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ABSTRACT 

The discovery and development of effective chemotherapeutic agents in the past few decades 

have immensely enhanced the treatment and management of human cancer. However, because 

these drugs are associated with adverse side effects, high genotoxicity, risk for secondary cancers 

and devastating effects on the patients’ immune system; the need for developing more effective 

anticancer agents remains. A priority Research shows that 9-aminoacridine (9AA) derivatives 

have substantial anticancer properties. The pharmacological properties of this agent are well 

characterized and this scaffold has been widely used to treat different diseases for decades. 

Quinacrine is a 9AA derivative, which was first discovered as an antimalarial compound in 

1930’s and since then had been widely used in treating a variety of parasitic infections and 

demonstrated potential for cancer treatment. Importantly, the polypharmacology of Quinacrine 

makes it an attractive drug to treat a variety of cancers. Quinacrine acts by specifically targeting 

cellular signaling pathways that play an important role in cell survival. Given the distinctive 

cancer treating abilities of Quinacrine by specifically targeting cellular signaling pathways, it 

was the objective of this study to develop a compound that has similar properties as Quinacrine 

but has better efficacy and selectivity in targeting tumor cells. Therefore, for this project we 

created derivatives of 9AA compound using hybrid pharmapore approach and examined one of 

the derivatives of Quinacrine compound named VR118. After performing a series of experiments 

to test the efficacy and selectivity of the Quinacrine derivative VR118, I came to the conclusion 

that VR118 is highly effective in treating cancer cells and have the potential to selectively target 

cancer cells without causing severe harm to normal cells at concentrations applicable for 

malignant cell lines. This report discusses the efficacy and selectivity of VR118 compound in 

targeting cellular signaling pathways and the mechanisms through which VR118 kills cancer 

cells. 
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Chapter 1 

1 INTRODUCTION 

1.1 Cancer Epidemiology 

Cancer is an extremely heterogeneous disease that occurs due to series of genetic changes and 

molecular events that fundamentally alter the normal properties of cells. Therefore, cancer is a 

generic term that is generally used to describe a large group of malignant tumors and neoplasms 

affecting any part of the body (Does et al., 2013). Normal cells in a multicellular organism 

function in accordance with the normal rules that govern the basic function of cells such as cell 

growth, reproduction, and apoptosis (programmed cell death) (Does et al., 2013). However, 

cancer cells do not function normally and, therefore, proliferate despite the presence of signals 

that normally inhibit cell growth and proliferation. 

Many intracellular changes can cause cells to develop new characteristics; such as changes in 

cell structure, cell adhesion, and the production of new enzymes that lead to the loss of contact 

inhibition, loss of the apoptotic pathway, failure to mature and differentiate, and finally 

developing the ability to metastasize (Schneider, 2001). Metastasis is a critical step in the 

progression of cancer and is a major cause of death in cancer patients. When malignant cancer 

cells invade other tissues and organs, they may alter the cellular signaling pathways within these 

cells. This leads to the loss of function and efficiency of cellular signaling pathways that are 

required to control particular functions within these cells. Given the complex changes in cell 

behavior of metastatic cells along with the unpredictable nature of cancer cells in tissues where 

they invade, cells’ response to a cancer therapy varies from patient to patient and case-by-case 

depending on the site and organ affected (Schneider, 2001). 

Despite advances in treatment modalities in recent decades, cancer still remains largely a fatal 

disease. Globally, cancer was the leading cause of death in 2008 accounting for 7.6 million 

deaths (Globocan, 2008). The World Health Organization (WHO) estimates that cancer will 

account for approximately 13.1 million deaths worldwide by 2030 (WHO, 2013). The American 

Cancer Society (ACS) estimates that approximately 1,660,290 new cancer cases will be 

diagnosed in the US in 2013 and about 580,350 cancer patients will die in the same year (ACS, 
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2013a). Although international cancer organizations and healthcare systems in many countries 

are implementing effective preventative measures to reduce the burden of cancer by controlling 

for risk factors such as; tobacco use, alcohol use, unhealthy diet and physical inactivity, the effort 

has not proven very successful (WHO, 2013). Therefore, radiation and chemotherapy are still the 

main stay of reducing cancer burden. 

1.2 Anticancer Therapies 

Currently, various treatment options are available to treat cancer. However, the preference for a 

specific treatment depends on the type and stage of cancer, patient’s response to a treatment, 

patient’s overall health and preferences and possible side effects of the treatment. Common   

treatment options available for cancer include; chemotherapy, radiation therapy, hormone 

therapy and surgery.  These treatments are often administered in combinations and have proven 

successful to an extent in eradicating cancer cells. Chemotherapy is a systematic treatment, 

which involves in the use of a single drug or a combination of drugs. Unlike radiation and 

surgery, which are local treatments, chemotherapeutic drugs travel throughout the body to 

destroy cancer cells wherever they are (Gullatte and Gaddis, 2004). Over the past few decades, 

scientific advances have resulted in the development of new chemotherapy drugs, which vary 

widely in their chemical composition and are useful in treating specific forms of cancer. 

Currently available chemotherapeutic drugs can be divided into several groups based on their 

chemical structures and modes of action. Different groups of chemotherapeutic drugs include 

(but are not limited to) alkylating agents, platinum-based compounds, anti-metabolites, anti-

tumor antibiotics, topoisomerase inhibitors, mitotic inhibitors, and miscellaneous chemotherapy 

drugs (Freter and Perry, 2008). 

1.3 Mechanism of Action of Chemotherapeutic Drugs 

Watson and Crick revealed the DNA structure in 1953 (Watson and Crick, 1953). Cancer occurs 

due to mutations in DNA causing abnormal growth. Moreover, lack of DNA repair machinery in 

tumor cells due to certain gene mutations (e.g., checkpoint genes) results in the deregulation of 

DNA replication control mechanism, causing further DNA damage. These findings made DNA 

the primary target in developing anticancer drugs as it became very clear that DNA mutation is 

the main cause of tumorigensis (Gurova, 2009). However, advancements in cancer research in 
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the past few decades led to the development of chemotherapeutic drugs that kill cancer cells by 

blocking or inhibiting cell cycle progression without causing DNA damage. 

The majority of anticancer chemotherapeutic drugs used to treat cancer patients are DNA-

damaging agents. Some of the established groups of drugs that target DNA include: 

antimetabolites, alkylation agents and intercalators. Antimetabolites damage DNA by acting on 

nucleotides, alkylating agents such as nitrogen mustard cause direct DNA damage, while 

intercalators such as actinomycins damage DNA by binding to DNA and inhibiting the activity 

of many enzymes that use DNA as substrate (Malina et al., 2005; Trudi et al., 1991). Similarly, 

recently developed anticancer agents such as inhibitors of topoisomerases I and II, mitomycin C 

and platinum compounds as well as γ-irradiation also cause DNA damage to kill cancer cells 

(Finlay et al., 1989; Gurova, 2009). 

Both alkylating agents and platinum-based drugs, such as nitrogen mustard and cisplatin target 

rapidly dividing cells by attacking nucleophilic sites. These drugs attach to the alkyl or alkyl-like 

group onto the guanine base of DNA causing cross-linking, thus damaging DNA and interfering 

with replication and transcription (Freter and Perry, 2008). Antimetabolites such as 5-

fluorouracil (5-FU) and 6-mercaptopurine (6-MP) destroy tumor cells by interferring in DNA 

and RNA metabolism. Drugs 5-FU and 6-MP target rapidly diving cells by inhibiting specific 

enzymatic steps in the DNA synthesis pathway. For example, nucleoside analogues incorporate 

into DNA in the place of nucleotides and act as terminators, inhibiting further DNA synthesis 

(Freter and Perry, 2008). 

Another anti-metabolic agent, dihydrofolatereductase (DHFR) inhibitor, inhibits the DHFR 

enzyme and prevents the reduction of folic acid into tetrahydrofolic acid, thus disrupting the 

synthesis of thymidine, adenine and guanine (Gullatte and Gaddis, 2004). Another class of 

chemotherapy drugs such as anti-tumor antibiotics (also called anthracyclines) interfere with 

enzymes involved in DNA replication (Freter and Perry, 2008). Though these chemotherapeutic 

agents have proven to be effective in reducing cell division and killing malignant cells; treatment 

with these compounds can not only effect normal cell physiology but also cause molecular 

alterations within cancer cells leading to the development of resistance (Gullatte and Gaddis, 

2004). 
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Chemotherapeutic agents that do not cause DNA damage destroy cancer cells by inhibiting cell 

cycle progression and cell proliferation. Certain groups of chemotherapeutic drugs induce 

programmed cell death in cells by inhibiting protein kinases or by overstabilizing microtubules 

within cells. Flavopiridol is one such novel derivative of cyclin-dependent kinase inhibitors 

(CDKIs) that has the ability to induce apoptosis in neoplastic cells by inhibiting the activity of a 

number of protein kinases necessary for cell proloferation in cancer cells (Wang and Ren, 2010). 

Another group of chemotherapeutic agents called taxanes inhibit cell division in cancer cells by 

overstabilizing microtubles thus disrupting mitosis (Zhou, and Giannakakou, 2005). 

1.4 Need for New Therapies 

Although DNA damaging agents have proven successful in treating many cancers, there are a 

number of limitations associated with this approach. Firstly, DNA damaging agents are not the 

best agents to cure cancer because they can cause long-term damage to the bone marrow 

(Gurova, 2009). Secondly, they are limited to use due to their adverse side effects. Thirdly, the 

high genotoxicity associated with DNA-damaging agents increases the risk for secondary 

cancers (Gurova, 2009). In addition, chemotherapeutic agents also have a devastating effect on 

the patients’ immune system and overall health. The undesirable side effects associated with 

chemotherapeutic drugs coupled with drug resistance and lowering immunity are the main cause 

of treatment failure in cancer patients. Similar many targeted therapies available currently exhibit 

considerable side effects though less severe and different from that of chemotherapeutic drugs. 

Thus, there is the need to develop novel therapies that will rely on the combination of different 

inhibitors to prevent the emergence of resistant sub-population. Therefore, researchers are trying 

to develop new anticancer therapies that target both cancer cell-specific pathways and specific 

proteins that are directly involved in the neoplastic process without causing side effects. A 

desirable way to control tumor without damaging DNA, without developing resistant sub 

population and without lowering immunity is through the development of compounds that 

specifically target cancer cells by altering cellular signaling pathways that favor the induction of 

programmed cell death in tumor cells without causing any harm to normal cells. 
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1.5 Targeted Cancer Therapies 

After decades of research, recent advances in science help in a better understanding of the 

complex intracellular processes of cancer cells. Researchers found that cancer cells differ 

significantly from normal cells in terms of metabolic properties. Cancer cells depend on aerobic 

glycolysis for energy production and have abnormal metabolic characteristics such as increased 

rate of fatty acid synthesis and glutamine metabolism (Zhao et al., 2013). Moreover published 

data suggest that increased fatty acid synthesis causes membrane biogenesis of tumor cell lipids 

fostering increased growth and survival (Pandey et al., 2012). Similarly, increased glutamine 

metabolism in tumor cells releases amino-acid precursors as byproducts, which are necessary for 

rapidly proliferating cells (Erickson and Cerione, 2010). Moreover, emerging evidence shows 

that cancer treatments can be improved by targeting cellular metabolism. Increased drug 

resistance in patients receiving chemotherapy coupled with the high failure rates of cancer 

treatments motivated researchers to develop cancer drugs that are targeted to work specifically 

on cancer cells and not normal, healthy cells (Zhao et al., 2013). 

Targeted cancer drugs also referred to as ‘molecularly targeted drugs’ or ‘molecularly targeted 

therapies’ are substances that interfere with specific proteins or molecules that promote tumor 

growth and progression in cancer cells; thereby blocking the growth and metastasis of cancer 

cells (Pandey et al., 2012). Because cancer targeted therapies mainly target molecular changes 

within cells and are capable of inhibiting proteins that are highly expressed in cancer cells when 

compared with normal cells, they are more effective than other therapies such as DNA damaging 

chemotherapy and radiation treatment. In addition, normal cells are less affected in cancer-

targeted therapies and have less serious side effects, compared to chemotherapy drugs and 

radiation. 

Targeted therapies kill cancer cells by interfering with the ability of the cell to divide, grow and 

repair. Targeted therapies primarily involve the use of humanized monoclonal antibodies and 

small molecules that can alter the normal functioning of cells causing them to die (ACS, 2013b; 

NIH, 2013). Some of targeted therapies available today include: 

a) Signal transduction inhibitors: These targeted therapies block specific enzymes and growth 

factor receptors involved in cancer cell proliferation. Signal transduction inhibitors include:  
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Imatinib Mesylate (protein-tyrosine kinase inhibitor), Genefitinib (epidermal growth factor 

receptor tyrosine kinase inhibitor - EGFR-TK), Cetuximab (epidermal growth factor receptor), 

Lapatinib (epidermal growth factor receptor (EGFR) and human epidermal receptor type 2 

(HER2) tyrosine kinase inhibitor (ACS, 2013b; NIH, 2013). 

b) Targeted therapies that modify the function of proteins that regulate gene expression and other 

cellular functions. Ex: Vorinostat (Zolinza®), Romidepsin (Istodax®), Bexarotene (Targretin®), 

Alitretinoin (Panretin®), Tretinoin (Vesanoid®) (NIH, 2013). 

c) Targeted therapies where monoclonal antibodies deliver toxic molecules to cancer cells 

specifically. Ex: Tositumomab and 131I-tositumomab (Bexxar®) (NIH, 2013). 

d) Anti-angiogenesis drugs: These drugs block the growth of blood vessels that supply blood and 

nutrients to tumors. Ex: Bevacizumab (Avastin®), Ziv-aflibercept (Zaltrap®) (NIH, 2013). 

e) Targeted therapies that act by helping the immune system to destroy cancer cells. Ex: 

Rituximab (Rituxan®), Alemtuzumab (Campath®), Ofatumumab (Arzerra®), Ipilimumab 

(Yervoy™) (NIH, 2013). 

In addition, cancer vaccines and gene therapies are also considered as targeted therapies. 

Although targeted therapies have the ability to specifically target cancer cells without causing 

any harm to normal cells they cannot be considered as a replacement for traditional therapies but 

can be used in combination with traditional therapies. Despite the advantages of targeted 

therapies in specifically killing cancer cells without damaging normal cells, they still cause 

considerable side effects (ACS, 2013b; NIH, 2013). 

Basic function of cells such as cell growth, cell division, cell movement, cell responses to 

specific external stimuli and normal apoptotic process are governed by complex communication 

systems through numerous cell signaling pathways (Erickson and Cerione, 2010). As targeted 

cancer therapies mainly focus on proteins that are involved in cell signaling pathways, blocking 

signals that govern basic cellular functions and activities in cancer cells that grow and divide 

uncontrollably will help to stop cancer progression by inducing tumor cell death. In addition, 

cancer targeted drugs can also be used in combination with other cancer treatments such as 
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chemotherapy and radiation therapy. Quinacrine is one such potential compound that targets 

multiple cell signaling pathways and can be used as a potential anticancer agent. 

1.6 Quinacrine as a Therapeutic Agent 

Quinacrine (QC) (also known as atabrine or mepacrine) is a 9AA derivative that has favorable 

pharmacological and toxicological properties and is widely used in medicine. Atabrine was first 

discovered in German laboratories in 1930’s during a research performed on biologically active 

dyes (Ciak et al., 1967). 

Quinacrine is a bright yellow crystalline powder that has a heterocyclic three-ring structure as 

shown in Figure 1. The acridine compound is a derivative of 9AA through the use of a technique 

called hybrid pharmaphore approach (Ciak et al., 1967). The IUPAC name of Quinacrine is “4-

N-(6-chloro-2-methoxyacridin-9-yl)-1-N,1-N-diethylpentane-1,4-diamine”. During the Second 

World War Quinacrine was rediscovered as "American Atabrine" in American laboratories 

(Greenwood, 1995). The compound is ‘readily available as Quinacrine dihydrochloride’ 

(Ehsanian et al., 2011). 

Since, historical times, Quinacrine has been mainly used to treat malaria and giardiasis (Gardner 

and Hill, 2001). Quinacrine hydrochloride pellets were used as a possible agent for non-surgical 

female sterilization in the 1960s and early 1970s by Jaime Zipper (Bashir, 1993). 9AAs are well 

known DNA intercalators. Although 9AA and Quinacrine have similar characteristics, the 

former has not been used in medicine. Quinacrine has generally been prescribed as an anti-

inflammatory drug and used to treat lupus erythematosus and sporadic Creutzfeldt-Jakob disease 

(Toubi et al., 2006; Wallace, 1989). Further, Quinacrine had been used as an intrapleural 

sclerosing agent in patients with high rate of recurrence of pleural effusion or pneumothorax, to 

prevent recurrence (Larrieu et al., 1979; Taylor et al., 1977). 
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Figure 1: Structure of Quinacrine 

Also known as: Mepacrine, Atabrine, Erion, Acrinamine, Antimalarina, Haffkinine, Quinactine, 

Acriquine, Akrichin (Figure adapted from NCBI, 2013). 

Molecular Formula: C23H30ClN3O 

Molecular Weight: 399.9568 

IUPAC Name: {4-[(6-chloro-2-methoxyacridin-9-yl)amino]pentyl}diethylamine 
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1.7 Anticancer Properties of Quinacrine 

The anticancer properties of Quinacrine have been well characterized in various tumors. 

Published data suggests that Quinacrine intercalates into DNA bases with high affinity owing to 

the presence of the acridine ring in its structure.  This interaction with DNA leads to selective 

activation and inhibition of specific cellular signaling pathways that can activate cell-suicidal 

programs, resulting in the reduction of tumors (Neznanov et al., 2009; Zipper et al., 1995). 

However, only a few studies established this association. In a study performed to examine the 

effects of Quinacrine in head and neck cancer patients, researchers found that Quinacrine 

restored the sensitivity to cisplatin in squamous cell carcinomas of head and neck with wild-type 

p53 (Friedman et al., 2007). 

A study performed in rats showed that Quinacrine elicits an innate immune response, which 

could be involved in the elimination of experimental glioma in rats (Reyes et al., 2001; Sotelo et 

al., 2000). Moreover, researchers report that Quinacrine killed breast cancer cells through the 

inhibition of topoisomerase activity (Finlay, 1989). In a study performed to investigate the 

anticancer properties of Quinacrine on breast cancer tumors, researchers found that Quinacrine 

decreased the growth of breast cancer cells by inducing apoptosis through the activation of 

proapoptotic proteins Bax, PARP and p53 and by downregulating of antiapoptotic proteins Bcl-

xL and Nuclear Factor-κB (NF-κB) in MCF7 cells (Preet et al., 2012). In addition, 9AA 

compounds or Quinacrine have been shown to strongly activate p53 and inhibit NF-κB in renal 

cell carcinoma tumor cells. In this study Quinacrine destroyed tumor cells by apoptosis without 

causing genotoxicity (Gurova et al., 2005). 

Further studies showed that Quinacrine also acts as a chemosensitizer when combined with other 

chemotherapeutic agents. It is well known that death receptor-5 (DR5) mediates cell death 

induced by TNF-related apoptosis-inducing ligand (TRAIL) in most tumor cells. However, three 

hepatocellular carcinoma cell lines (HepG2, Hep3B and Huh7) are resistant to TRAIL. 

Therefore, there is a necessity to overcome TRAIL resistance for an effective TRAIL-targetting 

therapy in hepatocellular carcinoma patients resistant to a TRAIL therapy. Quinacrine helps in 

overcoming the resistance of hepatocellular carcinoma cells to TRAIL. A study performed to test 

the chemosensitizing effect of Quinacrine showed that 10-20 µM of Quinacrine treatment for 1-2 
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days alone did not effectively kill hepatocellular carcinoma cells including the HepG2, Hep3B, 

and Huh7 cell lines. However, when Quinacrine is given in combination with TRAIL and 

chemotherapeutic agents, hepatocellular cancer cells were killed effectively because Quinacrine 

significantly increased the levels of DR5, a pro-apoptotic death receptor of TRAIL (Wang et al., 

2011). 

1.8 Apoptosis 

There are a number of cellular signals that determine whether a cell will undergo apoptosis 

(Elmore, 2007). However, the cellular pathways that induce the process of apoptosis are often 

disrupted in cancer by mutations, leading to uncontrolled cell proliferation (McDonnel et al., 

1989). There are at least three different types of cell death: apoptosis, autophagy and necrosis.  

Necrosis is caused by external trauma or injury to the cells, while both apoptosis and autophagy 

are processes initiated from within the cell. In multicellular organisms, the number of cells in the 

body is regulated to maintain tissue homeostasis. This process is not only controlled by genes 

regulating the rate of cell division, but also by controlling programmed cell death. Normally, 

apoptosis causes cell death in response to environmental and developmental signals (Wyllie et 

al., 1980). The Fas/CD95 receptor normally controls cell numbers in the immune system by 

eliminating certain cells through apoptosis. However, when this mechanism is disrupted due to 

mutations in cancer-related genes, a cancer may develop.  Morphologically, the process of 

apoptosis includes cell shrinkage, membrane blebbing, and chromatin condensation (Duprez et 

al., 2009). The apoptotic process is triggered by either internal stimuli or external stimuli. Once 

apoptotic pathway signals are activated, a series of events takes place within the cell until the 

process of cell death is completed. The mechanism of apoptosis involves the activation and 

function of a group of proteases known as the caspases. Two types of apoptotic pathways help in 

the activation of caspases: the death receptor or extrinsic and mitochondrial or intrinsic pathways 

(Earnshaw, 1995). 

The intrinsic pathway is activated by various stimuli including radiation, starvation, heat, and 

DNA damage, and acts through the mitochondria, which are controlled by the Bcl-2 family of 

proteins. The anti-apoptotic Bcl-2 family of proteins maintains the integrity of mitochondria in 

homeostatic conditions by preventing the pro-apoptotic Bcl-2 family members such as Bax and 
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Bak from causing mitochondrial damage. However, under stress conditions the Bcl-2-homology 

3 (BH3)-only proteins are activated, counteracting the anti-apoptotic effect of Bcl-2 family 

members, relieving the inhibition of Bax and Bak. This causes the activation of Bax and Bak, 

which translocates from cytoplasm to mitochondria, and increases the mitochondrial membrane 

permeability by opening the mitochondrial membrane pore complex through which Cytochrome 

c is released into the cytosol. Once Cytochrome c enters the cytoplasm it associates with the 

adaptor protein Apaf-1 and several pro-caspase-9 proteins, forming apoptosomes. The activated 

pro-caspase-9 then cleaves and activates the executioner caspases -3, -6 and -7, which initiate the 

execution of apoptosiss. In addition to the caspases -3, -6, and -7, several other pro-apoptotic 

proteins are released from the mitochondria to trigger the cellular suicide mechanism (Riedl and 

Salvesen, 2007). 

The extrinsic pathway is mediated by external stimuli such as cytokines and growth factors, and 

involves the activation of TNFR family receptors such as TNFR, TRAIL and Fas. Activation of 

these receptors induces a variety of cellular responses leading to formation of a death-inducing 

signaling complex (DISC) which, inturn, activates initiator caspases-8 and/or -10 via homotypic 

death domain interactions (Peter and Krammer, 2003; Wilson et al., 2009). This process takes 

place through the formation of two complexes. Complex I is formed at the plasma membrane and 

consists of TNFR1, TNFR-associated death domain (TRADD), TRAF2, RIP1, cIAP1 and cIAP2. 

Complex II includes TRADD, FADD, and caspase-8 and/or -10. Once the death initiator 

caspase-8 and/ -10 are activated, this leads to the activation of downstream executioner caspases 

such as caspase-3 (Green and Reed, 1998). Caspase-3 is a major player in the execution of 

apoptosis as it cleaves other caspases and essential cell proteins such as poly (ADP-ribose) 

polymerase (PARP) and retinoblastoma proteins. In addition, the activation of caspase-8 also 

activates the death receptor-induced cell death program by activating the mitochondrial pathway 

of apoptosis (Martin and Green, 1995; Peter and Krammer, 2003; Wilson et al., 2009). In 

contrast to this pathway, another extrinsic pathway was discovered in experiments using 

treatment with TNF and Smac mimetics. However, this pathway is totally dependent on kinase 

active RIP1 and involves autodegradation of cIAP1 and cIAP2 by Smac mimetics, leading to 

release of RIP1 from the receptor complex to form a caspase-8 activating platform consisting of 

RIP1, FADD, and caspase-8 (Wang et al., 2008). 
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1.9 Ratio of Anti-Apoptotic and Pro-Apoptotic Factors Decides the Fate of a Cell 

Quinacrine can affect cancer cells via a number of different mechanisms, however the most 

exciting and promising property of Quinacrine is its ability to induce apoptosis in cancer cells. 

Studies show that Quinacrine significantly inhibits cell growth and induces cell death. Reed 

(1998) reported that Bcl-2 and Bcl-xL are anti-apoptotic or death suppressers, whereas Bax 

protien is a death promoter (Reed, 1998). Moreover, published data show that the release of pro-

apoptotic Bax resulted in increased permeability of the mitochondrial membrane, leading to the 

release of Cytochrome c triggering the apoptotic pathway. On the contrary, when anti-apoptotic 

Bcl-2 was released, it decreased the permeability of mitochondrial membrane and prevented the 

release of Cytochrome c; thereby preventing apoptosis (Duprez et al., 2009; Hockenbery et al., 

1990; McDonnel et al., 1989). These data suggest that the fate of a cell depends on the ratio 

between anti-apoptotic and pro-apoptotic signals within cells. 

Furthermore, studies have also shown a correlation between the stages of the cell cycle and the 

levels of Bcl-2 expression. Gui et al. (2005) demonstrated that cells in G1 phase had high 

expression of Bcl-2, and were more resistant to the induction of apoptosis as compared to the 

cells in S-phase of the cell cycle where the expression of Bcl-2 proteins is very low, increasing 

the chance of apoptosis (Gui et al., 2005). 

1.10 Pharmaco-dynamics of Quinacrine 

In addition to the pharmacological properties of Quinacrine as an antimalarial drug and as an 

antibiotic, published data suggests that Quinacrine is also a potential anti-cancer agent. The bio-

molecular binding property of Quinacrine with nucleic acids and phospholipids makes it a 

suitable drug for the treatment of anti-viral and anti-bacterial infections (Wallace, 1989). 

Moreover, published data suggests that Quinacrine is also an effective anti-prion drug. Although, 

prions do not have nucleic acids, Quinacrine seemed to be the most promising compound for 

immediate application for the treatment of prion diseases such as Creutzfeldt-Jakob disease and 

kuru in humans (Ghaemmagham et al., 2009). Korth et al. (2001) tested the efficacy of 

Quinacrine on prions in cell culture models and found that Quinacrine induced the clearance of 

the pathogenic and protease-resistant PrPSc isoform (PrPSc)  (Korth et al., 2001). However, 

Quinacrine did not appear to be effective on prion diseases in vivo. Researchers attribute the 
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translational gap in Quinacrine’s effects to the differences in pharmacodynamic and 

pharmacokinetic properties in vitro and in vivo (Ghaemmagham et al., 2009). 

According to a study on the effects of Quinacrine in Escherichia coli, Quinacrine blocks DNA 

synthesis, and inhibits the syntheses of RNA and protein at a concentration of 8 x 10-4 moles per 

liter. But, when the concentration was reduced to 2 x 10-4 moles per liter, the drug only partially 

inhibited the syntheses of protein and DNA, but not at all RNA synthesis. This finding showed 

that Quinacrine acts by inhibiting DNA replication, transcription, and protein synthesis by 

intercalating into DNA and RNA (Ciak et al., 1967; McCarroll et al., 1981; Whitehouse and 

Boström, 1965). A study performed to investigate the tumor-killing effects with gastric cancer 

cells showed that Quinacrine significantly inhibited cancer cell (SGC-7901) proliferation by 

inducing apoptosis. Moreover, the same authors also revealed that Quinacrine acted on shifting 

the ratio of Bax/Bcl-2 in favoring apoptosis by significantly increasing the levels of proapoptotic 

proteins, cytochrome c, Bax, and p53, and by concomitantly decreasing the levels of 

antiapoptotic protein Bcl-2 (Wu et al., 2012). 

1.11 P53 and NF-κB Pathways are often deregulated in Cancer Cells 

The pro-apoptotic p53 and anti-apoptotic NF-κB pathways are two major stress response 

pathways. Under normal conditions, p53 and NF-κB are inactive in the cytoplasm due to binding 

with specific negative regulators. However, under stress conditions, the negatively regulating 

factors dissociate from p53 and NF-κB in the cytoplasm, resulting in the translocation of p53 and 

NF-κB to the nucleus and bind to several DNA sites. Activation of NF-κB promotes cell survival 

and cell growth, while the activation of p53 promotes cell growth inhibition, temporary arrest of 

cell cycle, irreversible arrest (senescence), or apoptosis. In normal cells, p53 and NF-κB 

pathways negatively regulate each other mutually through simultaneous activation and 

inhibition. However, in tumor cells the p53 and the NF-κB pathways are deregulated, resulting in 

the inhibition of p53 pathway and the activation of NF-κB pathway (Gudkov et al., 2011; Lane 

and Levine, 2012). According to Gurova and colleagues, Quinacrine suppresses NF-κB and 

activates p53 signaling, causing apoptosis in cells (Gurova et al., 2005). 
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1.12 Quinacrine Inhibits NF-κB 

Nuclear factor-κB (NF-κB), the major regulator of inflammation consists of a family of 

transcription factors that help cells to acclimatize and respond to environmental changes. The 

NF-κB transcription factors play a crucial role in basic cell responses such as; inflammation, 

immunity, cell proliferation, differentiation, and survival (Zhong et al., 2002). Activation of NF-

κB is a commonly acquired characteristic of tumor cells. The NF-κB dimers are generally 

retained in inactive form in the cytosol by interacting with IkB (Hayden and Ghosh, 2004). 

However, phosphorylation of IkB leads to its degradation, promoting the translocation to the NF-

κB nucleus, where it induces transcription of target genes. The NF-κB pathway is activated by 

many external stimuli and is regulated by IkBa, p105, or A20 which are NF-κB dependent; 

suggesting the involvement of auto-regulatory feedback loop in the NF-κB response (Hayden et 

al., 2006). 

NF-κB-mediated gene transcription is induced during viral or bacterial infection as well as by 

TNF-α and IL-1β pro-inflammatory kinases. Once the NF-κB is activated, it presents itself as 

trans-activator and leads to the increased expression of inhibitors of apoptotic proteins (Hayden 

et al., 2006). However, in the presence of Quinacrine, the phosphorylation of NF-κB is inhibited 

thus making it a trans-repressor. This transcriptionally inactive state of NF-κB binds to the 

histone deacetylase (HDAC1). This complex of NF-κB and HDAC1 bound to DNA negatively 

regulates NF- κB-dependent gene transcription (Magnaghi-Jaulin et al., 1998). Hence, 

Quinacrine converts NF-κB from a transactivator to a trans-repressor. In a study performed to 

understand the potential mechanism of Quinacrine in vivo, Gorbachev et al. (2007) found that 

contact hypersensitivity response to mice skin cells was mainly because of NF-κB (Gorbachev et 

al., 2007). In addition, Gorbachev and colleagues reported that Quinacrine reduced contact 

hypersensitivity response by inhibiting NF-κB activation and as well as the production of 

cytokines (TNFα, IL-1β, and CCL21) by NF-κB. However, the same group could not identify the 

exact mechanism through which Quinacrine inhibited the activation of NF-κB as well as 

cytokine production (Gorbachev et al., 2007). 
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1.13 Quinacrine Activates P53 

Activation of the tumor suppressor protein p53 induces apoptosis in cells via the mitochondrial 

pathway (Ehsanian et al., 2011).  A potential problem is that the upregulation of NF-κB can 

reduce the tumor suppressor activity of p53, resulting in inflammatory responses. Quinacrine can 

induce a strong p53 response and initiates the process of apoptosis in tumor cells as it can 

simultaneously inactivate NF-κB, making it a very promising drug. Quinacrine stabilizes p53 

protein by blocking its ubiquitination without phosphorylation, thereby activating p53-dependent 

apoptosis in tumor cells, which is independent of the DNA damage repair pathway. In addition, 

Quinacrine induces p53-dependent cell death by increasing the release of Bax, which is a key 

cell death inducer in both the intrinsic and extrinsic apoptotic pathways (Wang et al., 2005). 

Gurova et al. (2005) reported that Quinacrine activates p53 pathway in renal carcinoma cancer 

cells without inducing DNA damage (Gurova et al., 2005). 

1.14 Quinacrine Inhibits AKT Signaling Pathway 

The PI3K-PKB/Akt signaling pathway is a key pathway in cell survival and is involved in the 

NF-κB and p53 issignaling pathways. Akt/PKB is a serine/threonine kinase that plays a key role 

in multiple cellular processes and basic cellular functions such as glucose metabolism, cell 

survival and cell growth. Akt sits at the centre of signaling networks that connects many nodes. 

Each of the targets from these nodes ultimately favors the activation of cell survival pathways, 

thus, contributing to tumorigenesis (Feng and Levine, 2010; Hemmings and Restuccia, 2012).  

However in tumor cells, the Akt pathways receive continuous signals that favor growth and 

metabolism, which leads to tumorigensis. In this process Akt phosphorylates the NF-κB subunit 

p65 and MDM2. Phosporylation of these Akt substrates induces translocalization of MDM2 into 

the nucleus, where it can bind to p53 and promote its degradation. Moreover, nuclear MDM2 can 

transport p53 from the nucleus to the cytoplasm, where it suppresses the p53 activity thereby 

inhibiting apoptosis (Fresno Vara et al., 2004). 

Akt is considered as a principal anti-apoptotic signaling protein involved in the suppression of 

p53 in many different cancers including glioblastomas, pancreatic cancer, renal cell carcinoma, 

breast cancer, and gastric carcinoma. When Quinacrine is administered, it inhibits the Akt 

activity and thus promotes apoptosis through the activation of p53 (Fresno Vara et al., 2004). 
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This property of Quinacrine has been demonstrated by Guo et al. (Guo et al., 2009). Guo et al. 

found that 9AA inhibits Akt activity by preventing its phosphorylation at Ser473. In addition, the 

authors showed that the inhibition is because of the reduced activity of mTOR and not by the 

downregulation of the Akt activity per se. From this, it can be inferred that there is a feedback 

loop between AKT and mTOR, and Quinacrine successfully intereferes with this loop (Feng and 

Levine, 2010; Guo et al., 2009). The effect of Quinacrine on Akt pathway was reaffirmed in a 

study performed to understand the role of the arachidonic acid pathway and epidermal growth 

dactor in neurotensin induced prostate cancer. Hassan and Carraway found that Quinacrine 

inhibited neurotensin and, to a lesser extent, EGF-stimulated phosphorylation of AKT (Hassan 

and Carraway, 2006). 

1.15 Quinacrine Disrupts Arachidonic Acid Pathway 

The arachidonic acid pathway promotes the growth of tumor cells in prostate, gastrointestinal, 

lung, esophageal, and breast cancers. Quinacrine has been proven to effectively disrupt the 

arachidonic acid pathway by the inhibition of phospholipase A2 (PLA2). The inhibition of PLA2 

by Quinacrine leads to a wide range of effects. Firstly, Quinacrine binds to membrane 

phospholipids, primarily phosphatidyl-ethanolamine and intercalates into the cell membrane, 

causing inhibition of membrane binding activity of PLA2. Once PLA2 is blocked, it decreases 

production of arachidonic acid, which in turn results in the inhibition of leukotrienes, prostanoids 

and eicosanoids (Abdel-Latif et al., 1983; Ahmed et al., 1992). Thus, Quinacrine reduces the 

progression of tumor cells through cell cycle by blocking the arachidonic acid pathway. 

1.16 Pharmacokinetics of Quinacrine 

Quinacrine can be administered through oral, intralesional or paralesional, intramuscular, rectal, 

intravenous, transcervical, and interstitial routes. Although intravenous administration is believed 

to be most rapid way through which Quinacrine can be delivered, it is typically administered 

through oral route. When orally administered, the drug is proven to be much more effective as it 

is absorbed rapidly through the gastrointestinal tract. Studies show that when the drug is 

administered through the oral route, the plasma levels of Quinacrine significantly increased 

within 2–4 hours after administration, reaching a peak within 8–12 hours (Wallace, 1989). 
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Besides oral and intravenous routes, Quinacrine is also absorbed rapidly after intrapleural, 

intralesional/paralesional, and intrauterinal administration (Laufe et al., 1996). 

Once within the body, 80–90% of the drug is bound to plasma proteins. The highest 

concentrations of Quinacrine are found in the liver, spleen, lungs and adrenal glands, along with 

skin, fingernails and hair. Low concentrations of Quinacrine are found in the brain, heart and 

skeletal muscle. The half-life of Quinacrine is five to fourteen days depending on the dosing 

regimen. Although bile, sweat and saliva release a small amount of Quinacrine, the major route 

of Quinacrine elimination is through the renal system (Goodman and Gilman, 1954). 

1.17 Adverse Effects of Quinacrine 

Although Quinacrine was found to be effective against prostate, gastrointestinal, lung, 

esophageal and breast cancers, it produces potential toxic side effects. The normal dosage of 

Quinacrine in giardia patients is 100 mg/kg, three times a day for over 5 to 7 days in adults and 6 

mg/kg/day in three divided doses over 5 to 7 days for children (Lerman and Walker, 1982).  At a 

dose of 100 mg daily, Quinacrine causes persistent abdominal cramping, diarrhoea, headache, 

dizziness, and other gastrointestinal symptoms such as anorexia and nausea in patients (Lerman 

and Walker, 1982). Quinacrine is also believed to cause other ill effects such as restlessness, 

vertigo, insomnia, nightmares, hyperirritability, psychosis and convulsions at doses ranging 

between 200 to 1,200 mg daily for ten days (Evans et al., 1984). 

In addition, studies also reported that administration of 100 mg of Quinacrine each day for about 

two and a half years during World War II increased the risk for toxic psychosis and aplastic 

anemia. Studies performed on soldiers that took part in World War II showed that the incidence 

of aplastic anemia was as low as 0.003% and incidence of toxic psychosis was 0.4% when they 

were administered 100 mg of Quinacrine daily for about two and a half years (Custer, 1946; 

Gaskill and Fitz-Hugh, 1945). However, to date the use of Quinacrine has not been 

contraindicated since side effects can be largely reduced or prevented by a decrease in the dosage 

of Quinacrine. Alhough Quinacrine has proven to be effective in treating cancer cells; it requires 

a high dosage regimen (cell arrest at doses less than 5 µM and apoptosis at higher doses (10–

20µM) to cure cancer. In addition, high dosages of Quinacrine cause considerable side effects. 

As a consequence, the application of Quinacrine as a novel chemotherapeutic agent is not 
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justifiable and, therefore, requires the need for further research to enhance the efficacy of 

Quinacrine by eliminating its side effects. 

1.18 Quinacrine Derivatives as Anticancer Agents 

In order to enhance the efficacy of Quinacrine as an anticancer drug, novel derivatives were 

developed based on the 9AA scaffold using a hybrid pharmaphore approach in Dr. Lee’s lab at 

the Northeast Cancer Center in Sudbury, Ontario. The functionality of 9AA derivatives was 

studied using both malignant and non-malignant cells. A handful of those derivatives 

preferentially induced cell death in malignant cells over normal cells. Preliminary data from 

Dr.Lee’s laboratory indicated that these new compounds inhibit malignant cell proliferation with 

greater efficacy and also exhibited reduced toxicity towards normal cells as compared to the 

parent compound Quinacrine. One of the derivatives selected for further investigation based on 

its efficacy and low toxicity is VR118. 

1.19 Specific Aims of This Study 

This particular study investigated the novel VR118 Quinacrine derivative as a potential 

anticancer agent. This study has two specific aims, 

A) To study and evaluate the effects of this novel derivative drug on different human cancer cell 

lines. 

B) To identify the mechanism of action of VR118 in vitro. 
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Chapter 2 

2 MATERIALS AND METHODS 

The following section describes the general methods and routine protocols employed in 

performing the experiments, to test the effectiveness of the compound VR118. 

2.1 Cell Lines 

All the cell lines used in the experiments were purchased from ATCC and include: 

i) HeLa S3 (Human Cervical Carcinoma Cells) and MCF7 (breast 

adenocarcinoma, estrogen receptor positive) cell lines. 

ii) MDA-MB231 (estrogen negative, p53-/-, k-ras mutant breast cancer cell 

lines) 

iii) MDA-MB468 (PTEN negative, RB1 negative, SMAD4, p53 mutant, estrogen 

receptor-negative metastasis-derived breast cancer cell line). 

iv) 184B5 (Chang et al., 2006) and MCF10A non-malignant breast cell lines 

(Gratzner et al., 1975). 

2.2 Culture Media and Reagents Used 

The following is a list of media and medium supplements used in the routine culture of the above 

cell lines: 

i) RPM-I 1640 medium 

ii) 10% (v/v) fetal bovine serum (FBS) 

iii) 100 µg/ml streptomycin 

iv) 100 units/ml penicillin 

v) Dulbecco’s modified Eagle’s medium (DMEM) medium 

vi) 100 µg/ml cholera toxin 

vii) 10 µg/ml insulin, 20 µg/ml EGF (epidermal growth factor) 

viii) 0.5 µg/ml hydrocortisone, 10% (v/v) 

ix) 10% equine serum 
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2.3 Maintenance of Cell Lines 

The following culture protocols were used to maintain the cells under laboratory conditions: 

i) HeLa and MDA-MB231 cells were maintained in RPMI 1640 medium 

supplemented with 10% (v/v) fetal bovine serum (FBS), 100 µg/ml 

streptomycin, and 100 units/ml penicillin. 

ii) MCF7 and MDA-MB468 cells were maintained in Dulbecco’s modified 

Eagle’s medium (DMEM) supplemented with 10% (v/v) FBS, 100 µg/ml 

streptomycin and 100 units/ml penicillin. 

iii) 184B5 and MCF10A cells were grown in DMEM F12 medium supplemented 

with 100 µg/ml cholera toxin, 10 µg/ml insulin, 20 µg/ml epidermal growth 

factor (EGF), 0.5 µg/ml hydrocortisone, 10% (v/v) 10% equine serum, 100 

µg/ml streptomycin and 100 units/ml penicillin. 

2.4 Drug Treatment 

The experimental design involved dividing the cell samples into test and control groups. The 

VR118 compound is dissolved in Dimethyl sulfoxide (DMSO). The cells in the test group are 

treated with VR118 compound dissolved in DMSO, whereas the cells in control group (sham 

treated cells) are only treated with a volume of DMSO equal to the test sample. In experiments 

where varying concentrations of VR118 compound are used, cells in the control group are 

treated with a concentration of DMSO equal to the highest concentration of VR118 compound 

used in that experiment. Another control group included in the experiment is non-treated group, 

which are grown in a complete media and not treated with either VR118 compound, or DMSO, 

unlike the test group and sham treated cells. Similar to the drug treated samples and the sham 

treated samples; the non-treated samples were collected at the same point of time in every 

experiment. Moreover, the positive control groups varied with each experiment. 

2.5 Clonogenic Assay 

Clonogenic assays are cell survival assays that are generally performed to determine the ability 

of a single cell to grow into a large colony that can be visualized with naked eye in semi-solid 

medium. In this experiment, the protocol by Franken et al. (2006) was adopted: 

i) Cells are seeded out in appropriate dilutions and allowed to grow. 
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ii) After 24 h of post plating, cells were collected, counted and predetermined 

numbers of cells (10,000/ml) were plated in T25 flasks with 5 ml medium. 

iii) MCF7 cells in each T25 flask were treated with increasing concentrations of 

VR118 starting from 0.31 µM, and gradually increasing to 1.5 µM, 6.25 µM, 

25 µM and 100 µM, resulting in exposure of the cells to different 

concentrations of the drug for 24 h. 

iv) On completion of the drug exposure for 24 h, the treated cells were washed, 

trypsinized, and re-suspended in 1 ml of medium and later suspended in 0.4% 

agarose kept in a water bath at 37°C. 

v) The medium is mixed thoroughly using a 3cc syringe equipped with a 16-

gauge needle. 

vi) Later 1 ml of sample was dispensed into each well of a six-well plate and set 

aside for 5 min for agar to solidify 

vii) Upon solidification of agarose, 500 µl of medium was added on the top of 

agar, followed by incubation at 37ºC and 5% CO2 (Franken et al. 2006). 

viii) After 12 days of incubation, colonies were counted from 10 random fields of 

each sample (Franken et al. 2006). 

ix) The average number of colonies per field was plotted against the 

concentration of the cytotoxic agent being tested and only those colonies 

containing more than 50 cells/colony were counted as viable colonies. 

x) Clonogenic assay Also was performed without agrose for MDA-MB231, and 
184B5 cells (Preet et al). For this cells were seeded in 10 cm plates  and 
grown for 24 hr 

xi) Then treated with different concentrations of VR118 (0.5–100 µM) for next 
24 hr. 

xii) Thereafter, cells recounted and medium was replaced with fresh medium, and 
plate was returned to the incubator for (10-12) days. 

xiii) After colony formation, medium was removed and plate was whashed, air 
dried and stained with 0.2% crystal violet (made in 25% methanol and stored 
at room temperature). 

xiv) Then, the plates were washed twice with distilled water, and colonies were 
counted. 
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2.6 Sulphorodhamine B (SRB) Assay 

SRB assays were performed to determine the cell density based on the cellular protein and 

nucleic acids content.  The protocol by Vichai and Kritikara (2006) was adopted for SRB assays: 

i) Each of the 96-well plates were incubated for 24 h after plating them with the 

following number of cells: 

 4,000/ml for MCF7 cells and 184B5 cells 

 3,000/ml for HeLa, MDA-MB231 and MDA-MB468 cells 

ii) After 24 h, the growth medium in each plate was replaced with a medium 

containing different concentrations of VR118 compound and incubated for 

additional 48 h. 

iii) After 48 h, cells in each plate were fixed with 50% ice-cold TCA (trichloro 

acetic acid) and incubated at 4ºC for 1 h, followed by repeated washing in 

running water and air drying. 

iv) Cells were then stained with 0.1% (w/v) SRB solution (400 mg of 

Sulphorodhamine B in 100 ml of 1% acetic acid in water) for 30 min at room 

temperature, and were later re-suspended in 200 µl of 10 mM Tris buffer (pH 

10.5). Absorbance was recorded at a wavelength of 530 nm using a plate 

reader (Molecular devices, Spectra max 340 PC) (Vichai and Kritikara, 

2006). 

v) For positive control, mock-treated cells were used; and for negative control, 

50% TCA treated cells were used. 

vi) The IC50 values were calculated using a sigmoidal dose-response curve 

(variable slope) using Graph Pad Prism V 4.02 (Graph Pad Software, Inc.). 

vii) The following formula was used to normalize the data: 

(Where, Tp is mean O.D. of positive control and Tn is mean O.D. of negative 

control) 

(Mean OD sample - Tn) / Tp- Tn 
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2.7     Cell Proliferation 

Cell proliferation assays are generally employed to evaluate the response of a 

cell population to external factors. For cell proliferation experiments, the 

protocol was adopted from Chang et al. (Chang et al., 2006) 

i) Exponentially growing cells were trypsinized, cell numbers were determined, 

and later a fixed number of these cells (30–40% confluence) were plated on a 

10-cm plate and incubated at 37ºC for 24 h. 

ii) After incubation, these cells were treated with either the IC50 range or higher 

concentration (2/4/6/8/10 µM) of VR118. 

iii) Then cells were collected, and pellets were briefly re-suspended in PBS at pH 

7.4 and later counted after treating with 15 µl of 1% Trypan blue (Chang et 

al., 2006). 

iv) Cells were counted using a hemocyrometer under the microscope in 1 x 1mm 

squares of one chamber, and the average number of cells per square was 

determined. 

v) Counting of cells was performed each day for a replica of four days. Only 

those cells, which excluded Trypan blue, were counted and plotted. 

vi) Each sample and numbers of cells counted each day was plotted using a 

GraphPad computer program. 

2.8 Detection of Apoptosis by Acridine Orange/Ethidium Bromide 

To examine the cellular morphology of MDA-MB231 and MCF7 cells with or without treatment 

with DMSO and/or VR118, the following acridine orange staining method was used. 

i) MDA-MB231and MCF7 cells were grown on glass cover slips overnight at 

37ºC to allow for adherence of cells. 

ii) Cells were then exposed to DMSO and/or VR118 for 24 and 48 h. For this 

experiment, cells were also treated with 6 µg/ml of camptothecin as a positive 

control for apoptosis. 

iii) Each sample was then stained with 100 µg/ml acridine orange (Sigma-

Aldrich) for 5 min and then stained with 100 µg/ml of ethidium bromide 

(Sigma-Aldrich) for 5 min. 
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iv) Finally, the cover slips were washed with 1X PBS and were then gently 

placed onto a glass slide and sealed with clear nail polish. Each sample was 

done one at a time for the cells to be fixed. Pictures were taken using a 

confocal microscope as described by Pearce et al. (2001). 

2.9 Analysis of Cell Cycle Distribution 

This approach helps to detect apoptotic cells with a subG1 DNA content and distribution of cells 

in three major phases of the cell cycle (G1 vs S vs G2/M). The following protocol was used to 

analyze the cell cycle distribution: 

i) MCF7, MDA-MB231 and 184B5 cells were trypsinized after exposure to 

various compounds at different time intervals, ranging from 24 h to 72 h. 

Cells were washed twice in 1X PBS and fixed overnight in 75% ice-cold 

ethanol at -20ºC. 

ii) This was followed by centrifugation of cells, which are later re-suspended for 

1 h in propidium iodide (PI) staining solution (1X PBS, 0.3% Nonidet P-40, 

100 µg/ml RNase A, and 100 µg/ml propidium iodide). 

iii) Re-suspended samples were then analyzed by flow cytometry using an Epics 

Elite Flow Cytometer (Beckman Coulter) according to the protocol by 

Gratzner et al. (Gratzner et al., 1975). 

iv) Later ten thousand events were gated to accurately measure PI intensity. PI 

fluoresces at 623 nm when excited and single parameter displays were 

obtained using the flow cytometeric data acquisition software, and then FL3 

fluorescence signals were recorded. 

2.10 TUNEL Assay 

TUNEL (terminal uridine nick-end labeling) assay is one of the most widely used methods to 

detect apoptotic cells that undergo DNA degradation during the late stage of apoptosis. The 

method is based on detecting DNA strand breaks by enzymatically labeling the free 3'-OH 

termini with fluorescent nucleotides using an In Situ Cell Death Detection Assay Kit (Roche, 

CA, USA). This kit provides complete components including positive and negative control cells 

for conveniently detecting DNA fragmentation by fluorescence microscopy. 
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i) Firstly, cells grown on cover slips were fixed with 4% paraformaldehyde 

(PFA) in PBS (pH 7.4) for 10 min at room temperature. 

ii) Immediately, cover slips were washed and permeabilized with 0.1% Triton 

X-100 in 0.1% PBS for 5 min. A solution was then applied to the samples (50 

µl enzyme solution in 450 µl label solution), according to the protocol 

adapted from (Nunez, 2001). 

iii) Lastly, cells were incubated at 370C in a dark humidified atmosphere for 1 h. 

Samples were then analyzed by confocal fluorescence microscopy using the 

wavelength at 450-500 nm (green). 

 

2.11 Protein Extraction and Quantification 

For the purpose of protein extraction and quantification, the following protocol by Santi and Lee  

(2009) was employed: 

i) Cells were plated on 10 cm plates (Sarstedt) and incubated at 37ºC for 24 h 

before exposing them to 2 µM concentration of VR118. 

ii) Post VR118 treatment, exposed cells were collected at different time points (0, 

24, 48, and 72 h). 

iii) Later whole cell extracts were prepared in RIPA buffer (1X PBS, 1% Nonidet 

P-40, 0.5% sodium deoxycholate, 0.1% SDS) supplemented with 1 µM PMSF, 

a protease inhibitor cocktail tablet (Roche Diagnostics), 2 µM sodium 

orthovanadate, and 10 µM sodium fluoride. 

iv) After lysing the cells in RIPA buffer and ice for 10 min, the cell lysates were 

cleared by centrifugation (Beckman Coulter, microfuge 22R) at 4ºC for 15 min 

at 14,000 g (Santi and Lee, 2009). 

v) Finally, protein quantification was carried out using a BCA Assay kit (Pierce) 

and samples were read at 562 nm using a Multiscan MCC/340 plate reader. 

The concentration of unknown proteins was analyzed against the standard 

curve using the Graph Pad Prism version 4.03. 
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2.12 SDS-PAGE 

For performing sodium dodecyl sulfate (SDS) - Polyacrylamide gel electrophoresis (PAGE), 

protocols by Laemmli and Towbin were used: 

i) Samples were prepared by adding 5X loading buffer (0.1 M Tris-HCl, 10% 

[w/v] SDS, 40% [v/v] glycerol, 10% bromophenol blue), and heated for 5 min 

to denature. 

ii) 25 µg or 50 µg of protein sample was loaded onto 6–15% polyacrylamide gel, 

and proteins were seperated by electrophoresis in 1X Running buffer (10X 

Running buffer: 0.25 M Trizma base, 1.92 M glycine, 1% SDS). Run apparatus 

at 120 volts for 2-3 h 

iii) Proteins in the gel were then transferred onto a PVDF membrane (GE Health 

Care), which had been immersed in Transfer buffer (48 mM Tris, 39 mM 

glycine, 20% [v/v] methanol, 0.037% [w/v] SDS), using a semidry transfer 

apparatus at 12 volts for 1 h (Laemmli, 1970; Towbin, 1979). 

2.13 Western Blotting 

This is an important technique used in cell and molecular biology to identify specific proteins 

from a complex mixture of proteins extracted from cells. For Western blotting: 

i) The membrane to which electrophoresed proteins were transferred was 

“blocked” for 1 h by incubating it in Blocking buffer (1X TBS with 0.1% 

Tween, 50 mM Tris-HCl, pH 7.4, 150 M NaCl, 0.1 % [v/v] Tween 20 with 5% 

Carnation non-fat skim milk). 

ii) The membrane was washed with TBST before incubating it with primary 

antibodies overnight (diluted in 5% carnation non-fat skim milk, dissolved in 

0.1% TBS solution) at 4ºC. The titer of antibody used varied and was 

according to the manufacturer’s recommended protocol 

iii) After that, the blot was washed three times in 0.1% TBST, and incubated in a 

secondary antibody (diluted in 0.1% TBST with 5% non-fat skim milk) for 1 h 

at room temperature. 
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iv) This was followed by two more washes with 0.1% TBST, and once with 0.1% 

TBS. The target proteins were visualized using ECL kit (Enhanced 

Chemiluminescense, GE Health care). 

2.14 Densitometric Analysis 

Protein band intensity was determined by densitometry using Alphaease Fluorochem (FC) 8900 

version 4.0.1 software, and graphed using Graph Pad Prism V 4.02 (Graph Pad Software Inc). 

GAPDH or tubulin was used as a loading control. Normalization for loading differences was 

achieved by dividing the densitometry values for individual bands, with the densitometry values 

for loading control (or total protein) in the same lane. 

2.15 Statistical Analysis 
For analysis of each treatment group, data was reported as a mean plus or minus the standard 

error of the mean (SEM). IC50 values were calculated using a sigmoidal-dose response curve, 

which was generated by GraphPad Prism V.402. Values are means of two or three independent 

experiments. Statistical analysis One-way ANOVA was used where p < 0.05 was 

considered to be statistically significant. 
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Chapter 3 

3 RESULTS 

3.1 VR118 Inhibits the Proliferation of Malignant Cell Lines 

To determine the anti-proliferative effect and IC50 of VR118 on malignant and non-malignant 

cell lines, the SRB and clonogenic assays were performed. Findings from both the assays 

revealed that VR118 exhibits significant anti-proliferative effect on malignant cells. The SRB 

assay showed significant anti-proliferative activity on many different breast cancer and HeLa cell 

lines. VR118 compound decreased the cell viability and proliferation of MCF7 cells and was 

found to be very effective. The SRB assay showed that IC50 concentrations of VR118 compound 

were 3.1 µM, 6.2 µM, 3.5 µM and 1.5 µM for MCF7, MDA-MB231, HeLa and MDA-MB468 

cell lines, respectively. Table 1 summarizes the IC50 concentrations of VR118 compound on cells 

lines as per SRB assay. 

In addition to the cytotoxicity of VR118 by the SRB assays, data from clonogenic assay also 

showed that VR118 could significantly inhibit colony-forming capacity of malignant cells. The 

experimental results revealed that VR118 compound was very effective on MCF7, MDA-

MB231, MDA-MB468 and HeLa cell lines compared to the controls. Moreover, VR118 showed 

dose-dependent effects on cell growth and colony forming abilities of cancer cells. The data from 

clonogenic assay were consistent with those from the SRB assay. Table 2 summarizes the IC50 

concentrations of VR118 determined by clonogenic assays. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

29 

 

Figure 2: The effects of VR118 on MCF7, MDA-MB468, HeLa, MCF10A and 184B5 cells 
as determined by SRB assays 

The SRB assays were performed to determine the ant-proliferating activity of VR118. As stated 

in the Materials and Methods, MDA-MB468, HeLa, MCF10A and 184B5 cells were seeded onto 

96-well cell culture plates and treated with seven different concentrations of VR118 for 48 h. 

The number of cells was plotted against the varying concentrations of VR118 using a GraphPad 

Prism sigmoidal dose response curve. Represented graphs are means of three independent 

experiments. Error bars represent 95% confidence intervals. 
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Table 1: IC50 of VR118 on MCF7 cells based on data from SRB assays 

IC50 represents the concentration of a drug that is required for 50% inhibition of cell growth 

compared to non-treated controls. IC50 values were calculated using the GraphPad Prism 

sigmoidal dose response curve. Each experiment was performed in triplicate and 

each value represents the mean ± SD of three independent experiments.p < 0.05 vs. Non-cancer 

cells. 

 

 

 

 

 

 

 

 
IC50 (µM) for cancer cells IC50 (µM) Non-cancer cells 

Compound MCF7 MDA-MB231 HeLa MDA-MB468 184B5 MCF-10A 

Quinacrine 4.2±0.2 6.0±1.2 6.1±3.1 5.6±0.4 4.0 ± 0.2 5.0 ± 0.1 

VR118 3.1± 3.5 6.2±2.0 3.5±0.3 1.5 ± 1.0 16.4 ± 0.8 18.2 ± 2.5 
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Figure 3: Surviving fraction of MCF7, MDA-MB468 and HeLa cells determined by their 
ability to form colonies after 12 days. 

Figure 3 shows representative samples of clonogenic assays for different cell lines exposed to the 

concentrations of VR118 in an IC50 range (3.5 µM). Cells were exposed to different 

concentrations of VR118 (0.7, 1.5, 3.5, 6.25, 12.5, 25, 50 and 100 µM), along with a sham-

treated control. The surviving number of colonies was counted after 12 days as described in 

Materials and Methods. 
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Figure 4: Dose-response curves of VR118 determined by a clonognic assay 
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Table 2: IC50 of VR118 on MCF7, MDA-MB231, HeLa, and MDA-MB468 cells as obtained 
from clonogenic assay. 

IC50 represents the concentration of a drug that is required for 50% reduction of colony forming 

ability compared to non-treated controls. IC50 values were calculated using the GraphPad Prism 

sigmoidal dose curves (variable slope). Each experiment was performed in triplicate and 

each value represents the mean ± SD of three independent experiments. p < 0.05 vs. Non-cancer 

cells. 

 

 

 IC50(µM) for cancer cells IC50(µM) Non-
cancer cells 

Compound MCF7 MB231 HeLa MB468 184B5 

Quinacrine 5.9±0.2 7.5±1.0 8.1±3.2 6.6±0.3 4.6±0.21 

VR118 4.1± 1.0 6.5±3.0 4.0±0.32 2.5 ± 1.0 10.0 ± 0.70 
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Data from (Table 1 and Table 2), (Fig. 2 and Fig. 3) suggest that VR118 decreases proliferating 

activity of malignant cells. Observations from the cell proliferation assays further demand the 

need to investigate the cytotoxic property of VR118 compound to differentiate between 

malignant and non-malignant cells. 

3.2 VR118 is more Cytotoxic to Malignant Cells than Non-malignant cells 

To examine whether VR118 shows selective toxicity to cancer cells, anti-proliferative activity of 

VR118 on malignant and non-malignant cells was analyzed using a Trypan blue exclusion assay. 

The result showed that VR118 compound is much less toxic to non-malignant (184B5, 

MCF10A) cells. Unlike Quinacrine, which did not differentiate between malignant and non-

malignant cells, VR118 was capable of differentiating between malignant and non-malignant 

cells while killing. In addition, 184B5 cells did not show any changes in their cell cycle 

progression when treated with the same dose as malignant cells. Data revealed that VR118 did 

not increase plasma membrane permeability in non-malignant breast epithelial cells (184B5 and 

MCF10A cell lines), but had increased plasma membrane permeability in malignant breast 

cancer cells (MCF7, MDA-MB231, MDA-MB468 and HeLa cell lines) (Fig. 3 and Fig. 4). 

When 184B5 cells were treated with the IC50 dose of VR118 for malignant cells, they were not 

as greatly affected as cancer cells (Fig. 5). Similar findings were reported in the SRB assays, 

which showed that VR118 is less toxic to non-cancer cell lines (184B5, MCF10A) (Fig. 2,	
   p	
   <	
  

0.05).Results from the Trypan blue exclusion assay clearly demonstrates the cancer cell-specific 

targetting nature of VR118. 
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Figure 5: Anti-proliferative activity of VR118 on different cell lines. 

VR118 showed strong anti-proliferative activity on many different breast cancer and HeLa cell 

lines, but not on non-cancer cell lines (184B5, MCF10A). As described in Material and Methods, 

cells on 10 cm plates were grown in medium containing 2–10 µM concentration of VR118. Cells 

were stained with Trypan blue and counted using a hemocytometer to measure viable cell 

numbers. VR118 significantly decreased the viable MCF7 cell numbers after 24 h, whereas 

sham-treated controls exhibited significant proliferation. Moreover, data shows that VR118 is 

cancer cell specific at low concentration, and the non-cancer cell lines were less affected at 2–6 

µM ranges. The data shows representative plots of three replicates. There were no discernable 

differences among the three independent experiments. Trypan blue is used to stain dead cells. 

Live cell count (not uptaking Trypan blue cells). Total cell count including those stained with 

Trypan blue. 
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Figure 6: VR118 did not affect the cell cycle progression in 184B5 non-malignant breast 
cell lines. 

To examine noticeable changes in the cell cycle progression of 184B5 cells in response to 

VR118, 184B5 cells were exposed to various concentrations of VR118 and were later analyzed 

by flow cytometry. The resultant data did not reveal any sign of cell cycle arrest or apoptosis in 

response to 2–6 µM of VR118.  A total of 10,000 events were analyzed by flow cytometry using 

PI (propidium iodide) staining. Results are expressed as the percentage of total cells in each 

phase of the cell cycle. Sub-G1 displays a cell with lower DNA content than an intact cell, which 

indicates that the cells likely died by apoptosis or other mechanisms resulting in cells possessing 

a subG1 level of DNA content. G1 peak corresponds to the 2N content of DNA. G2/M peak 

corresponds to 4N, S phase represents >2N and <4N content of DNA. Plots shown are 

representative of three independent experiments. From this it can be inferred that VR118 

treatment of 184B5 cells does not generate cells of a sub G1 DNA content, nor does the drug 

induce an accumulation of cells at a particular phase in the cell cycle.  This suggests very little 

effect of VR118 on cell progression through the cell cycle. 
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3.3 VR118 Causes Apoptosis in Breast Cancer Cells 

After confirming that VR118 has the property of killing cells in a cancer-specific manner, I 

decided to study the possible mechanism of VR118 in killing cells and inhibiting growth. The 

induction of apoptosis and cell cycle arrest are both anti-proliferative responses, which likely 

contribute to the anti-neoplastic action of Quinacrine derivatives on cancer cells. To evaluate 

whether VR118 can cause apoptosis, three experiments were performed namely: Acridine 

orange/Ethidium bromide staining, Flow cytometry and a TUNEL assay. 

Acridine orange and Ethidium bromide staining experiments were performed to determine if 

MDA-MB231 and MCF7 cells undergo apoptosis when treated with VR118. Acridine orange 

staining helps to determine cell morphology, cell size and refractive properties of cells treated 

with VR118. The rationale behind Acridine orange/Ethidium bromide staining experiment is that 

normal cell membranes are permeable to acridine orange but not to ethidium bromide stain. 

However, when cell membranes lose their structural integrity, they are permeable to ethidium 

bromide. Results from the double staining experiment revealed that malignant cancer cells 

underwent chromation condensation and extensive membrane blebbing which are hall marks of 

apoptosis, while sham-treated cells did not demonstrate any visible damage to the nuclear or cell 

membrane. Data in( Fig.7 and Fig. 8) clearly show that MDA-MB231 and MCF7 cells treated 

with VR118 have lost their structural integrity after 48 h with numerous blebbings. These 

findings are consistent with the Trypan blue assays. This demonstrates that these cells may be at 

a late stage of apoptosis. The presence of many vacuoles (bright yellow spans) suggests that 

these cells may also undergo autophagy (Fig. 7A). 

A decrease in cell proliferation can be a result of either altered cell cycle progression or cell 

death. Therefore, I investigated the effect of this novel compound on cell cycle progression by 

flow cytometry. Flow cytometry results showed that VR118 induces apoptosis in MDA-MB231 

and MCF7 cells as substabntial amounts of cells were observed in a dose and time dependent 

manner (Fig. 9 and Fig. 10). However, MCF7 data showed that number of cells undergoing 

apoptosis was slower (Fig. 10). 
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Data suggest that VR118 induces apoptosis in cancer cells by causing an increase in sub-G1 cell 

population which is suggestive of apoptosis. Microscopy findings revealed that MDA-MB231 

cells treated with VR118 s showed chromatin condensation and nuclear fragmentation clearly 

indicating that they are undergoing apoptosis. MCF7 cells treated with VR118 showed 

morphologic characteristics similar to apoptosis, including cell shrinkage and membrane 

blebbing. Though VR118 induced apoptosis was immediately visible in MDA-MB231 cell lines, 

the process was delayed in MCF7 cell lines. This data clearly demonstrate the apoptosis inducing 

nature of VR118 in malignant cells. 

I further used TUNEL staining to investigate DNA damage caused by VR118. The TUNEL 

assay is based on the fact that TdT enzyme can adda labelled deoxyuridine triphosphate to the 

free end (3’-termini) of damaged DNA. Data from TUNEL assay revealed that over 40% of 

MDA-MB231 treated with 6 µM VR118 underwent apoptosis (Fig. 11). Late stage apoptosis was 

clearly evident in TUNEL assay with significant delay in MCF7 cells compared with MDA-

MB231 cells (Fig. 11 and Fig. 12). VR118 induced apoptosis was immediately visible in MDA-

MB231 cell lines; whereas, the process was significantly delayed in MCF7 cell lines. These 

findings correlate with data obtained from Acridine orange staining (Fig. 8). Together data from 

the Acridine orange/Ethidium bromide staining, flow cytometry and TUNEL assays clearly 

demonstrate that VR118 causes apoptosis in cancer cells. 

 

 

 

 

 

 

 

 

 

 

 



 

 

42 

 

Figure 7: VR118-induced apoptotic cell death was observed by Acridine orange/Ethidium 
bromide staining. 

MDA-MB231 cells grown on cover slips were treated with 6 µM of VR118 for 24 h. Cells were 

incubated with 100 µg/ml acridine orange and 100 µg/ml of ethidium bromide for 5 min. The 

cover slips were then analyzed by confocal microscopy. A) The cells showed chromatin 

condensation and fragmentation, clearly indicating that they are undergoing apoptosis. Extensive 

membrane blebbing was also evident. Magnification is 400X. Representative images from three 

independent experiments are shown. B) 100 cells were counted from randomly selected field. 

Representative graph is the mean from three dependent experiments. 

Cells undergoing apoptosis are more granular than cells that are not. Live cells have a normal 

nucleus (green); early apoptotic cells have (bright green nucleus) shows condensed or 

fragmented chromatin and belbbing membrain; late apoptotic cells display condensed and 

fragmented (red or orange) chromatin. 
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Figure 8: Exposure to the VR118 shows a sign of apoptotic cell death in MCF7 cells. 

MCF7 cells grown on glass cover slips were treated with VR118 for 24 h and followed by 

staining with acridine orange/ethidum bromide. A) MCF7 cells treated with VR118 (4 µm) 

showed morphology characteristics to apoptosis, including cell shrinkage and membrane 

blebbing. MCF7 cells exposed to VR118 for 48 h showed chromatin degradation in the cells, 

compared to non-treated samples. B) 100 cells were counted from randomly selected field. 

Representative graph is the mean of three dependent experiments. 
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Figure 9: Cell cycle analysis of MDA-MB231 cells exposed to VR118. 

Data shown is flow cytometry profiles of MDA-MB231 cells treated with 4 µM or 6 µM or 10 

µM of VR118. Cells were collected at scheduled timepoints, post-exposure to VR118, fixed 

overnight in 75% ethanol, and then stained with PI solution. Exposure to high concentrations of 

VR118 resulted in an increase of sub-G1 cell population indicating that VR118 induces 

apoptosis. The percentage for the cell cycle distributions of cells was estimated by gating for the 

fluorescent intensity corresponding to the amount of DNA in each event. Gates were adjusted 

with respect to non-treated cells. X-axis represents the DNA content stained with PI. Y-axis 

corresponds to the number of cells. The amount results shown are representative of three 

independent experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

47 

 

 

Non-­‐treated 24	
  h 48	
  h 72	
  h

MDA-­‐MB231	
  cells	
  	
  treated	
  with	
  VR118

4μM

6μM

10μM

Ce
ll	
  
nu

m
be

r

DNA	
  content
 

 

 

 

 

 

 

 

 

 



 

 

48 

 

 

Figure 10: The effects of VR118 and Quinacrine on the MCF7 cell cycle progression. 

Data shown is flow cytometry profiles of MCF7 cells, treated with IC50 concentration of VR118 

and Quinacrine. Cells were harvested for 72 h post-exposure to VR118, fixed overnight in 75% 

ethanol, and then stained with PI solution for the analysis of DNA content. Exposure to VR118 

resulted in the increase of sub-G1 population, indicating that the compound induces apoptosis in 

MCF7 cells. In contrast, Quinacrine did not induce apoptosis but resulted in cell cycle arrest in S 

phase. The percentage shows cell cycle distributions of cells for each plot as estimated by the 

gating for the fluorescent intensity corresponding to the concentration of DNA in each event. 

Gates were adjusted with respect to sham-treated cells. X-axis represents the DNA content 

stained with PI. Y-axis corresponds to the number of cells. Data shown are representative of the 

mean of three independent experiments. 
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Figure 11: Detection of DNA fragmentation in MDA-MB231 treated cells by a TUNEL 
assay. 

A TUNEL assay measures and quantifies apoptosis by labeling and detecting DNA strand breaks 

in individual cells. A TUNEL assay was carried out by an In Situ cell death Detection kit, 

supplied Fluorescien. The first row shows untreated control cells. The second row shows 

recombinant DNase I (3 µ/ml) treated sample used as positive controls. The third row shows 

MDA-MB231 cells treated with VR118 at 6 µM. Both treated cells and control samples were 

analyzed for the induction of apoptosis after 24 h. MDA-MB231 cells treated with VR118 

underwent rapid apoptosis (35%) compared with untreated control cells (2%). A) The images of 

TUNEL positive cells were captured by a confocal microscope (×400). B) 100 cells were 

counted for each sample and triplicate samples were used. 
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Figure 12: Induction of DNA fragmentation in MCF7 cells after 48 h post-treatment with 
VR118 (4 µM). 

MCF7 cells were treated with VR118 as described in Material and Methods. Cells were 

examined with a TUNEL assay kit to determine apoptosis. Apoptotic cells were visualized by 

confocal microscopy. Triplicate samples were used for both treated and untreated control cells. 

Findings from the TUNEL assay revealed a delay in the process of apoptosis in MCF7 cells. A) 

The images of TUNEL positive cells were captured by a confocal microscope (×400). B) 100 

cells were counted for each sample and triplicate samples were used. 
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Molecular Pathways Involved in VR118 Mediated Apoptosis 

To further understand the underlying molecular mechanisms through which VR118 induces 

apoptosis, Western blotting analysis was performed to analyze important molecular markers 

responsible for apoptosis. Findings revealed that apoptosis is dependent on the mitochondria-

dependent signaling pathway. Findings also revealed that the expression levels of pro-apoptotic 

markers such as Bad and Bax increased significantly in cells undergoing apoptosis. Further 

findings also revealed that VR118 releases cytochrome c and activates PARP to induce apoptosis 

in cancer cells. 
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Figure 13: VR118 induced apoptosis by downregulating anti-apoptotic proteins and 
upregulating pro-apoptotic proteins in MDA-MB231 cells. 

Whole cell lysates were prepared after treating MDA-MB231 cells with 6 µM of VR118 for 

24 h, 48 h, and 72 h. The levels and cleavage status of proteins were analyzed by Western 

blotting using antibodies specific to Bcl-2, Bcl-xL, Bad, Bax, cytochrome C and PARP-1. A) 

Expression levels of the anti-apoptotic proteins Bcl-2 and Bcl-xL were significantly decreased. 

However, that of cytochrome C, Bad, and Bax pro-apoptotic proteins increased in a time-

dependent manner. B) PARP-1 plot shows the full-length PARP (116 kDa) and the larger 

fragment (85kDa) of apoptotically cleaved products. GAPDH and β-tublin were used as a 

loading control. Results are representative of two separate experiments. 
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Figure 14: VR118 reduced the level of the anti-apoptotic proteins, and increased pro-
apoptotic proteins in MCF7 cells. 

MCF7 cells (70% confluent) were treated with two different concentrations of VR118 for 24 h. 

Cells were harvested and cell lysate was prepared at 24 or 48 h timepoint. Proteins, separated in 

10% SDS–PAGE, were transferred to a PVDF membrane. The membrane was probed with anti-

Bax, anti-Bcl-2,  anti Bad, and anti-p53  antibodies according to the manufacturer’s protocol. 

The GAPDH served as a control. Data are the representative loading of two different 

experiments. 
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Figure 15: MCF7 cells treated with VR118 released cytochrome c and activated PARP. 

MCF7 cells were treated with IC50 value (4µM) of VR118. Cells were harvested and cell lysate 

was prepared at 24, 48, 72 h timepoint. Proteins, separated in 8% SDS–PAGE, were transferred 

to a PVDF membrane. The membrane was probed with anti-PARP-1, anti-cytochrome c. The 

GAPDH or β-tubulin used as loading control. Data are the representative loading of two different 

experiments. 
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Chapter 4 

4 DISCUSSION 

Given the heterogeneous nature of cancer and the complex processes involved at cellular and 

molecular levels, the need for effective cancer cell specific targeted therapy remains. Moreover, 

targeting cell signaling pathways that can alter cellular functions in cancer cells is an ideal area 

of target for the development of new anticancer drugs. Current research shows that Quinacrine is 

one such drug that has the capability to kill cancer cells by inducing apoptosis through selective 

activation and inhibition of cell signaling pathways. Recent studies showed that 9AA derivatives 

have proven to be effective against renal carcinoma cancer cells and are reported to affect two 

cellular pathways, by selective inhibition and activation of NF-κB and p53 pathways, 

respectively (Gurova et al., 2005). Although Quinacrine has proven to effectively kill cancer 

cells by targeting specific pathways, studies in vitro showed that it lacks the ability to 

differentiate between malignant and non-malignant cells (Table 1) (Custer, 1946; Gaskill and 

Fitz-Hugh, 1945). Given the advantages and disadvantages of Quinacrine, there is a need for 

developing a compound that has low levels of drug toxicity and cancer cell specificity in 

inducing apoptosis. 

Therefore, to develop a potent and cancer-specific drug, Quinacrine was modified by a hybrid 

pharmacophore approach in Dr.Lee’s lab. This study is based on the hypothesis that the 

anticancer properties of VR118 would be better than the lead compound Quinacrine. The present 

study was performed to examine the effectiveness of the compound Quinacrine. I indeed found 

that compound VR118 more selectively targets cancer cells, compared to its parent compound 

Quinacrine. 

In order to justify the cancer cell-specific targeting nature of VR118, I executed a wide range of 

experiments on malignant cancer cells lines (MCF7, MDA-MB231, MDA-MB468, and HeLa) 

and non-malignant cell lines (184B5 and MCF10A), which led me to make a conclusion that 

VR118 is potentially better than Quinacrine as an anti-cancer agent. In this study, I 

systematically investigated the antiproliferative potential of VR118 in malignant cell lines and 

clarified the mechanism of action through which VR118 kills cancer cells. First, I evaluated the 
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anticancer effect of VR118 on malignant cells. I then confirmed the cytotoxic activity of VR118 

and Quinacrine on malignant and non-malignant cells. Further, I examined the possible 

mechanisms involved in cancer cell killing process of VR118 such as p53 level, cytochrome c, 

and Bax/Bcl-2 ratio and studied the proteins involved in the regulation of apoptosis. Based on the 

findings, I came to the conclusion that VR118 induced apoptosis in malignant cells by causing 

upregulation of p53, resulting in increase in Bax/Bcl-2 ratio, triggering the release of 

cyctochrome c from the mitochondria favoring apoptosis. VR118 exhibited the following cancer 

cell-specific killing properties: a) Anti-proliferative activity and cytotoxicity in a cancer-specific 

manner; b) the major mode of cell killing is by apoptosis; and c) apoptosis is induced by altering 

the Bcl-2/Bax ratio. 

4.1 VR118 suppresses tumor cell proliferation 

One of the principle characteristics of cancer cells is their ability to proliferate uncontrollably, 

leading to tumorigensis. Although Quinacrine exhibited significant anti-proliferative activity 

against cancer cells, its derivative VR118 exhibited generally higher anti-proliferative activity on 

malignant cells with different genetic backgrounds. In this study, I systematically investigated 

the antiproliferative effect of VR118 on malignant cells and noticed that VR118 significantly 

inhibited the proliferation of cancer cells. This effect of VR118 has been demonstrated by both 

SRB and clonogenic assays. VR118 showed significant anti-proliferative effect on MCF7, 

MDA-MB468 and HeLa cells (Fig. 2 and Fig.3). 

Moreover, Clonognic ssays revealed that VR118 exhibited a dose dependent relationship with 

the rate of colony formation decreasing with an increase in concentration of VR118 (Fig.4). The 

inhibition of many different cell lines with different genetic background suggests that VR118 

affects a common mechanism in malignant cell lines that is required for their growth and 

proliferation. Hence, it can be inferred that VR118 exhibits significant anti-proliferative effect on 

malignant cells in a dose dependent manner and has the potential to be a potent anti-cancer drug. 

4.2 VR118 is More Cytotoxic to Malignant Cells than Non-Malignant cells 

The most important criteria for any compound to qualify as a potent drug is the ability to prevent 

toxic effects or side effects on the normal cells of the body. Although Quinacrine has proven 
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successful to interfere with the ability of cancerous cells to divide and reproduce; it causes 

significant damage to normal healthy cells along with cancer cell lines. My observations from 

the study not only showed that VR118 exhibits significant efficacy in killing cancer cells, but 

also showed that it does not have any noticeable effect on non-cancer cells. One of the negative 

aspects of Quinacrine is its toxic effect on non-cancerous cells. In this analysis non-malignant 

breast cancer cells lines namely 184B5 and MCF10A cell lines underwent stress and toxic effects 

when treated with Quinacrine at concentrations applicable for malignant cell lines. In 

comparison, VR118 clearly indicated that it was non-toxic on non-malignant cell lines such as 

184B5 and MCF10A, at least at lower concentrations (Fig.2, Table.1 p < 0.05 vs. Non-cancer 

cells). 

This showed that VR118 clearly differentiates malignant cells from non-malignant cells in vitro 

and demonstrated significant anti-proliferative activity specific to malignant cell lines with 

different genetic backgrounds. The experiment findings also showed that the antiproliferative 

effect of VR118 is partly influenced by the concentration of the drug and the characteristics of 

the cell lines examined. This definitely qualifies VR118 as a potential anti-cancer therapeutic 

drug; since it meets the basic requirement of an ideal drug that is; non-toxicity to non-cancer 

cells. In addition, flow cytometry results revealed that low concentrations of VR118 had no 

significant effect on cell cycle progression in the non-malignant cell line 184B5, but had 

substantial effect on the cell cycle progression in cancer cells. This cancer specific property of 

VR118 without causing substantial harm to normal cells makes it an ideal drug for cancer 

treatment. Although VR118 demonstrated little effect on cell cycle progression and proliferation 

of normal cells in vitro, the true capability of VR118 to selectively kill cancer cells with no 

cytotoxicity towards normal cells will only come from experiments in animal systems. Testing 

the efficacy and specificacy of VR118 in vivo is important because VR118 could possibly have 

physiological effects in living systems that cannot be adequately assessed using cell lines. 

4.3 VR118 Increases Sub-G1 Cell Population in Cancer Cells 

The control of the cell cycle is a key regulatory mechanism for cell growth and proliferation 

(Goranav et al., 2009). Therefore, targeting the cell cycle is one of the key driving forces behind 

the development of new anticancer drugs. Normal human cells respond to DNA damage by 
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activating cell-cycle checkpoints where cells try to repair DNA by temporarily arresting DNA 

replication or cell division (King and Cidlowski, 1998; Pellegata et al. 1996). Temporary 

arresting of cell cycle progression is important for maintaining the genetic integrity (Thompson, 

1995). In circumstances where the DNA damage is irreversible, cells may undergo apoptosis to 

prevent the development of mutated DNA. Therefore, to understand the mechanism through 

which VR118 induced apoptosis, I performed a series of experiments on breast cancer cells and 

non-malignant cells. 

My experimental findings not only supported the cancer cell specificity of VR118, but also 

clarified the mechanism of action through which VR118 induces apoptosis in different two 

malignant cell lines. The apoptotic function in normal mammalian cells is generally regulated by 

p53, a tumor suppressor. However, in tumor cells, the p53 is often mutated. When  MCF7 cancer 

cells are treated with VR118, results showed that it induced apoptosis in cancer cells by causing 

upregulation of p53 slightly. On the contrary, anticancer therapies such as chemotherapeutic 

drugs and radiation therapy kill tumor cells by causing cell cycle arrest at the G0/G1, S, or G2/M 

phase often in a p53 independent manner (Chau and Figg 2009; Murray, 2004; Torres and 

Horwitz, 1998). Cell death independent of p53 is not a perfect process because the arrest of cell 

cycle may cause side effects including miss repair of DNA damage. Therefore, chemotherapeutic 

drugs causing cell cycle arrest may result in mutations (Pietenpol and Stewart, 2003). 

Nonetheless, existing evidence suggests that new generation of drugs can induce apoptosis 

through the inhibition of specific cell signaling pathways (Hsu et al., 2005).  Moreover, 

experimental findings revealed that VR118 does not cause arrest of cell cycle progression prior 

to the induction of apoptosis. 

To determine the apoptosis inducing effect of VR118 and Quinacrine, a series of experiments 

studying the cell cycle and apoptosis morphology were performed using Acridine orange/Ehtium 

bromide staining. In the present study, Quinacrine seemed to induce apoptosis in MCF7 cells 

through cell cycle arrest in S phase (Fig. 10). Similar mechanism of action of parent compound 

Quinacrine was reported by Preet et al. (2012) in breast cancer cells (MCF7) and by Wu et al. 

(2012) in gastric cancer cells (SGC-7901), where Quinacrine exhibited cell cycle arrest by 

significantly decreasing the cell populations in G0/G1 and G2/M phases and inducing apoptosis 
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(Preet et al., 2012; Wu et al., 2012). Contrary to these findings, a study by Gurova et al. showed 

that Quinacrine activated the p53 pathway in renal carcinoma cancer cells without inducing 

DNA damage at low concentrations. Moreover, Gurova et al. (2005) reported that Quinacrine 

stabilized the p53 protein by preventing its ubiquination without phosphorylation suggesting 

apoptosis induction by activating p53-dependent signaling pathways in tumor cells (Gurova et 

al., 2005). Although Quinacrine seemed to cause cell cycle arrest in my experiments, further 

analysis is required to study if the mechanism through which Quinacrine induces apoptosis in a 

dose-dependent manner in malignant cells. 

Unlike Quinacrine, MCF7 cells treated with VR118 showed a sub-G1 peak indicating that the 

compound induces apoptosis in MCF7 cells without causing cell cycle arrest. This shows that 

VR118 may not induce activation of a damage-mediated signaling pathway, unlike its parent 

compound and other chemotherapeutic agents (Gorbachev et al., 2007; Rosenzweig et al., 1997; 

Vainio et al., 1997). Instead, VR118 seems to induce apoptosis through the activation of cell 

signaling pathways. In normal cells, the stability of a genome is maintained, in part, by p53 (also 

known as tumor suppressor). When a normal cell is subject to stress, p53 senses DNA damage 

and determines if the cell should undergo DNA repair by temporarily arresting the cell cycle in 

G1 phase or trigger apoptosis if the damage is irreversible. However, in tumor cells the genetic 

stability can be lost due to defective p53. Once the tumor suppressing function of p53 is lost, it 

leads to loss of the G1 checkpoint where critical DNA repair can be activated to avoid further 

damage by continuous DNA replication (Pellegata et al. 1996). DNA G1 phase is an ideal phase 

for inducing apoptosis by p53 as it increases the expression of pro-apoptotic proteins (Bax) in 

this phase favoring apoptosis (Pellegata et al. 1996). VR118 induced apoptosis in G1 phase 

appears to be independent of cell cycle arrest (Piazza et al., 1997). These findings indicate 

VR118 may be a much safer anticancer drug than Quinacrine. 

Further, the analysis of the FACS data clearly showed that VR118 increased the percentage of 

cells undergoing apoptosis in MDA-MB231 and MCF7 cells in a dose-dependent manner. 

According to the observations made from Acridine/Ehtium bromide staining experiments, the 

activation of apoptosis in MCF7 cells by VR118 is substantially delayed, compared to that in 

MDA-MB231. For example, the substantial amount of sub G(1) peak was visible only after 48-
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96 h in MCF7 cells treated with VR118. Although morphological markers for apoptosis like 

shrinkage and membrane blebbing were evident in MCF7 cells within the first 24 h of post 

exposure to VR118, chromatin degradation was not in pace with that of MDA-MB231 cells. 

Similar findings were observed in the TUNEL assay, where MCF7 cells demonstrated delayed 

DNA fragmentation to at least 48 h post-VR118 (Fig.12). 

The delay in apoptosis in MCF7 cells can be attributable to the fact that MCF7 cells lack caspase 

3, which is an essential component for most apoptotic signaling pathways (Janicke et al., 1998). 

In MCF7 cells, the functional 47-bp inside the exon 3 of the CASP-3 gene, which is very 

important to perform the function of apoptosis, is deleted (Janicke et al., 1998). However, a few 

studies report that the apoptotic process in MCF7 cells is independent of caspase 3, because 

MCF7 cells undergo apoptosis through the formation of apoptotic bodies through biophysical 

alterations. Kawaga et al performed a study to investigate the role of caspase-3 in Bax-induced 

apoptosis using parental MCF7 cells deficient of caspase-3 and cells transfected with the 

caspase-3 gene (MCF7/Casp3). Findings from the study showed parental MCF7 cells deficient of 

caspase-3 failed to undergo morphological nuclear and DNA fragmentation, whereas clones 

transinfected with caspase-3 demonstrated intact nuclear dismantling and DNA fragmentation 

(Kagawa et al., 2001). Researchers of the study also reported that deficiency of caspase-3 did not 

prevent the cells from undergoing Bax-induced apoptosis, but aided in blocking Bax-mediated 

nuclear fragmentation (Kagawa et al., 2001). To further understand the process of apoptosis in 

caspase-3 deficient MCF7 cells, reseachers Liang et al. (2001) treated both mock- and bcl-2-

transfected MCF-7 cells with DNA-cleaving antimitotic agent, neocarzinostatin (NCS). 

Researchers noticed that MCF7 cells underwent apoptosis through release of cytochrome c from 

the mitochondria resulting in decreased levels of Bcl-2 and increased levels of Bax. To further 

understand the process, researchers used caspase inhibitors with overlapping specificities and 

found that MCF7 cells underwent apoptosis through sequential activation of caspases 9, 7 and 6 

(Liang et al., 2001). Similar findings were reported by Janicke et al in 1998 that apoptosis 

inducers such as transforming growth factor-β1, Fas, and TNF or staurosporine activate caspases 

in MCF cells (Janicke et al., 1998). 

Furthermore, in a study performed to examine the anticancer effects of dracorhodin perchlorate 
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(DP), Yu et al. (2013) reported that the treatment of MCF7 cells with DP induced apoptosis 

through translocation of apoptosis inducing factor (AIF) from the mitochondria to the cytoplasm. 

AIF causes the release of cytochrome c from mitochondrion which further activates caspase 3 

inducing apoptosis. However, Yu et al. state that apoptosis in MCF7 cells is independent of 

caspase-3, but dependent on AIF (Yu et al., 2013). Although researchers attribute different 

mechanisms responsible for inducing apoptosis in caspase-3 lacking MCF7 cells, further analysis 

is required to fully understand the mechanism through which VR118 and Quinacrine induce 

apoptosis in MCF7 cells. Moreover, there is scarcity of published data to understand the effect of 

Quinacrine and its derivatives on cell-cycle progression. 

It can be inferred from these observations that VR118 mediated apoptosis is caspase 3 

independent, as MCF7 cells underwent apoptosis. From these observations, it can also be stated 

that VR118 mediated apoptosis in MCF7 cells is p53 dependent. Additionally, it provides 

conclusive evidence that VR118 induces apoptosis without any fascinations for any particular 

stage of the cell cycle. The process of apoptosis therefore deserves much attention due to obvious 

reasons of efficacy of such a drug capable of inducing it. Further, available literature suggests 

that Quinacrine induces apoptosis in breast cancer cells through upregulation of p53. 

4.4 VR118 Activates Apoptosis by Upregulating Pro-apoptotic Signals and 
Downregulating Anti-apoptotic Signals 

Having determined that VR118 can induce apoptosis by specifically targeting cancer cells, I next 

focused on understanding the cellular mechanism through which VR118 induces apoptosis. 

Apoptosis is a major thrust area of anticancer therapy, and experimental findings revealed that 

VR118 is capable of inducing the process. However, understanding the underlying molecular 

mechanisms through which VR118 induces apoptosis is important. To gain insight into the 

molecular mechansim, I examined several proteins involved in the regulation of apoptosis. Data 

from the experiments showed that VR118 causes upregulation of pro-apoptotic protein Bax 

resulting in the release of cytochtome c from the mitochondria. At the same time, VR118 

significantly downregulated anti-apoptotic proteins Bcl-2 and Bcl-xL. PARP protein was also 

cleaved in response to VR118. 

The change in ratio between Bax and Bcl-2 caused by VR118 possibly stimulates the release of 
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cytochrome c from mitochondria into the cytoplasm, similarly to Quinacrine (Duprez et al., 

2009; Hockenbery et al., 1990; Orzáez et al., 2009). The release of cytochrome c from the 

mitochondria can occur either by the death-receptor dependent or extrinsic apoptotic pathway, 

and a death-receptor independent or intrinsic apoptotic pathway (Schuler et al., 2000).  

Cytochtrome c released into the cytosol then interacts with apoptotic protease activating factor 

(APAF-1) in the presence of ATP and leads to the activation of caspase-3, and PARP which is an 

important activator of caspase independent apoptotis (Schuler et al., 2000; Tsann-Long et al., 

1995). These experimental findings further support the key role, p53 plays in VR118 induced 

apoptosis; however,  there may be other mechanisms through which VR118 induces apoptosis. 

4.5 Summary and Conclusions 

In this project, I have investigated the anticancer properties of compound VR118 which is 

derived from Quinacrine using a hybrid pharmacophore approach. In summary, it is clearly 

evident from the experimental findings that the Quinacrine derivative VR118 can be a potent 

anticancer therapeutic drug given its idealistic characteristics such as reduced toxicity on non-

malignant cells; and control on cell proliferation and induction of apoptosis in a substantially 

tumor-specific manner. Given the advantages of VR118 in specifically targeting cancer cells, 

further research and development are warranted. 

4.6 Future Direction 

Although evidence from the experiments clearly indicates that VR118 induces apoptosis in 

cancer cells by acting on the mitochondrial pathway; there appears to be another mechanism 

through which VR118 induces apoptosis in MCF7 cells. Therefore, further studies on caspases 9, 

7 and 6 may need to clarify the VR118-induced apoptotic pathway. Furthermore, examination of 

its efficacy should be verified by in vitro studies. 
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