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Abstract

Dimerized antiferromagnetic spin-1/2 chains and ladders demonstrate quantum crit-

ical phase transition, the existence or absence of which is dependent on the dimer-

ization and the dimerization pattern of the chain and the ladder, respectively. The

gapped phases can not be distinguished by the conventional Landau long-range

order parameters. However, they possess non-local topological string order param-

eters which can be used to classify different phases. We utilize the self-consistent

free fermionic approximation and some standard results for exactly solved models

to analytically calculate the string order parameters of dimerized spin chains. As a

complement parameter the gapped phases possess the topological number, called the

winding number and they are characterized by different integer values of the wind-

ing number. In order to calculate the string order parameters and winding numbers

in dimerized spin chains and two-leg ladders we use analytical methods such as the

Jordan-Wigner transformation, mean-field approximation, duality transformations,

and some standard results available for the exactly 1D solve models. It is shown

that the winding number provides the complementary framework to the string order

parameter to characterize the topological gapped phases.
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Chapter 1

Introduction

The theoretical interest in the field of low-dimensional quantum spin systems has

emerged as a central area of research in condensed matter for more than a decade.

The rigourous findings and investigations have proved that it is an active field in

the theory of quantum materials. Most of their understood properties have been

investigated by using analytical methods such as bosonization [1] and mean field

approach [2] for the studies of different spin models, and also by various numerical

techniques [3, 4, 5, 6, 7]. The initial review of these systems can be found in [8, 9].

The main purpose of this study is to understand the issues of the phase transi-

tions in low-dimensional quantum spin systems and investigate hidden topological

orders in the gapped phases in the dimerized spin chains and Heisenberg ladders

with antiferromagnetic couplings. This chapter starts with the brief introduction of

low dimensional quantum spin systems and main quantities that are calculated in

the thesis.
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1.1 Background

1.1.1 Spin Algebra

The intrinsic angular momentum of the fermionic electron is identified by the spin

quantum number s = 1/2. In some solid materials the atoms acquire a total mag-

netic moment from the configuration of the electrons but this is not possible in

many strongly correlated systems. However, the collective behaviour of such a

many-particle system with strong correlations can be understood by neglecting the

other electronic degrees of freedom and thinking in the terms of the physics of the

localized magnetic moments [10].

The spin operators Sx
l , S

y
l and Sz

l can be readily shown to satisfy the commu-

tation relations [11] (with ~ = 1)

[
Sα
l , S

β
m

]
= iδlmϵαβγS

γ
l (1.1a)

and the anti-commutation relations,

{
Sα
l , S

β
m

}
=

1

2
δlmδαβ (1.1b)

where ϵαβγ is the total antisymmetric Levi-Civita tensor. The spin operators on

different sites commute and on the same site anti-commute. In the spin-1/2 physics

there are two state vectors given by 2 possible states of the particle. They are

generally called ”spin-up” and ”spin-down”, and written as ”spin-up”=| ↑⟩ =

1

0


and ”spin-down”=| ↓⟩ =

0

1

. The components of the single particle spin operators

2



are defined in terms of Pauli matrices. They are; Sα
i = 1

2
σα
i with α = x, y, z and

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , and σ3 =

1 0

0 −1

 (1.2)

are Pauli matrices. Again, in the N particle system the components of the total

spin operator S are the sum of single particle spin operators. i.e., Sα =
∑N

i=1 S
α
i .

Now we consider a two particle system with each of two spins (↑ and ↓). There

are 4 possible states found as the tensor product of 2 and 2 independent states of

two particles;

(| ↑⟩, | ↓⟩)⊗ (| ↑⟩, | ↓⟩) = | ↑⟩ ⊗ | ↑⟩; | ↑⟩ ⊗ | ↓⟩; | ↓⟩ ⊗ | ↑⟩; | ↓⟩ ⊗ | ↓⟩ (1.3)

Thus we find the 4-dimensional state space of the two particle system. Therefore by

extension of this reasoning we can see that the dimension of the N-particle spin space

for spin-1/2 is 2N . To represent the 4- dimensional state space, gamma matrices are

constructed as a tensor product of Pauli matrices [12, 13]. They are given by:

Γ1 = σ1 ⊗ 1 Γ2 = σ2 ⊗ 1 Γ3,4,5 = σ3 ⊗ σ1,2,3 (1.4)

and satisfy the algebraic relations {Γa,Γb} = 2δa,b and Γab =
1
2i
[Γa,Γb].

1.1.2 Physical Properties of Spin Chains

It is known that the intuition which derived from the classical vision of spin is

surprisingly different with the outcomes from the quantum mechanical models. In

order to understand such peculiarities the spin-1/2 chain may be an example of

one dimensional quantum systems. Here we provide only brief outlines of the most

3



important properties, further detail of the study can be found in [14]

In general, we assume the localized spins interact via nearest neighbour ex-

change, called exchange interaction. Rather it arises as a result of the Pauli exclusion

principle for the indistinguishable particles. For fermions, it demands that the total

wavefunction Φ(r1, r2, σ1, σ2) = ϕ(r1, r2)ψ(σ1, σ2) must be antisymmetric under the

simultaneous exchange of both space wavefunction ϕ(r1, r2) and spin wavefunction

ψ(σ1, σ2) of the particles [15]. Thus the symmetric and anti-symmetric spin wave-

functions provided different energy levels so that the difference in energy is added

into the interaction energy.

The Hamiltonian that provides the information of spin-spin interaction is the

spin Hamiltonian. It is also popularly known as Heisenberg Hamiltonian and it is

given by

H =
∑
ij

Jij SiSj (1.5)

where Jij are known as exchange coupling constants and Si denotes total spin op-

erators at site i. In the standard Heisenberg Hamiltonian only nearest neighbour

interaction is taken into account. Thus Jij = J = constant. If J > 0, the models

favors antiferromagnetic orderings with the antiparallel alignment of spins. If J < 0,

the model favors ferromagnetic orderings with all spins aligned along the same axis.

The Heisenberg spin chain can be taken as an example of a spin system to discuss

spin algebra. The Hamiltonian of the system for the nearest neighbour interaction

between the sites i and i+ 1 is expressed as

H =
N∑
i=1

[
Jxy
(
Sx
i S

x
i+1 + Sy

i S
y
i+1

)
+ JzS

z
i S

z
i+1

]
(1.6)

where N is the number of sites in the chain. In the isotropic chain with uniform

4



J

i+1I
.

←

←←←

←

Figure 1.1: Heisenberg spin chain. The arrows represent spins at each site i and the
solid line represents the exchange coupling J .

antiferromagnetic couplings Jxy = Jz then long range order is prevented due to

the strong quantum fluctuations [16]. This spin chain is illustrated in Fig. 1.1.

When Jz = 0 the model becomes the XY model and it is exactly solvable using the

Jordan-Wigner transformation [17] . The details on such transformation are given

in chapter 2.

For analysing the Hamiltonian of spin models it is convenient to use the raising

and lowering spin operators, defined as follows:

S±
i = Sx

i ± iS
y
i (1.7)

which obey the following canonical anti-commutation relations;

{
S−
i , S

+
j

}
= δij (1.8a)

{
S−
i , S

−
j

}
=
{
S+
i , S

+
j

}
= 0 (1.8b)

For the uniform spin- 1/2 chain with even number of spins it is known that the

ground state has zero spin (singlet state) [18], i.e, ⟨S⟩ = 0. This non-degenerate

state exhibits gapless excitations, which means no energy is required to excite the

spin. The other important spin system is the gapped spin system where the gap is

said to be the difference between the energies of lowest excited state and the ground

5



state. Thus, the gap energy (∆) is the minimum energy required to excite the spin

from the ground state to first excited state.

The dimerized spin system may be one example of a gapped system in which

dimerizarization refers to the modulation of the exchange coupling J along the chain

by the parameter δ. Here δ is the dimerization parameter in the range between 0

and 1. Thus the coupling of a Heisenberg chain with dimerization has stronger and

weaker bonds alternation with

J → J(1 + (−1)iδ) (1.9)

where i is the number of the site. Such a Heisenberg model is illustrated in Fig.

1.2. The dimerized Heisenberg model is technically very difficult and there are still

J(1- )δ J(1- )δ

J(1+ )δJ(1+ )δ

←←←

← ←

Figure 1.2: The dimerized spin chain. The arrows represent the spin at each lattice
site, and thick and thin lines represent the modulated exchange couplings J(1 + δ)
and J(1− δ), respectively.

some problems left on the way of a exact solution. So, we illustrate the important

results by taking the XY-limit [14]. This model allows us to map the spin system

onto free spinless fermions such that the free energy is

f(T, δ) =
F

N
= − ln 2

β
− 2

πβ

∫ π
2

0

ln cosh

(
β

2
ϵ(k)

)
dk (1.10)

with the spectrum [19, 20]

ϵ(k)± = ±J
√

cos2 k + δ2 sin2 k (1.11)

6



By looking at Eq. (1.11), we realize that the XY model has the gap in its spectrum,

and the gap ∆ = Jδ has linear dependence on the dimerization.

1.1.3 Haldane Conjecture

In 1983, Haldane conjectured that the ground state of the spin-1 and spin-1/2 anti-

ferromagnetic Heisenberg spin chains were fundamentally different. He conjectured

that the spin-1 system is gapped whereas spin-1/2 system shows the gapless be-

haviour [21]. This conjecture has been widely accepted in the research field even

though the rigorous proof has not been found yet. It is, however, supported by the

large number of theoretical and numerical works.

1.1.4 Physical Properties of Spin Ladders

Spin ladders are low dimensional systems in which inter-chain coupling is taken into

account in addition to the intra-chain coupling J on the finite number of interacting

spin chains. This coupling is also called rung coupling and will be denoted by

J⊥. Thus, the additional interaction rung term can be represented in the form of

Hamiltonian as below:

Hrung = J⊥
∑
α,β,i

Si,αSj,β (1.12)

where α and β are chain indices, and i is the site index. Hence, the Hamiltonian of

spin-1/2 anti-ferromagnetic Heisenberg m-leg ladder is expressed as follows:

H =
N∑
i=1

[
J

m∑
α=1

Sα(i)Sα(i+ 1) + J⊥

m−1∑
α=1

Sα(i)Sα+1(i)

]
(1.13)

with total number of spins N × m. Here α and i are the chain and site indices,

respectively. A two-leg spin ladder is shown in Fig. 1.3.

7



TJ

J

←←←

←

←

←

←

←

←←

Figure 1.3: A two-leg spin ladder. The arrows represent spins at each sites of ladder,
solid and dashed lines represent the intra-chain coupling J and inter-chain coupling
J⊥, respectively.

One of the most important properties of the spin ladder is the existence or

absence of spin gap, and it depends only on the number of legs in the ladder. The

spin excitations are gapped for the even-legged ladders and gapless for odd-legged

ladders [8, 22]. To understand such a peculiar property of ground state of spin-1/2

ladder, we take a two-leg ladder in the strong rung coupling limit, i.e., J⊥ ≫ J . Then

the spins are locked in rung by forming the group of singlets. From the spectrum of

two spin J
−→
S1
−→
S2 their lowest energy singlet state is separated from the triple state

by the energy gap J . Hence, a finite energy (gap) is needed in the two-leg ladder to

break the rung singlet. In addition, new featuring physics appears when legs in the

ladder are dimerized. The properties of dimerized two-leg ladder are quite different

in the different dimerization patterns. In chapter 3 we will discuss the details of

such spin system by determining the quantities such as ground state energy, energy

spectrum, energy gap, etc.

On the other hand, the three leg spin-1/2 ladder can be reduced to the single

spin-1/2 chain, which is always gapless [14]. This odd/even alternation between

gapped and gapless ladders is highly reminiscent of Haldane conjecture for the half

integer and integer spin chains. The even legged spin-1/2 ladder with strong rung

coupling is represented as equivalent to the spin-1 chain [23].

8



1.2 Quantum Phase Transitions

1.2.1 Symmetry Breaking and Order Parameters

A general example of phase transitions is the change of states (solid, liquid and

gas) of matter. In such transitions latent heat plays a vital role to modify the

crystalline structure. In terms of crystal modifications, the crystal lattice suddenly

rearranges and converts into another state of matter. These are called first order

phase transitions. In a phase transition the symmetry that characterises the phase

of one state, is not present in the other phase. For example: fluid-solid phase

transition. In such transitions the fluids are said to have continuous translational

symmetries and they are broken into discrete translational symmetries in crystalline

solids.

Next example of the symmetry breaking at the transition point is the ferromag-

netic transition. At high temperature the thermal fluctuations keep ordered mag-

netic domains from forming resulting in zero magnetisation. If the temperature is

lowered below the Curie temperature Tc, the magnetic moments within the domains

start to align and a non-zero magnetisation appears. Here, the low-temperature fer-

romagnetic phase spontaneously breaks the spin-inversion symmetry. This type of

transition of symmetry-breaking is called second order phase transition or thermal

phase transition. These previously mentioned two examples of phase transitions are

also called classical phase transitions.

The famous and commonly focused phase transitions are quantum phase tran-

sitions. These transitions occur between two quantum phases at zero temperature

due to the change of some parameters. Interestingly, the quantum systems have

fluctuations driven by the Heisenberg uncertainty principle even in the ground state
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[24]. The quantum Ising model can be taken as a suitable example to understand

such a phase transition. The Hamiltonian of the Ising spin chain in a transverse

magnetic field is given by

H = J
∑
⟨i,j⟩

Sz
i S

z
j + h

∑
i

Sx
i (1.14)

where J is the exchange coupling of nearest neighbour ⟨i, j⟩ spin interaction and h

is the external transverse magnetic field. By looking at Eq. (1.14) it is seen that

the ground state of the system can only depend on the ratio of parameters J/h.

In the limit J/h ≫ 1 the first term of Eq. (1.14) dominates and the ground state

is magnetically ordered. Thus the magnetisation ⟨Sz⟩ appears in this limit. It is

an example of the order parameter. Next, we consider the opposite limit J/h ≪ 1

then we find that the ground state is qualitatively different. At this limit the second

term of Eq. (1.14) dominates by resulting in a non-zero magnetisation ⟨Sx⟩ for the

system. Here we find the energy gap ∆ ∼ |J − h| from the spectrum calculated

in [24, 25]. Thus the spin system is critical at J = h and gapped otherwise. The

different gapped phases on either side of the critical point J = h are characterized

by the order parameter. It gives the measure of the ferromagnetic order present in

each phase. An order parameter of the quantum system is zero in the disordered

phase and grows continuously to its maximum value in its ordered phase.

1.2.2 Landau’s Theory of Second Order Phase Transitions

In his history of second order phase transitions Landau postulated that the symme-

try of one phase is always higher than the other phase but that the symmetries of

the two phases are entirely unrelated in first order phase transitions. It is the most

widely used formalism to describe such phase transitions. Phase transitions are

10



characterized by the singularity of thermodynamical quantities such as thermody-

namic potential Φ. The order parameter grows continuously from zero at transition

point and it is small and uniform near the transition point. According to Landau the

thermodynamic potential near the transition point can be expressed as an expansion

over the order parameter [26]. It is given by

Φ(P, T, η) = Φ0 + Aη +Bη2 + Cη3 +Dη4 + ...... (1.15)

where A,B,C,D.... are functions of pressure and temperature, and couplings at

zero temperature. η is the order parameter near the transition point. Thus the

thermodynamic potential must obey all possible symmetries of the order parameter.

The thermal ferromagnetic transition in the Ising model introduced in the sec-

tion 1.2.1 is a suitable example . The system satisfies the spin-inversiton symmetry

in terms of magnetisation M as an order parameter. This means the free energy

f must be invariant under M → −M , i.e., only even powers are permitted in the

expansion of f . The free energy [27] is

f(T,M) = Φ0 +
1

2
a(T − Tc)M2 +

1

4
cM4 + ..... (1.16)

The stable states of the system are found by minimising the free energy. They are:

M =

 0 T > Tc

±
√

a(T−Tc)
c

T < Tc

(1.17)

The expression for the free energy gives two solutions for the nontrivial order param-

eter and the system will spontaneously choose only one, that’s why spontaneously

breaking the symmetry.

11



1.2.3 Critical Point Exponents

It is very important to know the behaviour of the spin system near the transition

point of the second order phase transition. The transition point is also called the

critical point and the behaviour of system at the critical point is called criticality.

The critical behaviour can be classified in terms of critical exponents. In thermal

phase transition the theory of critical exponents has been reviewed in [26, 28]. It is

also reviewed by Sachdev [24] in the case of quantum criticality.

We consider the function f(ϵ) of quantum system with coupling g where

ϵ =
g − gc
g

(1.18)

is a dimensionless variable which measures the distance from the critical point gc.

The system parameters such as magnetisation M(ϵ) and correlation length ξ can be

expressed in the same way. If the function is positive and continuous then we can

write the parameter

λ = lim
ϵ→0

ln f(ϵ)

ln ϵ
(1.19)

called the critical exponent. The notation of critical exponents of specific quantities

has been standardized. For example the critical exponents of correlation length ξ is

ν with the relation

ξ ∝| g − gc |−ν (1.20)

In addition the critical exponents of the order parameter, specific heat, and suscep-

tibility are β, α, and γ respectively. Here they are related via the scaling relations

[27]

α + 2β + γ = 2 (1.21a)

12



γ + 2β = dν (1.21b)

α + dν = 2 (1.21c)

where d is the system’s dimension. In case of short-ranged interactions the value

of critical exponent is determined by the number of components (dimension) of the

system. Therefore different systems can be categorized by the values of critical

exponents. This phenomenon is called universality [27]

1.3 Spin Duality Transformation

We define a one dimensional dual lattice of a system as a new lattice with its sites

located at the mid-points of the old lattice. Fig. 1.4 shows the dual and the original

lattices. Here we consider the σ and τ operators defined on the sites of the original

! σ Ʈσ

1 2 3 41' 2' 3'

Ʈ Ʈ !!
Figure 1.4: Real and dual lattice in 1D system adapted from Reference [29].

and dual lattice, respectively. Both operators σ and τ obey the Pauli spin algebra

[
σα
i , σ

β
j

]
= 2iδijϵαβγS

γ
i (1.22a)

and the anti-commutation relations,

{
σα
i , σ

β
j

}
=

1

8
δij. (1.22b)

They are related by the following dual transformations [29].

σx
j = τxj−1τ

x
j (1.23a)
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σy
j =

N∏
k=j

τ yk (1.23b)

This transformation σ → τ is called the spin duality transformation. The operators

σα
i and ταi with α = x, y, z; are 2× 2 Pauli spin matrices and N is the total number

of sites in the chain. By using the above relations and the Pauli matrix the operators

on the original lattice can be mapped onto the dual lattice operators and vice versa.

To verify the commutation relations in the dual space, let us take Eqs. (1.23a) and

(1.23b) and plug σ → S in terms of τ → S in Eq. (1.1b) to obtain

τxj−1τ
x
j

N∏
k=j

τ yk = −τ yj

(
N∏

k=j+1

τ yk

)
τxj−1τ

x
j (1.24)

where we have used the relation Sα
i = (1/2)σα

i . We use again the duality transfor-

mation (1.23a) and (1.23b) in the commutation relation (1.1a) and then plug it into

Eq. (1.24). This yields

τxj−1τ
x
j τ

y
j = −τ yj τxj−1τ

x
j (1.25)

From Eq. (1.25) we come to the following conclusion:

{τxj , τ
y
j } = 0 (1.26a)

if and only if, [
τxj−1, τ

y
j

]
= 0 (1.26b)

Eqs. (1.26a) and (1.26b) are anti-commutation and commutation relations, respec-

tively and they are satisfied by the τ operator in the dual lattice. Thus the mapping

of the operators on the direct lattice onto the operators on the dual lattice preserves

the correct anti-commutation relations.
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1.4 String Order Parameter (SOP)

The dimerized spin-1/2 systems, i.e., dimerized chains and ladders are special quan-

tum systems in which gap (mass) formation is not attributed to some local symmetry

breaking. This seems to go against the postulate of the Landau Theory. We define

uniquely new orders which have no physical relations with the direct system but

it can be related to hidden symmetries in the system under transformation. Such

hidden order parameter is called the string order parameter. We will use the string

order parameters to distinguish the different gapped phases in the dimerized spin

models.

1.4.1 String Order Parameter in the Spin Chain

den Nijs and Rommelse [30] introduced string order parameters in the spin-1 anti-

ferromagnetic system and pointed out that it can be used to distinguish the gapped

phase from other phases. It is known that the string order parameter gives the

measure of a hidden (non-local) symmetry breaking [31] in the spin-1 chains. Such

symmetries are broken in the gapped phase and unbroken in the other phases.

The string order parameter has been defined for spin systems [9] as

Oα = − lim
|i−j|→∞

⟨
Sα
i exp

[
iπ

j−1∑
k=i+1

Sα
k

]
Sα
j

⟩
(1.27)

where, α = x, y, z and Sα
i is the spin operator at site i.

Let us use the relation Sα
i = (1/2)σα

i between the spin and Pauli matrices in

Eq. (1.27) and choose the cyclic boundary condition σN+1 ≡ σ1 in the spin chain of
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N sites. Then we have,

Ox = −1

4
lim

N→∞

⟨
σx
1 exp

[
iπ

2

N−1∑
k=2

σx
k

]
σx
N

⟩
(1.28)

The phase terms e[
iπ
2

∑N−1
k=2 σx

k ] of the string order parameter can be written as a

product:

exp

[
iπ

2

N−1∑
k=2

σx
k

]
=

N−1∏
k=2

exp

(
iπ

2
σx
k

)
(1.29)

From the well-known relation

exp (iθσx
k) = cos θ + iσx

k sin θ (1.30)

we have

exp

(
iπ

2
σx
k

)
= iσx

k (1.31)

Assuming even number of sites in the chain, i.e., N = 2l, the SOP (1.28) reads as

Ox =
1

4
lim
l→∞

(−1)l
⟨

2l∏
k=1

σx
k

⟩
(1.32)

Note that the SOP for the odd number of sites in the chain, i.e., N = 2l+1, always

vanishes due to the symmetry.

Now we take the product of σ operators in Eq. (1.32) and apply the duality

transformation (1.23a) resulting in

2l∏
k=1

σx
k = τx0 τ

x
1 τ

x
1 τ

x
2 .......τ

x
2l−1τ

x
2l = τx0 τ

x
2l (1.33)

i.e., the term τx0 τ
x
2l on the dual lattice corresponds to the string product of 2l oper-
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ators in the original lattice. We use the relation (τxl )
2 = 1, for all l = 1, 2, ... in the

above equation.

Here, we are interested in the string order parameter. For this purpose we plug

Eq. (1.33) into Eq. (1.32) to obtain

Ox =
1

4
lim
l→∞

(−1)l ⟨τx0 τx2l⟩ (1.34)

So, the non-local SOP defined on the sites of direct lattice becomes a local order

parameter on the dual lattice. As we will discuss in more detail later, the above result

suggests that the Landau theory of the continuous phase transition is applicable in

terms of the dual operators.

1.4.2 String Order Parameters in Ladders

The generalized string order parameters of two-leg spin ladders have been defined

in [32, 33, 34, 35, 36] as

Oz
odd = lim

|n−m|→∞
Oz

odd(|n−m|)

Oz
odd = −⟨(Sz

1(n) + Sz
2(n)) exp

[
iπ

m−1∑
l=n+1

(Sz
1(l) + Sz

2(l))

]
(Sz

1(m) + Sz
2(m))⟩ (1.35)

The illustration of these two string order parameters is shown in the Fig. 1.5

where Sz
1(n) and Sz

2(n) are two spin-1/2 operators at the site i in the chain

1 and 2 respectively. Here, the rung chains are summed up in case of odd string

parameter between the infinite limit of sites n and m. Again,the even string order

parameter is defined by summing the diagonal spins of the ladder. It is given by
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(a)

(b)

Figure 1.5: An illustration of (a) odd and (b) even string order parameters for
two-leg ladder.

Oz
even = lim

|n−m|→∞
Oz

even(|n−m|)

= −⟨(Sz
1(n) + Sz

2(n+ 1)) exp

[
iπ

m−1∑
l=n+1

(Sz
1(l) + Sz

2(l + 1))

]
(Sz

1(m) + Sz
2(m+ 1))⟩

(1.36)

The illustration of these two string order parameters is shown in the Fig. 1.5

1.5 Winding Number

In the section 1.4. we have defined the string order parameter (SOP) to characterize

the unconventional phases, called topological phases in the spin chains and ladders.

Alternatively, the topological phases can be classified by defining another topological

parameter called winding number or Pontryagin index. It counts the number of loops

formed by the normalized vectors in the topological phases over the Brillouin zone

by wrapping the phases around the centre of the energy plane. The normalized

vectors and the dimension of topological phases are defined by the spectrum of the

model in the momentum space. For the one dimensional case the winding number
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[2, 37] is defined as

Nw =
1

2π

∮
c

(
nx(k)

∂ny(k)

∂k
− ny(k)

∂nx(k)

∂k

)
dk (1.37)

where n(k) = (nx(k), ny(k)) is the normalized vector n = d/|d| that resides in

the unit circle, and k is the wavevector in momentum space that spans over the

Brillouin zone. The Hamiltonian matrix [38] written in the form of H(k) = d.σ.

The vector function n(k) well-defines the mapping everywhere from the Brillouin

zone to the (nx(k), ny(k)) plane [2, 37, 39, 40] and it characterizes the topological

gapped phases.
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Chapter 2

Anisotropic Dimerized XY Chain

In this chapter we study the exactly solvable anisotropic dimerized XY spin-1/2

chain in the alternating transverse magnetic field. In order to solve the model and

find such quantities as energy spectrum, ground state energy, and energy gap, etc.

we use the Jordan-Wigner transformation (JWT). It maps the spin-1/2 operators

onto the non-interacting spinless fermion operators. The advantage of using such

transformation is that it always preserves the spin commutation relations based on

Pauli’s exclusion principle. In this chapter, we will provide a brief review of the one

dimensional JWT by analysing the above mentioned model.

2.1 The Hamiltonian

We start by writing the Hamiltonian of the anisotropic dimerized XY spin-1/2 chain

in an alternating transverse magnetic field. It is

H = J
N∑
i=1

[
(1 + γ)Sx

i S
x
i+1 + (1− γ)Sy

i S
y
i+1 + (−1)iδ

(
Sx
i S

x
i+1 + Sy

i S
y
i+1

)]
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+
N∑
i=1

(−1)ihSz
i (2.1)

where Sα
i are spin-1/2 operators with α = x, y, z; satisfying the standard spin com-

mutation relations (1.1a) and (1.1b). N is the number of spins, and open boundary

conditions are assumed. The exchange coupling of the nearest neighbours is J.

γ ∈ [0, 1] is the parameter characterizing the degree of the xy anisotropy, δ is the

dimerization parameter and, h is the magnitude of the alternating external mag-

netic field. This anisotropic dimerized XY chain in the transverse magnetic field

has been proposed in [41] to study the quantum Ising criticality. To the best of

our knowledge this model in the alternating transverse field has never been studied

before.

To analyze the spin Hamiltonian (2.1) it is convenient to use the raising and

lowering spin operators; S+
i and S−

i as defined in the Eq.(1.7). These operators sat-

isfy the commutation relations (1.8a) and (1.8b). Using Eq. (1.7) the Hamiltonian

(2.1) can be written in terms of the raising and lowering spin operators as

H =
1

2

N∑
i=1

J
(
1 + (−1)iδ

) (
S+
i S

−
i+1 + S−

i S
+
i+1

)

+
γ

2

N∑
i=1

[
J
(
S+
i S

+
i+1 + S−

i S
−
i+1

)
+ (−1)ih

(
2S+

i S
−
i − 1

)]
(2.2)

2.1.1 Review of Jordan-Wigner Transformation (JWT)

In order to solve the model (2.2) we use the transformation due to Jordan and

Wigner [17] who used it to map spin operators onto spinless fermion operators.
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The JWT from spin to fermion operators is defined as

S+
i = c†i exp

(
iπ

i−1∑
l=1

nl

)
(2.3a)

S−
i = exp

(
−iπ

i−1∑
l=1

nl

)
ci (2.3b)

Sz
i = c†ici −

1

2
(2.3c)

where and c†i and ci are fermionic creation and annihilation operators, respectively.

One can check that the JW fermion operators obey the canonical anti-commutation

relations:

{ci, c†j} = δij {ci, cj} = 0 {c†i , c
†
j} = 0 (2.4)

In the above equations ni = c†ici is the occupation number operator satisfying the

well-known relation

ni = n2
i (2.5)

In order to demonstrate how the JWT preserves the spin commutation relations, we

take the phase term at ith lattice site and expand it as

eiπni = 1 + (iπ)ni +
1

2!
(iπ)2n2

i +
1

3!
(iπ)3n3

i + .......

= 1 + ni(1 + iπ +
1

2!
(iπ)2 +

1

3!
(iπ)3 + .......− 1)

= 1 + ni(e
iπ − 1) = 1− 2ni = 1− 2c†ici (2.6)

where the relation (2.5) has been used in the second line of Eq. (2.6).

To understand the role of the phase term in the JWT, Eq. (2.6) is multiplied
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by the operator c†i from the left. The result is

c†ie
iπni = c†i (1− 2c†ici) = c†i − 2c†ic

†
ici = c†i (2.7)

where the Pauli exclusion principle condition (c†i )
2 = 0 is used. Multiplying Eq.

(2.6) by the operator c†i from right, we get

eiπnic†i = (1− 2c†ici)c
†
i = c†i − 2c†icic

†
i

= c†i − 2c†i (1− c
†
ici) = −c

†
i + 2c†ic

†
ici = −c

†
i (2.8)

The anti commutation relation (2.4) has been used in the second line of Eq. (2.8).

Similarly, by multiplying Eq. (2.6) by the operator ci from the left and right, and

applying anti commutation relations (2.4), we derive

cie
iπni = −ci (2.9a)

eiπnici = ci (2.9b)

So we can write the following proporties of the fermionic operator at the same site

c†ie
iπni = −eiπnic†i , and cie

iπni = −eiπnici (2.10)

Similarly for the different sites the fermionic operators satisfy

c†ie
iπnj = eiπnjc†i , and cie

iπnj = eiπnjci for i ̸= j (2.11)
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To check the spin commutation relations at the same site we have

[
S+
i , S

−
i

]
= S+

i S
−
i − S−

i S
+
i

= exp

(
−iπ

i−1∑
k=1

nk

)
c†ici exp

(
iπ

i−1∑
k=1

nk

)
− ci exp

(
iπ

i−1∑
k=1

nk

)
exp

(
−iπ

i−1∑
k=1

nk

)
c†i

= c†ici − cic
†
i = c†ici − (1− c†ici) = 2c†ici − 1 = 2Sz

i (2.12)

Thus we find the correct commutation relations. Similarly, we check that

[
S−
i , S

−
i

]
=
[
S+
i , S

+
i

]
= 0 (2.13)

For different sites we take j > i and find

[
S−
i , S

−
j

]
= S−

i S
−
j − S−

j S
−
i

= ci exp

(
iπ

i−1∑
k=1

nk

)
cj exp

(
iπ

j−1∑
k=1

nk

)
− cj exp

(
iπ

j−1∑
k=1

nk

)
ci exp

(
iπ

i−1∑
k=1

nk

)

= (cicj + cjci) exp

[
iπ

(
i−1∑
k=1

nk +

j−1∑
k=1

nk

)]
= 0 (2.14)

where we used eiπnici = −cieiπni in the second line and {ci, cj} = 0 in the third line

of Eq. (2.14). Finally from the Eqs. (2.12), (2.13) and (2.14) it is seen that the spin

commutation relations are preserved by the JWT. The key role of the phase factor

in JWT is clear from the above derivations.

So each spin raising and lowering operator in the Hamiltonian (2.2) can be

mapped onto the fermion operator by using the JWT. We rewrite the following
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terms

S+
i S

−
i+1 = exp

(
−iπ

i−1∑
k=1

nk

)
c†ici+1 exp

(
iπ

i∑
k=1

nk

)

= c†ie
iπnici+1 = c†ici+1, (2.15a)

S−
i S

+
i+1 = ci exp

(
iπ

i−1∑
k=1

nk

)
exp

(
−iπ

i∑
k=1

nk

)
c†i+1

= cie
−iπnic†i+1 = −cic

†
i+1 = c†i+1ci, (2.15b)

S+
i S

+
i+1 = exp

(
−iπ

i−1∑
k=1

nk

)
c†i exp

(
−iπ

i∑
k=1

nk

)
c†i+1

= c†i exp

(
−2iπ

i−1∑
k=1

nk

)
e−iπnic†i+1 = c†ic

†
i+1, with e

±2iπni = 1 (2.15c)

S−
i S

−
i+1 = ci exp

(
iπ

i−1∑
k=1

nk

)
ci+1 exp

(
iπ

i∑
k=1

nk

)

= ci exp

(
2iπ

i−1∑
k=1

nk

)
eiπnici+1 = −cici+1 = ci+1ci, (2.15d)

and

S+
i S

−
i = exp

(
−iπ

i−1∑
k=1

nk

)
c†ici exp

(
iπ

i−1∑
k=1

nk

)
= c†ici (2.15e)

Then the Hamiltonian (2.2) becomes

H =
J

2

N∑
i=1

(
1 + (−1)iδ

) (
c†ici+1 + c†i+1ci

)

+
γ

2

N∑
i=1

[
J
(
c†ic

†
i+1 + ci+1ci

)
+ (−1)ih

(
2c†ici − 1

)]
(2.16)
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2.1.2 Fourier Transformation

To simplify further the quadratic Hamiltonian (2.16), the chain is divided into even

and odd sites. The resulting Hamiltonian is in the following form:

H =
1

2

N/2∑
i=1

[
J(1 + δ)

(
c†2ic2i+1 + c†2i+1c2i

)
+ Jγ

(
c†2ic

†
2i+1 + c2i+1c2i

)
+ 2hc†2ic2i

]

+
1

2

N/2∑
i=1

J(1− δ)
(
c†2i+1c2i+2 + c†2i+2c2i+1

)
+ Jγ

(
c†2i+1c

†
2i+2 + c2i+2c2i+1

)

−h
N/2∑
i=1

c†2i+1c2i+1 (2.17)

We introduce the Fourier transforms of the fermion operators at odd and even sites,

as follows:

c2n =

√
2

N

∑
k

e−i2nkde(k) (2.18a)

and

c2n+1 =

√
2

N

∑
k

e−ik(2n+1)do(k) (2.18b)

where do,e(k) are Fourier transforms of fermi operators on the odd and even sites,

respectively. k is the wavevector in the momentum space within the first Brillouin

zone [−π
2
, π
2
]. Now we can rewrite the terms of the Hamiltonian (2.1.2) in the mo-

mentum space:

N/2∑
i=1

c†2ic2i+1 =

N/2∑
i=1

√
2

N

∑
k

eik(2i)de(k)

√
2

N

∑
k

e−ik(2i+1)do(k)

=
∑
k

e−ikd†e(k)do(k) =
∑
k>0

(
e−ikd†e(k)do(k) + eikd†e(−k)do(−k)

)
(2.19a)
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and
N/2∑
i=1

c†2ic
†
2i+1 =

∑
k>0

(
e−ikd†e(k)d

†
o(−k) + eikd†e(−k)d†o(k)

)
(2.19b)

where we have taken the sum over k > 0 to simplify the Hamiltonian. Similarly

we can write the Fourier transforms of the other fermionic terms: c†2i+1c2i, c2i+1c2i,

c†2i+1c2i+2, c
†
2i+2c2i+1, c

†
2i+1c

†
2i+2, c2i+2c2i+1, c

†
2ic2i, and c†2i+1c2i+1. Plugging all these

terms into the Hamiltonian (2.1.2) and rearranging it yields

H =

J
∑
k>0

[{
α
(
d†e(k)do(k) + d†o(−k)de(−k)

)
+ β

(
d†o(−k)d†e(k) + de(−k)do(k)

)}
+ h.c

]
+h
∑
k>0

[
d†e(k)de(k) + d†e(−k)de(−k)− d†o(k)do(k)− d†o(−k)do(−k)

]
(2.20)

with α = (cos k− iδ sin k) and β = iγ sin k. For systems with more than one species

of fermions it is convenient to use the Nambu formalism [42]. The single particle

Hamiltonian (2.20) can be expressed in the following form

H =
∑
k

Ψ†
kHkΨk (2.21)

where the Nambu spinor

Ψ†
k =

(
d†e(k), d

†
o(k), de(−k), do(−k)

)
(2.22)
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and the 4× 4 Hamiltonian matrix is

Hk =


h Jα 0 Jβ∗

Jα∗ −h Jβ∗ 0

0 Jβ −h −Jα

Jβ 0 −Jα∗ h


(2.23)

2.2 Eigenvalues of the Hamiltonian

The spectrum with four energy bands can be obtained from diagonalization of the

Hamiltonian matrix Hk given by Eq. (2.23). We use Mathematica [version 5.1.] for

the matrix diagonalization, which yields four eigenvalues of the matrix Hk:

±ϵ±(k) = ±
√
J2 cos2 k +

(√
h2 + J2δ2 sin2 k ± Jγ sin k

)2
(2.24)

Now the Hamiltonian (2.21) has the diagonal form

H =
∑
k,α

ϵα(k)η†α(k)ηα(k) (2.25)

with α = 1, 2, 3, 4. Here ηα are four eigen spinors.

In order to make the cross check of the obtained energy bands with the exactly

solved known models we analyze the limiting cases:

(i) h = 0, there is no transverse magnetic field and the model reduces to the

anisotropic dimerized XY model. The energy eigenvalues become

±ϵ±(k) = ±J
√

cos2 k + (δ ± γ)2 sin2 k (2.26)
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and they are exactly the same as in Ref.[41].

(ii) h = 0, γ = 0; the model reduces to the well-known dimerized XY spin-1/2

chain. Eq. (2.24) gives the spectrum of this model:

±ϵ±(k) = ±J
√

cos2 k + δ2 sin2 k (2.27)

It was discussed in the section 1.1, of Eq. (1.11).

(iii) h = 0, δ = 0; the model reduces to the anisotropic XY spin chain with two

energy bands

±ϵ±(k) = ±J
√

cos2 k + γ2 sin2 k, (2.28)

in exact agreement with the classical result [18].

By looking at the above limiting cases of the present model, we conclude that

the eigenvalues (2.24) correctly recover other models studied in earlier literature.

To make another connection to the earlier related work we will present anisotropic

dimerized XY spin-1/2 chain in the uniform transverse magnetic field. It has been

proposed and solved in [41]. The resulting spectrum with four energy bands is

±ϵ±(k) =

±
√
h2 + J2 cos2 k + J2(δ2 + γ2) sin2 k ± 2J

√
(Jδγ sin2 k)2 + h2

(
cos2 k + δ2 sin2 k

)
(2.29)
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2.3 Energy Gap and Quantum Criticality

From the Eq. (2.24) the energy gap of the spin system for k = π/2 can be found as

∆/J = ϵ(k = π/2) =

√(
h

J

)2

+ δ2 ± γ (2.30)

The above Eq. (2.30) implies that for γ = ±
√

(h/J)2 + δ2 the system becomes

-1

-0.5

0.5

1

+

+

ε

ε
+

ε
_

ε
_

+

_
o π ππ oo

(c)(b)(a)

_

Figure 2.1: The four energy bands for different model’s parameters (a) δ = 0.1, γ =
0.3, h = 0.1; (b) δ = 0.1, γ = 0.141, h = 0.1; and (c) δ = 0.1, γ = 0.05, h = 0.1. The
vertical axis is the energy and horizontal axis is the wavevector in the k space taken
from 0 to π.

gapless and quantum critical. We illustrate this in Fig. 2.1. For γ = +
√
(h/J)2 + δ2

there are two branches which become gapless at the some point, while the other

two branches still remain gapped. Away from the quantum critical point γ ̸=√
(h/J)2 + δ2 all four branches are gapped (massive).

In order to study the criticality of the model we rewrite the energy gap (2.30)

in terms of the critical exponents:

∆/J ∼| t |ν (2.31)

with t =
√
(h/J)2 + δ2−γ and ν = 1. From the Eq. (2.31) we find the same critical

exponent ν = 1 for the gap ∆ as in the 2D Ising model. The present model and the
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2D Ising model are in the same universality class, since they both reduce to the free

fermions.

To summarize:

In this chapter the antiferromagnetic anisotropic dimerized XY spin-1/2 chain

in alternating transverse magnetic field is studied. In order to solve the model, the

well-known 1D JWT was reviewed. It was found that this kind of transformation

always preserves all spin commutation relations. By using it the spin operators were

mapped onto spinless non-interacting fermionic operators. Then the free-fermionic

Hamiltonian of two sub-lattices (odd and even) was mapped onto single particle

Hamiltonian in momentum space by using the Nambu formalism. The spectrum

of four energy bands was found by diagonalizing the single particle Hamiltonian

using Mathematica. To know the critical behaviour of the model, the energy gap

was obtained. It was shown that the model is quantum critical (massless) at some

points and gapped (massive) otherwise. The present exactly solved model is in the

same universality class as the 2D Ising model.

As we will show in the next chapter, the present model can be used to analyze

the dimerized spin ladders in the free-fermionic approximation.
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Chapter 3

Dimerized Two-leg Ladder

In this chapter the study focuses on dimerized two-leg ladders to understand its

different quantum phases. To characterize the different phases we will calculate

energy gaps, string order parameters and winding numbers. We will use the mean-

field theory to treat treat the two-leg ladder.

The existence of a gap in spin ladders depends on the number of legs which is

the special property of spin ladders. Ladders with m are gapped or gapless when

m is even or odd, respectively. The even m-leg ladders are examples of spin liquids

in which the formation of a gap is not due to the long range order or apparent

symmetry breaking. The dimerized antiferromagnetic Heisenberg ladders are very

interesting for studies of the hidden orders in quantum systems. It is known that

single dimerized Heisenberg spin-1/2 chains are gapped [14] and if two chains are

coupled into a ladder, the system is gapped even without dimerization [8]. On the

other hand, it was conjectured in [44] that the dimerized two and three leg ladders

can become gapless at some particular values in their couplings.
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3.1 The Hamiltonian.

The dimerized ladder has two possible dimerization patterns on which two periodic

couplings, i.e., strong J(1 + δ) and weak J(1 − δ) appear along the chains. The

first has alternating couplings in each leg, called staggered dimerization pattern as

in Fig. 3.1a. The second arranges each of parallel couplings to each leg, called

columnar dimerization pattern as shown in Fig. 3.1b.

(a) (b)

Figure 3.1: Dimerized two-leg ladder. The bold and/or thin and/or dashed lines
represent the stronger and/or weaker chain couping J(1 + δ) or J(1− δ) and rung
coupling J⊥, respectively. Dimerization patterns: (a) staggered and (b) columnar.
Adapted from Ref.[45].

J

(a) (b)

2J

Figure 3.2: Completely dimerized ladder, δ = 1. (a) Alternated stagering reduces
model (3.2) to a snakelike dimerized Heisenberg chain of 2N spins. (b) Columnar
order degenerates into a set of N/2 decoupled plaquettes. Adapted from Ref.[45].

Now we consider two possible dimerization ordering patterns of ladders: colum-

nar and the staggered dimerization, which are defined as

Jα(i) = J
[
1 + (−1)i+αδ

]
(staggered) (3.1a)
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Jα(i) = J
[
1 + (−1)iδ

]
(columnar) (3.1b)

where 0 ≤ δ ≤ 1 is the dimerization parameter.

We write the Hamiltonian of the dimerized two-leg ladder with N rungs in the

following form,

H =
2∑

α=1

N∑
i=1

Jα(i)Sα(i)Sα(i+ 1) + J⊥

N∑
i=1

Sα(i)Sα+1(i) (3.2)

We assume the situation when the dimerization only occurs along the chains (α =

1, 2) for the constant rung coupling J⊥. The total number of spins is 2N .

At maximum dimerization, i.e, δ=1 the model (3.2) reduces to the snakelike

chain [see Fig. 3.2a] in case of the staggered pattern and it shows the critical

behaviour at J⊥ = 2J , and a set of decoupled plaquettes [see Fig. 3.2b] in the case

of the columnar dimerization pattern.

We use the relation, Sα
i = 1

2
σα
i with α = x, y, z and plug it into Eq. (3.2). Then

it leads to,

H =
1

4

N∑
i=1

2∑
α=1

Jα(i) [σ
x
α(i)σ

x
α(i+ 1) + σy

α(i)σ
y
α(i+ 1) + σz

α(i)σ
z
α(i+ 1)]

+
J⊥
4

N∑
i=1

[σx
1 (i)σ

x
2 (i) + σy

1(i)σ
y
2(i) + σz

1(i)σ
z
2(n)] (3.3)

where σα
i are the Pauli spin operators in the ith site and α-th leg, and they obey

the standard commutation relations.

To map the Hamiltonian (3.3) onto the system of spinless fermions we write the
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particular form of the Jordan-Wigner transformation (JWT) as proposed in Ref.[46]:

σ+
i = c+i exp

(
iπ

i−1∑
path,k=1

c+k ck

)
(3.4)

where ci is the fermi operator in the ith site, satisfies the following canonical anti-

commutation relations.

{c+i , cj} = δij (3.5a)

and

{ci, cj} = {c+i , c+j } = 0 (3.5b)

To use Eq. (3.4) into Eq. (3.3) we relabel all the sites of the two-leg ladder

along the path described by Eq. (3.4) as shown in the Fig. 3.3. This path

goes exactly through each lattice site only once. Here, substituting the relation

1

2 3

4

5

6

7

8 9

10

>

>

>

>

>

>

>

> >

Figure 3.3: Schematics of the countour for the JWT that we use in the two leg
ladder.

σ±
α (i) = (σx

α(i)± iσy
α(i)) /2 and using the JWT defined by Eq. (3.4), the Hamilto-

nian (3.3) becomes

H =
1

2

N∑
i=1

2∑
α=1

Jα(i)

[
c+α (i)e

iϕα(i,i+1)cα(i+ 1) + h.c+

(
nα(i)−

1

2

)(
nα(i+ 1)− 1

2

)]
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+
1

2

N∑
i=1

J⊥

[
c+1 (i)c2(i) + c1(i)c

+
2 (i) +

(
n1(i)−

1

2

)(
n2(i)−

1

2

)]
(3.6)

where nα(i) = c+α (i)cα(i) is the particle number operator for ith site and ϕα(i,i+1)

is the phase difference between two lattice points i and i + 1 for two leg ladder

α = 1, 2. By looking at the path given by JWT in Fig. 3.3, the phase differences at

the different sites are as follows:

ϕ1(i0) = π (n2(i) + n2(i+ 1)) (3.7a)

ϕ2(ie) = π (n1(i) + n1(i+ 1)) (3.7b)

ϕ2(i0) = 0, ϕ1(ie) = 0 (3.7c)

where ie and io are even and odd lattice sites, respectively. In the ladder the

magnetisation is not possible due to the strong fluctuations [8]. So, we can write

⟨Sz
α(i)⟩ = ⟨1/2 − nα(i)⟩ = 0 which gives ⟨nα(i)⟩ = 1/2. We will use the mean field

approximation such that the two particle interactions
(
n1(i)− 1

2

) (
n2(i)− 1

2

)
are

decoupled, and the approximate fermionic Hamiltonian contains only single particle

terms. In this case there is an exact result due to Lieb [47] which states that phase

per plaquette is π for half filled free fermions on a bipartite 2D lattice. Now, using

this result in Eqs. (3.7a) and (3.7b) then we have the following relations:

(n2(i) + n2(i+ 1)) = 1 (3.8a)

(n1(i) + n1(i+ 1)) = 1 (3.8b)

We write π and 0 phases in the free fermionic terms of Eq. (3.6) and no extra

phases occur along all rungs because the path of the JWT passes through all rungs

as illustrated in Fig. 3.3. Thus we choose the configuration ....0-π-0..., and ....π-
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0-π..., for IInd and Ist chains respectively as in Fig. 3.4. This π-flux phase (i.e.,

TJ

1 2 3 4

0

0 π

π

π

π0

0

>

>

>

>

>

>

> >

>

Figure 3.4: The phase per plaquette is equal to π.

configuration with π phase per plaquette) was found before Lieb from the mean-field

analysis in earlier literature [48, 49], see also the book [2] for more references.

3.1.1 Mean Field Approximation

The interaction term of the Hamiltonian (3.6) is quartic in fermion operators. This

type of problem can be treated by using the Mean Field Approximation (or Hartree-

Fock Approximation) as explained in Ref. [2].

For instance, let us take an operator Q and it has an expectation value ⟨Q⟩ then

we can write

Q = ⟨Q⟩+ (Q− ⟨Q⟩) (3.9)

where (Q− ⟨Q⟩) is the fluctuation around its average. We can write similar equation

for an operator Q′ in terms of expectation value and fluctuation. Thus the product

of the two operators gives,

QQ′ = Q⟨Q′⟩+ ⟨Q⟩Q′ − ⟨Q⟩⟨Q′⟩+ (Q− ⟨Q⟩) (Q′ − ⟨Q′⟩) (3.10)

In the Hartree-Fock approximation (MFA) we drop the fourth term in Eq. (3.10);

the approximation consists of neglecting the fluctuations in second order. So, the
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Hartree-Fock approximation is

QQ′ ≈ Q⟨Q′⟩+ ⟨Q⟩Q′ − ⟨Q⟩⟨Q′⟩ (3.11)

In the framework of MFA, we introduce two mean-field (i.e. effective hopping)

parameters along the chain and rung defined, respectively, by

tα∥ (i) = −⟨c+α (i)cα(i+ 1)⟩ (3.12a)

t⊥ = −⟨c+1 (i)c2(i)⟩ (3.12b)

Here the parameters along the chain could depend on the chain and rung number,

but the rung parameter is assumed constant. This is due to the fact that the

dimerization occurs along the chain only.

There is a quite extensive literature see, e.g. [50, 49, 46, 51, 45] and more

references there on the mean-field approximations for treating the interacting terms

in spin chains and ladders. We apply Hartree-Fock approximation on interacting

fermion terms of Hamiltonian (3.6) by using the mean field equation (3.11) the the

interacting fermionic terms can be expressed as

c+α (i)cα(i)c
+
α (i+ 1)cα(i+ 1) ≈ c+α (i)cα(i) +

∣∣tα,∥(i)∣∣2
+
(
t∗α,∥(i)c

+
α (i)cα(i+ 1) + h.c

)
(3.13a)

c+1 (i)c1(i)c
+
2 (i)c2(i) ≈ c+1 (i)c1(i) +

(
t∗⊥c

+
1 (i)c2(i) + h.c

)
+ |t⊥|2 (3.13b)

When we use Eqs. (3.13a) and (3.13b) for interacting terms in Eq. (3.6), we have
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the following equations:

(
nα(i)−

1

2

)(
nα(i+ 1)− 1

2

)
≈
(
c+α (i)cα(i+ 1)t∗α,∥(i) + h.c

)
+
∣∣tα,∥(i)∣∣2 (3.14)

and, (
n1(i)−

1

2

)(
n2(i)−

1

2

)
≈
(
c+1 (i)c2(i)t

∗
⊥ + h.c

)
+ |t⊥|2 (3.15)

Now we assume the phases of the free fermionic terms in Eq. (3.6) are as described

by the π-flux arrangement in the Fig. 3.4, and we plug Eqs. (3.14) and (3.15) into

Eq. (3.6). So it yields the quadratic Hamiltonian:

H =
N∑
1=1

[
2∑

α=1

Jα(i)|tα,∥(i)|2 + J⊥|t⊥(i)|2
]

+
1

2

N∑
i=1

2∑
α=1

[
Jα(i)(−1)i+α−1

(
c+α (i)cα(i+ 1) + h.c

)]

+
N∑
i=1

2∑
α=1

[
Jα(i)

(
c+α (i)cα(i)t

∗
α,∥(i) + h.c

)]

+
J⊥
2

N∑
i=1

[
(1 + 2t∗⊥)

(
c+1 (i)c2(i) + h.c

)]
(3.16)

Let us simplify Eq. (3.16) by further use of the Lieb result [47] for the π-flux of free

fermionic Hamiltonian [see Fig 3.4]. We end up with the quadratic Hamiltonian:

H =
1

2

N∑
i=1

2∑
α=1

[
JαR(i)(−1)i+α−1

(
c+α (i)cα(i+ 1) + h.c

)]

+
J⊥R

2

N∑
i=1

(
c+1 (i)c2(i) + h.c

)
+H0 (3.17)
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where,

H0 =
N∑
i=1

[
2∑

α=1

Jα(i)|t∥|2 + J⊥|t⊥|2
]
, (3.18)

and

JαR(i) = Jα(i)(1 + 2t∥) (3.19a)

J⊥R = J⊥(1 + 2t⊥) (3.19b)

are renormalized couplings along the chains (α = 1, 2) and along the rungs, respec-

tively.

To diagonalize the Hamiltonian we use the Fourier transform defined by the

following relation

cα(2n+ 1) =

√
2

N

∑
k

dαo(k)e
−i(2n+1)k (3.20a)

cα(2n) =

√
2

N

∑
k

dαe(k)e
−i(2n)k (3.20b)

where dα,o(k) and dα,e(k) are Fourier transforms of fermi operators on the odd and

even sites, respectively.

3.1.2 Staggered Dimerization

An illustration of the two-leg ladder in case of alternated staggered pattern is shown

in Fig. 3.1a. It consists of two periodic strong J(1+ δ) and weak J(1− δ) couplings

along the chains. They couple with the rung coupling J⊥ to form a ladder. We

discuss the following limiting cases in the (δ, J⊥) plane as studied in [45].

(i) If δ = 0, i.e. no dimerization, then the model (3.2) reduces to the gapped

uniform ladder for J⊥ > 0 and two decoupled gapless Heisenberg spin chains for

J⊥ = 0.
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(ii )If δ = 1, i.e. maximum dimerization, then the model (3.2) becomes snakelike

dimerized Heisenberg chain of 2N spins which becomes gapless when J⊥ = 2J : [See

Fig. 3.2a].

To further simplify the Hamiltonian (3.17) in the staggered phase we plug Eqs.

(3.1a), (3.20a) and (3.20b), into Eq. (3.17). The resulting Hamiltonian is of the

following form:

H = JR
∑
k

[
(i sin k − δ cos k)

(
d+1o(k)d1e(k) + d+2e(k)d2o(k)

)
+ h.c.

]

+
J⊥R

2

∑
k

[(
d+1o(k)d2o(k) + d+1e(k)d2e(k)

)
+ h.c.

]
(3.21)

After simplification of Eq. (3.21) we find the single particle effective Hamiltonian

in the form of Eq. (2.21), where the Nambu spinor is

Ψ†(k) =
(
d†1e(k), d

†
1o(k), d

†
2e(k), d

†
2o(k)

)
(3.22)

and the 4× 4 Hamiltonian matrix

H(k) =


0 U T 0

U∗ 0 0 T

T 0 0 U∗

0 T U 0


. (3.23)

where we denote

U = −JR (i sin k + δ cos k) T =
J⊥R

2
(3.24a)

JR = J(1 + 2t∥) J⊥R = J⊥(1 + 2t⊥) (3.24b)
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We use Mathematica to diagonalize (3.23), and find the eigenvalues of the Hamilto-

nian

±ϵ±(k) = ±JR

√
sin2 k +

(
δ cos k ± J⊥R

2JR

)2

(3.25)

The spectrum of the Hamiltonian has an energy gap

∆ = ϵ(0) = JR

∣∣∣∣δ ± J⊥R

2JR

∣∣∣∣ (3.26)

where J⊥R and JR are the functions of t∥ and t⊥. From Eq. (3.26) we infer that the

energy gap vanishes at δ = ±J⊥R/2JR.

We find the partition function Z for the single particle Hamiltonian (2.21) and

the free energy per spin, as calculated in Ref. [45]. The latter is

f =
F

2N
=
C2

2
− log 2

β
− 1

βπ

2∑
p=1

∫ π
2

0

ln

[
cosh

(
β

2
ϵp(k)

)]
dk (3.27)

where, β=1/kBT , with Boltzmann constant kB and

C2 = 2J |t∥|2 + J⊥|t⊥|2 (3.28)

In the limit T → 0 (β → ∞) the Eq. (3.27) leads to the ground state energy

per spin and reads as:

Eg = J |t∥|2 +
J⊥
2
|t⊥|2 −

1

2π

∫ π
2

0

(ϵ+(k) + ϵ−(k)) dk (3.29)

The minimization of the ground state energy with respect to t∥ and t⊥ gives

two self-consistent equations and they are used to find the values of t∥ and t⊥. The
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mean-field equations at zero temperature are

t∥ =
1

2π

∫ π
2

0

sin2 k + δ2 cos2 k + J⊥R

2JR
δ cos k√

sin2 k +
(
δ cos k + J⊥R

2JR

)2
 dk

+
1

2π

∫ π
2

0

sin2 k + δ2 cos2 k − J⊥R

2JR
δ cos k√

sin2 k +
(
δ cos k − J⊥R

2JR

)2
 dk (3.30)

and,

t⊥ =
1

2π

∫ π
2

0

 δ cos k + J⊥R

2JR√
sin2 k +

(
δ cos k + J⊥R

2JR

)2
 dk

− 1

2π

∫ π
2

0

 δ cos k − J⊥R

2JR√
sin2 k +

(
δ cos k − J⊥R

2JR

)2
 dk (3.31)

The mean field parameters t∥ and t⊥ renormalize the hopping in the free-fermionic

Hamiltonian (3.17) and are implicitly defined by Eqs. (3.30) and (3.31). Here we are

interested to determine t∥ and t⊥ at the different values of dimerization parameter

δ and rung coupling J⊥.

First we are going to find the behaviour of t∥ and t⊥ in the following limiting

cases.

(A) δ = 0 (Uniform Ladder)

(B)J⊥ = 0 (Dimerized Chain)

(C)δ = 1 (Completely Dimerized Ladder)
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Now, we discuss the different limiting cases in the detail.

(A) δ = 0 (Uniform Ladder)

In the uniform ladder the mean field parameters t∥ and t⊥ have been analysed in

[49, 52, 53] with respect to the rung coupling J⊥. First we analyze their behaviour

independently and then they will be compared to the results of [53].

For this we integrate Eqs. (3.30) and (3.31) to obtain

t∥ =
1

π

[√
a2 + 1E

(
1

a2 + 1

)
− a2√

a2 + 1
K

(
1

a2 + 1

)]
(3.32)

t⊥ =
1

π

[
a√
a2 + 1

K

(
1

a2 + 1

)]
, (3.33)

where K and E are elliptic integrals of first and second kind respectively, and
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Figure 3.5: The mean-field parameters t∥ and t⊥ as functions of J⊥/2J for δ = 0.

a ≡ J⊥R

2JR
=
J⊥(1 + 2t⊥)

2J(1 + 2t∥)
(3.34)

is an auxiliary parameter. Now, Eq. (3.32) and (3.33) can be solved numerically for

different values of J⊥/2J and their behaviour is displayed in Fig. 3.5.
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Figure 3.6: t∥ and t⊥ as functions of J⊥/2J from Eq. (3.30) and (3.31) and dashed
lines are approximate analytic results (3.35) and (3.36) for J⊥/2J ≪ 1 for δ = 0.

We can expand the functions E and K to leading order.

For J⊥
2J
≪ 1 we find

t∥ ≈
1

π
− 1

2π

(
J⊥/2J

(1 + 2/π)

)2

log

(
(1 + 2/π)

J⊥/2J

)
(3.35)

t⊥ ≈
1

π

(
J⊥/2J

(1 + 2/π)

)
log

(
4(1 + 2/π)

J⊥/2J

)
(3.36)

For J⊥
2J
≫ 1,

t∥ ≈
1(

8J⊥
2J
− 2
) (3.37)

t⊥ ≈
1

2
− 1

2

(
1(

4J⊥
2J
− 1
))2

(3.38)

From Fig. 3.6 and 3.7 we conclude that, approximate results have good agree-

ment with the numerical solution for J⊥/2J < 0.3 and J⊥/2J > 1.5 respectively.

The numerical and analytical results which we find here for both limiting cases (i.e.,
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Figure 3.7: t∥ and t⊥ as functions of J⊥/2J from Eqs. (3.30) and (3.31) and dashed
lines are approximate analytic results (3.37) and (3.38) for J⊥/2J ≫ 1 for δ = 0.
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Figure 3.8: t∥ as a function of δ at J⊥=0.

J⊥/2J ≫ 1 and J⊥/2J ≪ 1), were obtained in [53].

(B) J⊥ = 0 (Dimerized Chain)

In this case we find the behaviour of mean-field parameters in a single dimerized

chain. From Eqs. (3.30) and (3.31) we have a straightforward result that t⊥ = 0

and t∥ is a function of δ, is given by

t∥ =
δ

π
E

[
1− 1

δ2

]
(3.39)
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Figure 3.9: t∥ and t⊥ as functions of J⊥/2J at δ = 1 from Eqs. (3.30) and (3.31)
and dashed lines are approximate analytic results (3.42) and (3.43) for J⊥/2J > 1.

We plot t∥(δ) in Fig. 3.8 and find that it grows smoothly from origin.

(C) δ = 1 (Completely Dimerized Ladder)

In the maximum dimerization the dimerized ladder reduces to the snakelike

dimerized Heisenberg spin chain which becomes gapless when J⊥ = 2J .

For J⊥
2J
≪ 1, we integrate Eq. (3.30) and (3.31) and expand the functions to the

leading order for the following two limiting cases. We find the parameters

t∥ =
1

2
− 1

2

(
J⊥/2J

4− J⊥/2J

)2

(3.40)

t⊥ =
1

2

(
J⊥/2J

4− J⊥/2J

)
(3.41)

For J⊥
2J
≫ 1,

t∥ =
1

(8J⊥
2J
− 2)

(3.42)
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Figure 3.10: t∥ and t⊥ as functions of J⊥/2J at δ = 1 from Eqs. (3.30) and (3.31)
and dashed lines are approximate analytic results (3.40) and (3.41) for J⊥/2J < 1.

t⊥ =
1

2
− 1

2

(
1

(4J⊥
2J
− 1)

)2

(3.43)

From Fig. 3.9 and 3.10 we conclude that approximate analytic results have good

agreement with the numerical results for J⊥/2J > 1.4 and J⊥/2J < 0.7, respectively.

Now we will discuss the behaviour of t∥ and t⊥ in the staggered dimerized ladder

in the whole range of model’s parameters. Here we have to point out that the mean-

field Eqs. (3.30) and (3.31) follow as a special case from the results of the slightly

more sophisticated mean-field analysis of Ref. [45]. They can be derived from the

equations presented in that paper after some simplifications. However the present

mean-field equations are much simpler, while the hopping parameters, ground state

energies and the gaps have only small numerical differences with the corresponding

results of Ref.[45]. The same applies for the columnar phase considered in the

following section. The version of the mean-field approximation presented here results

in essentially the same physical predictions for the two-leg ladder as in the earlier
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Figure 3.11: t∥ and t⊥ are functions of J⊥/2J and circles are the points where gap
exactly vanishes corresponding to different δ.

analysis [45] and the simple free-fermionic Hamiltonian (3.17) is very useful for the

analytical treatments of the model and can be used for getting more analytic results

[54].

As we discussed before, t∥ and t⊥ as functions of J⊥/2J and δ are determined

by Eqs. (3.30) and (3.31). The analytical treatment is not possible to study the

behaviour of t∥ and t⊥ in the whole parameter space (δ, J⊥/2J). So, we resort to

numerical methods for this purpose. We used Mathematica to find the numerical

solution of (3.30) and (3.31). The numerical solutions are found to be unstable and

oscillating quickly in the vicinity of vanishing gap. We identify the origin of the

problem: the equations have multiple roots in this region. The problem is resolved

by taking the suitable root that provides the minimum ground state energy. We

plot the dependencies of t∥ and t⊥ to J⊥/2J for different values of δ: See. Fig. 3.11.

In the vicinity of Quantum Critical Point (QCP) or (vanishing gap) we took few

discrete points. From Eqs. (3.30), (3.31), (3.26), and (3.34) we find that the energy

gap varies in the parametric space (J⊥/2J, δ). We plot the gap as the function of
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Figure 3.12: The gaps of two-leg ladder in the staggered and columnar phases. For a
fixed dimerization δ the gaps of staggered (dashed lines) and columnar (solid lines)
configurations coincide only at J⊥ = 0. The columnar gap grows monotonously
with J⊥/2J , while the staggered gap demonstrates critical behaviour and vanishes
at the critical point. The gap in the uniform ladder (δ = 0) is also shown for the
comparision.

J⊥/2J for different values of δ in Fig. 3.12. The figure shows that the gap changes

smoothly with respect to J⊥/2J for each value of δ by showing the critical behaviour

at different points on the J⊥/2J axis.

In the range of dimerization parameter 0.45 ≤ δ ≤ 0.75 the multiple roots of the

mean-field equations occur and the small residual gap is found. The region with the

residual gap is shown by the dashed line of the critical line in the phase diagram Fig.

3.13. This small residual gap (i.e. weak first order phase transition, see also jumps

in the hopping parameters in Fig. 3.11) occurs only in some parts of the critical line.

It is clearly an artefact of the mean-field approximation, since more sophisticated
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Figure 3.13: Phase diagram of the staggered phase. The solid line is the critical line
where gap vanishes (i.e., the critical line between two phases), and the dashed line
indicates the part of the phase boundary where a small residual gap exists. The
dotted straight is guide for an eye.

earlier treatments of the same model, mainly numerical, [55, 56, 57, 58, 59, 60]

indicate clearly a continuous phase transition. The phase diagram shown in Fig.

3.13 is virtually indistinguishable from the diagram given by a different version of

the MFA [45].

Finally, we briefly study the critical behaviour in this phase of the ladder near

to the quantum critical lines δc = ±J⊥R/2JR by using the critical exponents. Now

we write Eq. (3.26) as

∆s

JR
∼| δ − δc |ν (3.44)
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with ν = 1. Here we find the exponent ν = 1 for the gap ∆ as in the 2D Ising model.

As it must, the free-fermionic treatment of the two-leg ladder in the staggered phase

results in the critical universality class of the 2D Ising model.

3.1.3 Columnar Dimerization

An illustration of the two-leg ladder in case of the columnar dimerization pattern is

shown in Fig. 3.1b. It consists of two couplings: strong J(1+ δ) and weak J(1− δ),

such that strong/weak links on each of the legs are arranged parallel to each other.

We discuss the following limiting cases in (δ, J⊥) plane as studied in [45].

(i) If δ = 0, i.e. no dimerization (columnar of staggered), then the model (3.2)

reduces to a gapped uniform ladder for J⊥ > 0 and two decoupled gapless Heisenberg

spin chains for J⊥ = 0.

(ii )If δ = 1, i.e. maximum dimerization, then the model (3.2) becomes a set of

N/2 decoupled four-spin plaquettes: [See Fig. 3.2b].

Here we consider the columnar dimerization pattern in a ladder as displayed in

Fig. 3.1b. By using Eqs. (3.1b), (3.20a) and (3.20b) for the Hamiltonian (3.17) we

get

H = JR
∑
k

[
(i sin k + δ cos k)

(
d+1o(k)d1e(k) + d+2e(k)d2o(k)

)
+ h.c

]
+
J⊥R

2

∑
k

[(
d+1o(k)d2o(k) + d+1e(k)d2e(k)

)
+ h.c

]
(3.45)

After simplification of Eq. (3.45),we find the single particle effective Hamiltonian

as in Eq. (2.21) with the same spinor defined in (3.22) and the 4 × 4 Hamiltonian
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matrix:

Hd(k) =


0 U+ T 0

U∗
+ 0 0 T

T 0 0 U∗
−

0 T U− 0


(3.46)

where U± = JR (−i sin(k)± δ cos(k)) and T = J⊥R/2. Diagonalization of Eq. (3.46)

results in the two doubly degenerate Hamiltonian eigenvalues

±ϵ±(k) = ±JR

√
sin2 k + δ2 cos2 k +

(
J⊥R

2JR

)2

(3.47)

Thus the energy gap is

∆ = ϵ(0) = JR

√
δ2 +

(
J⊥R

2JR

)2

(3.48)

indicating that the columnar phase is always gapped, in agreement with the earlier

result of Ref. [45]. In this sense the columnar phase is qualitatively similar to the

uniform ladder. The gap persists in the limit of two decoupled chains J⊥ → 0, giving

∆c = JRδ as it must be for the single spin chain in the XY -free-fermionic approx-

imation. The gap disappears only together with the vanishing chain dimerization

δ → 0 in agreement with the result for the uniform chain.

By calculating the partition function of the single particle Hamiltonian as ex-

plained above for the case of the staggered phase, the free energy per spin is given

by an equation similar to Eq. (3.27). The ground state energy per spin reads as:

Eg = J |t∥|2 +
J⊥
2
|t⊥|2 −

1

π

∫ π
2

0

ϵ(k)dk (3.49)
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Minimization of the ground state energy with respect to t∥ and t⊥ gives two self-

consistent equations and they are used to find the values of t∥ and t⊥. The mean-field

equations at zero temperature are

t∥ =
1

π

∫ π
2

0

 sin2 k + δ2 cos2 k√
sin2 k + δ2 cos2 k +

(
J⊥R

2JR

)2
 dk (3.50)

and,

t⊥ =
1

π

∫ π
2

0

 J⊥R

2JR√
sin2 k + δ2 cos2 k +

(
J⊥R

2JR

)2
 dk (3.51)

Here, we are interested to determine the renormalization parameters t∥ and t⊥ in

the parametric region (J⊥/2J, δ). By comparing the mean field Eqs. (3.30) and

(3.31) of staggered phase and Eqs. (3.50) and (3.51) of columnar phase we find the

same behaviour in the limiting cases δ → 0 and J⊥/2J → 0 because the two ladders

(staggered and columnar) coincide to each other in these limits. The analytic and

numerical study of these parameters can be found in subsection 3.1.2 . An analytic

treatment is not possible to study the behaviour of the renormalization parameters

t∥ and t⊥ in the whole parametric region (J⊥/2J, δ), as in the case of staggered

phase. We find these parameters numerically. They vary continuously in the whole

region. The columnar phase has no phase transition and no gap vanishing region.

We plot t∥ and t⊥ as functions of J⊥/2J for different values of δ in Fig. 3.14. From

Eqs. (3.34), (3.50), (3.51) and (3.48), we find that the energy gap varies smoothly

in the parametric space (J⊥/2J, δ). We plot the gap as a function of J⊥/2J for

different values of δ in Fig. 3.12. The figure demonstrates that the gap in the

columnar phase (solid lines) increases continuously and monotonously with respect
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Figure 3.14: t∥ and t⊥ as functions of J⊥/2J in the different dimerization parameter
δ.

to J⊥/2J for each value of δ. In Fig. 3.12 the gaps of the staggered and columnar

phases are plotted as functions of J⊥/2J for different dimerizations.

To summarize:

In this chapter, the antiferromagnetic dimerized Heisenberg two-leg spin ladder

with two possible dimerization patterns was studied. By using the JWT we mapped

spin operators onto spinless fermionic operators. The interacting fermionic terms

appeared in the Hamiltonian were decoupled into single-particle terms within the

mean-field approximation (MFA). By using the Fourier transform and the Nambu

formalism we obtained the single particle Hamiltonian and its eigenvalues were found

by using Mathematica. Then the mean-field equations were obtained from the

minimization of the ground state energy. At first, they were analyzed by numerical

and analytical methods in the limits in parametric (J⊥/2J, δ) space. All above

mentioned calculations were done for both the staggered and columnar dimerization

configurations. In both phases it was noticed that there were good qualitative and

quantitative agreements with the previous results obtained in Ref [45].
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The mean-field equations were analyzed numerically by using Mathematica in

the whole parameter space (J⊥/2J, δ). In the staggered phase these equations were

unstable in some regions of the parameter space near the quantum criticality. We

noticed and calculated the residual gap near the critical points. The columnar phase

remains consistently gapped and all parameters in that phase vary smoothly. We

attribute this residual gap to the artefact of the MFA.

On the other hand, by looking at the similar spectra Eqs. (3.25) and (2.24) the

staggered phase of the two-leg ladder can be mapped onto the anisotropic XY model

in a transverse magnetic field. For this purpose the parameters of both models are

related as follows;

JR → J, δ → γ,
J⊥R

2
→ h, and k →

(π
2
− k
)

(3.52)

From the similar spectra Eqs. (3.47) and (2.24) we can map the columnar phase of

two-leg ladder onto the dimerized XY model in an alternating transverse magnetic

field. In this mapping the parameters of the models are related as follows:

JR → J, δ → δ,
J⊥R

2
→ h, and k →

(π
2
− k
)

(3.53)

The above mentioned two mapped spin models of the staggered and columnar phases

of two-leg ladder are very useful for further analyzing the topological phases and

getting more analytical result [54].
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Chapter 4

String Order Parameter in Spin

Chains

4.1 SOP in Dimerized XY Chain

We consider an antiferromagnetic dimerized XY spin chain where the exchange

coupling coefficients Ji alter at odd and even sites as shown in the Fig. 4.1. The

exchange coupling is written as

Ji = J
(
1 + (−1)iδ

)
(4.1)

where i is the lattice site of the spin chain, and δ is called the dimerization parameter.

J(1+ )δJ(1- )δ J(1- )δ J(1+ )δ

Figure 4.1: A spin chain with an alternation of strong and weak bonds adapted from
[14].
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The Hamiltonian of the dimerized XY chain is written in terms of the Pauli

matrices as

H =
J

4

N∑
i=1

[(
1 + (−1)iδ

) ∑
α=x,y

σα
i σ

α
i+1

]
(4.2)

Dividing explicitly the chain into the even and odd sites, the Hamiltonian reads:

H =
J

4

N/2∑
i=1

[
(1 + δ)

(
σx
2iσ

x
2i+1 + σy

2iσ
y
2i+1

)
+ (1− δ)

(
σx
2i+1σ

x
2i+2 + σy

2i+1σ
y
2i+2

)]
(4.3)

We now apply the duality transformation (1.23a) and (1.23b). This transformation

was proposed by Fradkin and Susskind [29], and recently its version was applied in

Ref.[68] to study the SOP in the Kitaev model. Using this transformation in the

terms σx
2iσ

x
2i+1 and σy

2iσ
y
2i+1, we find

σx
2iσ

x
2i+1 = τx2i−1τ

x
2iτ

x
2iτ

x
2i+1 = τx2i−1τ

x
2i+1 (4.4)

and

σy
2iσ

y
2i+1 =

N∏
k=2i

τ yk

N∏
k=2i+1

τ yk = τ y2i (4.5)

Similarly we apply the duality transforamtion for the terms σx
2i+1σ

x
2i+2 and σ

y
2i+1σ

y
2i+2

and get the Hamiltonian (4.3) in terms of the dual operators:

H =
J

4

N∑
i=1

[
(1 + δ)τx2i−1τ

x
2i+1 + (1− δ)τ y2i+1

]
+
[
(1− δ)τx2iτx2i+2 + (1 + δ)τ y2i

]
(4.6)

The Hamiltonian (4.6) consists of two decoupled 1D Ising models in transverse

field. Similar transformations were also studied in Ref. [61, 23]. One of the models

resides on the odd dual lattice sites, and the other on the even sites as illustrated

in Fig. 4.2. So we can write
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J(1+ )δ
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J(1- )δ

Figure 4.2: Odd and even decoupled Ising chains in transverse field on the dual
lattice.

Ho =
J

4

N∑
i=1

[
(1 + δ)τx2i−1τ

x
2i+1 + (1− δ)τ y2i+1

]
(4.7a)

He =
J

4

N∑
i=1

[
(1− δ)τx2iτx2i+2 + (1 + δ)τ y2i

]
(4.7b)

and the total Hamiltonian (4.6) becomes H = Ho +He.

Pfeuty [62] was the first to derive the correlation function
⟨
σx
1σ

x
l+1

⟩
of the 1D

Quantum Ising model (QIM) with the Hamiltonian

H =
N∑
i=1

[
J̃

4
σx
i σ

x
i+1 +

h

2
σz
i

]
(4.8)

According to results of Pfeuty and McCoy [62, 64] the correlation function can be

written as

lim
l→∞

⟨
σx
i σ

x
i+l

⟩
= (−1)l

(
1− λ−2

) 1
4 = (−1)lm2

x (4.9)

for λ ≡ J̃/2h > 1, and mx vanishes when λ ≤ 1.

Let us recall that the 1D QIM is ordered for λ > 1 and disordered for λ ≤ 1.

The limit of the spin-spin correlation function (4.9) signals the appearance of the

long-range order (LRO) mx. To work with correlation functions of the τ ’s operators

let us compare the Hamiltonian (4.7a) with the 1D QIM Hamiltonian (4.8). Then
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we can identify

J̃ ←→ J(1 + δ) (4.10a)

h←→ J

2
(1− δ) (4.10b)

to obtain

λ ≡ J̃

2h
=

1 + δ

1− δ
> 1 (4.11)

for δ > 0. Thus the Hamiltonian Ho has LRO ⟨τx⟩ ≠ 0 in the ground state. Using

(4.11) in (4.9) for the correlation function of τ -operators, we obtain

lim
l→∞
⟨τx0 τxl ⟩ = (−1)l

[
1−

(
1− δ
1 + δ

)2
] 1

4

= (−1)l
[

4δ

(1 + δ)2

] 1
4

(4.12)

Thus the ⟨τxl ⟩ can be regarded as a conventional (local) order parameter in the dual

space. Combining Eqs. (4.12) and (1.34) for odd sites sites we obtain exact result

for the SOP; which characterizes the hidden topological order.

Ox
o =


1
4

[
4δ

(1+δ)2

] 1
4

δ > 0

0 δ ≤ 0
(4.13)

Equation (4.13) indicates that there is no odd string order at δ ≤ 0 because dual

spins τxl residing on the odd sites are disordered in this case.

Similarly, let us compare the even Hamiltonian (4.7b) and the 1D QIM (4.8).

In this case we find

J̃ ←→ J(1− δ) (4.14a)
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h←→ J

2
(1 + δ) (4.14b)

Using the McCoy’s result (4.9) for the correlation function of τx on even sites we find

that the even lattice spins τx are ordered in the case δ < 0 and disordered at δ ≥ 0.

So the original spin Hamiltonian (4.2) has hidden topological order characterized by

the even string order parameter

Ox
e =


1
4

[
−4δ

(1−δ)2

] 1
4

δ < 0

0 δ ≥ 0
(4.15)

From Eqs. (4.13) and (4.15) we can write the common formula for the non-vanishing

SOP’s as follows:

Ox
o (δ) = Ox

e (−δ) =
1

4

[
4|δ|

(1 + |δ|)2

] 1
4

(4.16)

From Eq. (4.16) we plot the odd and even SOP’s in Fig. 4.3 and find that both SOPs

simultaneously vanish at δ = 0. The QPT at δ = 0 corresponds to the continuous

change of SOPs from zero to the finite values on either side of the critical point.

Similarly we can obtain the odd and even SOPs (Oy
o and Oy

e) in the form similar to

Eqs.(4.16).

By looking at Eqs. (4.15) and (4.13), and Fig. 4.3 we note that the even and

odd SOPs ( Ox
e and Ox

o ) are mutually exclusive. A similar conclusion was already

presented in the literature [65].

Now we will shortly discuss the local long range order (LRO) defined by mx =

⟨σx
l σ

x
m⟩ in the dimerized XY chain. The LRO parameter derived from the two-spin

correlation function in any phase can be expressed as a product of the even and odd
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Figure 4.3: SOPs for dimerized XY chain.

SOPs in that phase [ see Eqs.(4.31), (4.30), and (4.31) below]

mx = lim
l→∞
⟨σx

1σ
x
2l⟩ |δ≶0= Ox

e |δ≶0 O
x
o |δ≶0 (4.17)

Equation (4.17) indicates that the LRO vanishes in either phases δ < 0 or δ > 0,

because one of the two SOPs is always zero(i.e., they are mutually exclusive). Both

SOPs are zero in the gapless chain δ = 0. Thus we recover the well-known result

that no local long range order is present in the dimerized XY chain.

Let us now discuss the critical behaviour of this spin chain near the critical

point. From Eq. (4.16) we can write

Ox
e = Ox

o ∼ δ2β. (4.18)

Hida [63] was the first to point out such critical behaviour of the SOP in the dimer-

62



ized chain. We find that β = 1/8 is the critical exponent of order parameter as

in the 2D Ising model. As we expressed before, the second critical index β = 1/8,

which proves that the dimerized XY spin chain lies in the same universality class

as the 2D Ising model.

4.2 SOP in Anisotropic Dimerized XY chain

To further analyze the correlation functions and topological order in spin models,

we choose now the anisotropic dimerized XY spin-1/2. We analyzed this model in

chapter 2, and the Hamiltonian (2.1) without magnetic field is written as

H =
J

4

N∑
i=1

[
(1 + γ)σx

i σ
x
i+1 + (1− γ)σy

i σ
y
i+1 + δ(−1)i

(
σx
i σ

x
i+1 + σy

i σ
y
i+1

)]
(4.19)

where J is the exchange coupling of nearest neighbour spin interaction, and γ and

δ are the parameters characterizing the degree of anisotropy and dimerization.

This exactly solvable model was proposed by Ye Fei, et al [66], and its detailed

study can be found in [41]. In this paper [41] they found four branches of the energy

spectrum (2.26) by using the JWT. The details on this model are given in chapter

2. The spectrum (2.26) has the energy gap

∆ = J |δ ± γ| (4.20)

at k = π/2, and the model is gapless (massless) at δ = ±γ. An illustration of the

critical behaviour of the model is shown in Fig. 4.5. The critical lines δ = ±γ on

(γ, δ) plane separates massive phases.

The first two terms in the Hamiltonian (4.19) correspond to the anisotropic XY
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model, which was proposed and studied by Lieb and et al [67]. They found its energy

spectrum, the phase diagram, and correlation functions. The last two terms in the

Hamiltonian is the dimerized part of XY model with the dimerization parameter δ.

We rearrange Eq. (4.19) in the even and odd sites with alternating dimerized

factor δ, so the Hamiltonian reads

H =
J

4

N/2∑
i=1

{
(1 + γ + δ)σx

2iσ
x
2i+1 + (1− γ + δ)σy

2iσ
y
2i+1

}

+
J

4

N/2∑
i=1

{
(1 + γ − δ)σx

2i+1σ
x
2i+2 + (1− γ − δ)σy

2i+1σ
y
2i+2

}
(4.21)

Now we map the σ operators onto the dual τ operators using duality transformation

(1.23a) and (1.23b) [29, 68]. Then the Hamiltonian (4.21) reads in the dual (τ) space

as:

H =
1

4

N/2∑
i=1

{(
J++τx2i−1τ

x
2i+1 + J−−τ y2i+1

)
+
(
J+−τx2iτ

x
2i+2 + J−+τ y2i

)}
(4.22)

It corresponds to two decoupled 1D Ising models in transverse field for odd and even

sites in the dual lattice representation. Here we use the notations

J±± = J(1± γ ± δ). (4.23)

By comparing the Hamiltonians (4.22) and (4.6) one can conclude that the dimer-

ized XY chain and the anisotropic dimerized XY chain can both be mapped onto

two 1D QIM on the dual lattice. Now let us analyze the conditions for the even and

odd Hamiltonians in Eq. (4.22) to possess LRO in the τ -space. The occurrence of

the LRO depends on the factor λ [62, 64] as we discussed above, [see Eqs. (4.9) and
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Figure 4.4: Odd and even decoupled Ising chains in transverse field in the dual space.
Solid and dotted lines represent the couplings on odd and even sites, respectively.

(4.11)]. The odd dual lattice is ordered when

λxo =
J++

J−− =
1 + γ + δ

1− γ − δ
> 1, (4.24)

and the LRO is signalled by the non-vanishing correlation function ⟨τx1 τx2i+1⟩ (see Eq.

4.9). The system is ordered in the region δ > −γ of the (δ, γ) plane and disordered

otherwise as shown in Fig. 4.5. Thus ⟨τx2i+1⟩ is an order parameter describing the

phase transition when δ crosses from δ > −γ to δ ≤ −γ. The odd string order

parameter defined by Eq. (1.34) for the odd sites, is found as:

Ox
o =


1
4

[
4(γ+δ)

(1+γ+δ)2

] 1
4

δ > −γ

0 δ ≤ −γ
(4.25)

Similarly, the LRO detected by non-vanishing limit of the correlation function

⟨τx2 τx2i+2⟩ defined on the even lattice sites, exists under the following condition:

λxe ≡
J+−

J−+
=

1 + γ − δ
1− γ + δ

> 1. (4.26)

The even 1D QIM becomes ordered in the region δ < γ separated by the critical

line δ = γ in the (δ, γ) plane and disordered in the δ > γ region. So ⟨τx2i⟩ is an order
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ized XY chain in the four sectors A,B,C,D of the (δ, γ) parametric plane. The
black/red lines γ = ±δ are the lines of quantum criticality where the model is
gapless.

parameter characterizing the phase transition at δ = γ. Using the even part of the

Hamiltonian (4.22) and Eq. (1.34) we find the even string order parameter

Ox
e =


1
4

[
4(γ−δ)

(1+γ−δ)2

] 1
4

δ < γ

0 δ ≥ γ
(4.27)

The original Hamiltonian (4.19) is not symmetric with respect to x and y spin

components due to the anisotropy parameter γ. So it is natural to also analyze the

y component of the even and odd string order parameters. The easiest way to do

it is to swap x and y components in the dual transformation (1.23a) and (1.23b).

This results in the Hamiltonian (4.22) where x and y components of τ spins are

interchanged. Following the lines of above derivations we find two y-components of
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SOP:

Oy
o =


1
4

[
−4(γ+δ)
(1−γ−δ)2

] 1
4

δ < −γ

0 δ ≥ −γ
(4.28)

and

Oy
e =


1
4

[
4(γ−δ)

(1−γ+δ)2

] 1
4

δ > γ

0 δ ≤ γ
(4.29)

In Fig. 4.5 we show four regions (A,B,C,D) separated by the phase boundaries

γ = ±δ. In each region we indicate non-vanishing SOPs (Ox
o , O

x
e , O

y
o and Oy

e). One

can infer from Eqs. (4.25),(4.27),(4.28), (4.29) and Fig. 4.5 that a pair of SOP, i.e.,

Ox
♯ or Oy

♯ (♯ = e, o) are mutually exclusive to the regions (B, D), while they co-exist

in the regions (A,C). We will show in the next section that coexisting SOPs (Ox
e , O

x
o )

and (Oy
e , O

y
o) result in a non-vanishing conventional (local) LRO. The values of the

SOPs are given by Eqs. (4.25), (4.27), (4.28) and (4.29).

4.2.1 Correlation Functions and Local LRO

To test a possibility of a local LRO we are going to calculate the limits of correlation

functions at large distance. The magnetisation mx is defined via the correlation

function ⟨σx
1σ

x
2l⟩ as

m2
x = lim

l→∞
⟨σx

1σ
x
2l⟩ = lim

l→∞
⟨(τx0 τx2l)(τx1 τx2l−1)⟩, (4.30)

where the last equality follows from the duality transformation (1.23a). The duality

transformation of the original Hamiltonain (4.21) maps it onto two decoupled (odd

and even) 1D QIM (4.22) on the dual lattice. This means the statistical average of

the product of non interacting even and odd τ spins decouples, i.e., ⟨OO′⟩ = ⟨O⟩⟨O′⟩,

where O and O′ are two independent operators. By using Eqs. (1.34), (4.25) and
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(4.27) we obtain an interesting result that the correlation function on the original

lattice becomes a product of odd and even SOPs which in turn are given by the

local correlation functions on the dual lattice lattice (4.30). Finally we get

m2
x = 16Ox

oO
x
e = 2

(γ2 − δ2) 1
4

[(1 + γ)2 − δ2]
1
2

(4.31)

This LRO parameter is non zero and changes continuously in the region A (γ > ±δ)

in Fig. 4.5 and vanishes at the critical lines γ = ±δ. By setting δ = 0 in Eq. (4.31)

we obtain the magnetisation given by Eq. (4.1) in Ref. [43] for zero field of the

anisotropic XY model. In the similar fashion, we find the magnetisation my via the

correlation function ⟨σy
1σ

y
2l⟩ as

m2
y = lim

l→∞
⟨σy

1σ
y
2l⟩ = 2

(γ2 − δ2) 1
4

[(1− γ)2 − δ2]
1
2

(4.32)

This long range order parameter is non zero and changes continuously in the region

C (γ < ±δ) in fig. 4.5 and vanishes at the critical lines γ = ±δ. From Fig. 4.5

we conclude that the string order parameters (SOP) Ox
o , O

x
e and long range order

mx coexist in the region γ > ±δ; and Oy
o , O

y
e and my coexist in the region γ < ±δ.

The order in the regions B and D in Fig. 4.5 is non local and only contains SOPs:

Ox
o , O

y
e and Ox

e , O
y
o , respectively.

In order to study critical properties of the model near the phase boundaries

γ = ±δ we analyze the critical exponents. From Eqs. (4.25), (4.27), (4.28), and

(4.29) we write

Ox ∼ |t|2β (4.33)
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and from Eq. (4.31) and (4.32) we have

mx =
√
Ox ∼ |t|β (4.34)

with |t| ≡ |δ−γ|. From the above equations and the gap equation (4.20) we can infer

that β = 1/8 and ν = 1. So this exactly solvable model maps onto free fermions

also lies in the universality class of the 2D Ising model.

To summarize:

In this chapter we calculate exactly the string order parameter (SOP) and con-

ventional local LRO parameters in the anisotropic dimerized spin-1/2 chain. At

first, we used the well-known spin duality transformation [29] to map spin operators

from the direct to dual lattice such that the Hamiltonian on the dual lattice becomes

that of the two decoupled (odd and even) 1D QIM. Using this transformation we

found that the LRO on the dual lattice becomes the SOP on the direct lattice. By

using the standard result from Ref. [62, 64] we obtained the LRO parameters on

the dual lattice which is the SOP on the direct lattice. Then by using the duality

transformation we also found the exact result for the conventional order parameter

(magnetisation) via SOPs. We presented the phase diagram in Fig. 4.5 where all

nonvanishing local and string order parameters were found.

As a similar special case we also analyzed the dimerized XY chain. We con-

firmed the well-known result that no local LRO is present in this model. However,

the dimerized XY chain possesses the non local string order, and we analytically

calculated two SOPs in that model.
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Chapter 5

Topological Winding Numbers

In recent years, it has been proven that the phase transitions in spin systems with

hidden (nonlocal) orders are accompanied by a change of topological numbers (in-

dices). In this chapter we study the winding number or the Pontryagin index in the

spin chains and ladders to understand how it characterizes different gapped phases.

5.1 Winding Number in the Anisotropic Dimer-

ized XY Chain.

To discuss the topological order in the spin system we study the anisotropic dimer-

ized XY spin-1/2 chain (4.19) which was analyzed in chapter 4. We used the 1D

JWT to map the spin operators onto the free fermionic operators. To further ma-

nipulate the Hamiltonian in the momentum space we use the Fourier transform. By

using the Nambu formalism in the odd and even lattice, we find the single particle

Hamiltonian (2.21) with the spinor (2.22) and the 4× 4 Hamiltonian matrix which
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can be worked out in the following way:

H(k) =


0 Jc∗ 0 Ja∗

Jc 0 Ja∗ 0

0 Ja 0 −Jc∗

Ja 0 −Jc 0



=

Jc′σ1 + Jc
′′
σ2 −iJaσ1

Jiaσ1 −Jc′σ1 − Jc
′′
σ2



= Jc
′

σ1 0

0 −σ1

+ Jc
′′

σ2 0

0 −σ2

+ Ja

0 −i

i 0


= Jc

′
σ3 ⊗ σ1 + Jc

′′
σ3 ⊗ σ2 + Jaσ2 ⊗ σ1 (5.1)

Here we denote a = iγ sin k and c = c
′
+ ic

′′
, with c

′
= cos k and c

′′
= δ sin k. σα

with α = 1, 2, 3 are 2 × 2 Pauli matrices defined by Eq. (1.2). We diagonalize the

Hamiltonian matrix (5.1) with the help of Mathematica. The energy spectrum is

±ϵ±(k) = ±J
√

cos2 k + (δ ± γ)2 sin2 k (5.2)

in the momentum space which is similar to Eq. (2.26). As we discussed before,

the model shows quantum critical behaviour at δ = ±γ on the (δ, γ) plane and the

critical lines separate four gapped (massive) phases [41] as shown in Fig. 4.5.

Following [39, 40] and earlier discussions in section 1.5, we introduce the nor-

malized two component vector (nx, ny). From Eq. (5.2) we get

nx =
cos k√

cos2 k + (δ ± γ)2 sin2 k
(5.3a)
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and

ny =
(δ ± γ) sin k√

cos2 k + (δ ± γ)2 sin2 k
(5.3b)

We differentiate Eqs. (5.3a) and (5.3b) w.r.t k and plug them into Eq. (1.37). We

get

N± =
1

2π

∫ 2π

0

(ξ±)

cos2 k + (ξ±)2 sin
2 k

=
2ξ±

πi(1− (ξ±)2)

∮
c

zdz

(z2 + 1−ξ±
1+ξ±

)(z2 + 1+ξ±
1−ξ±

)
(5.4)

where we changed the variable k into the complex plane by using z = eik, and the

limit of integration from (−π, π) to (0, 2π) because it is symmetrical in this range.

Eq. (5.4) has four poles on the imaginary axis. They are; z1,2 = ±i
√

(1− ξ±)/(1 + ξ±),

z3 = −1/z1 and z4 = −1/z2, with ξ± = (δ ± γ).

To find the winding number the positions of poles are to be identified in that

plane. In addition we have to figure out a pair of the eigenvalues that provides the

minimum energy gap and it vanishes at the critical line. From the analysis of the

eigenvalues (5.2) we can show that the winding number in any region of the (δ, γ)

plane is defined as follows:

Nw =

 N+ if |ξ+| > |ξ−| ⇔ ϵ+min(k) < ϵ−min(k); k ∈ [0, π]

N− if |ξ+| < |ξ−| ⇔ ϵ−min(k) < ϵ+min(k); k ∈ [0, π]
(5.5)

At first we find N+ and N− in all regions (A′, A′′, B, C,D′, D′′, E, F ) as shown in

Fig. 5.2 and then check which pair of eigenvalues (5.2) provides the minimum energy

gap [see Fig. 5.1].

(1) For δ > γ regions: (E,F,A′, A′′)

In these regions we find the term ξ− = δ−γ > 0 and two poles z1 = i
√
(1− ξ−)/(1 + ξ−) <
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i and z2 = −i
√

(1− ξ−)/(1 + ξ−) > −i lie inside the circle of unit radius. We find

two residues at poles z1 and z2 and their sum is

a−1|z→z1 + a−2|z→z2 = lim
z→z1

z

(z − z2)(z − z3)(z − z4)

+ lim
z→z2

z

(z − z1)(z − z3)(z − z4)

=
1− ξ2−
4ξ−

(5.6)

Using the residue theorem;
∮
c
f(z)dz = 2πi

∑
i a−1|z=zi and Eq. (5.6) in Eq. (5.4),the

winding number becomes

N− = 1 (5.7)

(2) For δ < γ regions: (B,C,D′, D′′)

In these regions we find the quantity ξ− = δ − γ < 0 and two poles z3 =

i
√

(1 + ξ−)/(1− ξ−) < i and z4 = −i
√
(1 + ξ−)/(1− ξ−) > −i lie inside the circle

of unit radius. The sum of residues at these two poles is

a−1|z→z3 + a−1|z→z4 = lim
z→z3

z

(z − z1)(z − z2)(z − z4)

+ lim
z→z4

z

(z − z1)(z − z2)(z − z3)

= −
1− ξ2−
4ξ−

(5.8)

By using the residue theorem;
∮
c
f(z)dz = 2πi

∑
i a−1|z=zi and Eq. (5.8) in Eq. (5.4)

we obtain

N− = −1 (5.9)

Similarly, we calculate the winding number N+ in δ > −γ regions (A′, A′′, B, C) and
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in δ < −γ regions (D′, D′′, E, F ). It takes two values; N+ = 1 and N+ = −1 in the

above mentioned respective regions on the (δ, γ) plane.
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Figure 5.1: The four energy eigenvalue spectrum of a chain in different regions of
the parametric plane (a) δ = 0.25, γ = −0.1; (b) δ = 0.2, γ = 0; (c) δ = 0.2,
γ = 0.1; (d) δ = 0.2, γ = 0.2; (e) δ = 0.2, γ = 0.3: (f) δ = 0, γ = 0.2, and (g)
δ = −0.2, γ = 0.3. The vertical axis is the energy and the horizontal axis is the
angle in the k space taken from 0 to π.

In order to understand why the winding number changes the sign while crossing

the line at δ = 0 and γ = 0, we plot energy eigenvalues in the regions (A′, A′′, B, C).

The curves shown in Figs. 5.1a, 5.1b, and 5.1c are in region A′, on line at γ = 0,

and region A′′, respectively. In the figures the two pairs of eigenvalues cross the

energy levels while crossing the line at γ = 0. As we can see from (5.3a), (5.3b),
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and (5.5) the winding number changes the unit vector which is used to calculate

Nw when the line γ = 0 is crossed. A similar phenomenon appears in the Figs.

5.1e, 5.1f, 5.1g. Now we can infer that the change of the winding number is not

necessarily accompanied by the gap closing or any type of phase transitions. This

change of topological index is associated with the level crossing only. From Figs.

5.1c, 5.1d, 5.1e we see that the winding number changes the sign while crossing

the phase boundary δ = γ. The change of the winding number at the critical line,

where the gap closes, signals the real topological phase transition. Similar physical

phenomenon appear in the regions (D′,D′′,E,F) and winding numbers in all regions

are shown in the Fig. 5.2
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Figure 5.2: Winding numbers on the parametric (γ − δ) plane of the anisotropic
dimerized XY chain.

5.2 Winding Number in Dimerized Ladders

In order to further analyze the unconventional gapped phases in the dimerized

Heisenberg two-leg spin ladder we calculate its topological winding number. We
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have studied two possible dimerizations in this ladder in chapter 3. In this section

we use the approximate free-fermionic Hamiltonians derived for the two dimeriza-

tion patterns in the previous chapter to calculate the topological Pontryagin indices

for the different massive phases in the two-leg ladder.

5.2.1 Staggered Phase.

The structure and basic properties of two-leg spin ladder in the case of alternated

dimerization pattern were studied in chapter 3. Now we can use those results here. In

the framework of Hartree-Fock approximation we found the free-fermionic effective

Hamiltonian (2.21) with 4 × 4 Bloch Hamiltonian matrix which we rewrite here in

a more compact form:

H =


0 −JRc 1

2
J⊥R 0

−JRc∗ 0 0 1
2
J⊥R

1
2
J⊥R 0 0 −JRc∗

0 1
2
J⊥R −JRc 0



=

−JR(c′σ1 − c′′σ2) 1
2
J⊥R1

1
2
J⊥R1 −JR(c

′
σ1 + c

′′
σ2)



= −JRc
′

σ1 0

0 σ1

+ JRc
′′

σ2 0

0 −σ2

+
1

2
J⊥R

0 1

1 0


= −JRc

′
1⊗ σ1 + JRc

′′
σ3 ⊗ σ2 +

1

2
J⊥Rσ1 ⊗ 1 (5.10)

where σ1,2,3 are Pauli matrices. For simplicity we denote c = c
′
+ic

′′
with c

′
= δ cos k

and c
′′
= sin k. The sign ⊗ used in Eq. (5.10) is the tensor product of matrices. We

can now use the gamma matrices defined by (1.4) in the Hamiltonian (5.10). We
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get

H =

(
JRδ cos k ±

JR⊥

2

)
Γ1 + (JR sin k)Γ4 ≡ d±1 Γ1 + d4Γ4 (5.11)

We diagonalize the Hamiltonian (5.11) by using Mathematica and find the four

eigenvalues ±
√
d21 + d24 by Eq. (3.25). The Hamiltonian (3.17) has the diagonal

form

H =
4∑

ν=1

∫ π

0

ϵν(k)η
†
ν(k)ην(k)dk (5.12)

where ϵν(ν = 1, 2, 3, 4) are compact notations for ϵ+, ϵ−,−ϵ+,−ϵ− respectively [see

Eq. (3.25)]. These eigenvalues are shown in Fig. 5.3, where a couple of eigenvalues

are related by a shift ϵ1(k) ≡ ϵ2(π + k).

Let us take two positive eigenvalues first (ν = 1, 2) in Eq. (5.12), so

+

+

ε

ε
+

ε
_

ε
_

-
+

_

(a) (b)

0

-0.5

0.5

1

0 ππ 2 3π 4π
0 π 2π

1-
(b)

Figure 5.3: (a) Four energy eigenvalues of staggered ladder at model’s parameters
δ = 0.25, J⊥/2J = 0.4 (b) Integration with the branch ϵ1 in the region [0, π] and
with the branch ϵ2 in the region [π, 2π] is mapped on a single branch in the region
[0, 2π] (sky blue). Similar mapping of the negative branches (magenta).

H1 +H2 =

∫ π

0

ϵ1(k)η
†
1(k)η1(k)dk +

∫ π

0

ϵ2(k)η
†
2(k)η2(k)dk
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=

∫ 2π

0

ϵ2(k)η̃
†
2(k)η̃2(k)dk (5.13)

where we used the relation ϵ1(k) = ϵ2(π + k) and we defined new operators

η̃2(k) =

 η2(k) k ∈ [0, π]

η1(k − π) k ∈ [π, 2π]
(5.14)

Similarly, the last two terms in the Hamiltonian (5.12) for the negative energies can

be brought into the following form:

H3 +H4 =

∫ 2π

0

ϵ4(k)η̃
†
4(k)η̃4(k)dk (5.15)

Then Eqs. (5.13) and (5.15) yield

H =
∑
ν=±

ν

∫ 2π

0

ϵ(k)η̃†ν(k)η̃ν(k)dk (5.16)

with eigenvalues

±ϵ(k) = ±

√
(JR sin k)2 +

(
JRδ cos k −

J⊥R

2

)2

(5.17)

Now we introduce the normalized vector (nx, ny) = (d−1 , d4)/|d| where

nx(k) =
JRδ cos k − J⊥R/2√

(JR sin k)2 +
(
JRδ cos k − J⊥R

2

)2 (5.18a)

and

ny(k) =
JR sin k√

(JR sin k)2 +
(
JRδ cos k − J⊥R

2

)2 (5.18b)

We differentiate Eqs. (5.18a) and (5.18b) and plug them in Eq. (1.37). The winding
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number becomes

Nw =
JR
2π

∮
c

(JRδ − J⊥R

2
cos k)

(JR sin k)2 +
(
JRδ cos k − J⊥R

2

)2dk (5.19)

To simplify Eq. (5.19) we change the variable in the complex plane by using the

relation z = eik and introduce the notations: 2J1 = JR(1 + δ), 2J2 = −JR(1 − δ),

2J3 = J⊥R, J+ = J1 + J2 = JRδ and J− = J1 − J2 = JR. It yields

Nw =
J−
4πi

∮
c

J3z
2 + 2zJ+ + J3

(J1z2 + zJ3 + J2) (J2z2 + zJ3 + J1)
dk (5.20)

The integrand in Eq. (5.20) has four poles on the real axis. They are

z1,2 =
1

1 + δ

−(J⊥R

2JR

)
±

√(
J⊥R

2JR

)2

+ (1− δ2)

 , (5.21)

In the Fig. 5.4 we show the four regions (A,B,C,D) separated by the phase bound-

aries δ = ±J⊥R/2JR in the parametric plane (δ, J⊥/2J). These boundaries were

previously found from Eq. (3.26). Now we can study Nw in four gapped phases.

Phase A:

In this phase we find δ > 0 and δ > ±J⊥R/2JR, then
1−δ
1+δ

< z1 ≤ 1; −1 ≤ z2 <

δ−1
1+δ

; z3 ≥ 1 and z4 ≤ −1. The two poles z1 and z2 lie inside the circle of unit radius.

The residues at z1 and z2 are

a−1|z=z1 = lim
z→z1

(z − z1)
(J3z

2 + 2J+z + J3)

(z − z1)(z − z2)(z − z3)(z − z4)

=
JR(1− δ2)

4X

 J⊥R

2JR

(
X − J⊥R

2JR

)2
+ 2

(
X − J⊥R

2JR

)
(1 + δ)δ + J⊥R

2JR
(1 + δ)2(

X − J⊥R

2JR

)2
− (1 + δ)2

 (5.22a)
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Figure 5.4: The winding number Nw in the phases A,B,C, and D in parametric space
(J⊥R/2JR, δ) of the staggered phase.

and

a−1|z=z2 = −
JR(1− δ2)

4X

 J⊥R

2JR

(
X + J⊥R

2JR

)2
− 2

(
X + J⊥R

2JR

)
(1 + δ)δ + J⊥R

2JR
(1 + δ)2(

X + J⊥R

2JR

)2
− (1 + δ)2


(5.22b)

with X =

√(
J⊥R

2JR

)2
+ (1− δ)2. The sum of these residues is

a−1|z=z1 + a−1|z=z2 = −
JR
2
(1− δ)2 (5.23)

Now we use the residue theorem;
∮
c
f(z)dz = 2πi

∑
i a−1|z=zi and Eq. 5.23), in Eq.

(5.20),to obtain

Nw = 1 (5.24)

Phase B:
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In this phase we note that J⊥R/2JR > 0 and J⊥R/2JR > ±δ, then (1−J⊥R/2JR)
(1+J⊥R/2JR)

<

z1 ≤ 1; z2 ≥ 1; z3 ≤ −1 and −1 ≤ z1 < − (1−J⊥R/2JR)
(1+J⊥R/2JR)

. The poles z1 and z4 lie within

the circle of unit radius. The residue at z4 is,

a−1|z=z4 =
JR(1− δ2)

4X

 J⊥R

2JR

(
X + J⊥R

2JR

)2
− 2

(
X + J⊥R

2JR

)
(1 + δ)δ + J⊥R

2JR
(1 + δ)2(

X + J⊥R

2JR

)2
− (1 + δ)2


(5.25)

with X =

√(
J⊥R

2JR

)2
+ (1− δ)2. The sum of the residues at z1 and z4 becomes

a−1|z=z1 + a−1|z=z4 = 0 (5.26)

By applying the residue theorem;
∮
c
f(z)dz = 2πi

∑
i a−1|z=zi and using Eq. (5.26),

Eq. (5.20) reads

Nw = 0 (5.27)

Similarly, the quantity in Eq. (5.20) takes the values; Nw = −1 and Nw = 0 in the

phases C and D, respectively: [See Fig. 5.4]. In Fig. 5.4 we see that the phases

(A,B,C,D) are characterized by the winding numbersNw = (1, 0,−1, 0), respectively.

Using the results shown in the first quadrant in Fig. 5.4 we combine them with the

results for the SOPs found in the earlier work [45, 36]. In Fig. 5.5 we show two

gapped phases in the positive (δ, J⊥/2J) plane, separated by the phase boundary

that is represented by a solid line. We indicate winding number that takes the values

1 and 0 in the leg-dimer and rung-dimer phases, respectively. Thus in addition to

the SOPs the winding number can be used to characterize the topological phases of

the staggered ladder. In this model the topological number can not change its value

without crossing the phase boundary.
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N = 1

N = 0

ω

ω

Figure 5.5: Staggered phase of two-leg ladder; critical line J⊥c(δ) where the gap
vanishes. Adapted from Ref.[36] and original data taken from Ref. [55]. In addi-
tion to two different SOPs, the two phases of the staggered dimerized ladder are
characterized by distinct topological numbers.

5.2.2 Columnar Phase.

We previously found the approximate single-particle fermionic Hamiltonian for this

phase. The 4× 4 Hamiltonian matrix (3.46) can be written as

H =


0 JRc

∗ 1
2
J⊥R 0

JRc 0 0 1
2
J⊥R

1
2
J⊥R 0 0 −JRc∗

0 1
2
J⊥R −JRc 0



=

JR(c′σ1 + c
′′
σ2)

1
2
J⊥R1

1
2
J⊥R1 −JR(c

′
σ1 + c

′′
σ2)


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= JRc
′

σ1 0

0 −σ1

+ JRc
′′

σ2 0

0 −σ2

+
1

2
J⊥R

0 1

1 0


= JRc

′
σ3 ⊗ σ1 + JRc

′′
σ3 ⊗ σ2 +

1

2
J⊥Rσ1 ⊗ 1 (5.28)

Here we denote; c = c
′
+ ic

′′
with c

′
= δ cos k and c

′′
= sin k. We use the gamma

matrices (1.4) in the Hamiltonian (5.28) to obtain

H = (JRδ cos k) Γ3 + (JR sin k) Γ4 +

(
JR⊥

2

)
Γ1

≡ d3Γ3 + d4Γ4 + d1Γ1 (5.29)

We diagonalize the Hamiltonian (5.29) by using Mathematica to find the following

energy spectrum (3.47):

±ϵ±(k) = ±
√
d21 + d23 + d24

= ±

√
J2 sin2 k + J2δ2 cos2 k +

(
J⊥
2

)2

(5.30)

The Hamiltonian (3.45) is always gapped and has the diagonal form

H =

∫ π

0

ϵ±(k)η†(k)η(k)dk (5.31)

From the spectrum (5.30) we write the components of thenormalized vector (d1, d3, d4):

nx(k) =
δ cos k√

sin2 k + δ2 cos2 k +
(
J⊥
2J

)2 (5.32a)

ny(k) =
sin k√

sin2 k + δ2 cos2 k +
(
J⊥
2J

)2 (5.32b)
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nz(k) =
J⊥/2J√

sin2 k + δ2 cos2 k +
(
J⊥
2J

)2 (5.32c)

We differentiate Eqs. (5.32a) and (5.32b) w.r.t k and plug them into Eq. (1.37).

The winding number becomes

Nw =
1

2π

∫ 2π

0

δ

sin2 k + δ2 cos2 k +
(
J⊥
2J

)2 (5.33)

where we changed the limit of integration from [-π, π] to [0, 2π] by using the sym-

metry. In order to simplify the above integral (5.33) we change the variable in the

complex plane by using the relation y = z2 = e2ik. It reads

Nw =
2δ

iπ(δ2 − 1)

∮
1[

y2 + 2
(δ2+1+(J⊥/J)2)

(δ2−1)
+ 1

]dy (5.34)

The integrand in Eq. (5.34) has two poles in the real axis. They are

y± =
1

δ2 − 1

−(δ2 + 2

(
J⊥
2J

)2

+ 1

)
± 2

√(
J⊥
2J

)2

+ 1

√(
J⊥
2J

)2

+ δ2

 (5.35)

We note that y+ lies inside the circle of unit radius for whole parametric space

(δ, J⊥/2J). The residue at the pole y+ is

a−1|y→y+ = lim
y→y+

(y − y+)
(y − y+)(y − y−)

=
1

y+ − y−

=
4

δ2 − 1

√(
J⊥
2J

)2

+ 1

√(
J⊥
2J

)2

+ δ2 (5.36)
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Now we apply the residue theorem;
∮
c
f(z)dz = 2πi

∑
i a−1|z=zi at Eq. (5.33) and

use Eq. (5.36) in Eq. (5.35). It gives

Nw =
δ√(

J⊥
2J

)2
+ 1

√(
J⊥
2J

)2
+ δ2

(5.37)

From Eq. (5.37) we find that Nw is symmetric with respect to the sign of J⊥/2J .
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Figure 5.6: The winding number Nw in the (J⊥/2J, δ) plane for J⊥ ≥ 0

So, we plot Fig. 5.6 in (J⊥/2J, δ) parameter space only for J⊥/2J > 0. From Fig.

5.6 we can infer that the winding number is no longer quantized to be an integer and

it continuously changes from Nw = 1 to Nw = −1 when we go from δ > 0 to δ < 0

in the whole (J⊥/2J, δ) parametric plane. This means that the columnar phase is

topologically trivial, as was explained in Ref. [40] for a similar case. This is related

to the fact that the mapping of the three-dimensional unit sphere onto a circle is

always trivial [40].
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On the other hand, in the limit J⊥ = 0 (dimerized XY chain) the quantity

(5.37) takes

Nw =

 1 δ > 0

−1 δ < 0
(5.38)

From Eq. (5.38) we notice that the quantity suddenly changes its integer from 1 to

−1 or vice versa at the phase boundary δ = 0. This is an agreement with our earlier

results for the anisotropic dimerized chain in the limit γ → 0 [see Fig. 5.2].

To summarize:

In this chapter we focused on the study of the winding number (Pontryagin

index) to characterize the topological phases of quantum spin systems such as the

anisotropic dimerized XY chain and the antiferromagnetic dimerized Heisenberg

two-leg spin ladder in two dimerization patterns. The 4× 4 single particle Hamilto-

nians were obtained in terms of the gamma matrices for these models from which the

energy spectra were calculated. The winding numbers were calculated analytically

by using the residue theorem. We concluded that the winding number characterizes

the topological phases by changing the sign while crossing the phase boundaries. The

phase transition is also accompanied by emerging nonvanishing SOPs and/or con-

ventional LRO parameters [see Fig. 4.5]. Interestingly, in the anisotropic dimerized

XY chain the winding number changes its value in a gapped phase while crossing

the line δ = 0 and γ = 0 without crossing the phase boundary. This change of the

topological index is associated to the level crossing only. This exactly solved model

provides a counterexample to recent claims in the literature that a change of the

topological number signals a topological phase transition without gap closing [40].

In addition, we found that the columnar phase of the ladder is always topologically

trivial.
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Chapter 6

Conclusions

In the present thesis the quantum phase transitions, non local (topological) and local

conventional orders, and the topological numbers in the antiferromagnetic dimerized

Heisenberg chains and two-leg ladders were studied. The calculations were carried

out for the dimerizedXY chain, the anisotropic dimerizedXY chain and the two-leg

ladder in both the staggered and columnar configurations.

In this work we mapped the spin operators of the original Hamiltonians onto

spinless fermionic operators by using the JWT. To treat the ladder we used the

MFA for the interacting fermionic terms. Using the Nambu formalism we obtained

the single particle 4× 4 Hamiltonian matrices for different models and found their

eigenvalues.

In both the staggered and the columnar phases of the two-leg ladder quantities

such as eigenvalues and energy gap were obtained by using the minimization of the

ground state energy. By investigating the mean-field equations in the limit of the

model’s parameters we confirmed the earlier results [45, 36] that the columnar phase
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always remained consistently gapped, whereas the staggered configuration shows the

quantum critical behaviour. The quantum phase transition is continuous along the

critical line, except in the small region of δ where a small residual gap was detected.

We attribute this weak discontinuity of the phase transition to the artefact of the

mean-field approximation, since more accurate numerical results clearly indicate a

continuous phase transition.

Ultimately the spectra of both the staggered and the columnar configurations of

the two-leg ladder were identified with those of the dimerized anisotropic XY spin

chains in the transverse magnetic field by comparing the model’s parameters. We

use these mappings to find more analytical results for the topological phases of the

two-leg ladder.

For the first time we calculated the energy spectra and the energy gap in the

anisotropic dimerized XY chain in an alternating magnetic field. By investigating

the different branches of the eigenvalues we found that the model shows quantum

critical behaviour on some critical lines in the (δ, γ) plane. In order to calculate SOPs

and local LRO parameters we performed the spin duality transformation and found

that the SOPs in the direct lattice were given by the LRO parameters in dual lattice.

Moreover, the calculated two pairs (odd, even) of SOPs were mutually exclusive in

two phases (δ > ±γ) and (δ < ±γ) and co-existed in the other two phases. We then

found the local LRO correlation functions in the phases (δ < ±γ) and (δ > ±γ) by

using the SOPs. The same calculations were done in the dimerized XY model and

we confirmed the findings that the pair of SOPs are mutually exclusive. A complete

phase diagram and the analytical results for the SOPs and local LRO parameters

for the whole parameter (δ, γ) plane of the anisotropic dimerized XY chain are

presented.
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As a complimentary parameter we investigated the topological winding number,

or Pontryagin index in (δ, γ)−XY chain and the both configurations of the two-leg

antiferromagnetic ladder. These calculations were carried out to further analyze

the different topological phases of the models. We found that the different winding

numbers characterize the different phases and these topological numbers change their

integer values while crossing the phase boundaries. Interestingly, in the (δ, γ) −

XY model the winding number changed the sign while crossing the parametric

boundaries δ = 0 and γ = 0 in (δ, γ) plane. This change of winding number is

associated with the level crossing of eigenvalues and no phase transition or crossover

occurs on those lines δ = 0 and γ = 0. In addition, in the columnar configuration the

winding number changed continuously from one region to the other in the gapped

phase. It is topologically trivial.

In future work we will further analyze the analytical results by using the free-

fermionic Hamiltonian (3.17) [54]. We also plan to advance further our research for

ladders with different numbers of legs and types of interactions, as well as for 2D

spin models.
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