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Thesis Abstract 

The Morrison deposit, located at the Levack mine in the City of Greater Sudbury, is a 
footwall-type Cu-Ni-platinum-group-element (PGE) deposit hosted within a zone of 
Sudbury Breccia in the Archean Levack Gneiss Complex beneath the North Range of the 
Sudbury Igneous Complex. It consists of sharp-walled, sulfide-rich veins that are 
enriched in Cu-Pt-Pd-Au relative to contact-type mineralization and can be subdivided 
based on vein geochemistry, mineralogy, texture, and morphology into a pyrrhotite-rich 
upper domain, a chalcopyrite-rich lower domain, and a pyrrhotite equal to chalcopyrite 
middle domain. All domains contain steeply to vertically dipping first-order sulfide veins, 
irregular and discontinuous second-order sulfide veins, and disseminated sulfides in 
country rocks. First- and second-order veins can be further subdivided into inclusion-free 
veins typically within Sudbury breccia matrix or along clast-matrix boundaries, and very 
irregular and inclusion-rich veins associated with leucosomes in mafic gneiss clasts and 
granophyric-textured dikes. First-order veins consist of pyrrhotite > chalcopyrite = 
pentlandite > magnetite in the upper domain, pyrrhotite = chalcopyrite > pentlandite > 
cubanite > magnetite in the middle domain, and chalcopyrite >> pentlandite > pyrrhotite 
= cubanite > magnetite in the lower domain. Second-order veins consist of pyrrhotite = 
chalcopyrite > pentlandite > magnetite and chalcopyrite = millerite = pentlandite in the 
middle domain, and chalcopyrite >> millerite, millerite > chalcopyrite, bornite >> 
chalcopyrite, and millerite > bornite > chalcopyrite in the lower domain. Second order 
veins are adjacent to and in contact with epidote, amphibole, chlorite, carbonate, quartz, 
and magnetite alteration minerals.  
 
Sulfide mineralization in the Morrison deposit is similar to other footwall mineralization 
associated with the SIC. The veins appear to have been emplaced preferentially into zones 
of Sudbury Breccia that were within ~400m of the basal contact of the SIC, because that 
lithology is more permeable and because those zones are within the thermal aureole of the 
cooling SIC permitting penetration of sulfide melts. The mineralogical, textural, and 
geochemical zoning in the chalcopyrite-pentlandite-pyrrhotite-rich parts of the Morrison 
deposit are best explained by partial fractional and/or equilibrium crystallization of MSS 
and ISS. Bornite ± millerite-rich mineralization are interpreted to have formed by reaction 
of residual sulfide melts with wall rocks, consuming Fe and S to form actinolite-
magnetite-epidote-chlorite-sulfide reaction zones and driving the sulfide melt across the 
thermal divide in that part of the Fe-Cu-Ni-S system to crystallize borniteSS ± 
milleriteSS. Gold-Pt-Pd appear to have been more mobile than other metals, forming 
localized zones of enrichment, although it is not clear yet whether they were mobile as 
Au-Pt-Pd-Bi-Te-Sb-rich melts or aqueous fluids.  
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CHAPTER 1: Introduction to Thesis 
Introduction 
Although the nature and origin of the ores along the basal contact of the Sudbury Igneous 
Complex are fairly well understood, the origin of the ores in the underlying (footwall) 
rocks, in particular the transition between Cu-Pt-Pd-Au-poor contact ores and Cu-Pt-Pd-
Au-rich footwall ores, and the origin of disseminated “low-S” Au-Pt-Pd-Bi-Te-rich ores, 
are not well understood. The Levack Mine on the North Range of the Sudbury Igneous 
Complex is one of only a few areas in Sudbury (e.g., McCreedy West, Nickel Rim South) 
where the contact-footwall systems are relatively continuous and therefore provide an 
opportunity to advance understanding of the transitions between mineralization types. 
This study documents the form, textures, mineralogy, and geochemistry of mineralization 
within a large portion of the Morrison deposit that ranges from Cu-Pt-Pd-Au-poor 
pyrrhotite-(pentlandite)-(chalcopyrite) rich mineralization to Cu-Pt-Pd-Au-rich 
chalcopyrite-bornite-millerite-rich mineralization. It attempts to define the extent of 
footwall-type mineralizing systems and shows that the most likely mode of formation for 
the deposit is through the combination of fractional crystallization of high-temperature 
(Fe,Ni)1-XS and high-temperature CuFe2S3-CuFeS2, interaction of that melt with wall 
rocks to form Fe-rich silicates, Cu5FeS4, and NiS, and exsolution of a final Au-Pt-Pd-Bi-
Te-Sb-rich melt and/or aqueous fluid. The study has also created areas for further 
research and provided new insights for future exploration of footwall-type deposits. 
Structure of Thesis 
This thesis is presented in the form of a manuscript to be submitted for publication in a 
peer reviewed, internationally-circulated geoscience journal. Chapter 1 provides a brief 
non-technical introduction, an explanation of the structure of the thesis, a statement of 
responsibilities, and acknowledgements. Chapter 2 is the final draft of a manuscript 
formatted for submission to Economic Geology. Chapter 3 contains appendices that will 
be submitted as electronic appendices to Economic Geology.  
Statement of Responsibilities 
This thesis is presented as a journal paper with a co-author. The candidate did all of the 
research, collected and prepared all of the samples for analysis, performed all of the 
petrographic work, and geochemical models, and wrote the first draft of the thesis. Dr. 
C.M. Lesher helped design the project, provided supervision, guidance, and advice during 
the research, and edited the final version of the thesis. Drs. Pedro Jugo and Jacob Hanley 
provided very helpful comments during the final review and examination stage. 
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ABSTRACT 
The Morrison deposit, located at the Levack mine in the City of Greater Sudbury, is a 

footwall-type Cu-Ni-platinum-group-element (PGE) deposit hosted within a zone of 

Sudbury Breccia in the Archean Levack Gneiss Complex beneath the North Range of the 

Sudbury Igneous Complex. It consists of sharp-walled, sulfide-rich veins that are 

enriched in Cu-Pt-Pd-Au relative to contact-type mineralization and can be subdivided 

based on vein geochemistry, mineralogy, texture, and morphology into a pyrrhotite-rich 

upper domain, a chalcopyrite-rich lower domain, and a pyrrhotite equal to chalcopyrite 

middle domain. All domains contain steeply to vertically dipping first-order sulfide veins, 

irregular and discontinuous second-order sulfide veins, and disseminated sulfides in 

country rocks. First- and second-order veins can be further subdivided into inclusion-free 

veins typically within Sudbury breccia matrix or along clast-matrix boundaries, and very 

irregular and inclusion-rich veins associated with leucosomes in mafic gneiss clasts and 

granophyric-textured dikes. First-order veins consist of pyrrhotite > chalcopyrite = 

pentlandite > magnetite in the upper domain, pyrrhotite = chalcopyrite > pentlandite > 

cubanite > magnetite in the middle domain, and chalcopyrite >> pentlandite > pyrrhotite 

= cubanite > magnetite in the lower domain. Second-order veins consist of pyrrhotite = 

chalcopyrite > pentlandite > magnetite and chalcopyrite = millerite = pentlandite in the 

middle domain, and chalcopyrite >> millerite, millerite > chalcopyrite, bornite >> 

chalcopyrite, and millerite > bornite > chalcopyrite in the lower domain. Second-order 

veins are adjacent to and in contact with epidote, amphibole, chlorite, carbonate, and 

magnetite alteration minerals.  

 

Sulfide mineralization in the Morrison deposit is similar to other footwall mineralization 

associated with the SIC. The veins appear to have been emplaced preferentially into zones 

of Sudbury Breccia that were within ~400m of the basal contact of the SIC, because that 

lithology is more permeable and because those zones are within the thermal aureole of the 

cooling SIC, permitting penetration of sulfide melts. The mineralogical, textural, and 

geochemical zoning in the chalcopyrite-pentlandite-pyrrhotite-rich parts of the Morrison 

deposit are best explained by partial fractional and/or equilibrium crystallization of MSS 

and ISS. Bornite ± millerite-rich mineralization are interpreted to have formed by reaction 
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of residual sulfide melts with wall rocks, consuming Fe and S to form actinolite-

magnetite-epidote-chlorite-sulfide reaction zones and driving the sulfide melt across the 

thermal divide in that part of the Fe-Cu-Ni-S system to crystallize borniteSS ± 

milleriteSS. Gold-Pt-Pd appear to have been more mobile than other metals, forming 

localized zones of enrichment, although it is not clear yet whether they were mobile as 

Au-Pt-Pd-Bi-Te-Sb-rich melts or aqueous fluids.  

INTRODUCTION 

The processes that concentrated Cu, Ni, and platinum group elements (PGEs) within the 

footwall rocks of the Sudbury Igneous Complex have been debated since Hawley (1965) 

proposed fractional crystallization of monosulfide solid solution (MSS) from a sulfide 

melt to explain the zoning at the Frood-Stobie deposit. Since then, several processes have 

been proposed, including: 1) solid state diffusion down a thermal gradient induced by the 

overlying SIC (e.g., Naldrett and Kullerud, 1967; Keays and Crocket, 1970), 2) fractional 

crystallization of MSS ± intermediate solid solution (ISS) (e.g., Keays and Crocket, 1970; 

Chyi and Crocket, 1976; Naldrett et al., 1982; Li et al., 1992; Mungall, 2007), 3) 

remobilization of contact-type mineralization by circulation of hydrothermal fluids in the 

footwall (e.g., Farrow and Watkinson, 1992; Molnár et al., 1997), 4) early movement of 

PGEs and Au into the footwall as a fluid and the superposition of a fractionated sulfide 

melt (Farrow and Lightfoot, 2002; Hanley et al., 2005), and 5) dynamic remelting of 

contact-type mineralization followed by fractional crystallization of MSS±ISS and 

exsolution of an Au-Pt-Pd-Bi-Te-Sb-rich aqueous fluid or melt (Lesher et al., 2008, 

2009).  

The Morrison deposit contains a spatially continuous distribution of mineralization from 

pyrrhotite-rich pods and veins, through sharp-walled chalcopyrite-rich veins, to millerite- 

and bornite- and platinum, palladium and gold-rich veins (Farrow et al., 2009). It has not 

been as extensively studied as the McCreedy West 700 complex and PM deposit, the 

Coleman/McCreedy East 153 and 153 east deposits, or the Strathcona Copper and Deep 

Copper deposits, so the continuous nature of the mineralization and the lack of previous 

research at the Morrison deposit make it an excellent location to refine the mechanisms 

for the formation of footwall-type mineralization.  
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GEOLOGIC SETTING 

Regional Geology 

The Sudbury Structure is located in the southern Canadian Shield at the contact of the 

Southern Province (South Range) and the Superior Province (North Range) (Card et al., 

1984), and includes the Sudbury Igneous Complex (SIC), underlying anatectic Footwall 

breccias and cataclastic and pseudotachylitic Sudbury Breccias (e.g., Rousell et al., 2003; 

Thompson and Spray, 1994), and overlying fallback and phreatic volcanic breccias of the 

Onaping Formation and basin-fill sediments of the Chelmsford and Onwatin Formations 

(Fig. 1).  

The SIC comprises a Main Mass of mesocumulates and granopyric residue and associated 

inclusion- and sulfide-bearing radial and concentric quartz dioritic dikes, a discontinuous 

lower layer of inclusion-rich and sulfide-bearing noritic rock (Sublayer) and Footwall 

Breccias, and overlying suevitic and phreatic breccias of the Onaping Formation (see 

reviews by Farrow and Lightfoot, 2002; Ames and Farrow, 2007 and references therein).  

The Main Mass of the SIC comprises an upper layer of fine-grained granite and 

micropegmatite with well-developed granophyric textures, a transitional zone of Fe-Ti-

oxide bearing quartz gabbro, and a lower layer of felsic/mafic/quartz-rich norite, and is 

interpreted to represent a differentiated impact melt sheet. Within the footwall rocks of 

the SIC are irregular zones of cataclastic/pseudotachylitic breccia known as Sudbury 

Breccia.  

The footwall rocks on the ‘South Range’ of the SIC are clastic metasedimentary and 

mafic-(felsic) metavolcanic rocks of the 2500-2100 Ma Huronian Supergroup, whereas 

the footwall rocks on the ‘North Range” and ‘East Range” of the SIC are granulite facies 

supracrustal and plutonic rocks of the 2647 +/- 2 Ma Levack Gneiss Complex (Fig. 1). 

Both have been intruded by 2450 Ma Matachewan dikes, 2490-2470 Ma East Bull Lake 

Suite mafic-ultramafic intrusions, and 2210-2217 Ma Nipissing Suite mafic-ultramafic 

intrusions (see review by Ames and Farrow, 2007).  

The abundant impact and anatectic breccias, together with other features (e.g., subcircular 

geometry, shattercones, planar deformation features in quartz, distal impact ejecta: see 
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review by Grieve et al., 2010) suggest that the SIC was produced by a large meteorite 

impact (Dietz, 1964) at 1850 Ma (Krogh et al., 1984).  

Metamorphic and Structural History 

There have been at least three major orogenic events that have affected the Sudbury 

Igneous Complex (see recent reviews by Riller et al., 2010; Mukwakwami et al., 2011). 

The Penokean orogeny occurred between 1870 and 1820 Ma, concurrent with the 

formation of the SIC, and produced greenschist facies metamorphism in the middle of the 

SIC along with penetrative deformation and greenschist to amphibolite facies 

metamorphism in the Huronian Supergroup. Evidence for Penokean deformation in the 

Sudbury area has been largely circumstantial and subsequent deformation events may be 

responsible for most of the deformation of the SIC (Mukwakwami et al., 2011), although 

a Penokean date has recently been obtained for a shear zone at the Garson Mine 

(Mukwakwami et al., submitted). 

The Mazatzal-Labradorian orogeny occurred between 1.7 and 1.6 Ga, and caused north-

over-south buckling (Mukwakwami et al., 2011) and south-over-north thrust faulting 

(Bailey et al., 2005; Mukwakwami et al., 2011) of the South Range of the SIC. These 

orogenic events are believed to have deformed the SIC to its present elliptical shape, but 

the preservation of original igneous contacts (e.g., undeformed Footwall Breccia, intact 

thermal aureoles) indicates that they had minimal effect in the North Range. The 

Grenville orogeny occurred between 1.2-1.0 Ga, but had little effect on the Sudbury 

Igneous Complex, being responsible only for reactivation of faults that cross-cut the SIC 

and uplift within the area of the SIC (Card et al., 1984).  

In the North Range, where post-emplacement deformation and metamorphism have been 

minimal, the SIC is bordered by a wide contact metamorphic aureole consisting of 

(proximal to distal): 1) a zone of partial melting up to 20 m thick, 2) a zone of pyroxene 

hornfels facies up to 180 m thick, 3) a zone of hornblende hornfels facies up to 900 m 

thick, and 4) a zone of albite-epidote hornfels up to 1000 m thick (Dressler, 1984; Boast 

and Spray, 2006). 
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Ni-Cu-PGE Mineralization 

The Ni-Cu-PGE mineralization in the Sudbury Igneous Complex occurs in a range of 

spatially different, but genetically interrelated environments (adapted from Farrow and 

Lightfoot, 2002; Farrow et al., 2005; Ames and Farrow, 2007 and references therein): 

1) contact ± footwall systems  

a) contact ore systems occur at or near the base of the Main Mass of the SIC, may or 

may not be associated with footwall vein systems, and may include the following: 

i) disseminated pyrrhotite-pentlandite-(chalcopyrite) mineralization hosted by 

Sublayer norite, parts of which are unfractionated relative to average Sudbury 

ores (~5% Ni100, ~5% Cu100) but which may be internally fractionated into 

small-scale chalcopyrite-rich and chalcopyrite-poor domains, and parts of 

which are depleted overall in Ni-Os-Ir-Ru relative to average Sudbury ores  

ii) inclusion-bearing semi-massive pyrrhotite-pentlandite-(chalcopyrite) 

mineralization localized in embayments along the basal contact of the SIC and 

in veins within adjacent Footwall breccias, which may be weakly (e.g., 

Trillabelle) to strongly (e.g., Creighton) fractionated into chalcopyrite-rich and 

chalcopyrite-poor domains. 

b) footwall vein systems occur in footwall rocks, may be connected to (e.g., 

McCreedy West, Strathcona, Nickel Rim South, Morrison) or apparently 

disconnected from (e.g., McCreedy East 153) contact ores, are typically hosted by 

zones of Sudbury breccia, and may include some or all of the following: 

i) thicker (up to 5 m) chalcopyrite-(pentlandite)-(pyrrhotite)-rich sharp-walled 

veins with narrow (1-2 cm) actinolite-epidote alteration selvedges 

ii) thin (<5 cm, typically <2 cm) bornite-millerite-(chalcopyrite)-(pentlandite)-

rich sharp-walled veins and stockworks 

iii) Au-Pt-Pd-Bi-Te-Sb-rich sulfide stockworks and disseminations occurring 

adjacent to epidote, amphibole, chlorite, carbonate, quartz, and magnetite 

alteration halos. Platinum-group elements occur as discrete platinum group 

minerals (e.g. froodite, michenerite, merenskyite) 
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2) offset ore systems occur in quartz diorite dikes or QD-bearing breccia belts and may 

include some or all of the following: 

a) dike ore systems are hosted by radial (e.g., Copper Cliff, Worthington, and 

Whistle) or concentric (e.g., Hess and Manchester offsets) and occur as elongate 

pods of coarse disseminated (blebby) to semi-massive mineralization that may be 

weakly to moderately fractionated  

b) breccia belt ore systems are hosted by concentric quartz diorite and Sudbury 

Breccia belts’ (e.g., Frood-Stobie) and occur as elongate pods coarse disseminated 

(blebby) to semi-massive mineralization that may be weakly to moderately 

fractionated 

Geology of the Levack Embayment  

The Levack Embayment is a 2 km-wide (deep) and 7 km-long semi-circular embayment 

containing Sublayer norite and footwall breccias along the basal contact of the SIC in the 

northwest part of the Sudbury Structure (Fig. 1).  

The footwall rocks in the Levack embayment are part of the 2647±2 Ma Archean Levack 

Gneiss Complex and consist of: i) migmatitic, quartz diorite to granodiorite gneisses with 

abundant mafic layers and xenoliths, ii) migmatitic paragneisses, iii) foliated tonalitic and 

granodioritic intrusions, possibly of anatectic origin, and iv) mafic, ultramafic, and 

anorthositic intrusions (Card et al., 1984). In this study, the host rocks for the Morrison 

deposit have been subdivided into felsic gneiss, mafic gneiss, and metagabbro to facilitate 

integration of mapping and drill core logging done by KGHM International company 

geologists into this study. The felsic gneisses are likely equivalent to the tonalitic 

gneisses, quartz diorite gneisses, granodiorite gneisses, and tonolitic and granodioritic 

intrusions of Card et al. (1984) and Legault et al. (2003). The mafic gneisses are likely 

equivalent to the migmatitic paragneisses of Card et al. (1984) and the dioritic gneisses 

and amphibolites of Legault et al. (2003). Metagabbro is a black, fine-grained rock of 

unknown origin that consists predominantly of plagioclase with minor altered mafic 

minerals. It may correspond to one of the mafic intrusions described by Card et al. (1984).  

The footwall rocks below the Levack Embayment contain numerous semi-conformable 

zones of Sudbury Breccia, which may also include felsic, often granophyric-textured 
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cross-cutting dikes and pods that have been ambiguously termed “footwall granophyres”. 

They are interpreted to be partial melts generated from the heat of the SIC (e.g., Molnár et 

al., 2001; Péntek et al., 2009) or residual silicate melts from the crystallizing SIC (Hanley 

et al., 2011).  

LEVACK-MORRISON SYSTEM 

The Levack-Morrison system is located in the west-central part of the Levack 

Embayment (Fig. 1) and includes the Levack Main, Intermediate, Main Depths, No. 1, 

No. 2, No. 3, and No. 7 contact deposits, and the Morrison footwall deposit (Fig. 2). The 

Levack Main deposit was discovered in 1887 (first deposit discovered on the North 

Range) and the Levack contact deposits were mined between 1915-1929 and 1935-1997. 

The Morrison deposit was discovered in 2005 and is located ~150 metres below the 

Levack No. 7 deposit (Fig. 2). It has a strike length of greater than 75 m and extends for 

over 750 m parallel to the hanging wall side of a NE-SW striking, steeply-dipping (i.e., 

discordant) zone of Sudbury Breccia (Farrow et al., 2009).  

The Morrison deposit was originally divided into two deposits, an upper Rob’s deposit 

and a lower Levack Footwall deposit (LFD). These two deposits were eventually shown 

to be continuous and in 2010 were renamed the Morrison deposit, in honour of former 

Inco exploration geologist and current KGHM International Executive Gord Morrison, 

and subdivided into three zones (from top to bottom: MD1 to MD3). The indicated 

resource as of December 2010 is 670000 tonnes at 2.74% Ni, 13.24% Cu, and 9.28 g/ton 

Pt+Pd+Au (QuadraFNX Mining Ltd., 2011). 

Previous work by Farrow et al. (2009) demonstrated that the uppermost part of the 

deposit (MD1: formerly Rob’s deposit) consists of pods, veins, veinlets, and 

disseminations of pyrrhotite with lesser pentlandite, chalcopyrite, and pyrite. The lower 

parts of the deposit (MD2-3: former LFD) consists of veins and disseminations of 

chalcopyrite with lesser cubanite, pentlandite, bornite, and millerite. The veins become 

wider and more continuous with depth and the vein geometries have been interpreted to 

be influenced by the distribution of clasts within the host Sudbury breccia (Farrow et al., 

2009).  
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This study has divided the Morrison deposit into three domains based on mineralogical, 

textural, and geochemical differences (Fig. 2): 1) a 400 m thick Cu-poor upper domain, 

equivalent to MD1 (former Rob’s zone), 2) a 450 m thick Cu-intermediate and PM-

depleted middle domain, equivalent to MD2, and 3) a 700 m thick Cu-rich lower domain, 

equivalent to MD3. 

RESEARCH METHODS 

Sample Collection from Underground Workings 

Forty-one samples from 14 mine levels were collected. A significant effort was made to 

ensure that an accurate representation of ore types was collected. Wherever possible, 

samples were taken directly from active mine faces. These samples were preferable 

because they were not oxidized and had not accumulated dust from previous blasting and 

mining, so the field relationships were clearer. For veins narrower than approximately 50 

cm, a continuous sample across the vein was taken where possible and a chip sample was 

taken when a continuous sample was not possible. For larger veins, the veins were 

subdivided into 2 to 4 segments and chip samples were taken for each segment. Where a 

fresh face could not be sampled, chip samples were taken from the stope back through the 

4” x 4” protective screening or from the stope wall.  

The focus on active mine faces ensured the best exposure and the freshest samples, but 

mine production schedules precluded detailed mapping. Each locality was photographed 

from multiple angles and at multiple scales, and detailed descriptions were made of the 

vein morphology and wall rocks where each sample was collected.  

Sample Preparation 

Each sample analyzed for geochemistry was thoroughly cleaned using water and a nylon 

brush, and sawed using a diamond-impregnated brass blade to remove any contamination 

and oxidation. The saw marks from all sawn surfaces were ground off using a diamond-

bonded steel grinding lap to ensure there would be no contamination from the saw blade. 

Each sample was dried in air at low temperature, crushed with a jaw crusher containing 

case-hardened low-Cr steel plates, split using a stainless steel riffle splitter, pulverized in 
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agate ball mills, and analyzed at the Ontario Geoscience Laboratories (Geo Labs) in the 

Willet Green Miller Centre on the Laurentian University campus in Sudbury, Ontario.  

Petrography 

Each sample to be analyzed was examined macroscopically using a binocular microscope 

and microscopically using a compound petrographic microscope with plane-polarized and 

doubly-polarized reflected light and, when appropriate, plane-polarized and doubly-

polarized transmitted light, to derive mineralogical and textural information relevant to 

their petrogenesis. 

Structural Analysis 

The strike, length, and width of 925 planar vein segments were measured on KGHM 

International maps of 9 levels (Upper domain: 2950L cuts 1 and 2, 3030L cut 1, 3050L 

cut 1, 3180L cut 1; Middle domain: 3330L cut 3, 3390L cut 1, 3630L cut 2; Lower 

domain: 3750L cut 3) using AutoCAD® 2010 software. Of these, 492 were in the upper 

domain, 295 were in the middle domain, and 138 were in the lower domain.  

Because of the extent of mining activities during the time this analysis was completed, the 

information from only one level of the lower domain was available, so those results 

should be considered only preliminary. Another problem with this method of analysis is 

that because not every vein has a vertical dip, the width measured from the level plans 

does not necessarily represent the true vein width. The large number of vein segments 

measured, combined with the large variation in the widths of the veins, means that any 

variability created by not correcting for true width is minimal compared to the natural 

variation at the deposit. This method still has merit in examining the general trends in the 

deposit and providing a general idea about the orientation of the veins that contain the 

majority of mineralization. 

Whole-Rock Geochemical Analysis 

All analyses were done at Geoscience Laboratories in Sudbury, Ontario, Canada. Copper, 

Ni, Zn, and Fe were analyzed by inductively-coupled plasma atomic emission 

spectrometry after dissolution in an open vessel multi-acid digest. Cobalt and Zn were 

analyzed by flame atomic absorption spectroscopy (F-AAS). Arsenic, Bi, Pb, Te, Se, Sn, 
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and Co for one sample (that was under the lower limit of detection for F-AAS), were 

analyzed by inductively-coupled plasma mass spectrometry (ICP-MS) after dissolution in 

aqua regia. Lead for one sample was analyzed by wavelength-dispersive X-ray 

fluorescence spectrometry of a pressed powder pellet, as it was well above the maximum 

concentration limit for ICP-MS analysis. Gold, Pd, Pt, Rh, Ru, and Ir were 

preconcentrated by NiS fire assay, dissolved in acid, co-precipitated with Te, and 

analyzed by ICP-MS. Sulfur was analyzed by infrared absorption spectroscopy using a 

Leco® TGA-501 thermogravimetric analyzer. Lower limits of detection are given in 

Table EA1.  

The samples analyzed for this study and the 58,518 samples in the KGHM International 

assay database were divided into three types using the method of Stout (2009): I: 

pyrrhotite-pentlandite-chalcopyrite, IIa: pentlandite-millerite-chalcopyrite, and IIb: 

millerite-bornite-chalcopyrite. In addition, each type was subdivided into high-S (>10 

wt% S in whole-rock analysis) and low-S (<10 wt% S in whole-rock analysis) groups, 

which correspond to first-order veins and second-order veins, respectively.  

100% Sulfide Normalization 

Because of the variable amounts of wall rock and gangue minerals in the samples, all 

geochemical analyses were normalized to 100% sulfide by dividing each sample into 

pyrrhotite-pentlandite-chalcopyrite (Type I), chalcopyrite-pentlandite-millerite (Type IIa), 

or bornite-chalcopyrite-millerite (Type IIb) assemblages based on the Ni, Cu, and S 

contents, and the abundances of those phases were determined based on stoichiometric 

(chalcopyrite, bornite, millerite) or analyzed (pentlandite) mineral compositions. The 

method is summarized in Tables A1 and A2 and described in the Appendix to this paper.  

Mineral Analysis 

Pentlandite and pyrrhotite in representative samples was analyzed in situ by wavelength-

dispersive or energy-dispersive X-ray emission spectrometry using a Cameca SX-100 

electron probe microanalyser in the Ontario Geoscience Laboratories. For pentlandite, Ni 

and Fe were analyzed with a large LiF (LLiF) crystal and beam current of 30 nA, S was 

analysed with a PET crystal and a beam current of 30nA, and Co and Cu were analyzed 

with a LLiF crystal and a beam current of 200 nA. For pyrrhotite, S was analyzed with a 
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PET crystal and a beam current of 30nA, Fe was analyzed with a LiF crystal and a beam 

current of 30 nA, Co was analyzed with a LiF crystal and a beam current of 200 nA, and 

Ni was analyzed with a LLiF cystal with a beam current of 200 nA. A count time of 20 

seconds and an accelerating voltage of 20 keV was used for all analyses. Raw data were 

corrected using the Cameca PAP correction routine by David Crabtree of the Geoscience 

Laboratories. 

Four samples were examined for platinum group minerals using a Zeiss EVO-50 scanning 

electron microscope equipped with a thin window energy-dispersive X-ray spectrometer. 

No standards were used and only qualitative EDS results are therefore discussed.  

RESULTS 

Styles of Mineralization 

The styles of mineralization in the Morrison deposit vary considerably, but can be broken 

down into three end-member types: I) steeply- to vertically-dipping first-order sulfide 

veins, II) irregular and discontinuous second-order sulfide and/or silicate veins, and III) 

associated disseminated mineralization within the country rocks. These generally 

correspond to the three types of mineralization recognized by Stout (2009) in the 

McCreedy East 153 deposit. First- and second-order veins can be further subdivided into 

a) inclusion-free veins with planar margins that occur typically within Sudbury breccia 

matrix or along clast-matrix boundaries, and b) irregular and inclusion-bearing veins 

within felsic domains such as leucosomes of mafic gneiss clasts and felsic granophyric-

textured dykes. Disseminated mineralization also generally occurs in felsic domains 

(felsic gneisses, leucosomes, granophyric-textured dykes) close to first- and second-order 

veins. 

The styles of mineralization are similar in the upper and middle domains, whereas the 

styles in the Lower domain are quite different. The types of mineralization are 

summarized in Table 1 and described below. 

Upper Domain  

Veins in the upper and middle domains are typically narrower and more irregular than in 

the lower domain. The majority of the veins are inclusion-bearing and have sharp but 
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irregular margins. The widths and the orientations of the veins change over a distance of 

meters, especially within second-order veins. Inclusion-free, planar-margined veins are 

rare in the Upper Domain. Where observed, they occur within areas containing a high 

proportion of Sudbury breccia matrix (Fig. 3A). Irregular and inclusion-rich veins are 

most abundant in areas with a high proportion of mafic gneiss clasts and the veins are 

generally confined to the leucosomes of these mafic gneiss clasts (Fig. 3B). In some 

places the entire leucosome has been replaced with sulfide, but in other places 

disseminations or patches of sulfides occur within the original leucosome. Where 

mineralization associated with granophyric textured dykes occurs in Sudbury breccia 

matrix-rich areas it is quite irregular. Where mineralization associated with granophyric 

textured dykes occurs in clast-rich areas, it is present along clast-matrix contacts and 

rarely within the actual clasts (Fig. 3C). Where the mineralization does occur within a 

clast, it is typically along a weakness such as a pre-existing contact in the clast. In some 

sulfide veins associated with leucosomes and granophyric textured dykes, the mineralogy 

grades from pyrrhotite-rich, through chalcopyrite-rich and locally into non-mineralized 

leucosome or dyke, all over distances of roughly 10 cm to 100 cm (Fig. 3D).  

Middle Domain 

Veins in the middle domain are slightly wider than in the upper domain and the increase 

in width occurs gradually with increasing depth. The only other observed difference 

between the upper and middle domains is that the middle domain contains small areas of 

abundant chlorite, actinolite, epidote, and carbonate, and localized magnetite associated 

with millerite-bearing second order veins and disseminations (see Mineralogy and 

Textures). 

Lower Domain 

In contrast to the veins from the upper and middle domains, the veins in the lower domain 

are dominantly wide, inclusion-free, and planar margined. The veins are quite regular, 

often disect felsic gneiss clasts, and also occur along clast-matrix boundaries. The 

margins of the first-order veins commonly contain splays of sulfide that protrude into the 

wall rock and locally contain splays of wall rock that are oriented sub-parallel to the vein 

margins (Fig. 3E). Second-order veins vary from containing predominantly sulfide 



15 
 

minerals to predominantly epidote, amphibole, and chlorite with minor sulfides, 

carbonate, and magnetite. The lower domain is the only area where sharp-walled 

amphibole and epidote veins with only minor sulfide minerals were observed in this 

study. In the rare areas with mafic gneiss clasts, second-order sulfide veins and 

disseminations of sulfides occur within leucosomes and granophyric textured felsic 

dykes/patches. These dykes are much smaller than in the upper and middle domains and 

are often confined to mafic gneiss leucosomes (Fig. 3F).  

Metal Distribution 

Published resource estimates and historically mined resources from Farrow et al. (2009) 

and QuadraFNX Mining Ltd. (2011) for the deposits of the Levack mine were analysed to 

examine the distribution of Cu and Ni within the Levack-Morrison system. The results of 

this analysis are presented in Table 2. 

Structural Geology 

Overview 

The Morrison deposit consists of two structural domains with different geometries: an 

upper structural domain that plunges steeply to the northeast, markedly oblique to the 

overlying SIC basal contact, and a lower structural domain that plunges shallowly to the 

southwest, subparallel to the overlying SIC basal contact. The inflection occurs at the 

boundary between the middle domain and the lower domain. Although the structural 

domains appear to have well-defined orientations, first-order veins have somewhat 

variable strikes and steep to vertical dips, and second-order veins are extremely variable 

in both strike and dip.  

If the area of the vein segments is not considered, the distribution of vein strikes is more-

or-less random in the upper domain, shows a preference for NW-SE strikes (parallel to 

SIC basal contact) in the middle domain, and shows a preference for NNE-SSW strikes in 

the lower domain. If the veins are weighted by area (measured length multiplied by 

measured width), two dominant strikes of roughly 025o and 060o and one minor strike of 

360o are evident (Fig. 4). The upper domain contains veins in all three orientations, but 

the middle and lower domains are dominated by veins in the 025o and 060o orientations. 

Taken together, this means that the 025o orientation is predominant, the upper domain 
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contains the widest range of vein orientations, the middle domain contains the most 

consistently-oriented veins (NE-SW, subparallel to the SIC basal contact), and the lower 

domain contains differently oriented large (020 o and 060o) and small (330o) veins.  

Sudbury Breccia Morphology 

The size, shape, and distribution of clasts within the Sudbury Breccia are extremely 

variable. Sudbury Breccia in close proximity and direct contact with sulfide 

mineralization varies from being matrix-rich with minor and typically rounded clasts to 

being clast-rich with in-situ brecciated clasts with the matrix occurring as veins between 

the clasts. In clast-rich areas, veins of Sudbury breccia matrix sometimes occur as 

multiple linked segments. Where these segments link, there are localized splays of the 

clasts in the veins of matrix material (Fig. 3C). There appears to be a higher proportion of 

mafic gneiss clasts in the upper and middle domains and a higher proportion of felsic 

gneiss clasts in the lower domain.  

Mineralogy and Textures 

Pyrrhotite and pentlandite occur as different morphologies throughout the deposit. 

Pentlandite types are summarized in Table 2 and pyrrhotite types are summarized in 

Table 3. The mineralogy and textures of the upper, middle, and lower domains are 

summarized in Table 4 and discussed below.  

Textural Changes in Pyrrhotite-Pentlandite-Chalcopyrite-(Cubanite) Veins  

In addition to the information in Table 4, the major features of Type I pyrrhotite-

pentlandite-chalcopyrite-(cubanite) veins are as follows: 

1) The abundance of chalcopyrite increases with depth. In the upper and middle 

domains, this increase corresponds to an increase in the domains of chalcopyrite and 

Po(II). In the Lower Domain, Po(II) domains are no longer present and chalcopyrite 

becomes the dominant mineral and typically occurs with cubanite laths.  

2) Pyrrhotite in the upper domain contains pentlandite and chalcopyrite exsolution 

products and therefore is texturally consistent with having formed early. In contrast, 

the pyrrhotite in the lower domain is texturally one of the last minerals to form. The 
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timing of the pyrrhotite in the middle domain is less clear, but it appears that there is 

early Po(Ia) and Po(Ib) and later Po(V). 

3) Po(Ia) crystals in the upper and middle domains are sometimes twinned and typically 

contain preferentially oriented Pn(Ia) flames and chalcopyrite lenses (Fig. 5A). Pn(Ia) 

flames decrease with depth and the preferentially oriented chalcopyrite lenses do not 

appear to change in abundance with depth. Pn(Ib) eyes also decrease in abundance 

with depth. These textures are consistent with those reported by Gregory (2005). 

4) Pn(II) eyes are inclusion free at the top of the upper domain and become more 

inclusion rich with depth. These inclusions contain varying proportions of pyrrhotite 

and chalcopyrite. They are texturally similar to the pyrrhotite inclusions within 

poikilitic pentlandite in disseminated mineralization at the Gertrude orebody of the 

Creighton mine (Dare et al., 2010) 

5) Pn(III) eyes in the lower domain are most abundant along vein margins and decrease 

in abundance, but increase in size in vein interiors.  

6) Sphalerite is present as a primary magmatic mineral and is evenly distributed 

throughout the first-order veins in the lower domain. It occurs only in trace amounts, 

but is evenly distributed in the upper domain. 

 Textural Changes in Millerite ± Bornite-Bearing Veins 

In addition to the information in Table 4, the major features of the millerite ± bornite-

bearing veins are as follows: 

1) The texture of millerite is slightly different in second-order millerite-chalcopyrite-

pentlandite veins in the middle domain compared to millerite-chalcopyrite-(bornite) 

veins in the lower domain. Millerite in the middle and lower domains is euhedral, 

commonly twinned, and contains chalcopyrite or bornite along fractures, cleavage 

planes, or twinning planes. Millerite in the middle domain does not contain 

chalcopyrite or bornite along fractures, cleavage planes, or twinning planes.  

2) Pn(II) in the middle domain is inclusion free, in contrast with PnII in the pyrrhotite-

pentlandite-chalcopyrite-(cubanite) veins in the middle domain. 
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3) Second-order bornite-rich veins are less common in the study area than chalcopyrite-

rich veins. These veins also grade along strike into millerite-rich veins with minor 

bornite and abundant silicate alteration minerals.  

4) Pyrite was identified in only one sample in the middle domain, where it is fractured 

and corroded with some remaining euhedral grain boundaries, indications that it 

formed relatively early.  

5) Epidote in the middle and lower domains is an early phase that is often highly 

fractured, with the fractures infiltrated by varying amounts of chalcopyrite, 

pentlandite, chlorite, actinolite, and carbonate (Fig. 5F). Chlorite occurs as irregular 

chlorite rosettes. Actinolite occurs as small acicular crystals and postdates the epidote. 

Carbonate occurs as subhedral crystals that are often strongly twinned. 

Platinum Group Minerals (PGM) and Accessory Minerals  

The only observed PGMs in first-order upper domain veins were Pt- and Te-rich 

moncheite (Pt,Pd)(Te,Bi)2 that occurred along pyrrhotite grain boundaries. No first-order 

veins from the middle domain were analyzed.  

PGM and accessory minerals identified in the first-order veins of the lower domain 

include paolovite Pd2Sn and moncheite, both of which occur within chalcopyrite and 

PoIII, hessite Ag2Te, altaite PbTe, and Se-bearing galena. Moncheite in the lower domain 

is more Pd- and Bi-rich compared to moncheite in the upper domain. Hessite, altaite, and 

Se-bearing galena generally occur as evenly distributed, discrete, and isolated grains 

within chalcopyrite and pyrrhotite, but one compound grain of hessite, altaitie, and 

moncheite was found. 

The PGM identified in a second-order vein in the middle domain containing chalcopyrite-

millerite-pentlandite irregular vein surrounded by amphibole, epidote, chlorite and calcite 

alteration were sperrylite PtAs2 and merenskyite Pd(Te,Bi)2. These PGM were hosted 

both in the sulfide and adjacent to the sulfides. For the PGM surrounding the sulfides, it is 

unclear whether they were actually in the surrounding silicates or within/adjacent to 

sulfides that are not in the plane of the thin-sections. 
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Mineralogy and Textures of Inclusions and Adjacent Wallrock  

Inclusion-bearing sulfide veins contain inclusions of all host lithologies. The majority of 

the inclusions occur in chalcopyrite-rich portions of the veins or are rimmed by 

chalcopyrite (Fig 6B). In general, the inclusions consist mainly of varying amounts of 

plagioclase, quartz, biotite, chlorite, magnetite, and minor actinolite. 

In the more plagioclase-rich inclusions, there tends to be a higher abundance of anhedral 

chlorite acicular actinolite and magnetite at the contact between the sulfide and the 

inclusion. In more quartz-rich inclusions, sulfides sometimes occur along grain 

boundaries and fractures within quartz. There are generally less hydrous silicates at the 

margins of these inclusions. 

Rarely, inclusions grade from areas of granophyric intergrowths of quartz and alkali 

feldspar through areas of euhedral plagioclase surrounded by optically continuous patches 

of quartz (referred to as “flood quartz” by Morrison et al., 1994) into areas of euhedral 

quartz and plagioclase. Where sulfide veins are associated with granophryic textured 

dykes, the inclusions are mainly granophryic intergrowths of quartz and alkali feldspar. 

The feldspar is sometimes altered to fine grained chlorite. These inclusions have irregular 

concave and convex margins and are generally both surrounded by chalcopyrite and 

absent from any large domains that contain PoIa (Fig. 6B). 

Both the adjacent wallrock and the vein inclusions contain textures that differ from the 

host rock that is more distal to the veins. The grain boundaries of euhedral quartz are 

often occupied by a thin film of plagioclase and the triple junctions are sometimes 

occupied by chalcopyrite (Fig. 7D). The plagioclase films are typically only 10-30 

microns thick, but are sometimes thick enough to exhibit polysynthetic twinning (Fig 7A 

and 7B). Zones of poikiolitic quartz and occasionally zones of poikiolitic plagioclase 

occur surrounding polygonal plagioclase. Poikilitic magnetite rarely occurs surrounding 

polygonal plagioclase. Large polysynthetic laths of plagioclase are present and 

surrounded by optically continuous quartz patches. All these textures occur in close 

proximity to each other and sometimes occur adjacent to granophryic textured quartz and 

feldspar (Fig. 7C).  
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Whole Rock Geochemistry 

Spatial Trends 

The ores in the Morrison deposit vary in composition both laterally and with increasing 

depth. The focus of this study was on the changes that occur in first-order veins with 

depth, so those changes are better constrained than the lateral changes within the deposit 

or changes that occur in second-order veins with depth.  

The trends in Cu, Ni, Pt, Pd, and Ag in the samples analyzed in this study correlate very 

well with those in the KGHM International database, which means that the values in the 

database can be used with confidence to define broader spatial variations. However, the 

detection limits for Au, Zn, and Co in the KGHM International database are too high to 

provide precise data for all areas of the Morrison deposit and for weakly mineralized 

samples. Ir, Te, Bi, Sn, and As were only analyzed in the samples collected for this study, 

so the variations in those elements are only based on a limited number of samples. 

The grades (metal abundances in the whole-rock sample) and tenors (metal abundances in 

100% sulfides, as described in the Appendix and designated as Me100) of the samples 

analyzed in this study are given in Tables EA1 and EA2. The distribution of the different 

mineralization types is shown in Fig 9. Variations of Co100, Ni100, Cu100, Zn100, Pd100, 

Ag100, Pt100, and Au100 with depth are shown in Fig. 10 and variations of As100, Se100, 

Rh100, Sn100, Te100, Ir100, Pb100, and Bi100 with depth are shown in Fig. 11. The spatial 

trends are shown in Tables 5 and 6. 

Sn100, Te100, Bi100, As100, Pb100, Se100, Ir100, and Rh100 were only analyzed in hand samples 

so their variation can only be described from the bottom of the upper domain to the top of 

the lower domain. Sn100, Te100, Bi100, As100, Se100, and Pb100 all decrease in the middle 

domain and then increase at the top of the lower domain. Their behaviour is similar to 

Pt100 and Pd100. Both Pb100 and Bi100 are quite variable so the trends are not as pronounced 

as those of Sn100 and Te100. Ir100 and Rh both decrease from the bottom of the lower 

domain to the top of the upper domain. It is unclear whether Ir100 and Rh100 increase or 

decrease in the lower domain. 

Variations with S and Cu100 
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Variations of Co, Ni, Zn, Pd, Ag, Pt, and Au with S are shown in Fig. EA1 (Electronic 

Appendix). All elements correlate strongly with S, indicating that they are hosted in 

sulfides or phases that exsolved from sulfides. 

Cu tenor (Cu100) is a good indicator of sulfide fractionation. Variations of Co100, Ni100, 

Zn100, Pd100, Ag100, Pt100, and Au100 with Cu100 are shown in Fig. 12 and variations of 

As100, Se100, Rh100, Sn100, Te100, Ir100, Pb100, and Bi100 with Cu100 are shown in Fig. 13 

When interpreting the geochemical variations in grab and assay samples, the following 

complications must be considered: 

1) The channel samples of larger (Type I) veins normally did not include wall rocks, 

which contain numerous fine veinlets and disseminations and which were difficult to 

sample consistently, whereas grab samples of smaller (Type II) veins included parts 

of the wall rocks. This explains, at least in part, why Type II samples from the middle 

domain, which sampled weakly-mineralized wallrock and epidote-amphibole-rich 

areas, are more enriched in Au-Pt-Pd-Bi-Te-Se-Ag than Type I veins from the same 

area.  

2) The same applies to routine assay sampling, where adjacent weakly-mineralized wall 

rocks (more likely to contain higher amounts of Au-Pt-Pd-Ag) were typically sampled 

separately from massive sulfide veins (more likely to contain lower amounts of those 

elements). This explains why low-S samples are uniformly more enriched in Au-Pt-

Pd-Ag than high-S samples.  

3) Another complication noted by Stout (2009) is that minor components progressively 

exsolve from higher-T phases as they cool (e.g., chalcopyrite and pentlandite from 

MSS, pyrrhotite and pentlandite from ISS, PGM from sulfides), so ores inevitably 

become increasingly more heterogeneous, and hand samples and drill core samples 

inevitably sample only subdomains of original melt and cumulate components. This is 

particularly true of drill core samples through zoned veins, which may sample the 

entire width of a vein, including core and marginal phases in their proper proportions, 

but which may also intersect disproportionate amounts of discontinuous marginal or 

core phases depending on the scale of the heterogeneities and the orientations of the 

vein and drill hole. Many of the very high Ni100 and very low Cu100 assays therefore 
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represent not only unmixing of high-T pentlandite-chalcopyrite and bornite-millerite 

(Naldrett et al., 1999; Beswick, 2002), but also sampling of heterogeneous bornite-

millerite veins.  

4) Plots involving large numbers of samples cannot adequately represent masses. It is 

obvious that the Levack-Morrison database is bimodal, but because so many samples 

plot on top of each other it is not obvious that 47% of the samples plot within the low-

Cu cluster (<10% Cu100, <10% Ni100), 41% of the samples plot within the high-Cu 

cluster (10-35% Cu100, <10% Ni100), and 12% of the samples plot between the Ccp-Pn 

and Bn-Ml tie lines. Histograms better represent the mass balances, but are one-

dimensional.  

Mineral Chemistry 

Pyrrhotite and pentlandite were analyzed in four representative samples from the bottom 

of the upper domain (3050L-1, 3050L-2), the middle domain (3510L), and the top of the 

lower domain (3810L). All analyzed samples are from first-order veins. In sample 3050L-

1 the PnIa was too small to analyze so all the pentlandite analyses are from Type Ib, and -

II pentlandite. No pentlandite was analyzed in millerite-bearing samples. The analyses for 

pyrrhotite and pentlandite are given in Table 7 and the key points are summarized below. 

The compositions of pyrrhotite and pentlandite are relatively constant within samples, but 

are very different between the different samples analyzed. Ni contents of pyrrhotite 

decrease and Fe contents increase with depth. There is no change in the S content 

between the 3050-1L, 3050-2L, and 3510L level samples, but contents decrease between 

the 3510L and 3810L samples (Fig 13). The majority of Co analyses were below the 

0.026 wt% detection limit. The compositional changes in the pentlandite are less 

straightforward than the changes in pyrrhotite. Ni contents decrease and Fe contents 

increase with depth in the deposit and there is a strong linear correlation between the Ni 

and Fe content. Cobalt content is the lowest in the 3050-1L and 3050-2L samples, highest 

in the 3510L sample and intermediate in the 3810L sample (Fig. 14 and 15).  
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DISCUSSION 

As noted above, four principal models have been proposed for the Cu-PPGE-Au-rich 

nature of Sudbury footwall ores: 1) fractional crystallization of MSS ± ISS, 2) dynamic 

remelting of contact ores, 3) hydrothermal mobilization from contact ores, and 4) thermal 

diffusion.  

Diffusion models have been discussed by Naldrett and Kullerud (1967), Keays and 

Crocket (1970), and Naldrett et al. (1982). They have not been evaluated experimentally 

in S-rich systems, but in systems containing 75% Fe, 10% Ni, 1% Cu, and 15% S (Brenan 

et al., 2010) S and Cu diffuse toward the hotter end of the system, Fe and highly 

siderophile elements diffuse toward the cooler end of the system in the order Pd-Au > Rh 

> Ru-Pt > Ir-Re-Os, and Ni shows no preference. Analogous results have been obtained 

in the Fe-Ni-P-S system (Jones and Walker, 1991) and in S, Fe, Ni, and Cu liquid metal 

systems (Lida and Guthrie, 1988). Although this order corresponds broadly to the 

fractionation observed in the Morrison and other deposits of this type, natural systems 

have higher Fe and Ni at higher temperatures and higher Pt at lower temperatures. So, 

although more experiments on relevant sulfide compositions are needed to better evaluate 

the role of diffusion, it does not appear that diffusion is the primary control on Fe, Cu, or 

Pt contents. 

Hydrothermal models have been discussed by Farrow and Watkinson (1992, 1996, 1997), 

Farrow (1994), Watkinson (1994), Farrow et al. (1994), Marshall (1999), and Molnar et 

al. (1997, 2001). They are based on the presence of hydrous silicates (actinolite, epidote, 

chlorite) along veins margins and a preferential association of PGM with hydrous 

silicates. Although there is evidence for hydrothermal fluids modifying the ores in the 

Morrison deposit (see below), there are many problems with hydrothermal fluids 

generating any of the ores in the Morrison deposit: 

1) Low-S samples (dangling veinlets and stockworks) in the upper and middle domains 

are systematically enriched in Pd-Pt-Au-Ag, unenriched in Co, and depleted in Ni 

relative to high-S samples (backbone veins). It might be argued that this is a 

hydrothermal signature, but these elements are not systematically different in low-S 

and high-S samples in the lower zone. These trends are more consistent with 
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magmatic fractionation within domains than with hydrothermal mobilization within or 

between domains.  

2) The association of PGM with hydrous alteration minerals along the margins of the 

veins does not mean that they were deposited by hydrothermal fluids. PGMs may 

crystallize from low-T residual Au,Pt, Pd, Bi Sb-rich melts (e.g., Makovicky, 2002; 

Hanley, 2005, 2007; Helmy et al., 2005, 2007, 2010; Tomkins, 2010; see review by 

Holwell and McDonald, 2010) and/or exsolve from sulfides during cooling 

(Peregoedova and Ohnenstetter, 2002), so they are expected to occur along the 

margins of sulfides and silicates in any case.  

3) The alteration selvedges along the veins are uniformly thin with no correlation to vein 

thickness, and are present at the contacts between massive sulfides and wall rocks in 

most magmatic Ni-Ci-PGE deposits, even volcanic deposits like Kambalda (Western 

Australia) and Raglan (Nunavut) where hydrothermal process played an insignificant 

role in ore genesis. They represent magmatic and/or metamorphic reaction between 

sulfides and wall rocks, and may have had a role in modifying the compositions of 

Bn-Ml-rich veins (see below), but do not appear to have been generated by a 

convective hydrothermal system. 

4) If the heat and metal sources were the SIC, any fluids in the footwall (conate and/or 

generated by dehydration of footwall rocks) should remain ponded near the base of 

the SIC, not convect deeper into the footwall. These fluids facilitated partial melting 

and the formation of granophyric segregations and epidote-chlorite-actinolite-

carbonate veins, but these zones are all cross-cut by Type I and Type II sulfide veins.  

5) Although the wall rocks are altered to varying degrees, the alteration is not nearly as 

pervasive as in porphyry Cu, VMS, and lode Au deposits where metals have clearly 

been deposited from hydrothermal fluids, suggesting overall very low fluid:rock ratios 

and therefore little capacity to carry metals. For example, the solubility of Cu in a 

porphyry Cu fluid is of the order of 1000 ppm, so even assuming 100% depositional 

efficiency, deposition of 300-400 Ktons of Cu (amount of Cu in Strathcona Deep, 

McCreedy East 153, and Nickel Rim South footwall deposits) would require 300-400 

Mtons of fluid and deposition of 67 Ktons of Cu (amount of Cu in Morrison) would 
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require 67 Mtons of fluid. Hanley et al. (2011) showed that the Cu contents of the 

highest temperature fluids in the footwall systems, which would have had the greatest 

capacity to dissolve and precipitate metals, were <100 ppm, which would require 

more than an order of magnitude more fluid.  

6) The order of solubility of metals in hydrothermal fluids varies with the ligand(s) 

present (e.g., Cl- vs. HS-), fS2 and fO2, temperature and pH (e.g., Wood, 2002; 

Hanley, 2005) and few detailed studies have been done in magmatic Fe-Ni-Cu-(PGE) 

systems, but appears to be Pd > Au > Fe > Zn > Cu > Ni-Co >>> Ir (e.g., Lesher and 

Keays, 1984, 2002), which does not correspond to the observed zonation. Although 

footwall ores contain minor pyrite, the amounts are insignificant compared to those in 

porphyry Cu-Au, VMS Cu-Zn-Au, or lode Au systems where the metals have been 

deposited from high-T hydrothermal fluids.  

7) Although Fe-Cu-Au-Pt-Pd are soluble in hydrothermal fluids, Ni-Co-Rh-Ru-Ir appear 

to be much less soluble (e.g., Lesher and Keays, 1984; Wood, 2002; Hanley, 2005). 

Rh-Ru-Ir are depleted in the deeper and distal parts of the system, but they are not as 

depleted as PGE mineralization known to have been deposited from or modified by 

hydrothermal fluids (e.g., Lesher and Keays, 1984; 2002; Hinchey and Hattori, 2005; 

Su and Lesher, 2012).  

8) The reduction potentials for Au, Pt, and Pd are quite different, so their solubilities are 

normally quite different (see reviews by Wood, 2002; Hanley, 2005), but Pd and Pt 

are only locally decoupled at Morrison: both are enriched in the lower domain, 

depleted in the middle domain, and enriched in low-S samples compared to high-S 

samples – all consistent with fractional crystallization but coincidental if they were 

transported by hydrothermal fluids. 

9) A better case can be made for Type III stockworks and disseminations, which involve 

much smaller amounts of metals, are associated with larger amounts of wall-rock 

alteration (Farrow et al., 2005), and occur in ‘blind’ disseminations that are more 

likely to have formed from very low viscosity supercritical hydrothermal fluids than 

sulfide melts. However, the coherent behaviour of Au-Pt-Pd-Bi-Te-Sb in these 
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systems is more consistent with them being mobilized by late-stage semimetal-rich 

melts than by hydrothermal fluids. 

Taken together, these points do not support a major role for hydrothermal processes in the 

formation of Sudbury Type I Ccp-rich veins and stockworks and Type II Bn-Ml veins and 

stockworks.  

Fractional crystallization of MSS ± ISS: Fractional crystallization models have been 

discussed by Hawley (1965), Keays and Crocket (1970), Li et al. (1992), Ebel and 

Naldrett (1996), and Naldrett et al. (1999). They are based on experimental (e.g. Li et al., 

1996; Barnes et al., 1997) and empirical (e.g. Li et al., 1992) studies showing that Fe-Co-

Ir-Os-Ru-Rh partition into MSS and that Cu-Pt-Pd-Au-As-Sb-Bi-Te-Se partition into 

residual sulfide melt. Ni appears to be less compatible in MSS at higher temperatures and 

S contents, but more compatible in MSS at lower temperatures and S contents (Li et al., 

1996). Although most of the observed fractionation trends in the Morrison deposit (and 

other deposits) are broadly consistent with fractional or equilibrium crystallization of 

MSS and ISS (see below), there are several problems with this process producing all of 

the variations: 

1) There is a thermal minimum (divide) in the Fe-Cu-S system (Fig. 18) that prevents 

sulfide melts originating on the Fe-rich, Cu-poor side of the system (like those at 

Sudbury) from crystallizing significant amounts of BorniteSS (Tsujimura and 

Kitakaze, 2004). 

2) Geochemical trends (described above) and fractional crystallization models (described 

below) indicate that ~85% fractional crystallization of MSS is required to produce a 

liquid with >25 wt% Cu. If any liquid is trapped within the MSS cumulates, then the 

percentage of required fractional crystallization increases significantly. 

3) Fractional crystallization also requires that the sulfide melt be able to form massive 

chalcopyrite veins in large parts of the system, but ISS does not appear to crystallize 

until the melts reach ~32 wt% Cu. 

Dynamic Remelting: Dynamic remelting has been discussed by Lesher et al. (2008, 2009). 

It involves injection of sulfide melts into the footwall, high-degree (but incomplete) 

remelting during thermomechanical erosion of the footwall rocks, and incorporation of 
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residual MSS into Sublayer (which is depleted in Cu-PPGE-Au relative to the Sudbury 

average and locally up to 500m thick). This produces Cu-PPGE-Au-enriched sulfide 

melts and solves the mass balance problem (which is more of an issue in other systems 

than the Morrison system) by increasing the Cu-PPGE-Au contents of the sulfide melt 

before it enters the deep footwall. However, remelting (along the contact) followed by 

fractional crystallization of MSS±ISS (during emplacement of footwall systems) cannot 

drive the composition across the thermal divide and account for the crystallization of 

significant amounts of bornite and millerite. 

Wallrock Interaction: The solution to the latter problem is that formation of bornite and 

millerite occurred as a consequence of high-T reaction of fractionated sulfide melts with 

the wall rocks. Transfer of Fe from the sulfide melt to the wall rocks would form Fe-rich 

reaction selvedges consisting of minerals such as epidote, actinolite, chlorite and 

magnetite and drive the sulfide melt composition across the thermal minimum into the 

part of the system where bornite and millerite could crystallize alone or together (Fig. 19). 

Only thinner veins would lose significant enough amounts of Fe, explaining why thicker 

veins contain bornite and/or millerite only along their margins and why thinner veins are 

more likely to be composed entirely of bornite and/or millerite.  

Before discussing these points in more detail, it is important to examine some of the other 

constraints. 

Mechanism of Vein Emplacement 

Structural data provide an independent method of determining the feasibility of fractional 

crystallization of a sulfide melt.  

The close confinement of footwall deposits to an enclosing zone of Sudbury Breccia 

indicates that the aphanitic isotropic nature of the breccia facilitated fracturing prior to or 

during sulfide emplacement. The importance of Sudbury Breccia as a host is underscored 

by the subperpendicular orientation of the upper and middle domains of the Morrison 

deposit (if rotated back to its original horizontal orientation: Golightly, 1994; Grieve, 

1994) and its enclosing Sudbury Breccia unit, and the subparallel orientations of the 

lower domain of the Morrison deposit and the McCreedy East 153, McCreedy West, and 

Nickel Rim South footwall deposits and their enclosing Sudbury Breccia units.  
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The restriction of Type I (Ccp-rich) and II (Bn-Ml-rich) footwall deposits to within 400 m 

of the basal contact of the SIC suggests that their emplacement was roughly limited by 

the location of the 800oC isotherm (e.g., thermal minimum in the Fe-Cu-S system is near 

800oC: Tsujimura and Kitakaze, 2004). The presence of Type III (“low-S” Au-Pt-Pd-Bi-

Te-Sb-rich) footwall deposits up to 600m from the basal contact suggests that their 

emplacement may be limited by the location of the 500oC isotherm (e.g., thermal 

minimum in the Pd-Bi-Te system is 490oC: Hoffman and MacLean, 1976). However, 

given that the pyroxene hornfels zone (~650-800oC, depending on pressure and 

composition) is ~200 m wide and the hornblende hornfels zone (~500-650oC depending 

on pressure and composition) is ~900m wide (Dressler, 1984; Boast and Spray (2006), 

this leaves much scope for discovery of deeper Type III deposits. 

The veins in the Morrison deposit appear to have formed by dilation rather than by 

replacement. The low intergranular permeability of the Levack Gneiss Complex and 

Sudbury Breccia, the relatively high viscosity of sulfide melt (lower than a silicate melt, 

but higher than aqueous fluid), and the inability of sulfide melts to wet pore spaces filled 

with silicate melt (Rose and Brenan, 2001; Mungall and Su, 2005) indicate that the melt 

infiltrated by fracture flow rather than porous flow. Unloading caused by 

thermomechanical erosion of footwall rocks along the contact (see discussion by Prevec 

and Cawthorn, 2002) and tectonic readjustment of the crater floor may have facilitated 

infiltration of sulfides into underlying rocks, but the presence of veins filled with sulfide 

but never quartz diorite melt suggests that flow was driven by density differences rather 

than by differential stress. The presence of several thicker (backbone) veins and many 

thinner (dangling) veins suggests that infiltration involved opening of favourably oriented 

pre-existing structures before new fractures were created in intact rock (see discussion by 

Cox et al., 2001). 

Whether or not sulfide melt fractionates during emplacement depends on the rate of 

emplacement: if emplacement is slow, there is more opportunity for sulfide melt to cool 

and fractionate, but if emplacement is fast, there is less opportunity for sulfide melt to 

cool and fractionateThe systematic geochemical fractionation downward and outward in 

the system is interpreted to (Figs. 11-12) suggest that emplacement was relatively slow, 
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and thereby indicative of a passive density-driven rather than active tectonically-driven 

process.  

The lack of a major change in the orientation of the sulfide veins between the upper-

middle and lower domains despite the change in overall orientation, from almost vertical 

to subhorizontal, and the orientations of the veins themselves are inconsistent with the 

sulfide melt generating fractures and fluid flowing by invasion percolation (see Cox et al., 

2001 and reference therein). A sulfide melt at the basal SIC contact would exert a vertical 

force on the footwall rocks (i.e., maximum compressive stress (σ1) would be vertical) and 

any resulting fractures would be either vertical extensional fractures (opening 

horizontally) or shear fractures with a dip of roughly 60 degrees, depending on the 

magnitude of the least compressive stress (σ3) (see Cox and Ruming, 2004 and references 

therein). Any conjugate pairs of shear fractures would have horizontal intersection lines. 

Both the vertical orientation of the Morrison deposit sulfide veins and the vertical vein 

intersection lines suggests that the process creating the necessary dilation for vein 

emplacement was different from the process that caused the sulfide to fill the dilated 

space. This geometry is also consistent with a gravitational and thermal control on the 

movement of sulfide melt. The melt would have initially moved downward due to its 

greater density relative to its surrounding host rocks. Once the liquid reached a depth 

where the rocks were too cold to allow further downward movement (~800 oC isotherm) 

it would have begun to move roughly horizontally, parallel to whatever isotherm allowed 

the liquid to remain molten (Lesher et al., 2008, 2009). The upper and middle domains 

represent the portion of the Morrison deposit where movement of sulfide melt was 

subvertical (predominantly density-controlled), whereas the lower domain represents the 

portion where movement was horizontal (primarily thermally-controlled).   

It must be noted though that as the sulfide melt moved downward, it would have exerted a 

force on the wallrock that is proportional to the density difference between the melt and 

the surrounding wallrock multiplied by the height of the sulfide melt ‘column’.  If this 

force is greater than the tensile strength of the wallrock or any healed fractures then 

tensile fractures would have opened facilitating the flow of sulfide melt into these 

fractures.  This force would increase with depth, which may also explain why the 
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orientation of the deposit changes from vertical to horizontal in the lower domain (see 

Solberg et al., 1977 and references therein). 

The wall rock splays within some sulfide veins are consistent with the sulfides being 

emplaced into a series of en echelon fractures that linked together to create the splay. This 

style of veining is not consistent with a pressurized sulfide melt generating its own 

fractures, but is consistent with sulfide melt infiltrating pre-existing fractures that were 

created by high differential stresses (see Cox et al., 2001 and references therein). The 

decrease in the proportion of Sudbury breccia matrix that occurs at the top of the lower 

domain along with a decrease in vein size in the middle domain followed by an increase 

in the lower domain suggests that the permeability of the lower domain was higher than 

the upper and middle domains. 

Pentek et al. (2011) and Hanley (2011) suggested that the close association of footwall 

veins with felsic granophyric segregations indicates a role for the segregations in 

structurally and texturally preparing the footwall for vein emplacement. The host rocks in 

the Upper and Middle Domains of the Morrison deposit are mafic gneiss leucosome > 

granophyre ~ felsic gneiss > unmodified Sudbury matrix, and in the Lower Domain felsic 

gneiss > unmodified Sudbury Breccia matrix > mafic gneiss leucosome >> granophyre. 

This suggests that sulfide veins and granophyric segregations both occur in areas where 

the footwall rocks were hotter. Greater degrees of contact metamorphism have been 

observed below embayments in the Cape Smith Belt (Lesher, 2007) and in the Abitibi 

Greenstone Belt (Houlé et al., 2012), so although not yet mapped, it seems likely that 

Sudbury embayments are also surrounded by zones of greater contact metamorphism and 

therefore greater propensity to host footwall vein mineralization.  

Mode of Crystallization 

Parental Sulfide Melt Composition 

The composition of the parental sulfide melt for the Morrison deposit is difficult to 

estimate. The Sudbury average is ~5% Ni100 and ~5% Cu100 (e.g., Farrow and Lightfoot, 

2002; Naldrett, 2004), but the compositions of Sudbury ores would have varied locally 

with magma:sulfide mass ratio (R factor: Campbell and Naldrett, 1979) and with the 
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degree of any dynamic remelting that may have occurred as the SIC continued to erode 

the footwall rocks and generate Sublayer (Lesher et al., 2008, 2009).  

The bulk composition of the Levack-Morrison system, as presently constrained, is of the 

order of 6.1% Ni10 and 4.1% Cu10 (Table 2). The bulk composition of the Upper Domain 

is 5.8% Ni10 and 4.2% Cu10, not significantly different. As noted in the Introduction, both 

have Ni/Cu ratios that are too high to represent parental sulfide melts and most likely 

contain significant amounts of accumulated MSS.  

Our approach has been to use the composition of the bulk Levack-Morrison system and 

Upper Domain as a target for the first MSS cumulates and to use those Ni and Cu 

contents to constrain the abundances of the other elements that are required to model the 

variations in the rest of the Morrison deposit by fractional crystallization of MSS and ISS. 

This will not prove that fractional crystallization of MSS and ISS are responsible for the 

variations, but it will allow us to determine if these process are reasonable and if other 

processes are required.  

Crystallization Models 

In order to evaluate the fractionation of the ores in the Morrison deposit we have modeled 

the crystallization of MSS and ISS using a modified version of a finite-difference model 

developed by J.P. Golightly and C.M. Lesher (unpubl.), in which the compositions of 

MSS (up until the melt composition reaches 32% Cu) or ISS (beyond that point) in 

equilibrium with the sulfide melt, calculated using experimentally-determined or 

estimated MSS/melt and ISS/melt partition coefficients (Table 8), are removed in finite 

increments. The residual liquid composition is calculated and the process is repeated until 

the majority of the liquid has crystallized.  

MSS/melt partition coefficients vary with temperature and composition (see reviews by 

Makovicky, 2002; Barnes and Lightfoot, 2005). ISS/melt partition coefficients are less 

well characterized and have been estimated from the data of Kosyakov and Sinyakova 

(2010) and modified to fit the trends in the data.  

Modeled and observed values are compared in Figures 16 and 17, and the key points are 

summarized below, focussing first on Type I (thicker veins) mineralization: 
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Contact Ores: Higher Co-Ni and low Cu-Pt-Pd-Au-Zn are consistent with them 

representing mixtures of MSS and trapped sulfide melt. 

Upper Domain: High Co-Ni and low Pt-Pd-Au-Zn contents are equivalent to the most 

fractionated modeled MSS values, also suggesting that the upper domain formed from a 

more fractionated sulfide melt. 

Middle Domain: Zn contents are as predicted from enrichment by removal of Zn-poor 

MSS (not accumulation of ISS). Low Pt-Pd-Au contents of the Middle Domain are not 

consistent with modelled Fe-MSS, ISS, or sulfide melt values. Using lower DISS/Melt 

values for these elements would explain the decrease in these elements, but would not 

explain the changes in the Pt/Au, Pd/Au, and Pt/Pd ratios. 

Lower Domain: The lower Zn and higher Au-Pd-Pt contents of the Lower Domain are 

consistent with fractional crystallization (not accumulation) of ISS. Ni appears to be 

initially incompatible in ISS, which is consistent with experimental data (Kosyakov and 

Sinyakova, 2010). 

Low-S Mineralization: Type II veinlets and stockworks mineralization exhibit similar 

fractionation patterns with depth and simply reflect more extensive fractionation 

relatively to Type I veins.  

Bornite ± Millerite-Rich Veins: The high Cu and Ni contents of these veins, many of 

which are mono- or bi-mineralic, cannot be explained by ISS fractionation. Although the 

Ni and Cu contents of these veins vary, the Ir-Rh (compatible in MSS, and immobile in 

hydrothermal fluids) and Pt-Pd-Au (incompatible in both MSS and ISS, variably mobile 

in hydrothermal fluids) are similar to chalcopyrite-rich Type I mineralization in the 

middle and lower domains, suggesting that they are related to Type I mineralization rather 

than having formed by a hydrothermal fluid. The most reasonable process is through loss 

of Fe to the wall rocks. Although the precise reaction is not known and must vary with 

country rock mineralogy and composition, it appears to have involved the breakdown of 

plagioclase, quartz, and biotite in the wall rocks to form Ca-Fe silicates (actinolite, 

epidote, chlorite), Fe oxide (magnetite), and Fe-Cu sulfides (bornite). 

Hanley and Bray (2009) showed that actinolite-rich veins at Barnet are bordered by 

bleached zones that are depleted in Fe (17–75% by mass) and Mg (13–86%), and 
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enriched in Si (4–10%), Na (8–45%), Cl (20–280%), Br (18–176%), and I (38–129%), 

and Ni (32–247%), but such zones are rare at Morrison. Greater contributions of Fe from 

wall rocks instead of sulfide melts may explain the greater abundance of chalcopyrite and 

lower abundance of bornite-millerite at Barnet.  

Because bornite contains less sulfur than ISS, the formation of bornite-rich veins by Fe-

loss requires a ‘sink’ for the excess sulfur. The excess sulfur was likely transported by a 

S-rich vapour (also containing Fe, Cu) (Peregoedova et al., 2006), forming the 

disseminated pyrite and chalcopyrite that occur in alteration selvages surrounding these 

veins.  

It is unclear whether the reaction between sulfide melt and wall rock occurred when the 

sulfide was molten or solid, but because the reaction would have occurred more rapidly at 

higher temperatures and because a melt is more mobile than a solid it is likely that the 

reaction occurred near the solidus temperature rather than entirely in the subsolidus 

temperature range. 

Although Fe-loss is required to form veins containing predominantly bornite and/or 

millerite, some of the minor bornite and millerite that occurs within chalcopyrite-rich 

second order veins may have formed by a primary magmatic process. Crystallization of 

Ni-rich MSS (Ni-MSS) and/or bornite solid solution (BnSS) from the residual metal 

formed from ISS fractional crystallization may have occurred as ISS, Ni-MSS, and BnSS 

are the minerals that likely crystallize at the eutectic point of the Cu-Ni-Fe-S system (Li 

et al., 1992; Ebel and Naldrett, 1996, 1997; Barnes et al., 1997; Peregoedova and 

Ohnenstetter, 2002 Helmey et al., 2007; Helmy et al., 2010; Sinyakova and Kosyakov, 

2009; Kosyakov and Sinyakova, 2010).  

 

Sulfide Accumulation 

Mungall (2007) suggested that the footwall ores are MSS-ISS cumulates, but there are 

several problems with that suggestion: 

1) ISS does not crystallize until the sulfide melt reaches ~32% Cu (Dutrizac, 1976; 

Naldrett et al., 1997), by which point the liquid represents only ~10% of the mass of a 
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system originally containing 5% Ni100 and 5% Cu100 (average Sudbury ore) assuming 

a DISS/Liquid of 0.2 for Cu.  

2) ISS crystallizes from melts of similar composition (Sinyakova and Kosyakov, 2007, 

2009; Kosyakov and Sinayakova, 2010), indicating that it need not be a cumulus 

phase. 

3) Zn appears to partition moderately strongly into ISS (Caye et al.,1988), so ISS 

cumulates should be characterized by high Zn contents. Although Cu-rich ores are 

enriched in Zn relative to Cu-poor ores (Fig. 16), the amount is consistent with 

enrichment via fractionation of Zn-poor MSS, not with accumulation of Zn-rich ISS. 

Only the Lower domain has Zn contents high enough to contain significant amounts 

of cumulus ISS.  

4) Based on the above fractional crystallization model, Pt, Pd, and Au in Type I 

mineralization in the Lower domain are best explained as a mixture of ISS cumulates 

and sulfide melt. The DISS/Liquid for Pt appears to be the same as for MSS, but and the 

DISS/Liquid for Pd is slightly higher explaining the increase in the Pd/Pt ratio that occurs 

in the lower domain. 

5) Also based on the above fractional crystallization model, DMSS/Liquid and DISS/Liquid for 

Au are similar and lower than both Pt and Pd. As a result of the lower D, the 

difference between Au in ISS and sulfide liquid is large and the Au/Pt and Au/Pt 

ratios in the lower domain can only be explained by a mixture of cumulus ISS and 

sulfide liquid (Fig 17). The lower domain mineralization appears to have formed from 

a liquid that underwent both fractional and equilibrium crystallization rather than as 

cumulates and trapped liquid.  

Metal Mass Balance 

The present spatial distribution of mineralization (Fig. 2) suggests that the Levack No. 7 

contact and Morrison footwall deposits are part of the same system and may also be 

related to the Levack Main contact deposit, but it is not clear how the Morrison deposit is 

related to the Main Depth, Intermediate, No. 1, No. 2, and No. 3 contact deposits. Total 

resource data (production + measured + indicated + inferred) for known parts of the 

Levack-Morrison system are given in Table 2. 
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Although this compilation allocates all historical production to the Main contact deposit 

and does not include mineralization below the 1% Ni cut-off grade (i.e., large masses of 

low-grade Sublayer-hosted mineralization and low-grade footwall mineralization), we 

may draw several conclusions: 

1) Cu/Ni ratio of the total system is 0.70± 0.49 (Table 2), therefore some of the contact 

ores included in the system are not part of the Morrison system (if they have 

undiscovered or eroded footwall systems of their own) and/or more footwall 

mineralization exists that has not been characterised to the level required for a 

published resource or remains to be found in the Morrison system (if the Morrison 

deposit contains all of the residual melts from all of the contact deposits). 

2) Footwall ores presently account for only 1.6% of the mass of the total system, easily 

derived via a fractional crystallization process starting with an average Sudbury ore 

composition of ~5% Ni100 and ~5% Cu100 (Farrow and Lightfoot, 2002; Naldrett, 

2004). 

4.9 times the known amount of footwall ore (representing 7.3% of the total mass of the 

system) with similar Ni and Cu contents is required to balance the deficit and produce a 

total resource with 5% Ni100 and 5% Cu100 (Table 2). In that model footwall ore accounts 

for 8.8% of the mass of the total system, less easily derived via a partial fractional 

crystallization process. 

Direction of Crystallization 

Most models for the fractional crystallization of Sudbury footwall ores melt assume that 

the sulfide melt crystallized from the top down and inside out, but we must also consider 

the possibility that the sulfide melt crystallized from the bottom up and outside in. 

Downward/outward crystallization requires that the sulfide melt is emplaced slowly, loses 

heat during emplacement, and crystallizes progressively lower temperature phases 

downward and outward. Upward/inward crystallization requires that the sulfide melt is 

emplaced rapidly, loses little heat during emplacement, and crystallizes progressively 

inward and upward. 
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The greater abundance of pyrrhotite-pentlandite (MSS) in the upper/central parts and 

chalcopyrite-cubanite (ISS) in the lower/peripheral parts of the Morrison deposit and 

most other footwall deposits supports the downward/outward crystallization model in 

general and suggests that crystallization of the upper and middle domains occured by this 

process. The lower domain appears to have crystallized more rapidly than the upper and 

middle domains and possibly crystallized from the outside-in.  

The Type I high-sulfur (first order) veins in the lower domain are a mixture of cumulate 

ISS and crystallized sulfide liquid. This suggests that the sulfide liquid may have been 

emplaced rapidly into the lower domain and been trapped by the ~800 oC isotherm. The 

sulfide liquid was forced to cool from the outside in, by fractional crystallization where 

sulfide liquid could escape from the crystallized solids (thicker veins) and by equilibrium 

crystallization where the trapped liquid could not escape (thinner veins). Eventually the 

inward crystallization front would prevent any liquid from escaping and even the thick 

first-order veins crystallized by equilibrium crystallization. 

The similar Pt, Pd, and Au in Type I and Type IIa and IIb mineralization suggests that the 

later formed by Fe-loss of a liquid that did not undergo significant fractional 

crystallization of ISS. This also is consistent with rapid and inward crystallization 

Summary of Crystallization 

The majority of the textural, mineralogical, and chemical changes within the first-order 

veins that host most of the mineralization in the Morrison deposit can be explained by a 

combination of: 

1) Fractional crystallization of Fe-rich monosulfide solid solution (MSS) and fractional 

and equilibrium crystallization of Ni-bearing intermediate solid solution (ISS) with 

crystallization occurring primarily from the top-down in the upper and middle domain 

and from the outside-in in the lower domain. 

2) Dynamic remelting of early formed shallow footwall mineralization creating a Cu-

rich melt and crystallization of this melt by fractional and equilibrium crystallization. 

The Cu-PPGE-Au-poor bulk composition of the Po-(Pn)-(Ccp) mineralization in the 

Levack contact-type deposit are consistent with accumulation of Cu-PPGE-Au-poor 
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MSS, and the Cu-(Ni)-PPGE-Au rich bulk compositions of the Ccp-Pn-Bn-Ml-(Po) 

mineralization in the Morrison deposit are consistent with having formed from a residual 

sulfide melt.  

The first-order veins observed in this study are consistent with having formed from the 

accumulation of Fe-MSS and ISS that crystallized from the residual liquid formed from 

the fractional crystallization of contact-type deposits.  

The pyrrhotite-rich upper domain formed from the accumulation of primarily Fe-MSS 

with potentially the minor accumulation of ISS. The middle domain formed from the 

accumulation of Fe-MSS and ISS. The chalcopyrite-rich lower domain formed from both 

the accumulation of ISS to form ISS cumulates and equilibrium crystallization of the 

sulfide melt in the lower domain to form non-cumulus ISS.  

Textural and Mineralogical Evidence of Crystallization of a Sulfide melt 

Although textural and mineralogical evidence alone cannot prove or disprove whether 

mineralization at the Morrison Deposit formed from crystallization of a sulfide melt, the 

majority of the textures and mineral compositions in the first-order veins and the textures 

of immediate wallrock are consistent with this mode of formation. Evidence for the 

crystallization and sub-solidus breakdown of MSS is as follows: 

1) The textures and mineralogy in the pyrrhotite-rich upper domain are consistent with 

the breakdown of MSS and crystallized trapped liquid into pyrrhotite, pentlandite, and 

chalcopyrite. The PoIa and PnIa flames are consistent with having formed from the 

cooling of large euhedral MSS crystals. The PoIa and PnIb are consistent with the 

cooling of smaller anhedral MSS crystals.  

The chalcopyrite- and PoII- rich portions of sulfide veins may have formed from the 

solidification of crystallized trapped liquid. The PnII eyes that occur at the margin of 

the pyrrhotite-rich domains may have formed from a peritectic reaction between the 

MSS crystals and the trapped liquid (Hawley et al., 1943). 

2) The mineral chemistry of pyrrhotite and pentlandite in the Morrison Deposit upper 

domain has similarities to the McCreedy East lower main orebody (Gregory, 2005). 
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Pyrrhotite has similar Fe, Ni, and S contents and pentlandite has similar proportions of 

Fe and Ni but pentlandite from the upper domain has less Co.  

Unlike the abundance of research of the breakdown products of MSS, there is limited 

work on textures and mineralogy of the minerals that form from the breakdown of ISS 

(Cabri, 1973; Kosyakov and Sinyakova, 2010), or Hz-ISS (Peregoedova and 

Ohnenstetter, 2002). Despite this, there is enough data available to provide support for the 

crystallization of ISS at the Morrison deposit. Evidence for the crystallization and sub-

solidus breakdown of Hz-ISS forming the Type I veins in the lower domain is as follows: 

1) Because the first ISS that is expected to form during sulfide fractionation is more Fe-

rich than both chalcopyrite and cubanite (Cabri, 1973), it is logical that Fe-rich phases 

such as pyrrhotite would exsolve from ISS.  

2) Chalcopyrite with preferentially oriented cubanite laths is consistent with the 

breakdown of ISS (or Hz-ISS) into predominantly chalcopyrite. In the Cu-Fe-S 

system, the minerals that form during subsolidus cooling are dependent on the 

original ISS composition (Cabri, 1973). Fractional crystallization experiments 

(Sinyakova and Kosyakov, 2009) have shown that ISS can break down into 

predominantly chalcopyrite with preferentially exsolution laths of isocubanite (cubic 

polymorph of cubanite). The cubanite laths in the Type I veins contain fine veinlets of 

PoV that may have formed by subsequent cooling of iscubanite to 

cubanite+pyrrhotite. This texture has never been shown experimentally but the time 

over which the sulfide veins would have cooled would have been significantly longer 

than experimental cooling times. The PoIII that occurs as veinlets in the chalcopyrite 

is also consistent with forming from late-stage exsolution. This pyrrhotite has very 

low Ni, lower S and higher Fe than the pyrrhotite in the upper and middle domain, 

which is also consistent with it forming by a different mechanism and exsolution from 

MSS. 

3) The PnIII with preferentially oriented mackinawite and chalcopyrite laths is consistent 

with exsolution from Hz-ISS. Upon the cooling of Hz-ISS, Ni will exsolve into an Fe-

rich pentlandite (FexNi1-x)9±yS8 (Kosyakov and Sinyakova, 2010). The Morrison 

deposit PnIII has Fe/Ni >1 which is consistent with the experimental exsolved 
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pentlandite. The crystallographically-controlled mackinawite within the pentlandite 

and the PoIV occurring along fractures in the pentlandite are texturally consistent with 

forming from exsolution. This suggests that the pentlandite that initially formed from 

ISS was even more Fe-rich. The PnIV laths are also texturally consistent with having 

exsolved along chalcopyrite grain boundaries. Hazelwoodite solid solution is able to 

accommodate some Cu (Peregoedova and Ohnenstetter, 2002), so the preferentially 

oriented chalcopyrite laths in the PnIII also likely formed by exsolving from a Cu-

bearing pentlandite. Other researchers have suggested that these textures formed by 

replacement of pentlandite by chalcopyrite and cubanite (Li et al., 1992), but this does 

not explain why pentlandite in veins in the middle and upper domains (that contain 

chalcopyrite+cubanite and chalcopyrite respectively) do not have the same 

crystallographically controlled “replacement”.  

4) The sphalerite that occurs in the veins is consistent with having exsolved from Hz-

ISS. Natural ISS (isocubanite) from the East Pacific Rise contains up to 1 wt% Zn. 

Additionally, experimental ISS has been shown to contain significant Zn (Caye et al., 

1988). The structures of ISS and chalcopyrite are very similar to sphalerite. Cu and Fe 

are in tetrahedral coordination in ISS and chalcopyrite, and Zn is in tetrahedral 

coordination in sphalerite (Szymanski, 1974). The middle domain contains minerals 

and textures that occur both in the pyrrhotite-rich upper domain and the chalcopyrite-

rich lower domain and are consistent with forming from the subsolidus breakdown of 

MSS and ISS mixtures.  

5) The Type Ia and Ib pyrrhotite suggests that MSS was still a crystallizing phase but the 

presence of cubanite, PnIV, and PoIV suggest that ISS was also a crystallizing phase 

(cumulate or liquid) as the textures of these minerals is not consistent with any of the 

natural or experimental breakdown products of MSS.  

In addition to the mineralogy and textures of the sulfide veins themselves, further support 

for the veins forming from a sulfide melt is the changes in the texture of quartz and 

plagioclase feldspar that occur within the immediate wallrock to the veins: 

1) The films of feldspar, plagioclase laths, and granophyric textured zone are consistent 

with a formation from localized insipient melting (Rosenberg and Riller, 2000). The 
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textures were only observed in extreme proximity to sulfide veins (i.e. within 

centimetres) and suggest that the immediate wall-rock of the sulfide veins 

experienced temperatures sufficient to cause localized incipient melting. 

2) In areas where plagioclase feldspar occurs as a film along quartz grain boundaries, 

sulfide minerals often only occur at the triple junctions of the quartz gains and not 

along the entire grain edge. This distribution of sulfide likely occurs because the 

silicate melt that initially surrounded the quartz crystals was removed at the triple 

junctions before the grain edges. Sulfide melt is wetted by silicate melt, so it can only 

infiltrate areas where silicate melt is absent (e.g., Mungall and Su, 2005).  

3) The infiltration of sulfide melt into areas that are more susceptible to melting explains 

why both first- and second-order veins occur within the leucosomes of mafic gneiss 

clasts and within granophyric textured dykes. This mechanism is consistent with the 

idea that sulfide veins have “replaced” the leucocratic dykes known as “footwall 

granophyres” but differs in the mechanism. Hanley at al., (2005; 2010) propose a 

chemical replacement whereas this mechanism is a physical replacement. 

Requirement of Additional Processes  

Fractional and equilibrium crystallization of a sulfide melt can explain the majority of the 

variation at the Morrison deposit but cannot explain some of the geochemical variation 

and the presence of hydrous alteration minerals associated with sulfide mineralization. An 

additional process or processes are required to explain these phenomena: 

1) The decrease of Pt, Pd, Bi, Te, and Sn in Type I high-S mineralization in the middle 

domain followed by a rapid increase in these elements at the top of the lower domain 

cannot be explained by fractional crystallization.  

Although an order of magnitude decrease in the DISS/Liquid relative to the DMSS/Liquid for 

Pt, and Pd could explain the decreases in the individual elements it cannot explain the 

changes in the Pt/Pd, Pt/Au, and Pd/Au ratios that occur in the Morrison Deposit (Fig. 

17).  

2) The same magnitude decrease in Pt, Pd, and Au that occurs in the middle domain also 

occurs in some of the Bn- and/or Ml- bearing mineralization in the lower domain. 
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The mineralogy of these depleted lower domain veins is consistent with being more 

fractionated ISS (Ccp >> Ml) and Bn- and Ml- bearing (Bn >> Ccp = Ml; Ml >> 

Ccp). If these veins formed by fractional or equilibrium crystallization of a sulfide 

melt (even with a very low DISS/liquid for Pt and Pd), then these veins should not be 

depleted but rather enriched. 

These depleted veins are likely the source for Pt, Pd, and Au that are enriched in type 2a 

and 2b mineralization associated with hydrous alteration minerals. 

Model for Morrison Deposit Formation 

A preferred model for the formation of the Morrison deposit is shown in Figure 20 and 

presented below: 

1) A sulfide melt was transported from the SIC into a zone of Sudbury Breccia at some 

point during the crystallization of contact-type mineralization. As this liquid began to 

cool, MSS began to crystallize.  

Due to the higher density of the sulfide melt in equilibrium with the crystallizing 

MSS, and the ability of sulfide melt to wet solid silicate phases, the liquid migrated 

further into the footwall in areas where it was physically possible to do so (e.g. pre-

existing fractures, leucosomes in mafic gneiss clasts, granophyric textured dykes) 

(Ebel and Naldrett, 1996; Rose and Brenan, 2001; Hanley et al., 2011).  

Where the permeability was greater, the sulfide melt was present in larger volumes 

and crystallization of the sulfide melt occurred by fractional crystallization rather than 

equilibrium crystallization, creating MSS orthocumulates, and mesocumulates that 

make up the majority of the mineralization in the pyrrhotite-rich upper domain.  

Where the sulfide melt was only present in small quantities, fractional crystallization 

was limited and the sulfides crystallized primarily by equilibirium crystallization and 

created adcumulates, and crystalline sulfides of liquid composition that form portions 

of the second-order veins. 

2) When the sulfide melt reached the top of the lower domain, the increase in 

permeability allowed the liquid to move very quickly through the lower domain. This 

higher rate of flow allowed the sulfide melt to crystallize from the outside inward. 
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The most peripheral veins cooled too fast to fractionate and represent liquid 

compositions. Some of the liquid was able to fractionate and formed first-order veins 

consisting of ISS orthocumulates and mesocumulates. Other portions of the liquid 

were unable to fractionate and crystallized by equilibrium crystallization and formed 

first-order veins consisting of adcumulates or mineralization that represents liquid 

compositions. 

3) The bornite- and millerite-rich mineralization formed by Fe-loss from the sulfide melt 

by interaction with the wallrock and deep groundwater. 

Where the veins were thin, the Fe-loss was enough to modify the liquid composition 

to where Bn and Ml could form. Where the veins were thick, the Fe-loss (that would 

have mainly occurred at the vein margins) would have been buffered by the remaining 

sulfide melt preventing the composition of the liquid from changing significantly. 

4) The same wallrock and groundwater interaction partitioned precious metals and other 

elements from the sulfide and into a fluid/vapour phase. This interaction created the 

depleted sulfides in the middle and lower domains and to the PGE-rich mineralization 

spatially associated with epidote-amphibole-(chlorite)-(carbonate) alteration. 

Implications for Exploration 

The major exploration implications of this research are as follows: 

1) The majority of the mineralization in footwall deposits appear to have formed through 

high-temperature magmatic processes and will likely be restricted to footwall zones 

close to the SIC basal contact. 

2) Type IIa and IIb veins that consist predominantly of bornite and millerite cannot form 

through fractional crystallization of a sulfide liquid and require fluid/wallrock 

interaction to form.   

a) Although the bornite and millerite dominant sulfide veins may themselves be low 

in TPM, the areas surrounding them are prospective for PPGE-Bi-Te-rich “low S” 

mineralization. 

3) Zones where Type I sulfide veins are depleted in PPGE relative to Ni-Cu-Co-IPGE 

may indicate the presence of adjacent PPGE-Bi-Te-rich “low S” mineralization. 
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When performing geochemical studies, be it for mineral deposit delineation or deposit 

exploration, it is important to sample the sulfide veins and surrounding alteration zones 

separately. Doing so will allow the determination of whether PPGE have been transferred 

to the adjacent wallrock, suggesting that the exploration target will include a “low S” 

PPGE zone, or whether the PPGE are restricted to the sulfide veins themselves. In 

addition, analysis for sulfur will allow calculation of Me100 values that will aid in 

determining whether PPGE zones may be present. 

CONCLUSIONS 

The Fe-Cu-Ni-Pd-Pd-Au mineralization in the Morrison deposit is similar to other 

footwall mineralization associated with the SIC. The veins appear to have been emplaced 

preferentially into zones of Sudbury Breccia that were within 400m of the basal contact of 

the SIC, because that lithology is finer-grained and more susceptible to fracturing and 

because that zone was within the thermal aureoles of the cooling SIC limiting the 

penetration of sulfide melts. The mineralogical, textural, and geochemical zoning in the 

chalcopyrite-pentlandite-pyrrhotite-rich parts of the Morrison deposit are best explained 

by partial fractional and/or equilibrium crystallization of MSS and ISS. Bornite ± 

millerite-rich mineralization formed by reaction of residual sulfide melts with wall rocks, 

consuming Fe to form actinolite-magnetite-epidote-chlorite reaction zones and driving the 

melt across the thermal divide in that part of the Fe-Cu-Ni-S system to crystallize bornite 

± millerite. Au-Pt-Pd appear to have been more mobile than the other metals, although it 

is not clear yet whether the Morrison deposit contains associated zones of “low-S” Au-

Pd-Pt-Bi-Te-rich mineralization as in some other footwall systems on the North Range.  
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CHAPTER 3 - Appendix 

100% Sulfide Normalization for Bn- and Ml-bearing Mineralization 

Most normative sulfide calculations are designed for pyrrhotite-pentlandite-chalcopyrite 

assemblages (e.g., Naldrett, 1981). Because the ores in Sudbury footwall deposits also 

contain significant amounts of bornite and millerite, they will produce erroneous results. 

Following the method of Stout (2009), the mineralization is divided into pyrrhotite-

pentlandite-chalcopyrite, chalcopyrite-pentlandite-millerite, and chalcopyrite-bornite-

millerite assemblages based on the molar proportions of S, Ni, and Cu. After the 

appropriate assemblage is determined, the mole proportion of the minerals in that 

assemblage are determined by sequentially assigning Cu and Ni to the appropriate phases 

and assigning excess S to pyrrhotite or pyrite. A detailed description of the process is as 

follows: 

Step 1: Conversion of Ni, Cu, and S from Weight Percent to Mole Percent 

Moles of Ni, Cu, and S are determined by dividing the abundance of each element in 

weight percent by the molecular weight of the element, assuming that weight percent 

represents g/100g: 

e.g.,  Ni (grams) / Ni molecular weight (grams/mol) = Ni (moles) 

Step 2: Determining the Appropriate Assemblage   

If the number of moles of S is insufficient to form millerite from available Ni and 

chalcopyrite from available Cu then bornite must be present because there is no mineral 

present with a higher metal/S ratio than millerite. If bornite is present the assemblage 

must be chalcopyrite-bornite-millerite.  

If bornite is not present, but the moles of S are insufficient to form pentlandite from 

available Ni and chalcopyrite from available Cu, then millerite must be present and the 

assemblage must be chalcopyrite-pentlandite-millerite. Because pentlandite can have 

varying a Ni/Fe ratio, a composition of pentlandite must be chosen for the normalization. 

For this study a pentlandite composition of Fe4.5Ni4.5S8 was used.  

If the moles of S are sufficient to produce pentlandite and chalcopyrite from the available 

Ni and Cu then the assemblage will be pyrrhotite-pentlandite-chalcopyrite.  
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Step 3: Determining the abundances of the varying minerals 

The equations for determining the proportions of the varying minerals are given in Table 

A1 and the methodology is summarized below. 

The calculation for the pyrrhotite-pentlandite-chalcopyrite assemblage is straightforward. 

All of the Cu is used to form chalcopyrite, all of the Ni is used to form pentlandite, and all 

of the remaining S is used to form pyrrhotite. The composition of pyrrhotite used in this 

study was Fe0.9S. 

The calculation for the chalcopyrite-bornite-millerite assemblage is more complicated. 

All of the Ni is used to form millerite, but Cu is used to form both chalcopyrite and 

bornite. Because there are two unknowns (the abundance of chalcopyrite and the 

abundance of bornite) and two variables (Cu and S), a system of two linear equations can 

be solved to determine the abundance of chalcopyrite and bornite. These equations and a 

method of solving them are given in Table A2. 

The calculation for the chalcopyrite-pentlandite-millerite assemblage is similar to that for 

the chalcopyrite-bornite-millerite assemblage. All of the Cu is used to from chalcopyrite 

and all of the Ni is used to form both pentlandite and millerite, with the proportions 

determined by solving two linear equations.  

Step 4: Determining the Total Calculated Weight Percent of the Sulfide Minerals 

The weight percent of each mineral is determined by multiplying the molar abundance of 

each mineral by the molecular weight of that mineral. This weight percent represents the 

calculated percent of each mineral in the original sample. Adding together the weight 

percentages of all the minerals present in each sample gives the total weight percent of 

sulfide minerals within that sample: 

 (Calculated moles of Ml)!(Molecular weight of millerite) = Weight percent of millerite 

Step 5: Determining the 100% Sulfide Normalized Element Values 

To determine the abundance of each element in 100% sulfides (designated by a subscript 

100 in this study), the abundance of each element in the original analysis is divided by the 

calculated total weight percent sulfide calculated in Step 4 and multiplied by 100: 

 [Ni (wt %)]/[(Weight percent of millerite)!100] = Ni100 (wt %) 
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FIGURES 

Fig 1.  Overview of the Levack embayment (modified from Ames and Farrow, 2002; Gregory, 2005). 
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Fig 2.  Schematic north-south cross-section of the Morrison deposit (modified from Farrow et al., 2007). 
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Fig 3.  Style of mineralization at the Morrison Deposit. A) Sharp-walled and planar-margined vein in the 

upper domain in matrix-rich Sudbury breccia. B) Second-order vein in the middle domain 
following a leucosome in a mafic gneiss clast. C) Second-order vein in the middle domain within a 
granophyric-textured dyke (footwall granophyre). The vein occurs along a clast-matrix contact and 
grades into a non-mineralized granophyric-textured dyke towards the top of the photograph. Note 
also the vein of Sudbury breccia matrix separating two felsic gneiss clasts. D) First-order vein in 
the middle domain within a granophyric-textured dyke that occurs along the contact between a 
more felsic and more mafic portion of a Sudbury breccia clast. A small second-order splay grades 
from pyrrhotite-rich, through chalcopyrite-rich, and into non-mineralized granophryic-textured 
dyke. E) Sharp-walled and planar-margined chalcopyrite-rich vein in the bottom of the middle 
domain. Vein occurs within a felsic gneiss clast and contains a wall-rock splay within the vein and 
a splay of sulfide vein within the wallrock. F) Second-order millerite-bearing vein in the lower 
domain with patchy sulfides occurring within the leucosome of a mafic gneiss clast. Vein orders as 
described in the text. 
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Fig 4.  Rose diagrams of the orientations of Morrison deposit sulfide veins. North arrow represents true 

north. 
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Fig 5.  A) First-order pyrrhotite-rich vein in the upper domain showing Po(Ia) and Po(Ib) domains 

separated from a domain of chalcopyrite and Po(II) by Pn(II) eyes. B) Second-order pyrrhotite-rich 
vein in the top of the middle domain that is associated with a granophryic-textured dyke. The 
inclusions are granophyric textured, have irregular and concave and convex margins, and are 
surrounded by chalcopyrite. Magnetite is concentrated at the margins of some of these inclusions. 
C) Chalcopyrite-rich vein in the middle domain with a large domain of Po(Ia) with chalcopyrite 
laths separated by a domain of chalcopyrite, Po(II), cubanite, and magnetite. The two domains are 
separated by euhedral and subhedral Pn(II) eyes. Magnetite surrounds small sub-mm silicate 
inclusions. D) First-order chalcopyrite-rich vein in the top of the lower domain with a large Pn(III) 
eye, cubanite laths, and Po(III) veinlets. E) Second-order millerite-bearing vein from the top of the 
middle domain. Vein is spatially associated with a chlorite- and amphibole-rich domain, a 
carbonate-rich domain, and a small, and patchy epidote-rich domain. F) Second-order millerite-
bearing vein from the lower domain with spatially associated carbonate with lesser chlorite and 
amphibole. Vein orders and mineral types as described in text. 
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Fig 6.  Textures of first- and second-order mineralization. A) Pyrrhotite-rich portion of a vein in the top of 

the middle domain containing twinned PoIa with chalcopyrite laths and PnIa flames that are 
parallel to the pyrrhotite basal parting and twinning plane. B) Pyrrhotite-rich portion of a vein in 
the upper domain containing PoIb with PnIb eyes and chains and PnII eyes (inclusion bearing). C) 
Chalcopyrite-rich portion of the same vein as (B) with PoII and PnII eyes. D) Chalcopyrite-rich 
vein in the top of the lower domain with PnIII eyes (mackinawite bearing), PoV in a cubanite 
patch, and sphalerite. E) Same vein as (D) with Po(IV) within Pn(II) (with mackinawite and 
chalcopyrite laths). F) Closeup of (E) showing mackinawite and chalcopyrite laths. G) Vein in the 
top of the middle domain with Po(V) in a cubanite patch and Pn(IV) chains within chalcopyrite. H) 
Same vein as (G) with Pn(IV) and makinawite. I) Second-order vein in the middle domain. J) 
Alteration associated with a second-order millerite-bearing vein in the middle domain. K) Second-
order millerite-rich vein in the lower domain. L) Second-order millerite-, bornite, and 
chalcopyrite-bearing vein in the lower domain. 
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Fig 7.  Thin section microphotographs showing possible partial melting textures. A) Felsic gneiss 

immediately adjacent to a pyrrhotite-rich vein in the upper domain. Gneiss contains thin films of 
feldspar and larger plagioclase laths surrounding quartz grains. B) Same area as (A) but with more 
abundant plagioclase and irregular quartz. C) Felsic gneiss surrounding a chalcopyrite-rich vein in 
the middle domain. Gneiss contains irregular quartz and plagioclase laths grading into 
granophyric-textured quartz and (partially altered feldspar). D) Area adjacent to (A) with sulfides 
(primarily chalcopyrite) occurring along quartz triple junctions and fractures. The sulfide is almost 
entirely absent from the quartz grain boundaries (which contain feldspar films). 
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Fig 8. Legend for Figures 9, 10, 11, 12, 13, 16, and 17. 
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Fig 9. Vertical cross section (Levack mine grid, oriented with ‘north’ at 322.4o) showing the distribution 

of Type I, IIa, and IIb mineralization.  
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Fig 10. Element vs. depth (Levack mine grid) plots showing elemental distributions in the Morrison 

Deposit for Cu, Ni, Pt, Pd, Au, Ag, Co, Zn. 
 
 



68 
 

 

 
Fig 11. Element vs. depth (Levack mine grid) plots showing elemental distributions in the Morrison 

Deposit of As, Se, Rh, Sn, Te, Ir, Pb, Bi.  
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Fig 13. Element100 vs. Cu100 plots for whole-rock samples from the Morrison Deposit for As, Se, Rh, Sn, 
Te, Ir, Pb, Bi.  
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Fig 14.  Fe, S, and Ni in pyrrhotite in the Morrison Deposit.  
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Fig 15. Ni, Fe, and Co in pentlandite in the Morrison Deposit. 
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Fig 18. Extended element plot with values normalized to Primitive Mantle (McDonough and Sun, 1995) 

and plotted in order of incompatibility (Lesher and Keays, 2002). Data from McCreedy East 
Lower Main (ME LM) (Gregory, 2005), McCreedy East 153 (ME 153) (Stout, 2009), average 
North and South Range massive, vein, and disseminated sulfides (NR, SR, M$, V$, D$), average 
footwall Ccp-Pn veins, and average footwall Bn-Ml veins (Naldrett et al., 1999) are also plotted.  

 
Fig 19. Schematic section through the bornite-pyrrhotite section of the Fe-Cu-S system showing fractional 

crystallization and Fe-S loss models for the formation of the various ore types in the Morrison 
deposit (based on data from Dutrizac, (1976) and Tsujimura and Kitakaze, (2004).  
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Fig 20. Schematic diagram for the formation of the Morrison Deposit (modified from Lesher et al., 2009). 
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Table 2: Mass balance calculations for the Levack-Morrison contact and footwall system. 

Location Type Category Short Tons Cu Ni Cu/Ni Cu10/Cu30 Ni10/Ni30 
% %  % % 

Main (incl. all 
historical contact) 

Contact Total Resource 62,302,700 1.30 2.00 0.65 3.94 6.06 

No. 1 Contact Total Resource 779,000 1.21 2.85 0.42 2.98 7.02 
No. 2 Contact Total Resource 1,023,000 1.00 2.20 0.46 3.14 6.86 
No. 3 Contact Total Resource 1,188,000 1.62 2.13 0.76 4.32 5.68 
20 Pillar Contact Total Resource 186,000 0.56 2.17 0.26 2.05 7.95 
34 Pillar Contact Total Resource 94,200 0.55 2.14 0.26 2.04 7.96 
MW-LV Contact Contact Total Resource 78,200 0.15 0.89 0.17 1.44 8.56 
No. 7 Contact Total Resource 690,900 0.46 1.52 0.30 2.31 7.69 
No. 7 Extension Contact Total Resource 263,000 0.35 1.42 0.25 1.99 8.01 
1300 Contact Total Resource 291,300 0.69 2.13 0.33 2.45 7.55 
1900 Contact Total Resource 176,500 1.92 2.28 0.84 4.57 5.43 
MD2-3 (LFD) Footwall Total Resource 1,100,000 9.61 2.13 4.51 24.6 5.44 
MD1 (Rob’s) Transitional Total Resource 203,200 1.52 2.11 0.72 4.19 5.81 
         
Total Contact+ 

Transitional 
Total Resource 67,072,800 1.28 2.01 0.64 3.90 6.10 

Total Footwall Total Resource 1,100,000 9.61 2.13 4.51 24.6 5.44 
Total System Total Resource 68,172,800 1.42 2.01 0.70 4.23 6.09 
         
Total Footwall Calc. Missing 4,125,000 9.61 2.13 4.51 24.6 5.44 
Total System Calc. Total 71,910,800 2.05 2.05 1.00 5.00 5.00 
Tonnages and grades from Farrow et al. (2009) and QuadraFNX Mining Ltd. (2011). Ni10 and Cu10 = Ni and Cu grades 
normalized to 10% Ni+Cu (used for contact and MD1); Ni30 and Cu30 = Ni and Cu grades normalized to 30% Cu+Ni 
(used for MD2-3); Total resources is sum of measured, indicated, and inferred resource categories; Calc. Missing is the 
calculated missing footwall mineralization based on the above values; Calc. Total is the calculated total number of short 
tons in the Levack-Morrison system with a calculated average grade of 2.02% Cu and 2.02% Ni. 
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Table 8: Initial liquid composition, DMSS/liquid and DISS/liquid for fractional crystallization 
numerical model. 

Element Initial Sufide Liquid  DMSS/liquid DISS/liquid 

Cu 5 wt% 0.2 1 

Pd 6000 ppb 0.02 0.1 
Zn 400 ppm 0.3 2 

Ni 5 wt% 0.8 0.4 
Pt 6000 ppb 0.02 0.03 

Au 1500 ppb 0.001 0.001 

 
Table A1: Formulas for determining the normative abundances of minerals in whole-rock 
geochemical analyses and used to recalculate the analyses to 100% sulfides.  

Assemblage Po Pn Ccp Ml Bn 

Po-Pn-Ccp [MS-(NS
Pn!MPn)]-

(NS
Ccp!MCcp) 

MNi/NNi
Pn MCu/NCu

Ccp 0 0 

Ccp-Pn-Ml 0 [MS-(NS
Ccp!MCcp)-

MNi]/(NS
Pn-NNi

Pn) 
MCu/NCu

Ccp MNi-(NNi
Pn!MPn)  

Ccp-Bn-Ml 0 0 [MCu-
(NCu

BnMBn)]/
NCu

Ccp 

NNi
Ml!MNi [((NS

Ccp/NCu
Ccp)!MCu)-

(MS-(MNi! 
(NNi

Ml))]/[MS
Bn-( 

(NS
Ccp!NCu

Bn)/NCu
Ccp)] 

Abbreviations: MCu = moles Cu, MNi = moles Ni, MS = moles S, MBn = moles bornite, MCcp = moles 
chalcopyrite, MMl = moles Ml, MPn = moles pentlandite, NS

Bn = formula units of S in bornite, NS
Ccp = 

formula units of S in chalcopyrite, Ns
Ml formula units of S in millerite, NS

Po = formula units of S in Po, NS
Pn 

= formula units of S in pentlandite, NCu
Bn = formula units of Cu in bornite, NCu

Ccp = formula units of Cu in 
chalcopyrite, NN

Ml formula units of N in millerite, NNi
Pn = formula units of N in pentlandite 
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Table A2: Equations for determining the moles of bornite through substitution method.   

Number  Equation Action 
(1) MCu = (NCu

Ccp!MCcp)+(NCu
Bn!MBn)   

(2) MS
* = (NS

Ccp!MCcp)+(NS
Bn!MBn)   

(3) MCcp = (MCu/NCu
Ccp)-((NCu

Bn/NCu
Ccp)!MBn) Rearrange (1) to solve for MCcp 

(4) MS
* = (NS

Ccp!(MCu/NCu
Ccp)-

((NCu
Bn/NCu

Ccp)!MBn)) + (NS
Bn!MBn)  

Substitute [(MCu/NCu
Ccp)-

((NCu
Bn/NCu

Ccp)!MBn)] for [MCcp] in (2) 

(5) MBn = [((NS
Ccp/NCu

Ccp)!MCu)-MS
*]/ 

[MS
Bn-( (NS

Ccp!NCu
Bn)/NCu

Ccp)] 

Rearrange (3) to solve for MBn 

Notes: Equations 1 and 2 are used to determine the abundances of bornite and chalcopyrite. Equations 3-5 
are used to solve for the moles of bornite. Once the moles of bornite are determined from Equation 5, the 
value can be substituted for MBn in Equation 3 to determine the moles of chalcopyrite. Abbreviations: MCu 
= moles Cu, MNi = moles Ni, MS = moles S, MBn = moles bornite, MCcp = moles chalcopyrite, MMl = moles 
Ml, NS

Bn = formula units of S in bornite, NS
Ccp = formula units of S in chalcopyrite, Ns

Ml formula units of S 
in millerite, NCu

Bn = formula units of Cu in bornite, NCu
Ccp = formula units of Cu in chalcopyrite, NNi

Ml 
formula units of Ni in millerite, MS

*= MS-(NNi
Ml!MNi) 


