CAMECO CORPORATION

B-ZONE WASTE ROCK PILE

UTILIZATION OF WETLANDS FOR REMOVAL OF ARSENIC AND NICKEL

SUMMARY

In planning the activities for decommissiong the B-zone waste rock pile, research on the use of the wetlands in the vicinity as natural treatment systems for toe seepages was also undertaken. The 1996 final report, "Decommissioning of the B-Zone waste rock pile", summarized the information generated on the waste rock characteristics: hydrology, geochemistry, contaminant generation and removal rates. This work made clear that the B-zone waste rock pile and the surrounding wetlands lend themselves to a self-sustaining decommissiong approach.

The mechanisms that remove As and Ni from toe seepage water to sediments in the muskeg ponds were identified by work in both the field and the laboratory. The contaminants are adsorbed in the water columns to particulate matter, and in the deeper portions of the sediment, microbial activity stabilizes them. When design criteria for the use of the wetlands were defined, it became clear that sufficient space is available and that the proposed mechanism of contaminant removal is already taking place naturally. It is possible that the occasional input of organic matter would further stimulate microbial activity.

The proposal to use the muskeg as a self-sustaining system was challenged by work carried out in 1997. If contaminant removal and biomineralisation occur naturally, then evidence of these processes should be found in the conditions of the wetlands themselves. Periodically, some muskeg areas receive **run-off** and seepage from the **ore/waste** rock pile, and dust material transported aerially would likely accumulate in the vicinity of the piles. In order to provide this evidence, data on the chemical/physical characteristics of pond sediments and muskeg vegetation were analysed empirically. The solid-sample collection accumulated since 1992 was supplemented with samples of sediments and muskeg vegetation lead to the following conclusions:

- Comparison of the distribution of As and Ni, on a kg/ha basis, in the vicinity of the B-Zone waste rock pile in muskeg pond sediment and water confirmed that pond sediments are the most effective accumulators of contaminants.
- The total mass of As and Ni that accumulated in the sediment was higher for muskeg areas receiving periodic contaminated seepage than in hydrologically-isolated muskeg areas.
- Although mining activity increases the extent of aerial transport of contaminants, the concentration ranges that were determined fall within those reported in the literature for mineralized areas.
- The differences in the ratios of As and Ni in waste rock samples to those in pond sediment suggests that biomineralisation has altered the form of the contaminants in the latter.
- Concentrations of As and Ni are higher in surface strata (25 cm) than in the deeper strata, suggesting aerial transport and deposition.
- Quantiication of the physical characteristics of the solid material served to reinforce the inference that microbial activity takes place. The findings of experimental field and laboratory work were consistent, in that both determined that As and Ni are adsorbed to organics and particulates in the water column and then transported to the sediment. Nickel **is** transformed into nickel sulphides and carbonates, while arsenic is associated with iron.
- The contaminant removal processes require the presence of pond sediments, which are limited on the Ivison Bay side. Shallow ground water characteristics in the vicinity of the waste rock pile were described, with particular emphasis on the migration of contaminants towards Ivison Bay. Monitoring data on toe seepages

from the waste rock pile have been summarized to facilitate the estimation of contaminant loadings from the pile for decommissioning.

A further objective of the 1997 work was to determine whether the contaminants are indeed retained in the muskeg/ponded sediments, rather than being redissolved by run-off events if a diffusion gradient occurs between sediment pore water and pond water. This question was addressed by quantifying the easily extractable As and Ni from solid samples with distilled water.

The easily exchangeable fraction of the contaminants is not related to the total concentrations of As and Ni in the solid material indicating that, in the sediments, the contaminants do not accumulate by adsorption alone. They are present in solid forms more resistant to leaching than easily exchangeable forms. Solid material with low concentrations release higher fractions *of* contaminants. Therefore, As or Ni total concentration gradients between the sediment and overlying water phases will not result in contaminant re-release from the sediment.

A final objective of the work carried out in 1997 was to explore the level of stability with which secondary precipitates and evaporates, which form in association with the waste rock, release contaminants.

 It was determined that precipitates/evaporates release more contaminants than waste rock, but leachability is affected by the ratio of water to solids and the contaminant type.

TABLE OF CONTENTS

	SUM	MARY	i
1.0	INTR	ODUCTION	1
2.0	METH	HODS AND MATERIALS	4
	2.1	Sample Summary	4
	2.2	Field sampling methods	7
	2.3	Laboratory Methods	8
		2.3.1 Sample Description	8
		2.3.2 Sample preparation	9
		2.3.3 Moisture Content	9
		2.3.4 Wet Density Determination	9
		2.3.5 Distilled Water Extraction of Arsenic and Nickel	10
		2.3.6 Batch leaching of precipitates/evaporates on waste rock pile	11
	2.4	Calculations of the Mass of As, Ni, Fe, S and LOI	13
	2.5	Estimation of Easily Exchangeable As and Ni in Muskeg and	
		Wetland Solids	14
	2.6	Shallow Piezometer sampling	15
	2.7	Surface Waters Southeast of the WRP Toward Ivison Bay	15
3.0	RESU	JLTS AND DISCUSSION	16
	3.1	Easily Exchangeable As and Ni in Muskeg and Sediments	27
	3.2	As and Ni Migration in the Muskeg Areas	31
	3.3	As and Ni Migration in BT-3 and BT-4 Surface Water	35
	3.4	As and Ni in Shallow Groundwater	38
	3.5	Contaminants Sources Precipitates and Evaporates on	
		Waste rock Surfaces	41
4.0	CON		45

LIST OF TABLES

Table 1:	Solids Sampling Locations, 1992, 1993 and 1997 Muskegand Wetlands B-Zone 5
Table 2:	Qualitative Description and Chemistry for Waste Rock Pile Solids 12
Table 3:	Comparison of Total As and Ni Concentrations in Sediment and Muskeg. Samples Collected in Similar Locations in Different Years 18
Table 4:	Arsenic, Nickel, Iron, Sulphur and L.O.I. Mass in BT-1, BT-2, BT-3, BT-4 and Lake 1 Muskeg, Sediments and Pond Water
Table 5:	Comparison of [As] and [Ni] for Extracts and Excess Pore Water 28
Table 6:	Comparison of As with Ni
Table 7a:	As Concentration Intervals and Sample Description
Table 7b:	Ni Concentration Intervals and Sample Description
Table 8:	Comparison of Pairs of Elements
Table 9:	Percentage of Extracted-Ni/As from Waste Rock Pile

LISTS OF FIGURES

Figure Ia:	Comparison of As Concentration with Depth (SP1,2,3,4,5, LOCI)	19
Figure 1b:	Comparison of As Concentration with Depth (SP7,8,9,Stn 300, Lakel)	19
Figure 2a:	Comparison of As Concentration with Depth (SP1,2,3,4,5, LOCI)	20
Figure 2b:	Comparison of As Concentration with Depth (SP7,8,9,Stn300, Lake1)	20
Figure 3:	Comparison of % L.O.I. with TOC B-Zone Wetland Substrates and B-Zone Pit Sediments	25
Figure 4a:	Distribution of Arsenic	26
Figure 4b:	Distribution of Nickel,	26
Figure 4c:	Distribution of Iron	26
Figure 4d:	Distribution of Sulphur , , , , , , , , , , , , , , ,	26
Figure 5a:	B-Zone Vicinity Wetland Substrates, 1992-1993. Total Arsenic vs Easily Exchangeable Arsenic .	29
Figure 5b:	B-Zone Vicinity Wetland Substrates, 1992-1993. Total Nickel vs Easily Exchangeable Nickel	29
Figure 6a:	Run-off Southeast of WRP: 1991-1997 As Concentrations	37

Figure 6b:	Run-off Southeast of WRP: 1991-1997 Ni Concentrations	
	in Surface Waters	37
Figure 7a:	B-Zone Wetland Shallow Piezometers SP-6, 7 and 8.	
	Dissolved Arsenic and Nickel Concentrations	40
Figure 7b:	B-Zone Wetland Shallow Piezometers SP-1, 3, 4 and 5.	
	Dissolved Arsenic and Nickel Concentrations	40

LIST OF MAPS

Map 1:	B-Zone Sediment and Muskeg Profile Sampling Stations, 1992-97	. 6
Map 2:	Direction of Assumed Surface Water Flows in B-Zone Wetlands	36

LIST OF APPENDICES

- APPENDIX 1: Raw Data Summary
- APPENDIX 2: Data Analysis
- APPENDIX 3: Total Water Soluble Quantity
- APPENDIX 4: Wetlands for Treatment of Arsenic and Nickel: A Decommissioning Approach for Waste Rock Pile Seepage

1.0 INTRODUCTION

With the completion of the B-Zone waste rock pile in 1991, field and laboratory investigations were initiated in 1992 to evaluate whether the existing wetlands surrounding the pile could be used effectively in the decommissioning process. The wetlands and their ponds could, potentially, serve as natural retention areas for the contaminants in toe seepages from the waste rock pile. The major contaminants in the seepages are arsenic and nickel, whose entrance into the surrounding environment will not be entirely eliminated through re-contouring of the waste rock pile surface.

A primary aim of decommissioning the 6-Zone waste rock pile **is** to develop an environmentally sustainable system, one which ideally contains the option of a zero-maintenance solution. In such a scenario, retaining structures for seepage collection is undesirable, since ditches require continued maintenance. Afinal decommissioning design which allows the un-contained flow of residual seepages into the surrounding wetlands would represent a desirable amendment to the decommissioning scenario.

The use of wetlands as contaminant removal systems, although widely discussed, is frequently poorly applied when put into practice. The most important component of a wetlands' ability to facilitate contaminant removal, lies in the capacity of its sediment to support the microbial activity which lead to biomineralization, rendering metals to stable non-toxic forms. The sediment component of the wetland design is often ignored, which results in the failure of the wetlands to perform their desired function.

The capacity of wetlands to serve as permanent sinks for contaminants is of the utmost importance when wetlands are incorporated into the design of a decommissioning process. In the case of the muskeg and wetland areas surrounding the B-Zone waste rock pile, however, biomineralization processes in the sediments have been defined in detail. The characteristics of the wetlands in the B-Zone area, specifically the sediments in the ponds and their ability to serve as contaminant removal systems, were summarized in the 1996 report entitled "Collins Bay Decommissioning B-Zone Waste Rock Pile: 1996 Final

Report". The evaluation of these characteristics represented five years of laboratory and field work.

The mechanisms responsible fortransferring contaminants from the water to the sediments appear to be similar for both Ni and As. The contaminants are adsorbed to particulate matter - a combination of organic matter generated by biological activity, iron hydroxides and inorganic suspended matter. The processes which lead to biomineralization in the sediment, however, are different for the two contaminants. Laboratory reactor experiments carried out with pond sediment and seepage from the collection ditch, indicate that nickel in the sediment is associated with carbonates and sulphides, whereas arsenic is associated with both the organic matter and iron hydroxide phases of the sediments. In the wetland ponds (near BT-2 Stn 250), enclosures were charged with seepage from the collection ditches several times over a period of four years. As and Ni were removed to the sediments in the enclosures at rates (As, $0.076 g \cdot m^{-2} \cdot d^{-1}$: Ni, $0.078 g \cdot m^{-2} \cdot d^{-1}$) similar to those recorded in the laboratory reactors (As, $0.010 g \cdot m^{-2} \cdot d^{-1}$: Ni, $0.1 g \cdot m^{-2} \cdot d^{-1}$). Several publications have summarized the details of these experiments.

The publications are included in the Appendices of the **1996** final report and in Appendix **4** of the current report.

Contaminant loads from the seepages of the waste rock pile were estimated from the pumping records of the seepage collection ditch (Stations 6.11 and 6.11 SE), taking hydrological considerations into account. The expected contaminant load from the toe seepages of the waste rock pile are such, that the removal capacities of As and Ni of the sediment can balance the input from the waste rock pile. Sufficient pond sediment area is available to provide the desired contaminant sink. When the decommissioning approach is considering healthy growing muskeg as part of its design component, the long term stability of the contaminants in the sediments is assured due to the biomineralization processes , which immobilize both **As** and Ni in the sediments.

Due to the physical conditions of the roads adjacent to the ore stockpile and the waste rock pile, some seepage and run-off from the waste rock pile does enter the BT-2 area

periodically. This provided an opportunity to assess the field conditions through a sampling program of wetland sediments and determine if the characteristics of the samples reflect the results obtained from the field and laboratory experiments. Through evaluating the surface areas of both muskeg and sediments in the wetland ponds it should be possible to empirically infer the proposed contaminant removal processes for the wetlands.

A primary objective of the **1997** work was to estimate the existing mass of iron, sulphate and organic carbon - the three major compounds involved in the removal processes. These compounds should be present in abundant quantities, since they are the components of the sediment which enable it to function as a permanent sink for **As** and Ni.

Since it is proposed that these removal processes should occur naturally, they should operate without amendments, such as the organic carbon additions made to the field enclosures, even though higher removal rates would be anticipated with sediment amendment. **As** expected, the control enclosure (with no amendment) demonstrated moderate contaminant removal, with rates somewhat lower than if they had been amended.

In addition to substantiating the natural contaminant removal capacity of sediments, a base loading of contaminant for the area surrounding the B-Zone waste rock pile will be established through estimates of the mass of **As** and Ni in the areas surrounding the waste rock pile.

2.0 METHODS AND MATERIALS

2.1 Sample Summary

The B-Zone waste rock pile (WRP) was constructed between 1984 and 1991. The first samples of sediments from the ponds and muskeg were collected in the following year, i.e., in June of 1992. Muskeg material consists of several components. The uppermost vegetation cover is that which is growing, partly submerged in water. Below this layer, generally a layer of decaying vegetation is found. Due to the nature of the muskeg this layer is consisting of recalcitrant (hardly decaying woody, leathery vegetation parts) vegetation components. Below this layer a peaty layer forms, which depending on the topography converts very slowly to gyttja or ' loonshit'.

In Table 1, an overview is given of all the sampling episodes, the results of which are used in this report to assess the wetlands and its ponds. The locations of the samples are shown in Map 1. In red letters, the areas represented by the sample type are given referred to on page 14 of this report for loading calculations. Pond sediment (3 locations) and peripheral muskeg (2 locations) samples were collected and described as part of the initial survey of the B-Zone WRP wetlands, and were presented in the 1992 B-Zone Final Report, Boojum Research Limited. Sequential extractions on sediments from the enclosures, where 6.11 seepage water was added, to determine the fate of As and Ni in the sediments through biomineralization were carried out in 1993. This work was summarized in 1994 as a CANMET report (Arsenic and Nickel removal from waste rock seepages using muskeg sediment; Final report Contract No 23440-3-9275/01, Energy Mines and Resources These sediments do not represent natural transport mechanisms of the Canada). contaminants from the source through the muskeg environment as the seepage was loaded from the surface and sludge/ precipitates formed in the toe seepages was added to test re-solubilisation/ fixation of either Ni or As in the sediments.

Two cores were collected in 1992. The first was collected from BT-1 Stn 300, and consists of a muskeg core collected as a top sample from 0 to **25** cm depth, and a bottom

Collected 1992	BT-1 Stn 200	-	BT-2		BT-3		BT_/							
1992	Stn 200			<u>3T-1 BT-2 BT-3 </u>					LANE					
1992	Stn 200	1002 Stn 200 E Stn 100 E												
		E	Stn 100	E					Centre	E				
1993	· · · · ·			E	NCLOSURES	ONL	Y							
1997	Stn 100 E Stn 150 E Stn 205 E Stn 240 E		Stn 100 E Stn 250 E Stn 350 S E BT-2 N End E		Stn 150 G		3							
				Ν	USKEG									
1992	Stn 300	K							Stn 100	К				
1993	SP6 SP7 SP8 LOCI	0 0 0 0	SP5	С	SP-2 SP-3	C C	SP-1 SP-4	C C	SP-9	С				
1997	BT-1 N	С	Stn 100N Stn 400 N	C C	BZT-K#1 Stn 50 Stn 200 Stn 500 SP-3DH	G C C C C C	Stn 200 Stn 400 Stn 6.9 3 DH	с с с						

Table 1:Solids Sampling Locations, 1992, 1993 and 1997Muskeg and Wetlands B-Zone

sample covering a depth from 25 to 50 cm. The second core was collected from the shore at Lake 1 Stn 100 (a control lake), where four 20 cm thick consecutive samples could be obtained, covering the profile to a depth of 80 cm.

In June 1993, substrates from ten (10) muskeg profile sampling locations were collected during the process of installing shallow piezometers (SP-1 to SP-9, LOC 1). These samples were stored frozen (-20°C). No pond sediment samples were collected in 1993, but major strata were determined in the field. In 1993 sampling of the muskeg, the uppermost strata (e.g. 0 - 25 cm) was not specifically sampled (as was the case in 1997) unless an identifiable surface stratum, other than live vegetation, was present.

Map 1: B-Zone Sediment and Muskeg Profile Sampling Stations, 1992-97.

Boojum

In August 1997, muskeg samples were collected at eleven **(1**1) locations, either where substrate profiles were examined previously, or where additional samples would complement information from previously established transects in the respective wetland areas. At these locations, samples were typically collected from specific depths where possible, 0-25 cm, 25-50 cm, 50-75cm and 75-100 cm, using the soil sampling auger.

2.2 Field sampling methods

In Table 1, the sample types obtained to describe the surface and subsurface material are designated by E for Ekman, C for cuttings from the soil auger, G for grab and K for cores collected by removing intact profiles using a shovel. Whenever the consistency of the material allowed, the top 0.2 m of the sediments were sampled using an Ekrnan dredge. A grab sample was obtained with a shovel when the Ekmandredge could not be operated. Muskeg samples were collected with a soil auger, and all major strata were identified in the field. Similarly, all samples were described in the field, then stored frozen (-20°C) until laboratory processing. When sufficient water was present, field measurements of pH, conductivity and Eh were carried out. These samples were stored in plastic bags.

In addition to the muskeg samples, precipitate / evaporate samples were collected from the B-Zone waste rock pile surface, the toe seeps and the collection ditches. The sample selection was guided by the frequent visual appearances of colouring on rock surfaces on the waste rock lifts. This sample type is referred to as the As/Ni oxidized material. In acidic toe seeps solid precipitate accumulates regularly which had previously been analysed, reporting high concentrations of As and Ni. This sample type is referred to as WRP- P sludge. On the perimeter ditch, a floating solid foam forms after precipitation events, which was considered part of mobile solid or TSS fraction originating from the waste rock pile, described as ditch foam. As a comparison to these precipitates, rock samples representative of the main rock mass, graphitic coarse gneiss , heamatized sandstone and clean sandstone was selected for the batch leaching experiment (Section 2.3.6).

2.3 Laboratory Methods

For the current study, the samples that were previously collected in 1992, 1993 and 1997 were re-described with respect to their texture and composition, and compared to the field descriptions that were originally made. This confirmed the identity of the samples and generated a consistent data set for the physical parameters of the material. Sub-samples were taken several times, in order to determine the wet density, moisture content and % Loss On Ignition(%L.O.I., 480° C for one hour on air dried material). A dried and ground sample was then prepared for chemical analysis. Some sub-samples were subjected to slurry tests, to determine water extractable **As** and Ni.

On June 13, 1997, the previously collected samples were thawed, re-described and processed in the laboratory. **All** 1992 and 1993 samples were oven dried at 70°C and ground in a Wiley mill. One (1) g samples of the material were digested (nitric-HCI-perchloric) and assayed for several elements, including **As**, Ni, Fe and S. Selected samples were subjected to multi-elemental analysis with **ICAP**.

For 1997 sediment samples, the Total Organic Carbon (TOC) concentrations were also determined using a Leco apparatus, to ascertain the relationship of organic carbon and % L.O.I. Since the relationship between these two parameters, in areas with similar productivity and decomposition rates, is expected to be constant, it can be used to reliably evaluate the organic carbon content of the sediment.

2.3.1 Sample Description

Samples were described according to their texture, colour, smell, and qualitative moisture content. The types of samples vary from organic (i.e. peat) to rocky/sandy (inorganic). The descriptions for all these samples are presented in Appendix 1, Table 1, which provides the comparison of the field and laboratory descriptions. In general, the qualitative description of a sample included the following parameters: excess water - moist or dry; type of matter - rocks, sandy, organic, inorganic, sediment / peat; colour; odour - smell of

 H_2S ; and the presence of roots and other intact vegetation parts. These observations may be used as semi-quantitative indicators to characterize the distribution of the elements derived from the chemical analysis, should further investigation be required.

2.3.2 Sample Preparation

From each sample, 60 mL (wet volume) was taken and put in a volumetric beaker, which generally produced a wet weight of around 49 g to 200 g. The remainder of the sample materials were re- frozen.

From the entire data set, only two of the eleven locations sampled produced material which was dry representative of terrestrial or only temporarily submerged (of a silty/sandy texture). Seventeen (17) samples contained excess water (described as very wet) and the rest were moist. With the exception of the two dry samples, no water had to be added in order to determine the pH, Eh and electrical conductivity. Details are given in Appendix 1, Table 2. For the samples which produced excess water from the sample bag, this water was separated from the sample and measured separately.

2.3.3 Moisture Content

The wet weight was recorded, and the sample was air-dried then oven-dried at 70°C for twenty-four hours. Moisture content was calculated as follows:

Moisturecontent =
$$\frac{\text{wet weight} - \text{dry weight}}{\text{wet weight}} \mathbf{x} \ 100\%$$

2.3.4 Wet Densitv Determination

A wet volume of 60 mL of each sample was the starting point, and a wet weight for this volume was obtained. The wet weight, in grams, divided by the wet volume, in mL, gives the wet density, in $g \cdot mL^{-1}$. It should be noted that this wet density determination performed

on sampled materials in the laboratory, follows loosening of the materials, particularly muskeg samples, during field sampling. It is likely, therefore, that the reported wet density values underestimate the actual wet densities in the field. The measurement of wet density is obtained to estimate a pore water volume in the wetland substrates.

2.3.5 Distilled Water Extraction of Arsenic and Nickel

The objective of this procedure was to determine the mass of arsenic and nickel which could be mobilized from the samples when distilled water, to simulate fresh water recharge, was added. Fresh water additions will produce a concentration gradient for the sediment pore waters, which can result in mobilisation of elements by diffusion. This As and Ni may represent the very easily exchangeable fractions, if the contaminants are deposited only on the surface material, rather than adsorbed and integrated into the sediment.

The extraction procedure used a 120mL sample of distilled water, added to a second subsample of 60 mL wet volume. The solid/water mixture was slurried and placed in a refrigerator for one week to equilibrate at a low temperature, simulating sediment conditions. The pH, conductivity and temperature of the supernatantwere measured after one week of equilibration. After measurement of pH and conductivity a supernatant was obtained from the solid/water mixture. In order to test for arsenic, a sediment-free water sample (supernatant) was required. To obtain the supernatant, approximately 40 mL of water, containing as little sediment as possible, was poured off, and a centrifuge was used for 10 minutes at a setting equivalent to 1500 rpm, in order to separate water from solid.

A semi-quantitative test kit (E Merck EM Quant) was used as a screening test to determine if any contaminants had been mobilized by the leach test. A test strip was placed in a test tube after zinc dust and hydrochloric acid (32%) were used to convert the arsenic compounds in solution to arsine, which reacts with the test strip. The colour which formed on the test strip was then compared to a colour scale (between 0 and 3 mg/L), in order to estimate the amount of arsenic present in the sample.

Screening level nickel determinations using a spectrophotometerwere not possible, as the muskeg colouration interfered with the absorption used in the Hach determinations . As the As and Ni screening tests revealed potential release, the leachates were filtered (0.45 μ m), acidified (1% HNO) and submitted to an analytical laboratory to accurately determine the As and Ni concentrations. The measures of moisture content, density and the associated raw data are presented in Appendix 1, Table 3. Detailed results of the leaching experiments and the concentrations reported in the leachate are given in Appendix 1, Table 4. The excess pore water characteristics and the As and Ni concentrations for those samples which contained excess water, are given in Appendix 1, Table 5.

2.3.6 Batch leaching of precipitates/evaporates on waste rock pile

Supernatant preparation for wet sample 'as received': From each sample bag, 60 mL of wet sample was weighed to obtain wet weight. To this volume, 120 mL of distilled water was added and stirred 1 minute on a magnetic stirrer. The obtained wet volume to water volume ratio was 1:2. The sample slurry was allowed to settle for 1 hour and the following measurements were obtained: pH (Corning M103 pH metre), Conductivity (Orion Conductivity, Salinity Metre, Model 140), Em (Corning M103 pH Metre, VWR Scientific 34105-023 probe) (Table 2). The measurement for distilled water was: pH = 6.76, Em = 301 mV, Conductivity = 36 μ S/cm. The slurries were then dried at 60 °C until no further water loss occurred to obtain a dry weight equivalent to an air dried sample and moisture content was determined.

The samples had a wet density (g/mL) ranging between 1.25 to 1.4 with the exception of the NW ditch foam which had a density of **0.49**g/ml (Table 2). Table 2 also **lists** the total Ni and As concentration of the six solids.

Sample	Qualitative	pH	Em	Cond.	Total Ni	Total As	Density
Location	Description		(mv)	(us/cm)	(mg/kg)	(mg/kg)	(g/mL)
	foam,yellowish						
NW Ditch Foam	brown,extremily wet	5.08	252	376	2100	3300	0.49
BZWR-7 Graphitic Gneiss	slate,coarse	3.89	322	250	480	380	1.36
	reddish brown,sand						
BZWR-6 Hematizxed	strone,coarse	_3.7	211	341	1300	2000	1.31
	green, grey with yellow						
BZWR-6 As/Ni Oxidized	pebbles,clay	3.45	233	1712	176000	150000	1.25
	light,grey,sand						
BZWR-6 SS Area	stone,coarse	3.98	245	221	320	230	1.41
	sludge,light						
WRP-P Sludge	brown, extremely wet	2.77	373	2130	740	65600	1.25

Table 2: Qualitative D	accription and Chamict	ny for Worto Pock P	ila Salida
Table Z. Qualitative D	escriptionaria Chemist	I Y IOI VVASIE NOUK I	

Supernatant preparation from **dry** sample material: After the supernatant was prepared on the wet 'as received' samples, the entire sample was dried to obtain dry weight. This dried material was then used in batch leach tests. To 1 g air dried sample, 100 mL of distilled water was added resulting in a ratio was 100:1. The slurry was stirred for 1 minute, allowed to settle for 1 hour and then centrifuged the slurries at 800 RPM (HN-S Centrifuge) for 10 minutes prior to obtaining the pH and nickel measurements reported in Table 2. Ni was determined colorimetrically (EM Science 14785-2 Spectroquant Nickel, Spectronic70 Metre at **445** nm).

Cumulative supernatant preparation: The Ni leached during the batch leach test, covering a period of 427.5 h included the As/Ni oxidized sample (BZWR-6) which had high As and Ni concentrations. In the first round of slurries, only Ni concentrations determined. As the results from the chemical analysis indicated that both metals are high in some of these solids, the batch leach test included monitoring of As concentration in supernatant was added to the experiment.

The supernatant was decanted, after regular contact time, and a fresh 100 mL distilled water to the solids after centrifuging. The new slurry was stirred for 1 minute, allowed to settle for 1 hour, followed by centrifugation again prior *to* the measurement *of pH*,

conductivity, Em, Ni and As (decant cycle 1). The measurements of pH, Eh and electrical conductivity were carried out on the decanted supernatant and the sample was stored without water in the refrigerator.

The experiment was carried out over 10 days from April 14th to April 23rd, 1998. The next decant cycle started with adding the next volume of 100 mL distilled water to the solids which was treated in the same fashion as before. For the first 8 decant cycles 100 mL of distilled water was added, followed by 200 mL for decant cycle 9 to 13.

2.4 Calculations of the Mass of As, Ni, Fe, S and LOI.

In Appendix 1, the results of the elemental analysis of the sediment samples (dry weight basis) are presented in Tables 6a and 6b. A summary of As, Ni, Fe, S, TOC and LOI converted to $g \cdot m^{-3}$ or % used in the calculations is given in Appendix 1, Table 7.

Estimates of the mass of As, Ni, Fe, S and Total Organic Carbon (TOC) in the top 25 cm of muskeg and sediments were derived in the following manner.

For muskeg areas, the results of elemental analysis of the most shallow samples collected in 1992 and 1993, and the top 25 cm samples collected in 1997 were used. For pond sediments, the Ekman or grab sample concentrations were used. As the elemental concentrations are performed on a dry weight basis, the elements' concentration in wet sample volumes were back-calculated, using the moisture content and sample density data obtained from the laboratory measurements. These calculations yielded concentrations in units of $g \cdot m^{-3}$ wet substrate, according to the relationship:

[]_{dw/wv, g.m-3} = []_{dw, g.t-1 (=ug.g-1)} * density_{ww/wv t.m-3} * (1 -Moisture Content_%)

The concentrations of elements in wet solids, in $g \cdot m^{-3}$, were multiplied by 0.25 m to yield mass per m² to a 0.25 m depth. The mass per m² was then multiplied by the area of the muskeg or pond sediment, which was derived from aerial photographs.

Estimates of the mass of elements in pond water were made by using the pond water concentration data in $mg \cdot L^{-1}$ and calculating the volume of the pond by assuming an average depth of 0.5 m. This average depth is based on field observations and considered a reasonable estimate. Depending on the annual precipitation, the water depth in the pond can vary, but usually it is by less than 0.5 m. In zones where samples were collected from more than one location, the mass per m² data were averaged, then multiplied by the area of the zone. In Appendix 1, the data used for the compilation of the mass estimates are given in Tables 8a to 8f.

2.5 Estimation of Easily Exchangeable As and Ni in Muskeg and Wetland Solids

Easily exchangeable (EE) As and Ni is expressed in units of weight of **As** or Ni per unit volume of muskeg or sediment in, for example, $g \cdot m^{-3}$. The following calculation was performed using the laboratory moisture content determinations and the dissolved As and Ni concentrations following extraction with distilled water:

$$\mathsf{EE}_{\mathsf{As},\mathsf{Ni}} = \frac{\mathsf{V}_{\mathsf{p}} + \mathsf{V}_{\mathsf{e}}}{\mathsf{V}_{\mathsf{s}}} \quad \mathsf{C}_{\mathsf{diss}\,\mathsf{As}\,\mathsf{or}\,\mathsf{Ni}}$$

where:

The $\mathbb{E}_{\text{or Ni}}$ in $g \cdot m^{-3}$, for muskeg or pond sediment samples are expressed as a percentage of the total mass of As and Ni per m³ of substrate. The percentage of easily exchangeable contaminant mass would represent the total concentration in the solid material, if As or Ni has originated predominantly from adsorption to the substrate from the water, reflecting the adsorption capacity of the substrate. **A** somewhat consistent

relationship between the total and easily exchangeable fraction of either element, if the majority of the element had originated in the water, but an irregular relationship is expected if the elements originated from solid phases (either sediment or natural mineralization).

2.6 Shallow Piezometer sampling

In the years 1993 to 1995, the piezometers were sampled using a vacuum pump with a tube suspended to the screened section of the piezometer to withdraw the sample, without prior bailing of the standpipe. The piezometers are located in the water table which is very close to the surface (saturated muskeg) and bailing the water may not be of great importance to determine representative water. However in 1997, **5** litres of water were withdrawn from the piezometers and the sixth litre was sampled. SP-1 through SP-9 generally recover very fast. The samples were filtered through 0.45 μ m filters and submitted to SRC for elemental analysis, always including the concentrations of As and Ni. Water quality characteristics for all years where samples were collected are presented in Appendix 1, Tables 9a to 9e.

2.7 Surface Waters Southeast of the WRP Toward Ivison Bay

Over the years, several surface water sampling stations have been established, and new ones have been added to the areas as required. Map 1 shows all the surface sampling stations, representingtwo old drainage areas. Water samples from Stations6.9.44, 6.9.4, 6.9.3, BT-3 Stn 50, BT-3, Stn 100, BT-3 Stn 150 and a shallow pool in the **Ivison Wetland** were collected during the August, 1997 site visit, and these were later analysed by SRC for As and Ni, among other parameters (see Appendix 1).

3.0 RESULTS AND DISCUSSION

In order to estimate the mass of the elements in the different components of the wetlands in the vicinity of the B-Zone waste rock pile, structurally different units (ponded- and muskeg-covered areas, indicated by the swamp symbol on Map 1, were defined.

The areas of drier boreal forest upland are excluded from the estimates, since they do not receive seepage or run-off. Surrounding the waste rock pile, 4 muskeg areas are differentiated. BT-1 to BT-4, named after the original numbers of the transects, were marked with rebars in 1992. In addition, one area, designated as Lake 1, serves as a control muskeg, i.e., does not receive seepages and represents background values.

The total area under consideration for estimating the distribution of contaminants on the uppermost strata (25 cm depth) **is** 124ha. This area comprises 107ha of muskeg and 17ha of wetlands ponds. The four areas, BT-1 (19ha), BT-2(26ha), BT-3 (4ha) and BT-4 (3.3ha) and Lake 1 (71ha) are subdivided, relating the sampling stations to sections within them, for estimation purposes (referred to by letters in red, A to F). In was not considered appropriate to derive isoclines of the surface contaminant concentrations, since the sampling points are not equally distributed among the area.

Within each of the BT sections, the proportion covered by ponds ranges from 3% to 18%. The remaining area of each section is muskeg. Details of the calculations of the mass of As, Ni, S, Fe and L.O.I are given in Appendix 1, which lists the individual samples used to represent specific respective areas, as well as the cases where average concentrations of the element were used to arrive at the estimates. In total, 52 samples have been analysed for As, Ni, Fe and 50 for L.O.I., including surface and deeper strata in the B-Zone area. For sulphur, only 30 sample analyses were completed.

The overall average concentration in the solid material are: $As = 114 \mu g \cdot g^{-1}$ (min 0.5 $\mu g \cdot g^{-1}$ - max 1200 $\mu g \cdot g^{-1}$); Ni = 82 $\mu g \cdot g^{-1}$ (min 1.4 $\mu g \cdot g^{-1}$ - max 690 $\mu g \cdot g^{-1}$); Fe = 1.3% (min 0.04% - max 28%); and Sulphur = 0.14 % (min 0.008% - max 0.6%). The organic matter as L.O.I.

Boojum

averages 77 %, with a min of **1.5** % and a maximum of 98%. These concentration ranges can be compared to literature ranges to obtain a reference point to the mineralized area of the B-Zone. S. E. Allen, in "Chemical Analysis of Ecological Materials" (Blackwell 1974), gives natural background concentrationsfor organicsoil as: Ni - 5 to 500 μ g·g⁻¹; As - 0.1 to 10 μ g·g⁻¹; S - 0.03% to 0.4%; Fe - 0.2% to 0.5%. He reports the range for L.O.I. to be 30 to 50%. In 1985, A. Buchnea and A. van der Vooren reported in "Review and Assessment of the Known Naturally Occurring Concentrations of Radionuclides and Selected Non-Radionuclides Relevant to Uranium Mill Waste Management (DSS File no: 26SQ 23241-4-1691) concentrations in soil/ rock environments of 9 μ g·g⁻¹ for As, and means of several sample populations from different locations in Canada ranging from 1.6 μ g·g⁻¹ *to* 153 μ g·g⁻¹. For nickel, they report in the same publication, a mean of 31 μ g·g⁻¹, and a range of concentrations from 3.5 μ g·g⁻¹ to 605 (n = 2686).

The B-Zone wetland Ni concentrations fall into the reported range, although for As, the concentrations are somewhat higher than those reported. This is not surprising, since the reported range of $1.6 \ \mu g \cdot g^{-1}$ to $153 \ \mu g \cdot g^{-1}$ for As includes the mineralized areas of the Athabaska region. An average of $114 \ \mu g \cdot g^{-1}$ for As in an area close to a former As-bearing ore body and directly exposed to waste rock pile, ore stock pile and haul road influences, in fact suggests good containment of contaminants. Concentrations much higher than those reported for naturallmineralized areas in Canada might have been expected. Albeit the presence of the waste rock pile, the ore pile and the natural mineralization sediments and muskeg might have been expected to show higher range of contaminants. The increases in the concentrations range indicates that the sediments and the muskeg retain the contaminants and do not release them to the environment at large.

Although the number of sample analyses from the same location is limited which is separated by a time span, an increase over time can be noted (Table 3). Some locations were sampled both in 1992 and in again in 1997. For all locations, As and Ni concentrations have increased between 1992 and 1997 as expected, with the exception of Stn. 200. For Stn. 200, the concentrations essentially remained the same: $260 \ \mu g \cdot g^{-1}$ dry weight in 1992 and $230 \ \mu g \cdot g^{-1}$ in 1997 for Ni and $390 \ \mu g \cdot g^{-1}$ and $420 \ \mu g \cdot g^{-1}$ dry weight of **As** respectively.

Area	LOCATION 1992-93		Туре	Total / 1992	As, ug. 1993	d.w. 1997	Total 1992	, ug. 1993	d.w. 1997
BT-1	Stn 200	- Stn 200/205	Sediment	390		420	260		230
BT-1	LOC 1 SP6	BT-1 N	Muskeg		1.9	57		3.8	54
BT-2	Stn 100	Stn 100	Sediment	16		66	16		46
BT-3		SP-3 DH	Muskeg		1.8	56		3.4	34
BT-4	SP-4	Stn 200	Muskeg		14	51		12	35

Table 3: Comparison of Total As and Ni Concentrations in Sediment and Muskeg Samples Collected at Similar Locations in Different Years.

d.w. - dry weight

One of the question which needs to be addressed is the mode (water or air) by which the increases in the vegetation or the sediment have taken occurred. Both aerial and seepage transport would result in accumulation of metals on the surface. Therefore the first step in determining the pathway, is to evaluate if indeed the surface material differs from that collected from deeper strata.

In Figure I a and I b the sampling locations for which material was collected at the same place, but integrated over depth are presented with the respective **As** concentration. With the exception of three locations (**SP-2**, **SP-5** and **SP-8**) the surface samples have higher concentrations of **As** than at deeper strata. In Figure 2a and 2b the concentrations of Ni are presented and the same locations have higher concentrations at depth than at the surface. They are located in BT-1, BT-2 and BT-3 at the edge of the muskeg areas and may not be submerged all year round. However, the remainder of the samples indicate that the surface strata is enriched with the contaminants, which may imply both aerial and water transport.

The next step, is to evaluate how much has accumulated on the uppermost layers of the wetlands surrounding the waste rock pile. This is carried out through estimating the mass

Utilization of Wetlands for

20

of As and Ni July, 1998

of an element in an environmental compartment. Although such estimates may be prone to a relative error, due to the assumptions which have to be used in the calculations, However the error will be consistent throughout the calculations, and facilitates relative comparison. Such comparisons can be used as indicators of the functions of environmental **compartment** comparing sediments, water and vegetation. These comparison will allow to evaluate the relative distribution of the contaminants in the different components of the wetlands, ie muskeg, pond water and sediment.

In Table 4 estimated masses of As, Ni, S, Fe and L.O.I. in muskeg and sediment solids in the vicinity of the B-Zone WRP are presented. The data used to calculate the specific estimates are presented in Appendix 1, Table 8a to Table 8e and a summary, from which the kg/ha values are derived is given in Appendix 2, Table A2-8.

	Muskeg Surface - 0.25 m					Sediment Surface - 0.25m					Pond Water - 0.5 m			
	kg/ha	kg/ha	kglha	kg/ha	t/ha	kg/ha	kg/ha	kg/ha	kg/ha	t/ha	kg/ha	kg/ha	kg/ha	kglha
BT-1	4.1	3.6	1,287	630	342	116	82	5,763	1,131	202	0.4	0.1	2.3	4.6
BT-2	2.0	2.0	858	2,616	170	84	78	2,555	1,580	286	2.0	0.2	1.6	2.6
BT-3	127	80	2,516	670	211	30	23	465	490	167	25	62	6.5	387
BI-4	13	6.5	12,599	1,205	255						0.18	0.11	71.4	34.6
LAKE 1	2.0	0.9	125	98	158	0.5	4.4	2,197	1,308	495	0.003	0.01	1.6	0.2

Table 4: Arsenic, Nickel, Iron, Sulphur and LOI in BT-1, BT-2, BT-3, BT-4 and Lake 1 Muskeg, Sediments and Pond Water.

The estimates of the mass of As and Ni in the sediments/muskeg have used data integrated over time (Table 3) and a larger more recent set of samples might show a higher accumulated mass of metals.. On the other hand the relative differences between the different components of the muskeg/wetland areas which serve as a compartment for retention of contaminant will not change. The samples used for the mass estimates of the elements utilize 24 muskeg samples and 12 sediment surface samples, representing a

total area of 124 ha of muskeg and ponds. The overall objective is to determine if the distribution of the contaminants reflects what would be expected , ie a greater mass accumulated in the sediment as compared to the vegetation. The results are discussed below summarizing the distribution for each element of relevance to the contaminant removal processes expected to take place, when the transport mechanism is through contaminated seepage. In section 3.1 and 3.2 the same data are used to evaluate the mode of transport and the sample characteristics which have lead **to** the accumulated mass of the elements. The estimates are derived from the actual area of the different sections of wetland surrounding the waste rock pile.

The areas of pond or muskeg vary from location to location, ranging for example for muskeg from the smallest area **E** in BT-1 with **1.2** ha to the largest area B in Lake 1 with 58 ha. The estimates are derived from the actual area of the different sections of wetland surrounding the waste rock pile. The areas of pond or muskeg vary from location to location, ranging for example for muskeg from the smallest area E in BT-1 with 1.2 ha to the largest area B in Lake 1 with 58 ha (Map 1 red letters).

<u>Arsenic Distribution</u>: Arsenic concentrationsfound in sediment are generally one to *two* orders of magnitude greater than those found in shallow muskeg solids with the exception of Lake 1 and BT-3. BT-3 has the highest quantity of As in the water. The area of ponds in the BT-3 area is very small and essentially has not permanent ponds, and the muskeg samples are collected from an area of a temporal pool/ pond which dry out easily, thus concentrating contaminants through evaporation resulting in not so healthy vegetation/ muskeg. There are no permanent ponds in the BT-4 area, while in the Lake 1 area no seepage reaches the pond and only aerial transport would account for the accumulation on the vegetationlmuskeg. The As mass BT-1 (4.1 kglha) and BT-2 (2.0 kglha to that of Lake 1 and suggest that this type of mass accumulation is derived mainly from the air. On the other hand, the mass accumulated in BT- 3 and BT-4 on the muskeg is much higher with 127 kg/ha and 13 kglha. These distributions suggest an accumulation in those pond sediments which have received seepages.

The area of BT-3 that is covered with muskeg contains a relatively large mass of As (127 kg/ha). This is due to the relatively high As concentrations (up to $372 \,\mu g \cdot g^{-1}$) in the muskeg samples collected close to the WRP. WRP run-off to this area via seepages from beneath the perimeter road **is** the likely cause *of* these accumulation, as reflected in the mass of **As** in the water compartment (25 kglha). Overall, the estimate of As mass in muskeg and sediment in the B-Zone WRP vicinity indicates that the wetland pond sediments serve as sinks for As and water transport is suggested the major route, for those areas were seepages have entered ponds.

<u>Nickel Distribution</u>: The distribution of Ni mass in muskeg and sediments in the B-Zone WRP vicinity is, in many ways, similar to that for As. Pond sediments contain concentrations of at least one order of magnitude higher than muskeg solids, again with the exception of BT-3. The BT-3 Zone A area muskeg, which has accumulated Ni from WRP run-off passing beneath the WRP perimeter road has also more Ni in the water compartment with 62 kg/ ha as compared to generally 0.1 to 0.2 kg Iha for the other areas. The mass of Ni in the sediment, compared to the water column, particularly for the low water mass areas of BT-1, BT-2 and Lake 1 reflect the pathway of the contaminants well. The muskeg mass of Ni is clearly lower with 0.9 kglha compared to the sediment with **4.4** kglha. Lake 1 is considered uncontaminated background area.

<u>Iron Distribution</u>: Iron is included in the estimates of the mass of elements, since both the literature and field and laboratory reactor experiments implicate iron in the removal process. The mass of Fe in muskeg compared to sediments is again higher in the sediment, with the same exception of BT-3. Iron is element, which is easily precipitated from the water and retained in sediment and on submerged vegetation. Iron in muskeg is reflecting more the content of the living vegetation. The mass of iron in the water in BT-3 and BT-4 is higher than in all other areas, and the iron precipitation onto the muskeg is evident in the accumulation of an estimated 12t /ha on the muskeg form 71 kg/ha of the water. The mass of Fe generally in the water ranges from 1 to 6 kg/ha. Iron is not considered a element which **is** environmentally mobile in the same way than metals, as it readily precipitates and forms bog iron in the long term. Rather iron is cycled from the

sediment to the water and a iron pool has to be available in the muskeg, which is evident from the distributions presented in Table **4**.

<u>Sulphur Distribution</u>: Sulphur concentrations in muskeg are generally similar to those in pond sediments for BT-1 and BT-2. This is expected, since the vegetation component of muskeg is greater than that of sediments, and vegetation generally has a larger component of organic sulphur. In BT-3 the lower mass of sulphur in the sediments might be, a reflection of the volatile bog gas (H_2S), which is lost from aquatic ecosystems under appropriate biogeochemical conditions. H_2S was detected by smell in the BT-1 and BT-3 sediments (measured low redox), but not in the Lake 1 sediments (measured moderate redox) where the sediment mass of sulphur is similar to BT-1 and BT-2 with 1t of S in the sediment. Although anecdotal and evidence expressed by smell of H2S could reflect be used to reflect the microbial activity, which would be stimulated by nutrients supplied with the seepage. A systematic observation of smell was carried out on the laboratory samples. These are presented and discussed later in Section 3.2.

Loss on ignition: The distribution of organic matter as expressed by loss on ignition should reflect the fact that, in these muskeg/wetland type of ecosystems, organic matter decomposes relatively slowly, and muskeg should be higher in L.O.I. than sediments. This is indeed the case for all areas were samples were available (Table 4). The lower L.O.I. values for the BT-3 area, reflects the fact that these substrates represent old streambed, where organic matter does not readily accumulate.

It is possible to derive the organic carbon component of **the** material in a given area by deriving a relationship of L.O.I. and TOC. The relationship between these two variables was derived for the 1997 samples and, as shown in Figure 3. About 50 % of the L.O.I. is present as organic carbon. With this relationship, the carbon supply for the microbial activities for contaminant removal and biomineralization in the sediments can be assessed for each area. From these evaluations it is clear that, for the areas BT-3 and BT-4, for example, organic amendments or reconfiguration of wetland to promote vegetative growth may be required.

To further confirm the general principle of the contaminant retention capacity of wetland sediments, the distribution of the elements in the wetland compartments are calculated for the entire area surrounding the waste rock pile, considering the same compartments, water, sediment and muskeg. Based on a kg/ha basis using the entire area, the results are independent of the specific locations and the seepages.

Figures 4a to 4d represent the percentages of the total element concentration(kg·ha⁻¹) that are distributed in the different environmental compartments. They show clearly that these elements are distributed primarily in the pond sediments, followed by the muskeg solids, with a relatively small fraction in the water. The question that immediately presents itself, is, of course, the following: once the contaminants are in the sediment, will they remain there. One could argue, that the stability of a muskeg lays in its history. Muskeg vegetation has been developed since the retreat of the continental ice sheet, reported for northern central Canada to have taken place about 7000 years ago. This would support a relatively stable long term environmental compartment.

3.1 Easily Exchangeable As and Ni in Muskeg and Sediments

The generally accepted way of determining the chemical form of a contaminant in soil is a sequential extraction series. These have been carried out on the sediments and it was identified that Ni is present as either a carbonate or sulphide and As is associated with organic extractable fraction and iron (Kalin, 1994. And Fyson, Kalin and Lui 1995).

For the transport of metals in the toe seepages the ultimate form in which the metals are retained represents only one component of the use of muskeg for seepage treatment. The question of how the contaminant behaves in the muskeg / pond system during run-off events or intense rainstorms is equally relevant. Such events would create a strong concentration gradient in the ponds. If contaminants are not well adsorbed, they would be released into the water due to a diffusion gradient over the sediment. During spring run-off, the contaminant loading from the seepages could **be** higher, since weathering products formed and stored in the waste rock pile would be flushed out.

To determinate this fraction of As and Ni which might be mobilized during storms, runoff and snow melt an easily exchangeable fraction of As and Ni was defined as that fraction which would be extracted by distilled water. Such extractions were carried out on the solid samples collected in 1992 and 1993. Sub-samples of 60mL wet volume were slurried with 120mL of distilled water, in aerobic conditions at room temperature. The concentrations of As and Ni were measured in the resultant extracted water.

For same samples excess water was contained in the bags. The excess water from the bag was compared to the extracts or leachates derived with distilled water for the same samples (Table 5). Although these comparison could be carried out for only a few samples (because few existed with excess water in the sampling bag), they give some insight into the effects of freezing and thawing, as compared to leaching. The concentrations reported essentially confirm that freezing and thawing does not alter greatly the leachability of the elements of concern.

Sampled				ARS	ENIC	NIC	KEL
Date	Area	Zone	Location	Extract	Excess	Extract	Excess
	<u></u>			mg.L ⁻¹	mg.L ⁻¹	mg.L ⁻¹	mg.L ⁻¹
19/06/92	BT-1	Α	Stn200	0.199	<0.002	0.04	<0.01
09/06/93	BT-1	С	SP-7	0.02	0.061	<0.01	<0.01
09/06/93	BT-1	Ε	SP-8	<0.002	0.289	<0.01	0.09
09/06/93	BT-1	Е	SP-8	0.041	0.092	<0.01	<0.01
09/06/93	BT-3	A	SP-2	0.187	0.213	0.01	0.02
09/06/93	BT-3	В	SP-3	<0.002	<0.002	<0.01	<0.01

Table 5: Comparison of [As] and [Ni] for Extracts and Excess Pore Water

In Figures 5a and 5b, the easily leachable fraction is plotted as a function of the total concentration of **As** and Ni. From such a plot, a well defined relationship is expected as is evident for Ni and part of the sample population for **As**. The samples with low solids concentrations have a high fraction of easily exchange **As** and Ni , reflecting their low adsorption capacity. **As** the concentrations in the solids increase removal of the contaminants by water is no longer possible. It is argued, that if the original transport mechanism of the contaminant from the water column to the sediments which is mainly adsorption, would be the dominant mechanism **d** contaminant accumulation, than the samples with higher concentrations in the solids should release the same fraction. **As** this is not the case, it is postulated, that in the deeper portions of the sediments the organic material serves to facilitates biomineralization processes which convert the contaminants into more stable forms.

On the other hand, if biomineralization is not taking place, then the material with higher concentrations should have the same quantity of easely exchangable contaminat than the material with lower contamiant concentrations, as the removal is just adsorption and not biomineralization.

For **As** where two mechanisms of mineralization were identified, both adsorption onto organic matter and precipitation with oxidized iron. For arsenic one could expect two types

of samples, where the higher concentrations are due to iron co-precipitation (lower water solubility) and those due to adsorption processes similar to Ni.

The relationship for As (Figure 5a) between % easely exchangable and total concentrations in substrate defines essentially two types of samples. One set of samples (diamonds) reflects that low concentrations in the material have higher fraction of easily exchangeable **As**, whereas the population of samples identified by circles show a less defined trend and display the second removal mechanism, precipitation with iron.

For Ni, which is proposed to be removed from the water column by only one mechanism, namely adsorption to organics, all samples follow the expected trend, representing a uniform sample population, where the lower concentration solid samples have higher exchangeable fractions (Figure 5b). This relationship is in clear contrast to that of As where the removal process identified in the laboratory has been associated with both adsorption onto organics and precipitation with iron. Although this represents indirect evidence of the proposed mechanisms of contaminant relegation from the water to the sediment, the data seem to support the results from the laboratory.

A different argument used in the interpretation of the relationship between the fraction of the desorbed material (easily exchangeable %) would suggest that the higher concentration of the material has a lower adsorption capacity or fewer adsorption contaminants sites for the contaminants. As the adsorption capacity of the material increases, the fraction removed by an easily exchangeable extract, i.e., distilled water, should decrease.

When the concentrations in the solid material are very low, the fraction of easily exchangeable **As** is highest. The easily exchangeable **As** fraction displays two adsorption sites, with only for the second type rarely releasing more than 20% of the arsenic, i.e. 80% is retained in the material. For the second adsorption site, the percentage retained is generally more than 90% or, conversely,10% is exchangeable. Ni displays a consistent and uniform inverse relationship between the percentage of easily exchangeable Ni, and the total Ni concentration in the solid sample, i.e., the higher the total Ni concentration, the lower the percentage that is easily exchangeable.

3.2 As and Ni migration in the **muskeg** areas

In the previous section the data were examined using the easily exchangeable fraction and the solid concentrations to evaluate the proposed ongoing contaminant removal processes. However it could be argued, that sediments are enriched naturally with As and Ni due to the mineralization of the area. To dispel this argumentation, the data are further examined using relationships between elements to determine their origin. This analysis is based on the reasonable assumption, that if the contaminants are present in the muskeg samples at ratios similar to those in the waste rock pile, then the origin in the muskeg is mineralized.

In Appendix 2 the data are plotted for each relationship discussed. A summary of correlation coefficients (r), ratios describing the slope of the linear regressions, the sample size used (n) and the level of significance (P) of the regression is given in Table 6. The regressions are carried out on a molar basis as these reflect the proportions of the minerals better than concentrations.

Sample	Form	r	ratio	n	Р
Seepage	total	0 7973	0 57	70	<0.001
	dis	0 7313	0 55	121	<0 001
Rock		0 8963	0 44	96	<0 001
Muskeg	Surface	0 4843	121	37	<0 01
	Sediment	0 9670	0 75	12	<0 001

r: correlation coefficient; ratio: As / Ni; n: numbers of samples; p: significant levels

As can be expected, presented previously in the B-Zonewaste rock report, the correlation between As and Ni is very significant in the waste rock. It describes the mineralization, a co-occurrence of As and Ni. This is also the case for the deeper portions of the sediments, which appear even better correlated with a r of 0.967 as compared to the rock which has an r of 0.896 at the same level of significance at < 0.001.

It is proposed, that in the deeper portions of the sediments, the biomineralization processes take place and therefore a different mineral should be formed. This would have a different slope than that of the waste rock, which is the case. This is also the case for the material on the surface of the sediments, were the origin could be dust. The slope of the surface sediments is very different from all other material and suggests possibly a combination of material. These same regression on the toe seepage waters show the same statistics for both dissolved and total **As** and Ni. The slope is the same for both forms reflecting its origin form the minerals in the host rock.

The interpretation of the regression lines is strongly suggesting that the muskeg does support biomineralization processes. Further evidence was obtained when the data were sorted from the highest to the lowest concentrations of both contaminants and associated with observations made on the samples. Hydrogen sulphide smell would indicate sulphate reducing bacteria are active. They should only be active at depth, **as** only there the material would support reducing condition. Finally the colour suggest the quality of biodegradable organic matter. Black depleted and brown higher in biodegradable carbon sources, or less mineralized.

In Table 7a observations on the samples from the wetlands are summarized in **4** concentration intervals. The detailed descriptions are given in Appendix 1. In Appendix 2 individual observations are associated with the concentrations of each sample.

Ninety one (91 %) percent of the samples in the **lowest** concentration interval are from a depth greater than 25 cm and 18% have hydrogen sulphide smell associated with them.

With respect to their colour, used as an indicator of utilization of the carbon sources (black, less degradable carbon available and brown relatively more biodegradable material) the low **As** samples have a higher fraction of black than brown colour. **As** the concentrations increase more samples are in the upper layer of the muskeg and they have a strong smell.

In Table 6b the same data are summarized for Ni and the same picture emerges as for As. These observations support further the proposed capacity of the muskeg wetlands to

Table 7a: As Concentration Intervals and Sample Description

As Concentra interval	ation	De	pth		Smell			Colour	
ug.g-1	n	0-25cm	>25cm	NS	H2S,P	other	Bk	Bn	other
0.5-1.7	11	1	10	9	2	0	5	3	3
1.8-9.0	11	1	10	7	3	1	7	3	1
11.0-88.0	18	11	7	2	10	6	4	10	4
90.0-120.0	12	12	0	1	11	0	0	12	0
SUM	52	25	27	19	26	7	16	28	а

Smell: NS-no smell, H2S-H2S smell, P-pungent

Colure: Bk-black, Bn-brown.

As Concentra interval	tion	Depth			Smell		Colour			
ug.g-1	n	0-25cm	>25cm	NS	H2S,P	other	Bk	Bn	other	
1.4-2.7	а	1	7	8	0	0	5	1	2	
3.4-9.2	14	3	11	8	5	1	а	5	1	
12.0-54.0	19	12	7	3	11	5	4	11	4	
110.0-690.0	11	11	0	1	10	0	0	11	0	
SUM	52	27	25	20	26	6	17	28	7	

remove and immobilize As and Ni in the sediments. As biomineralization processes are evident in the sediments it is now possible to examine the muskeg samples further correlating those parameters relevant to the removal process from the water to the sediment, in a similar fashion that was carried out for rocks / seepage and muskeg samples. These regressions are carried out on the concentrations determined, as removal process from water to sediment has no stoichiometric basis as is the case for the mineralization.

The negative correlation of both **As** and Niwith L.O.I in the sediment suggests, that organic matter in the sediment is not associated with high concentrations of contaminants and therefore organic matter adsorption is not a dominant process, once the contaminant is relegated to the sediment. **As** of course the LOI concentrations are related to the content

of vegetation or undegraded biomass this relationship is reasonable for the solids. As the organic matter is utilized through degradation, the biomineralization takes place and removes organic content, converting it to carbon dioxide and water or utilizing it as energy for biomineralization.

As was suggested previously, iron is not very mobile and samples with high iron content, should contain low organic matter reflected by the negative correlation coefficient. Sulphur concentrations in relation to L.O.I display two types of samples. In the samples with a low L.O.I content, ie those where the biodegradable organic matter has been utilized, the correlation **is** positive and very significant, suggesting that sulphate reducing activity as taken place, utilized the organic matter and converted the sulphate into sulphide minerals. On the other hand, when an abundance degradable organic matter is present in the sample, the correlation is less significant and weaker.

The correlation coefficient between As and S in Table 8 is non existent and non significant at both high and low concentration ranges. For Ni the same holds true, however the scatter plot in Appendix 2 (fig A2-8) for the lower concentration range suggest a trend although not linear. For both contaminants the correlation with iron is reasonable and significant, supporting to the suggested processes.

pairs of elements	r	n	p
As/Ni	0.9781	52	0.001
As/L.O.I.	-0.4568	52	0.001
As/S	0.1019	29	>0.1
As/Fe	0.6220	51	0.001
Ni/L.O.I.	-0.4315	52	0.001
Ni/S	0.1387	29	>0.1
Ni/Fe	0.5277	51	0.001
Fe/LOI	-0.3923	51	0.01
S/LOI (a)	-0.5223	24	0.01
S/LOI (b)	0.9867	5	0.001

Table 8: Comparison of pairs of elements

n = number of samples; r = correlation coefficient;

p = significant levels

(a): Range S: 0-6000 ug.g-1; LOI: 80-100 %

(b): Range S: 0-2500 ug.g-1; LOI: 0-25 %

In summary the data generated from the wetland muskeg area surrounding the waste rock pile support the presence of the natural processes which provide a permanent sink for the contaminants released from the mining activity. The data interpretation provides evidence of the presence of biomineralization processes almost unequivocally.

3.3 As and Ni Migration in BT-3 and BT-4 Surface Water

The removal of contaminants from seepages from the waste rock pile appears to be taking place in sediments, thus wetlands or muskeg areas require ponds to efficiently remove contaminants ie. residence time of the water in contact with the sediments. Map 2 outlines the general direction of surface water run-off, which is generally diffuse, determined by the surface topography.

No surface water flow pathways obviously link the **WRP** run-off collection system with the BT-1 area. Similarly, drainage from the vicinity of the ore pile, lined with a polyliner only occasionally enters the BT-2 area. However, some **WRP** run-off water contains elevated As and Ni concentrations which appear to have moved beneath the **WRP** perimeter road into the BT-3 Stn 50 and Stn 100 areas. Elevated As and Ni concentrations have been measured in ponds in these areas (Figures 6a and 6b). The stations are arranged in the figure by date, and by the assumed direction of the water flow, although the stations are not linked directly by surface streams. Actual streams emerge from the muskeg down gradient towards lvison Bay, draining BT-3 (Stn 6.9.44 and Stn 6.9.4) and BT-4 (Stn 6.9.3). Water quality has been periodically determined at these stations to examine whether As and Ni are being transported towards lvison Bay.

To date, there is little evidence that **As** or Ni is being transported by surface streams or shallow groundwater via the **BT-4** area to Stn 6.9.3 to the Ivison wetland. Arsenic concentrations at Stn 6.9.44 have ranged from between 0.001 and 0.01 mg·L⁻¹, and Ni concentrations have ranged from 0.001 to 0.34 mg·L⁻¹. In 1995 and 1996, As and Ni concentrations at Stn 6.9.44 remained below 0.01 mg·L⁻¹. Further downstream at Stn

Map 1: B-Zone Sediment and Muskeg Profile Sampling Stations, 1992-97.

sampled from these piezometers has contained elevated As concentrations, compared to the SP-3 piezometers. SP-4 shallow groundwater contained particularly high As (up to 0.76 mg·L⁻¹) and Ni (0.18 mg·L⁻¹) concentrations in 1995. In 1997, Ni concentration continued to increase to 0.65 mg·L⁻¹ while As concentration decreased to 0.14 mg·L⁻¹. The shallow piezometer SP-9 is located near a section of the ore pile haul road and may periodically receive some surface run-off from the perimeter road, although this has not been directly observed. Dissolved As and Ni concentrations have remained elevated, compared to SP-3, in the years following 1993 to present (1997). This could be due to dusting from the ore pile.

Limited data exist for the shallow piezometers. An interpretation of the shallow hydrology together with the stratigraphy of the piezometers, may be required to define the shallow water movement in the vicinity of the wetlands. The wetland ponds during the summer can virtually dry out. This in turn may well affect the water quality in the shallow piezometers.

3.5 contaminants sources: Precipitates and evaporates on waste rock surfaces

Based on the seepages emerging at the base of the B-Zone waste rock pile a contaminant generation and release concept was developed and presented in the Collins Bay Decommissioning B-Zone waste rock pile; 1996 Final Report. The differences in chemical characteristics and contaminant release noted among approximately 29 temporal toe seepages suggested that, within the waste rock pile, weathering and oxidation products precipitate. In these precipitates Ni and As can accumulate. In turn the re-solubilisation of newly generated seepage from infiltrating water may result in different chemical characteristics of the emerging toe seepages. As these processes do not take place uniformly throughout the waste rock pile, toe seepages have different characteristics and those are different than having originated from weathering the waste rock.

In order to understand the stability or solubility of such secondary minerals / precipitates or evaporates, samples were collected during the September 1997 field trip from the

surface of the waste rock pile, which appeared *to* have formed on rock surfaces or they had precipitated in the toe seepages.

This work is considered as exploratory to obtain some insight into understanding of the weathering/precipitation processes which are associated with the waste rock pile. A better understanding of weathering and precipitation / evaporate formation processes could optimize environmental management in the long term.

Six solid samples from B-Zone waste rock piles are chosen for pH, conductivity, Em, Ni and As analysis. The qualitative description and chemistry derived from the slurries prepared with the field material 60 mL slurries prepared from the six samples are presented in Table 2.

The code BZWR -6 or 7 code refers to the sampling location of the seepages around the waste rock pile. The concentrations in the dried sample material of As and Ni in the As/Ni oxidized material and the WRP-P sludge are quite high with 1.7 % Ni and 1.5 % As respectively, in comparison to the other material which ranged from 0.03 % to 0.2 % for Ni and 0.02 % to 0.3 % for As (Table 2). The ratios of As and Ni concentrations in all but one of the samples are about 1 suggesting that they are the result of a reaction which involves similar proportions of both elements. The exception is the WRP-P sludge, which is enriched with **As** up to 6 %. Ni is not concentrated in the precipitated sludge (0.07 %) or not precipitated in the acidic seepage or alternatively Ni is not weathered in this particular seepage path in this location of the waste rock pile. The electrical conductivities are elevated for the samples with high concentrations of As and Ni and the pH values of these thick slurries, ie high solid ratio are low ranging from 2.7 to 3.9 with one exception the foam on the ditch, which has a higher pH of 5.1 (Table 2).

As the fresh slurries of the samples had low pH values, the dilution effects of water on the dry sample was quantified and the data are reported in Appendix 2 (Table A2-3).

The low pH measured in the fresh samples is a reflection of the wet volume/liquid ratio and not a result of oxidation reactions. This has been determined by storing the dilute 1 g/100 mL slurries in the refrigerator over time. The pH was measured periodically over a period of 404 h. It was confirmed that no reactions were evident, when the pH values were compared to the initial 1 h measurements (Table A2-4 in Appendix 2).

It was however noted from these series of experiments, that the nickel concentrations increased in two samples, the precipitated sludge of the WRP -P seepage and in the evaporate/ precipitate on the rocks AS/Ni oxidized. These results suggest, that when these precipitates are sitting in water they continue to release Ni. This is in contrast to the other materials evaluated with this series of experiments, where the concentrations remains the same. The precipitates are not stable, compared to the other material in this experimental series. Foam which forms on the ditch is quite stable and does not release too much Ni. The interpretationwhich may be derived from these preliminary results is that rain water would only transport a particular fraction of Nito the seepages, not from the total rock mass.

Cumulative batch leaching was also performed on these precipitate / evaporate samples, which indicated that the solubility or release of contaminants can be a result of the solid liquid ratio . After **404** h of leaching the slurries , additional 125 mL of distilled water was added as each determination of Ni used about 5 mL of solution. The concentrations of nickel would be expected to be about 50 % of the original, if no further nickel is released from the solids (Data in table xxx in Appendix 2). This is the case for the sandstone, the sludge, the **As/Ni** oxidized sample and the ditch foam. However the heamatizxed sandstone and the Graphitic gneiss release more Ni. This suggests that the solubility in water is related to a continued oxidation process and or that the release is related to the ratio of the solid to the liquid of the slurry until equilibrium is reached.

Using these results, to assess the fraction which is water soluble contaminant in the precipitates % extractable has been calculated (Table 9). These percentages are interesting, since the precipitate on the rocks, referred to as As/ Ni oxidized , containing

Location	DH2O	Extracted Ni	Total Ni	E-Ni in T-Ni	Extracted As	Total As	E-As in T-As
	added	(E-Ni)	(T-Ni)		(E-As)	(T-As)	
	(mL)	(mg/kg)	(mg/kg)	(%)	(mg/kg)	(mg/kg)	(%)
NW Ditch Foam	1900	933.3	2100	44.4	1280	3300	38.8
BZWR-7Graphitic Gneiss	1900	312.19	480	65.0	108.5	380	28.6
BZWR-6 Hematiled	1900	707.4	1300	54.4	571	2000	28.6
BZWR-6 As/Ni Oxidized	1900	4462.1	176000	2.5	3810	150000	2.5
BZWR-6 SS Area	1900	197	320	61.6	122.6	230	53.3
WRP-P Sludge	1900	607.2	740	82.1	2260	65600	3.4

Table 9: Percentage of Extracted-Ni/As in Total-Ni/As from Waste Rock Pile

the highest concentrations in the solid of **As** and Ni, shows the lowest fraction of both contaminants released to water. The sludge formed in the acid seepage at station **WRP-P** toe seepage, releases nearly all nickel to the water, but not the arsenic. **All** other materials tested release **44** % to 61 % of their nickel content and 28 to 53 % of their arsenic mass.

In summary the exploratory assessment of secondary precipitates / evaporates in comparison to the rocks on the waste rock pile surface allow the following conclusions. The precipitates are more leachable then the waste rock. Leachability of the contaminants is affected by the ratio of water to solids and the contaminants. Some precipitates, formed in acid toe seepages have low contaminant release but contain high concentrations of both **As** and Ni. Furthermore the gneiss and the sandstones have a finite quantity of Ni and **As** to release.

4.0 CONCLUSIONS

The experimental work on As and Ni retention by sediments, which had been carried out over the past 5 years in the field and the laboratory, was reported in the 1996 final report. In the same report, contaminant removal process from the water to the sediment was formulated and contaminant forms which accumulate in the sediment were identified, for both As and Ni. The ultimate challenge, however, lays in presenting evidence that these processes actually take place in the muskeg areas at large. Although it was noted from the control enclosures in BT-2 that even without organic amendment additions contaminant removal took place, such evidence can only be derived through empirical interpretation of characteristics of the samples in the key environmental components of the wetlands; ponds with water and sediment and the muskeg vegetation. In addition, concern was expressed, that if the contaminants are merely absorbed onto the organic matter and not biomineralized in the sediment, heavy rain events and snow meltwould produce a diffusion gradient leading to release of the contaminants.

To address the ultimate challenge, solid samples from the muskeg and ponded areas that were collected in the past were used, in addition to new samples obtained in 1997. To address the concern that release due to a diffusion gradient would occur, distilled water extracts were prepared from the samples to quantify an easily exchangeable fraction of the contaminants. It can be concluded that this is not the case as the contaminants are biomineralized.

The data interpretation of the distribution of the contaminants in the muskeg and pond sediment lead us to conclude that As and Ni are being retained in the sediments. The processes which lead to the accumulation in the sediments seem to be those identified in the laboratory and enclosure experiments. Although the data can only be used to indirectly confirm biomineralization, the behaviour of the easily extractable fractions of both **As** and Ni and the correlation coefficients between key operative parameters in the processes are a strong indication that biomineralization is taking place. Although the data interpretation is somewhat complicated by the presence of contaminant enrichment on the surface of the muskeg substrates due to aerial deposition, the differences between muskeg substrate and

45

sediment are clearly defined. Organic carbon and sulphur are abundantly present in those areas where contaminants accumulate. Iron, required for the removal of the contaminants from the seepage is also abundant.

It can be concluded through empirical interpretation of the data, that the proposed biomineralization processes take place in the muskeg areas around the waste rock pile. The mining activity has resulted in some aerial deposition of contaimants, but the accumulation in the pond sediments is significantly higher. Although the metals could be present throughout the area due to the natural mineralization this would be evidenced by higher concentrations in all strata regardless of depth. Clearly higher concentrations of As and Ni in solids material which represent the surface stratum were found compared to the concentrations in the material from deeper strata.

The sediments of BT-1 and BT-2 ponded areas have a higher mass of As and Ni than the control area (Lake 1) and are also higher than the respective values for the muskeg areas on a kg/ha basis. Even if all of the muskeg contaminant mass is attributed to aerial transport, the ponds which receive seepage from the ore pile and the waste rock pile periodically have significantly higher concentrations then from an aerial loading. Linear correlation coefficients between As and Ni in the waste rock reflect their mineralization. When the same correlations are made for muskeg and water, further evidence of biomineralizationcan be provided due to the differences in the slopes of the correlations. In the sediments a different minerals form is suggested, as compared to the waste rock. This supports further the conclusion that biomineralization in the sediments has taken place. Descriptive evidence derived from the samples of the muskeg or sediments, such a hydrogen sulphide smell, location and textural structure inferred microbial activity.

The data interpretation leads to the inevitable conclusion, that the sediments are actively sequestering contaminants to stable forms in the wetlands surrounding the waste rock pile and reflect the proposed contaminant removal processed identified from the experimental work.

APPENDIX 1

RAW DATA SUMMARY

LIST OF TABLES

Table 1:	B-Zone Area Muskeg and Sediment Sample Data Lab Description AI-3
Table 2:	B-Zone Area Muskeg and Sediment Sample Data Field and Lab Bulk Sample AI-6
Table 3:	B-Zone Area Muskeg and Sediment Sample Data Moisture, Density and Associated Data AI-9
Table 4 :	B-Zone Area Muskeg and Sediment Sample Data Leaching Experiment AI-12
Table 5:	B-Zone Area Muskeg and Sediment Sample Data Excess Pore Water AI-15
Table 6a:	B-Zone Area Muskeg and Sediment Sample Data Elemental Analysis AI-18
Table 6b:	B-Zone Area Muskeg and Sediment Sample Data Elemental Analysis AI-21
Table 7:	B-Zone Area Muskeg and Sediment Sample Data Whole Sample Analyses A1-24
Table 8a:	Arsenic Mass in BT-1, BT-2, BT-3, BT-4 and Lake 1 AI-27
Table 8b:	Nickel Mass in BT-1, BT-2, BT-3, BT-4 and Lake 1 AI-28
Table 8c:	Iron Mass in BT-1, BT-2, BT-3, BT-4 and Lake 1 AI-29

Table 8d:	Sulphur Mass in BT-1, BT-2, BT-3, BT-4 and Lake 1	41-30
Table 8e:	L.O.I. Mass in BT-1, BT-2, BT-3, BT-4 and Lake 1	AI-31
Table 9a:	Shallow Piezometers Water Quality Piezometers SP-1 and SP-2	AI-32
Table 9b:	Shallow Piezometers Water Quality Piezometers SP-3A and SP-3B	AI-33
Table 9c:	Shallow Piezometers Water Quality Piezometers SP-4 and SP-5	a1-34
Table 9d:	Shallow Piezometers Water Quality Piezometers SP-6 and SP-7	AI-35
Table 9e:	Shallow Piezometers Water Quality Piezometers SP-8 and SP-9	AI-36
Table 10a:	SRC Detection Limits for Solid and Filter Paper Samples	AI-37
Table 10b:	SRC Detection Limits for Water Samples	AI-38
Table 11:	Toe Seepage, 1992-1997 Data	A1-39

Table 1: B-Zone Area Muskeg and Sediment Sample Data - Lab Description

								LAB DESCRIPT	ION			
						Sample						
Sampled				Sample	Local	Depth	Driller	Lab				
Date	Area		Location	Туре	Substrate	(cm)	Description	Description	Colour	Texture	Smell	Moisture
19/06/92	BT-1	А	Stn200	dredge	sed	top20	Very fibrous mat. old root layer	peat w/IO	Gy,Bn	PW/IO,F,Sf,R,Tw	P	EW
25/08/97	BT-1	А	100	dredge	sed	top 20	sat. gray•d.br. coarse peat w roots	coarse peat	Gy,Bn	MOD,St,R,Sp,Si	H ₂ S	EW
25/08/97	BT-I	А	150	dredge	oed	top 20	sat. coarse peat w org.debris	coarse peat	DBn,Gy	SoTw,SoR,SoSt	P,H ₂ S	EW
25/08/97	BT-1	А	205	dredge	sed	top 20	sat.d.br. fine sediment	fine sediment	Bn,Gy,Y	MSt,SoR,LtOD,F,SI,	SgH _z S	EW
25/08/97	8 T -1	А	240	dredge	sed	top 20	sat. I.br. coarse sed w org.debris	coarse sediment	Bn,Gy	MTw,R,OD,MeGt,SI	SgH ₂ S	EW
20/06/92	BT-1	в	Stn 300	core	mus	0-25	peat	coarse peat	Y,DO	FaU,St,Ce	Р	М
20106192	ВТ-1	в	Stn 300	core	mus	25-50	peat	fine peat	Bn,O	FU/F, Ch,DeO	Р	М
09/06/93	BT-1	С	SP-7	Cut	mus	60	peat	peat	Y,O,B	P,MR,Mle,MTw,G	Р	S
09/06/93	BT-1	С	SP-7	Cut	mus	150	peat	peat	Bk,O	R,Tw,G	NS	EW
09/06/93	BT-1	D	SP-6	cut	mus	115	peat	peat	Bk,O	P.O. R. Tw,Sf	NS	W
09/06/93	BT-1	Е	SP-8	Cut	mus	95	peat	peat	Bk.O	G.Sp.SoR.F	NS	М
09/06/93	BT-1	Е	SP-8	cut	mus	150	peat	peat	Bk.O	P,Cy,FwR	NS	EW
09/06/93	BT-1	F	LOC 1	cut	mu5	40	peat	peat	Bk.O	MTw.MR.MDeO.P	NS	М
31/08/97	BT-1	F	North	cut	mus	0-25	l.br.coarse peat w roots	peat	LBn	MR,O	Or	Ŵ
09/06/93	BT-1	F	LOC 1	cut	mus	60	peat	clay w/organics	Bk,O	Cγ,O,S₀P	NS	м
09/06/93	BT-1	F	LOC 1	cut	mus	120	sand w gravel	sand w/pebbles	Bn,O	CeSd,VaPe,SoR, SoTw, CyCh	NS	D
31/08/97	BT-1	F	North	Cut	mus	25-50	m,br,coarse peat w roots	peat	Bn,LBn	P,FwR,Sp, Sf	Or	W
31/08/97	BT-1	F	North	Cut	mus	50-75	m.br.coarse peat w roots	peat	Bn,LBn	P,FwTw,VFwR,Sp,Sf	FOr	W
31/08/97	BT-1	F	North	Cut	mus	75-100	m.br.coarse peal W roots	peat	Bn,LBn	P,FwTw,VFwR,Sf,Sp	NS	W
09/06/93	BT-2	А	SP-5	cut	mus	30	peat	peat	Y,Bn	P,G,MTw,MR	Р	W
25/08/97	BT-2	А	250	dredge	sed	top 20	m.br. LS	gytia	Bn	LtOD,VF,ThSI	Р	EW
25/08/97	BT-2	А	350 S	dredge	sed	top 20	sat. I.br./y fine sed with org.debris	fine sediment	LBn,YGy	MR,MGr,F,ThSI	P_1H_2S	EW
25/08/97	BT-2	А	N End	dredge	sed	top 20	m.br. LS	gytia	DBn	MR,SoTw,SoOD,F,ThSI	Р	Ew
09/06/93	BT-2	А	SP-5	cut	mus	120	peat	peat	Bk,O,Y	P,VF,Gt,SoR	NS	VS
31/08/97	BT-2	в	100N	cut	mus	0-25	dead sphagnum. m.br.	peat	LBn,Bn	P,MTw,SoR,Sp,Sf	Or	W
31/08/97	BT-2	В	4WN	cut	mus	0-25	live sphagnum, shrub +roots	sphagnum	LBn	MOD,MR,MTw,Mo,Sp	œ	М
19/06/92	BT-2	8	Stn100	dredge	sed	top 20	grey, org fins particles	fine peat	Bk,Bn	P,O,F,Sf,MR	Р	W
25/08/97	BT∙2	в	100	dredge	sed	tap 20	m.br. LS	gytia	DBn	FwR,LtSt,FwOD,VF,ThSI	P_1H_2S	EW
31/08/97	BT-2	в	400N	Cut	mus	25-35	sat. I. br peat	peat	LBn,Bn	P,SoTw,SoR,Sf,Sp	NS	₩->WV
31/08/97	BT-2	в	100N	Cut	mus	25-50	fine m.br. grainy peat	peat	LBn,Bn	P,FwR,Sf,Sp	NS	VW
31/08/97	BT-2	B	4WN	Cut	mus	35-60	silty peat, m br., viscous	peat	DBn	P,SoTw,FwR,H,Sf,Sp	NS	W
31/08/97	BT-2	В	1 00N	Cut	muş	5075	m.br. fine peat	peat	Bn,Lbn	P,RFw,FwTw,Sp,Sf	NS	VW
31/08/97	BT-2	в	4WN	cut	mus	60-100	liquid, sand, silt, gravel	fine peat	DBn	FwR,FwTw,Pe,FGt,Si	NS	EW
31/08/97	BT-2	в	100N	cut	sed	75-100	l.br. peat	peat	Bn, Dbn, LBn	P,VFwR,Sf,Sp	NS	W

Boojum

CAMECO Corporation: Rabbit Lake Operation Utilization of Wetlands for Removal of As and Ni July, 1998

Table 1: 8-Zone Area Muskeg and Sediment Sample Data - Lab Description (continuation)

Т

LAB DESCRIPTION

Texture

Mo, Solid

MOD,R,Tw,Sf,Sp

MOD,St,Tw,R,Sf,Sp

P,Gt

ND

MTw.R

MO, P, R, Tw, DeO

P,MR,MOD,FwTw,FwSt,Sf,Sp

P.MR.SoTw.Sf.Sp

P,FwR,St,Tw,Sp

P,SoR,SoSt,FwTw,Sf,Sp

MOD,R,St,Tw,Sp

P,FwR,SoSt,FwTw,Sf,Sp

P,DeO,R,Tw,Gt

MSt,MR,SoTw,Mo,Sp

MMo,MSt,MR,MTw,Sf

P,MSt,MTw,SoR,SoMo,Sp

MMo,MR,MTw,soSt,VSf,Sp

MTw,St,Mo,Sp

P,MR,SoSt,Tw,Sf,Sp

P,MSt,SoR,Mo,Sp

OD,MTw,SoR,LtSt,F,Sf,Sp

P,R,Tw,DeO,Gt

P,MO,R,Tw

P,O,DeO,R,Twch

P,MR,SoSt,OD,Sf,Sp

MSt,Tw,SoR,Sp

P,MR,Tw,FwLe,Sf,Sp

P,SoOD,R,Tw,St,F,Sf,Sp

P.SoTw,SoR,Sf,Sp

P,H,SoTw,SoSt,Sf,F

FP,SoR,SoSt,VF,Sf,Sp

FP,FwR,FwSt,Sf,Sp

P,H,FwR,SoTw,SoSt,,F,Sf,Sp

P,FwR,St,H,Sf,Sp

H,FwR,FwSt,VF

LtOD,Sd,Pe,Gt

Sd,IO,SoTw,SoR

Si,Sd,VF,MIO,SoTw

P,T,Cy,MIO,SoR,SoCh,Sd

Smell

NS

SgOr,P

P,VSgH₂S

VSg H₂S

ND

 H_2S

DeOr

P,SgOr

P, H₂S

SgH_zS

P, H₂S

SgH₂S

P, H₂S

H2S

NS

SgH₂S

MH₂S

SgH₂S

SgH₂S

M H2S

SgH₂S

FH₂S

H2S

SIOr

NS

SgH₂S

SgH₂S

MH₂S

SgOr

VSgH₂S,P

M H₂S

Or, H₂S

MH₂S

SgH₂S

Or

FH₂S

NS

NS

NS

NS

Moisture

Ŵ

Μ

М

W

ND

EW

M->W

ΕW

W

W

W

Μ

W

W

M->W

W

W

W

EW

W

W

W

W

VM

Μ

W

W

Μ

W

W

Μ

W

W

Μ

W

Μ

Μ

Μ

D

М

							Sample			
[昭]	Sampled				Sample	Local	Depth	Driller	Lab	
lio	Date	Area		Location	Туре	Substrate	(cm)	Description	Description	Colour
Ĩ	28108197	BT-3	Α	BZW-T Zone	grab	mus	0-25		moss	LBn
3	31/08/97	BT-3	А	50	Cut	mus	0-25	gray milky particulates on l.br.peat	peat	Ba,Gy
·	31/08/97	BT-3	А	200	Cut	mus	0-25	sat. Ibr. coarse peat w roots	coarse peat	LBn
	09/06/93	BT-3	А	SP-2	cut	mus	75	peat	peat	Bk,O
	24/08/97	BT-3	А	150	grab	algae	surface		ND	ND
	24108197	BT-3	А	150	grab	sed	top20		sediment	DBn
	09/06/93	BT-3	А	SP-2	cut	mus	180	peat	peat	Bk,O
	31/08/97	BT-3	А	50	cut	mus	25-50	l.br.peat, some particulates	peat	LBn
	31/08/97	BT-3	А	200	Cut	mus	25-50	sat. Ibr, coar se peat	peat	Bn DBn
	31108197	BT-3	А	50	cut	mus	50-75	m.br.peat	peat	Bn,Lbn
	31/08/97	BT-3	А	200	cut	mus	50-75	sat. Ibr. coarse peat	peat	Bn,LBn
	31/06/97	BT-3	А	50	cut	mus	75-100	m.br.peat	m peat	Bn, Dbn
	31/08/97	BT-3	A	200	Cut	mus	75-100	sat. lbr. coarse peat	peat	Bn,LBn
	09/06/93	ET-3	в	SP-3	Cut	mus	20	peat	peat	Bk,Y,O
	31108197	BT-3	в	500	cut	rnus	0-25	I.br.eld sphagnum. live sedge roots	sphagnum	LBn
	31/08/97	ET-3	В	SP-3 DH	cut	mus	0-25	sat l.br. spahnumpeat. roots	sphagnum	LBn
	31/08/97	ET-3	В	500	cut	rnus	2550	l.br. saphnum. roots. coarse	peat	LBn
	31/08/97	BT-3	в	SP3 DH	Cut	mus	25-50	sat i.br. spahnumpeat. roots	sphagnum	Bn,LBn
	31/08/97	BT-3	в	500	cut	mur	50-75	m.br. saphnum.roots, coarse	sphagnum	LBn,Bn
	31/08/97	BT-3	в	SP-3 DH	Cut	mus	50-75	sat l.br. spahnumpeat, roots	peat	DBn,Dn
	31/08/97	BT-3	в	500	cut	mus	75-100	red- br. saphnum. roots. coarse	peat	LBn,Bn
	31/08/97	BT-3	в	SP3 DH	cut	mus	75-100	sat br. spahnumpeat, roots	sphagnum	DBn,Bn
	09/06/93	BT-3	в	SP-3	cut	mus	80	peat	peat	Bk,O
	09/06/93	BT-4	А	SP-1	cut	mus	105	peat	p e at	D,SIO
	09/06/93	BT-4	А	SP-4	Cut	mus	50	peat	peat	Bk,O
	31108197	BT-4	А	200	Cut	mus	0-25	m.br.sat peat w sedge roots	peat	Bn,DBn
	31108197	BT-4	А	400	-cut	mus	0-25	coarse peat. d.br.	coase peat	Bn,DBn
	31/08/97	BT-4	А	6.9.3 DH	Cut	mus	0-25	m.br. peat. coarse. red floc stain	peat	DBn
	31/08/97	BT-4	А	Stn 6.9.3	grab	floco	0-10	fron rich loose floc in pools	precipitate	
	31108197	ET-4	А	200	cut	mus	25-50	sat. m.br. peat	peat	DBn,Bn
	31/08/97	BT-4	А	400	cut	mus	25-50	sat. peatd br. coarse	peat	Bn
	31/08/97	ET-4	А	6.9.3 DH	cut	mus	2550	sat. carse d.br.peat	peat	DBn
	31/08/97	BT-4	А	200	cut	mus	50-75	sat. m.br. peat. LS compact	peat	DBn
	31108197	BT-4	А	400	cut	mus	50-75	sat. peatd br. coarse	peat	DBn,Bn
	31/08/97	BT-4	А	6.9.3. DH	cut	mus	50-75	sat. medium coarse d.be.peat	peat	DB"
'	31/08/97	BT-4	А	200	cut	mus	75-100	l.br. granular peat	peat	DBn
	31/08/97	BT-4	А	400	cut	mus	75-100	sat very wet d.br. fine LS-like	fine sphagnum	DBn
	31/08/97	BT-4	А	6.9.3 DH	cut	rnus	75-90	sat silt @ 0.9 m, refusal	silt	Bn,Gy
	09/06/93	BT-4	А	SP-1	cut	mus	140	gray till	sand w organics	B,Gy,W
	09106193	BT-4	А	SP-1	cut	mus	165	gray till w sand	sit/sand	Gy,W
	09/06/93	ET-4	А	SP-4	cut	mus	105	clay	clayey till	Bk,Gy,W

Table 1: B-Zone Area Muskeg and Sediment Sample Data - Lab Description (continuation)

							an a					
Sampled	Area		Location	Sample Type	Local Substrate	Sample Depth (cm)	Driller Description	LAB DESCRIPTION	Colour	Texture	Smell	Moisture
09/06/93 09/06/93	LAKE1 LAKE1	A A	SP-9 SP-9	cut cut	mus muskeg	65 90	peat clay	peat peat w clay	Y,Bn Bk,O	P,G,O P,Cy,SoR,SoTw	NS NS	D->M EW
19/06/92 19/06/92 19/06/92 19/06/92	LAKE1 LAKE 1 LAKE1 LAKE1	E B E F	Stn100 centre Stn100 Stn100	core dredge core core	mus sed mus mus	0-20 top20 20-40 40-60		peat fine organics peat peat	O DBn,Bk Gn,O Bk	P U,O,FwR,F,Sf P,MR,MTw P.VSp	NS P NS	EW EW M
19/06/92	LAKE1	В	Stn100	core	mus	60-80		peat	O,Bn	P,VF	NS	VM

rea: BT1,2,3,4: Locations originally named according to position along B-Zm e transects (BT)

A to F: Area on map

Location: Transect map 100 intervals: DH=Drill Hole, LOC=Location, N=North, S=South, SP=Shallow Pitzo, Stn=Station

Sample type and local substrate; Cut=Cuttings, Dred=Dredge, Mus=Muskeg, Sed=Sediment

Driller Description: be=beige, br=brown, d=dark, i=light, LS=gytia, m=medium, sat=saturated, sed=sediment, org=organic, w=with

Colour: Bk-Black. Bn-Brown, D-Dark, Gn-Green, Gy-Grey, L-Light, 0-Orange, Rd-Red, SI-Slight, Tn-Tan, W-White

Texture: Ce-Coarse, Ch-Chunk, Cy-Clay, De-Decomposing. Dr-Drier, F-Fine. Fa-Fairly. Fw-Few, G-Grainy, Gr-GrassGt-Grit, H-Humus, IO-Inorganic, La-Larger, Le-Leaf, Lt-Little,

M-Many. Me-Medium, Mo-Moss. O-Organic, OD-Organic Debris. P-Peat, Pe-Pebble, R-Root. Sd-Sand, Sf-Soft, Si-Silty, SI-Sludge, So-Som.

Sp-Spongy, St-Straw. T-Till, Th-Thick, Tw-Twig, U-Uniform. V-Very. Va-Various. W/-With

Smell: Ds-Decomposing. F-Faint, M: Moderate. NS-No Smell, Or-Organic Smell, P-Pungent, Sg-Strong, SI-Slight, V-Very

Moisture: D-Dry, EW-ExcessWater, M-Moist, S-Saturated, V-Very, W-Wet

NA=Not Analyzed, ND=Not Determinated, NM-Not Measureable because of no enough water

							F	IELD BU	LK SAMPL	F	LAB BULK SAMPLE				
						Sample	•			-				-	
Sampled				Sample	Local	Depth	pН	Temp	Cond	Em	pН	Temp	Cond	Em	
Date	Area		Location	Type	Substrate	(cm)		(C)	(uS/cm)	(mV)		(C)	(uS/cm)	(mV)	
19/06/92	ET-I	A	Stn200	dredge	sed	top 20				<u> </u>		,			
25/08/97	ET-I	A	100	dredge	hed	top 20	6.24	11.7	118	-66	6.22	25.5	59	-148	
25/08/97	ET-1	А	150	dredge	sed	top 20	6.12	11.5	112	-55	5.92	24	81	-139	
25/08/97	ET-1	А	205	dredge	sed	top 20	6.21	12.3	a7	-58	5.77	24	70	-148	
25/08/97	ET-I	А	240	dredge	sed	top 20	6.18	12.1	74	46	5.87	24	59	-122	
20/06/92	ET-I	Е	Stn 300	core	mus	0-25	NM	NM	NM	NM	NM	NM	NM	NM	
20/06/92	BT-1	B	Stn 300	core	mus	25-50	NM	NM	NM	NM	NM	NM	NM	NM	
09/06/93	ET-1	С	SP-7	cut	mus	60	NM	NM	NM	NM	NM	NM	NM	NM	
09/06/93	ET-I	С	SP-7	cut	mus	150	NM	NM	NM	NM	NM	NM	NM	NM	
09/06/93	BT-1	D	SP-6	cut	mus	115	NM	NM	NM	NM	NM	NM	NM	NM	
09/06/93	ET-1	Е	SP-8	cut	mus	95	NM	NM	NM	NM	NM	NM	NM	NM	
09/06/93	ET-I	Ε	SP-8	cut	mus	150	NM	NM	NM	NM	NM	NM	NM	NM	
09/06/93	ET-I	F	LOC 1	cut	mus	40	NM	NM	NM	NM	NM	NM	NM	NM	
31/08/97	BT-I	F	North	cut	mus	0-25	NM	NM	NM	NM	NM	NM	NM	NM	
09/06/93	BT-1	F	LOC 1	cut	mus	60	NM	NM	NM	NM	NM	NM	NM	NM	
09/06/93	ET-I	F	LOC 1	cut	mus	120	NM	NM	NM	NM	NM	NM	NM	NM	
31/08/97	ET-I	F	North	w t	mus	25-50	NM	NM	NM	NM	NM	NM	NM	NM	
31/08/97	ET-I	F	North	cut	mus	50-75	NM	NM	NM	NM	NM	NM	NM	NM	
31/08/97	BT-1	F	North	cut	mus	75-100	NM	NM	NM	NM	NM	NM	NM	NM	
19/06/93	ET-2	А	SP-5	cut	mus	30	NM	NM	NM	NM	NM	NM	NM	NM	
25/08/97	ET-2	А	250	dredge	sed	top 20	5.87	13	91	-12	5.64	25	55	-95	
15/08/97	ET-2	А	350 S	dredge	sed	top 20	5.91	13.1	68	-19	5.54	24	68	-120	
25/08/97	ET-2	А	N End	dredge	sed	top 20	5.74	12.5	68	-3	5.33	24	63	4 1	
19/06/93	ET-2	A	SP-5	cut	mus	120	NM	NM	NM	NM	NM	NM	NM	NM	
11/08/07	ET-2	Е	100N	cut	mus	0-25	NM	NM	NM	NM	NM	NM	NM	NM	
11/08/07	ET-2	Е	400N	cut	mus	0-25	NM	NM	NM	NM	NM	NM	NM	NM	
19/06/92	BT-2	Е	Stn100	dredge	sed	top 20	NM	NM	NM	NM	NM	NM	NM	NM	
25/08/97	BT-2	Е	100	dredge	sed	top 20	5.46	12	84	-6	5.28	24	85	46	
31/08/97	ET-2	8	400N	wt	mus	25-35	NM	NM	NM	NM	NM	NM	NM	NM	
11/08/97	BT-2	Е	100N	w t	mus	25-50	NM	NM	NM	NM	NM	NM	NM	NM	
11/08/97	ET-2	Е	400N	cut	mus	35-60	NM	NM	NM	NM	NM	NM	NM	NM	
11/08/97	ET-2	В	100N	cut	mus	50-75	NM	NM	NM	NM	NM	NM	NM	NM	
11/08/97	ET-2	Е	400N	w t	rnus	60-100	NM	NM	NM	NM	NM	NM	NM	NM	
31/08/97	ET-2	Е	100N	cut	sed	75-100	NM	NM	NM	NM	NM	NM	NM	NM	

Table 2: B-Zone Area Muskeg and Sediment Sample Data - Field and Lab Bulk Sample

							F	IELD BUI	LK SAMPL	E		LAB BUL	K SAMPLE	
						Sample								
Sampled				Sample	Local	Depth	pН	Temp	Cond	Em	рH	Temp	Cond	Em
Date	Area		Location	Туре	Substrate	(cm)		(C)	(uS/cm)	(mV)		(C)	(u\$/cm)	(mV)
28/08/97	ET-3	Α	BZW-T Zone	grab	mus	0-25	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	BT-3	Α	50	cut	mus	0-25	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	BT-3	А	200	cut	mus	0-25	NM	NM	NM	NM	NM	NM	NM	NM
09/06/93	ET-3	Α	SP-2	wt	mus	75	NM	NM	NM	NM	NM	NM	NM	NM
24/08/97	BT-3	Α	150	grab	algae	surface	ND	ND	ND	ND	ND	ND	ND	ND
24/08/97	ET-3	Α	150	grab	sed	top 20	NM	NM	NM	NM	NM	NM	NM	NM
09/06/93	ET-3	Α	SP-2	Cut	mus	180	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	ET-3	Α	50	cut	muo	25-50	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	BT-3	Α	200	cut	mus	25-50	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	BT-3	Α	50	cut	mus	50-75	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	BT-3	Α	200	cut	mus	50-75	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	BT-3	Α	50	cut	mus	75-100	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	BT-3	А	200	cut	mus	75.100	NM	NM	NM	NM	NM	NM	NM	NM
09/06/93	BT-3	8	SP-3	cut	mus	20	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	ET-3	В	500	Wt	mus	0-25	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	ET-3	Е	SP-3 DH	cut	mus	0-25	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	BT-3	В	500	cut	mus	25-50	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	ET-3	В	SP3 DH	cut	mus	25-50	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	ET-3	В	500	cut	rnus	50-75	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	ET-3	В	SP-3 DH	cut	mus	50-75	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	BT-3	B	500	cut	mus	75-100	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	BT-3	E	SP3 DH	cut	mus	75-100	NM	NM	NM	NM	NM	NM	NM	NM
09/06/93	BT-3	E	SP-3	cut	mus	80	NM	NM	NM	NM	NM	NM	NM	NM
09/06/93	ET4	А	SP-1	cut	mus	105	NM	NM	NM	NM	NM	NM	NM	NM
09/06/93	BT-4	А	SP-4	cut	mus	50	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	BT-4	А	200	cut	mus	0-25	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	ET4	А	400	cut	mus	0-25	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	BT-4	А	6.9.3 DH	cut	rnus	0-25	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	BT4	А	Stn 6.9.3	grab	floce	0-10								
31/08/97	BT4	А	200	cut	mus	25-50	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	BT-4	А	400	cut	mus	25-50	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	BT-4	А	6.9.3 DH	cut	mus	25-50	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	BT-4	А	200	cut	mus	50-75	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	8T-4	А	400	cut	mus	50-75	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	BT-4	А	6.9.3. DH	wt	mus	50-75	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	BT-4	A	200	¢ut	mus	75-100	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	BT-4	A	400	cut	mus	75-100	NM	NM	NM	NM	NM	NM	NM	NM
31/08/97	BT4	A	6.9.3 DH	cut	mus	75-90	NM	NM	NM	NM	NM	NM	NM	NM
09/06/93	BT4	A	SP-1	cut	mus	140	NM	NM	NM	NM	NM	NM	NM	NM
09/06/93	BT4	A	SP-1	cut	mus	165	NM	NM	NM	NM	NM	NM	NM	NM
09/06/93	BT-4	Δ	SP-4	cut	mus	105	NM	NM	NM	NM	NM	NM	NM	NM
00/00/00	Ψ· ·	~	<u> </u>			. 20								

 Table 2: B-Zone Area Muskeg and Sediment Sample Data - Field and Lab Bulk Sample (continuation)

						Sample	F	IELD BUI	K SAMPLI	Ē		LAB BULI	< SAMPLE	
Sampled Date	Area		Location	Sample Type	Local Substrate	Depth (cm)	рН	Temp (C)	Cond (uS/cm)	Em (mV)	рН	Temp (C)	Cond (uS/cm)	Em (mV)
09/06/93	TAKE 1	٨	SP.0	cut	mue	65	NM	NM	NM	NM	NM	NM	NM	NM
09/06/93	LAKE 1	Â	SP-9	cut	muskeg	90	NM	NM	NM	NM	NM	NM	NM	NM
19/06/92	LAKE1	в	Stn100	core	mus	0-20	NM	NM.	NM	NM	NM	NM	NM	NM
19/06/92	LAKE 1	в	centre	dredge	sed	top 20	NM	NM	NM	NM	NM	NM	NM	NM
19/06/92	LAKE 1	В	Stn100	core	mus	20-40	NM	NM	NM	NM	NM	NM	NM	NM
19/06/92	LAKE 1	в	Stn100	core	mus	40-60	NM	NM	NM	NM	NM	NM	NM	NM
19/06/92	LAKE 1	в	Stn100	core	mus	60-80	NM	NM	NM	NM	NM	NM	NM	NM

Table 2: B-Zone Area Muskeg and Sediment Sample Data - Field and Lab Bulk Sample (continuation)

Merck Hach Merck/Hach Ni in Sample Moisture Sample Sample Sample Extraction As in Extractable g.m⁻¹ Depth g.m⁻³ Sample Local Density Content wet wt. g water vol. extract extract Sampled drv wt pore water mg.L⁻¹ mg.L⁻¹ Date Area Location Type Substrate (cm) g/mL % 60 mL sample (g) vol., L L (+120 mL) Ni As dredge 59,500 0.8 0.050 19/06/92 BT-I А Stn200 sed top 20 0.99 78.3 12.920 0.047 0.167 2.2 0.14 BT-1 А top *M* 1.27 85.8 10.8 0.065 ND 25/08/97 100 dredge sed 76.1 0.185 ND ND ND BT-1 А 150 85.6 73 0.063 0.183 ND ND 25/08/97 dredae sed top **M** 1.22 10.5 ND ND 0.080 0.200 25/08/97 BT-1 А 205 top 20 1.35 86.6 92.1 12.3 ND ND ND ND dredgs sed 25/08/97 BT-I А 240 dredge top 20 1.19 88.6 712 8.1 0.063 0.183 ND ND ND ND sed BT-I В Stn 300 0-25 0.86 51.400 4.260 0.047 0.167 0.25 0.118 20/06/92 con mus 91.7 0.70 0.33 8 56.600 20/06/92 BT-I Stn 300 mus 25-50 0.94 80.4 11.100 0.046 0.188 0.05 0.315 0.14 0.87 ന BT-1 С SP-7 Cut 60 0,88 52,600 6.900 0.046 0.166 09/06/93 86.9 0.05 0.514 0.14 1.42 mus BT-I С SP-7 74.500 09/06/93 150 1.24 87.7 9.200 0.065 0.185 < 0.05 0.418 0.15 1.28 cut. mus 09/06/93 **BT-1** D SP-6 Cut mus 115 0.93 76.9 55,700 12.870 0.043 0.163 < 0.05 0.017 0.14 0.05 Е SP-8 95 0.93 56.000 0.048 BT-I 86.4 7.610 0.168 0.05 09/06/93 Cut mus 0.416 0.14 1.17 BT-I Е SP-8 150 0.95 82.7 56.700 9.840 0.047 0.167 0.05 1.278 3.55 09/06/93 0.14 Cut mus BT-I F LOC I 40 0.97 58.400 14.300 0.044 0.164 0.05 09/06/93 75.4 < 0.324 0.14 0.89 cut mus 31/08/97 BT-I F North 0-25 0.71 91.6 42.8 3.6 0.039 0.159 ND ND ND ND Cut rnus ۰. F 61.2 48,400 18,790 0.150 0.12 09/06/93 BT-I LOC 1 Qut rnus 60 0.81 0.030 < 0.05 2.474 6.17 09/06/93 BT-I F LOC 1 120 1.31 91.7 78.800 63.410 0.072 0.192 < 0.05 0.032 0.16 0.10 Cut mus F 25-50 89.7 0,038 31/08/97 BT-I 0.71 42.6 4.4 0,158 ND ND ND ND North mus Cut 31/08/97 F 50-75 0.85 94.3 50.8 2.9 0.048 0.168 ND ND ND ND BT-I North Cut mw F 0.163 31/08/97 BT-I North mus 75-100 0.76 94.7 45.5 2.4 0.043 ND ND ND ND Cut 09/06/93 BT-2 А SP-5 cut 30 1.07 85.2 64,100 9.510 0.055 0.175 < 0.05 0.548 0.15 1.59 mus 1.22 92.1 73.2 58 0.067 25/08/97 BT-2 А 250 dredae sed top 20 0.187 ND ND ND ND

86.1

90,9

79.9

89.1

85.5

71.3

92.8

92.8

87.2

63.6

92.2

26.7

90.6

1.15

1.17

1.10

0.75

0.29

1.05

1.35

0.78

0.73

1.08

0.77

1.74

0.64

top 20

top 20

120

0-25

0-25

top 20

top 20

25-35

25-50

35-60

55-75

60-100

75-100

69.1

70.3

65,900

44.8

17.3

62,900

81

47.1

43.7

64.6

46

104.4

38.3

۰.

9.6

6.4

13.270

4.9

25

18,050

5.8

3.4

5.6

23.5

3.6

78.5

3.6

0.060

0.064

0.053

0.040

0.015

0.045

0.075

0.044

0.038

0.041

0.042

0.028

0.035

0.180

0.184

0.173

0.160

0.135

0.165

0.195

0.164

0.158

0.161

0,162

0.148

0.155

ND

ND

0.1

ND

ND

0.25

ND

ND

ND

ND

ND

ND

ND

ND

ND

0.646

ND

ND

0.339

ND

ND

ND

ND

ND

ND

ND

ND

ND

0.29

ND

ND

0.69

ND

ND

ND

ND

ND

ND

ND

ND

ND

1.86

ND

ND

0.93

ND

ND

ND

ND

ND

ND

ND

Table 3: B-Zone Area Muskeg and Sediment Sample Data - Moisture, Density and Associated Data

A1-9

8T-2

BT-2

25/08/97

25/08/97

09/06/93

31/08/97

31/08/97

19/06/92

25/08/97

31/08/97

31/08/97

31/08/97

31/08/97

31/08/97

31/08/97

А

А

А

В

В

в

В

В

В

8

в

В

В

350 S

N End

SP-5

IWN

4WN

Stn100

100

400N

100N

400N

IWN

4WN

100N

dredge

dredge

cut

cut

cut

dredge

dredge

Qt

cut

cut

cut

cut

Cut

sed

sed

mus

mus

rnus

sed

sed

mus

rnus

mus

rnus

rnus

sed

Boojum

Table 3: B-Zone Area Muskeg and Sediment Sample Data - Moisture, Density and Associated Data (continuation)

													Merck	Hach	Merck/Ha	ach
						Sample		Moisture	Sample	Sample	Sample	Extraction	As in	Ni in	Extracta	ble
Sampled				Sample	Local	Depth	Density	Content	wet wt, g	dry wt	pore water	water vol.	extract	extract	g.m ⁻³	g.m ⁻¹
Date	Area		Location	Туре	Substrate	(cm)	g/ml.	%	60 mL sample	(g)	vol., L	L (+120 mL)	mg L ¹	mg.L ⁻¹	As	Ni
28/08/97	BT-3	Α	BZW-T Zone	grab	mus	025	1.04	70.1	62.3	18.6	0.044	0.164	ND	ND	ND	ND
31/08/97	BT-3	Α	50	cut	mus	025	0.67	83.2	40.4	6.8	0.034	0.154	ND	ND	ND	ND
31/08/97	BT-3	Α	200	cut	mus	0-25	0.69	89.4	41.6	4.4	0.037	0.157	ND	ND	ND	ND
09/06/93	BT-3	Α	SP-2	Cut	mus	75	0,98	86.1	58,800	8.190	0,051	0.171	0.4	0.416	1.14	1.18
24/08/97	BT-3	Α	150	grab	algae	surface	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
24/08/97	BT-3	Α	150	grab	sed	top 20	0.87	86.3	52	7.1	0.045	0.165	ND	ND	ND	ND
09/06/93	BT-3	Α	SP-2	cut	mus	180	0.94	87.8	56.200	6.840	0.049	0.169	0.4	0.493	1.13	1.39
31/08/97	ET-3	Α	50	Cut	mus	25-50	0.87	89.4	52.1	5.5	0.047	0.167	ND	ND	ND	ND
31/08/97	BT-3	Α	200	Cut	mus	25-33	0.89	92.5	53.5	4	0.050	0.170	ND	ND	ND	ND
31/08/97	8T-3	Α	50	cut	mur	52-75	0.88	91.2	52.5	4.6	0.048	0.168	ND	ND	ND	ND
31/08/97	BT-3	Α	200	Cut	mus	50-75	0.80	92.1	48.3	3.8	0.045	0.165	ND	ND	ND	ND
31/08/97	BT-3	Α	50	Cut	mus	75-100	0.72	88.5	43.3	5	0.038	0.158	ND	ND	ND	ND
31/08/97	BT-3	Α	200	Cut	mus	75-100	1.09	93.3	65.3	4.4	0.061	0.181	ND	ND	ND	ND
09/06/93	BT-3	в	SP-3	Cut	mus	20	0.97	84.3	58.300	9,150	0.049	0.169	• 0.05	0.545	0.14	1.54
31/08/97	BT-3	В	500	Cut	mus	025	0.83	89.8	49.8	5.1	0.045	0.165	ND	ND	ND	ND
31/08/97	BT-3	В	SP-3 DH	Cut	mus	0-25	0.90	93.5	53.9	3.5	0.050	0.170	ND	ND	ND	ND
31/08/97	BT-3	В	500	cut	mus	25-50	0.79	93.1	58	4	0.054	0.174	ND	ND	ND	ND
31/08/97	BT-3	в	SP3 DH	cut	mus	25-50	0.84	93.4	50.2	3.3	0.047	0.167	ND	ND	ND	ND
31/08/97	BT-3	в	500	cut	mus	50-75	0.88	93.4	53	3.5	0.050	0.170	ND	ND	ND	ND
31/08/97	BT-3	в	SP-3 DH	cut	mus	50-75	0.82	90.9	49.4	4.5	0.045	0.165	ND	ND	ND	ND
31/08/97	BT-3	в	500	Cut	mus	75-100	0.88	93.3	52.5	3.5	0.049	0.169	ND	ND	ND	ND
31/08/97	BT-3	в	SP3 DH	Cut	mur	75-100	0.98	90.5	58	5.5	0.053	0.173	ND	ND	ND	ND
09/06/93	BT-3	В	SP-3	Cut	mus	80	1.28	61.2	76.900	10.710	0.047	0.167	0.05	0,302	0.14	0.84
09/06/93	BT-4	Α	SP-1	cut	mus	105	0.89	83.4	53.600	8,880	0,045	0.165	0.4	0.170	1.10	0.47
09/06/93	BT-4	Α	SP-4	cut	mus	50	0.95	84.8	57.000	8,660	0.048	0.168	0.05	0.155	0.14	0.43
31/08/97	BT-4	Α	200	cut	mus	0-25	0.82	89.6	49	5.1	0.044	0.164	ND	ND	ND	ND
31/08/97	BT-4	Α	400	Cut	mus	0-25	0.84	89.7	50.7	5.2	0.046	0.166	ND	ND	ND	ND
31/08/97	BT-4	Α	6.9.3 DH	cut	mus	0-25	0.79	77.2	47.3	10.8	0.037	0.157	ND	ND	ND	ND
31/08/97	BT-4	Α	Stn 6.9.3	grab	flocc	0-10										
31/08/97	BT-4	Α	200	cut	mus	25-50	1.01	87.8	60.6	7.4	0.053	0.173	ND	ND	ND	ND
31/08/97	BT-4	Α	400	cut	mur	25-50	0.81	92.8	48.4	3.5	0.045	0.165	ND	ND	ND	ND
31/08/97	BT-4	Α	6.9.3 DH	Cut	mus	25-50	0.85	77.4	50.8	11.5	0.039	0.159	ND	ND	ND	ND
31/08/97	BT-4	Α	200	cut	mus	50-75	1.09	83.7	65.5	10.7	0.055	0.175	ND	ND	ND	ND
31/08/97	BT-4	Α	400	cut	mus	50-75	0.76	86.9	45.8	6	0.040	0,160	ND	ND	ND	ND
31/08/97	BT-4	Α	6.9.3. DH	Cut	mus	5075	0.90	76.4	53.9	12.7	0.041	0.161	ND	ND	ND	ND
31/08/97	BT-4	Α	200	cut	mus	75-100	0.69	84.1	41.4	6.6	0.035	0.155	ND	ND	ND	ND
31/08/97	BT-4	Α	4 w	cut	mus	75-100	0.87	68.6	52.2	16.4	0.036	0.156	ND	ND	ND	ND
31/08/97	BT-4	A	6.9.3 DH	Cut	mus	75-90	1.08	31.3	64.9	44.6	0.020	0.140	ND	ND	ND	ND
09/06/93	BT-4	Α	SP-1	Cut	mus	140	0.90	42.1	54.100	31.340	0.023	0.143	0.05	0.103	0.12	0.25
09/06/93	BT-4	A	SP-1	cut	mus	165	1.19	16.8	71.200	59.420	0.012	0.132	0.05	0.075	0.11	0.16
09/06/93	BT-4	Α	SP-4	Cut	mus	105	1.21	33.7	72,400	47.990	0.024	0.144	0.1	0,195	0.24	0.47
VALADIAD	D1-4	A	51-4	Gui	mus	105	1.21	55.7	(6.7VV	71.444	0.024	¥. (77	0.1	¥, 144	0.24	

													Merck	Hach	Merck/H	ach
						Sample	ľ	Moisture	Sample	Sample	Sample	Extraction	As in	NI in	Extracta	ble
Sampled				Sample	Local	Depth	Density	Content	wet wt, g	dry wt	pore water	water vol.	extract	extract	g.m ⁻¹	g.m ⁻³
Date	Area		Location	Туре	Substrate	(cm)	g/mL	%	60 mL sample	(g)	vol., L	L (+120 mL)	mg.L ⁻¹	mg.L ⁻¹	As	Ni
									FF 400			0.400				
09/06/93	LAKE1	Α	SP-9	cut	mus	65	0.92	89.1	55,100	5.990	0.049	0,169	1.0	0.201	2.82	0,57
09/06/93	LAKE1	Α	SP-9	cut	muskeg	90	1.07	79.0	64.200	13.510	0.051	0.171	0.1	1.092	0.28	3.11
19/06/92	LAKE1	в	Stn100	core	mus	0-20	0.75	91.8	45.200	3.720	0.041	0.161	< 0.05	0.078	0.13	0.21
19/06/92	LAKE1	В	centre	dredge	sed	top 20	1.07	80.5	64.400	12.550	0.052	0.172	< 0.05	0.201	0.14	0.58
19/06/92	LAKEI	В	Stn100	core	mus	20-40	0.60	90.7	35.900	3.320	0.033	0.153	< 0.05	0.247	0.13	0.63
19/06/92	LAKEI	8	Stn100	core	mus	40-60	0.62	81.4	37,400	6.970	0.030	0.150	< 0.05	0.229	0.13	0.57
19/06/92	LAKE 1	в	Stn100	core	mus	60-80	0.95	88.1	56,800	6.730	0.050	0.170	0.1	0.311	0.28	0.88

.

Table 3: B-Zone Area Muskeg and Sediment Sample Data - Moisture, Density and Associated Data (continuation)

						- ·							SRC		SRC	Based	on SRC
				• •		Sample	EXTE	RACT	• •	Б					AP	Extra	actable
Sampled				Sample	Local	Depth	рн	Temp	Cond'	Em	Assay		As, Assay		NI, Assay	g.m~	g.m~
Date	Area		Location	Type	Substrate	(CM)		<u> </u>	us.cm"	mV	No.		mg.L		mg.L	As	NI
19/06/92	BT-1	A	Stn200	dredge	sed	top 20	6.63	21.8	104	ND	6379		0.199		0.04	0.55	0.11
25/08/97	81-1	A	100	dredge	sed	top 20	5.64	23	50	-130			ND		ND	ND	ND
25/08/97	84-1 DT 4	A	150	areage	sea	top 20	5.72	23	60	-120			ND		ND	ND	ND
23/00/37	DI-I DT 4	A	205	dredee	sed	top 20	5.03	23	00	-104							ND
20/06/97	01-1	А	240	areage	sea	ιορ 20	5.41	23	32	-120			ND		ND	ND	UM
20/06/92	BT-1	в	Stn 300	core	mus	025	5.63	21.8	35	ND	6380		0.157	<	0.01	0.44	0.028
20/06/92	BT-1	В	Stn 300	core	mus	25-50	5.08	21.9	30	ND	6381		0.065	С	0.01	0.18	0.028
09/06/93	BT-1	С	SP-7	cut	mus	60	5.20	21.7	37	ND	6371		0.044	<	0.01	0.12	0.028
09/06/93	BT-I	С	SP-7	Cut	mus	150	5.33	21.8	40	ND	6372		0.02	<	0.01	0.06	0.031
09/06/93	BT-1	D	SP-6	Cut	mus	115	5.24	21.8	50	ND	6388	<	0.002	<	0.01	0.005	0.027
09/06/93	BT-I	F	SP-8	Cut	mus	95	4 90	21.8	55		6374	<	0.002	e	0.01	0.006	0 028
09/06/93	8T-1	E	SP-8	Cut	mus	150	4.58	21.8	50	ND	6373		0.041	<	0.01	0.11	0,028
09/06/93	BT-1	F	LOC 1	Cut	mus	40	5.13	21.7	139	ND	6370	<	0,002	<	0.01	0.01	0.027
31/08/97	BT-I	F	North	cut	mus	0-25	4.59	20	25	284			ND		ND	ND	ND
09/06/93	BT-I	F	LOC 1	Cut	mus	60	5.03	21.7	90	ND	6369	с	0.002	с	0.01	0.005	0.025
09/06/93	BT-1	F	LOC 1	Cut	mus	120	4.52	22.1	155	ND	6367	<	0.002	<	0.01	0.006	0.032
31/08/97	BT-I	F	North	cut	mus	25-50	4.24	19.5	21	352			ND		ND	ND	ND
31/08/97	BT-I	F	North	Cut	mus	50-75	4.79	20	28	322			ND		ND	ND	ND
31/08/97	BT-1	F	North	cut	mus	75-100	4.21	19.5	22	346			ND		ND	ND	ND
09/06/93	BT-2	Α	SP-5	cut	mus	30	5.20	21.6	42	ND	6377	с	0.002	с	0.01	0,006	0.029
:25/08/97	BT-2	Α	250	dredge	sed	top 20	4.96	23	45	-56			ND		ND	ND	ND
:25/08/97	BT-2	Α	350 S	dredge	sed	top 20	5.62	22	53	-110			ND		ND	ND	ND
25/08/97	ET-2	Α	N End	dredge	sed	top 20	5.71	23	41	104			ND		ND	ND	ND
09/06/93	ET-2	Α	SP-5	cut	mus	120	4.42	21.8	53	ND	6366		0.054	<	0.01	0.16	0.029
													ND		ND	ND	ND
31/08/97	BT-2	В	100N	Cut	mus	0-25	3.84	20	50	344			ND		ND	ND	ND
31/08/97	BT-2	В	4WN	Cut	mus	0-25	4.19	20	30	303			ND		ND	ND	ND
19/06/92	8T-2	в	Stn100	dredge	sed	tap 20	6.13	21.8	33	ND	6378		0.133		0.01	0.37	0.027
25/08/97	BT-2	8	100	dredge	sed	top 20	5.54	23	50	90			ND		ND	ND	ND
31/08/97	BT-2	B	4WN	Cut	mus	25-35	4.13	19.5	36	388			ND		ND	ND	ND
31/08/97	BT-2	В	100N	cut	mus	2550	3.78	19	48	356			ND		ND	ND	ND
:31/08/97	BT-2	В	400N	cut	mus	35-60	4.06	20.5	42	239			ND		ND	ND	ND
:31/08/97	BT-2	В	100N	Cut	mus	50-75	3.88	19	42	353			ND		ND	ND	ND
31/08/97	BT-2	в	400N	Cut	mus	60-100	4.5	20	19	309			ND		ND	ND	ND
31/08/97	BT-2	Е	100N	cut	sed	75-100	4.02	21	31	333			ND		ND	ND	ND

Table 4: B-Zone Area Muskeg and Sediment Sample Data - Leaching Experiment

.

							۲	<u></u>					SRC		SRC	Based	on SRC
						Sample	EXTF	RACT								Extra	ictable
Sampled				Sample	Local	Depth	(pH	Temp	Cond	Em	Assay		As, Assay	ŗ	Ni,Assay	g.m ⁻³	g.m ⁻³ ′
Date	Area		Location	Туре	Substrate	(cm)	L	°C	us.cm ^{•1}	mV	No.		mg.L ⁻¹		mg.L ⁻¹	As	NI
28/08/97	BT-3	A	BZW-T Zone	grab	mus	0-25	5.1	21	306	102			ND		ND	ND	ND
31/08/97	BT-3	А	50	cut	mus	0-25	5.74	20	52	128			ND		ND	ND	ND '
31/08/97	BT-3	Α	200	Cut	mus	0-25	4.77	19	24	242			ND		ND	ND	ND
09/06/93	BT-3	Α	SP-2	cut	mus	75	5.26	21.8	97	ND	6361		0.187		0.01	0.53	0,028
24/08/97	BT-3	Α	150	grab	algae	surface	ND	ND	ND	ND			ND		ND	ND	ND ⁷
24/08/97	BT-3	Α	150	grab	Sal	top 20	4.86	21	651	88			ND		ND	ND	ND '
09/06/93	BT-3	Α	SP-2	Cut	mus	180 /	5.69	21.7	82	ND	6360		0.279	<	0.01	0.79	0.028
31/08/97	BT-3	А	50	cut	mus	25-50	5.49	20	28	198			ND		ND	ND	ND '
31/08/97	BT-3	Α	200	Cut	mus	25-50	4.26	19	30	289			ND		ND	ND	ND 1
31/08/97	BT-3	А	50	cut	mus	50-75	5.11	20	25	215			ND		ND	ND	ND
31/08/97	BT-3	Α	200	cut	mus	50-75	4.41	20	28	324			ND		ND	ND	ND
31/08/97	BT-3	А	50	cut	mus	75-1W	5.08	20	20	247			ND		ND	ND	ND
31/08/97	BT-3	А	200	cut	mus	75-100	4.51	19.5	25	327			ND		ND	ND	ND '
09/06/93	BT-3	в	SP-3	cut	mus	20	5.w	21.7	49	ND	6363	<	0.002	<	0.01	0.006	0.028
31/08/97	BT-3	В	500	cut	mus	0-25	5.58	24	32	5			ND		ND	ND	ND
31/08/97	BT-3	В	SP-3 DH	Cut	mus	0-25	4.24	23.5	37	253			ND		ND	ND	ND
31/08/97	BT-3	В	500	cut	mus	25-50 /	5.42	24	20	309			ND		ND	ND	ND
31/08/97	BT-3	В	SP3 DH	Cut	mus	25-50	4.2	24	40	371			ND		ND	ND	ND
31/08/97	BT-3	в	500	Cut	mus	50-75 [/]	5.24	24	41	74			ND		ND	ND	ND
31/08/97	BT-3	в	SP-3 DH	Cut	mus	5 0-75 [/]	4.11	24	35	282			ND		ND	ND	ND
31/08/97	BT-3	в	500	Cut	mus	75-100 /	5.24	23.5	29	238			ND		ND	ND	ND
31/08/97	BT-3	В	SP3 DH	cut	mus	75-100 /	4.2	24	32	152			ND		ND	ND	ND
09/06/93	BT-3	В	SP-3	cut	mus	80	5.26	21.7	72	ND	6362	<	0.002	<	0.01	0,006	0.028
09/06/93	BT-4	А	SP-1	Cut	mus	105	5.48	21.7	144	ND	6359		0.2	<	0.01	0.55	0.027
09/06/93	BT-4	А	SP-4	cut	mus	50 ′	4.46	21.8	226	ND	6365	<	0.002	<	0.01	0.006	0.028
31/08/97	BT-4	A	200	Cut	mus	0-25 ′	4.65	23.5	88	31			ND		ND	ND	ND
31/08/97	BT-4	А	400	cut	mus	0-25	5.47	23.5	144	-52			ND		ND	ND	ND
31/08/97	BT-4	А	6.9.3 DH	cut	mus	0-25	6.53	23	122	200			ND		ND	ND	ND
31/08/97	BT-4	А	Sin 6.9.3	grab	flocc	0-10	1										
31/08/97	BT-4	А	200	cut	mus	25-50	4.98	24	70	-2			ND		ND	ND	ND
31/08/97	ВТ-4	Α	400	Cut	mus	25-50 /	5.33	24	74	23			ND		ND	ND	ND
31/08/97	BT-4	А	6.9.3 DH	Cut	mus	25-50 /	6.2	24	53	-132			ND		ND	ND	ND
31/08/97	BT-4	А	200	Cut	mus	50-75 [†]	5.26	23.5	69	-46			ND		ND	ND	ND
31/08/97	BT-4	А	400	cut	mus	50-75	5.52	24	40	49			ND		ND	ND	ND
31/08/97	BT-4	А	6.9.3. DH	Cut	mus	50-75 J	6.13	24	41	-118			ND		ND	ND	ND
31/08/97	BT-4	Α	200	Cut	mus	75-100	4.91	24	64	27			ND		ND	ND	ND
31/08/97	BT-4	А	400	Cut	mus	75-1W	5.51	24	63	41			ND		ND	ND	ND
31/08/97	BT-4	А	6.9.3 DH	Cut	mus	75-90	5.17	24	57	27			ND		ND	ND	ND
09/06/93	BT-4	А	SP-1	Cut	mur	140	4.55	21.8	272	ND	6358	с	0.002	<	0.01	0.005	0.024
09/06/93	BT-4	А	SP-1	cut	mus	165 /	4.75	21.7	219	ND	6357	<	0.002	<	0.01	0.004	0.022
09/06/93	BT-4	А	SP-4	Cut	mus	105 /	5.85	21.8	88	ND	6364	<	0.002	<	0.01	0.005	0.024
						,	1										

Table 4: B-Zone Area Muskeg and Sediment Sample Data - Leaching Experiment (continuation)

.

		•	<u></u>		·								SRC		SRC	Based	on SRC
						Sample	ЕХТІ	RACT								Extra	ctable
Sampled				Sample	Local	Depth	рН	Temp	Cond	Em	Assay		As, Assay		Ni,Assay	g.m ⁻³	g.m ⁻³
Date	Area		Location	Туре	Substrate	(cm)		°C	us.cm ⁻¹	mV	No.		mg.L ⁻¹		mg.L ⁻¹	As	NI
					• • • •												
09/06/93	LAKE 1	Α	SP-9	cut	mus	65	5.09	21.8	77	ND	6576		0.4	<	0.01	1.2	0.028
09/06/93	LAKE1	Α	SP-9	cut	muskeg	90	5.24	21.8	59	ND	6375		0.074	<	0.01	0.21	0.028
19/06/92	LAKE1	в	Stn100	core	mus	0-20	4.82	21.9	54	ND	6386	<	0,002	<	0.01	0,005	0.027
19/06/92	LAKE 1	в	centre	dredge	sed	top 20	6.37	21.8	28	ND	6382	<	0.002	<	0.01	0.006	0.029
19/06/92	LAKE 1	в	Stn100	core	mus	20-40	4.70	22.0	50	ND	6385	<	0.002	<	0.01	0.005	0.025
19/06/92	LAKE 1	в	Stn100	core	mus	40-60	4,70	21.8	58	ND	6384	<	0.002	<	0.01	0.005	0.025
19/06/92	LAKE 1	В	Stn100	core	mus	60-80	4.71	21.8	56	ND	6383		0.037	<	0.01	0.105	0.028

Table 4: 8-Zone Area Muskeg and Sediment Sample Data - Leaching Experiment (continuation)

							ЕХСЕ	SS PO	RE WA	ATER				
						Sample					Merck		SRC	SRC
Sampled				Sampl	Local	Depth	pН	Cond	Temp	Em	As	Assay	As, Assay	Ni,Assay
Date	Area		Location	Туре	ubstrat	(cm)		us.cm ⁻¹	°C	mV	mg.L ⁻¹	No.	mg.L ^{.1}	mg.L ⁻¹
19/06/92	BT-1	А	Stn200	dredge	ad	top 20	6.W	219	21.9		< 0.05	6392	<0.002	<0.01
25/08/97	BT-1	А	100	dredge	sod	top20	5.98	24	97	137			ND	ND
25/08/97	BT-1	Α	150	dredge	sod	lop20	5.83	24	98	155			ND	ND
25/08/97	ET-I	Α	205	dredge	red	top20	5.9	24	96	160			ND	ND
25/08/97	BT-1	Α	240	dredge	sed	top20	5.05	24	79	197			ND	ND
20/06/92	BT-1	Е	Stn 300	core	mus	0-25	NM	NM	NM	NM			ND	ND
20/06/92	BT-1	Е	Stn 300	core	mus	2550	NM	NM	NM	NM			ND	ND
							NM	NM	NM	NM			ND	ND
09/06/93	BT-1	С	SP-7	cut	mus	60	NM	NM	NM	NM			ND	ND
09/06/93	BT-1	С	SP-7	cut	mua	150	5.08	52	22.5		0.1	6389	0,061	<0.01
09/06/93	8T-1	D	SP-6	cut	mus	115	NM	NM	NM	NM			ND	ND
09/06/93	BT-1	Е	SP-8	cut	mus	95	NM	NM	NM	NM	2	6391	0.289	0,09
09/06/93	ET-I	Е	SP-8	cut	mus	150	4.66	80	222		0.2	6390	0.092	<0.01
09/06/93	BT-1	F	LOC 1	cut	mur	40	NM	NM	NM	NM			ND	ND
31/08/97	ET-I	F	North	cut	mus	025		NM	NM	NM			ND	ND
							NM							
09/06/93	8T-1	F	LOC 1	Cut	mua	W	NM	NM	NM	NM			ND	ND
09/06/93	BT-1	F	LOC 1	cut	mus	120	NM	NM	NM	NM			ND	ND
31/08/97	BT-1	F	North	cut	mus	25-50	NM	NM	NM	NM			ND	ND
31/08/97	ET-I	F	North	cut	mur	50-15	NM	NM	NM	NM			ND	ND
31/08/97	BT-1	F	North	cut	mus	75100	NM	NM	NM	NM			ND	ND
09/06/93	ET-2	А	SP-5	Cut	mur	30								
25/08/97	ET-2	А	250	dredge	sed	top 20	5.75	24	60	173			ND	ND
25/08/97	ET-2	А	350 S	dredge	sed	top 20	5.89	25	147	-34			ND	ND
25/08/97	ET-2	А	N End	dredge	sed	top 20	5.63	24.5	65	116			NM	ND
09/06/93	ET-2	А	SP-5	Cut	mus	120	NM	NM	NM	NM			NM	NM
							NM	NM	NM	NM			NM	NM
31/08/97	ET-2	Е	100N	cut	mus	0-25	NM	NM	NM	NM			NM	NM
31/08/97	ET-2	Е	4WN	Cut	mus	0-25	NM	NM	NM	NM			NM	NM
19/06/92	BT-2	Е	Stn100	dredge	sed	top 20	NM	NM	NM	NM			NM	NM
25/08/97	ET-2	Е	100	dredge	sed	top 20	5.6	24	51	99			NM	NM
31/08/97	ET-2	Е	400N	Cut	mus	25-35	NM	NM	NM	NM			NM	NM
31/08/97	ET-2	Е	100N	Cut	mus	25-50	NM	NM	NM	NM'			NM	NM
31/08/97	ET-2	Е	4WN	cut	mus	35-60	NM	NM	NM	NM			NM	NM
31/08/97	ET-2	Е	100N	cut	mus	50-75	NM	NM	NM	NM			NM	NM
31/08/97	ET-2	Е	4WN	cut	mus	60-100	4.52	19	37	346			NM	NM
31/08/97	ET-2	Е	100N	cut	sed	75-100	NM	NM	NM	NM			NM	NM

 Table 5:
 B-Zone Area
 Muskeg and Sediment Sample Data - Excess Pore Water

1							EXCE	\$ \$ P O	REWA	TER				
						Sample					Merck		SRC	SRC
Sampled				Sampl	Local	Depth	pН	Cond	Temp	Em	As	Assav	As, Assav	Ni.Assav
Date	Area		Location	Type	ubstrat	(cm)		us.cm ⁻¹	°ວ່	mV	ma.L ⁻¹	No.	ma.L ⁻¹	ma.L ⁻¹
28/08/97	ET-3	А	BZW-T Zone	arab	mus	025	NM	NM	NM	NM			NM	NM
31/08/97	ET-3	А	50	cut	mus	025	NM	NM	NM	NM			NM	NM
31/08/97	BT-3	A	2 w	Cut	mus	0-25	NM	NM	NM	NM			NM	NM
09/06/93	ET-3	А	\$P-2	cut	mus	75	NM	NM	NM	NM	0.4	6387	0.213	0.02
24/08/97	ET-3	А	150	grab	algae	surface	ND	ND	ND	ND			ND	ND
24/08/97	ET-3	А	150	grab	sed	top20	NM	NM	NM	NM			NM	NM
09/06/93	ET-3	А	SP-2	cut	mus	180	NM	NM	NM	NM			NM	NM
31/08/97	BT-3	А	50	Cut	mus	25-50	NM	NM	NM	NM			NM	NM
31/08/97	BT-3	А	200	Cut	mus	2550	NM	NM	NM	NM			NM	NM
31/08/97	ET-3	А	50	Cut	mus	50-75	NM	NM	NM	NM			NM	NM
31/08/97	ET3	А	200	Cut	mus	50-75	NM	NM	NM	NM			NM	NM
31/08/97	BT-3	А	50	Cut	mus	75-100	NM	NM	NM	NM			NM	NM
31/08/97	ET-3	А	2 w	cut	mus	75-100	NM	NM	NM	NM			NM	NM
09/06/93	BT-3	Е	SP-3	Cut	mur	20	NM	NM	NM	NM	< 0.05	6388	<0.002	<0.01
31/08/97	ET-3	Е	500	Cut	mus	025	NM	NM	NM	NM			NM	NM
31/08/97	ET3	Е	SP-3 DH	Cut	mus	025	NM	NM	NM	NM			NM	NM
31/08/97	ET-3	В	500	Cut	mus	25-50	NM	NM	NM	NM			NM	NM
31/08/97	BT-3	В	SP3 DH	cut	mus	25-50	NM	NM	NM	NM			NM	NM
31/08/97	BT-3	Е	500	cut	mus	50-75	5.62	24	30	207			NM	NM
31/08/97	ET3	Е	SP-3 DH	Cut	mus	50-75	NM	NM	NM	NM			NM	NM .
31/08/97	BT-3	Е	500	cut	mus	75-100	NM	NM	NM	NM			NM	NM
31/08/97	ET3	Е	SP3 DH	Cut	mus	75-100	NM	NM	NM	NM			NM	NM
09/06/93	ET3	Е	SP-3	Cut	mus	80	NM	NM	NM	NM			NM	NM
09/06/93	BT-4	А	SP-1	cut	mus	105	NM	NM	NM	NM			NM	NM
09/06/93	ET4	А	SP-4	Cut	mus	50	NM	NM	NM	NM			NM	NM
31/08/97	ET4	А	200	Cut	mus	025	NM	NM	NM	NM			NM	NM
31/08/97	ET4	А	400	Cut	mus	0-25	NM	NM	NM	NM			NM	NM
31/08/97	ET4	А	6.9.3 DH	cut	mus	025	NM	NM	NM	NM			NM	NM
31/08/97	BT-4	А	Stn 6.9.3	grab	floco	0-10								
31/08/97	BT-4	А	2 w	cut	mus	2550	NM	NM	NM	NM			NM	NM
31/08/97	ET4	А	4 w	Cut	mus	25-50	NM	NM	NM	NM			NM	NM
31/08/97	ET4	А	6,9,3 DH	Cut	mus	25-50	NM	NM	NM	NM			NM	NM
31/08/97	ET4	А	200	Cut	mus	50-75	NM	NM	NM	NM			NM	NM
31/08/97	BT-4	А	400	Cut	mu8	50-75	NM	NM	NM	NM			NM	NM
31/08/97	BT-4	А	6.9.3, DH	Cut	mus	50-75	NM	NM	NM	NM			NM	NM
31/08/97	ET4	А	200	Cut	mus	75-100	NM	NM	NM	NM			NM	NM
31/08/97	ET4	А	4 w	Cut	mus	75-100	NM	NM	NM	NM			NM	NM
31/08/97	ET4	А	6,9,3 DH	Cut	mua	7590	NM	NM	NM	NM			NM	NM
09/06/93	BT-4	А	SP-1	Cut	mus	140	NM	NM	NM	NM			NM	NM
09/08/93	BT-4	А	SP-1	Cut	mus	165	NM	NM	NM	NM			NM	NM
09/06/93	ET4	A	SP-4	Cut	mus	105	NM	NM	NM	NM			NM	NM

Table 5: B-Zone Area Muskeg and Sediment Sample Data - Excess Pore Water (continuation)

						Sample	EXCE	SS PO	REWA	TER	Merck		SRC	SRC
Sampled Date	Area		Location	Sampl T y p	Local ubstrat	Depth (cm)	рН	Cond us.cm ⁻¹	'Temp °C	Em mV	Aa / mg.L ⁻¹	Assay No.	As, Assay mg.L ⁻¹	Ni,Assay mg.L ⁻¹
09/06/93	LAKE1	Α	SP-9	cut	mus	65	NM	NM	NM	NM			NM	NM
09/06/93	LAKE1	Α	SP-9	cut	muskeg	90	5.13	NM	NM	NM			NM	NM
19/06/92	LAKE 1	Е	Stn100	core	mus	0-20	NM	NM	NM	NM			NM	NM
19/06/92	LAKE1	8	centre	dredge	sed	top 20	6.32	NM	NM	NM			NM	NM
19/06/92	LAKE 1	Е	Stn100	core	mus	20-40	NM	NM	NM	NM			NM	NM
19/06/92	LAKE1	В	Stn100	core	mus	40-60	NM	NM	NM	NM			NM	NM
19/06/92	LAKE1	В	Stn100	core	TRUS .	60-80	NM	NM	NM	NM			NM	NM

Table 5: B-Zone Area Muskeg and Sediment Sample Data - Excess Pore Water (continuation)

**

Table 6a: 8-Zone Area Muskeg and Sediment Sample Data -Elemental Analyses

Sampled				Sample	Local	Sample Depth					E	Element (ug/g, dw)						
Date	Area		Location	Туре	Substrate	(cm)	Ag	AI	As	в	Ва	Ве	Ca	Cd	Co	Cr	Cu	Fe	к
19/06/92	BT-1	А	Stn200	dredge	sed	top20	0.5	18300	390	17	110	4.5	3600	4.5	12	30	23	16400	41W
25/08/97	BT-1	А	100	dredge	sed	top20	4.5	24100	350	22	110	0.9	3600	4.5	11	26	20	18300	5100
25/08/97	8T-1	А	150	dredge	sed	top20	4.5	25100	430	22	91	0.8	3400	4.5	10	23	18	18800	4700
25/08/97	BT-1	А	205	dredge	sed	top20	4.5	20900	420	23	91	0.8	2800	0.5	9.7	22	17	16100	4100
25/08/97	BT-1	А	240	dredge	red	top20	0.5	141W	210	14	89	0.6	4400	4.5	7	15	13	12600	2800
20/06/92	BT-1	в	Stn 300	core	mus	0-25	4.5	5200	54	19	33	4.5	17W	4.5	2.3	7.2	4.7	4900	2000
20/06/92	ET-1	8	Stn 300	çore	mus	2550	4.5	1400	5.8	8	23	4.5	1300	-0,5	1.2	2.1	27	1500	320
09/06/93	BT-1	С	SP-7	cut	mus	60	-0,5	1800	14	13	28	4.5	2500	4.5	1	2.1	2.7	1600	690
09/06/93	BT-1	С	SP-7	cut	mus	150	4.5	720	1.7	8	25	4.5	4100	0.5	-0,5	0.7	1.3	12W	170
09/06/93	BT-1	D	SP-6	Cut	mus	115	0.5	4900	1.2	6	64	-0.5	3000	0.5	24	6	67	4400	490
09/06/93	ET-1	Е	SP-8	Cut	mus	95	4.5	510	2.1	12	23	0.5	3100	0.5	4.5	1.1	1.5	1200	100
09/06/93	BT-1	Е	SP-8	Cut	mus	150	4.5	910	3.8	17	26	4.5	3100	0.5	4.5	0.9	1.5	1300	250
09/06/93	BT-1	F	FOGI	Cut	mus	40	0.5	2300	1.9	12	39	4.5	1700	0.5	0.8	5.4	4.4	1900	170
31/08/97	BT-1	F	North	Cut	mus	0-25			57									2700	
09/06/93	BT-1	F	FOGI	cut	mus	60	4.5	6800	0.5	2	39	4.5	870	-0.5	0.9	13	6.5	880	220
09/06/93	BT-1	F	LOCI	cut	mus	120	-0.5	6000	0.5	2	15	4.5	850	-0.5	2.6	9.7	3.3	4400	660
31/08/97	BT-1	F	North	Cut	mus	25-50													
31/08/97	BT-1	F	North	cut	mus	50-75													
31/08/97	ET-1	F	North	cut	mus	75-100													
09/06/93	ET-2	А	SP-5	cut	mus	30	4.5	6300	46	11	56	4.5	26w	0.5	28	5.9	5.8	66w	1600
25/08/97	BT-2	А	250	dredge	sed	top 20	0.5	17600	210	34	88	0.7	37W	4.5	62	13	15	6400	4400
25/08/97	BT-2	А	350 S	dredge	sed	top 20	0.5	48900	m	110	130	1.8	3000	4.5	17	30	42	19900	13200
25/08/97	BT-2	А	N End	dredge	sed	top 20	0.5	6600	90	16	64	-0.5	3400	0.5	4.1	7.2	92	3900	15W
09/06/93	ET-2	A	SP-5	cut	mus	120	4.5	370	5.6	12	24	4.5	1600	4.5	-0,5	0.7	1	640	120
31/08/97	ET-2	Е	100N	cut	mus	Q-25			16									36w	
31/08/97	ET-2	Е	4WN	cut	mus	0-25			8.2									1300	
19/06/92	ET-2	B	Stn100	dredge	sed	top 20	4.5	27W	16	8	57	0.5	27W	0.5	1.5	3.9	6.4	1800	640
25/08/97	BT-2	8	100	dredge	red	top 20	-0,5	4500	66	7	71	4.5	3500	4.5	3.9	5.7	7.5	3000	1000
31/08/97	BT-2	B	4WN	cut	mus	25-35													
31/08/97	BT-2	Е	1WN	Cut	mus	25-50													
31/08/97	BT-2	Е	4WN	cut	mus	35-60	I												
31/08/97	BT-2	Е	100N	cut	mus	50-75													
31/08/97	ET-2	в	4WN	cut	mus	⁶⁰ -100													
31/08/97	BT-2	Е	100N	Cut	sed	75-100													

Date 2 28/08/97 31/08/97 31/08/97 24/08/97 24/08/97 24/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97	Area BT-3 BT-3 BT-3 BT-3 BT-3 BT-3 BT-3 BT-3	Location A BZW-T Zone A 50 A 200 A SP-2 A 150 A SP-2 A 50 A 50 A 50 A 50 A 50 A 50 A 200	l ype grab Cut Cut grab grab Cut	Substrate mus mus mus algae	(cm) 025 025 025 75	Ag	AI	AS 1200	В	ва	Ве	Ca	Ca		Cr	Cu	Fe	Ň
28/08/97 31/08/97 31/08/97 09/06/93 24/08/97 24/08/97 24/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97	BT-3 BT-3 BT-3 BT-3 BT-3 BT-3 BT-3 BT-3	A B2VV-T Zone A 50 A 200 A \$P-2 A 150 A 150 A \$P-2 A 150 A 50 A \$P-2 A 150 A \$SP-2 A \$SP-2 A \$SO A \$SO	grab Cut Cut Grab grab Cut	mus mus mus algae	025 025 025 75			1200										
31/08/97 31/08/97 09/06/93 24/08/97 24/08/97 09/06/93 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97	BT-3 BT-3 BT-3 BT-3 BT-3 BT-3 BT-3 BT-3	A 200 A 200 A \$P-2 A 150 A 150 A \$P-2 A 50 A 50	Cut Cut grab grab Cut	mus mus algae	025 025 75			700									15700	
31/08/97 09/06/93 24/08/97 24/08/97 09/06/93 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97	BT-3 BT-3 BT-3 BT-3 BT-3 BT-3 BT-3 BT-3	A 200 A SP-2 A 150 A 150 A SP-2 A 50 A 50 A 200	Cut grab grab Cut	mus mus algae	025 75			700									12600	
09/06/93 24/08/97 24/08/97 09/06/93 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97	BT-3 BT-3 BT-3 BT-3 BT-3 BT-3 BT-3	A 150 A 150 A 150 A SP-2 A 50 A 200	Cut grab grab Cut	algae	75	1 0 5	2200	63	10	40	0.5	0500	0.5	04	25		3000	40.0
24/08/97 24/08/97 09/06/93 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97	BT-3 BT-3 BT-3 BT-3 BT-3 BT-3	A 150 A 150 A SP-2 A 50 A 200	grab grab ^{Cut}	algae	A. 10 A. A. A.	0.5	2200	37	10	42	9.5	6000	0.5	21	2.5	4.1	3900	430
24/08/97 09/06/93 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 09/06/93 31/08/97 31/08/97 31/08/97	BT-3 BT-3 BT-3 BT-3 BT-3	A 150 A SP-2 A 50 A 200	grad Cut		sunace	0.5	3200	140	11	20	05	2700	05	4	5.0		0000	
09/08/93 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97	BT-3 BT-3 BT-3 BT-3	A 50 A 200	Cut	sed		-0.5	0000	140	14	39	-0.5	5/00	-0.5	4	0.0	5.5	2200	910
31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97	вт-3 ВТ-3 ВТ-3	A 50 A 200		mus	25 50	-0.5	2300	30	11	41	-0.5	3400	-0.5	2.1	1.9	5.4	2800	290
31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97	BT-3	A 200	CUL	mus	20-00													
31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97 31/08/97	BI-3	A CO	Cut	mus	23-30													
31/08/97 31/08/97 31/08/97 99/06/93 31/08/97 31/08/97	DTO	A 50	CUT	mus	50-75													
31/08/97 31/08/97 31/08/97 31/08/97 31/08/97	BI-3	A 200	Cut	mus	50+/5 75.400			~ ~ ~										
09/06/93 31/08/97 31/08/97 31/08/97	BI-3	A 50	Cut	mus	75-100			63									3000	
09/06/93 31/08/97 31/08/97 31/08/97	B1-3	A 200	CUT	mus	75-100													
31/08/97 1 31/08/97 1 31/08/97 1	BT-3	B SP-3	Cut	mus	20	-0.5	1700	1.8	9	27	-0.5	3600	0.5	1.1	1.9	5.1	2000	270
31/08/97 31/08/97	BT-3	B MO	cut	mur	025			60									9400	
31/08/97	BT-3	B SP-3 DH	cut	mus	025			56									3800	
	BT-3	B 500	Cut	mus	25-50													
31/08/97	BT-3	B SP3 DH	Cut	mus	25-50													
31/08/97	BT-3	B 5 w	cut	mus	50-75													
31/08/97	BT-3	B SP-3 DH	cut	mu6	50-75													
31/08/97	BT-3	B 500	cut	mus	75-100													
31/08/97 I	BT-3	B SP3 DH	cut	mus	75-100													
09/06/93	BT-3	B SP-3	Cut	mus	80	0.5	2800	1.1	14	43	0.5	9700	-0.5	1.3	2.5	7	3100	460
09/06/93	BT-4	A SP-1	cut	mus	105	-0.5	3600	11	9	63	0.5	5400	-0.5	1.6	23	64	2800	200
09/06/93	BT-4	A SP-4	Cut	mus	50	-0.5	31W	14	11	44	0.5	4900	-0.5	1.8	3.5	81	5500	320
31/08/97	BT-4	A 200	Cut	mus	025		-	51									18400	020
31/08/97	BT-4	A 400	cut	mus	025			140									38300	
31/08/97	BT-4	A 6.9.3 DH	cut	mus	025			31									106000	
31/08/97	BT-4	A Stn 6.9.3	orab	floce	010	+05	1800	78	70	59	-0.5	4000	5.3	1.3	41	-05	280000	3w
31/08/97	BT-4	A 200	Cut	mus	25-50													• · ·
31/08/97	BT-4	A 4w	Cut	mus	25-50													
31/08/97	BT-4	A 6.9.3 DH	Cut	mus	25-50													
31/08/97	BT-4	A 200	Cut	mus	50-75													
31/08/97 F	BT-4	Δ 4w	Cut	mus	5075													
31/08/97	BT-4	A 693 DH	out	mus	52-75													
31/08/97	BT-4	A 200	out	mus	75-100													
31/08/97	BT-4	A 400	Cut	mus	75-100													
131/08/07		ער געס ער געס	Cut	mue	75-90													
10/06/03	BT-4		Cut	mue	140	.0.5	6100	5	5	37	0.5	<u></u>	05	~-				010
00/00/00 1	BT-4	A NP-1	Gut	11103	179	0.0	0,00				-015		115	.75	15	72	3000	
	BT-4 BT-4 BT-4	A SP-1	<i>a.t</i>	mue	165	.0.5	5000	1	4	22	-0.5	2300	-0.5 0 5	25	15 10	72 3 1	3900 4000	910

Table 6a: B-Zone Area Muskeg and Sediment Sample Data - Elemental Analyses (continuation)
			· · · · · · · · · · · · · · · · · · ·			Sample					E	lement (ı	ug/g, dw)						
Sampled Date	Area		Location_	Sample Typ e	Local Substrate	(cm)	Ag	AI	As	В	Ba	Be	Ca	Cd	Co	Cr	Cu	Fe	к
09/06/93	LAKE1	Δ	SP-9	cut	mus	65	-0.5	3700	88.	13	40	-0.5	2100	-0.5	1.9	4.7	5	3400	990
09/06/93	LAKE1	Â	SP-9	cut	muskea	90	-0,5	5300	5	4	56	-0.5	1800	-0.5	1.2	3.2	5.4	2200	290
19/06/92	LAKE1	в	Stn100	core	mus	0-20	-0.5	350	1.7	19	8.8	-0.5	780	2.1	-0.5	1	25	410	520
19/06/92	LAKE1	В	centre	dredge	sed	top 20	-0,5	2000	0.9	8	64	-0.5	4500	-0.5	0.7	11	5	4200	320
19/06/92	LAKE1	в	Stn100	core	mus	20-40	-0.5	550	1.1	22	17	-0,5	1200	-0.5	0.5	0.9	2.5	560	290
19/06/92	LAKE1	В	Stn100	core	mus	40-60	-0.5	1100	0.9	9	38	-0.5	2700	-0.5	-0.5	1.1	1.7	810	270
19/06/92	LAKE 1	в	Stn100	core	mus	60-80	-0.5	680	0.7	<u> </u>	20	4.5	2000	4.5	-0.5	0.9	3	430	270

 Table 6a: B-Zone Area Muskeg and Sediment Sample Data
 Elemental Analyses (continuation)

Sampled				Sample	Local	Sample Depth					E	Element (I	ug/g, dw)					
Date	Area		Location	Туре	Substrate	(cm)	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sr	Ti	v	Zn	Zr
19/06/92	BT-1	A	Stn200	dredge	sed	top 20	6800	200	30	-40	260	640	21	2100	60	880	55	55	19
25/08/97	ET-I	А	100	dredge	sed	top 20	5600	230	25	40	260	550	22		59	920	51	44	35
25/08/97	ET-I	А	150	dredge	sed	top20	4700	200	27	40	280	600	23		55	740	47	43	33
25/08/97	BT-I	A	205	dredge	sed	top20	4700	200	24	50	2 M	630	23		50	710	45	43	31
25/08/97	BT-I	А	240	dredge	sad	top20	3400	240	15	100	170	480	15		47	480	29	35	19
20/06/92	BT-I	в	Stn 300	core	mus	0-25	1800	81	9.3	410	24	290	7	900	19	160	12	25	5.8
20/06/92	BT-1	B	Stn 300	core	mus	25-50	320	33	0.5	270	35	410	-1	1100	83	29	3.5	11	1.8
09/06/93	ET-I	С	SP-7	Cut	mus	80	870	92	12	350	19	270	4	790	12	49	3.6	23	23
09/06/93	BT-I	С	\$P-7	cut	mus	150	650	35	4.5	110	1.4	230	-1	1100	16	15	0.9	12	1.2
09/06/93	BT-1	D	SP-6	cut	mus	115	580	69	4.5	'130	4.3	720	3	1900	27	180	11	12	2.6
09/06/93	ET-I	Е	SP-8	cut	mus	95	670	28	-0.5	140	1.5	150	-1	570	14	13	0.7	22	-0.5
09/06/93	BT-I	Е	SP-8	Cut	mus	150	730	28	4.5	150	2.2	200	-1	600	16	24	1.5	17	1.3
09/06/93	8T-t	F	LOC 1	cut	mus	40	380	20	4.5	90	3.8	830	-1	1400	12	30	2.1	7	0.9
31/08/97	BT-I	F	North	Cut	mus	0-25					54								
09/06/93	ET-I	F	LOC 1	cut	mus	60	130	7.9	4.5	-40	7	13W	2	1600	5.3	180	45	8.6	2.3
09/06/93	BT-1	F	LOC 1	cut	mus	120	1200	37	-0.5	-40	3.8	190	2	83	8.1	370	13	10	3.2
31/08/97	BT-1	F	North	cut	mus	25-50													
31/08/97	BT-1	F	North	cut	mus	50-75													
31/08/97	ET-1	F	North	cut	mur	75-100													
09/06/93	BT-2	А	SP-5	cut	mu5	30	13W	92	0.5	180	8	510	2	1000	25	180	10	20	3.7
25/08/97	BT-2	А	250	dredge	sed	top20	3000	140	12	200	220	700	24		52	340	44	44	26
25/08/97	BT-2	А	350 S	dredge	sed	top20	7200	180	35	170	670	910	<i>83</i>		110	780	130	58	49
25/08/97	BT-2	А	N End	dredge	sed	top20	1800	120	13	100	140	MO	12		33	190	20	32	14
09/06/93	ET-2	А	SP-5	cut	mus	120	340	18	-0.5	140	1.9	220	-1	660	9.7	13	0.7	13	-0.5
31/08/97	BT-2	B	100N	cut	mus	0-25					13								
31108197	BT-2	В	400N	cut	mus	0-25					8.1								
19/06/92	BT-2	В	Stn100	dredge	sed	top 20	710	98	1.2	130	16	650	3	2100	18	86	6.5	27	3
25/08/97	BT-2	в	100	dredge	sed	top 20	1200	140	1.4	160	46	750	10		30	160	12	32	9.1
31/08/97	BT-2	B	400N	Cut	mus	25-35		-			-	-	-				_		5
31/08/97	8T-2	В	100N	Cut	mus	25-50													
31/08/97	BT-2	B	400N	Cut	mus	35-60													
31/08/07	BT-2	R	100N	Cut	mus	50-75													
31/00/87 31/08/07		5	40051	out	mus	En 100													
31100/31		0	400IN	cui															
31/08/97	BI-2	B	100N	cut	Sad	/5-100													

Table 6b: B-Zone Area Muskeg and Sediment Sample Data - Elemental Analyses

Sampled				Sample	l ocal	Sample Depth					E	Element (I	ug/g, dwj)					
Date	Area		Location	Туре	Substrate	(cm)	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sr	Ті	v	Zn	Zr
28/08/97	BT-3	А	BZW-T Zone	grab	mur	025		160			690								
31/08/97	BT-3	А	3508	Cut	mur	0-25					630								
31/08/97	BT-3	А	200	cut	mus	0-25					39								
09/06/93	BT-3	А	SP-2	cut	mus	75	1800	140	2.4	220	24	450	-1	1900	31	51	4.6	34	1.8
24/08/97	BT-3	А	150	grab	algae	surface													
24/08/97	BT-3	А	150	grab	sed	top 20	1200	81	7.6	170	110	610	13		39	150	9.7	18	7.6
09/06/93	BT-3	А	SP-2	cut	mus	180	1300	130	3.2	200	30	420	-1	2200	25	57	5.6	12	1.8
31/08/97	BT-3	А	50	cut	mus	2550													
31/08/97	BT-3	А	200	cut	mus	25-50													
31/08/97	BT-3	А	50	cut	mus	50-75													
31/08/97	BT-3	А	200	Cut	mus	50-75													
31/08/97	BT-3	А	50	cut	mus	75-100					39								
31/08/97	BT-3	А	200	Cut	mus	75-100													
09/06/93	BT-3	в	SP-3	Cut	mus	20	840	72	0.5	120	3.4	420	3	1800	18	28	3.5	27	1.1
31/08/97	BT-3	в	MO	cut	mus	0-25					16								
31/08/97	BT-3	в	SP-3 DH	cut	mus	025					34								
31/08/97	8T-3	в	MO	Cut	mus	25-50													
31/08/97	BT-3	в	SP3 DH	cut	mur	2550													
31/08/97	BT-3	В	500	Cut	mur	50-75													
31/08/97	BT-3	8	SP-3 DH	Cut	2110	50-75													
31/08/97	BT-3	8	500	Cut	mus	75,100													
31/08/07	BT-3	R	SP3 DH	cut	mus	75-100													
00/06/03	BT-3	ă	SP-3	cut	mus	60	1600	100	37	150	61	260	1	5700	20	55	63	20	2.2
09/00/90	01-5		51-5	our	mus	00	1000	100	5.7	150	0.1	200		0100	30	55	0.5	20	5.5
09/06/93	BT-4	А	SP-1	cut	mus	105	1000	73	0.5	120	14	500	-1	3000	24	62	6.4	16	0.7
09/06/93	BT-4	А	SP-4	Cut	mus	50	1100	71	1.5	220	12	560	-1	3600	23	78	7.2	7.8	32
31/08/97	BT-4	А	200	Cut	mus	025					35								
31/08/97	BT-4	А	400	Cut	mus	025					43								
31/08/97	BT-4	А	6,9,3 DH	cut	mus	025					14								
31/08/97	BT-4	А	Stn 6.9.3	grab	flocc	0- 10	660	110	0.5	260	15	3300	10		25	19	2.9	4.5	9.7
31/08/97	BT-4	А	200	cut	mus	25-50													
31/08/97	BT-4	А	4 w	Cut	mus	25-50													
31/08/97	BT-4	А	6.9.3 DH	Cut	mur	25-50													
31/08/97	BT-4	А	200	Cut	mus	50-75													
31/08/97	BT-4	А	400	Cut	mus	50-75													
31/08/97	BT-4	А	6,9,3, DH	Cut	mus	50-75													
31/08/97	BT-4	А	200	cut	mus	75-1W													
31/08/97	BT-4	А	4 w	Cut	mus	75-100													
31/08/97	BT-4	А	6.9.3 DH	Cut	mus	75-90													
09/06/93	BT-4	А	SP-1	Cut	mus	140	13W	56	2.2	-40	9.2	350	1	1700	19	490	17	17	1.9
09/06/93	BT-4	А	SP-1	cut	mua	165	1600	63	-0.5	-40	52	360	2	180	16	610	12	17	7.1
00/00/00		۸	60.4	0.14	273116	105	2200	86	05		0	420	2	700	05	700	_	47	5.0

Table 6b: B-Zone Area Muskeg and Sediment Sample Data Elemental Analyses (continuation)

Sampled Date	Area		Location	Sample Type	Local Substrate	Sample Depth (cm)	Mg	Mn	Мо	Na	E Ni	Element (i P	ug/g, dw Pb) S	Sr	Ťī	v	Zn	Zr
09/06/93	LAKE1	A	SP-9	cut	mus	65	1100	41	1.2	240	26	390	4	1000	19	120	9	18	5
09/06/93	LAKE1	Α	SP-9	cut	muskeg	90	360	32	-0.5	110	4.9	WO	3	1100	13	140	9.7	11	2.3
19/06/92	LAKE 1	в	Stn100	core	mus	0-20	500	93	-0.5	200	2.7	320	50	550	2.5	12	0.8	200	0,5
19/06/92	LAKE 1	В	centre	dredge	sed	top 20	410	100	1.2	110	8.4	540	2	2500	22	72	5	40	2.2
19/06/92	LAKE 1	В	Stn100	core	mus	20-40	490	38	-0.5	220	1.5	320	6	500	7.8	13	0.7	29	0.7
19/06/92	LAKE 1	в	Stn100	core	mus	40-60	390	36	-0.5	140	1.9	420	-1	980	15	25	0.7	27	-0.5
19/06/92	LAKE 1	в	Stn100	core	mus	60-80	360	26	-0,5	140	1.9	210	2	620	10	22	0.7	18	-0.5

 Table 6b:
 B-Zone Area Muskeg and Sediment Sample Data - Elemental Analyses (continuation)

~

							₩НО∟	ESAMP	LEANA	LYSES					(dw/wv)				
						Sample	•	Assay	Assay	Assay	Assay			Total	Total	Total	Total	Total	
Sampled				Sampl	Local	Depth	Assay	As	NI	Fe	· S	TOC	%	As	NE	Fe	S	oc	%
Date	Area		Location	Туре	Substrate	(cm)	No.	ug.g ⁻¹ dw	TOC	g.m ⁻³	g.m ⁻¹	g.m ⁻⁴	g.m ⁻³	g.m ⁻³	L.O.I.				
19/06/92	BT-1	Α	Stn200	dredge	sed	top20	6435	390	260	16400	2100			84.0	56.0	3532.7	452.4		24
25/08/97	BT-I	А	100	dredge	sed	top 20	6728	350	260	18300		190800	19.08	63.1	46.9	3298.3		34389.1	40
25/08/97	BT-1	А	150	dredge	sed	top20	6729	430	280	18800		203800	20.38	75.5	49.1	3299.0		35762.7	46
25/08/97	BT-I	А	205	dredge	sed	top20	6730	420	230	16100		188400	18.64	75.7	41.5	2902.7		33967.2	41
25/08/97	BT-1	А	240	dredge	sed	top20	6731	210	170	12600		305900	30.59	28.4	23.0	1701.0		41296.5	65
20/06/92	BT-I	B	Stn 300	core	mus	0-25	6412	54	24	4900	900			3.8	1.7	348,3	64.0		90
20/06/92	BT-1	В	Stn 300	core	mus	25-50	6413	5.8	3.5	1500	1100			1.1	0.6	277.4	203.4		95
09/06/93	BT-1	с	SP-7	cut	mus	60	6424	14	19	1600	790			1.6	22	183.9	9 0.8		98
09/06/93	BT-1	С	SP-7	cut	mus	150	6418	1.7	1.4	1200	1100			0.26	02	183.9	188.6		98
09/06/93	BT-1	D	SP-6	cut	mus	115	6415	12	4.3	4400	1900			0.26	0.9	943.9	407.6		91
09/06/93	BT-1	Е	SP-8	cut	mus	95	6417	21	1.5	1200	570			0.27	0.2	152.2	72.3		98
09/06/93	BT-1	Е	SP-8	cut	mus	150	6429	3.8	2.2	1300	600			0.62	0.4	213.1	98,4		96
09/06/93	BT-1	F	LOC 1	cut	mus	40	6433	1.9	3.8	1900	1400			0.45	0.9	454.1	334.6		96
31/08/97	BT-1	F	North	cut	mus	0-25	6732	57	54	27W				3.4	3.2	161.0			84.03
09/06/93	BT-I	F	LOC 1	Cut	mus	60	6422	0.5	7	880	1600			0.16	2.2	275.6	501.1		90
09/06/93	BT-I	F	LOC 1	Cut	mus	120	6416	0.5	3.8	4400	83			0.05	0.4	479.5	9.0		4
31/08/97	BT-1	F	North	Cut	mus	25-50													
31/08/97	BT-1	F	North	Cut	mus	50-75													
31/08/97	BT-1	F	North	cut	mus	75-100													
09/06/93	BT-2	А	SP-5	Cut	mus	30	6421	4.6	8	6600	1000			0.73	1.3	1046.6	158.6		90
25/08/97	BT-2	А	250	dredge	sed	top 20	6734	210	220	6400		338700	33.87	20.3	21.3	618.7		32741.0	72
25/08/97	BT-2	А	350 \$	dredge	sed	top 20	6736	770	670	19900		170400	17.04	123.2	107.2	3184.0		27264.0	38
25/08/97	BT-2	A	N End	dredge	sed	top 20	6738	90	140	3900		359900	35.99	9.6	14.9	416.0		38389.3	80
09/06/93	BT-2	A	SP-5	cut	mus	120	6427	5.6	1.9	640	660			1.2	0.4	141.5	146.0		98
31/08/97	BT-2	В	100N	cut	mus	0-25	6735	16	13	3600				1.3	1.1	295.3			72.75
31/08/97	BT-2	₿	4WN	Cut	mus	0-25	6737	8.2	8.1	1300				0.34	0.3	54.5			96.18
19/06/92	ET-2	8	Stn100	dredge	sed	top 20	E437	16	16	1800	2100			4.8	4.8	541.5	631.8		93
25/08/97	BT-2	В	100	dredge	sed	top 20	6733	66	46	3000		384100	38.41	6.4	4.4	290.0		37129.7	85
31/08/97	BT-2	В	4WN	Cut	mus	25-35													
31/08/97	BI-2	В	100N	Cut	mus	2550													ĺ
31/08/97	81-2	8	4VVN	Cut	mus	35-60													
31/08/97	BI-2	Б	100N	Cut	mus	50-75													
31/08/97	Ы-2	Б	400N	Cut	mus	60-100													1
31/08/97	61-2	В	TUUN	Cut	sea	/≎-100													

Table 7: B-Zone Area Muskeg and Sediment Sample Data - Whole Sample Analyses

Sampled Date	Area			0		Sample		Acres	A		A			Tetal	Tatal	Total	Total	Total	
Sampled Date	Area			A				Assay	Assay	Assay	Assay			rotar	Total	TOLAI	10.01	rotai	
Date	Area			Sampi	Local	Depth	Assay	As	. NI	Fe	' S	TOC	%	As	NL	Fe	s	oc	%
	FT-3		Location	Туре	ubstrat	(cm)	No.	ug.g ⁻¹ dw	ug.g ⁻¹ dw	ug.g ⁻¹ dw	ug.g ^{_1} dw	ug.g ⁻¹ dw	TOC	g.m ⁻³	g.m ⁻³	g.m. ³	g.m ⁻³	g.m ⁻³	L.O.I.
28/08/97		A	BZW-T Zone	grab	mus	025	6748	12W	690	15700				372.0	213.9	4867.0		· · · · · · · · · · · · · · · · · · ·	
31/08/97	BT-3	А	50	Cut	mus	0-25	6738	7W	630	12600				78.9	71.0	1420.9			46.0)7
31/08/97	8T-3	А	200	Cut	mus	025	6740	63	39	3000				4.6	28	218.9			89. 15
09/06/93	ET-3	А	SP-2	Cut	mus	75	6432	37	24	3900	1900			5.1	3.3	532.3	259.3		94
24/08/97	ET-3	А	150	grab	algae	surface	6588												
24/08/97	BT-3	А	150	grab	sed	top20	6727	140	110	2200		376000	37.6	16.6	13.0	260.3		44493,3	79
09/06/93	BT-3	А	SP-2	cut	mus	180	6428	38	30	28W	2200			4.3	3.4	319.4	251.0		93
31/08/97	8T-3	А	50	Cut	mus	25-50													
31/08/97	BT-3	А	2W	Cut	mus	25-50													
31/08/97	ET-3	А	50	Cut	mus	50-75													
31/08/97	ET-3	А	200	Cut	mus	5075													
31/08/97	BT-3	А	50	cuit	mus	75-100		63	39	3000				52	3.2	249.4			89. 6
31/08/97	ET-3	А	200	Cut	mus	75-100													i
09/06/93	ET-3	Е	SP-3	Cut	mus	20	6434	1.8	3.4	2wo	1800			0.3	0.5	305,1	274.6		95
31/08/97	ET-3	Е	500	cut	mus	025	6741	60	16	9400				5.1	1.4	799.0			72.9 5
31/08/97	ET-3	8	SP-3 DH	Cut	mus	0-25	6742	56	34	3800				3.3	2.0	222.1			89.8 8
31/08/97	ET-3	₿	500	Cut	mus	25-50													
31/08/97	BT-3	8	SP3 DH	Cut	mus	25-50													
31/08/97	BT-3	Е	500	cut	mus	50-75													1
31/08/97	BT-3	Е	SP-3 DH	Cut	mus	50-75													
31/08/97	BT-3	Е	500	cut	mus	75-100													
31/08/97	BT-3	Е	SP3 DH	cut	mus	75-100													
09/06/93	BT-3	Е	SP-3	Cut	mus	80	6423	1.1	6.1	31W	5700			0.5	3.0	1542.5	2836.2		93
09/06/93	BT-4	А	SP-1	cut	mus	105	6430	11	14	2800	3000			1.6	21	414.5	444 .1		86
09/06/93	ET-4	А	SP-4	Cut	mus	50	6414	14	12	5500	3600			2.0	1.7	793.7	519.5		89
31/08/97	BT-4	А	200	Cut	mus	0-25	6743	51	35	18400				4.3	3.0	1569,2			90.2 9
31/08/97	BT-4	А	4 w	Cut	mus	025	6744	140	43	38300				12.1	3.7	3299.7			84.05
31/08/97	8T-4	А	6,9,3 DH	Cut	mus	0-25	6745	31	14	106000				5.6	2.5	19120.3			58.3 2
31/08/97	BT-4	А	Stn 6.9.3	grab	floce	0-10	6747	78	15	280000									
31/08/97	8T-4	А	200	Cut	mus	25-50													ł
31/08/97	BT-4	А	4 w	Cut	mus	25-50													
31/08/97	BT-4	А	6.9,3 DH	Cut	mus	25-50													
31/08/97	ET4	А	200	Cut	mus	50-75													
31/08/97	ET4	А	400	cut	mus	50-75													
31/08/97	BT-4	А	6.9.3. DH	Cut	mus	50-75													
31/08/97	ET-4	A	200	cut	mus	75-100													
31/08/97	BT-4	A	4 w	Cut	mus	75-100													
31/08/97	BT-4	A	6.9.3 DH	cut	mus	75-90		-	0.0	2000	4 -71 4 /			0.0	4.0	0007.0	000 0		~~
09/06/93	BT-4	A	SP-1	cut	mus	140	6426	5	9.2	3900 4000	1/00			2.6	4.8 5 4	2037.3	000,U 177.0		20
09/06/93	BT-4	A	SP-1	cut	mus	165	1642U	1	5.2	4000	700			1.0	5.1 6.4	3931.U	1//.ð		1 44
09/06/93	В1-4	A	57-4	Cut	mus	CUT	10425	2.2	ð	<i>i</i> m	120			1.8	0.4	9990,/	5/5.9		11

 Table 7: B-Zone Area Muskeg and Sediment Sample Data - Whole Sample Analyses (continuation)

A1-25

Boojum

CAMECO Corporation: Rabbit Lake Operation Utilization of Watlands for Removal of As and Ni July, 1998

							WHOL	ESAMP	LEANA	LYSES									
Sampled				Sampl	Local	Sample Depth	Assay	Assay A s	Assay Ni	Assay Fe	Assay S	тос	%	Total As	Total NI	Total Fe	Total S	Total OC	%
Date	Area		Location	Туре	ubstrat	(cm)	No.	ug.g ⁻¹ dw	ug.g ⁻¹ dw	ug.g ⁻¹ dw	ug.g ⁻¹ dw	ug.g ⁻¹ dw	TOC	g.m ⁻³	g.m ⁻³	g.m ^{-\$}	g.m ^{-\$}	g.m ⁻³	L.O.I.
09/06/93	LAKE1	A	SP-9	cut	mus	65	6431	88	26	3400	1000			8.8	2.6	339.5	99,9		93
09/06/93	LAKE 1	Α	SP-9	cut	muskeg	90	6419	9	4.9	2200	1100			20	1.1	495.2	247.6		95
19/06/92	LAKE1	в	Stn100	core	mus	0-20	6441	1.7	2.7	410	550			0.11	02	25.4	34.1		98
19/06/92	LAKE 1	Е	centre	dredge	sed	top20	6436	0.9	8.4	4200	2500			0.19	1.8	878.8	523.1		95
19/06/92	LAKE1	В	Stn100	core	mus	20-40	6440	1.1	1.5	560	500			0.06	0.1	31.0	27.7		98
19/06/92	LAKE1	в	Stn100	core	mus	40-60	6439	0,9	1.9	810	980			0.10	02	94.0	113.8		98
19/06/92	LAKE1	Е	Stn100	core	mus	60-80	6438	0.1	1.9	430	620			0.08	02	48.2	69.6		98

 Table 7: B-Zone Area Muskeg and Sediment Sample Data - Whole Sample Analyses (continuation)

				Muske	g			Pone	d Sedi	ment			Po	ond Wa	ater		S	SurfaceAr	ea	Muskeg	Sediment	Pond
		(dar	ta for s	hallow sau	mples us	eđ)												Pond		Surface	Surface	Wate
Area		Sampling		Т	`otal [/	\s]	Sampling		- To	otal [/	\s]	Sampling		D	iss. [/	\s]	Muske	gSediment	t Tota	0.25 m	0.25 m	0.5 m
	Zone	Location		Min	Max	Avg	Location		Min	Max	Avg	Location		Min	Max	Avg	Area	Area	Area	T [As]	T [As]	D [As
			Ν	g.m ⁻³	g.m ^{.3}	g.m ⁻³		Ν	g.m ^{-\$}	g.m ⁻³	g.m ⁻³		N	g.m ⁻³	g.m ⁻³	g.m ⁻³	ha	ha	ha	kg	kg	kg
BT-1	Δ	SP6*	1			0.26	Stn 100, 150, 200, 205, 240	5	28	84	65	Stn 200, 205, 250	7	0.02	0.42	0.14	16	17	3.3	1.0	282	1.2
	B	Stn 300	1			3.8	200, 200, 240	-				Stn 300	1			0.019	3.8		3.8	37		[
	č	SP7	1			1.6	Stn 240*	1			28	Stn 300	1			0.019	1.4	0.33	1.8	5.7	24	0.032
	Ď	SP6	1			0.26	Stn 240*	1			28	Stn 400	1			0,069	3.9	0.85	4.7	2.5	60	0.29
	Е	SP8	1			0.27	Stn 240*	1			28	Stn 300	1	4		0.019	1.2	020	1.4	0.83	14	0.019
	F	LOC1. BT1-N	2	0.45	3.4	1.9	Stn 240*	1			28	Stn 300	1			0.019	3.9	0.45	4.3	19	32	0.043
	SUM	1	6					6					9				16	3.6	19	66	412	1.6
																	I					
BT-2	Δ	SP5	1			0.73	Stn 250, 350, N end	3	9.6	123	51	Stn 250	14	0.01	1.6	0.5912	4.1	3.0	7.1	7.56	383	8.9
												Stn 100.										J
	В	Stn 100N, 400	2	0,3436	1.3	0.83	Stn 100	2	4.8	6.4	5.6	450N	6	0.02	0.16	0.095	17	1.9	19	36	27	0.91
	SUM		а	•				5					20				21	4.9	26	43	410	9.8
BT-3	Δ	BTZ-K#1,SP2, Stn 50, Stn 200	A	46	372	115	Stn 150	1			17	Str. 50, 100	15	0.44	34	7.0	1.6	0.25	1.8	446	10	8.7
	~	SP3, SP3-DH.		4.0	5/2	115		•				sbl6.9.4,										
	B	Stn 500	3	0.27	5.1	2.9						6.9.44	16	0.002	0.14	0.0321	2.1	0.1	2.2	15		0.02
	SUM		7	= -				1			-		31				3.5	0,4	4.0	461	10	8.7
		SD1 SD4 Stm																				
	_	200, Stn 400,																				
BT-4	<u>A</u>	Stn 6,9.3DH	5	1.6	12	5.1						Stn 6.9.3	4	0.008	0.086	0.035	3.2	0.1	3.3	42		0.02
																	40		4.0			
LAKE	A	SP9	1			ö.ö	l ska 1 centre	1			0 10	l ska t	1			3000 0	4.9 58	83	4.9 66	108	20	0.02
	SUM	Lake 1 shore	2			V. 11	Lake I Celina	L			0.19		1			0.0000	63	8.3	71	174	3.9	0.02
	5010	l											-				L		71	14-7	¥14	0.02
notal (NUR		22					13					65				107	30 0	124	735	837	20
		· · · · · · · · · · · · · · · · · · ·	23					13					00	~ ~		-	107	33.3	124	155	037	20

Table 8a: Arsenic Mass in BT-1, BT-2, BT-3, BT-4 and Lake 1Muskeg, Sediments and Pond Water in B-Zone Vicinity.

• sampling location near, but not in, zone

				Muske	g		P	ond	l Sedi	ment			Po	ond Wa	ater		S	urface A	rea	Muskeg	Sediment	Pond
		(dat	a for s	hallow san	nples use	ed)												Pond		Surface-	Surface-	Water
Area		Sampling		т	otal [Ni]	Sampling		Т	otal [N	li]	Sampling		0	Diss. [\i]	Muskeg	Sedimen	nt Total	0.25 m	0.25 m	0.5 m
	Zone	Location		Min	Max	Avg	Location		Min	Мах	Avg	Location		Min	Max	Avg	Area	Area	Area	T [Ni]	T [Ni]	D [Ni]
			N	g.m ⁻³	¢m.g	g.m ⁻³	<u> </u>	N	g.m ^{.s}	g.m ⁻³	g.m ⁻³		N	g.m ⁻³	g.m ⁻³	g.m ^{.s}	ha	ha	ha	kg	kg	kg
PT-4	٨	6D91	4			0.02	Stn 100, 150,	5	23	56	43	Stn 200, 205, 250	7	0.02	0.06	0.04	16	17	33	37	187	0.4
01-1	R	Sto 300				17	200, 200, 240	Ũ	20			Stn 300	1	0.01	0.00	0.007	3.8	•••	3.8	16		0.4
	c	SP7	-			22	Stn 240*	1			23	Stn 300	1			0.008	1.4	033	1.8	7.8	19	0 013
	Ď	SP6	1			0.92	Stn 240*	1			23	Stn 400	1			0.018	3.0	0.85	4.7	9.0	49	0.08
	Ε	SP8	1			0.19	Stn 240*	1			23	Stn 300	1			0,008	12	020	1.4	0.59	11	0.008
	F	LOC1, BT1-N	2	0.91	3.2	2.1	Stn 240*	1			23	Stn 300	1			0.008	3.9	0.45	4.3	20	26	0.018
	SUM		6					6					9				16	3.6	19	67	292	0.5
-																						T T
							Stn 250, 350,															
B1-2	. A	SP5	1			1.27	N end	3	14.9	107	48	Stn 250	14	0,02	0,23	0,0675	4,1	3,0	7.1	13	359	1.0
	в	Stn 100N, 400N	2	0,3395	1.1	0.70	Stn 100	2	4.4	4.8	4.6	Str 100, 450N	6	0,002	0.026	0.013	17	1,9	19	30	22	0,13
	SUM		3					5					20				21	4.9	26	44	381	1.1
			••		•																<u>.</u>	
		BTZ-K#1,8P2,]
BT-3	Α	Stn 50, Stn 200	4	2.8	214	73	Stn 150	1			13	Stn 50,100	15	0.84	76	172	1.6	0.25	1.8	282	8	21.5
	В	Stn 500	3	0.52	2.0	1.3						6.9.44	15	0,003	0,34	0,03593	2.1	0.1	2.2	6.7		0.02
	SUM		7					1					ao				5.6	0,4	4.0	289	8	21.6
		Γ																				
		SP1,SP4, Stn 200, Stn 400, Stn					{															1
BT-4	Α	6.9.3DH	5	1.7	4	2.6						Stn 6.9.3	4	0.007	0.057	0.0215	3.2	0.1	3.3	21		0.01
	_																					
LAKE	A	SP9	1			2.6											4.9		4.9	32		
	B	Lake 1 shore	1			0,17	Lake 1 centre	1			1.76	Lake 1	1			0.0020	58	8.3	66	24	36	0.08
	SUM		2								_		l				03	0,3	71	00	30,4	0.08
Tatal	STIRA		22					13					64				107	39.9	124	467	718	23
i otal s			<u> </u>					10	_				~~				141	~~.~	167	1VT	1 17	~~

Table 8b: Nickel Mass in BT-1, BT-2, BT-3, BT-4 and Lake 1 Muskeg, Sediments and Pond Water in B-Zone Vicinity.

• sampling location near, but not in, zone

				Muske	g		P	ond	l Sedi	ment			Po	nd Wa	ater		S	urface Ar	ea	Muskeg	Sediment	Pond
		(dat	a for s	hailow sar	nples use	d)								·1				Pond		Surface-	Surface-	Water
Area		Sampling		Т	otal [F	e]	Sampling		Т	otal [F	e]	Sampling		D	liss. [F	e	Muskeg	Sedimen	t Total	0.25 m	0.25 m	0.5 m
	Zone	Location		Min	Max	Avg	Location		Min	Max	Avg	Location		Min	Max	Avg	Area	Area	· Area	T [Fe]	T [Fe]	D [Fe]
			Ν	g.m ⁻³	g.m ^{-\$}	g.m ⁻³		Ν	g.m ⁻³	g.m ⁻³	g.m ⁻³		Ν	g.m ⁻³	g.m ⁻³	g.m ⁻³	ha	ha	ha	kg	kg	kg
BT-1	Α	SP6*	1			944	Stn 100, 150, 200, 205, 240	5	1701	3533	2947	Stn 200, 205, 250	7	0,10	0.59	0.40	1.6	1.7	3.3	3.824	12.737	3.5
	В	Stn 300	1			348						Stn 300	1			0.82	3.8		3.8	3,348		
	С	SP7	1			184	Stn 240*	1			1701	Stn 300	1			0.82	1.4	0.33	1.8	654	1.411	1.4
	D	SP6	1			944	Stn 240*	1			1701	Stn 400	1			0.15	3.9	0.85	4.7	9.174	3.628	0.64
	Ē	SP8	1			152	Stn 240*	1			1701	Stn 300	1			0.82	1.2	020	1.4	473	849	0.82
	F	LOC1, BT1-N	2	161	454	308	Stn 240*	1			1701	Stn 300	1			0.82	3.9	0.45	4.3	2,967	1,921	1.9
	SUN	}	6					6					9				16	3.6	19	20,439	20,545	8.2
																	l					
BT-2	A	SP5	1			1047	Stn 250, 350, Nsnd	3	416	3184	1406	Stn 250	14	0.10	0.44	0.22	4.1	3.0	7.1	10.846	10.558	3.4
	В	Stn 100N, 400N	2	54	295	175	Stn 100	2	290	542	416	Stn 100, 450N	6	0.15	1.8	0.45	17	1.9	19	7,580	1.978	4.3
	SUM	1	3					6					20				21	4.9	26	18428	12536	7.6
		1																				
BT-3	A	BTZ-K#1,SP2, Stn 50, Stn 200	4	219	4867	1760	Stn 150	1			260	Stn 50,100	14	0.04	3.6	1.4	1.6	0.25	1.8	6.819	163	1.8
	В	Stn 500	3	222	799	442						6.9.44	17	0.31	2.3	1.0	2.1	0.1	2.2	2,290		0.52
	SUN		7					1					31				3,6	0,4	4.0	9109	163	2.3
8T-4	Α	SP1,SP4, Stn 200, Stn 400, Stn 6.9.3DH	5	414	19120	5039						Str 6.9.3	5	0.10	47	14	3.2	0.1	3.3	40,939		7.1
		I						• •														
LAKE	Α	SP9	1			340											4.9		10	4 181		
	В	Lake 1 shore	1			25	Lake 1 centre	1			879	Lake 1	1			0.31	58	8.3	4.9 66	3,695	18,184	13
	SUM		2					1					1				63	8.3	71	7876	18183.7	12,83
Total :	SUM		23					13					66		• • • • • •		107	39.9	124	96,790	51,428	38

Table Sc: Iron Mass in BT-1, BT-2, BT-3, BT-4 and Lake 1Muskeg, Sediments and Pond Water in B-Zone Vicinity.

* sampling location near, but not in, zone

			1	Nuske	g		ł F	on	d Sed	iment		1	Ро	nd W	ater		S	urface Ar	ea	Muskeg	Sediment	Pond
		(dat	a for si	hallow sa	mples use	d)	-							.,				Pond		Surface-	Surface-	Water
Area		Sampling		Ī	Total [S]	Sampling		1	Fotal [S]	Sampling		I	Diss. [S	S]	Muskeg	Sediment	t Total	0.25 m	0.25 m	0.5 m
	Zone	Location		Min	Max	Avg	Location		Min	Max	Avg	Location		Min	Max	Avg	Area	Area	Area	T [S]	T[S]	D [S]
			N	g.m ⁻³	g.m ^{.3}	g.m ⁻³		N	g.m ⁻³	g.m ⁻³	g.m ⁻³		Ν	g.m ⁻³	g.m ^{.a}	g.m ⁻³	ha	ha	ha	kg	kg	kg
DT 1	^		4			409	5% 200	4			452	Stn 200, 205, 250	5	1 1 2	2.2	10	1.6	17	22	1 651	1 055	14
D1-1		SP6"				400	301 200	•		•	452	200	5	1.13	2.3	1.0	1.0	1.7	3.3	1,051	1,800	14
- -	2	500 300	1			04	01- 0001				450	Sun 400	-			0.30	3.0	A 22	3.0	212	375	0.50
	n n	SP/	1			409	Stri 200*	1			432 457	Stor 400	4			0.30		0.00	1.0	2.061	065	1.50
	5	SPO				70	Sta 2001	4		-	452	Sul 400	4			0.00	3.9	0.00	4.7	3,301	200	1.3
		5P6	4	,		725	Str 200*	1			452	Str 400*	4			0.00	30	0.20	1.4 4 3	3 228	220 514	0.30
	SUM					335		4			102	301400	8			0.00	16	1.6	40	10 003	4 012	16
	CON	1						-			_		-					0.0	19	10,000	4,002	
																						ļ
BT-2	Α	SP5	1			1047	Stn 100*	1		e	532	Stn 250	9	0.03	1.2	0.41	4.1	3,0	7.1	10,846	4,744	6.2
		l l										Stn 100,										
	В	SP5*	1			1047	Stn 100	1		6	532	450N	3	0.57	0,93	0.70	17	1.9	19	45,361	3,006	6.7
	SUM		2					2					12				21	4.9	26	66,207	7,760	13
рт 2	۸		4			250	CD2 muskeet	4			275	She 50 100	4.4	44	226 7	109	1.6	0.25	10	1 005	172	136
DI~	~	542	1			209	or a muskey	. •			213	Stn R 9 4	17		000.1	100	1.0	0.25	1.0	1,005		100
	В	SP3	1			275						6.9.44	22	0.07	8.7	1.6	2.1	0.1	2.2	1,422		0.80
	SUM	4 <u></u>	2					1		·• ·			36				3.6	0.4	4.0	2,427	172	135
														5								
BT-4	Α	SP1,SP4	2	444	520	482	Į					Stn 6.9.3	3	0.0	19	0.9	3.2	0.1	3.3	1,914		3.6
						-																ł
LAKE '	Α	SP9	1			100											4.9		4.9	1.230		
	В	Lake 1 shore	1			34	Lake t centre	1			523	Lake 1	1		_ <	0.03	58	8.3	66	4,956	10,824	1.4
	SUM		2					1					1				63	8.3	71	6,186	10,824	1.4
Total S	UM		13					5					58				107	39.9	124	78,738	22,777	169

Table 8d: Sulphur Mass in BT-1, BT-2, BT-3, BT 4 and Lake 1Muskeg, Sediments and Pond Water in B-Zone Vicinity.

Boojum

* sampling location near, but not in zone

			·	Muskeg			i	Pon	d Sedii	nent		S	Surface Ar	rea	Muskeg	Sediment	Pond
			(data	for shallow sampl	es used)								Pond		Surface	Surface	Water
Area		Sampling			LOI		Sampling			LOI		Muskeg	Sedimen	t Total	0.25 m	0.25 m	0.5 m
	Zone	Location		Min	Max	Avg	Location		Min	Мах	Avg	Area	Area	Area	LOI	LOI	LOI
			N	g.m ⁻³	g.m ⁻³	g.m ⁻³		Ν	g.m ⁻³	g.m ⁻³	g.m ^{.3}	ha	ha	ha	t	l t	<u>t</u>
BT-1	Α	SP6*	1			194937	Stn 100, 150, 200, 205, 240	5	51332	87750	73102	1.8	1.7	3.3	790	316	0.0
	в	Stn 300	1			84012						3.0		3.8	615		
	C	SP7	1			112775	Stn 240*	1			87750	1.4	0.33	1.8	401	73	0,000
	D	SP6				194997	Stn 240*	1			87750	3.9	0.05	4.7	1895	187	0.00
	Е	SP8	1			124188	Stn 240*	1			87750	12	0.20	1.4	386	44	0.000
_	F	LOC1, BT1-N	2	50115	229776	139946	Stn 240*	1			87750	3.9	0.45	4.3	1350	99	0.000
	SUM		6					Ģ				16	3,6	19	5438	719	0.0
		•					01- 050 050										1
BT-2	Α	SP5	1			143208	N end	3	61232	84896	71867	4.1	3.0	7.1	1485	540	0.0
	в	Str. 100N, 400N	2	40307	59678	49992	Stn 100	2	81751	280491	181121	17	1.9	19	2167	862	0.00
	SUM		3					5				21	4,9	26	3652	1401	0.0
		1					l I										
BT-3	Α	BTZ-K#1,SP2, Stn 50, Stn 200	3	51954	128376	81907	Stn 150	1			93259	1.6	0.25	1.8	317	58	0.0
	в	SP3, SP3-DH, Stn 500	3	52527	145092	86542					· •	2.1	0.1	2.2	448		0.00
	SUM		6			· · ·		1		· · · · ·		3.6	0,4	4.0	766	58	0.0
		SP1 SP4 Str									_	_			_		
BT-4	Α	200, Stn 400, Stn 6,9.3DH	5	72412	128569	102055						3.2	0.1	3.3	829		0.00
					** *				<u>.</u>								
LAKE 1	A	SP9	1			92641						4.9		4.9	1141		
	B	Lake 1 shore	1			60811	Lake 1 centre	1			197804	<u>58</u> 62	8.3	65 71	8831	4093	0.00
	30M		2	·····			L	1				03	0.3	1	3317	4033	0.00
r'otal S	UM		22					13				107			20656	6271	. 0

Table 8e: LOI Mass in BT-1, BT-2, BT-3, BT-4 and Lake 1 Muskeg, Sediments and Pond Water in B-Zone Vicinity.

• sampling location near, but not in, zone.

Location		SI	P-1				SP-2		
Assay No.	5420	5463	5587	6552	4464	5421	5464	5588	6496
Date	26-Jun-94	08-Sep-94	27-Jun-95	30-Aug-97	12-Jun-93	26-Jun-94	08-Sep-94	27-Jun-95	24-Aug-97
T (C)	12.5	10.9	11.9	14.4	11.1	12.7	9.7	10.1	16.3
pH	4.86	5.29	4.31	5.56	4.96	4.8	5.43	4.95	5.32
Cond (uS/cm)	38	48	299	123	138	64	161	265	51.8
Em (mV)	-67	28	70		6	-80	9	50	
Eh (mV)	182	278	320	191	256	169	260	301	176
In mg/L Cl	2	5	2		1	2	3	3	
HCO3	5	12	1		2	4	1	1	
SO4	12	1	149	14	36	1	84	118	8.5
NH4,N	1.1		1.8		0.11	0.2		0.26	
TKN,N			10		0.98			3.3	
NO3,N	0.01		0.04		0.04	0.01		0.04	
Р	0.08		0.79		0.79	0.09		0.63	
As	0.13	0.053	0.24	0.097	0.082	0.16	0.05	0.11	0.072
Ca	4	3	20		8.1	4	21	18	
Fe	1.9	2.3	6.2	1.6	5	1.6	6.3	7.3	2.1
К	0.9	3.4	7		3.1	2.6 [.]	4.9	5.9	
Mg	1	2	16		5.2	1	14	14	
Mn	0.073	0.064	0.5		0.26	0.12	0.81	0.73	
Na	2.9	5.6	13		3.5	2.2	4.7	7.3	
Ni	0.016	0.019	0.042	0.018	0.55	0.22	0.23	0.39	0.095
TDS			280		110			214	
AI			0.27					0.27	

Table 9a: Shallow Piezorneters Water Quality - Piezorneters SP-1 and SP-2

CAMECO Corporation: Rabbit Lake Operation Utilization of Wetlands for Removal of As and Ni July, 1998

Location			SP-3A			SP-3B					
Assay No.	4465	5422	5465	5589	6497	4466	5423	5466	5590	6498	
Date	12-Jun-93	26-Jun-94	08-Sep-94	27-Jun-95	24-Aug-97	12-Jun-93	26-Jun-94	08-Sep-94	27-Jun-95	24-Aug-97	
T (C)	13.4	11.6	10.3	11.6	16.5	14.6	10.6	12.4	14.2	16.2	
рH	5.78	5.38	5.9 <u>5</u>	5.8	5.68	5.27	5.25	6.18	6.38	5.04	
Cond (uS/cm)	62	70	45	80	81	51	72	28	50	52	
Em (mV)	-11	-129	-21	51		46	-61	22	96		
Eh (mV)	238	121	230	301	219	294	190	271	344	372	
In mg/L CI	0.8	2	2	2		0.2	3	3	3		
HCO3	33	27	32	37		17	26	10	20		
SO4	2.9	1	1	1	2.2	0.3	1	1	1	1.8	
NH4,N	0.06	0.01		0.11		0.03	0.01		0.06		
TKN,N	0.93			6.4		2			1.2		
NO3,N	0.01	0.01		0.04		0.04	0.01		0.04		
P	0.18	0.02		0.26		0.24	0.32		0.26		
As	0.011	0.02	0.026	0.017	0.024	0.0005	0.0099	0.0086	0.0058	0.051	
Ca	5.9	8	8	6		6.8	10	6	4		
Fe	1.4	2.6	3.1	2.9	2.1	1.1	3	1.9	3.7	6.3	
К	1.3	1.3	2.6	1.2		0.3	1.4	0.9	0.7		
Mg	3.2	3	4	5		1.8	3	2	2		
Mn	0.12	0.17	0.16	0.14		0.19	0.27	0.13	0.15		
Na	1.4	0.9	1.4	2		0.8	1.9	1.2	1.8		
Ni	0.01	0.011	0.034	0.009	0.004	0.004	0.015	0.009	0.023	0.007	
TDS	95			78		121			90		
IA II				0.2					0.34		

Table 9b: Shallow Piezorneters Water Quality - Piezometers SP-3A and SP-3B

CAMECO Corporation: Rabbit Lake Operation Utilization of Wetlands for Removal of As and Ni July, 1998

Location		10 <u>111</u> 1111	SP-4	<u></u>				SI	D_5		
Assay No.	4467	5424	5467	5591	6553	4468	4469	5425	5468	5592	6554
]	-		Surface	Bottom				
Date	12-Jun-93	26-Jun-94	08-Sep-94	27-Jun-95	30-Aug-97	12-Jun-93	12-Jun-93	26-Jun-94	08-Sep-94	27-Jun-95	30-Aug-97
T (C)	13.3	14.2	10	11.2		13.4	13	7.6	9	13.6	13.9
pH	5.63	4.92	5.22	5.07	[6.28	4.8	5.61	5.14	6.24	5.54
Cond (uS/cm)	155	204	192	433		133	75	102	78	142	74.7
Em (mV)	129	-118	140	150	5.31	112	151	-134	46	75	
Eh (mV)	378	130	391	400	271	361	400	118	298	324	351
In mg/L CI	1.3	3	4	3		1.4	2.2	6	5	13	· ·
HCO3	20	1	1	6		56	33	29	11	43	
SO4	32	65	114	180	110	9.2	13	2	13	31	3.9
NH4,N	2	1.8		1.5		1.4	1.4	2		1.1	
TKN,N	3.3			5.9		3.6	4.4			52	
NO3,N	0.04	0.01		8.4		0.04	0.04	0.01		2.2	
Р	0.48	0.45		2.7		0.39	0.39	0.22		1.6	
As	0.29	0.13	0.066	0.76	0.14	0.26	0.24	0.11	0.11	0.66	0.28
Ca	9.6	12	20	32		16	5.2	10	12	7	
Fe	1.3	7.3	2.4	5.5	1.6	0.13	0.46	5	3.1	0.79	8.3
К	4.4	6.5	7.8	7.6		2.8	2.3	3.7	1.6	4.6	
Mg	3.9	8	14	21		2.5	1.4	4	6	6	
Mn	0.37	0.25	0.46	1		0.74	0.1	0.22	0.19	0.077	
Na	5.1	7.3	7.8	12		3.2	13	7.4	1.6	21	
Ni	0.024	0.077	0.028	0.18	0.65	0.024	0.007	0.05	0.015	0.021	0.055
TDS	195			394		150	148			198	
AI				0.28						0.16	

Table 9c: Shallow Piezorneters Water Quality - Piezometers SP-4 and $\tilde{S}\tilde{P}\text{-}5$

CAMECO Corporation: Rabbit Lake Operation Utilization of Wetlands for Removal of As and Ni July, 1998

Location			SP-6					SP-7		
Assay No.	4470	5426	5469	5593	6555	4471	5427	5470	5594	6556
Date	12-Jun-93	26-Jun-94	08-Sep-94	27-Jun-95	30-Aug-97	12-Jun-93	26-Jun-94	08-Sep-94	27-Jun-95	30-Aug-97
T (C)	11.2	10	10.2	12	13.3	11.7	10.3	9	12.1	13.8
pH	5.49	5.29	5.83	5.21	5.16	4.66	4.6	5.22	3.94	4.45
Cond (uS/cm)	58	69	48	69	55.2	31	33	21	36	44.1
Em (mV)	156	-75	-6	116		198	150	163	173	
Eh (mV)	406	176	245	366	389	448	401	415	423	500
In mg/L Cl	0.3	4	3	2		0.4	2	3	3	
НСОЗ	14	17	26	9		3	1	1	2	
SO4	0.2	26	2.5	1	2	0.2	1	3	1	1.2
NH4,N	0.43	0.57		0.7		0.5	0.07		0.07	
TKN,N	2.2			3.2		2.1			7	
NO3,N	0.04	0.01		1.5		0.04	<0.01		1.4	
P	0.23	0.14		0.8		0.33	0.04		0.22	
As	0.0037	0.11	0.013	0.028	0.01 ·	0.047	0.034	0.028	0.03	0.058
Ca	6.9	7	6	3		1.5	3	3	1	
Fe	1.7	7.9	13	6.5	9.7	0.39	0.36	0.61	0.55	0.52
К	2.6	2.6	1.7	2		1.1	1.7	1.2	1.3	
Mg	1.4	3	3	2		0.4	<1	2	1	
Mn	0.27	0.28	0.35	0.16		0.021	0.025	0.019	0.019	
Na	1.1	0.8	1	1.3		1.1	1.7	1.8	1.9	
Ni	0.01	0.12	0.015	0.01	0.009	0.008	0.01	0.002	0.005	0.004
TDS	198			99		92			89	
AI				0.76					0.2	

Table 9d: Shallow Piezometers Water Quality - Piezometers SP-6 and SP-7

CAMECO Corporation: Kabbit Lake Operation Utilization of Wetlands for Removal of As and Ni July, 1998

1						I				
Assay No.	4472	5428	5471	5595	6557	4473	5429	5472	5596	6558
Date	12-Jun-93	26-Jun-94	08-Sep-94	27-Jun-95	30-Aug-97	12-Jun-93	26-Jun-94	08-Sep-94	27-Jun-95	30-Aug-97
T (C)	11.7	12.8	10.1	13.8	13.9	14.1	16.5	11.6	11.4	12
рН	5.78	4.64	5.17	4.74	4.95	5.93	4.81	5.33	3.98	4.85
Cond (uS/cm)	41	99	60	44	53.4	98	107	98	184	96
Em (mV)	159	137	39	162		125	103	123	208	
Eh (mV)	409	386	290	410	428	373	350	373	458	277
In mg/L Cl	0.7	15	11	7.		10	18	27	36	
HCO3	26	1	1	4		27	10	1	1	
SO4	0.5	9	5	2.5	0.55	2.4	7	6	15	10
NH4,N	0.2	0.15		0.05		0.02	0.01		1.6	
TKN,N	1.4			1.5		1.4			18	
NO3,N	0.04	0.01		0.22		0.04	0.01		1.6	
Р	0.35	0.2		0.29		0.26	0.18		2.8	
As	0.051	0.3	0.19	0.13	0.13	0.041	0.55	0.18	0.34	0.33
Ca	7.3	4	4	1		10	6	6	10	
Fe	0.12	1	5.5	2.8	5	0.12	2.6	0.44	1.1	4.5
К	0.9	4.9	2.4	2.8		2.2	4.7	6.9	4.6	
Mg	1.3	2	4	1		2.2	3	5	7	
Mn	0.16	0.1	0.2	0.054		0.2	0.19	0.16	0.26	
Na	1	2.2	1.9	2.3		2.3	2.2	2.7	3.6	
Ni	0.015	0.009	0.009	0.007	0.008	0.006	0.29	0.11	0.26	0,11
TDS	83			36		118			148	
AI		· .		0.16					0.4	

 Table 9e: Shallow Piezorneters Water Quality - Piezorneters SP-8 and SP-9

Parameter	Limit	Units
	SOLID SAMPLES	
C, organic	0.01	%
C, total	0.01	%
SO4	10	μg.g ⁻¹
N, NO2+NO3	1	μg.g ⁻¹
TKN	1	μg.g ⁻¹
N, total	1	μg.g ⁻¹
As	0.2	μg.g ⁻¹
8	1	μg.g ⁻¹
P	10	μg.g ⁻¹
Ag	0.5	μg.g ⁻¹
AI	2	μg.g ⁻¹
Ba	0.5	μg.g ⁻¹
Be	0.5	μg.g ⁻¹
Са	1	μg.g-1
Cd	0.5	μg.g ⁻¹
Со	0.5	μg.g ⁻¹
Cr	0.5	μg.g ⁻¹
Cu	0.5	μg.g ⁻¹
Fe	0.5	μg.g ⁻¹
к	40	μ g .g ⁻¹
Ma	2	μg.g ⁻¹
Mn	0.5	μg.g ⁻¹
Мо	0.5	μg.g-1
Na	40	μg.g ⁻¹
Ni	0.5	μg.g ⁻¹
РЪ	1	μg.g ⁻¹
Sr	0.5	μg.g ⁻¹
Ti	0.5	μg.g ⁻¹
v	0.5	μg.g ⁻¹
Zn	0.5	μg.g- <u>1</u>
Zr	0.5	μg.g ⁻¹
L.O.I.	0.01	%
210PO	0.02	Bq.g ⁻¹
²²⁶ Ra	0.02 or 0.05	Bq.g ⁻¹
U	0.1 or 0.2	μ g .g ⁻¹
	FILTER PAPER	
As	0.05	μg/paper
Ni	0.05	μg/paper

Table 10a: SRC Detection Limits for Solid and Filter Paper Samples

Parameter	Limit	Units
Ca	0.1	mg.L ⁻¹
CI	0.1	mg.L ⁻¹
HCO₃	1	mg.L ⁻¹
ĸ	0.2	mg.L ⁻¹
Mg	0.1	mg.L ⁻¹
Na	0.1	mg.L ⁻¹
SO₄	0.1	mg.L ^{_1}
Total Alkalinity	1	mg.L ⁻¹
Total Hardness	1	mg.L ⁻¹
Organic carbon	0.2	mg.L ⁻¹
NH₄ as N	0.01	mg.L ⁻¹
NO ₃ as N	0.01	mg.L ^{.1}
Total Phosphorus	0.01	mg.L ⁻¹
В	0.001	mg.L ⁻¹
F	0.01	mg.L-1
Hg	0.05	μg.L ⁻¹
Se	0.001	mg L-1
Ag	0.001	mg.L ⁻¹
AI	0.005	mg.L ⁻¹
As, dissolved	0.5	μ g .L ⁻¹
As, total	0.5	μ g .Ľ-1
Ва	0.001	mg.L ⁻¹
Be	0.001	mg.L ⁻¹
Cd	0.001	mg.L ⁻¹
Со	0.001	mg.L ^{.1}

Parameter	Limit	Units
Cr	0.001	mg.L ⁻¹
Cu	0.001	mg.L-1
Fe	0.001	mg.L ⁻¹
Mn	0.001	mg.L ⁻¹
Мо	0.001	mg.L ⁻¹
Ni, total	0.001	mg.L ⁻¹
Ni, dissolved	0.001	mg.L ⁻¹
РЬ	0.002	mg.L ⁻¹
Si, soluble	0.01	mg.L ⁻¹
Sr	0.001	mg.L ⁻¹
π	0.001	mg.L ⁻¹
<u>v</u>	0.001	_ mg.L ^{_1}
Zn	0.005	mg.L ⁻¹
Zr	0.001	mg.L ⁻¹
TDS	1	mg.L ⁻¹
TSS	1	mg.L ⁻¹
Conductivity	11	μS.cm ⁻¹
рН		units
²¹⁰ Pb	0.02	Bq.L ⁻¹
²¹⁰ P0	0.005	Bq.L ⁻¹
²²⁶ Ra, dissolved	0.005	Bq.L ⁻¹
²²⁶ Ra, total	0.005	Bq.L ⁻¹
230Th	0.01	Bq.L ⁻¹
U, dissolved	0.5	μ g .L ⁻¹
U. total	0.5	ug.L-1

Table 10b: Detection Limits for Water Samples

Table 11: Toe Seepage, 1992 - 1997 Data

	SAMPLE DATE	18-Sep92					24-Aug-97
	OPERATOR	Boojum	Boojum	SRC	SRC	Boojum	SRC
	SAMPLING LOCATION	WRP-A	WRP-B	WRP-B	WRP-B	WRP-B	WRP-B
					17002	5612	<u>2 2179</u> 9
	Temp (C)	43	30	10.6	13.2	13.1	14.2
	nchip. (O)	4.99	4.69	456	4.83	473	4.2
	Cond. (umhos/cm)	1240	1480	1380	970	1429	1.399
	Em (mV)	223	206	186	251	290	1000
	Eh (mV)	478	461	437	500	539	511
	Flow, Us	0.008	0.018	0.051	0.007		
LAB							
	pH			4.53	5.09		4.32
		45			40.0		900
		15	65	34.2	18.6	0 QĒ	63.1
	inng/⊑. Ai ∆e			0.20	11	0.35	0.49
	AS Total As			30.Z	11	90 120	30
	Ba					120	
	Ca			131	108	195	
•	Dissolved Fe			0.01 7	0.038	0.026	0.045
	Total Fe					0.094	
	K			30	29	43	
	Mg			60	58	88	
	Diss. Mn			3	2.6	3.1	
	Total Mn						
	Na			49	40	30	
	Diss. Ni Tatal Ni			37	25	90	35
	I OTALINI			4.4		90	
	SI Rall Diss Po 228			11			24
	Bull Diss Ra 220 Bull Total Ra 226						3.1
	Diss U						0.05
	Total U						0.00
	In mg/L: Chloride		<u> </u>	2	2	2	
	Bicarbonate			1	<1	7	
	Sulphate			660	595	995	650
	FI						
	Nitrate (as N)			18.18	14.09	14	3.7
	Ammonia (as N)				1	0.28	0.57
	N, I OT KJEIDHAL				26	1.8 1	10
				1170	2.0	4 1020	12
	ס.ע.ד. דפפ			1170		1030	
	Total Hardness						

	SAMPLE DATE	18-Sep-92	17-Aug-93	08-Sep-94	18-Sep-92	15-Sep-95	24-Aug-97
	OPERATOR	Boojum	SRC	SRC	Boojum	Boojum	SRC
	SAMPLING LOCATION	WRP-C	WRP-C	WRP-c	WRP-D	WRP-D	WRP-D
				17003		5786	21804
FIELD							
	Temp. (C)	0.8	5.1	6.8	5.4	5.8	8.9
	pH	4.72	4.51	4.75	4.25	4.56	4.45
	Cond. (umhos/cm)	1470	1380	820	1640	1736	1566
	Em (mV)	208	179	249	248	246	= 1 0
	Eh (mV)	465	433	502	502	500	516
	Flow, L/s	0.025	0.036	0.006	0.007	0.031	
I- A B			4 4 4	0.04			4.00
	p⊓ Occurit (umbas/am)		4.44	0.21			4.38
	Cond. (uminos/cm)	EE	22.4	11	<u>CE</u>		1200
		55	0.22	14	60		147.0
	nnny/⊑. Ar		0.52	11		79	0.9
	Total As		04.4			70 5	/5
	TOIALAS Ra					79.5	
	Ca		126	108		170	
	Dissolved Fe		0.01	0.01		0.016	0.019
	Total Fe		0.01	0.01		0.45	
	K		29	29		30	
	Μα		57	58		86	
	Diss. Mn		2.8	2.6			
	Total Mn						
	Na		46	39		29	
	Diss, Ni		37	25		96	96
	Total Ni					99	
	Si		10				
	Bq/L Diss Ra 226						5.3
	Bq/L Total Ra 226						
	Diss U						0.02
	Total U						
	In mg/L: Chloride		2	2		<1	
	Bicarbonate		<1	<1		2	
	Sulphate		625	588		916	740
	EI NUtrata (as NU		47.04	40.04		47	7 4
			17.04	13.64		17	1.4
				1		9.7	9.2
1				F		26	33
			1140	Э		00 1720	55
	T.D.S.		1140			1730	
1	I.S.S. Total Hampess				1		
	Total Hardness						

	SAMPLE DATE	18-Sep-92	17-Aug-93	26-Jun-94	08-Sep-94	18-Sep-92	26-Jun-94
	OPERATOR	Boojum	SRC	SRC	SRC	Boojum	SRC
	SAMPLING LOCATION	WRP-E	WRP-E	WRP-E	WRP-E1	WRP-F	WRP-F
					17004		<u>108</u> 4 3
FIELD							· · ·
	Temp. (C)	2.3	5.5	6	15.7	1.6	13.3
	pH	4.59	4.3	3.89	3.61	4.09	3.38
	Cond. (umhos/cm)	1920	1950	1211	2280	2280	1868
	Em (mV)	229	174	157	238	225	176
	Eh (mV)	485	428	411	485	481	425
	Flow, L/s	0.050	0.037	0.033		0.017	0.018
LAB	-11						
	p⊟ A ií i i i		4.43	4.79	3.84		4.02
	Cond. (umhos/cm)			450 4	050.0	050	
I	Acidity (mg/l)	175	118	150.4	652.8	253	586.9
	in mg/L: Al		0.98	445	500		440
	As		94.4	115	520		410
	I otal As						
	Ba		4 7 7	400	004		000
	Ca		177	196	284		280
			0.098	0.028	0.074		0.05
	Iotal Fe		22	22	45		20
	K Ma		33	32	45		39
	Mg Dine Me		83	92	147		133
	Diss, Min Total Min		6	6.1	4.8		10
	TOLATIMIN		24	24	E1		25
	Na Diso Ni		34 102	31	270		35
	DISS. INI Total Ni		103	130	270		400
	rutarini ci		10				
	Ball Dice Do 226		19				
	Ball Total Da 220						
	Dyre Tulai Ra 220 Diec II					1	
	DISS U						
 			2	1	Δ		2
1	Ricarhonata		∠ <1	<1	- <1]	ے 1
	Sulphate		980	1060	1500		1700
	FI		000	1000	1000		
	Nitrate (as N)		21 13	18	13 18		29
	Ammonia (as N)			13	3.67		3.8
	N. Tot Kieldhal			10	0.01		0.0
	P. total			42	178		111
	TDS		1820				
	T.S.S.		.020				
	Total Hardness						

	SAMPLE DATE	24-Aug-97	18-Sep-92	24-Aug-97	18-Sen-92	18-Sen-92	17-Au ₀₋ 9∙≀
	OPERATOR	SRC	Booium	SRC	Booium	Booium	SRC.
	SAMPLING LOCATION	WRP-F	WRP-G	WRPG	W/RP-H	WRP-I	
		21802		21805			
FIELD							
	Temp. (C)	7.6	3.2	13.2	2.1	3.1	11
	, pH	3.98	4.39	4.4	4.52	5.18	5.09
	Cond. (umhoslcm)	3720	2000	1070	1600	718	952
4	Em (mV)		229		230	208	221
	Eh (mV)	544	484	524	486	463	471
	Flow, Us		0.012		0.028	0.200	0.025
LAB						· · ·	
	pН	4.11		4.58			5.13
	Cond. (umhos/cm)	2180		680			
	Acidity (mg/l)	1120	72	28.4	25	10	17.3
	Inmg/L: Al	4.6		0.29			0.63
	As	320		0.025			0.094
	Total As						
	Ba						
	Ca						68
	Dissolved Fe	0.18		0.022			0.47
	Total Fe						
	K						18
	Mg						30
	Diss. Mn						4.2
	Total Mn						
	Na						23
	Diss. Ni	1060		5.1			3.5
	Total Ni						
	Si						12
H	Bq/L Diss Ra 226	6.6		3.6			
	Bq/L Total Ra 226	0.040		<u></u>			
	Diss U	0.218		21.1			
					:		2
	BICAIDONATE	2250		400			<1
l	Suiphate	3230		400			335
	FI Nitroto (oc. NV	85		10			0E
	Ammonia (as N)	0.0 6 1		13	1		20
	N Tot Kieldhal	0.1		0.9			
	D total	92		0.28			
		32		0.20	l.		638
	נ.ש.ד. דפפ						030
	.o.o. i Total Hardnoss						
1			L		J		

	SAMPLE DATE	26-Jun-94	08-Sep-94	18-Sep-92	18-Aug-93	18-Sep-92	25-Jun-94
	OPERATOR	SRC	SRC	Boojum	SRC	Boojum	
	SAMPLING LOCATION	WRP-I	WRP-I	WRP-J	WRP-J	WRP-K	WRP-K
		10844	17005				
FIELD		407	40.0				4- 0
	Temp. (C)	12.7	12.8		17.1	3.7	17.6
	pH Cond (umboo/cm)	4.1	4.93	5.56	б СО 7	5.13	3.97
	Cona. (umnos/cm)	690	195 205	045 1E4	697	6/6	2/3
	Em (mV)	158	200 454	104	142	188	1/4
		407 0.050	404 0.002	411	300 0.025	443	42U
	гюж, US	0.000	0.005	0.233	0.035	0.010	0.003
	~니	463	502		645		
	PT Cond (umbos/cm)	4.03	0.02		0.40		
	Acidity (ma/l)	124 6	33.1	7	47	15	
		ı <i>2</i> 7.0	50.1		011		
	As	0.27	2.7		0.215		
	Total As						
	Ba						
	Ca	67	82		54		
	Dissolved Fe	0.018	0.008		0.14	ł	
	Total Fe					Į	
	К	16	22		11	Ę	
	Mg	31	40		20		
	Diss. Mn	3.5	4.4		3.8		-
	Total Mn						
	Na	16	22		23		
	Diss. Ni	3.7	4.7		3.6		
	Total Ni						
	Si				9.4		
	Bq/L Diss Ra 226						
	Bq/L Total Ra 226						
1	Diss U						
 	Total U						·····
	In mg/L: Chloride	2	2		2	4	
	Bicarbonate	1	2		5		
	Sulphate	293	390		219		
l	HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	20	20 AE		70 70		
	Initiate (as IN)	20 56	20.40 6 75		21.21		
	M Tot Kieldhel	0.0	0.75				
		0 08	0.62	l		1	
 .		0.00	0.02		176		
1	ו.ט.ט. דפפ				4 70		
Į.	ں.ט. Total Hardnose			l		1	
řL	10101110101855			11			

	SAMPLE DATE	18-Sep-92	08-Sep-94	08-Sep-94	24-Aug-97	18-Sep-92	18-Aug-93
	OPERATOR	Boojum	SRC	SRC	SRC	Boojum	SRČ
	SAMPLING LOCATION	WRP-L	WRP-L	WRP-L1	WRP-L1	WRP-M	WRP-M
			1700 B	17007	6512		
FIELD							
	Temp. (C)	5.1	9.4	9.3	14.5	3.1	10.6
	рH	4.57	5.01	5.4	4.65	5.65	5.54
	Cond. (umhos/cm)	311	920	805	1440	1340	1376
	Em (mV)	260	173	144		195	111
	Eh (mV)	514	424	395	515	450	362
	Flow, L/s	0.023	0.007	0.007		0.067	0.035
LAB			_				
	pН		5.97	6.21	4.58		5.7
	Cond. (umhos/cm)				800		
	Acidity (mg/l)	10	20.6	14	46.9	20	29
	In mg/L: AI				0.51		0.4
	As		13	5	21		25
	Total As		ţ				
	Ba						
	Ca		155	124			132
	Dissolved Fe		0.006	0.001	0.1 1		0.11
	Total Fe						
:	K		24	22			20
	Mg		56	43			47
	Diss. Mn		5.7	5.3			4.2
	Total Mn						
	Na		21	20			21
	Diss. Ni		54	46	48		46
	Total Ni						
	Si						14
	Bq/L Diss Ra 226				1.2		
	Bq/L Total Ra 226						
	Diss U				0.028		
	Total U		-				
	In mg/L: Chloride		3	2			2
	Bicarbonate		5	6			4
	Sulphate		652	493	550		530
	FI				_		
	Nitrate (as N)		41.82	40.45	38		51.36
	Ammonia (as N)		8.25	6.17	12		
	N, Tot Kjeldhal						
	P. total		6.3	2.4	3.8		
ŀ	T.D.S.			1		1	1080
	T.S.S.						
	Total Hardness						

	SAMPLE DATE	25-Jun-94	18-Sep-92	19-Aug-93	26-Jun-94	08-Sep-94	27-Jun-95
	OPERATOR		Boojum	SRC	SRC	SRC	Boojum
	SAMPLING LOCATION	WRP-M	WRP-N	WRP-N	WRP-N	WRP-N	WRP-N
				· · · · · · · · · · · · · · · · · · ·	10845	17008	3 560 9
FIELD							
	Temp. (C)	15.8	3.5	15.9	16.7	11.2	15.6
	pН	3.79	4.07	4.02	3.84	3.87	4.01
	Cond. (umhos/cm)	653	1559	1625	1005	1060	936
	Em (mV)	156	211	222	142	254	312
	Eh (mV)	403	466	469	388	504	559
	Flow, L/s	0.003	0.067	0.027	0.009	0.007	0.003
LAB							
	pH			4.12	4.91	4.16	
	Cond. (umhos/cm)						
	Acidity (mg/l)		170	144.1	34	131.2	
l	In mg/L: Al			1.7	• -		0.69
	AS			116	25	97	9.2
	I otal As						9.6
	Ва						
	Ca			140	118	162	105
	Dissolved Fe			0.31	0.14	0.056	0.078
	Total Fe						0.52
	K			23	12	26	13
	Mg			59	44	66	38
	Diss. Mn			5.5	4.7	5.9	4.2
	I otal Mn						
	Na			25	14	26	15
	Diss. Ni			103	46	110	32
	Total Ni						32
	Si			22			
	Bq/L Diss Ra 226						
	Bq/L Total Ra 226						
	Diss U						
						A	
				2	2	4	2
	Bicarbonate			<1 650	<1 490	<1 700	Т 440
	Suipriate			UCO	469	180	44ŏ
	FI Nitroto (oc N)			40.00	10	10 15	<u> </u>
				40.22	19	40.45	o2
	AITIMONIA (as N)				4	10.00	2.1
1	IN, I OT NJEIONAL]		7.0	04	3.5 F
	P, total		1	1490	7.3	34	5
	1.D.J. Tee			1460			000
	I.J.J. Total Hardness	,					
L	I otal Hardness						

	SAMPLE DATE	24-Aug-97	19-Aug-93	26-Jun-94	08-Sep-94	31-Aug-96	24-Aug-97
	OPERATOR	SRC	SRC	SRC	SRC	SRC	SRC
	SAMPLING LOCATION	WRP-N	WRP-N1	WRP-N1	WRP-N1	WRP-N1	WRP-N1/N2
		6511		10846	17009		2180 3
FIELD							
	Temp. (C)	15.3	3.6	10.8	6.8	12.5	
	pH	4.12	5.22	3.57	5.05	4.75	4.5
	Cond. (umhos/cm)	950	1165	1005	630	690	840
	Em (mV)		201	142	223	266	
	Eh (mV)	553	456	392	476	515	528
	Flow, L/s		0.120		0.041	0.027	
LAB							1
	pH	4.07	5.44	4.26	5.42		4.76
	Cond. (umhoslcm)	280					480
	Acidity (mg/l)	40.4	18.7	173.9	50.9		20.2
1	In mg/L: Al	1.1	0.3			0.61	0.52
	As	1.8	6.24	130	5.8	0.14	0.022
	Total As					0.18	
	Ba					0.017	
	Ca		103	122	93	95	
	Dissolved Fe	0.082	0.043	0.12	0.001	0.017	0.018
	Total Fe					0.25	
	K		20	16	21	19	
	Mg		49	57	50	36	
	Diss. Mn		56	4.6	4.4	7.7	
	Total Mn						
	Na		23	17	19	11	
	Diss. Ni	22	18	120	17	8.5	6.1
	Total Ni					8.6	
	Si		11				
	Bq/L Diss Ra 226	2.4					2.9
	Bq/L Total Ra 226						
	Diss U	1.02					6.2
	Total U						
	In mg/L: Chloride	1	2	2	3	2	
1	Bicarbonate		5	<1	3	4	
	Sulphate	410	432	575	413	400	320
	FI		07		<u> </u>	0.28	
	Nitrate (as N)	5.3	37.27	7.3	32.05	27.73	19
	Ammonia (as N)	3.1		3.4	4.33	9.2	8
	N, I ot Kjeldhal	• -		_			
	P, total	0.9		45	3.4	0.1	0.46
	T.D.S.		856				
	T.S.S.						
	Total Hardness		<u> </u>			_	

	SAMPLE DATE	19-Aug-93	26-Jun-94	18-Sep-92	17-Aug-93	26-Jun-94	18-Sep-92
	OPERATOR	SRC	SRC	Boojum	SRC	SRC	Boojum
	SAMPLING LOCATION	WRP-N2	WRP-N2	WRP-0	WRP-0	WRP-0	WRP-P
L			10847			10848	
FIELD							
	Temp. (C)	5.3	17.6	0.7	9	18.1	4.2
	рH	4.71	3.38	4.18	3.89	3.55	2.49
	Cond. (umhos/cm)	1885	1258	1382	1770	1682	4550
	Em (mV)	263	181	261	187	172	413
	Eh (mV)	517	427	518	439	418	668
	Flow, US	0.110		0.250	0.092	0.029	0.167
LAB						:	
	pH	4.93	4.29		4.21	4.28	
	Cond. (umhos/cm)		/				
	Acidity (mg/l)	24.6	37.1	60	75.3	126.8	918
	inmg/L: Al	0.72	40		2.4		56
	As	11.8	12		54.3	68	16.4
	I otal As		-				41.2
	Ba	405					
	Ca Disasterat Es	195	131		175	195	280
	Dissolved Fe	0.014	0.05		0.18	0.019	63
	I otal Fe	20	22		20	07	60
	ĸ	28	22		30	27	50
	Mg Diag Ma	94	62		90	84	210
	DISS. MIN	9.4	4.3		7.4	11	13
	TOLALINIT	24	20		22	26	24
	INA Diao Ni	24 51	20		33	20	24
1	DISS. INI Total Ni	51	00		75	120	310
		16			20		320
	Dall Dice Do 226	10			20		0.25
	Ball Total Ba 226						0.20
							27
	Total II						276
	In ma/L: Chloride	3	2	<u> </u>	4	3	3
	Ricarbonate	<1	_ <1		<1	<1	NII
	Sulphate	860	680		865	1020	2390
	FI						
-	Nitrate (as N)	44.31	2.6		18.18	3.8	44.32
	Ammonia (as N)		5			3.4	16
	N, Tot Kieldhal		-				16
	P, total		8.8	1		24	1.2
	T.D.S.	1600			1590		
	T.S.S.	•					120
	Total Hardness						

	SAMPLE DATE	17-Aug-93	26-Jun-94	08-Sep94	27-Jun-95	31-Aug-96	24-Aug-9i
	OPERATOR	SRC	SRC	SRC	Boojum	SRC	SRČ
	SAMPLING LOCATION	WRP-P	WRP-P	WRP-P	WRP-P	WRP-P	WRP-P
			10849	17010	<u> </u>		2179 7
FIELD				· · · · ·			
	Temp. (C)	14.5	20.3	13.2	16.4	15	13.9
	Hq	2.68	1.94	2.19	2.08	2.5	2.51
	Cond. (umhos/cm)	3150	4510	3300	4060	3230	4300
	Em (mV)	325	454	419	492	498	
	Eh (mV)	573	698	668	739	746	735
	Flow. Us	0.045	0.030	0.004	0.0007	0.004	
LAB							
	pН	2.76	2.65	2.58			2.67
	Cond. (umhos/cm)						2110
	Acidity (mg/l)	375.9	1722.9	1079.9			1457.8
	In mg/L: Al	26			62	81	71
	As	95.7	16	17	4.6	13.1	11
	Total As				6.5	13.4	
	Ва					0.006	
	Са	197	292	262	273	245	
:	Dissolved Fe	3.1	220	120	40	220	110
	Total Fe				41	230	
	K	38	56	50	51	43	
	Mg	118	253	204	191	193	
	Diss. Mn	8.6	18	13	19	12	
	Total Mn						
	Na	20	22	20	15	16	
	Diss. Ni	236	390	330	470	310	280
	Total Ni				470	320	
	Si	30					
	Bq/L Diss Ra 226						5.4
	Bq/L Total Ra 226						
	Diss U						1.54
	Total U						
	In mg/L: Chloride	3	3	4	2	3	
	Bicarbonate	<1	<1	<1	<1	<1	
	Sulphate	1560	3590	2810	2740	3010	2530
	FI					0.18	
	Nitrate (as N)	24.09	1.2	24.77	44	16.82	15
	Ammonia (as N)		16	10.83	14	17	16
	N, Tot Kjeldhal				14		
	P, total		7.6	3.9	1.7	5.5	2.2
•	T.D.S.	2700			4290		
	T.S.S.						
	Total Hardness			· · · · · ·			

	SAMPLE DATE	08-Sep-94	27Jun-95	19-Aug-93	27Jun-95	24-Aug-97	24-Aug-97
	OPERATOR	SRC	Boojum	SRC	Boojum	SRC	SRC
	SAMPLING LOCATION	WRP-R	WRP-R	WRT-1	WRP-T	WRP-U	WRP KillZ2
		17011	5610	l	5611	21812	21806
FIELD			······································				
	Temp. (C)	10.4	12.7	16.9	14.3	10.7	14.3
	рН	4.03	3.98	4.27	3.75	4.44	5.7
5	Cond. (umhoslcm)	1310	1744	595	1783	891	87
	Em (mV)	305	347	235	375		
	Eh (mV)	556	596	481	623	1394	340
	Flow, Us	0.146	0.096		0.013		
L.AB							5 00
	pH	4.39		4.19		4.73	5.03
	Cond. (umhos/cm)					282	48
	Acidity (mg/l)	<u> 139.5 </u>		14.4		44.4	44.2
	In mg/L: Al		1.3	0.33	3 10	0.49	0.30
	As	55	19	5.05	10	26	2.0
	IotalAs		19		10		1
	Ba	000	040	42	212		
	Ca Dissolved Ea	209	213	43	212	0.086	18
	Dissolved Fe	0.27	0.002	0.056	0.017	0.000	4.0
4	I Otal Fe	22	0.57	12	∎ 4 20		
	K Ma	32	31	12	30 87	:	1
	IVIg Diag Ma	95	91	17	86		
	DISS. IVIN	8.9	8.2	1.7	0.0		
	i otai Min	22	20	12	30		
	INA Diag Mi	3Z 100	30 65	12	50 62	37	0.53
	Diss. Ni Totol Ni	100	65 65	12	62	57	0.00
			05	52	02		
	Brill Dias Da 206			0.2		22	0.3
	Byll Intel Ra 226						
	Digre Totar (a 220					0.128	0.06
	Total U						
	in ma/L Chloride	4	5	1	5	1	<u> </u>
	Bicarbonate	e <1	<1	<1	<1		
1	Sulphate	1110	995	236	995	380	5.9
	, Fi						
	Nitrate (as N)	20.91	130	12.04	130	14	-0.01
	Ammonia (as N)	3.50	2.9	1	2.2	4	0.64
1	N, Tot Kjeldha	I	3.4	1	2.9	1	1
	P, tota	l 16	9.6		5.2	12	3.2
	T.D.S.		1770	416	1800		
	T.S.S.			1			
1	Total Hardness	6					

	SAMPLE DATE	18-Sep-92	17-Aug-93	25-Jun-94	08-Sep-94	27-Jun-95	:11-May-92
	OPERATOR	Boojum	SRC	SRC	SRC	Boojum	Cameco
	SAMPLING LOCATION	STN 16	STN 16	STN 16	STN 16	Stn. 16	BZWR-1
				10841	17001	<u> </u>	
FIELD							
	Temp. (C)	4.1	14.4	12.7	13.7	11.8	2.5
	pH	4.89	4.3	3.42	4.14	3.07	4.5
	Cond. (umhos/cm)	2140	2510	965	1220	1026	592
	Em (mV)	225	214	206		283 522	
		480	462	400	475	0.005	
<u> </u>	Flow, US	0.008	0.007	0.004	<u> </u>	0.005	
I . А В	Ha		171	4.05	4.06		457
	Cood (umbos/cm)		4.71	4.00	4.00		
	Acidity (ma/l)	45	33	53.4	108		
	<u>In mg/L:</u> Al		1.6			0.78	
	As		105	25	4.6	9.2	12.4
	TotalAs					9.8	14
	Ва						
	Ca		290	128	252	121	
	Dissolved Fe		<0.001	0.064	0.057	0.017	
	Total Fe					0.16	
	K		36	22	32	23	
l l	Mg		147	47	91	48	
K	Diss. Mn		17	5.2	10	5.5	1
	Total Mn					10	
A	Na		70	20	40	18	10
	Diss. Ni		138	58	88	51	13
	Total Ni		40			52	15
	Si		18				C.F.
	BQ/L Diss Ra 226						0.5
	BQ/L Total Ra 226						0376
li i	DISS U						0.370
┠────	In ma/l Chloride		7			2	
1	Ricarbonate		, <1	<1	<1	<1	
	Sulphate		1500	620	1220	645	341
1	F	l					
	Nitrate (as N)		20	0.87	8.41	5.3	
	Ammonia (as N)			0.5	0.62	0.37	
	N, Tot Kjeldhal					0.53	
	P, total			7.6	2.6	5.5	
	T.D.S.		2490			1050	622
1	T.S.S.						1
	Total Hardness						

	SAMPLE DATE	11-Aug-92	10-May-93	03-Aug-93	28-Aug-93	13-Jun-94	26-Jun-94
	OPERATOR	Cameco	Cameco	Cameco	Cameco	Cameco	SRC
1	SAMPLING LOCATION	BZWR-1	BZWR-1	BZWR-1	BZWR-1	BZWR-1	BZWR-1
L	······						10836
FIELD	_ /->						
	Temp. (C)	3.5	20.6	10		1.5	6.9
	pH Out to the family	3.9	6.3	42		4.1	3.65
		951	646	1630		1389	1425
							166
	Elow <i>IIa</i>						419
	F10W, US						0.007
	nH	374	512	4.25	4.08	<i>4</i> 19	463
	Cond (umbos/cm)	0.7 T	742	1790	1760	1630	т.00
	Acidity (ma/l)		174	1700	1700	1000	124.6
 							
Ĩ.	As	61.1	0.367	49	58.2	44	5.4
1	Total As	68.8	0.456	49	59	45	
	Ba			-		-	
	Ca					175	₽ 8
	Dissolved Fe						0.068
	Total Fe					0.87	
	Κ					26	27
	Mg					75	82
	Diss. Mn						9.2
ſ	Total Mn						
	Na					27	23
	Diss. Ni	61	8,5	72	71	85	100
	Total Ni	65	9.8	74	72	85	
	Si						
1	Bq/L Diss Ra 226	6	1.7	7.5	6.5	3.5	
	Bq/L Total Ra 226	7.5	2	а	7.5	8	
	Diss U	0.073	1.4	0.207	0.174	0.153	
 	Total U	0.152	1.57	0.198	0.174	0.231	
						3	3
1	Bicarbonate	600		0.05	010	<7 050	<1
1	Suiphate	092		920	910	000	905
1	F1 Nitrata (ac KB					17	72
	Ammonia (as N)					11 2 R	7.3 21
	N Tot Kieldhal	I				2،0	5.1
ß	P total	•				3.59	0.01
		1380	577	1710	1620	1610	0.01
1	TSS	1000	42	<1	< 1	1010	
	Total Hardness			· •	- 1	745	
Ĺ	Total Hardness	5				745	

	SAMPLE DATE	06-Jul-94 =	26- Jun-94	28-Aug-94	08-Sen94	19-Sep94	26-Oct-94
		Cameco	SRC	Cameco	SRC	Cameco	Cameco
	SAMPLING LOCATION	BZWRY	B7WR-1A	BZWR-1A	BZWR-1A	BZWR-1A	BZWR-1A
		DZYVIX-I	10837		17012	2	
FIELD	<u></u>						
	Temp. (C)	9.1	3.5	4	3.9	2.7	2
	DH	4.1	3.57	4.2	4.03	4.1	4.4
	Cond. (umhos/cm)	1327	1467	1420	1210	1348	1756
	Em (mV)	-	148		246		
	Eh (mV)		403		501		
	Flow, U s		0.250	0.1	0.123		
LAB			· · · · · · · · · · · · · · · · · · ·			<u> </u>	
	рН	4.11	4.51	4.1	4.38	4.15	4.06
	Cond. (umhos/cm)	1580		2020		2020	2100
	Acidity (mg/l)		151		110.6		
y	In mg/L: Al						
1	As	43	63	60	57	54	63
	Total As	44		60		58	65
	Ba						
	Ca	162	a7	216	208	213	233
	Dissolved Fe		0.09	0.04	0.08	<0,001	0.02
1	Total Fe	0.056	ł				
	K	24	27	33	33	32	32
	Mg	69	83	93	94	97	94
1	Diss. Mn		11		8.8		
	Total Mn						
	Na	22	23	35	32	35	32
	Diss. Ni	74	120	96	100	97	110
	Total Ni	75		110		99	110
	Si					_	_
I	Bq/L Diss Ra 226	5.5		5.5		5	5
1	Bq/L Total Ra 226	6.5		5.5		5	5.5
	Diss U	0.148		0.094		0.09	80,U
[Total U	0.191		0.096	<u>_</u>	0.091	0.081
l	In mg/L: Chloride	3	3	১	4	4	C
	Bicarbonate	<1		<1	51 A440	51	1160
1	Suiphate	782	990	1040	1110	1100	1100
	FI	04	64	20	20 68	21	28
	Nitrate (as N)	21	31	20 1 1	20.00	۲ ـ 1 1	20 // 1
	AMMONIA (as N) N. Tot Kialdhal	2.5	5.4	4.4	0.00		4.1
		E 01	0.01	6 21	5 23	3 50	8 50
	ר, נסנמו דחפ	0.21 1550		2080	0.20	2000	2130
·	ו.ש.ס. קרפים	1000		2000		2000	2100
1	Total Uardaaaa	• 600	1	021		030	968
	I Dial Hardness	000	<u>i</u>	<u> </u>		330	

.

	SAMPLE DATE	25-Jun-95	20-Jul-95	03-Aug-95	27-Aug-95	23-Sep-95	08-Oct-95
	OPERATOR	Cameco	Cameco	Cameco	Camew	Cameco	Camew
	SAMPLING LOCATION	BZWR-1A	BZWR-1A	BZWR-1A	BZWR-1A	BZWR-1A	BZWR-1A
FIELD							
	Temp. (C)	3.1			2		3
	pН	4.1	4.4		4.2		4
	Cond. (umhos/cm)	1526	1450		1080		1718
	Em (mV)						
	Eh (mV)						
	Flow, L/s						_
LAB							
	pН	4.42	4.44	3.98	4.2	4.1	4.07
	Cond. (umhos/cm)	1860	1940	1470	1380	1870	2040
	Acidity (mg/l)						
	In mg/L: AI						
	As	20	22	49	29	40	44.4
	Total As	20	25	50	31	41	45.2
	Ba						
	Ca	211	229	153	139	209	222
	Dissolved Fe	0.037	0.1	0.31	0.13	0.016	1.1
	Total Fe						
	K	28	32	28	24	30	32
	Mg	87	92	68	66	88	94
	Diss. Mn						
h	Total Mn						_ ,
	Na	30	31	22	16	31	34
ļ	Diss. Ni	69	76	70	61		94
	Total Ni	69	82	71	65	96	98
	Si					_	_
	Bq/L Diss Ra 226	4	4	4	5	5	5.
	Bq/L Total Ra 226	4	4.7	4	5	5	5
	Diss U	0.038	0.039	0.526	0.43	0.397	0.087
j	Total U	0.061	0.063	0.57	0.448	0.4	0.271
[In mg/L: Chloride	5	5	3	3	4	5
	Bicarbonate	e <1	<1	<1	<1	<1	<1
ŀ	Sulphate	1020	1060	745	702	1020	1130
¥.	EI N Provinsione NO				~~	05	~~~
	Nitrate (as N)	32	38	22	32	25	29
H	Ammonia (as N)	2.9		2.1	21	1.1	4.1
l	IN, I OT KJEIDHA	075		204	2.04	E 00	4.05
	P. total	2.75	4000	3.04	2.94	5.23	4.25
1	I.D.S.	1810	1930	1370	1290	1830	1980
H	I.S.S. Total Llands	004	040	004	640	000	040
II	i otal Hardness	5 884	949	661	618	883	940

	SAMPLE DATE	31-Aug-96	24-Aug-97	31-May-92	11-Aug-92	18-Sep-92	10-May-9 3
	OPERATOR	Cameco	SRC	Cameco	Cameco	Boojum	Cameco
	SAMPLING LOCATION	BZWR-1A	BZWR-1A	BZWR-2	BZWR-2	BZWR-2	BZWR-2
			21794			0.37	
FIELD				_			
	Temp. (C)	4.6	3	4	6	1.1	16.6
	pH	4.19	4.08	4.2	4.3	4.72	5.7
	Cond. (umnosicm)	1000	1660	632	1059	15/4	602
	Em (mV)	261	667			204 501	
		0.070	557			521	
		0.270					
	ъН		42	125	462		1 35
ſ	Cond (umboslcm)		660	4.20	4.02		663
	Acidity (ma/D		101			40	000
	In ma/L; Al	1.6	1.9				
	As	25.5		23.4	28.6		2.4
	Total As	25.3	33	26.4	32.5		2.4
	Ba	0.018					
	Ca	205					
	Dissolved Fe	0.086					
	Total Fe	0.019	0.021				
	K	30					
	Mg	101					
	Dss. Mn	8.6		1			I
	Total Mn						
	Na	23					
	Diss, Ni	81		15	44		7.6
	I otal Ni	a3	76	16	43		8.5
	SI Bat Dias Do 226				05		05
	BQ/L DISS Ra 220		5.0	25	25		25
	by⊑ Total Ra 226 Dice L		5.2		3.5		6
	Total II		0 232		0.000		1.20
	In ma/L Chloride	4	0.202		0.011		1.02
l	Bicarbonate	<1					
	Sulphate	1040	900	341	715		
	FI	0.47					
	Nitrate (as N)	19.32	16.00				
1	Ammonia (as N)	3.7	3.9	1			
	N, Tot Kjeldhal			}			
	P, total	10	13				
	T.D.S.			652	1460		493
	T.S.S.						240
<u>ii</u>	Total Hardness						

	SAMPLE DATE	03-Aug-93	17-Aug-93	28-Aug-93	13-Jun-94	26-Jun-94	06-Jul-94
	OPERATOR	Cameco	SRC	Cameco	Cameco	SRC	Cameco
	SAMPLING LOCATION	BZWR-2	BZWR-2	BZWR-2	BZWR-2	BZWR-2	BZWR-2
						10030	
	Temp. (C)		5.2		3	10.6	10
	pH	4.2	4.41		4.6	4.05	4.4
	Cond. (umhos/cm)	1100	1700		1405	851	755 .
	Em (mV)		167			166	
	Eh (mV)		421			417	
	Flow, L/s		0.132			0.005	
LAB				4.07	4.0		1.00
E	pH Cond (umbas(am)	4.38	4.8	4.67	4.6	5.56	4.36
	Cond. (umnos/cm)	1190	22.2	1790	1600	77.4	889
						21.4	
	Δα	28	12.2	10 1	10	28	12
	Total As	29	12.2	10.4	11	2.0	1.6
	Ba						
	Ca		220		183	94	95
	Dissolved Fe		0.001	4	2.3	0.25	
	Total Fe						5.7
	K		27		23	16	14
Į	Mg		98		72	41	35
	Diss. Mn		10			5	
A U	l otal Mn		07		22	40	40
1	INA Diag Ni	10	21	40	22	12	13
	Diss. INI Total Ni	19	54	49 50	44 50	10	10
	Si	21	20	50	50		••
	Bg/L Diss Ra 226	1.6	20	2.5	4		1.2
	Bg/L Total Ra 226	1.7		3	4.5		1.5
	Diss U	1.18		0.316	0.319		1.2
	Total U	t.2		0.332	0.529		1.72
	In mg/L: Chloride		4		3	3	2
	Bicarbonate	4	1	<1	1	<1	<1
	Sulphate	108	780	865	755	418	372
	EI Nitroto (oc Ni)		20.24		20	16	16
	Ammonia (as M		J9.71		29 63	10 // 1	10 25
1	N Tat Kieldhe	I			0.0	4 .1	0.0
	P. total	I			0.85	0.16	0.26
	TDS	1020	1450	1530	1390	0.10	707
	T.S.S.	<1		1			
	Total Hardness				752		381
/

	SAMPLE DATE	05-Oct-97	26-Jun-94	31-May-92	11-Aug-92	18-Sep-92	10-May-93
	OPERATOR	SRC	SRC	Cameco	Cameco	Boojum	Cameco
	SAMPLING LOCATION	BZWR-2	BZWR-2A	BZWR-3	BZWR-3	BZWR-3	BZWR-3
		20275	10839	<u> </u>		0.1	
FIELD							
	Temp. (C)		9.9	5	14.5	1.7	20
	pH		4.05	4.4	3.8	4.09	5.3
	Cond. (umhos/cm)		1718	423	492	1010	978 ,
	Em (mV)		160			341	
	Eh (mV)		41	}		597	
	Flow, US		0.030				
LAB							1.00
	pH	3.95	5.41	4.46	4.19		4.36
	Cond. (umhos/cm)	1700	a= i			-	971
	Acidity (mg/l)		67.4			27	
ll l	Inmg/L: Al						0.070
	As	33.2	25	0.059	0.204		0.056
1	Total As	33.7		0.909	0.286		1.02
	Ba						
	Ca	159	250				
1	Dissolved Fe		0.004				
	l otal Fe	0.25		l l			
	K	28	29				
	Mg.	82	96				
Ĭ	Diss. Min		13	1			
	l otal Mn						
	Na	20	26				40
l I	Diss. Ni	57	94	1.8	6		4.6
	I otal Ni	57		1./	6.1		4.9
		~~		00	-		0.0
	Bq/L Diss Ra 226	2.6		0.9	5		0.0 1
	Bq/L Total Ra 226	3			C TO OT		4
]		1.03	J		9.97		U.804
∥	I Dial U			1.9	3.30		1.13
	Innig/L: Unioride	3	4				
	BICAIDUNATE	760	2 1100	120	224		
	Suprate	801 ×	1120	129	224		
	F Nitrota (as Ni	در د ا	07				
1	Ammonia (as M	43 0	9.7	1			
	N Tot Kialdha	ษ เ	9.4				
H		I I 14.00	2 50				
	r, ioia	1 14.00 1540	3.09	207	720		72/
	1.D.J. Tee	1040		397	120		1120
	1.5.5. Tatal Usarda	704		1			1120
ll I	i otal Hardness	s 734 _					

	SAMPLE DATE	13-Jun-94	31-May92	11-Aug-92	18-Sep-92	10-May-93	18-Aug-93
	OPERATOR	Cameco	Cameco	Cameco	Boojum	Cameco	SRC
	SAMPLING LOCATION	BZWR-3	BZWR-4	BZWR-4	BZWR-4	BZWR-4	BZWR-4
<u> _</u>					0.02		
FIELD			15	10 E	ЛЛ	<u>01 -</u>	11
	iemp. (C)	5.5 4 4		C.2 ו ۸	4.4 4 R	∠1,1 45	439
	Pn Cond (umbos/cm)	4.4 686	338	- 1108	1825	1264	1562.
	ουτα. (uninos/uni) Fm /m\Λ	000			181		132
	Eh (mV)				436		382
1	Flow, Us						0.003
1- A B							. = :
	pН	4.49	4.37	4.31		4.23	4.54
	Cond. (umhos/cm)	760			76	858	~7
I	Acidity (mg/l)		 		/5		6/
	inmg/L: Al	0.000	20.4	100		21	64.6
	HO Totol Ac	0.093 0.2	20.4	12.2 18.7		35	01.0
	rotal AS Ra	0.0	<u>_</u>	10.7		~~	
1	Ca	66	1				171
	Dissolved Fe						0.57
	Total Fe	6.3					
	K	15					23
1	Mg	31					66
	Diss. Mn						7.2
1	Total Mn	4 -					20
	Na	12	10	10		20	20 06
	Diss. Ni	3.8	19	49 50		78	30
1	I Otal Ni	4.5		50		40	21
	SI Ral Dice Pagge	04	0.35	1.7		0.3	- 1
	Ball Total Ra 226	17	0.6	7		20	
	Diss U	0.553	0.108	0.059		0.109	
	Total U	0.787	0.354	0.331		0.112	
]	In mg/L: Chloride	2					2
	Bicarbonate	<1					1
	Sulphate	231	154	528			628
	FI.	1					11 01
	Nitrate (as N)	33					44.31
	Ammonia (as N)	3					
			1				
	ד, וטנא דחפ	1 0.00 550	327	1160		716	1320
1	TSS	559		1.00		2300	
ľ	Total Hardness	\$ 292					

	SAMPLE DATE	28-Aug-93	08-Sep-94	02-Jun-92	11-Aug-92	18-Sep-92	10-Мау-9 3
	OPERATOR	SRC	SRC	Cameco	Cameco	Boojum	Cameco
	SAMPLING LOCATION	BZWR-4	BZWR-4	BZWR-5	BZWR-5	BZWR-5	BZWR-5
						0.1	
FIELD	T		07		10	0.5	22.6
	remp. (C) nH		9.7	5.5 4 8	16	2.0 5.10	22.0 56
	Cond (umbos/cm)		4.14	508	4.J 659	865	860
			1020	000	000	185	000,
	Ent(mV)					441	
	Flow, US		0.002				
LAB							
	рН	4.21	4.68	4.49	4.96		4.28
	Cond. (umhos/cm)					. –	496
	Acidity (mg/l)		67.1			15	
	Inmg/L: AI			0.01.4	0.406		0.002
li X	As	5/	50	0.014	0.100		0.092
	I OTAL AS	50		0.071	0.172		0.10
	- Da Ca	144	154				
	Dissolved Fe		0.35				
	Total Fe	0.78					
	K	23	28				
	Mg		69				
	Diss. Mn		5.9				
	Total Mn						
	Na	21	20	10	4.5		20
	Diss. Ni	69 70	74	4.8	4.5		2.6
	I Otal Ni	73		5	4.5		2.0
	SI Ball Dije Ra 226	35		2.5	4		0.9
	Ball Total Ra 226	65		2.5	6		2
	Diss U	0.071		2.1 1	0.413		0.089
	Total U	0.281		2	0.497		0.213
 -	In mg/L: Chloride	3	4				
	Bicarbonate	nil	<1	NIL			
	Sulphate	585	670	336	244		
5	F						
	Nitrate (as N)	50	70.00				
	Ammonia (as N)	21	20.83				
	IN, TOL NJEIONA	ı 21	20				
	ר, וטומ דחפ	· ∠· 1420	20	660	580		362
	T.SS	1720			500		110
	Total Hardness	589		ļ			

	SAMPLE DATE	03-Aug-93	18-Aug-93	28-Aug-93	25-Aug-95	02-Jun-92	11-Aug-92
	OPERATOR	Cameco	SRC	Cameco	Cameco	Cameco	Cameco
	SAMPLING LOCATION	BZWR-5	BZWR-5	BZWR-5	BZWR-5	BZWR-6	BZWR-6
FIELD	Tarran (O)				10	F	105
	remp. (C)	46	4.4 5.09		13	12	12.0
	Cond (umbos/cm)	4.0 960	5.06 1057		5.1 550	989	1387
:	Em (mV)	500	151		000	000	1007
	Eh (mV)		406				
	Flow, L/s		0.036				
LAB	· · · · · · · · · · · · · · · ·						
	pН	4.76	5.34	4.58	5.12	3.63	3.69
	Cond. (umhoslcm)	1020		981	790		
	Acidity (mg/l)		11.2				<u>.</u>
	Inmg/L: Al		0.52				
	As	0.25	0.278	0.25	0.018	48	102
	Total As	0.312		0.27	0.2	60	102
	Ba		00		00		
	Ca		89		66		
			0.02		0.09		
			21		15		
	Ma		21		29		
	Diss Mn		53		20		
	Total Mn		0.0				
	Na		18		13		
	Diss. Ni	8.7	10	9.5	7.5	95	94
	Total Ni	9.6		9.6	7.6	100	96
	Si		16				
	BqIL Diss Ra 226	2.5		4.5	4	3	6.5
	Bq/L Total Ra 226	2.5		4.5	4	3	6.5
	Diss U	0.617		0.946	1	<0.0005	0.236
<u> </u>	Total U	0.629		1.02	1.04	0.085	0.211
	In mg/L: Chloride		2		2		
	Bicarbonate	440	1	<1	4	704	050
	Sulphate	410	398	381	318	/04	850
	FI Niitroto (oc NN		21 12		6 .0		
H	Ammonio (os M		51.15		0,2 10]	
	AMMUMIA (as N) N. Tot Kieldhal				12		
	P total				011		
		828	759	706	609	1480	1750
	T.S.S.	<1		9			
	Total Hardness	-		<u> </u>	284		

	SAMPLE DATE	18-Sep-92	10-May-93	17-Aug-93	28-Aug-93	13-Jun-94	26-Jun-94
	OPERATOR	Boojum	Cameco	SRC	Cameco	Cameco	SRC
	SAMPLING LOCATION	BZWR-6	BZWR-6	BZWR-6	BZWR-6	BZWR-6	BZWR-6
L		0.1					<u>10840</u>
FIELD							
	Temp. (C)	4.7	21.6	14.2		5	13.1
}	pН	3.9	4.6	3.73		4.1	3.64
	Cond. (umhos/cm)	2240	1481	2210		1497	1235
	Em (mV)	249		192			184
	Eh (mV)	503		440			433
	Flow, L/s			0.031		<u></u>	0,083
LAB	еЦ				0.07	4.00	4.00
	μ Ω · · · · · · · · · · · · · · · · · · ·		4.51	3.8	3.87	4.02	4.39
	Cond. (umnos/cm)	000	1300	014.0	1860	1620	007.0
		303		214.8			267.9
	in my/L: Al		11 5	2.2 170	511	120	210
	AS Totol Ao		11.5	179	04.4 55.6	100	210
	TUIALAS		14.0		55.0	150	
				213		158	168
	Dissolved Fe			0.085		150	0.058
	Total Fe			0.000		0.58	0.000
	K			35		28	29
	Ma			107		69	78
	Diss Mn			8.6			5.4
Į	Total Mn						
	Na			41		28	29
	Diss. Ni		46	147	75	130	150
	Total Ni		47		85	130	
	Si			26			
	Bq/L Diss Ra 226		1.9		6	3.5	
	Bq/L Total Ra 226		2.5		6	3.5	
l,	Diss U		0.0049		0.497	0.08	
	Total U		0.035		0.517	0.127	
	In mg/L: Chloride			4		1	
	Bicarbonate			1		<1	<1
	Sulphate			1140	935	808	895
	FI					<i></i>	6 6
	Nitrate (as N)			24.09		3.4	2.6
	Ammonia (as N)					1.9	1.8
	N, I ot Kjeldhal					22.06	20 40
	P, total		1400	2200	1700	23.80	20.10
	I.D.S.		1132	2200	1700	0801	
	I.S.S. Total Llandsoor		0		< I	670	
#	i otal Haroness					D/Ö	

	SAMPLE DATE	06-Jul-94	25-Jun-95	20-Jul-95	25-Aug-95	15-Sep-95	24-Aug-97
	OPERATOR	Cameco	Cameco	Cameco	Cameco	Boojum	SRC
ļ	SAMPLING LOCATION	BZWR-6	BZWR-6	BZWR-6	BZWR-6	BZWR-6	BZWR-6
L						5785	2179 5
FTELD							
	Temp. (C)	11.5	14.3		15	8.2	14.4
	p⊟	3	3.7	4.1	3.9	3.91	4.47
	Cond. (umhoslcm)	1555	1360	1020	1200	1786	1279
						271	
	En (my)					523	521
	FIOW, L/S					0.013	
LAB	_11	0.00	4.06	4.04	2.00		4.00
	PH Cond (umbas/om)	3.83 1820	4.00	4.04	3.99		4.08
Į.		, 1030	1400	1240	1740		122 /
							0.78
		220	74	80	51	121	0.70
	Total As	230	75	82	52	125	61
	Ra	200		52		.20	51
	Ca	171	146	132	156	172	
	Dissolved Fe		0.051	0.62	0.044	0.039	
	Total Fe	0.18		-	-	0.05	0.019
	K	29	32	24	28	29	
	Mg	78	69	54	79	80	
1	Diss. Mn						
	Total Mn						
	Na	30	24	23	30	31	
	Diss. Ni	160	91	79	140	110	
	Total Ni	160	93	82	140	120	83
I	Si						
	Bq/L Diss Ra 226	4	4.5	2.5	3.5		
	Bq/L Total Ra 226	5	5	3	3.5		2.8
ų	DissU	0.09	0.083	0,116	0.064		0.040
		0.108	0.104	0.18	0.069		0.048
í.	In mg/L: Chloride	1	2	2	2	2	
	BICAIDONATE	000	700	669	5 1 020	S I	600
	Suiphate	920	190	000	000	901	000
	LL Nitrato (oc N)	/1	70	18	15	13	36
	Ammonia (as M	- 1 .1 21	1.Z	- 1 .0 1.2	4.J 12	13 27	0.0 1 1
)#	N Tot Kieldhal	۷.۱	1.7	1.2	12	0.4	1. 1
	P. total	28 43	7 52	12 75	35.95	54	26
	T.D.S.	2160	1490	1270	1850	1790	20
	T.S.S.						
·	Total Hardness	747	648	551	714		

	SAMPLE DATE 0	5-0ct-97	30-Jun-94	06-Jul-94	28-Aug-94	08-Sep-94	19-Sep-94
	OPERATOR S	RC	Cameco	Cameco	Cameco	SRC	Cameco
	SAMPLING LOCATION	BZWR-6	BZWR-7	BZWR-7	BZWR-7	BZWR-7	BZWR-7
<u>L</u>		20276			<u></u>	17014	
FIELD				a :			. –
	Temp. (C)			9.1	10	10.2	6.5
	рн		5.1	4.5	4.8	4.74	4.7
	Cond. (umhos/cm)		1569	1763	4620	1260	1379
	Em (mV)		:			253	
	En (MV)				-0.01	504	
	FIOW, L/S		·		<0.01	0.017	
LAB	nU	3 88	175	1 11	157	5.24	175
	Cond (umbos/cm)	1600	1650	-1. 11 21/10	1910	0.24	1880
	Acidity (ma/b	1030	1000	2170	· • 1 •	142 4	1000
	Inma/L: AI				··		
	As	220	100	130	130	120	110
	Total As	220	130	130	140		110
	Ba						
	Ca	157	150	204	182	166	179
	Dissolved Fe					0.01 1	
	Total Fe	0.06	0.9	2	0.64		0.18
	K	26	37	37	34	34	33
· ·	Mg	81	74	96	87	83	86
	Diss. Mn					4	
	Total Mn						
	Na	25	24	34	32	30	34
	Diss. Ni	140	110	160	130	120	110
	Total Ni	140	140	160	130	120	120
	Si			<i>.</i> –			
l	Bq/L Diss Ra 226	2.6	1.2	1.7	0.9		1
	Bq/L Total Ra 226	2.9		1./	1.3		1.3
		0.023	0.027	0.012	0.0091		0.0064
 	I Otal U	0.025	0.031	- <u>0.034</u>	0.031	<u> </u>	0.011
	Ricarbonata	-1		ے 1	ے 1	∠ _?	2
	Dical Dullale	820	2 705	1180	062	905	aan
	FI	023	135	1100	000	505	000
	Nitrate (as M	7,9	2	5	16	14.77	17
	Ammonia (as N)	3.8	7.3	13	16	11.67	16
ļ	N, Tot Kieldhal	0.0					
	P. total	99	10.13	15.03	15.69	14.71	10.46
	T.D.S.	1850	1560	2250	1960		1800
-	T.S.S.						
	Total Hardness	725	678	903	812		800

	SAMPLE DATE	25-Jun-95	20-Jul-95	25-Aug-95	08-Oct-95	31-Aug-96	24-Aug-97
	OPERATOR	Cameco	Cameco	Cameco	Cameco	Cameco	SRC
	SAMPLING LOCATION	BZWR-7	BZWR-7	BZWR-7	BZWR-7	BZWR-7	BZWR-7
ļ						· · · · · · · · · · · · · · · · · · ·	21796
FIELD					-		
	Temp. (C)	13.3		15	5	12.5	10.7
	pH Occure (symbol (symbol)	4.3	4.6	4.2	4.6	4.54	4.47
	Cona. (umnos/cm) Em (m\/)	1288	1470	1290	1450	1150	1658
1						228 477	500
	Elow <i>ITe</i>					4/7	509
						0.03	
	нa	4.46	447	3 93	467		4 65
	Cond (umhos/cm)	1400	1890	1820	1740		1020
	Acidity (mg/l)	1100	1000	1020	1740		159.9
	In mg/L: Al					·	0.4
	As	47	47	52	81	98.2	5
1	Total As	47	49	56	81	116	89
	Ba					0.03	
	Ca	135	189	179	166	169	
	Dissolved Fe	0.64	1	0.04	0.02	0.006	
	Total Fe					1.4	0.008
	K	34	37	32	31	30	
	Mg	61	84	82	78	89	
	Diss. Mn					6.2	
	I otal Mn			05			
	Na Di Ni	26	30	35	30	24	
	DISS. INI	67	150	140	90	120	440
	I OTAL INI	67	170	140	90	140	110
	Ball Dice Do 006	1	15	35	1		
	Ba / Total Ra 226	16	2	4	11		2
ļ	pyre Total Na 220 Dise H	0.0095	0.022	0.06	0.007		£
	Total U	0.039	0.095	0.069	0.011		0.012
l	In mg/L: Chloride	1	1	2	2	1	
	Bicarbonate	<1	<1	<1	2	I	
	Sulphate	735	1060	932	888	982	890
	FI					0.23	
	Nitrate (as N)	11	10	4.4	19	6.82	7.00
	Ammonia (as N)	5.6	12	11	10	9.3	10
	N, Tot Kjeldhal						
	P, total	5.88	24.18	31.05	11.11	39	38
	T.D.S.	1300	2040	2060	1620		
	T.S.S.						
1.	Total Hardness	587	817	.784	.735		

	SAMPLE DATE	05-Oct-97	18-Sep-92	17-Aug-93	08-Sep-94	24-Aug-97
	OPERATOR	SRC	Boojum	Boojum	Boojum	SRC
	SAMPLING LOCATION	BZWR-7	BZWRD-6	BZWRD-6	BZWRD-6	BZW-T 1
		20277				<u>2180</u> 7
FIELD						
	Temp. (C)		0.9	3.9	9.7	12.2
	pН		4.19	4.5	4.2	4.86
	Cond. (umhos/cm)		1382	1800	1320	350
	Em (mV)					
	Eh (mV)		265	205	246	530
ļ <u> </u>	Flow, L/s			<u>-</u> -		
LAB		10			4.0	4.00
	pH Oracle (umbos/am)	4.9		4.4	4.6	4.98
	Cond. (umnos/cm)	1470				222
	Acidity (mg/l)		<u> </u>	87	79	
	unug/⊑. Al	66		1./ 64	10	0.3
	AS Total As	00 66		04	49	0.07
	TOIALAS Ra	00	-			
	Ca	141		175	206	
	Dissolved Fe			0.02	0.051	0.036
	Total Fe	0.015		0.02	0.001	0.000
	K	25		31	32	
	Mg	74		85	95	
	Diss. Mn			7.1	8.5	
	Total Mn					
	Na	21		33	33	
	Diss, Ni	76		76	98	3.9
	Total Ni	76				
	Si					
	Bq/L Diss Ra 226	1.3				0.6
	Bq/L Total Ra 226	1.5				
	Diss U	0.018				0.126
ļ	Total U	0.014				
	In mg/L: Chloride	1		3	4	
	Bicarbonate	4		1	<1	100
	Sulphate	832	ļ	890	1080	130
	LL Nitrate (oc NN	Q 20				120
	Ammonia (as N)	72			375	4.30 0.19
	N Tot Kieldhai	1.4]	21	10	0.10
	P t∩tal	30		<u> </u>	41	07
	TDS	1390		1670	61	0.7
li i	T.S.S.	1000	j	10/0]
·	Total Hardness	656	ļ			ļ

APPENDIX 2 DATA ANALYSIS

LIST OF TABLES AND FIGURES

Table A2 -1:	Sorted As Concentrations With Sample Descriptions	. A2 -3
Table A2 -2:	Sorted Ni Concentrations With Sample Descriptions	. A2 -7
Fig . A2 - 1a:	As vs Ni (waste rock)	A2 -11
Fig. A2 -1b:	As vs Ni (muskeg-surface)	A2 -1 1
Fig. A2 -1c:	As vs Ni (muskeg-sediment)	A2 -12
Fig. A2 -1d:	As vs Ni (seepage-dissolved)	A2 -12
Fig. A2 -1e:	As vs Ni (muskeg-surface)	A2 -13
Fig. A2 -2:	Comparison of Merck As with SRC As	A2 -13
Fig. A2 -3:	As vs L.O.I.	A2-14
Fig. A2 -4:	Ni vs L.O.I.	A2 -14
Fig. A2 -5a:	Fe vs L.O.I. (range Fe: 0-150000 µg.g ⁻¹)	A2 -15
Fig. A2 -5b:	Fe vs L.O.I. (range Fe: 0-30000 µ g .g ⁻¹)	A2 -15
Fig. A2 -6a:	S vs L.O.I. (range S: 0-6000 µg.g ⁻¹ ; LOI: 80-100%)	A2 -16
Fig. A2 -6b:	S vs L.O.I. (range S: 0-2500 µg.g ⁻¹ ; LOI: 0-25%)	A2 -16
Fig. A2 -7a:	As vs S (range As: 0-150 μg.g ^{-1;} S: 0-6000 μg.g ⁻¹)	A2 -17

Fig. A2 -7b:	As vs S (range As: 0-30 µg.g ⁻¹ ; S: 0-2000 µg.g ⁻¹)	A2 -17
Fig. A2 -8a:	Nivs S (range Ni: 0-300 µg.g ^{-1;} S: 0-6000 µg.g ⁻¹)	A2 -18
Fig. A2 -8b:	As vs S (range As: 0-40 µg.g ^{-1;} S: 0-4000 µg.g ⁻¹)	42 -18
Fig. A2 -9a:	As vs Fe (range As: 0-1000 μ g.g ^{-1;} Fe: 0-50000 μ g .g ⁻¹)	A2-19
Fig. A2 -9b:	As vs Fe (range As: 0-200 µg.g ^{-1;} Fe: 0-10000 µg.g⁻¹)	A2-19
Fig. A2 -IOa	Nivs Fe (range Ni: 0-700 µg.g ^{-1;} Fe: 0-50000 µg.g ⁻¹)	A2-20
Fig. A2 -10b:	Nivs Fe (range Ni: 0-100 µg.g ^{-1:} Fe: 0-10000 µg.g ⁻¹)	A2-20
Table A2-3:	pH Comparison for Waste Rock Pile Solids/Ratio Effect on pH	A2-21
Table A2-4:	Extractalble Ni in Slurries of Waste Rock Pile	A2-22
Table A2-5:	Extracted Ni and As in Slurries of Waste Rock Pile	A2-23
Table A2-6:	Cumulative Extracted Ni and As in Solids for Waste Rock Pile	A2-24
Table A2-7:	Chemistry in Slurries of Waste Rock Pile	A2-25
Table A2-8:	Arsenic, Nickel, Iron, Sulphur and L.O.I. Mass in BT-1, BT-2, BT-3, BT-4 and Lake 1 . Muskeg, Sedirnents and Pond Water	A2-26

	<u> </u>					Sample	Assay	
Sampled				Sample	Local	Depth	As	Driller
Date	Area		Location	Туре	Substrate	(cm)	ua.a ⁻¹ dw	Description
28/08/97	BT-3	Ā	BZW-T Zone	grab	mus	0-25	1200	
25/08/97	BT-2	А	350 S	dredge	sed	top 20	770	sat. l.br./y fine sed with org.debris
31/08/97	BT-3	А	50	Cut	mus	0-25	700	gray milky particulates on Lbr.peat
25/08/97	BT-1	А	150	dredge	sed	top 20	430	sat. coarse peat worg debris
25/08/97	BT-1	А	205	dredge	sed	top 20	420	sat.d.br. fine sediment
19/06/92	BT-I	А	Stn200	dredge	sed	top 20	390	Very fibrous mat, old root layer
25/08/97	BT-I	А	100	dredge	sed	top M	350	sat.gray-d.br.coarse peat w roots
25/08/97	BT-I	А	240	dredge	sed	top 20	210	sat. I.br. coarse sed w org.debris
25/08/97	BT-2	А	250	dredge	sed	top M	210	m.br. LS
31/08/97	BT4	А	400	Cut	mus	0-25	140	coarse peat, d.br.
24/08/97	BT-3	А	150	grab	sed	top 20	140	
25/08/97	BT-2	А	N End	dredge	sed	top 20	90	m.br, LS
09/06/93	LAKE 1	А	SP-9	Cut	mus	65	88	peat
31/08/97	BT-4	А	Stn 6.9.3	grab	floce	0-10	78	Iron richloose floc in pools
25/08/97	BT-2	В	100	dredge	sed	top 20	66	m.br. LS
31/08/97	BT-3	А	200	cut	mus	0-25	63	sat. Ibr. coarse peat w roots
31/08/97	BT-3	А	50	Cut	mus	75-100	63	m.br.peat
31/08/97	BT-3	В	500	Cut	mus	0-25	60	I.br.old sphagnum, live sedge roots
31/08/97	BT-1	F	North	Cut	mus	0-25	57	l.br.coarse peatw rook
31/08/97	BT-3	в	SP-3 DH	Cut	mus	0-25	56	sat {.br. spahnumpeat, roots
20/06/92	BT-I	В	Sin 300	core	mus	0-25	54	peat
31/08/97	BT-4	А	200	Cut	mus	0-25	51	m.br.sat peat w sedge roots
09/06/93	BT-3	А	SP-2	çut	mus	180	38	peat
09/06/93	BT-3	А	SP-2	Cut	mus	75	37	peat
31/08/97	BT-4	А	6.9,3 DH	Cut	mus	0-25	31	m.br. peat, coarse, red floc stain
31/08/97	BT-2	В	100N	Cut	mus	0-25	16	dead sphagnum, m.br.
19/06/92	BT-2	8	Stn100	dredge	sed	top 20	16	grey, org fine particles
09/06/93	BT-1	С	SP-7	Cut	rnus	60	14	peat
09/06/93	BT-4	А	SP-4	cut	mus	50	14	peat
09/06/93	BT-4	А	SP-1	Cut	mus	105	11	peat
09/08/93	LAKE 1	А	SP-9	Cut	muskeg	90	9	clay
31/08/97	BT-2	В	400N	Cut	mus	0-25	8.2	live sphagnum, shrub +roots
20/06/92	BT-I	В	Stn 300	core	mus	25-50	5.8	peat
09/06/93	BT-2	А	SP-5	Cut	mus	120	5.6	peat
09/06/93	BT-4	А	SP-1	cut	mus	140	5	gray till

Table A2-1 Sorted As concentrations with sample descriptions

-

ŖŖ

						Sample	Assay	
Sampled				Sample	Local	Depth	As	Driiier
Date	Area		Location	Туре	Substrate	(cm)	ug.g ⁻¹ dw	Description
09/06/93	BT-2	А	SP-5	cut	mus	30	4.6	peat
09/06/93	BT-1	Е	SP-8	cut	mus	150	3.8	peat
09/06/93	BT-4	А	SP-4	Cut	mus	105	2.2	clay
09/06/93	BT-1	Е	SP-8	cut	mus	95	2.1	peat
09/06/93	BT-1	F	LOC 1	Cut	mus	40	1.9	peat
09/06/93	BT-3	В	SP-3	Cut	mus	20	1.8	peat
09/06/93	BT-1	С	SP-7	Cut	mus	150	1.7	peat
19/06/92	LAKE 1	В	Stn100	core	mus	0-20	1.7	
09/06/93	BT-1	D	SP-6	Cut	mus	115	1.2	peat
09/06/93	BT-3	В	SP-3	Cut	mus	80	1.1	peat
19/06/92	LAKE 1	В	Stn100	core	mus	20-40	1.1	·
09/06/93	BT-4	А	SP-1	Cut	mus	165	1	gray till w sand
19/06/92	LAKE 1	В	centre	dredge	sed	top 20	0.9	
19/06/92	LAKE 1	В	Stn100	core	mus	40-60	0.9	
19/06/92	LAKE 1	В	Stn100	core	mus	60-80	0.7	
09/06/93	BT-1	F	LOC 1	Cut	mus	60	0.5	peat
09/06/93	ET-I	F	LOC 1	Cut	mus	120	0.5	sand w gravel

Table A2-1 Sorted As concentrations with sample descriptions (continuation)

Area: BT1,2,3,4: Locationsoriginally named according to positionalong B-Zone transects (BT)

A to F: Area on map

Location: Transect map 100 intervals: DH=Drill Hole, LOC=Location, N=North, S=South, SP=Shallow Pitzo, Stn=Station

Sample type and local substrate: Cut=Cuttings, Dred=Dredge, Mus=Muskeg, Sed=Sediment

Driller Description: be=beige, br=brown, d=dark, l=light, LS=gytia, m=medium, sat-saturated, sed=sediment, org=organic, w=with

Colour: Bk-Black, Bn-Brown, D-Dark, Gn-Green, Gy-Grey. L-Light. 0-Orange, Rd-Red, Si-Slight, Tn-Tan. W-White

Texture: Ce-Coarse. Ch-Chunk, Cy-Clay, De-Decomposing, Dr-Drier, F-Fine. Fa-Fairly Fw-Few. G-Grainy. Gr-GrassGt-Grit, H-Humus, IO-Inorganic,

La-Larger, Le-Leaf, Li-Little, M-Many, Me-Medium, Mo-Moss, 0-Organic, OD-Organic Debris. P-Peat. Pe-Pebble, R-Root, Sd-Sand,

Sf-Soft, Si-Silty, SI-Sludge, So-Some, Sp-Spongy, St-Straw, T-Till, Th-Thick, Tw-Twig, U-Uniform, V-Very, Va-Various, W/-With

Smell: De-Dewmposing, F-Faint, M: Moderate, NS-No Smell. Or-Organic Smell, P-Pungent, Sg-Strong, Si-Slight, V-Very

Moisture: D-Dry, EW-Excess Water, M-Moist, S-Saturated, V-Very, W-Wet

NA=Not Analyzed, ND=Not Determinated, NM=Not Measureable because of no enough water

١

				<u> </u>		Sample	Assay	LAB DESCRIPTI	NC			
Sampled				Sample	Local	Depth	As	Lab				
Date	Area		Location_	Туре	Substrate	(cm)	ug.g ⁻¹ dw	Description	Colour	Texture	Smell	Moisture
28/08/97	BT-3	A	BZW-T Zone	grab	mus	0-25	1200	moss	LBn	Mo, Solid	NS	W
25/08/97	ET-2	А	350 S	dredge	sed	top 20	770	fine sediment	LBn,YGy	MR,MGr,F,ThSi	P,H2S	EW
31/08/97	ET-3	А	50	Cut	mus	0-25	700	peat	Bn,Gy	MOD,R,Tw,Sf,Sp	SgOr,P	Μ
25/08/97	ET-I	А	150	dredge	sed	top 20	430	coarse peat	DBn,Gy	SoTw,SoR,SoSt	P,H2S	EW
25/08/97	BT-1	А	205	dredge	sed	top 20	420	fine sediment	Bn,Gy,Y	MSt,SoR,LtOD,F,SI,	SgH2S	EW
19/06/92	ET-I	А	Stn200	dredge	sed	top 20	390	peat w/lO	Gy,Bn	PW/IO,F,Sf,R,Tw	Р	EW
25/08/97	BT-1	А	100	dredge	sed	top 20	350	coarse peat	Gy,Bn	MOD,St,R,Sp,Si	H2S	EW
25/08/97	BT-1	А	240	dredge	sed	top 20	210	coarse sediment	Bn,Gy	MTw,R,OD,MeGt,SI	SgH2S	EW
25/08/97	ET-2	А	250	dredge	sed	top 20	210	gytia	Bn	LtOD, VF, ThSI	Р	EW
31/08/97	ET-4	А	400	Cut	mus	0-25	140	coase peat	Bn,DBn	MSt,Tw,SoR,Sp	SgH2S	W
24/08/97	BT-3	А	150	grab	sed	top 20	140	sediment	D8n	MTw,R	H2S	EW
25/08/97	ET-2	А	N End	dredge	sed	top <i>2</i> 0	90	gytia	DBn	MR,SoTw,SoOD,F,ThSI	Р	Ew
09/06/93	LAKE1	А	SP-9	cut	mus	65	88	peat	Y,Bn	P,G,O	NS	D->M
31/08/97	BT-4	А	Stn 6.9.3	grab	flocc	0-10	78	precipitate				
25/08/97	ET-2	Е	100	dredge	sed	top 20	66	gytia	DBn	FwR,LtSt,FwOD,VF,ThSI	P,H2S	EW
31/08/97	ET-3	А	200	Cut	mus	0-25	63	coarse peat	LBn	MOD,St,Tw,R,Sf,Sp	P,VSgH2S	Μ
31/08/97	ET3	А	50	Cut	mus	75-100	63	m peat	Bn,Dbn	MOD,R,St,Tw,Sp	SgH2S	М
31/08/97	ET3	Е	500	cut	mus	0-25	60	sphagnum 🔒	LBn	MSt,MR,SoTw,Mo,Sp	NS	M->W
31/08/97	BT-1	F	North	Cut	mus	0-25	57	peat	LBn	MR,O	Or	W
31/08/97	BT-3	В	SP-3 DH	Cut	mus	0-25	56	sphagnum	LBn	MMo,MSt,MR,MTw,Sf	SgH2S	W
<u>2</u> 0/06/92	ET-1	Е	Stn 300	wre	mus	0-25	54	coarse peat	Y,DO	FaU,St,Ce	P	М
31/08/97	ВТ-4	А	200	Cut	mus	0-25	51	peat	8n,DBn	P,MR,SoSt,OD,Sf,Sp	SgH2S	W
09/06/93	ET-3	А	SP-2	Cut	mus	180	38	peat	Bk,O	MO,P,R,Tw,DeO	DeOr	M->W
09/06/93	ET3	А	SP-2	cut	mus	75	37	peat	Bk,O	P,Gt	VSg H2S	W
31/08/97	ВТ-4	А	6.9.3 DH	Cut	mus	0-25	31	peat	D8n	P,MR,Tw,FwLe,Sf,Sp	MH2S	М
31/06/97	ET-2	Е	100N	Cut	muş	0-25	16	peat	LBn,Bn	P,MTw,SoR,Sp,Sf	or	W
19/06/92	ET-2	Е	Stn100	dredge	sed	top 20	16	fine peat	Bk,Bn	P,O,F,Sf,MR	Р	w
09/06/93	BT-1	С	SP-7	Cut	mus	60	14	peat	Y,O,B	P,MR,Mle,MTw,G	P	S
09/06/93	BT-4	А	SP-4	Cut	mus	50	14	peat	Bk,O	P,O,DeO,R,Twch	NS	М
09/06/93	8T-4	А	SP-1	Cut	muş	105	11	peat	D,SIO	P,MO,R,Tw	SlOr	VM
09/06/93	LAKE 1	А	SP-9	Cut	muskeg	90	9	peat w clay	Bk,O	P,Cy,SoR,SoTw	NS	EW
31/08/97	BT-2	Е	400N	cut	mus	0-25	8.2	sphagnum	LBn	MOD,MR,MTw,Mo,Sp		

Table A2-1 Sorted As concentrations with sample descriptions (continuation)

.

.

CAMECU Corporation: Rabbit Lake Operation Utilization of Wetlands for Removal of As and Ni Jujy, 1998

				- <u></u>		Sample	Assay	LAB DESCRIPTI	ON	•		
Sampled				Sample	Local	Depth	As	Lab				
Date	Area		Location	Туре	Substrate	(cm)	ug.gʻʻdw	Description	Colour	Texture	Smell	Moisture
20/06/92	BT-1	В	Stn 300	core	mus	25-50	5.8	fine peat	BhjØ	FU/F, Ch, DEO	P	M
09/06/93	BT-2	А	\$P-5	Cut	mus	120	5.6	peat	Bk,O,Y	P,VF,Gt,SoR	NS	VS
09/06/93	BT4	А	SP-1	Cut	mus	140	5	sand w organics	B,Gy,W	Sd,IO,SoTw,SoR	NS	Μ
09/06/93	BT-2	А	SP-5	cut	mus	30	4.6	peat	Y,Bn	P,G,MTw,MR	Р	W
09/06/93	BT-1	Е	SP-8	Cut	mus	150	3.8	peat	Bk,O	P,Cy,FwR	NS	EW
09/06/93	BT-4	А	SP-4	Cut	mus	105	2.2	clayey till	Bk,Gy,W	PTCy,MIO,SoR,SoCh,Sd	NS	D
09/06/93	BT-1	Е	SP-8	Cut	mus	95	2.1	peat	Bk,O	G,Sp,SoR,F	NS	М
09/06/93	BT-1	F	LOC 1	Cut	mus	40	1.9	peat	Bk,O	MTw,MR,MDeO,P	NS	М
09/06/93	BT-3	B	SP-3	Cut	mus	20	1.8	peat	Bk,Y,O	P,DeO,R,Tw,Gt	H2S	W
09/06/93	BT-1	С	SP-7	Cut	mus	150	1.7	peat	Bk,O	R,Tw,G	NS	EW
19/06/92	LAKE1	₿	Stn100	wre	mus	0-20	1.7	peat	0	Р	NS	EW
09/06/93	BT-1	D	SP-6	Cut	mus	115	1.2	peat	Bk,O	P,O, R, Tw,Sf	NS	W
09/06/93	BT-3	В	SP-3	Cut	mus	80	1.1	peat	Bk,O	P,R,Tw,DeO,Gt	H2S	W
19/06/92	LAKE 1	В	Stn100	wre	mus	20-40	1.1	peat	Gn,0	P,MR,MTw	NS	М
09/06/93	BT-4	А	SP-1	Cut	mus	165	1	silt/sand	Gy,W	Si,Sd,VF,MiO,SoTw	NS	D
19/06/92	LAKE 1	в	centre	dredge	sed	top 20	0.9	fine organics	DBn,Bk	U,O,FwR,F,Sf	Р	EW
19/06/92	LAKE1	В	Stn100	core	mus	40-60	0.9	peat	Bk	P,VSp	NS	Dr
19/06/92	LAKE 1	В	Stn100	wre	rnus	60-80	0.7	peat	O,Bn	P,VF	NS	VМ
09/06/93	BT-1	F	LOC 1	Cut	mus	60	0.5	clay w/organics	Bk,Ó	Cy,O,SoP	NS	М
09/06/93	BT-1	F		Cut	mus	120	0.5	sand w/pebbles	Bn,O	CeSd,VaPe,SoR, SoTw, Cy	NS	D

Table A2-I Sorted As concentrations with sample descriptions (continuation)

Area: BT1,2,3,4: Locations originalty named according to position along B-Zonetransects (BT)

A to F: Area on map

Location: Transect map 100 intervals; DH=Drill Hole, LOC-Location, N=North, S=South, SP=Shallow Pitzo, Stn=Station

Sample type and local substrate: Cut=Cuttings, Dred=Dredge, Mus=Muskeg, Sed=Sediment

Driller Description: be=beige, br=brown, d=dark, I-light, LS=gytla, m=medium, sat=saturated, sed=sediment, org=organic, w=with

Colour: Bk-Black, Bn-Brown, D-Dark, Gn-Green, Gy-Grey. L-Light, 0-Orange, Rd-Red, Sl-Slight. Tn-Tan, W-White

Texture: Ce-Coarse. Ch-Chunk, Cy-Clay, De-Decomposing, Dr-Drier, F-Fine. Fa-Fairly. Fw-Few. G-Grainy, Gr-GrassGt-Grit, H-Humus, io-Inorganic,

La-Larger, Le-Leaf, Li-Little, M-Many, Me-Medlum, MQ-Moss, 0-Organic, OD-Organic Debris, P-Peat, Pe-Pebble, R-Root, Sd-Sand,

sf-Soft, Si-Silty, SI-Sludge, So-Some, Sp-Spongy, St-Straw, T-Till, Th-Thick, Tw-Twig. U-Uniform, V-Very. Va-Various, W/-With

Smell: De-Decomposing, F-Faint. M: Moderate, NS-No Smell, Or-Organic Smell, P-Pungent, Sg-Strong, SI-Slight, V-Very

Moisture: D-Dry, EW-Excess Water, M-Moist, S-Saturated, V-Very, W-Wet

NA=Not Analyzed, ND=Not Determinated. NM=Not Measureable because of no enough water

[Sample		
Sampled				Sample	Local	Depth	Ni,Assay	Driller
Date	Area		Location	Туре	Substrate	(cm)	ug.g-1 dw	Description
28/08/97	BT-3	A	BZW-T Zone	grab	mus	0-25	690	
25/08/97	BT-2	Α	350 S	dredge	sed	top 20	670	sat. I.br./y fine sed with org.debris
31/08/97	BT-3	Α	50	cut	mus	0-25	630	gray milky particulates on l.br.peat
25/08/97	BT-1	А	150	dredge	sed	top 20	280	sat. coarse peat w org.debris
19/06/92	BT-1	Α	Stn200	dredge	sed	top <i>M</i>	260	Very fibrous mat, old root layer
25/08/97	BT-1	Α	100	dredge	sed	top 20	260	sat. gray-d.br. coarse peat w roots
25/08/97	BT-1	А	205	dredge	sed	top 20	230	sat.d.br. fine sediment
25/08/97	BT-2	Α	250	dredge	sed	top 20	220	m.br. LS
25/08/97	BT-1	Α	240	dredge	sed	top 20	170	sat. I,br, coarse sed worg.debris
25/08/97	BT-2	Α	N End	dredge	sed	top 20	140	m.br. LS
24/08/97	BT-3	А	150	grab	sed	top 20	110	
31/08/97	BT-1	F	North	cut	mus	0-25	54	l.br.coarse peat w roots
25/08/97	BT-2	В	100	dredge	sed	top 20	46	m.br. LS
31/08/97	BT-4	А	400	Cut	mus	0-25	43	coarse peat, d.br.
31/08/97	BT-3	А	200	Cut	mus	0-25	39	sat. Ibr.coarse peat w roots
31/08/97	BT-3	А	50	Cut	mus	75-100	39	m.br.peat
31/08/97	BT-4	А	200	Cut	mus	0-25	35	m.br.sat peat w sedge roots
31/08/97	BT-3	В	SP-3 DH	Cut	mus	0-25	34	sat l.br. spahnumpeat, roots
09/06/93	BT-3	А	SP-2	Cut	mus	180	30	peat
09/06/93	LAKE 1	А	SP-9	Cut	mus	65	26	peat
20/06/92	ET-I	В	Stn 300	wre	mus	C-25	24	peat
09/06/93	BT-3	А	SP-2	Cut	mus	75	24	peat
09/06/93	BT-1	С	SP-7	Cut	rnus	60	19	peat
31/08/97	BT-3	В	500	cut	mus	0-25	16	l.br.old sphagnum, live sedge roots
19/06/92	BT-2	В	Stn100	dredge	sed	top 20	16	grey, org fine particles
31/08/97	BT-4	А	Stn 6.9.3	grab	flocc	0-10	15	ton rich loose fioc in pools
31/08/97	BT4	А	6.9.3 DH	Cut	rnus	0-25	14	m.br. peat, coarse, red floc slain
09/06/93	BT-4	А	SP-I	Cut	mus	105	14	peat
31/08/97	BT-2	В	100N	cut	mus	0-25	13	dead sphagnum, m.br.
09/06/93	BT-4	А	SP-4	Cut	mus	50	12	peat
09/06/93	BT-4	А	SP-1	Cut	mus	140	92	gray till
19/06/92	LAKE 1	B	centre	dredge	sed	top 20	8.4	
31/08/97	BT-2	В	400N	Cut	mus	0-25	8.1	live sphagnum, shrub +roots
09/06/93	BT-2	А	SP-5	Cut	mus	30	8	peat
09/06/93	BT-4	Δ	SP-4	Cut	mus	105	8	clay

Table A2-2: Sorted Ni concentrations with sample descriptions

Sampled Date	Area		Location	Sample	Local Substrate	Sample Depth (cm)	Ni,Assay ug.g-1 dw	Driller	
09/06/93		F	100.1	Out	mus	60	7	peat	
09/06/93	BT-3	B	SP-3	Cut	mus	80	61	peat	
09/06/93	BT-4	A	SP-1	Cut	mus	165	52	gray till w sand	
09/06/93	LAKE 1	A	SP-9	cut	muskea	90	49	clay	
09/06/93	BT-1	D	SP-6	Cut	mus	115	43	peat	
09/06/93	BT-1	F	LOC 1	cut	mus	40	3.8	peat	
09/06/93	BT-1	F	LOC 1	Cut	mus	120	38	sand w gravel	
20/06/92	BT-1	B	Stn 300	core	muş	2550	35	peat	
09/06/93	BT-3	₿	SP-3	Cut	muş	20	34	peat	
19/06/92	LAKE 1	8	Stn100	core	mus	0-20	27		
09/06/93	BT-1	Е	SP-8	cut	mus	150	22	peat	
09/06/93	BT-2	А	SP-5	Cut	mus	120	19	peat	
19/06/92	LAKE1	в	Stn100	wre	mus	40-60	19		
19/06/92	LAKE1	в	Stn100	wre	mus	60-80	19		
09/06/93	BT-1	Е	SP-8	Cut	mus	95	15	peat	
19/06/92	LAKE 1	B	Stn100	wre	rnus	20-40	1.5		
09/06/93	BT-1	С	SP-7	Cut	mus	150	14	peat	

Table A2-2: Sorted Ni concentrations with sample descriptions (continuation)

Area: BT1,2,3,4: Locations originally named according to positionalong B-Zone transects (BT)

A to F: Area on map

Location: Transect map 100 intervals; DH=Drill Hole, LOC=Location, N=North, S=South, SP=Shallow Pitzo, Stn=Station

Sample type and local substrate: Cut=Cuttings, Dred=Dredge, Mus=Muskeg, Sed-Sediment

Driller Description: be=beige, br=brown, d=dark, I=light, LS=gytia, m=medium, sat=saturated, sed=sediment, org=organic, w=with

Colour: Bk-Black, Bn-Brown, D-Dark, Gn-Green, Gy-Grey, L-Light, 0-Orange, Rd-Red, Si-Slight, Tn-Tan, W-White

Texture: Ce-Coarse. Ch-Chunk, Cy-Clay, De-Decomposing, Dr-Drier. F-Fine, Fa-Fairly. Fw-Few, G-Grainy, Gr-GrassGt-Grit, H-Humus, 10-Inorganic,

La-Larger, Le-Leaf, Lt-Little, M-Many. Me-Medium, Mo-Moss, 0-Organic, OD-Organic Debris, P-Peat, Pe-Pebble. R-Root, Sd-Sand,

sf-soft, Si-silty, Si-Sludge, So-Some, Sp-Spongy, St-Straw, T-Till, Th-Thick, Tw-Twig, U-Uniform, V-Very, Va-Various. W/-With

Smell: De-Decomposing, F-Faint, M: Moderate, NS-No Smell, Or-Organic Smell, P-Pungent, Sg-Strong, VFA

Moisture: D-Dry, EW-Excess Water, M-Moist, S-Saturated. V-Very, W-Wet

NA=Not Analyzed, ND=Not Determinated, NM=Not Measureable because of no enough water

Ren

Boo

3

						Sample						<u> </u>
Sampled				Sample	Local	Depth	NI,Assay	Lab				
Date	Area		Location	Туре	Substrate	(cm)	ug.g-1 dw	Description	Colour	Texture	Smell	Moisture
28/08/97	BT-3	A	BZW-T Zone	grab	rnus	0-25	690	moss	LBn	Mo, Solid	NS	
25/08/97	BT-2	А	350 S	dredge	sed	top 20	670	fine sediment	LBn,YGy	MR,MGr,F,T	P,H₂S	EW
31/08/97	BT-3	А	50	Cut	rnus	0-25	630	peat	Bn,Gy	MOD,R,Tw,S	SgOr,P	М
25/08/97	BT-1	А	150	dredge	sed	top 20	280	coarse peat	DBn,Gy	SoTw,SoR,S	P,H₂S	EW
19/06/92	BT-1	А	Stn200	dredge	sed	top 20	260	peat w/IO	Gy,Bn	PW/IO,F,Sf,	Р	EW
25/08/97	BT-I	А	100	dredge	sed	top 20	260	coarse peat	Gy,Bn	MOD, St, R, Sj	⊳ H₂S	EW
25/08/97	BT-1	А	205	dredge	sed	top 20	230	fine sediment	Bn,Gy,Y	MSt,SoR,LtC	SgH₂S	EW
25/08/97	BT-2	А	250	dredge	sed	top 20	220	gytia	Bn	LtOD,VF,ThS	S P	EW
25/08/97	BT-1	А	240	dredge	sed	top 20	170	coarse sedim	Bn,Gy	MTw,R,OD,N	4 SgH₂S	EW
25/08/97	BT-2	А	N End	dredge	sed	top 20	140	gytia	DBn	MR,SoTw,So	P	ΒW
24/08/97	BT-3	А	150	grab	sed	tap 20	110	sed iment	DBn	MTw,R	H ₂ S	EW
31/08/97	BT-1	F	North	Cut	mus	0-25	54	peat	LBn	MR,O	or	W
25/08/97	BT-2	В	100	dredge	sed	top 20	46	gytia	DBn	FwR,LtSt,Fw	P,H ₂ S	EW
31/08/97	BT-4	А	400	Cut	mus	0-25	43	coa se peat	Bn,D8n	MSt,Tw,SoR,	SgH ₂ S	W
31/08/97	BT-3	Α	200	Cut	mus	0-25	39	coarse peat	LBn	MOD, St, Tw,	P,VSgH ₂ S	М
31/08/97	ВТ-З	Α	50	Cut	rnus	75-100	39	m peat	Bn,Dbn	MOD,R,St,T	SgH₂S ∙	М
31/08/97	BT-4	Α	200	Cut	mus	0-25	35	peat	Bn,DBn	P,MR,SoSt,C	SgH ₂ S	W
31/08/97	BT-3	В	SP-3 DH	Cut	mus	0-25	34	sphagnum	LBn	MMo,MSt,M	SgH₂S	W 1
09/06/93	BT-3	А	SP-2	Cut	mus	180	30	peat	Bk,O	MO,P,R,Tw,	DeOr	M->W
09/06/93	LAKE 1	А	SP-9	Cut	mus	65	26	peat	Y,Bn	P,G,0	NS	D->M
20/06/92	BT-1	В	Stn 300	wre	mus	0-25	24	coarse peat	Y,DO	FaU,St,Ce	Р	М
09/06/93	BT-3	А	SP-2	Cut	mus	75	24	peat	Bk,O	P,Gt	VSg H _z S	W
09/06/93	BT-1	С	SP-7	Cut	mus	60	19	peat	Y,O,B	P,MR,Mie,M	Р	S
31/08/97	BT-3	В	500	Cut	mus	0-25	16	sphagnum	LBn	M\$t,MR,SoT	NS	M->W
19/06/92	BT-2	В	Stn100	dredge	sed	top XI	16	fine peat	Bk,Bn	P,O,F,Sf,MR	Р	w
31/08/97	BT-4	А	Stn 6.9.3	grab	flocc	0-1 0	15	precipitate				
31/08/97	BT-4	А	6,9,3 DH	cut	mus	0-25	14	peat	DBn	P,MR,Tw,Fw	MH ₂ S	М
09/06/93	BT-4	А	SP-1	Cut	rnus	105	14	peat	D,SIO	P,MO,R,Tw	SIOr	VM
31/08/97	BT-2	В	100N	Cut	mus	0-25	13	peat	LBn,Bn	P,MTw,SoR,	Or	W
09/06/93	BT-4	А	SP-4	Cut	mus	50	12	peat	Bk,O	P,O,DeO,R,T	NS	М
09/06/93	BT-4	А	SP-I	Cut	mus	140	9.2	sand w organ	B,Gy,W	Sd,lQ,SoTw,	NS	М
19/06/92	LAKE 1	В	centre	dredge	sed	top 20	6.4	fine organics	DBn,8k	U,O,FwR,F,S	Р	EW
31/08/97	BT-2	В	400N	Cut	mus	0-25	8.1	sphagnum	LBn	MOD,MR,MT	Or	М
09/06/93	BT-2	А	SP-5	Cut	mur	30	8	peat	Y,Bn	P,G,MTw,MR	Р	W
09/06/93	BT-4	А	SP-4	Cut	mus	105	8	clayey till	Bk,Gy,W	P,T,CY,MIO,	NS	М
09/06/93	BT-1	F	LOC 1	cut	mus	60	7	clay w/organi	Bk,O	Cy,O,SoP	NS	м

....

Table A2-2: Sorted Ni Concentrations with Sample Descriptions (continuation)

Table A2-2: Sorted Ni (Concentrations with 3	Sample Descri	ptions(continuatio	n)
-------------------------	-----------------------	---------------	--------------------	----

					2	Sample						
Sampled				Sample	Local	Depth	Ni,Assay	Lab				
Date	Агеа		Location	Туре	Substrate	(cm)	ug.g-1 dw	Description	Colour	Texture	Smell	Moisture
09/06/93	BT-3	В	SP-3	cut	mus	80	6.1	peat	Bk,O	P,R,Tw,DeO,	H2S	W
09/06/93	BT-4	A	SP-1	cut	mus	165	5.2	silt/sand	Gy,W	Si,Sd,VF,MIC) NS	D
09/06/93	LAKE 1	A	SP-9	cut	muskeg	90	4.9	peat w clay	Bk,C	P,Cy,SoR,So	NS	EW
09/06/93	BT-1	D	SP-6	cut	mus	115	4.3	peat	Bk,C	P,O, R, Tw,S	f NS	W
09/06/93	BT-1	F	LOC 1	cut	mus	40	3.8	peat	Bk,C	MTw,MR,MD	NS	М
09/06/93	8T-1	F	LOC 1	cut	mus	120	3.8	sand w/pebbl	Bn,C	CeSd,VaPe,	NS	D
20/06/92	BT-1	В	Stn 300	core	mus	25-50	3,5	fine peat	Bn,C	FU/F, Ch,De	Р	М
09/06/93	BT-3	В	SP-3	cut	mus	20	3.4	peat	Bk,Y,C	P,DeO,R,Tw,	H2S	w
19/06/92	LAKE1	В	Stn100	core	mus	0-20	2.7	peat	0	Р	NS	EW
09/06/93	BT-1	Ε	SP-8	cut	mus	150	2.2	peat	Bk,C	P,Cy,FwR	NS	EW
09/06/93	RT-2	Α	SP-5	cut	mus	120	1.9	peat	Bk,O,Y	P,VF,Gt,SoR	NS	VS
19/06/92	LAKE 1	В	Stn100	core	mus	40-60	1.9	peat	Bk	P,VSp	NS	D r
19/06/92	LAKE 1	В	Stn100	core	mus	60-80	1.9	peat	O,Bn	P.VF	NS	VM
09/06/93	BT-1	E	SP-8	cut	mus	95	1.5	peat	Bk,O	G,Sp,SoR,F	NS	м
19/06/92	LAKE1	В	Stn100	core	mus	20-40	1.5	peat	Gn,C	P,MR,MTw	NS	М
09/06/93	BT-1	c	SP-7	cut	mus	150	1.4	peat	Bk,O	R,Tw,G	NS	EW

Area: BT1,2,3,4: Locations originally named according to position along B-Zone transects (BT)

A to F: Area on map

Location: Transect map 100 intervals; DH-Drill Hole, LOC=Location, N=North, S=South, SP=Shallow Pitzo, Stn=Station

Sample type and local substrate: Cut=Cuttings, Dred=Dredge, Mus=Muskeg, Sed=Sediment

Driller Description:be=beige, br=brown, d=dark, I=light, LS=gytia, m=medium, sat=saturated, sed=sediment, org=organic, w=with

Colour: Bk-Black. Bn-Brown. D-Dark, Gn-Green, Gy-Grey, L-Light, 0-Orange, Rd-Red, SI-Slight, Tn-Tan, W-White

Texture: Ce-Coarse. Ch-Chunk, Cy-Clay, De-Decomposing, Dr-Drier. F-Fine, Fa-Fairly, Fw-Few, G-Grainy, Gr-GrassGt-Grit, H-Humus, 10-Inorganic,

La-Larger, Le-Leaf, Lt-Little, M-Many, Me-Medium, MO-Moss, 0-Organic, OD-Organic Debris, P-Peat, Pe-Pebble, R-Root, Sd-Sand,

Sf-Soft, Si-Silty, SI-Sludge, So-Some. Sp-Spongy, St-Straw, T-Till, Th-Thick, Tw-Twig, U-Uniform, V-Very, Va-Various, W/-With

Smell: Oe-Decomposing, F-Faint, M: Moderate, NS-No Smell, Or-Organic Smelt, P-Pungent. Sg-Strong, VFA

Moisture: D-Dry, EW-Excess Water, M-Moist, S-Saturated. V-Very, W-Wet

NA=Not Analyzed, ND=Not Determinated, NM=Not Measureable because of no enough water

Bogjum

	60 mL w	et sample : 120		1 g dry sample : 100 mL DH2O slurry			
Location	dry weight	moisture	1g dry sample : DH ₂ O	pН	1 g dry sample : DH ₂ O	pН	
	(g/60 mL)	(%)	ratio (calculated)		ratio (measured)		
NW Ditch Foam	6.1	79.2	1g : 23.5mL	5.08	1g : 100mL	5.49	
BZWR-7Graphitic Gneiss	75.1	8.2	1g : 1.7mL	3.89	1g : 100mL	6.12	
BZWR-6 Hematizxed	70.3	10.5	1g : 1.8mL	3.7	1g : 100mL	6.04	
BZWR-6 As/Ni Oxidized	56.8	24.5	1g : 2.4mL	3.45	1g : 100mL	5.21	
BZWR-6 SS Area	79.1	6.3	1g : 1.6mL	3.98	1g : 100mL	6.27	
WRP-P Sludge	26.2	65.1	1g : 6.4mL	2.77	1g : 100mL	3.3	

Table A2 -3: pH Comparison for 6-Zone Waste Rock Pile Solids / Ratio Effect on pH

					pН	· · · · · · · · · · · · · · · · · · ·		Ni (mg/L)							
Location		(1g:1	00mL s	slurry)		(diluted to 200	mL after 404h)		(1g:100	mL slurry)		(diluted to 200mL after 404h)		
	1 h	67h	168 h	236 h	404 h	406.5 h	427.5 h	1 h	67h	72 h	236 h	404 h	406.5 h	427.5 h	
New Ditch Foam	5.49	5,58	5.85	5,89	5.94	6.2	5.65	2.299	4.058	3.033	3.837	3.72	1.706	1.669	
BZWR-7 Graphitic Gneiss	6.12	5.96	6.13	6.19	6.09	6.4	6.07	0.699	0,883	0.877	1.035	1.127	0,717	0.711	
BZWR-6 Hematizxed	6.04	5.82	5.86	5.94	5.94	6.31	6.16	1.076	1.233	1.263	1.482	1.409	1.009	1.038	
BZWR-6 As/Ni Oxidized	5.21	5.37	5.48	5.55	5.42	5.86	5.85	6.108	5.72	25.93	35.40	34.06	12.63	12.32	
BZWR-6 Area SS	6.27	6.05	6.27	6.3	6.25	6.21	6.32	0.775	0.896	1.14	1.011	0.987	0.493	0.524	
WRP-P Sludge	3.3	3,1	2.96	2.98	2.96	3.22	3.25	3.141	5.177	7.681	7.344	7.169	2.904	2.771	

Table A2-4: Extractable Ni in Slurris of B-Zone Waste Rock Piles

B	
0ju	
13	

Table A2-5: Extracted Ni and As in Slurries of B-Zone Waste Rock Pile

	New Ditch Foan		Foam	BZWF	२-7 Gra	phitic	BZV	/R-6 He	ematiz	BZW	R-6 As /	'Ni Ox i	BZ	WR-6	Area ٤	WR	P-P SI	udge
Decant	DH2O			DH2O)H2O			CH2O	_		DH20)H2O		
cycle	added	Ní	As	added	Ni	AS	.dded	Ni	As	added	Ni	As	added	Ni	As	ıdded	NL	As
	(mL)	(mg/L)	(mg/L)	(mL)	<u>(mg/L)</u>		(mL)	(mg/L)	(mg/L	_(mL)_	(mg/L)	(mg/L)	(mL)	<u>(mg/L)</u>	<u>.(mg/L</u>	<u>(mL)</u>	(mg/L)	(mg/L
1	200	1.669	>3	200	0.711	0.8	200	1.038	2	200	12.32	>3	200	0.524	0.5	200	2.771	>3
2	100	0.646	1	100	0.514	0.1	100	1.067	0.25	100	2.325	2	100	0.256	0.05	100	0.115	1.5
3	100	0.686	0.8	100	0.394	0.05	100	0.699	0.2	100	1.86	1.7	100	0.201	0.03	100	0.072	1
4	100	0.57	0.7	100	0.342	0.02	100	0.6	0.1	100	1.506	1,5	100	0.118	0.01	100	0.056	0.7
5	100	0.477	0.5	100	0.195	0.01	100	0.542	0.05	100	1.344	1.5	100	0.093	0.00£	100	0.053	0.4
6	100	0.44	0.4	100	0.118	0.005	100	0.437	0.03	100	1.445	1.2	100	0.063	0.00{	100	0.056	0.3
7	100	0.462	0.4	100	0.124	0.01	100	0.391	0.2	100	1.384	1.2	100	0.047	0.00{	100	0.069	0.2
а	100	0.416	0.4	100	0.087	0.01	100	0.308	0.08	100	1.255	1.2	100	0.1	0.001	100	0.047	0.2
9	200	0.339	0.3	200	0.078	0.01	200	0.201	0.05	200	1.046	2	200	0.078	0.01	200	0.047	2.5
10	200	0.354	0.3	200	0.047	0	200	0.186	0,05	200	0.895	2.2	200	0.109	0.03	200	0,118	3
11	200	0.265	0.3	200	0.047	0.03	200	0.124	0.2	200	0.923	>3	200	0.053	0.02	200	0.093	>3
12	200	0.293	0.2	200	0.047	0	200	0,13	0.2	200	0.978	2.5	200	0.038	0	200	0.044	0.2
13	200	0.201	0.2	200	0.047	0	200	0.139	0.2	200	0.892	2.2	200	0.047	0	200	0.032	0.2
DH2O(blank)		0.032	0		0.032	0		0.032	0	-	0.032	0		0.032	0		0.032	0

Boojum

	New Ditch Foam			BZWR-7 Graphitedc Gneiss			BZWR-6 Hematizxed			BZWR-	6 As/Ni C	BZWR-6 Area SS			WF	dge		
Decant	DH2O			DH2O			DH2O			DH2O			DH2O			DH2O		
cycle	added	Nì	As	added	Ni	As	added	Ni	As	added	Ni	As	added	Ni	As	added	Ni	As
	(mL)	(mg/kg)	(mg/kg)	(mL)	(mg/kg)	(mg/kg)	(mL)	(mg/kg)	(mg/kg)	(mL)	(mg/kg)	(mg/kg)	(mL)	(mg/kg)	(mg/kg)	(mL)	(mg/kg)	(mg/kg)
1	200	327.4	>600	200	135.82	80	200	201.2	400	200	2457.6	>600	200	98.42	100	200	547.8	>600
2	100	61.41	100	100	48.21	10	100	103.5	25	100	229.31	200	100	22.41	5	100	8.31	150
3	100	65.41	80	100	36.21	5	100	66.71	20	100	182.81	170	100	16.91	3	100	4.01	100
4	100	53.81	70	100	31.01	2	100	56.81	10	100	147.41	150	100	8.61	1	100	2.41	70
5	100	44.51	50	100	16.31	1	100	51.01	5	100	131.21	150	100	6.11	0.5	100	2.11	40
6	100	40.81	40	100	8.61	0.5	100	40.51	3	100	141.31	120	100	3.11	0,5	100	2.41	30
7	100	43.01	40	100	9.21	1	100	35.91	20	100	135.21	120	100	1.51	0.5	100	3.71	20
8	100	38.41	40	100	5.51	1	100	27.61	8	100	122.31	120	100	6.81	0.1	100	1.51	20
9	200	61.4	60	200	9.22	2	200	33.82	10	200	202.82	200	200	9.22	2	200	3.02	250
10	200	64.4	60	200	3.02	0	200	30.82	10	200	172.62	440	200	15.42	6	200	17.22	300
11	200	46.6	60	200	3.02	6	200	18.42	20	200	178.22	>600	200	4.22	4	200	12.22	>600
12	200	52.2	40	200	3.02	0	200	19.62	20	200	189.22	500	200	1.22	0	200	2.42	40
13	200	33.8	40	200	3.02	0	200	21.42	20	200	172.02	440	200	3.02	0	200	0.02	40
Total	1900	933.3	1280	1900	312.19	108.5	1900	707.4	571	1900	4462.1	3810	1900	197	122.6	1900	607.2	2260

Table A2 -6: Cumulative Extracted Ni and As in Solids from B-Zone Waste Rock Pile

CAMECO Corporation: Rabbit Lake Operation Utilization of Wetlands for Removal of As and Ni Jujy, 1998 Boojum

•

				ZWR-7 Graphitic Gneiss						IZWF	As/Ni Oxidized		BZ?-6 ALUI SS			WRP-P		Jdge
ecan)H2O	•)H2C			2H2O)H2C			DH2O)H2O		
cycle	dded			Iddec	рН	Cond	added			ldded	pН	Cond.	added	рН	Cond	idded	pН	Cond
		ł		<u>(mL)</u>	i	(us/cm	(mL)			<u>(mL)</u>		(us/cm)	(mL)		<u>us/cn</u>	<u>(</u> mL)		(us/cn
1	200	5.65	87.6	200	6.07	36.5	200	6.16	41.4	200	5.85	91.4	200	6.32	39.6	200	3.25	377
2	100	5.96	43	100	6.2	40	100	6.3	40	100	6.27	44	100	6.44	41	100	3.65	155
3	100	6.06	41	100	6.29	41	100	6.4	40	100	6.39	43	100	6.52	40	100	3.8	124
4	100	6.3	34.2	100	6.16	33.1	100	6.26	33.3	100	6.38	36.7	100	5.95	32.9	100	3.87	101.(
5	100	6	34.4	100	6.45	33.6	100	6.4	33.6	100	6.52	36.4	100	6.33	33.4	100	3.92	90.4
6	100	6.36	37	100	6,6	43.2	100	6.67	42.7	100	6.67	45.2	100	6.74	42.6	100	3.96	101.4
7	100	6.25	36.9	100	6.58	43.7	100	6.65	42.8	100	6.66	46.2	100	6.76	42.3	100	3.99	100.8
a	100	6.2	37.2	100	6.56	36.7	100	6.65	42.2	100	6.65	44.9	100	6.75	42.1	100	4.14	86
9	200	5.97	43.5	200	6.54	36.8	200	6.63	42.3	200	6.66	44.8	200	5.74	42.2	200	4.48	71
10	200	6.05	31	200	6.35	30	200	6.12	30	200	6.34	33	200	3.38	30	200	4.55	53
11	200	6.66	33	200	6.61	32	200	6.59	33	200	6.54	33	200	5.61	31	200	4.55	47
12	200	6.45	39	200	6.17	39	200	6.34	38	200	6.35	42	200	5.44	39	200	4.64	51
13	200	6.33	39	200	6.27	39	200	6.33	39	200	6.28	41	200	5.37	38	200	4.81	49
энас	-	6.53	39		6.53	39	-	6.53	39		6.53	39		3.53	39	-	6.53	39
Blank	-	6.51	33.2	-	6.51	33.2	-	6.51	33.2		6.51	33.2		3.51	33.2	-	6.51	33.2
																• <u></u>	·····	

Table A2 -7: Chemistry in Slurries of B-Zone Waste Rock Pile

A2-25

CAMECO Corporation: Rabbit Lake Operation Utilization of Wetlands for Removal of As and Ni Jujy, 1998

	∫ S	urface Are	ea			Muske	ĝ				Sedimen	Pond						
		Pond				Surface - 0).25 m			Su	rface - 0.2	5 m		Water - 0.5 m				
Агеа	Muskeg	Sediment	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	
Zone	Area	Area	Area	As	.,Ni	Fe	S	LOI	As	Ni	Fe	S	LOI	As	Ni	Fe	s	
	ha	ha	ha	kg	kg	kg	kg	<u>t</u>	kg	kg	kg	kg	t	kg	kg	kg	kg	
BT-1 A	1.6	1.7	3.3	1.0	3.7	3,824	1,851	790	282	187	12,737	1,955	316	1,2	0.4	3.5	14	
В	3.8		3.8	37	16	3,348	615	615										
c	1.4	0.33	1.8	5.7	7.8	654	323	401	24	19	1,411	375	73	0.032	0.013	1.4	0.50	
D	3.9	0.85	4.7	2.5	9.0	9,174	3,961	1,895	60	49	3,628	965	187	0.29	0.08	0.64	1.3	
E	1.2	0.20	1.4	0.83	0.59	473	225	386	14	11	849	226	44	0.019	0.008	0.82	0.30	
F	3.9	0.45	4.3	19	20	2,967	3,228	1,350	32	26	1,921	511	99	0.043	0.018	1.9	0.68	
SUM	16	3.6	19	66	57	20,439	10,003	5,438	412	292	20,545	4,032	719	1.6	0.5	8.2	16	
BT_2 A	41	30	71	7.56	'13	10 846	10.846	1 485	383	359	10.558	4.744	540	8.9	1.0	3.4	6.2	
		0.0	7.1	7.00	.0	10,040	10,010	.,				.,				.	5.2	
B	17	1.9	19	36	30	7,580	45,361	2,167	27	22	1,978	3,006	862	0.91	0.13	4.3	6.7	
SUM	21	4.9	26	43	44	18,426	56,207	3,652	410	381	12,536	7,750	1,401	9.8	1.1	7.6	13	
BT-3 A	1.6	0.25	1.8	446	282	6,819	1,005	317	10	8	163	172	58	8.7	21.5	1.8	135	
В	2.1	0.1	2.2	15	6.7	2,290	1,422	448						0.02	0.02	0.52	0.80	
SUM	3.6	0.4	4.0	461	289	9,109	2,427	766	10	8	163	172	58	8.7	21.6	2.3	135	
3T-4 A	3.2	0.1	3.3	42	21	40,939	3,914	829						0.02	0.01	7.1	3.5	
AKE A	4.9		4.9	108	32	4,181	1,230	1,141										
B	58	8.3	66	15	24	3,695	4,956	8,831	3.9		18,184	10,824	4,093	0.02	0.08	13	1.4	
SUM	63	8.3	71	124	56	7,876	6,186	9,972	3.9	36	18,184	10,824	4,093	0.02	0.08	13	1.4	
SUM	107	17	124	735	467	96,790	78,738	20,656	837	718	51,428	22,777	6,271	20	23	38	169	

Table A2-8: Arsenic, Nickel, Iron, Sulphur and LOI Mass in BT-1, BT-2, BT-3, BT-4 and Lake 1 Muskeg, Sediments and Pond Water.

unfoon >

A2-26

עראזיגעע עטויטענענעוו. המשטוג באדע עספרמנוטזי Utilization of Wetlands for Removal of As and Ni July, 1998
APPENDIX 3

CALCULATION OF TOTAL WATER SOLUBLE FRACTION

Appendix 3: Total water soluble quantity:

Extractable Ni and As in solids (mglkg) from B-Zone Waste Rock Pile are calculated based on the following equation and the results list in Appendix 2 (Table A2-5).

([Ni] in slurry - [Ni] in DH2O) (mg/	L) * DH20 added (mL) 11000
Ni (mg/kg) =	*1000
Dry sample w	reight (g)
where: [Ni] in DH2O(distilled water) = 0.0319 mg/L	
([As] in slurry - [As] in DH2O) (mg	ŋ/L) * DH20 added (mL) 11000
As (mg/kg) = Dry sample w	*1000 /eight (g)
where: $[As]$ in DH2O(distilled water) = 0 mg/L	
The percentage of extracted Ni (E-Ni) or As (E- calculated based on the following equation (Tabl	-As) in total Ni (T-Ni) or As (T-As) are e 9):
Extracted Ni (mglkg) E-Ni in T-Ni (%) = *100	Extracted As (mglkg) E-As in T-As (%) =
*100 Total Ni (mglkg)	Total As (mglkg)

APPENDIX 4

İ

PUBLICATION

Proceedings of the 36th Annual Conference of Metallurgists CIM, Sudbury Ontario

> August 17 -20, 1997 Pages 327 - 337

Wetlands for Treatment of Arsenic and Nickel: A Decommissioning Approach for Waste Rock Pile Seepage^{*}

> M. Kalin, M.P. Smith Boojum Research Limited 468 Queen Street East, *LL2* Toronto, Ontario M5A 1T7

ABSTRACT

A waste rock pile in northern Saskatchewan, Canada consisting of 5.6 million m³ of waste rock was generated by open pit mining of uranium between 1984 and 1991. Decommissioning options for the waste rock pile are based on the geochemical and hydrological conditions of the pile and the surrounding environment. The contaminants of concern are As and Ni. The total contaminant mass which is likely to be mobilized from the waste rock pile is estimated between 240 t and 403 t for As, and 357 t and 447 t for Ni. The annual release rate is estimated for As at 1.7 t.y⁻¹ and for Ni, 4.9 t.y⁻¹. Presently, seepage from the waste rock pile is **collected** and **chemically** treated. The **waste** rock pile is surrounded by fens and muskeg. the wetland equivalents in boreal ecosystems. This physical setting lends itself to implementing a selfsustainable decommissioning approach utilizing the muskeg and fens which surround the pile. The fens have been studied over the past five years for their ability to retain As and Ni in the sediments. Field experiments, complemented by laboratory studies, have established a contaminant removal capacity for Ni of between 0.07 g.m⁻².d⁻¹ and 0.1 g.m⁻².d⁻¹, and for As, between 0.08 g.m⁻².d⁻¹ and 0.1 g.m⁻².d⁻¹ can be removed. The area of the wetlands available to mediate the annual contaminant load is 18 ha. At maximum. 16 ha are required during the ice free season to accommodate the seepage accumulation from spring run-off and the flow generated during the summer. Microbial **community** activity is the main factor facilitating ongoing contaminant **removal from** the seepage water. The treatment capacity has been demonstrated for both natural fen sediments. and for sediments amended with organic matter additions to stimulate microbial activity.

Proceedings of the **36th** Annual Conference of Metallurgists, **CIM**, Sudbury, Ontario, August 17-20, **1997**. Pages **327** - **337**.

INTRODUCTION

In decommissioning mine waste management areas, a wide range of options for the restoration of the mine wastes are typically evaluated. The primary long-tern concern is the release of contaminant compounds from weathering mining wastes such as waste rock and tailings. With sufficient net atmospheric precipitation, contaminated seepages commonly emerge from the toe of waste rock piles which, in many cases, require treatment in order to protect surface water quality of the receiving aquatic environment. Since weathering processes are slow, contaminant release and the need for its treatment can span decades or longer. Chemical treatment of waste rock seepages generates sludge containing high metal concentrations, which in turn require containment and long-term storage facilities. The search for low maintenance alternatives to chemical treatment over the last decade has included assessments of natural treatment options, such as the utilization of sediments in wetlands as self-sustaining contaminant removal systems.

A review of the 35 papers (1), describing various types of wetlands as treatment options for mine effluents, revealed that. when the pH of such systems is above 4.5 and the acidity is less than $300 \text{ mg} \cdot \text{L}^{-1}$, these passive approaches are very effective. This paper reports the results of a five year study which has lead to the integration of existing wetlands surrounding a waste rock pile as treatment areas for removal of contaminants from toe seepages.

Several studies (e.g., 2, 3) have demonstrated the capacity of wetlands to remove heavy metals from contaminated waters in a wide variety of situations. Stimulation of sediment microbiology through addition of readily degradable organic carbon, such as potato waste or alfalfa pellets, has been proven to augment metal removal and improve seepage characteristics (2). The effectiveness of such amendments was tested using sediments from the wetlands adjacent to the waste rock pile, both in the laboratory using reactors (4, 5) and in the field in enclosed sections of an adjacent fen (6). The forms of contaminants which accumulated in sediments of the enclosures and in the laboratory reactors were also identified (7).

SITE DESCRIPTION

An open pit uranium mining operation, located on the Harrison Peninsula of Wollaston Lake, northern Saskatchewan, **58° 11'** N, **103° 41' W** (Figure 1), generated a 5.6 million m³ waste rock pile between 1984 and 1991. The waste rock pile is comprised of approximately 9.1 million tonnes of material placed within a 26.2 ha area, including a peripheral run-off collection ditch system (Figure 2). Over the eight year operation, waste rock was enddumped and compacted by bulldozer. The waste rock included till, overburden sand, sandstone @leached. hematized, limonized), quartz biotite gneiss and graphitic gneiss excavated from the open pit.

Since completion of pile in **1991**, no contouring, capping or revegetating has taken place. The waste $t \propto k$ pile is exposed to an average total precipitation of **565** mm (1972-1995 average), while the net annual precipitation is estimated at 230 mm. The annual average temperature is -4.7° C (1951-1980).

To address the weathering characteristics. the waste **rock** pile **has been** studied in three major sampling and laboratory testing campaigns. The conclusions **drawn** from these **tests** were-that, first, there may be sufficient neutralizing minerals present in the waste pile to buffer drainage **between** slightly acidic and neutral pH values; second, the graphitic gneiss material. although present in relatively limited quantities, indicates a potential for acid generation, and it is expected that drainage from **this** material will influence the overall average drainage water quality; and third, bleached limonitic sandstone, which represents the largest portion of the rock pile, released stored oxidations products during the initial flushing stages. indicating that potential exists for the short-term release of metals.

The waste rock was deposited in a muskeg **area**, and three fens are located immediately adjacent to the pile (Figure 2). Hydrogeological studies of the vicinity indicate that the fens northwest of the waste rock pile, comprised of shallow, open water ponds overlying muskeg sediments, are perched water bodies.

Figure 2 - The waste rock pile and surrounding area.

These wetland areas are being examined for their possible use as treatment systems for seepage draining from the waste rock pile, given their hydrological and biological conditions. Following decommissioning. seepage emerging from the waste rock pile would be directed into the wetlands where the contaminants would be retained in the sediments.

SEEPAGE CHARACTERISTICS

Seepages emerge from the waste **rock** pile principally from the first bench, or the toe of the pile. On the southwest side, seepages emerge from the sides **of** the inner banks of the seepage collection ditch, or from the **first bench of** the waste **rock** pile, then **flowing** overland to the perimeter ditch. On the northwest side, all seepages emerge from the bottom of the pile. but flow overland, crossing the perimeter road and drain into the collection ditch. Seepages have not been observed along the southwest side adjacent to the ore stockpile area. The site lay-out, including the waste rock pile, the Northwest and Southeast drainage ditches and the wetlands, **is** given in Figure **2**.

Seepage is collected and pumped for treatment at the Northwest Seepage Collection Station and also at the Southeast Seepage Collection Station (Figure 2). The water quality of seepage collecting at these stations in presented in Table I.

Seepage waters collected at the Northwest and Southeast pumping stations have, on average, low pH (4.3 and 3.3, respectively) and relatively high conductivities (1100 and 1670 μ S.cm⁻¹) and total dissolved solids (TDS) concentrations (1022 and 1538 mg.L⁻¹, respectively). Calcium and sulphate are major constituents contributing to these solutions' high TDS. Both total arsenic and nickel are present in elevated concentrations in solutions collected at the Northwest and Southeast Seepage Collection Stations, averaging 30 and 27 mg.L⁻¹ As and 47 and 99 mg.L⁻¹ Ni, respectively. Seepage waters also contain elevated concentrations of biologically-available forms of nitrogen (nitrate, ammonia, Kjeldahl nitrogen) and phosphate, essential nutrients which will support the microbial treatment process.

Table I - Chemical/Physical Parameters, Major Anion and Cation Concentrations in Northwest (1987-1996) and Southeast (1994-1995) Seepage Collection Stations water

	No	Northwest Seepage Collection Station				Southeast Seepage Collection Station				ion
	1987 - 1996				1994 • 1996					
	Avg.	S.D.	Min	Max	N	Avg.	S.D.	Min	Max	א
- ` An										
Temp (°C)	12	5.7	0.50	21	24	17	5.0	11.3	26.0	5
рҢ	4.3	4.1	3.3	6.8	44	3.3	3.4	3.0	6.3	5
Cond (uS.cm ⁻¹)	1104	782	35	3540	34	1669	235	1461	2010	5
Eh (mV)	477	54	368	574	12	463	213	97	634	4
In mg L [·] Acidity	72	57	3.3	158	5	186				Ι
Alkaliity	5.0				1					0
TDS	1022	964	10	4170	23	1538	463	923	2040	3
TSS	384	790	1.0	3580	48	4.5	0.50	4.0	5.0	2
Tot Hardness	478	543	17	2030	12					0
Cl	2.6	1.7	0.60	7.0	30	4.2	2.0	2.0	8.0	5
F	0.13	0.12	0.03	0.49	IS	0.84				I
HCO,	2.8	1.8	<0.1	7.0	22	I. O	0	<1.0	I. O	4
NH,-N	3.2	2.4	0.12	8.5	27	3.2	1.6	0.12	4.2	5
NO3-N	45	43	3.0	128	24	28	22	4.5	71	5
SO4	592	4%	9.8	2320	32	1058	99	965	1210	5
Tot PO,	25	24	0.11	89	24	28	16	13	58	5
TKN	4.1	1.5	I.4	5.8	9	4.4	0.15	4.2	4.5	2
AI	13	20	0.11	68	20	8.5				Ι
Total As	30	36	0.13	130	40	27	12	13	46	5
Ba	0.13	0.14	0.02	0.46	18	0,019				Ι
Ċa	120	93	1.6	441	31	201	25	167	230	5
Tot Fe	6.1	I2	0.09	44	17	4.4	2.1	0.86	8.5	4
K	22	15	1.9	68	31	23	10	6.2	33	4
Mg	54	46	2.0	227	31	91	IS	80	122	5
Mn	3.5	2.3	0.28	7.3	26	8.0	2.6	4.4	11	4
Na	22	19	1.4	88	26	21	8.2	5.3	28	5
Total Ni	47	55	0.56	220	40	99	19	77	130	4

CONTAMINANT LOADS

The annual loads of **As** and **Ni** which must **be** removed by passive treatment system can be calculated by multiplying the average quality of seepage water reporting to the seepage collection stations (in mg.L⁻¹) by ihr estimated annual flow volumes (in L.y⁻¹). Between **1992** to **1995**, seepage flow from the waste **rock** pile was monitored using records of seepage volumes pumped over the **ice-free** season at the Northwest and Southeast Seepage Collection Stations. However, seepage volumes pumped in over the ice free season and the amount of precipitation in the same period were poorly correlated, based on detailed records from a weather station on the waste **rock** pile. Therefore, flow volumes were instead calculated by multiplying the areas of the waste **rock** pile and perimeter ditch system (**26.2** ha) by the estimated annual net precipitation (**228** mm.y⁻¹), yielding a volume of **59,642** m³.y⁻¹ (Table II). This value represents the best approximation between the field measurements and estimates derived from pumping records.

In Table II, the estimated As and Ni loads are presented. **Based** on seven surveys of individual toes seepages emerging from the base of the waste rock pile, there is some indication that more seepage reports to the Southeast (0.33 L.s⁻¹), compared to the Northwest (0.17 L.s⁻¹), Seepage Collection Station. Therefore, two-thirds (64 %) of the run-off volume was assigned to the Southwest Seepage for calculation of its contribution to the annual **As** and Ni load. Each year, removal of **as** much as 1.7 t of As and **4.9** t of Ni will be required in the treatment **system** (Table II).

Seepage Collection Station	Average Total [As] mg.L ⁻¹	Average Total [Ni] mg.L ^{.1}	Net Precipitation on Pile (26.2 ha, 228 mm.y ⁻¹) m ³ .y ⁻¹	Fraction of Pile Drainage Basin %	Annual As load t.y ^{.1}	Annual Ni load t.y ^{.t}
Northw es t (1 987-1996)	30	47	59,642	34	0.61	0.95
Southeast (1994-1996)	21	99	59.642	66	1.1	3.9
					As	Ni
				Total Load, t.y ⁻¹	1.7	4.9

Table II - Estimated Annual Arsenic and Nickel Loads in Waste Rock Pile Seepages.

The inventory of the total mass of **As** and Ni contained in the waste **rock** pile which might be leached with time was estimated **based** on the results of whole **rock** analyses, **25** hour leach and humidity cell tests and sequential extraction procedures (data not shown). The estimate mass of **As** which may be leached ranges from **240** t to **400** t, while for Ni, **350** t to **450** t. Previously, it was estimated that 1.7 tonnes of **As** and **4.9** tonnes of Ni leave the pile each year (Table H). This results in the projection that the arsenic supply in the pile will be depleted in 140 to 240 years and nickel will be depleted in the range of 73 to **91** years.

CONTAMINANT REMOVAL CAPACITY OF WETLAND SEDIMENTS

The waste rock conditions. the hydrological conditions and the contaminant release rates from the waste rock pile, suggest that decommissioning plans have to consider at least a time span of **100** to **200** years for **As** and Ni. Although this is relatively short in comparison to radiological concerns raised in the uranium sector. it remains a time span exceeding the life of the mining activities on the peninsula. Wetlands as passive treatment options have received extensive attention as possible polishing/treatment areas.

The microbial activity of the muskeg sediments could be enhanced through addition of easily degradable organic material. Consequently, **As** and Ni is removed from the water through organic complexation as a result of decomposition of organic mater. The pH would be elevated due, in part. to microbial iron reduction. In the deeper portions of the sediments. where low Eh is maintained, metals form either carbonates or sulphides which are relatively stable environmentally and are removed from the weathering cycle. These As and Ni removal processes. expected to take place in the sediments, formed the working hypothesis which has been tested both in the laboratory and in the field since **1992**.

The ability of muskeg sediments to remove Ni and As from waste rock pile seepage water has been demonstrated both in the field and in the laboratory (Table III). The rates for the field enclosures are lower, but of the same order of magnitude as in the laboratory reactors. This is not surprising, since the field rates are underestimated, and the process is not optimized. The average As removal rate in the field enclosures was $0.076 \text{ mg m}^2 \text{ d}^1$, while in the laboratory reactor experiments, the average As removal rate was very similar, at $0.1 \text{ mg m}^2 \text{ d}^1$. The field enclosure Ni removal rates averaged $0.078 \text{ g m}^2 \text{ d}^1$, while in the laboratory reactor solution in the laboratory reactors. The average As removal rate was very similar, at 0.1 mg m⁻² d⁻¹. The field enclosure Ni removal rates averaged $0.078 \text{ g m}^2 \text{ d}^{-1}$, while in the laboratory reactor solution in the laboratory reactors. The moval rates averaged 0.104 mg m⁻² d⁻¹ (Table III). There was, however. a high degree of variability in the field results due to long intervals between sampling.

	ARSENIC Removal Rate			Removal			NICKEL Removal Rate		Removal	
	Avg	Max	Ν	Ability		Avg	Max	Ν	Ability	
	g.m ⁻² .d ⁻¹	g.m ⁻² .d ⁻¹		g.m ^{•2}		g.m ^{•2} .d ^{•1}	g.m ⁻² .d ⁻¹		g.m ⁻²	
FIELD	0.076	0.16	7	17	(a)	0.078	0.17	7	48	(a)
LABORATORY (c)	0.10	0.22	7	51		0.10	0.33	7	59	(b)

Table III - Overview of Observed **As** and Ni Removal **Rates** (g.m⁻², d⁻¹) and **As** and Ni Removal Ability (g.m⁻²) by Sediments Based on Field Enclosures and Laboratory Reactors Data.

a Total mass of diss As. in $\overline{g.m}^2$ added to enclosures July-92 to June-95; max removal ability not reached.

b Final Ni maximum removal ability was not reached by end of lab reactor experiment.

c Laboratory removal rates based on observed concentrations decreases in known volumes over recorded time.

The maximum loads of **As** and Ni which *can* be added before the removal process is halted were derived based on the laboratory reactor responses to repeated additions of contaminants. Based on these data. 1 m^2 of muskeg sediment (with addition of 637 g m^2 of potato waste) is able to remove, without any further addition of organic matter, 52 g m^2 for As and a minimum of 59 g m^2 for Ni (Table III). The field enclosures received loads of 17 g m^2 As and 48 g m^2 Ni, the total mass of dissolved As and Ni added to the enclosures between July 1992 and August, 1995 (Table I), without any signs of the removal process slowing. The contaminant removal ability of the field enclosures did not appear to be exceeded. The reactors have no ability to regenerate sediment through organic carbon production, while sediment regeneration in the enclosures is possible through primary productivity by the phytoplankton community. Actual contaminant removal ability of the sediments may be much higher then estimated, and saturation may never be reached. By continuous production of organics, formed through decomposition of organic matter, new sediment layers will accumulate, burying and mineralizing the contaminants in deeper strata of the sediment.

SEEPAGE TREATMENT SYSTEM REQUIREMENTS

Estimates of actual annual dissolved Ni and As loads from waste **rock** pile seepages (Northwest pumping station rates and average concentrations) for the years 1992 to 1995 are calculated **to** assess the capacity of the contaminant removal ability of wetland sediments, based on the static laboratory and field test results (Table IV). Using the water quality data from the seepage collection stations and that volume of run-off which reported to the seepage collection station, the actual loads which would reach the wetlands and could be treated can be calculated. The annual loads, 270 kg **As** and 720 kg Ni per year (1992-1995 average) based on pumping records, are used to estimated the required area for removal, without optimisation of the microbial system at work.

ARSENIC						
Year	Days	Estimated As Load,	Area Required	Area Required		
	in	kg, in snow-free	1992-1995			
	Period	scason	Enclosure Rates		Laboratory Reactor Rates	
			0.076 g.m ⁻² .d ⁻¹		0.100 g.m ⁻² .d ⁻¹	
1992	157	69	0.6	ha	0.4	ha
1993	162	347	2.8	ha	2.1	ha
1994	138	236	2.3	ha	1.7	ha.
1995	113	428	5.0	ha	3.8	ha
Avg		270	2.7	ha	2.0	ha
NICKEL	Dava	Estimated N: Tool	Anna Damilard		Anna Damiland	
Y car	Days	Esumated NI LOBO,	Area Required		Area Required	
	in	kg, in snow-free	Enclosure Rates		Laboratory Reactor Rates	
	Period	scason	0.078 g.m [*] ,d [*]		0.104 g.m ⁻⁴ .d ⁻¹	
1992	157	97	0.8	ha	0.6	ha
1993	162	483	3.8	ha	2.9	ha
1994	138	886	8.2	ha	6.2	ha
1995	113	1410	16.0	ha	12.0	ha
		719	7.2	ha	5.4	ha

Table IV - Areas of Wetland Required to Support **As** and Ni Removal Based on Laboratory Reactor and Field Enclosure Removal Rates.

Total areas available, 18 ha

(Northwest Wetland 2, 2.4 ha, Northwest Wetland 1.6.1 ha, Southeast Wetland, 3.7 ha, West Lake, 5.6 ha).

The estimated waste **rock** pile **As** and Ni loads for the 1992 to 1995 snow-free seasons, and the field enclosure and laboratory reactor **As** and Ni removal rates, are **used** to estimate the required wetland area to contaminant removal (Table III). For As, required wetland area estimates range from **0.4** ha (1994 load, lab reactor rate) to **5.0** ha (1995 load, field enclosure rate). For Ni. required wetland area estimates range from **0.6** ha (1992 Ni load, lab reactor rate) to 16 ha (1995 Ni load, field enclosure **rate**). The largest required area, 16 ha, based **on the** increased flow estimates in 1995, is close to the total **area** of wetlands in the vicinity of the waste rock pile (18 ha).

The area of active wetland sediment underlying open water required to removal annual loads of **As** and Ni is estimated at 7.2 ha (Table IV). This **area** is considerably less than the combined areas of the two northwest wetlands, and construction of additional wetland **area** will not be required. It should also be noted that only the **area** of wetland with a water cover was used in the **area** estimate. Polishing capacity is also present in partially emergent areas along **the** perimeters of the wetlands. The **areas** of wetlands required for contaminant removal were based **on** the **ice** free-season alone, while additional removal can be anticipated over the remainder of the **year**. During the course of the enclosures field work, it was observed that the water levels of the wetlands, overlying perched water tables, decreased each season by up to 0.3 m. The bulk of waste rock pile seepage water is anticipated during spring run-off, when the capacity of the wetlands for water is largest. All calculations regarding wetland treatment capacity were based on conservative estimates of contaminant loads and removal **rates**.

SUSTAINABILITY OF PASSIVE TREATMENT APPROACH

It is anticipated that the key question which will be raised, in relation to utilizing wetlands as passive treatment systems, is whether the processes observed in the field enclosures and laboratory reactors will operate in the long term. Generally, peat muskeg/fen-type ecosystems evolve in areas with low productivity

and low decomposition rates. Decomposition of organic carbon, however, is essential for the support of biologically-mediated contaminant removal in the sediments. The top 0.15 m of sediment can be assumed to be the active zone supporting the microbial community which, in turn, assists contaminant removal. The period required for replacement of the organic content of this layer should be the same as, or less than, the period over which the As and Ni removal ability of the sediments is exhausted, if the claim to sustainability of the process is to be substantiated.

The number of years over which **As** and Ni will be removed by the existing wetland area can be estimated. **This** is based on a wetland treatment system size of 7.2 ha and the annual average collected **As** and Ni loads, 270 kg yr¹ and 719 kg y¹ respectively, generated by the waste rock pile (Table IV). presently, the current wetland sediment, without regeneration of organic carbon, could support **As** removal for 14 years, and Ni removal for at least 6 years. Estimates for the length of the time the pile will generate contaminants until the supply is exhausted range from 140 years to 240 years for **As**. and from 73 to 91 years for Ni.

The active sediment layer will have to regenerate approximately ten times until the waste rock pile **As** and Ni supply **is** exhausted. The wetlands will likely be capable **of** accommodating all of the contaminants over the period in which As and Ni leaches from **the** pile, through occasional addition of carbon sources, as was the case in the enclosures, or through ecological engineering measures which provide additional sediment and carbon. The sustainability of the process can be addressed through an evaluation of biological capacity of the area and the potential of increasing productivity through ecological engineering measures, such as floating wetland vegetation covers.

In Table V, it is estimated that the organic **carbon content of** the active sediment layer must **be** replaced every **6** years, in order to maintain the contaminant **removal** processes. There **are** 0.15 m³ per m² of fresh sediment in the top 0.15 m layer of the wetlands. Assuming a dry weight of 15 kg per 100 kg of fresh sediment (85 % water), there are **22.5** kg of organic matter m⁻², or 7.9 kg organic carbon (34 % organic carbon; 8). To replace this 7.9 kg of organic carbon in the top 0.15 m over **6** years, the required new organic carbon production must be 1.3 kg m^{-2} every **year**.

Area of Treatment System		7 h a	
Average As load		270 kg.yr ¹	
Average Ni load		719 kg.yr¹	
As Removal capacity		52 g.m ⁻²	
Ni Removal capacity	>	59 g.m ⁻²	
		4 g.m ⁻² .y ⁻¹	
Ni per year		10.0 g.m ⁻² .y ⁻¹	
As: Years to capacity		13.9 years	
Ni: years to capacity	>	5.9 years	

Table V - Years of Treatment Until Removal Capacity Reached Scenario 1: No New Sediment Production.

Phytoplankton (suspended microscopic algae) organic carbon production is estimated, based on literature values, at 0.37 kg m⁻² y⁻¹ for a eutrophic lake (8), while submerged macrophyte, emergent macrophyte and allochthonous carbon input are estimated at 0.12, 1.43 and 0.04 kg m⁻² y⁻¹ (8). totalling 0.64 g m⁻² y⁻¹. This productivity estimate, based on the literature values, is therefore about half the organic carbon production required to replace the organic carbon content of the top 0.15 m of sediment every 6 years.

The Northwest Wetland 1 phytoplankton productivities were calculated based on counts of a single, dominant phytoplankton species, *Dictyosphaerium simplex*, in this wetland. This species alone can be

estimated to produce organic carbon at a rate of 0.008 to 0.19 kg m⁻² y⁻¹, an amount comparable to that reported for eutrophic systems in more temperate latitudes (8). The high productivity is not surprising, since the nutrient supply from the waste rock pile is plentiful both in nitrogen and phosphate. The pile is estimated to leach phosphate for 4,000 years at 0.5 t per year. Hence, it is reasonable to assume that any ecosystem in this area, such as wetlands, receiving nutrients borne in waste **rock** pile seepage **can** be anticipated to maintain high productivities in the long term.

In 1995. floating wetland vegetation rafts were installed to test the possibility that additional carbon could be produced through ecological engineering measures. Floating cattail rafts have **been** employed elsewhere to provide a cover over passive treatment systems in order to reduce wind-induced water mixing and to provide degradable organic matter to the microbial consortia responsible for contaminant removal. Systems covered with floating cattail rafts *can* be used for removal of metals from mine drainage through promoting and maintaining reducing conditions (1, 9). The establishment of mature plants on rafts from seedlings in 1995, and regrowth the following spring (1996) demonstrates that this approach can be used to add to the current organic carbon production.

CONCLUSION

This paper summarized an approach for a waste management area in the mineral sector which will lead to the integration of passive treatment systems when decommissioning is required. Based on the setting of the waste rock pile in a muskeg area, and the expected loads of contaminants in seepages, no further addition of wetland area is required for this site. As a backup measure, additions of organic matter to the wetlands sediments can be used, should the seepage loading increase or the microbial activity of the sediment decrease. The current estimates of organic matter production suggest that the use of the wetlands in decommissioning and restoration efforts represents an environmentally acceptable sustainable solution, the ultimate objective of all restoration activities.

ACKNOWLEDGEMENTS

The authors wish to **thank Les** Adrian (**CAMECO**Corporation) who initiated our work, and John Jarrell who guided it to its completion. We are also grateful to Ed **Cock** and **Rob** Scott, the on-site personnel, for their assistance **during** the field investigations. We acknowledge the support of the National Biotechnology Strategy Program, CANMET, Natural **Resources Canada**, in the investigation of the fate of **As** and Ni in the sediments of the wetlands. Our former coworkers have contributed significantly to the project; Dr. Andrew Fyson, with his thorough understanding of microbial ecology and our chemist Dr. J.L Lui in explaining the chemical complexities of contaminants **in** sediment-water systems.

REFERENCES

1) M. Kalin. A. Fyson and M.P. Smith, "Passive Treatment For The Mineral Sector" International Symposium on Waste Processing and Recvclina in Mineral and Metallurgical Industries. Vol.2. Vancouver, B.C., 1995, 363-376.

2) M. Kalin, "Treatment of Acidic Seepages Using Wetland Ecology and Microbiology". Final Report. Contract #23440-2-9217/01-SQ, 1993, MEND Program, Canada Centre for Mining and Energy Technology. Energy, Mines and Resources Canada.

3) T R. Wildeman. "Handbook for Constructed Wetlands Receiving Acid Mine Drainage", <u>Wetlands</u> <u>Design for Mining Operations</u>, G.A. Brodie and T.R. Wildeman, Eds., BiTech Publishers, Vancouver.

4) A. Fyson, M. Kalin, and L. Adrian, "Arsenic and Nickel Removal By Wetland Sedimenu", paper presented at the International Land Reclamation and Mine Drainage Conference, Pittsburg, PA, April 24-29. 1994, 109-118.

5) A. Fyson, *M.* Kalin and J. Lui, "Removal of Arsenic and Nickel From a Mine Wastewater By Muskeg Sediments", Paper presented at the 11th Annual BIOMINET Meeting, Ottawa, January 16, 1995. 103-118.

6) M.P. Smith, L. Adrian, and M. Kalin, "Arsenic and Nickel Removal in Wetland Sediments", Paper presented at the Saskatchewan Annual Conference on Environmental Management in Mining, Saskatoon, October 27-29, 1993.

7) M. Kalin. 'Arsenic and Nickel Removal from **Veste** Rock Seepages Using Muskeg Sediment'', Final Report, Contract No. 23440-3-9275/01-SQ, 1994. Canadian Centre For Minerals and Energy Technology (CANMET), Energy, Mines and Resources Canada.

8) **R.G.**Wetzel, <u>Limnology</u>, Saunders College Publishing, Toronto, 1982, 544.

9) M. Kalin and M.P. Smith, **"The** Development of Floating *Typha* Mats", Paper presented at the IAWPRC Conference on Wetland Systems in Water Pollution Control. Sydney, NSW. Australia, November 30. 1992.