeObject(list);

}
catch (FileNotFoundException e)
{

fileStatus = "Address book file not found";
}
catch (IOException e)
{

fileStatus = "Unknown error writing address book file";
}
finally
{

try
{

if (out != null) out.close();
}
catch (IOException e)
{

fileStatus = "Unknown error closing output file";
}

}
}

/**
* Return file error or status string after a file operation.
* @return the status string.
*/

public String fileStatus()
{

return fileStatus;
}

/**
* Return number of entries in address book.
* @return number of entries in address book

13.14 Programming exercises 797

*/
public int size()
{

return list.size();
}

/**
* Return the value associated with a given key.
* @param key the key to find
* @return value of key found else null
*/

public String get(String key)
{

// TODO
}

/**
* Add a new entry to the address book.
* If the entry already exists then it is an update operation
* so the value of the entry for this key is updated.
* @param key the key of entry to add or update
* @param value new value for the entry
*/

public void add(String key, String value)
{

// TODO
}

/**
* Delete an entry from address book given its key.
* @param key the key of the entry
* @return true if entry was deleted
* else false if entry did not exist.
*/

public boolean delete(String key)
{

// TODO
}

/**
* Return a string representation of this list.
* @return a string representation of this list.
*/

public String toString()
{

// TODO

798 Introduction to Data Types and Structures

}

// -------- inner class for address book entries ---------- --

/**
* An object of this class is an entry in an address book databas e.
* Each entry is a key-value pair. The keys and values are strin gs.
*/

private static class AddressBookEntry implements java.io .Serializable
{

private static final long serialVersionUID = 1L;
private String key;
private String value;

/**
* Construct an entry given a key and a value.
* @param key the key for the entry.
* @param value the value associated with the key.
*/

public AddressBookEntry(String key, String value)
{

this.key = key;
this.value = value;

}

/**
* Return the key for this entry.
* @return Return the key for this entry.
*/

public String getKey()
{

return key;
}

/**
* Return the value associated with this key
* @return Return the value associated with this key.
*/

public String getValue()
{

return value;
}

/**
* Test this object for equality with obj
* @param obj the object to test with this object

13.14 Programming exercises 799

* @return true if the two objects have the same keys else false
*/

public boolean equals(Object obj)
{

if (obj == null) return false;
if (! getClass().equals(obj.getClass())) return false;
AddressBookEntry entry = (AddressBookEntry) obj;
return key.equals(entry.key);

}

/**
* Define a string representation of this object.
* @return Return the string representation of this object.
*/

public String toString()
{

return "AddressBookEntry[" + key + ", " + value + "]";
}

}
}

Now write theAddressBookGUI class that uses theAddressBook class. This class can have a
JTextField for the key, and aJTextArea for the value. AnotherJTextArea can be used to
display output and status information andJButton objects can be used for ”Save”, ”Search”,
”Delete”, ”Add”, and ”Display All” operations.

◮ Exercise 13.17 (Map version of an address book)
Repeat the previous exercise using a map of the typeMap<String,String> instead of a list to
hold the address book entries. Now there is no need for the inner AddressBookEntry class. The
GUI class will be the same as in the previous exercise, only the AddressBook class will change.

◮ Exercise 13.18 (Map version of a telephone directory)
Write a GUI version of telephone directory that uses a sortedmap.

BlueJ andBeanShell Edition Copyright 2002, 2005, 2007, Barry G. Adams

	1 Introduction to Computation
	1.1 Introduction
	1.2 Algorithms
	1.3 Processors
	1.3.1 Functional units of a CPU

	1.4 Memory and I/O devices
	1.5 Programs
	1.6 Computer languages
	1.6.1 Machine and assembly languages
	1.6.2 High-level languages

	1.7 Translation and interpretation of programs
	1.8 Java virtual machine
	1.9 Java source code to bytecode translation example
	1.10 Review exercises

	2 Fundamental Data Types
	2.1 Fundamental data types and variables
	2.1.1 Integer and floating point data types
	From mathematical to computer data types
	The char data type
	The boolean data type

	2.1.2 Integer and floating point literals
	2.1.3 Declaring and initializing variables in Java
	Rules for naming variables
	Constants

	2.2 Arithmetic operations and expressions
	2.2.1 Basic arithmetic operations
	2.2.2 Arithmetic expressions and precedence rules

	2.3 Assignment statements
	2.3.1 Try it with BeanShell

	2.4 Conversion between numeric types (type casting)
	2.4.1 Truncation of floating point numbers
	2.4.2 Loss of precision in floating point conversions

	2.5 Arithmetic functions from the Math class
	2.5.1 Examples of athematical functions
	2.5.2 Rounding floating point numbers
	2.5.3 Mathematical function prototypes

	2.6 Terminology introduced in this chapter
	2.7 Review exercises
	2.8 BeanShell exercises

	3 Writing Simple Classes
	3.1 Introduction
	3.2 CircleCalculator class using BlueJ
	3.2.1 Experimenting with the class
	3.2.2 CircleCalculator source code
	3.2.3 Explanation of the source code
	Class declaration
	Instance data fields
	Constructor declaration
	Method declarations

	3.3 TriangleCalculator class using BlueJ
	3.3.1 Experimenting with the class
	3.3.2 TriangleCalculator source code
	3.3.3 Explanation of the source code
	Class declaration
	Instance data fields
	Constructor declaration
	Method declarations

	3.3.4 Testing TriangleCalculator

	3.4 QuadraticRootFinder class using BlueJ
	3.4.1 Experimenting with the class
	3.4.2 QuadraticRootFinder source code
	3.4.3 Explanation of the source code
	Class declaration
	Instance data fields
	Constructor declaration
	Method declarations

	3.4.4 Testing QuadraticRootFinder

	3.5 Using BeanShell with objects
	3.5.1 Constructor call expressions
	3.5.2 Method call expressions
	3.5.3 BeanShell examples

	3.6 Writing and viewing Javadoc class documentation
	3.6.1 Javadoc rules
	3.6.2 Javadoc version of CircleCalculator
	Class CircleCalculator

	3.6.3 Javadoc version of TriangleCalculator
	Class TriangleCalculator

	3.6.4 Javadoc version of QuadraticRootFinder
	Class QuadraticRootFinder

	3.6.5 Viewing the documentation
	3.6.6 Implementation and documentation views
	3.6.7 Project documentation

	3.7 Syntax and logical errors
	3.7.1 Some common syntax errors
	Forgetting a semi-colon
	Undeclared variables
	Declaring a variable more than once
	Misspelling the constructor name
	Forgetting new in constructor call expressions

	3.7.2 Some common logical errors
	Using an incorrect formula
	Redeclaring an instance variable
	Using a return type on a constructor

	3.7.3 Invoking a method on a non-existent object

	3.8 Summary of terminology
	3.9 Review exercises
	3.10 Programming exercises

	4 Classes, Objects, and Methods
	4.1 Introduction
	4.2 String class
	4.2.1 Constructing strings
	4.2.2 String expressions and concatenation
	String expressions containing numbers

	4.2.3 String methods
	The length of a string
	Converting a number to a string
	Extracting a single character from a string
	Constructing a substring
	Trimming a string
	Upper case and lower case conversions
	Searching for substrings

	4.2.4 Displaying numbers and strings
	Using System.out in BeanShell
	Special characters in strings
	Using System.out in BlueJ
	The toString method
	Defining our own toString method

	4.2.5 Formatting numbers and strings (Java 5)

	4.3 Example classes that use the String class
	4.3.1 BankAccount class (first version)
	Designing the class
	Implementing the class
	Class BankAccount
	Testing the class

	4.3.2 InitialsMaker class
	Designing the class
	Implementing the class
	Class InitialsMaker
	Testing the class

	4.3.3 PasswordGenerator class
	Designing the class
	Implementing the class
	Class PasswordGenerator
	Testing the class
	The ``this'' object

	4.4 Association and aggregation
	4.4.1 Association
	4.4.2 Aggregation
	4.4.3 TriangleCalculatorTester class
	Class TriangleCalculatorTester

	4.4.4 Point class
	Designing the class
	Implementing the class
	Class Point
	Testing the class

	4.4.5 Circle class
	Designing the class
	Implementing the class
	Class Circle
	Testing the class with BeanShell
	Testing the class with BlueJ
	Class CircleTester

	4.5 Other library classes
	4.5.1 Dates and times
	Date class
	SimpleDateFormat class
	Calendar class
	Person class that uses Calendar
	Class Person
	Specialized Calendar class
	Class CalendarMonth
	Explanation of the class
	Testing the class
	Class CalendarMonthTester

	4.5.2 Currency formatting
	4.5.3 Formatting fixed and floating point numbers (Java 1.4)

	4.6 Review of OOP concepts
	4.6.1 Constructing objects
	Using a constructor
	Using a static factory method
	Using this as a constructor call expression
	Default constructor

	4.6.2 Object references
	Null references
	Comparison of primitive and reference types
	Why do we need both primitive and reference types?
	Assignment statements for reference types

	4.6.3 Using references as arguments and method return values
	4.6.4 Data encapsulation and integrity
	Side-effects
	Class MPoint
	Class MCircle
	Copy constructor
	Class MCircle
	BankAccount example
	Class TransferAgent

	4.6.5 Instance variables and methods
	Instance variables
	Instance methods
	Using an instance method
	Method composition

	4.6.6 Static variables, constants, and methods
	Static variables
	Static constants
	Static methods
	Using static methods
	Counting the number of objects created from a class

	4.6.7 Kinds of variables and arguments
	4.6.8 Call by value argument passing mechanism
	Call by value for an argument of primitive type
	Class ArgumentTester1
	Call by value for an argument of reference type (object type)
	Class ArgumentTester2

	4.6.9 main method
	Adding a main method to a class
	Class CircleTester
	Writing a runner class
	Class BankAccountRunner

	4.7 Running a class with a main method
	4.8 Review exercises
	4.9 BeanShell exercises
	4.10 Programming exercises

	5 Using Graphics Classes and Objects
	5.1 Introduction
	5.2 Using the GraphicsFrame class
	5.2.1 EmptyDrawing template for simple graphics programs
	Class EmptyDrawing

	5.3 The graphics context
	5.3.1 Graphics and Graphics2D objects
	5.3.2 paintComponent method

	5.4 User space and device space
	5.5 Graphics classes and objects
	5.5.1 Point2D and Line2D classes
	Defining points
	Defining lines using points
	Class DrawLine
	Drawing rectangles using lines
	Class DrawBiggestRectangle
	Defining lines using coordinates
	Resizing the drawing window
	Class DrawBiggestRectangle2

	5.5.2 Geometrical Shape Hierarchy (java.awt.geom package)
	Drawing points

	5.5.3 RectangularShape classes
	Rectangle2D class
	Class DrawBiggestRectangle3
	Ellipse2D class
	Class DrawEllipse
	RoundRectangle2D class
	Class DrawRoundRectangle
	Arc2D class
	Class DrawArc

	5.6 The drawing process
	5.6.1 Specifying attributes
	Improving the rendering quality (smoothness)
	Specifying colors
	Specifying line thickness
	Class DrawArc2
	Filling and stroking

	5.7 Put on a happy face
	5.7.1 Designing the face with boxes
	5.7.2 No-frills happy face
	Class FaceMaker1

	5.7.3 Colorful happy face
	Class FaceMaker2

	5.7.4 Facial transformations
	Affine transformations
	Resizing the face to fit the window
	Class FaceMaker3
	Making a half-size face
	Rotated happy face

	5.7.5 Four happy faces for the price of one
	Top-level description
	Drawing one face
	Defining the face geometry
	Transforming a face
	Rendering a face
	Class FaceMaker6

	5.7.6 Running the six face maker programs together
	Class AllTogether

	5.8 Making your own coordinate transformations
	5.8.1 Specific transformations
	Class BarGraph1

	5.8.2 World to default user transformation
	5.8.3 Coordinate system class
	Class CoordinateSystem

	5.8.4 Drawing a bar graph
	Class BarGraph2

	5.8.5 Drawing a regular pentagon
	Class DrawPentagon1

	5.8.6 General transformation using affine transformations
	Bar graph using an affine transformation
	Class BarGraph3
	Pentagon using an affine transformation
	Class DrawPentagon2

	5.8.7 Transforming individual shapes
	Class DrawPentagon3

	5.9 Review exercises
	5.10 Programming exercises

	6 Making Decisions
	6.1 Introduction
	6.2 Simple boolean expressions
	6.3 If-statements
	6.4 Real roots of a quadratic equation
	6.4.1 QuadraticRootFinder class
	Class QuadraticRootFinder

	6.5 Block declaration of variables
	6.6 If-statement with no else
	6.7 Comparison of floating point numbers
	6.7.1 Floating point tester class
	Class FloatingPointTester1

	6.8 Conditional operator
	6.9 Nested and multiple (N-way) if-statements
	6.10 Common errors with if-statements
	6.11 Compound boolean expressions
	6.11.1 Writing expressions using AND, OR, and NOT
	Operator precedence rules
	DeMorgan's laws
	Testing numerical ranges

	6.11.2 Leap year problem
	6.11.3 Short circuit evaluation

	6.12 String comparison and equality
	6.12.1 Equals method for string omparison
	6.12.2 Lexicographical ordering of strings
	Class CharacterDecoder
	Using character codes to order strings

	6.12.3 compareTo method for string comparison
	Class StringComparer

	6.12.4 Case insensitive string comparison

	6.13 Boolean valued methods
	6.14 Error checking techniques
	6.14.1 Reporting errors
	6.14.2 Using boolean return values and exit to report errors

	6.15 Error reporting using exceptions
	6.15.1 Exception classes and objects
	6.15.2 Throwing exceptions in the BankAccount class
	Class BankAccount
	Class ExceptionTester

	6.15.3 Catching exceptions
	Class ExceptionCatcher

	6.16 Paper, scissors, rock game (PSR)
	6.16.1 Rules of the game
	6.16.2 Object-oriented PSR game
	Designing the PSRPlayer class
	Designing the PSRGame class
	PSRPlayer implementation
	Class PSRPlayer
	PSRGame implementation
	Class PSRGame
	Testing the class with BlueJ
	Testing the class with BeanShell
	Running the game using a main method

	6.17 Console Input Using a Scanner object
	6.17.1 Some useful Scanner methods
	6.17.2 One input per line input model
	6.17.3 Console interface class for the PSR game
	Class PSRGameRunner

	6.18 Complex roots of a quadratic equation
	6.18.1 Complex class
	Class Complex
	Class ComplexQuadraticRootFinder
	Testing the class with BlueJ
	Testing the class with BeanShell
	Console interface
	Class ComplexRunner

	6.19 Review exercises
	6.20 BeanShell exercises
	6.21 Programming exercises

	7 Repetition Structures
	7.1 Introduction
	7.2 The while-statement (while-loop)
	7.2.1 Converting a digit string to an integer
	Class StringToIntConverter
	Class StringToIntRunner

	7.2.2 Square root algorithm using a while-loop
	Class SquareRootCalculator
	Class SquareRootRunner

	7.2.3 Double your money problem
	Class DoubleYourMoney
	Class DoubleYourMoneyRunner

	7.2.4 Factorization of an integer
	Class Factorizer
	Class FactorizerRunner

	7.3 Sentinel-controlled while-loops
	7.3.1 AverageMarkCalculator class
	Class AverageMarkCalculator

	7.4 Query-controlled while-loops
	7.4.1 BankAccount example
	Class MaxBalanceCalculator

	7.5 Do-while statement (do-while loop)
	7.6 General loop structures
	7.7 For-statement (for-loop)
	7.7.1 Pseudo-code for-loops for counting in steps
	7.7.2 For-loops for counting in steps

	7.8 Computing factorials
	7.8.1 Computing the factorial of an integer
	Class FactorialCalculator
	Class FactorialRunner

	7.8.2 Computing factorials using the BigInteger class
	Class BigFactorialCalculator
	Class BigFactorialRunner

	7.9 Expressing the for-loop as a while-loop
	7.10 Loan repayment table
	7.10.1 Right justifying numbers in a field of given width
	7.10.2 StringBuilder class
	7.10.3 Loan repayment table class
	Class LoanRepaymentTable

	7.10.4 Console user interface
	Class LoanRepaymentTableRunner

	7.11 Nested loops
	7.11.1 Investment table
	Class InvestmentTable

	7.11.2 Console user interface
	Class InvestmentTableRunner

	7.12 Plotting the graph of a function
	7.12.1 SineGraph class
	Class SineGraph

	7.13 Recursion and loops
	7.13.1 What is recursion?
	7.13.2 Examples of recursive definitions
	7.13.3 Recursive factorial method
	Class FactorialCalculator
	Class FactorialRunner

	7.13.4 Recursive gcd method
	Class GcdCalculator
	Class GcdRunner

	7.13.5 Non-recursive and recursive sum methods

	7.14 Common loop errors
	7.14.1 Misplaced semi-colon
	7.14.2 Off by one errors

	7.15 BeanShell exercises
	7.16 Programming exercises

	8 Array Data Types
	8.1 Introduction
	8.2 Mathematical sequences and subscript notation
	8.3 Declaring and constructing arrays
	8.3.1 Arrays of primitive type
	Declaring array types
	Constructing arrays
	Assigning values to array elements
	Using array initializers

	8.3.2 Calculating the number of days in a month
	Class DaysInMonthCalculator
	Class DaysInMonthRunner
	Declaring the size of an array at run-time
	The length of an array

	8.3.3 Sequential array processing
	8.3.4 Arrays of object type
	Point2D arrays

	8.3.5 String arrays
	Command-line arguments
	Class CommandLineArguments
	Class LoanRepaymentTableRunner
	Class InvestmentTableRunner

	8.3.6 Using arrays as method arguments and return values
	Testing an array processing method
	Class Average
	Class AverageRunner

	8.4 Some simple array algorithms
	8.4.1 Algorithm for the maximum array element
	Class MaxFinder
	Class MaxFinderRunner

	8.4.2 Linear search slgorithm
	Class LinearSearcher
	Class LinearSearcherRunner

	8.4.3 Bubble sort algorithm
	Sorting an array of numbers
	Class BubbleSorter
	Class BubbleSorterRunner
	Sorting an array of strings

	8.5 Efficient evaluation of a polynomial
	8.5.1 Horner's algorithm
	8.5.2 A class for polynomials
	Class Polynomial

	8.5.3 Testing the Polynomial class
	Class PolynomialRunner

	8.6 Line graph example using arrays
	8.6.1 Line graph class
	Choosing a coordinate system
	Drawing the axes
	Drawing the line segments
	Drawing the circles at each vertex
	Class LineGraph
	Class SimpleTester

	8.6.2 Drawing a random line graph
	Class RandomTester

	8.6.3 Converting arrays to GeneralPath objects

	8.7 For-each loop
	8.8 Methods with a variable number of arguments
	8.9 Two-dimensional arrays
	8.9.1 Multiplying matrices
	Class MatrixMultiplier
	Testing the method in BlueJ
	Testing the method in BeanShell
	Testing matrix multiplication
	Class MatrixMultiplierRunner

	8.9.2 Board games

	8.10 Card shuffling and dealing application
	8.10.1 Card class
	Card class design
	Card class implementation
	Class Card

	8.10.2 CardDeck class
	CardDeck class design
	CardDeck implementation
	Class CardDeck
	Testing the class in BlueJ
	Testing the class in BeanShell
	Testing the class from the command line
	Class CardDeckTester

	8.11 Review exercises
	8.12 BeanShell exercises
	8.13 Programming exercises

	9 Inheritance and Interfaces
	9.1 Introduction
	9.2 What is inheritance?
	9.2.1 The ``is-a'' and ``has-a'' relationships

	9.3 Rules for declaring subclasses
	9.4 Simple examples of subclasses
	9.4.1 Graphics programs
	9.4.2 Extending a circle calculator class
	Class CircleCalculatorA
	Class CircleCalculatorB
	Class CircleCalculatorTester
	BlueJ project for the circle calculator classes

	9.4.3 Extending the BankAccount class
	Class BankAccount
	Class JointBankAccount
	BlueJ project for the bank account classes

	9.5 Polymorphism
	9.5.1 Polymorphic types
	Polymorphic types in the BankAccount hierarchy
	Class AccountTester
	Examples of polymorphism

	9.5.2 Polymorphic methods
	A polymorphic bank account transfer method
	The polymorphic toString method
	Class AccountTester2
	Compile-time and run-time types

	9.6 Abstract classes and polymorphism
	9.6.1 An employee inheritance hierarchy
	9.6.2 Employee and Manager classes
	Class Employee
	Class Manager

	9.6.3 Polymorphism in the Employee hierarchy
	Class EmployeeProcessor

	9.7 The Object class
	9.7.1 Overriding Object class methods
	Overriding the toString method
	Overriding the equals method
	Class PointEqualsTester

	9.8 Final classes
	9.9 Interfaces
	9.9.1 Implementing the Measurable interface
	A measurable circle class
	Class Circle
	A measurable rectangle class
	Class Rectangle
	Polymorphism with the Measurable interface
	Class MeasurableTester

	9.9.2 Polymorphism with the Shape interface
	Class ShapeTester

	9.10 Multiple interfaces
	9.10.1 Interface specifications
	Interface Measurable
	Interface Translatable
	Interface Scalable

	9.10.2 Classes that implement the interfaces
	Class Circle
	Class Rectangle

	9.10.3 Typecasts with multiple interfaces
	Class MultipleInterfaceTester

	9.11 Implementing the Shape interface
	9.11.1 Shape interface methods
	9.11.2 Extending a ShapeAdapter class which implements Shape
	Class ShapeAdapter

	9.11.3 Triangle2D class that uses ShapeAdapter
	Class Triangle2D
	Class RandomTriangles

	9.11.4 Implementing Shape directly

	9.12 Turtle graphics class
	9.12.1 Specification of the class
	9.12.2 Implementation of the class
	Class Turtle2D

	9.12.3 Writing turtle graphics programs
	Class PentagonSpinner

	9.12.4 Recursive turtle graphics programs
	Class RecursiveTreeMaker

	9.13 Numerical applications of interfaces
	9.13.1 Displaying a table of values of a function
	Interface DoubleFunction
	Class TableMaker
	Class ExpMinusFunction
	Class CosFunction
	Class TableMakerTester

	9.13.2 Function iteration
	Class FunctionIterator
	Class FunctionIteratorTester
	Class SquareRootIterator

	9.14 Review exercises
	9.15 Programming exercises

	10 Graphical Interface Design
	10.1 Introduction
	10.2 Basic structure of a GUI application
	10.2.1 Basic template for GUI applications
	Class ApplicationTemplate

	10.3 GUI components and the greeting application
	10.3.1 Greeting application design
	10.3.2 Determining what GUI components are needed
	10.3.3 Creating the GUI components
	10.3.4 Choosing a layout manager for the GUI components
	10.3.5 Adding GUI components to the frame
	10.3.6 Sending events to listeners
	10.3.7 Writing event processing code
	Class Greeting1

	10.3.8 Using a button in the greeting application
	Class Greeting2

	10.3.9 Multiple types of action event responses
	Class Greeting3

	10.3.10 Using inner classes to specify event handlers
	Class Greeting4
	External names for inner classes

	10.4 Numeric fields and the temperature application
	10.4.1 Numeric and string conversions
	Converting numbers to strings
	Converting strings to numbers
	Using numeric fields in the temperature application

	10.4.2 Temperature application
	Class Temperature

	10.5 Multi-line text fields
	10.5.1 JTextArea objects
	10.5.2 Investment application
	Using panels to design GUI layouts
	Doing the calculations
	Class Investment

	10.6 Using inheritance to design smarter text fields
	10.6.1 Structure of the JTextField class
	Class InputJTextField

	10.7 GUI for the loan repayment class
	10.7.1 GUI version of the loan repayment class
	Class LoanRepaymentTableGUI

	10.8 Unit conversion application
	10.8.1 Conversions class
	Class Conversions

	10.9 Inheritance and listener interfaces
	10.9.1 ActionListener interface
	10.9.2 WindowListener interface

	10.10 Average mark calculator
	10.10.1 Console version of average mark calculator
	Class MarkAverageConsole

	10.10.2 GUI version of average mark calculator
	Class MarkAverageGUI

	10.11 GUI version of the RandomTriangles class
	10.11.1 ControlPanel class
	Class ControlPanel
	Class RandomTrianglesGUI

	10.12 Inheritance and the GraphicsFrame class
	10.12.1 GraphicsFrame class
	Class GraphicsFrame

	10.13 Applets
	10.13.1 RGB color applet
	Laying out the components
	Class RGBColorApplet

	10.13.2 Running applets from BlueJ
	10.13.3 Running Java applets in a browser
	10.13.4 Launching Java applications from an applet
	Class ApplicationLauncher

	10.14 Review exercises
	10.15 Programming exercises

	11 Files and Streams
	11.1 Introduction
	11.2 File concepts
	11.2.1 What is a file?
	11.2.2 File organization on a sisk
	11.2.3 Efficient file access using buffering
	11.2.4 File access rights
	11.2.5 Reading and writing sequential files
	Reading a sequential file
	Writing a sequential file

	11.2.6 File access methods
	Sequential access files
	Random access files

	11.3 File structure
	11.3.1 Text file structure
	11.3.2 Binary file structure
	11.3.3 Streams

	11.4 Java stream and file I/O class hierarchies
	11.4.1 InputStream hierarchy
	11.4.2 OutputStream hierarchy
	11.4.3 Reader hierarchy
	11.4.4 Writer hierarchy
	11.4.5 File class
	11.4.6 Summary

	11.5 File I/O error handling using exceptions
	11.5.1 Unchecked exceptions
	11.5.2 Checked exceptions

	11.6 Reading and writing byte streams
	11.6.1 Reading bytes from an input byte stream
	11.6.2 Writing bytes to an output byte stream
	11.6.3 File copy program
	Class FileCopier
	Class FileCopyChooser

	11.7 Reading and writing character streams
	11.7.1 Reading characters from an input stream
	11.7.2 Writing characters to an output stream
	PrintWriter class

	11.7.3 Simple search program
	Class FileSearcher

	11.8 Viewing byte contents of files
	11.8.1 ByteViewer class
	Class ByteViewer

	11.9 Text files of BankAccount objects
	11.9.1 Reading and writing single-line records
	Implementing the writeAccount method
	Implementing the readAccount method

	11.9.2 Finding a home for readAccount and writeAccount
	11.9.3 Extending the BufferedReader class
	Class BufferedAccountReader

	11.9.4 Extending the PrintWriter class
	Class PrintAccountWriter

	11.10 Bank account text file processing
	11.10.1 Finding the maximum balance among the accounts
	Class MaxBalanceCalculator

	11.10.2 Account processing
	11.10.3 Reading database files into arrays
	11.10.4 The Dynamic ArrayList<E> Class
	Class ListProcessor

	11.11 Binary object files using Polymorphism
	11.11.1 Writing serialized objects to a file
	Class AccountListObjectWriter

	11.11.2 Reading serialized objects from a file
	Class AccountListObjectReader
	Reading more than one object at a time

	11.12 Review exercises
	11.13 Exercises

	12 Searching and Sorting Algorithms
	12.1 Introduction
	12.2 Minimum and maximum algorithms
	12.3 Running time of an algorithm
	12.4 Searching algorithms
	12.4.1 Linear search algorithm
	Order of linear search

	12.4.2 Recursive binary search algorithm
	12.4.3 Non-recursive binary search algorithm
	12.4.4 Running time of binary search algorithm
	12.4.5 Class of static searching methods
	Class IntArraySearch

	12.4.6 Testing the search algorithms
	Class IntArraySearchTester

	12.5 Sorting algorithms
	12.5.1 Selection sort algorithm
	12.5.2 Running time for selection sort
	12.5.3 Insertion sort algorithm
	12.5.4 Running time for insertion sort
	12.5.5 Simulation to compare selection and insertion sort
	Class QuadraticSortTimer

	12.5.6 Mergesort
	12.5.7 Merge algorithm for two sorted subarrays
	12.5.8 Running time for mergesort
	12.5.9 File merge example
	Class FileMerger

	12.5.10 Quicksort
	Partitioning an array
	An implementation of partition

	12.5.11 Running time for quicksort
	12.5.12 Simulation to compare mergesort and quicksort
	Class FasterSortTimer

	12.5.13 Class of static sorting methods
	Class IntArraySort

	12.5.14 Testing the sorting algorithms
	Class SortTester

	12.6 Generic object sorting
	12.6.1 The Comparator interface
	12.6.2 GenericArraySort class
	Class GenericArraySort

	12.6.3 Sorting strings in lexicographical order
	Class StringComparator
	Class StringDecreasingComparator
	Class GenericStringSortTester

	12.6.4 Comparing BankAccount objects
	Class AccountNumberComparator
	Class AccountBalanceComparator
	Class BankAccountSortTester

	12.7 Arrays class
	12.7.1 Comparable interface
	12.7.2 Searching algorithms
	12.7.3 Sorting algorithms

	12.8 Exercises

	13 Introduction to Data Types and Structures
	13.1 Introduction
	13.2 Abstract data types
	13.2.1 Classification of ADT operations
	Create operation
	Copy operation
	Destroy operation
	Modification operations
	Inquiry operations

	13.2.2 Pre- and post-conditions
	13.2.3 Simple ADT examples
	An integer ADT
	A floating point ADT
	A character ADT
	A boolean ADT

	13.2.4 Some common structured ADTs
	The array ADT
	The string ADT

	13.2.5 User defined ADT examples
	A dynamic array ADT
	A bag ADT

	13.3 Implementing an ADT
	13.3.1 Implementation of the Bag<E> ADT
	Designing the Bag<E> ADT
	Interface Bag<E>
	Designing a fixed size implementation
	Choosing a data structure
	Implementing the constructors
	Implementing the methods
	Class FixedBag<E>
	Converting to a dynamic implementation
	Class DynamicBag<E>

	13.3.2 Implementation of the DynamicArray ADT
	Designing the Array ADT
	Interface Array<E>
	Designing a dynamic implementation
	Using the design
	Implementing the constructors and methods
	Class DynamicArray<E>

	13.4 Java Collections Framework (JCF)
	13.4.1 Interface hierarchy
	13.4.2 Traversing a collection with an iterator
	13.4.3 Iterable<E> interface

	13.5 Collection<E> and Set<E> interfaces
	13.5.1 Collection<E> interface
	13.5.2 Set<E> interface
	Set theory interpretation of the bulk set methods

	13.6 Set Implementations and examples
	13.6.1 HashSet<E> implementation of Set<E>
	13.6.2 LinkedHashSet<E> implementation of Set<E>
	13.6.3 TreeSet<E> implementation of SortedSet<E> and Set<E>
	13.6.4 Simple set examples
	13.6.5 Removing duplicates from a list of words
	Class RemoveDuplicateWords

	13.7 List<E> and ListIterator<E> interfaces
	13.7.1 List<E> interface
	13.7.2 ListIterator<E> interface

	13.8 List<E> implementations and examples
	13.8.1 ArrayList<E> implementation of List<E>
	13.8.2 LinkedList<E> implementation of List<E>
	13.8.3 Simple list examples
	13.8.4 Book inventory example
	Class Book
	Class BookList

	13.8.5 Insertion in a sorted list
	Class SortedListExample

	13.9 Map data type
	13.9.1 Name-age example
	13.9.2 Basic map operations
	13.9.3 Hash tables and codes

	13.10 The Map<K,V> interface
	13.11 Map implementations and examples
	13.11.1 HashMap<K,V> implementation of Map<K,V>
	13.11.2 LinkedHashMap<K,V> implementation of Map<K,V>
	13.11.3 TreeMap<K,V> implementation of Map<K,V>
	13.11.4 Simple map examples
	13.11.5 Hours worked example
	Class HoursWorked

	13.11.6 Favorites map with maps as values

	13.12 Recursion examples using maps
	13.12.1 The Fibonacci sequence
	Class Fibonacci

	13.12.2 The Q-sequence
	Class QSequence

	13.13 Collections utility class
	13.13.1 Book list sorting example
	Class BookComparator
	Class SortBookList

	13.14 Programming exercises

