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Abstract: The origin of the acoustic and seismic emissions from impacted singing grains and

from avalanching dune sand grains is sought in modes of vibration in discreet grain columns.

It is postulated that when the grains in a column are pressed together and forced to slide

over one another, elastic shear bands are formed at the contact areas with distinct elastic

moduli. Such contact shear bands would have implications in the formulation of the

Hertz-Mindlin contact theory. The assembly of all grain columns below the impacting pestle

forms the slip (slide) shear band. The transfer of energy from the pestle to the modes of

vibration in such columns is effected by the stick-slip effect. The intense collective vibration

of all columns in the slip shear band results in the familiar musical sound. The concept of

grain flowability is used to justify the disparity between the acoustic emissions from

impacted singing grains and from avalanching booming dune sand grains. The concept of

grain columns is assumed to apply in the freely avalanching sand band, but with longer

length to justify the lower frequencies. This approach predicts frequency spectra comprising

a low frequency content and a dominant frequency with its harmonics in agreement with the

experimental evidence. Additionally, it can account for the low frequency vibration evoked

when booming sand flows through a funnel, with implications in the understanding of grain

silo vibrations. It is argued that sand grains do not sing or boom since the stick-slip effect in

not applicable in the contact shear bands.

PACS: 43.20.Ks, 89.75.Fb, 45.70.Mg, 43.40.Le. Key words: singing sands, squeaking sands,

booming sands, grain flowabilty, collective vibration, stick-slip effect, Hertz-Mindlin theory

and granular media, grain silo vibrations.
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1. Introduction

The mechanism responsible for the seismic and acoustic emissions, when a bed of singing

sand or silica gel grains is impacted by a pestle, was the subject of a recent paper by Patitsas

[1]. The mechanism was sought in shear modes of vibration in a well defined slip channel

(shear band) comprising several grain layers ahead of the impacting pestle. It was argued

that due to some not yet understood physico-chemical effect on the grain surface, a bed of

singing (musical) grains is characterized by a relatively high level of rigidity. Thus, the grains

just ahead of the pestle are subjected to a relatively high stress level resulting in the partial

fluidization (softening) of the tips of the grain asperities and any grain coating at the contact

areas, resulting in turn in reduced elastic moduli in the slip channel. Apart from the contact

shear bands, the grains are viewed as rigid bodies slipping (sliding) over one another.

However, the assumption in [1] that the length of the slip channel, in directions normal

to the direction of the pestle motion, is also well defined needs reconsideration. Such an as-

sumption was necessary in order to view the slip channel as a thin cavity with well defined

walls, with well defined shear standing wave patterns and with well defined eigenfrequencies.

It is highly likely that the walls at the channel ends are not well defined and its length is not

very large compared to its thickness. Whereas, it could be argued that the boundary of the

slip channel adjacent to the pestle is well defined, it is difficult to argue that this is also the

case at the lower boundary. A more gradual transition from relatively low column stiffness

below the pestle to nominal values in the grain bed, well below the pestle, is a more realistic

assumption. Furthermore, it is unreasonable to expect that continuum mechanics alone can

provide a satisfactory solution when the width of the channel is only about ten times the

particle (grain) size. Thus, the determination of the frequencies of the seismic and acoustic

emissions remains an open question.

Similarly, there are serious questions that need be considered regarding the recent ap-

proaches in accounting for the seismic and acoustic emissions from avalanching booming dune

sands. Four such approaches have been published over the past eight years: In the mainly

experimental report by Andreotti [2], it is shown that during a booming dune avalanche, there

are elastic waves propagating along the dune surface extending several cm below the surface.

It is then argued that the grains would oscillate according to the particle displacement dic-

tated by such waves. Furthermore, such waves would synchronize the grain-grain collisions
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and would become excited by such collisions. It is known that when grains of any kind are in-

duced to avalanche down an inclined plane, the average time required by one grain to overtake

another is given by the expression, Tc = (1/0.4)
√

d̄/g, where d̄ is the average grain diameter

and g = 9.8m/s2, Andreotti [2], MiDi [3]. Thus, the dominant frequency of the propagating

waves and that of the seismic and acoustic emissions can be defined as fd = 1/Tc. However,

in the paper by Vriend at al. [4], it is reported that dune vibrations were detected even when

there was no apparent avalanche in progress and moreover, during avalanches the dominant

frequency fd was accompanied by several harmonics.

Subsequent reports by Bonneau et al. [5, 6] go to great lengths to elucidate the properties

of waves propagating along a dune surface where the elastic moduli increase with sand depth.

However, there is no clear identification of the modes corresponding to frequencies equal to

multiples of fd, and in the latest report by Andreotti and Bonneau [7], the question of har-

monics of fd is not addressed. In this latter report, it is assumed that a thin shear band is

formed between the avalanching sand band and the static sand below, and that leads to the

excitation of the surface waves. Whereas, such a shear band is nearly evident when a sand

plate breaks off and begins to slide downhill, there is no such evidence after the plate breaks

up and a free avalanche ensues. On page 253 in Bagnold [8], it is stated that the velocity of

a grain layer at depth ζ decreases linearly with depth until it is zero at some depth ζ = ho.

Furthermore, by studying a video recording by The National Geographic Society, Survivors

of the Skeleton Coast Park, Namibia, Africa (1993), it can be concluded that the avalanche

front looses height gradually until it comes to rest when the height is about 2 or 3 cm. By

observing the tail-end of the avalanches in YouTube presentations, it can be inferred that its

thickness is considerably lower than in the front. One such presentation by the authors of the

paper by Douady et al. [9], with the title: The Song of the Dunes, can be reached from the

link in the same paper. Additionally, when the gate on a wood frame on the slip face of a

boomable dune is suddenly released, with sand height behind the gate up to 10 cm, [9], it is

difficult to imagine that the thickness of the avalanching band is the same in its entire length.

Therefore, the argument in [5] that for booming to occur the avalanche thickness must exceed

a certain threshold is rather tenuous. The argument is more tenuous when applied to the case

of a sand pile pushed by a blade, [9], where the geometry is even more ill-defined.

When, about 0.5 kg of booming sand grains from Sand Mountain, Nevada, USA, were
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placed in a glass jar, 7 cm in diameter by 16 cm in length, and shaken horizontally along the

jar axis, the dominant frequency of the acoustic emission was 280 Hz, Leach and Rubin [10].

It can be argued that there is grain layer rollover and a high stress level when the grain mass

collides with the jar wall, as there is layer rollover and high stress level when the avalanche

front collides with the static sand ahead. The dominant frequency, fd, is about four times

larger in the former than in the latter case. According to Nori et al. [11], fd is approximately

65 Hz in the latter case. According to Leach et al. [12], fd tends to decrease with increased

grain mass in the jar. It appears that the mechanism responsible for the emissions from highly

localized events could also be responsible for the emissions from large scale events such as the

pushing of the sand mass by the hand or a blade and the sliding of sand plates on a dune

surface. Furthermore, the booming (hum) sound emitted during a dune sand avalanche, where

the grains are gravity driven, was observed in the laboratory when booming sand was poured

from a hopper into a bag, Lewis [13].

In the report by Patitsas [1], the concept of a shear band (slip channel) several mm thick,

under a sliding sand plate or under a freely avalanching sand band, was used to explain the

relevant emissions as originating with shear modes of vibration in the channel with shear

phase velocity about 1 m/s, such that λ ≈ twice the channel thickness. But, even if such a

channel existed in the case of free avalanche, it would not be well defined at the lateral ends,

as in the case of the slip channel under an impacting pestle. However, this approach could

explain the harmonics of fd.

In the experimental report in [9], it is also recognized that the frequency, fd, is defined

by the overtake time, Tc, but the synchronization of the collisions is effected by some sort of

coupling between adjacent grain layers due to some wave that propagates up-down between

the static sand and the surface of the avalanching band. There is no attempt to account for

overtone frequencies, but such an approach would lead to overtones in the sequence of 3fd, 5fd

etc. However, the notion of up-down motion of grain layers is in agreement with the notion

of up-down grain column oscillations proposed in this study.

In the mainly experimental report by Vriend et al. [4], the booming emission is sought in

compression wave propagation along a surficial grain layer about 2 m in depth. The frequency

is defined by the condition that for specific phase velocities in the substrate, the grain layer

and in the air, there is total reflection at the boundaries. This approach was criticized by
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Andreotti et al. [14] especially regarding the assumption that the propagation velocity does

not increase with depth, and that there is experimental evidence that appreciable vibrations

during booming are limited to the depth of only about 10 cm, [2]. No explanation is provided

as to the mechanism that would allow for the conversion of the gravitational energy of the

grains into elastic energy of the propagating modes in the surficial layer. Furthermore, the

mathematical model that is invoked could not account for the low frequency content present

in the free avalanche acoustic and seismic emissions, and then, it is highly unlikely that the

energy generated by a few kg of freely avalanching sand grains into a hole dug on the face

of a dune would be sufficient to excite a wave in such a large layer in thickness and length.

The absence of boomability in certain dunes in a given area is not a strong indicator that the

booming mechanism has to lie well beneath the dune surface, since on the surface all dunes

appear to be the same. Equivalently, only certain sections of the Eastern and Northern shores

of Lake Michigan USA, visited on August 2009, exhibited singability.

No explanation has been presented as to why booming dune sand would cease booming,

when freely avalanching, but would continue to be musical when squeezed, Criswell et al.

[15]. Furthermore, no arguments have been published as to the unexpected low propagation

velocity of the synchronization wave on the booming dune surface [2], and more generally as

to the unusually low propagation velocity of an elastic wave in a pile of ordinary sand, about

50 m/s, well below the values predicted by the Hertz-Mindlin theory, Bachrach et al. [16].

Finally, no satisfactory explanation exists as to why singing sands do not boom and booming

sands do not sing, and as to why no acoustic emission is produced during an ordinary (silent)

grain avalanche.

Before proceeding with the presentation of the present approach, it is deemed appropriate

to attempt to elucidate the terminologies used in describing the sounds emitted by sheared

granular media

. (a) Singing or squeaking sound refers to musical sound of short duration, up to 200 ms,

with frequencies in the range 250 to 2500 Hz, emitted when beach sands or silica gel grains

are impacted by an object or stepped on.

(b) Booming dune sound refers to a relatively low frequency, 60 to 100 Hz, continuous hum-

like (drone-like) sound emitted when dune sand grains avalanche freely downhill.

(c) Continuous singing or squeaking sound refers to musical sound emitted when the bed of

5



singing (squeaking) grains is sheared continuously by a vertical rod, immersed about 3 cm, or

by a smooth object pulled along the grain surface. The known frequency range is under 1000

Hz.

(d) Pushed (squeezed) booming sand sound refers to a continuous musical sound emitted,

roughly in the frequency range, 25 to 350 Hz, when the sand mass is pushed continuously by

the hand or a blade on the face of a dune, or by a blade in a confined geometry.

(e) Roar sound refers to loud sound emitted when the booming sand is pushed downhill in a

heaped-up manner. The frequency range has not been recorded but it is likely at about 200

Hz.

(f). Sand plate sound refers to the sound emitted when dune sand plates avalanche freely

downhill. The frequency range has not been recorded but it is likely at about 200 Hz.

List of symbols used extensively

all parameters are expressed in the MKS system of units unless otherwise specified

d overall diameter of a grain

R R=d/2

d̄ average diameter of grains in a column

b thickness of a contact shear band between two grains

Rb radius of a contact shear band

cp compression phase velocity in a contact shear band

cs shear phase velocity in a contact shear band

x̂ unit vector along the direction of grain-grain slide

ẑ unit vector along a grain column

r̂ unit vector in the radial direction in a contact shear band

z distance from the bottom of a grain column towards the pestle above

θ polar angle around ẑ

α wavenumber along ẑ equal to 2π/λ = ω/cs

λ wavelength along ẑ

ζ sand depth in a dune face or in any sand bed

ξr particle displacement along r̂ inside a contact shear band

ξz particle displacement along ẑ inside a contact shear band

N number of grains in a column
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Vc compression propagation velocity in a grain column

Vp compression propagation velocity in a grain bed

Mp equivalent pestle mass above a grain column

f1 frequency of the fundamental mode in a grain column

f2, ..fN overtone frequencies, on average, harmonics of f1

fp frequency of the overburden mode of vibration where the entire grain column

acts like a sort spring

Tc time for one grain to overtake another=(1/0.4)
√

(d̄/9.8)

fc grain-grain collision frequency in a surface grain avalanche=1/Tc

fd frequency at the center of the dominant experimental spectrum envelope

H height of drop of a pestle on the grain bed surface

Brevort River sand: singing sand collected at the mouth of the Brevort River flowing into

the North shore of Lake Michigan, USA, about 25 km west from the city of St. Ignace.

Large plastic container: a 46×28 cm by 10 cm in sand depth plastic container

2. The grain column approach

Figure 1 depicts an assumed grain configuration inside a slip channel where the five grain

layers slide over one another along x̂. For reasons to become clear later, the slip channel can

also be referred to as, the vibration shear band or

the column shear band or even better, the slip (slide) shear band. Ultimately the source

of all vibrations are the elastic shear bands at the grain contact areas. For the first column

on the left hand side, they are labeled as: shear band # 1 at the bottom to shear band #6 at

the top. It is understood that the lifetime of a given column is roughly equal to the average

time required for a grain to overtake another, To, and that the lifetime of the five column

configuration is about five times shorter and that the lifetimes would decrease with increased

grain number, N , in the columns. However, the duration of the signals generated when a

small steel sphere impacts a grain bed, Fig. 2 for example, is comparable to the time To ≈35

ms for relative slippage velocity, 1 cm/s, and grain diameter, d=0.35 mm. As the sphere

descends into the grain bed, a given column, about 5 to 10 mm long, looses grains at the

top and gains grains at the bottom. There is also grain exchange between columns, but, the

collective vibration of the columns, outlined below, would tend to smooth out the frequency
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shifts in the course of time.

These disk-like shear bands, due primarily to a physico-chemical change during a grain-

grain slippage, are characterized by thickness, b, radius, Rb, and by compression and shear

moduli that result in the corresponding phase velocities, cp, cs. The parameters, b and cp, cs

are viewed as inherent properties of such bands, fairly independent of the confining pressure

along the grain columns, while this would not be so for Rb. From (3) in [17], it is possible to

determine the value of Rb when two ideally spherical and homogeneous grains, of radius R,

are pressed together by the force, F , namely, Rb = (C1/C2)
1/3, where, C1 = 3FR(1 − ν) and

C2 = 8G, where, G, ν are the shear modulus and the Poisson’s ratio of the grains. Thus, the

contact area, S, scales as R2/3.

The grains are not perfect spheres and the contact shear bands may occur at the asperity-

asperity contacts, where R becomes Rc and Rc << R, where Rc is the asperity radius. If

Rc = R/27, then, Rb and S are decreased by the factor of 9 and 3 respectively. However, in

such a case, the single grain-grain contact area is replaced by several asperity-asperity contact

areas, and if, on average, by three such contacts, then the total contact area, S, and the

total grain-grain stiffness remain the same. The equations in Appendix A do not include the

asperity radii, only the total contact areas, S1, S2 etc. As such, in what follows, grain-grain

contacts will be considered only.

There is no information available that would lead to an estimate of the band thickness b.

But, if Rc/b=20 and Rc=1750 nm, then b=87 nm and d̄/b=4000 for d̄=0.35 mm. It can be

seen in (9) in appendix B and in the computations described below that fd depends weakly

on b, i.e., as b−0.5, so, the above estimate of d̄/b is not as critical as that of Rb. An estimate

of Rb can be obtained from (3) in [17] with F equal to the gravitational force exerted on a

grain when an 11 mm steel sphere is dropped on the Brevort River sand, the equivalent steel

sphere mass on a grain column being equal to 162×10−7 kg. To this end, the sum of the

cross-sectional areas of the columns below the sphere was assumed to be equal to 1/3 the

sphere cross-sectional area. This results in Rb = 1.3× 10−3mm and in d̄/Rb=270 with d̄=0.35

mm.
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Fig.1. An assumed grain column configuration in a slip shear band. The shaded areas

correspond to the elastic contact shear bands with physical properties of their own when the

grains are forced to slide past one another. They are characterized by compression and shear

phase velocities, cp, cs and particle displacements ξz, ξx.
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In a recent report by Patitsas [18], it is demonstrated that the water layer on the epidermis

of a finger rubbed on a glass surface acts as the interfacial band that facilitates slipping and

also results in the decrease of the friction coefficient with relative velocity resulting in the

stick-slip effect. Furthermore, it is argued that the shear modes of vibration responsible for

the acoustic emission are to be found in the finger skin. However, there is no reason why the

modes of vibration in the skin with thickness bs ≈5 mm, shear phase velocity cs ≈10 m/s and

wavelength λ ≈ 2bs could not also exist in the interfacial band with thickness b � λ. In this

sense, the interfacial band becomes also the source of the energy of the modes of vibration in

the skin band.

In the present case, the water interfacial band is replaced by the N contact shear bands

and the skin band by the grain column. This can best be visualized by assuming that there

is slippage only at the contact shear band # 1. The particle displacement oscillation in these
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contact bands, ξx, results in the conversion of the pestle to column vibration energy, while one

grain slides over another, and this distinguishes primarily this approach from that in [1]. Such

contact shear bands and the associated grain columns exist only during the pestle impact.

Thus, detection of such bands by the use of elastic wave propagation through the grain mass

would be rather difficult.

If the motion of the grains in a given column were along ẑ only, the contact shear bands

could be replaced by equivalent short weightless springs. It is a straightforward exercise to

compute the eigenfrequencies and describe the corresponding modes of vibration for such a

system. For N blocks and N + 1 springs, there are N modes of vibration with frequencies,

f1, f2...fN . For the mode with frequency f1, all blocks oscillate in phase while for the mode

with frequency fN , neighboring blocks oscillate out of phase. The frequency f1 tends to be

rather insensitive to permutations of the blocks with different mass.

The stiffness of the grain contact shear bands is proportional to the contact area and to

the square root of the elastic moduli of such bands, i.e., proportional to the radius, Rb, and

the compression and shear phase velocities, cp, cs, in such bands, as is demonstrated in (9)

in appendix B. The frequency spectrum of a column vibration includes the frequency, f1,

that corresponds to the fundamental mode with λ ≈ 2Nd̄ ≈ twice the column length, the

frequency, f2 with λ ≈ Nd̄, etc and the pestle frequency, fp, that corresponds to the mode

with λ � Nd̄, where the entire column acts like a short spring, Section 4.

It appears suitable at this stage to include a short paragraph from the study by Haff [19].

While the author was thinking of the booming dune emissions, the implications for the im-

pacted grains are obvious. ”Perhaps the mechanical analogue which most readily comes to

mind is the slipstick phenomenon, a nonlinear mechanism by which a steady input of external

energy is ultimately released and stored. This is certainly consistent with the oscillatory na-

ture of the system and with its sensitivity to grain surface conditions and hence, presumably,

to friction. To ascribe booming to a slipstick mechanism, however, is only to say the words;

until we have a clear picture in mind of what the grains are actually doing, we do not really

understand the origin of the booming sands”.
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3. Computations and implications

The question arises naturally as to the value of the number, N , of grains in a given grain

column. Figures 8 and 9 in [1] depict the acoustic emissions when sand grains in a porcelain

coffee cup, 9 cm in diameter, were impacted by a wood rod 25 mm in diameter. The sand

depth before impact was about 10 mm and that after impact about 4 or 5 mm, implying

that N ≈ 15, however, in a regular grain bed several cm in depth, N=24 is a more realistic

number. Then, with d̄=0.35 mm, d̄/b=4000, d̄/Rb=270, estimated above, the following eigen-

frequencies were computed, as outlined in Appendix A, fp=67 Hz, f1= 791 Hz, f2= 1603 Hz,

f3=2561 Hz , etc by assuming that cp = cs=30 m/s.

The value, d̄=0.35 mm corresponds to that of the singing sand grains collected from the

mouth of the Brevort River flowing into the north shore of Lake Michigan, USA, about 25 km

west from the city of St. Ignace, and the value, d̄/Rb=270, is viewed as an average value along

the grain column. The grain diameter, dj , j in the range 1 to 24, was varied randomly between

0.2 and 0.5 mm and the circular contact areas, Sj in (7) in Appendix A, were evaluated by

assuming the corresponding radii to be equal to the average diameter of the adjacent grains

divided by 270. It may be noted that if d̄/b were equal to 1000, than, cp would be equal to 60

m/s.

For all modes corresponding to these frequencies, the condition, b/λ <<1 is satisfied.

The lowest frequency, fp=67 Hz, corresponds to the pestle vibration and it decreases rather

strongly with increased pestle mass Mp while the frequencies fj decrease very weakly with

increased Mp. This is in agreement with the lack of significant sensitivity of the frequency,

fd = f1, on the length of the rod used to impact the grain bed or the manner by which the

impaction is effected, by pushing or tapping the rod, for example.

Variations in the values of cp, cs revealed that the frequencies fi are proportional to the

values of cp and nearly independent of the values of cs. Only when cs was reduced to cp/200

there was an appreciable reduction in fi. It could be argued that when cs = cp, α = ω/cs is

extremely small, resulting in extremely large wavelength λ along the grain column compared

with the contact band thickness, b. The lack of dependence of fi on cs can also be justified

in the way the equations in Appendix A were based on the particle displacement along ẑ as

opposed to x̂. The proportionality between the frequencies fi and cp implies that (9) in Ap-

pendix B represents adequately the compressive wave propagation in the grain column, since a
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given fi, corresponding to a given standing wave pattern in the column, is proportional to the

column propagation velocity, Vc, in (9) in Appendix B. The same argument can be repeated

in justifying why the frequencies, f1, f2,.. are reduced by the factor of
√

2 when the ratio d̄/b

is reduced by the factor of 2.0, why the same frequencies are increased by the factor 2 when

the contact band radii are increased by the same factor, and why the same frequencies are

reduced by the factor of 2.0 when the grain diameters are increased by the same factor.

The description of the corresponding modes was effected by computing the coefficients,

B1, A2, B2, ..A13, B13, Appendix A, and then by computing the particle (grain) displacements,

ξz, ξr, at the bottom middle and top of every contact band, Appendix A. It was verified that,

regardless of the number N of grains in the column, the particle displacement, ξz, behaves

like a half sine function, i.e., it peaks at the middle of the column and then dips to nearly

zero at the top of the column . Then, according to (1, 2), in appendix A, ξr has a node at

the middle of the column. Generally, ξr is about ten times as large as ξz. The relatively large

particle displacement along x̂ is consistent with the assumption that the stick-slip effect plays

an important role towards the realization of the musical acoustic emission. In the case of the

compression waves in the contact bands, ξz > ξr and since ξz is constrained to remain small,

such waves cannot become excited. This question is also raised in [18].

When the number of grains in a given column was decreased from 24 to 12, with the same

average diameter, d̄=0.35 mm, and the same value for cp, the eigenfrequencies were increased

by the factor of 2.0, since the propagation velocity in the column, Vc, remained the same

but the wavelength was decreased by the same factor. Furthermore, when the grains were

permuted in several ways, f1 remained in the range, 800±80 Hz, provided the smaller grains

were not appreciably segregated from the larger grains. The spread about the central value of

f1 lies within the half width of the major frequency envelopes, Fig. 2, for example. A spread

of about ± 10 per cent was also determined around the frequency f2.

The only known attempt to measure the propagation velocity in a grain bed of 28× 28 cm

by about 10 cm in depth can be found in the study by Liu and Nagel [20]. However, the grains

were spherical glass beads 5 mm in diameter, i.e., about 15 times larger than the sand grains

used in this study. Additionally, the larger contact area and the thinner contact shear bands

would result in larger stiffness and larger propagation velocity. The propagation velocity, by

measuring the time of flight of a pulse, was about 280 m/s, but the group velocity, obtained
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from the change, with frequency, in the phase of the wave arriving at the detector was about

60 m/s. It is reported in [4] that ”body wave velocities” in the range 180 to 300 m/s were

measured well below the sand dune surface, and in Fig. 24.23 in Winterkorn and Fang [21],

shear wave velocities as low as 150 m/s are reported for dry round and angular-grained sands.

Additionally, wave velocities as low as 50 m/s in ordinary sand piles are reported in [16].

Evidently, the wave propagation velocity depends strongly on the depth of the propagation

path between the points of emission (shot) and reception of the elastic wave. Then, there is

the condition of a surface coating that would vary from place to place and from time to time.

Additionally, it is reported in [16] that in preparing a sample from an unconsolidated material,

in order to study the velocity of sound for example, its physical properties are disturbed.

4. The single spring model

In the study by Nishiyama and Mori [22], the authors attempt to explain the acoustic

emissions from an impacted sand bed in terms of a single short spring action below the pestle.

Towards this end, rods and disks of various diameters and lengths were dropped on the sand

bed. There is an attempt to show that the dominant frequency, fd, decreases with the rod

mass, M , as M−0.5. In particular brass rods (disks) with diameter D=2.5 cm and weight as

low as 10 g were used. For a rod with M=100 g, the mass Mp on top of a grain column, d̄=0.35

mm, amounts to 200 × 10−7 kg, while, in this study, in the case of the 11 mm steel sphere

dropped on the grain bed, Mp = 162 × 10−7 kg. The grain column mass is, Mc = 16.0× 10−7

kg for N=24.

For the small disk with M=20 g, the disk thickness amounts to only 4.8 mm. Thus,

it is difficult to ascertain at what angle the small disks impacted the sand surface and the

measurements with M < 50 g may not be considered. When rods with M in the range 50 to

600 g were dropped on a singing sand in a 40 × 40 cm by 30 cm deep container, fd remained

nearly constant at about 600 Hz, Fig. 2 in [22]. When 13 mm aluminum cylinders, ranging in

length from 2 to 12 cm, were dropped vertically from a height of about 10 cm on the Brevort

River sand in the 46×28 cm by 10 cm deep container, there were no significant changes in

fd. However, when singing sand grains and also silent glass beads, 0.6 mm in diameter, were

placed in a 10 cm diameter porcelain mortar, but with only 1.0 cm in grain depth, fd decreased

as M−0.5, Fig. 6 in [22]. It can be seen in [1] that in such confined geometry several kinds of
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grains in the same size range become singable to some extent.

The single spring model can be incorporated into the present approach by identifying the

dominant frequency, fd, with the pestle frequency, fp, instead of with the fundamental, f1.

Thus, with N=24, dj = d̄=0.35 mm, cp= 255 m/s, the eigenfrequencies were, fp=815 Hz,

f1=10115 Hz, f2=20173 Hz etc. Thus, there is only one frequency envelope centered at fp,

since the frequencies, f1, f2 are far beyond the range where the stick-slip effect would be

applicable. The frequency fp decreases exactly as M−0.5, until it becomes practically zero,

while f1, f2 hardly decrease. Such a value of cp=255 m/s appears to be in contradiction with

reported experimental values discussed in the previous section. The model would be a possible

alternative if there were no harmonics of fd, however, this is not the case as will be outlined

in the next section.

In the context of the present approach, the decrease of fd with cylinder mass, M , when

the sand was impacted in a mortar with sand depth about 1 cm, could be attributed to grain

slippage at the bottom of the mortar. For M roughly larger that 50 g, it could be assumed

that the bottom of the grain columns is in contact with the mortar floor, where there would

be appreciable slippage and reduced value of Rb, resulting in reduced fd with increased M .

5. Experimental results and implications

The structure of the frequency spectrum of the signal emitted when a bed of singing grains

is impacted by a pestle, or a freely falling object, depends on such parameters as: shape, size,

surface texture, stiffness and speed of the impacting object, wall effects if the impactor is close

to the walls of the container, and on the history of the grain bed, i.e. exposure to humidity

and to previous impacts. Thus, it could be anticipated that a pencil-like sharp ended pestle

would give rise to multiple frequencies corresponding to multiple slip shear bands around the

sharp end. The scope of this study is not to determine the effect of any such parameters on the

spectrum structure and in particular on the dominant frequency, fd, but to develop a realistic

theoretical model that would be based on the grain-grain interaction and would account for

the spectral properties of isolated events. It would also account for changes of the spectral

properties with one of the parameters listed above, when such changes have been reported

in the literature. Thus, in the previous section, the model is used to explain the significant

decrease of fd with the mass of the impacting object when it was only a few mm away from
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the container wall when the sound was emitted. Furthermore, in the case of moist singing

sand emitting sound with, fd ≈2500 Hz, Brown et al. [23], it could be argued that the grain

columns were very short and the sand mass relatively very stiff due to water content that

would result in larger effective contact areas. Similar attempts will be made below regarding

the sound from pushed (squeezed) booming dune sand, or the sound accompanying the flow of

the same sand through a funnel. In this sense, the average value of fd over several repetitions

of the same event is not an an objective of this paper.

In the early stages of this study, Fall 2010, the sand was placed in a ceramic flower pot

with 20 cm rim diameter and 10 cm depth. A regular pin microphone was placed about 10 cm

roughly above and to the side from the point of impact, while the geophone was placed near

the edge of the bed that was about 8 cm deep. Following an impact, the sand was poured into

another container and then back into the flower pot, which was tapped lightly for better grain

density uniformity. More recently, Fall 2011, the sand was placed in a larger plastic container,

46×28 cm by 10 cm in sand depth, with a regular thick towel placed inside the container

before the sand was poured so as to prevent any slippage between the sand and the container

walls. In such a large container, it was possible to effect several impacts, about 10 cm apart,

before the sand was moved about in the container, with a small plastic bowl, and finally the

surface was leveled and the container tapped lightly. The Geo Space Corporation geophone

is omni-directional with natural frequency equal to 14 Hz suited for detecting relatively low

frequency vibrations. The signals were processed by the NI USB-6210 analogue to digital

converter and analyzed by the Lab-View Signal Express software of National Instruments.

5.1 Impacted singing sand grains

The purpose of this subsection is to demonstrate that harmonics of the fundamental can be-

come excited when the grain bed is impacted by small steel spheres and by a glass rod, and

thus, the single spring model is not applicable in these cases. Furthermore it is shown that

the frequency plots are fairly well reproducible even over long time periods.

15



Fig.2. Frequency spectrum and the microphone recorded signal when an 11 mm steel sphere

was dropped, height H ≈10 cm, on a Brevort River singing sand bed in a ceramic flower pot,

20 cm rim diameter by 10 cm in depth. fd ≈790 Hz.
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Fig.3. Same as in Fig. 2 but for the geophone signal. The geophone was placed near the pot

rim about half immersed in the sand. fd ≈770 Hz.
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The same recordings were repeated recently, about one year later, with the same sand in

the large plastic container. The microphone plots were reproduced quite well overall, however,

that was not the case for the geophone plots, where, the slight elbow at about 695 Hz would
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appear as a totally separate peak. It could be argued that the geophone signal from the rela-

tively small sphere is more susceptible to localized grain mass anisotropies as the sphere was

well immersed in the sand after impact. The peak at about 475 Hz could be an indication of

such an effect. It is likely due to the increase of the period of the inset signal after about 22

ms, implying that near the end of the impact, there was an appreciable increase in the grain

column length in the slip shear band.

From the simple Fourier transform theory, the half width of the transform of the inset

signal with length, ∆t=18 ms in Fig. 2, is 56 Hz, and the separation of the side peaks from

the center of the main envelope is 1.5×56=84 Hz. The half width of the main envelope is

about 62 Hz, and the separation of the first side peak (elbow) on the right from the center,

at 877 Hz, is 87 Hz. However, the separation of the first elbow on the left at 628 Hz amounts

to 162 Hz, implying that it is not a Fourier side peak, and since it is also present in Fig.3,

it could not be argued that it is due to some sort of noise, but rather due to a separate slip

shear band.

The question of noise is raised below in connection with Fig. 15. Here, it could be defined

as follows: It arises from the incoherent superposition of the elastic wave-trains emitted as a

grain rubs its way past other grains, and of the wave-trains due to vibrations in grain columns

of random length and direction around the pestle. Additionally, there would be low frequency

content due to air mass accelerations recorded by the microphone. In this sense, the envelope

at around 1000 Hz, in both plots, could be attributed to random column vibrations around

the sphere, or due to such vibrations in a relatively thin and ill-defined slip side band. In

this sense, when the slip shear band becomes totally ill-defined, then it becomes a source of

noise. Thus, there could be two or more slip shear bands around the lower hemisphere of the

impacting sphere, and around the pestle in general. A slight rotation of the sphere during

the impact, or a non-vertical direction of the pestle, would be a cause of such multiplicity

of slip shear bands. The lack of harmonics in the above plots could be attributed to the

relatively short duration of the event and the lack of sufficient energy for the excitation of the

corresponding modes.
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Fig.4. Frequency spectrum of the microphone recorded signal when a 16 mm steel sphere

was dropped on the Brevort River singing sand in the large plastic container, 46 × 28 cm by

10 cm sand depth, from the height H ≈20 cm. The vertical range was reduced somewhat in

order for the first harmonic of fd ≈578 Hz to be seen at about 1175 Hz. The second could be

seen with further reduction at about 1780 Hz.
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Fig.5. The same as in Fig. 4 but for the geophone recorded signal. fd is estimated at about

590 Hz. The second harmonic at just under 1800 Hz is discernible.
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Fig.6. Same as in Fig. 4 but for a 25 mm steel sphere. fd ≈467 Hz and the second harmonic

is barely seen at about 1400 Hz.
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Fig.7. same as in Fig. 6 but for the geophone signal. The first harmonic of fd ≈ 467 Hz is

quite prominent and the second is visible. The decrease of fd from 590 Hz in Fig. 5 to 467

Hz in Fig. 7 could be attributed to the increase in the column number N .
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Fig.8. Frequency spectrum of the microphone recorded signal when a glass rod, length 7.5

cm, diameter 1.5 cm obtained from the Museum of Sand in Nima, Japan, was pushed

manually into the Brevort River singing sand bed in the large plastic container, fd ≈630 Hz.

The side peak at 700 Hz is a Fourier side peak. The harmonics at about 1250 and 1870 Hz

are discernible.
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Fig.9. same as in Fig. 8 but for the geophone signal. It is remarkable that the two spectra

are practically identical in this case.
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Fig.10. Same as in Fig. 8 but with the sand in a flower pot, with 20 cm rim diameter and

10 cm in depth, nearly one year before the recording of the signal in Fig. 8. One harmonic is

clearly seen at 2fd with fd ≈590 Hz.
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Fig.11. Same as in Fig. 10 but for the geophone signal. The second harmonic is quite

discernible at about 1770 Hz with fd ≈590 Hz.
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The plots in Figs. 4 to 7 were fairly well reproducible. In these relatively simple geometries,

it is safe to argue that the slip shear band is a few mm thick and has the shape of a disk curved

around the impacting sphere, with radius roughly that of the sphere [1]. It is also safe to argue
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that a larger disk radius would imply a larger disk thickness which corresponds proportionately

to a lower frequency fd. From Figs. 4 and 6, the frequency ratio is 578/467=1.24, while the

square root of the radii ratio is, 1.25. For the case of the 16 and 25 mm glass spheres, the

analogous frequency ratio is, 800/600=1.33. Thus, for these particular cases the slip band

thickness increases roughly as the square root of the sphere radius.

The increase of fd from 590 in Fig. 10 to 630 Hz in Fig. 8, in the course of one year could

be due to the aging of the sand. It could also be due to a more or less deviation of the rod

axis from the vertical direction. The sand was kept well sealed in plastic bags when not in

use. When the same rod was dropped freely and vertically on the same sand bed from the

height of about 10 cm, fd was about 550 Hz, a value definitely lower than 630 Hz when the

rod was hand held, Fig. 8. These results lead to the conclusion that the single spring model

cannot be applicable in this case, for when hand held, the effective pestle mass is considerably

larger than that of the rod and fd ought to be considerably lower. There is evidence here of

the effect of the impact shock on the sand mass when the rod is dropped. It could be argued

that it results in longer grain columns and lower fd.

The absence of the low frequency content, i.e., at around fp, in all the above plots except

for the 11 mm steel sphere, could be attributed to the large energy required for the excitation

of the pestle vibration, especially when the pestle is hand held. Thus, when a 16 mm glass

sphere was dropped on the same sand bed, in the large plastic container, from the height

of about 15 cm, the geophone frequency spectrum included a weak low frequency content at

about 70 Hz. In some signals, more than others, the period increases somewhat with time,

suggesting that there is a slight increase of the column number N during penetration. The

lack of musicality of the low frequency sound emitted, fd ≈250 Hz, when the flat end of a

wood rod, diameter about 8 cm, impacted the Brevort River sand could be attributed to the

relatively low flowability of the sand. The duration of the signal amounted to only about 25

ms resulting in only about eight oscillations.

There are only two known reports on harmonics of fd. In Fig.(c) in [11], fd=860 Hz

and two harmonics are depicted. However, the impaction process of the ”squeaking” sand is

not specified. In the report by Takahara [24], the singing sand was impacted by a smooth

rounded wood rod in a glass funnel. The size of the rod and of the funnel are not specified.

The fundamental, fd=599 Hz, and four harmonics are depicted. A strong first harmonic at
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1045 Hz was evoked when the Brevort River sand was impacted by the 7.5 cm glass rod in

a regular glass cup with diameters of 8 cm at the rim, 5 cm at the base, 9 cm in height and

filled to the height of 7 cm. There were also weaker second and third harmonics.

5.2 Pushed musical grains

Fig.12. The frequency spectrum of the microphone recorded signal when the 7.5 cm glass

rod was drawn manually in a nearly vertical position immersed at about 3 cm along the

surface of the Brevort River sand in the large plastic container. The signal is shown only up

to 160 ms, but the recorded signal lasted up to 500 ms.
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Fig.13. The same as in Fig. 12 but for the geophone recorded signal.
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Fig.14. The frequency spectrum of the microphone recorded signal when a 13 mm wood rod

was turned manually inside a 9 cm glass jar containing silica gel grains with depth of about

10 cm. fd ≈450 Hz.

The second minor envelope in Fig. 14 at about 540 Hz, could be due to a minor slip band

possibly near the bottom of the rod. It could correspond to the sharp peak at about 675 Hz

in Fig. 13. The inset signal from 0.12 to 0.17 s happens to be quite monochromatic.

The plots in Figs. 12 and 13 demonstrate that a continuous musical sound, similar to that
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from an avalanching sand dune, can be emitted by the singing (squeaking) sand grains when

sheared (squeezed) in a continuous manner. The spectrum envelope in Fig. 12 resembles

quite well that in Fig.(a) in [11], that obtained from the signals found in the website of the

author of [2], and that seen in a YouTube presentation by the authors of [4], with the title,

Booming Sands, and narrated by Melany Hunt. The ruggedness of the frequency spectrum,

as opposed to that in Fig. 6 for example, can be attributed to the continuous renewal of the

slip shear band in front of the rod in the course of time. Similar plots were prepared, but not

shown, when the same sand was similarly sheared by a 13 mm wood rod. The signals were

considerably more noisy and the frequency envelopes considerably more rugged and wider

than in Fig. 12. Evidently, the smooth surface texture of the glass rod, as opposed to the

wood rod, resulted in considerably more smooth transition from one slip shear band to the

next.

5.3 Impacted silent sand grains

Fig.15. Frequency spectrum and the microphone recorded signal when a 13 mm wood rod

was tapped (pushed) into a bed of local silent beach sand in the large flower pot, 20 cm at

the rim and 10 deep. The weak hissing-like sound was barely audible
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Fig.16. Same as in Fig. 15 but for the geophone recorded signal. fd ≈462 Hz.
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The frequency spectrum shown in Fig. 15 is typical of silent sand beds impacted by a vari-

ety of pestles. The noise envelope between about 2400 and 3200 Hz is nearly omni-present for

all sorts of pestle and grains, suggesting that it originates with grain-grain rubbing near the

pestle where the stress forces are maximum. Effectively, these frequencies could correspond to

grain asperity collisions as the grains slide past one another. The rest of the noise frequency

content could be attributed to grain column vibrations near and parallel to the surface. The

grain number N varies randomly and the vibrations are nearly incoherent. This is not the

case for the grain columns below the pestle, resulting in a nearly monochromatic vibration in

some cases, Fig. 16 for example.

There is considerable variability of the spectrum shown in Fig. 16. In some cases, the en-

velope is wider comprising many peaks, suggesting that the slip shear band is less well defined,

comprising a wider range of grain column numbers N , and in some cases it is narrower without

the side peaks between 200 and 400 Hz, for example. However, the noise level approximately

above 700 Hz is nearly absent in all cases. It could be argued that the geophone cannot detect

efficiently signals in the surrounding medium with wavelength smaller than about its diame-

ter equal to 2 cm. Thus, with Vp=20 m/s, frequencies above 1000 Hz would not be detected

efficiently.
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Fig.17. Frequency spectrum of the microphone recorded signal when a 13 mm wood rod was

tapped (pushed) into a bed of crusher dust in the large flower pot. The grains were very

irregular in shape and varied in size from about 1 mm in overall diameter to as large and

irregular as 10 × 5 × 2 mm.
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Fig.18. Same as in Fig.17 but for the geophone recorded signal. fd ≈362 Hz.
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Fig.19. Frequency spectrum of the microphone recorded signal when a metallic rod, 4.2 mm

in diameter, was pushed into the same bed of crusher dust in the large flower pot. fd ≈435

Hz.
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Figures 17 and 18 correspond to Figs. 15 and 16 except that the rod was tapped (pushed)

into a bed of crusher dust, used as road surface cover in place of pavement. Most of the fine

dust had been removed. The use of the relatively small diameter wood rod was necessitated

by the large particles in the bed, i.e., a larger diameter rod would not penetrate into the bed

smoothly. Despite the unusual crusher dust grain size distribution, the sound was appreciably

louder and somewhat more musical than from the silent beach sand. When the same crusher

dust bed was impacted by one arm of a walnut cracker, a metallic rod 8 mm in diameter

tapered to a smooth rounded end, the microphone noise frequency content around 3000 and

1500 Hz was reduced relatively to that around 500 Hz, while the geophone spectrum was

similar to that in Fig. 18.

Furthermore, when the same grain bed was impacted by the nearly blunt end of a walnut

scraper, a metallic rod 4.2 mm in diameter with the end polished smoothly for 10 mm and

then slightly tapered to a conical end, the emission resulted in a geophone spectrum similar to

that in Fig. 18 and in a microphone spectrum shown in Fig. 19. Such a spectrum resembles

more closely those of the singing as opposed to those of the silent grains. Evidently, the small

diameter and the polished end of the pestle resulted in sufficiently low stress level around the

leading front of the pestle so as to reduce the excitation of the grain-grain rubbing and the
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near surface grain column vibration noise to very low levels.

6. Collective column vibrations and the stick-slip effect

It now appears safe to conclude that the transition from non-singability to singability of a

grain bed is based on two premises: (a) the reduction of the stress level on the grains around

the pestle and (b) the transfer of the pestle energy to the grain column vibrations below the

pestle. The first could be met if there were sufficient grain-grain slippage in the slip shear

band below the pestle that would result in low stress level around the pestle, and the second,

if the stick-slip effect would be applicable, i.e., if the friction coefficient would decrease with

relative velocity between the grains [18].

The degree of grain-grain slippage was tested by dropping a 16 mm steel sphere from a

height of 20 cm on grain beds in the 20 cm flower pot composed of: (a) Brevort River sand,

(b) Providence Bay, Manitoulin Island, ON, CA, nearly silent sand and (c) a local beach sand

sounding even more silent. In case (a), the sphere was barely visible at the center of the crater

about 10 mm deep, in case (b), nearly 1/3 of the upper hemisphere was visible and in case

(c), nearly all of the upper hemisphere was visible. It is estimated that in case (a), the sphere

traveled about twice as far as in case (c) after the initial impact.

Then, there is the question of the synchronization of the column vibrations in the slip shear

band. Is it due to a wave propagating in the same band as in the case of the freely avalanching

dune sand? In the case of the walnut scraper rod, the diameter of the slip shear band would

be equal to about 5 mm, while the synchronization wave would have wavelength equal to 10

cm for propagation velocity and frequency equal to 50 m/s and 500 Hz respectively. Thus,

the source of the grain column synchronization has to be sought elsewhere. It could be argued

that a few dominant column vibrations would induce the same vibration in the pestle, which

in turn would force all columns to vibrate in phase with it, thus, resulting in a collective

vibration of all grain columns. In turn, such an intense vibration would facilitate the slipping

of the grain mass away from the advancing pestle and would nearly eliminate the surface noise

described above. In this sense, the slip band acts like a small monopole radiating shear as

opposed to compression waves in the surrounding grain mass, since ξr � ξz .

It could be argued that a minimum (threshold) impact pestle velocity is required for the

initial excitation of the few column vibrations. Such thresholds are always present before
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a musical event can occur. When the wood rod was held vertically and forced to move

horizontally through a bed of silica gel grains, the immersion depth had to be more than

about 2 cm and the velocity had to be more than about 20 cm/s. Moreover, when a plastic

bead, 1 cm in diameter, was buried in a flat pile of the Brevort River singing sand and pulled

horizontally by a string, the depth had to exceed about 3 cm and the string had to be pulled

rather sharply. Similar thresholds are seen in [9] where the booming dune grains were pushed

by a blade.

7. Grain flowability and grain confinement

It seems fair to argue that what distinguishes primarily a freely avalanching booming sand,

from other silent avalanching sands, is the relatively high avalanche front and the apparent

high flowability of the grains. Reference to high flowability, where the sand flow is compared

to that of a water stream, can be found in the reports by: Sholtz et al. [25], Bagnold [26] and

Humphries [27]. When Brevort River singing sand was placed in a plastic container, 40×35 by

25 cm deep and dumped sharply on the side of a nearby dune ridge with slope over 30o, there

was no appreciable avalanche front. The sand flow was sluggish and characterized more by

plate-like motion than free surface grain motion. It was more sluggish than that of ordinary

silent sand motion when similarly dumped. However, when a cupful of sand was tossed with

some force at an angle of about 45o on the flat top of a sand pile, the usual sound was evoked.

In [13], it is reported that when booming grains were placed in a sealed glass jar, 17.5 cm in

length by 10 cm in diameter, half full, and rapidly tilted, ”a violent roar” could be produced.

Similarly, when Brevort River singing sand was placed in a glass jar, 17 cm in length by 8 cm

in diameter but only 7 cm at the lip, and then tilted sharply, no sound was produced until

most of the sand had flown out of the jar and the sand height above the lip was about 15

mm. During the sound emission, the sand appeared to flow out of the jar as in one piece,

thus, reinforcing the concept of the slip shear band adjacent to the jar lip.

Furthermore, it is reported in [13] that a hum-like sound was emitted when a 2.5× 2.5 cm

hole was cut in the cap of the same jar, full of the booming sand, and then it was inverted.

In the context of this approach, the grain columns, somewhat above the plane of the hole,

would span the hole width, but the grain contact radii, Rb, would have minimum values in the

middle of the columns instead of at the top, as in the case of the impacted bed or in the case
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of the freely avalanching dune sand. Similarly, when booming sand from Sand Mountain in

NV. USA, available in the laboratory of the authors of [10] some 20 years ago, was placed in a

large plastic funnel, 15 cm rim diameter and 14 mm outlet diameter, a low frequency vibration

sound estimated at under 100 Hz could be heard. However, when the same was attempted

with the Brevort River singing sand, no sound was evoked. Thus, it could be argued that

singing sand grains do not boom because of their low flowability.

Booming dune grains do not sing in the sense of emitting a musical sound when placed

in a large dish and impacted by a rod with diameter about 2 cm. In the context of this

approach, this is so since the relatively high flowability of such grains results in unstable long

grain columns. In other words, the grains can flow away from the rod without the aid of a slip

shear band below the pestle. However, when the booming dune surface was impacted sharply

by the palm of the hand, there was emission with fd ≈ 73 Hz [5]. Evidently, the relatively

large area of the impacting hand resulted in a sufficiently large degree of confinement that

resulted in a slip shear band a few cm below the hand. Similarly, when booming grains were

confined in a 25 cm wide circular channel and pushed by a large blade, they became singable

[9]. Additionally, they became singable when confined inside a jar [10]. In [1, 28], it is shown

that salt, sugar and silent sand grains can exhibit singability when sufficiently confined. On

the other hand, when a flat pile of the Brevort River sand was impacted vertically by the flat

end of a wood rod (block) 14 cm in diameter, there was practically no musical sound emission,

as was the case for the smaller block described above, due to the relatively low flowability of

the grains.

8. The pushed booming sand

During the visit of the authors of [15] to the Sand Mountain, NV, USA, the sand would

not boom during free avalanche, but it would emit musical sounds when pushed by the hand

or sheared (squeezed) by a shovel blade. Figure. 4 in [15] depicts the frequency spectra of the

microphone and geophone recorded signals when a 30×30 cm flat shovel blade was withdrawn

sharply with a downward push from the dune face. There are distinct peaks at 67 and 76 Hz

in the geophone spectrum, most likely due to distinct slip shear bands under the shovel. In the

microphone spectrum, there are several peaks centered at around 60 Hz and a harmonic peak

at about 120 Hz, which is also present in Fig. 3d in [15]. There is also a hint of a harmonic
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presence in Fig. 5b and reference to possible low frequency content in the 3 to 30 Hz range,

when the sand was dug by the hand.

The first attempt to determine the change in frequency with the manner the sand was

pushed on the face of a dune can be found in [13]. It was determined that when the sand was

pushed uphill, the frequency increased as opposed to when it was pushed downhill, and it also

increased with the speed of push. In Fig. 2 in [26], the ”shear plane” is depicted when a sand

bed is pushed by a blade and an overburden is heaped up in front of the blade to a height

considerably larger than the sand bed depth. The shear plane runs from the foot of the blade

to the front of the overburden at an angle, β, from the horizontal bed plane. Intuitively, it

could be argued that when the sand is pushed downhill, β tends to zero, and that it tends to

larger values when the sand is pushed uphill, resulting in lower overburden mass Mp, and in

higher frequency fd = fp. It is possible, but unlikely that the sound is due to grain column

vibrations and that the column number, N , is lower when the sand is pushed uphill. Similar

arguments could be used to explain why fd increases with blade velocity on a horizontal sand

bed.

It is claimed in [9] that frequencies, fd, as low as 25 Hz were obtained by pushing the

booming sand on the face of a dune. In the YouTube presentation by the authors of [9], it

can be observed that when the sand on the face of a booming dune was squeezed between

the two hands, a fairly low frequency sound was emitted. It is highly likely that a slip shear

band was formed between the hands and that the pestle mode of vibration was excited with

frequency, fd = fp. It is unlikely that the slip shear band was thick enough so as to result in,

fd = f1. There is no evidence of sand avalanche that would result in such a sound. Again, the

question would be resolved when the frequency spectra become available. During such sand

squeezing and the subsequent dropping of the sand on the dune surface, the sand appears to

respond in the same manner as the Brevort River singing sand except for the lower value of

fd by about a factor of four.

Furthermore, in [9], the study of the change of the dominant frequency, fd, with blade

speed and height of the grain mass in front of the blade is quantified. Booming grains from

the Atlantic shores of Morocco were pushed by a 25 cm blade in a cylindrical container, 1 m

in dimeter. From Fig. 2 in that report, it can be inferred that for fixed blade velocity, Vb, fd

varies nearly as the inverse of
√

Hb, where Hb is the sand height in front of the blade, implying
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that fd = fp. However, the increased sand height could result in thicker slip shear band and in

fd = f1. The ambiguity would be resolved when the spectra of the emitted signals are available.

9. Freely avalanching booming sand

When a sand band, several cm thick, is in a state of avalanche, it is effectively confined by

the plane of the static sand below and the thin band of about 20 relatively fast moving surface

layers above [2, 9]. It can now be argued that the grain layers near the bottom of the avalanche

front experience the greatest stress level when they decelerate sharply and are overtaken by

the layers above, and that a slip shear band could exist in that region. It is possible that the

so called ”roar sound” emitted when the sand is pushed downhill in a heaped-up manner, [13],

is due to grain column vibrations in such a front slip shear band. If there were no harmonics

of fd, then, such a sound would be due to the overburden vibration with frequency fd = fp.

However, the ”hum” that follows the ”roar” represents a steady state acoustic emission that is

independent of an avalanche front. It can be maintained by continuously digging a hole where

the avalanching sand is deposited [13]. It is reported in [2, 9] that the minimum thickness of

an avalanche for booming to occur is about 2 cm, implying grain column number, N ≥100,

with d̄=0.18 mm.

Figure 5 in [13] depicts the ripples (waves) on the dune surface when the sand was pushed

downhill in a heaped-up manner. There are several avalanche fronts followed by flat plateau-

like segments. The author describes the sound as, ”being due to the hum accompanying the

roar”. In the context of this approach, the roar would be due to column vibrations in the

front slip shear bands, while the hum would be due to similar vibrations in the surface of the

flat segments, as described below. The column vibrations in the entire avalanche area would

be synchronized by the surface modes of wave propagation excited by the avalanching grains,

[2, 5-7].

Before proceeding with the usual computations of the eigenfrequencies, fp, f1,.. in the grain

columns, it is deemed appropriate to try to elucidate the relevant experimental information

available.

(a). During a free booming avalanche, the frequency spectrum consists of the main envelope

centered at the dominant frequency, fd, harmonics of fd and the a low frequency envelope

centered at the frequency fp ≈ 1/3fd. Thus, on the basis of the geophone signals obtained on
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dunes in Atlantic Sahara, Morroco, by the author of [2], fd ≈100 Hz and fp ≈ 30 Hz. Permis-

sion to this effect was obtained from the author of [2]. Furthermore, a similarly structured

spectrum can be seen in a YouTube presentation of the authors of [4] with the title, Booming

Sands, and also one by the authors of [9] with the title, Song of Dunes.

(b). The propagation velocity, Vp, of the surface waves generated during a booming avalanche,

or by a speaker in a static dune sand, was measured at about 40 m/s, [1].

(c). On page 3 in [4], it is stated that: ”By cross-correlating the geophone signals, the phase

speed of booming is measured at 200 m/s near the crest of the dune and increasing to 350

m/s further downhill. Hence, booming results from the propagation of body waves not surface

waves.” However, on top of the same page, it is stated that surface waves propagate with speed

of about 50 m/s and are strongly attenuated. Furthermore, from the discussion on page 1 in

[4], it could be inferred that the booming sounds were due to forced slides as opposed to freely

avalanching dune sand, implying that fd does not have to scale as d̄−0.5 as reported in [2] for

freely avalanching sand.

In this sense, the question arises as the whether the geophones on the dune surface were

detecting signals from the surface waves generated by the forced avalanche ahead of the slide

agency, or signals from the ”body” compression waves generated by the slide agency. The

authors do not elaborate on the increase of Vp with depth, but according to [16], the bulk of

such ”shot” waves would not travel along the dune surface. It could be argued that they would

travel along the bottom of the surficial layer at the depth of about 2 m, where the propagation

velocity would be about 200 m/s. In Fig. 5 in [16], Vp in unconsolidated beach sand increases,

nonlinearly, from about 40 to 160 m/s when the shot-receiver distance increases from 0.1 to

1.5 m, implying that the shot waves do not propagate along the sand surface.

It is possible to obtain a rough estimate of the compression phase velocity, cp, in the slowly

avalanching slip shear band, by the following reasoning: On the basis of (b) above, Vp would

assume the value, Vp=50 m/s at the depth ζ= 5 cm. Then, at ζ=200 cm, Vp would be equal

to 92 m/s, or 124 m/s or 170 m/s, if Vp scaled as ζ1/6, or ζ1/4, or ζ1/3 respectively, the last case

resulting in Vp closest to 200 m/s. Since the confining hydrostatic pressure is, P = ρ9.8ζ, Vp

scales with P as with ζ. The need for reconsideration of the P 1/6 scaling seems to have been

raised earlier by Goddard [29], where a scaling as P 1/4 is discussed. Then, in Fig. 5 in Makse

et al. [30], it is seen that both elastic moduli in the grain mass scale as P δ with δ somewhat
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larger than 1/3 and in Fig. 9, using molecular dynamics simulations, the shear modulus for

frictionless grains scales as P 2/3 implying that Vs scales as P 1/3. Then, in Fig. 8 in Bachrach

et al. [17], the shear velocity, Vs, in the range, 100 to 175 m/s appears to scale as ζ1/3 in the

range 2 to 10 m.

It is now assumed that the compression phase velocity, cp, in the contact shear bands, is

equal to Vp and since Vp increases slowly with ζ in the small interval, 0 < ζ < 2 cm, cp is

assumed equal to 38 m/s, i.e., equal to Vp in the middle of the avalanching band at ζ ≈1 cm.

The value, Vp=38 m/s was arrived at by assuming that Vp scales as ζ1/3 and that Vp=50 m/s

at ζ=5 cm, on the basis of information in (a, b) above.

In the opening paragraphs of Section 2, it is shown how to determine the value of d̄/Rb

when two ideally spherical and homogeneous grains are pressed together by the force, F ,

namely, Rb = (C1/C2)
1/3, where, C1 = 3FR(1 − ν) and C2 = 8G, where, G, ν are the shear

modulus and the Poisson’s ratio of the grains. Then, with d̄ = 2R=0.18 mm, ν=0.2 and

G = 4× 1010, d̄/Rb=1640 at the surface of the slowly avalanching shear band and d̄/Rb=1100

at the depth ζ = 48d̄=0.86 cm, where, F is equal to the weight of 20 and 68 grains respec-

tively. Evidently, Rb scales as ζ1/3 since F scales as ζ.

The available software could not process matrices larger than about 50× 50 and so N was

limited to 48. Then, with d̄/b=4000, cp=38 m/s and d̄/Rb decreasing with depth from 1640

to 1100, the spectrum was computed as twice the following values, fp=39 Hz, f1=100 Hz,

f2=186 Hz etc. If Rb would not increase with depth, then, N = 2×48=96 would result in the

above values for fi. But, since Rb increases rather weakly with depth, as ζ1/3, a somewhat

larger N , i.e., N ≈ 3 × 48 ≈ 134, resulting in column length equal to 134d̄= 2.4 cm, would

result in the frequency values listed above.

It may be noted that the particle displacement, ξr, along the direction of slide, for the

mode corresponding to f1, is characterized by a node at about the center of the column, (1,

2) in Appendix A. This is in agreement with the experimental data depicted Fig. 3d and

the discussion that follows on page 4 in [7], where the authors claim that the particle (grain)

displacement, along the avalanche direction, has a node near the center of the avalanching

band.

It is worthy of note that for N=96, the average value of Rb at the middle of the avalanching

band at N=48 is equal to 0.165 × 10−3 mm, while that of Rb under the 11 mm steel sphere
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impacting the Brevort sand is equal to 1.30×10−3 mm, resulting in Rb ratio equal to 7.9, i.e.,

equal to the corresponding dominant frequency ratio in the the two cases.

According to equation (9) in Appendix B, Vc and by extension Vp could be expected to

scale as Rb and thus as ζ1/3, a result of the assumption of the existence of the contact shear

bands. In other words, the stiffness of the grain columns that results in (9) varies as R2
b ,

while, according to the Hertz-Mindlin theory it would vary as Rb, as seen in (1, 2) in [17].

However, it must be remarked that (9) was based only on compressive vibrations in a grain

column. Furthermore, in Fig. 6 in [16], Vp for beach sand, derived from the Hertz-Mindlin

theory, exceeds the measured values by a factor of 2.

During a silent avalanche on a dune surface or in the initial stage of an avalanche on a

boomable sand dune, a given grain, in one of the 20 or so fast avalanching layers, generates

a quasi-periodic elastic wave train composed of the impact pulses upon collisions with the

grains in the layer below. The average time between collisions, Tc, is given in the first para-

graph in the Introduction. The chance that the given grain will collide with a grain below is

maximum when the grain below collides with another grain in the layer further below, since

then it is nearly stationary. Furthermore, the kinetic behavior of the grains on either side

would be influenced due to the close grain proximity. Thus, it can be argued that the various

quasi-periodic wave trains are somewhat synchronized and the resultant wave amplitude is

sufficiently large to initiate the excitation of the column vibrations in the slowly avalanching

grain band.

In this sense, the column vibrations, within a radius of several grain diameters, are nearly

in phase, and if the conditions for the applicability of the stick-slip effect exist, the resultant

amplitude of the column vibrations would be sufficient to generate the surface waves that

would synchronize all column vibrations within areas as large as several m2 as reported in [2].

When such areas of synchronization are repeated several times over a large dune surface and

the avalanching band extends to several cm in depth, the seismic and acoustic energy output

would be enormous, resulting in difficulty in standing up nearby, and in audible sound up to 2

km away [11, 31]. Then, the question arises as to whether a geophone buried a few cm below

a silent avalanche would record a fairly monochromatic signal, as in the case of the impacted

silent grains.

The collective grain column vibrations cannot be sustained at frequencies other than the

36



average grain-grain collision rate, fc ≈100 Hz, in the fast avalanching surface layers, for

d̄ ≈0.18 mm. Unlike the case of the singing grains where the energy that excites the column

vibrations is derived from the impacting pestle, in this case the energy is derived partly from

the grain-grain collisions in the same surface layers. Thus, any collective vibration has to be

slaved to the frequency fc. However, the frequency f1 is defined by the stiffness of the contact

shear bands, and if f1 is appreciably different from fc, then, boomability is not possible. Such

a conclusion is consistent with the rarity of such phenomena. They occur only during certain

periods of the year and not all dunes in a given region can boom during a free avalanche,

even though, they can produce the booming sound when squeezed by a shovel blade [15] or

pushed by the hand or a blade [9]. Furthermore, if the thickness of the avalanching sand band

becomes too thin, then, f1 is forced to exceed fc and boomability ceases, as reported in [2, 9].

10. Sliding booming sand plates

Along the path of many suggestions and assumptions during the development of this study,

not always correct, it seems fair to assume that there is a slip shear band (column shear band),

in front of the sliding plate, responsible for the seismic and acoustic emissions. How far such

a channel extends below the plate remains an open question. The channel width would be

rather thin given the chaotic dynamics of the grain motion under the plate. Thus, the rel-

atively low value of fd would imply the single spring mode of vibration where the relatively

large overburden mass, Mp, would be responsible for the low value of fd = fp.

As in the case of the impacted grains, the gravitational energy of the plate can be trans-

ferred to the column vibrations via the stick-slip effect. At this stage, it is deemed appropriate

to include an excerpt from the book by Curzon [31], p. 285, that appears to correspond to

the observation by Vriend et al. [4] in that dune vibrations were detected even when there

was no apparent avalanche in progress. ”By the flowing in of the sand from the sides and the

repeated tread [of the traveler] a large part of the whole sand-layer of the slope at last acquires

motion, and by its friction against the motionless under-layer produces a noise, which from a

humming becomes a murmur, and in the end passes into a roar, and is all the more surprising

in that one sees but little of the trickling and general movement of the sand-layer.”
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11. Conclusions

It is possible to formulate a theoretical model, based on the existence of a number of

discrete grain contact shear bands forming grain columns, that could account for the exper-

imental evidence on the behavior of singing grains, particularly the frequency spectra of the

signals emitted when the grains are impacted by a pestle. Thus, the dominant frequency, fd,

and its harmonics correspond to the modes of vibration in the grain columns below the pestle

with fundamental frequency f1 and harmonics of f1. The low frequency content, corresponds

to the pestle mode of vibration where the grain columns act as short single springs. The

conversion of the pestle kinetic energy into elastic energy of such modes is effected by the

stick-slip effect in the contact shear bands, in agreement with the widely held viewpoint that

grain singabilty depends critically on the grain surface state. As the grains slide over one

another, the pestle energy is transferred to particle oscillations along the slide direction, in

the contact shear bands, and from there to column vibrations. Additionally, singability is

independent of grain shape and grain size distribution.

The contact shear bands play a similar role to that of the water layer when a finger is

drawn on a wet glass surface resulting in the usual squeal sound. In this sense, the singability

of an impacted grain bed is the result of sufficient grain-grain slippage between the grains

in a given grain column. The pestle forces the grain columns to vibrate in phase with it,

resulting in the collective vibration of all columns. The ensuing intense vibration below the

pestle facilitates the slipping of the grain mass away from the pestle and nearly eliminates

the surface noise generated by the intense grain-grain rubbing and the chaotic grain column

vibrations adjacent to the pestle near the surface.

Similarly to the impacting pestle, in the case of the freely avalanching dune sand, the

dominant frequency, fd, and its harmonics correspond to the modes of vibration in the grain

columns, in the slowly avalanching sand band, with fundamental frequency f1 and harmonics

of f1. The low frequency content, at fp ≈ 1/3fd, corresponds to the pestle (overburden) mode

of vibration where the grain columns act as single short springs. Very low frequency emissions,

at around 30 Hz, occuring when booming sand is pushed or squeezed on a dune surface, could

be due to the same pestle mode of vibration. Acoustic and seismic emissions from seemingly

motionless dune sand, following an avalanche, could be due to minute sand plate motion.

The large variation in the values of the measured wave velocities in sand grain beds could
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be attributed to the large variation in the size of the grain contact shear bands, due in part

to a variable grain surface coating.

Singing grains do not boom when forced to free-avalanche since their relatively low flowa-

bility does not allow for an orderly surface flow comprising a fast avalanching thin band and a

slower well defined band below, several cm thick. Similarly, booming sand grains do not sing

when impacted in a dish by a pestle since their relatively high flowability results in sufficient

sand motion away from the pestle without the need for an intense vibration in the slip shear

band below the pestle. The conversion of gravitational into grain column vibration energy is

effected by the stick-slip effect. In this sense, ordinary sand grains do not boom during an

avalanche since the stick-slip effect is not applicable in the grain contact areas. The assumed

grain contact shear bands result in wave propagation velocity scaling with sand depth, ζ, as

ζ1/3 instead of ζ1/6 predicted by the Hertz-Mindlin contact theory.

The extreme sensitivity of the boomability of a given sand dune to weather and other

factors could be attributed to the sensitive dependence of the fundamental frequency f1 of the

column vibrations in the avalanching band on such factors. That is, if f1 6= fc, boomability

cannot occur, where, fc = 1/Tc and Tc is the average time required for one grain to overtake

another in the fast avalanching surface band of about 20 layers. In this sense, boomability

requires a fairly narrow grain size distribution. Furthermore, if the avalanching band is too

thin, then, f1 becomes greater than fc and boomability is not possible.

Acknowledgment

Considerations are due to the Research, Development and Creativity Office of Laurentian

University for their financial support, and to the Reviewer for constructive comments that

led to the recognition that the size of the grain contact shear bands is appreciably lower than

originally thought.

References

1. A. J. Patitsas. J. Natural and Physical Sciences. Vol. 2, Issue 1, (2008). Available

from http/www.scientificjournals.org/journals2008/articles/1404.pdf.

2. B. Andreotti. Phys. Rev. Lett. 93, 238001 (2004).

39



3. GDR MiDi. Eur. Phys. J. E. 14, 341 (2004).

4. N. M. Vriend, M. L. Hunt, R. W. Clayton, C. E. Brennen, K. S. Brantley, and

A. Ruiz-Angulo. Geophys. Res. Lett. 34, L16306 (2007).

5. L. Bonneau, B. Andreotti, and E. Clement. Phys. Rev. E. 75, 016602 (2007).

6. L. Bonneau, B. Andreotti, and E. Clement. Phys. Rev. Lett. 101, 118001 (2008).

7. B. Andreotti, and L. Bonneau. Phys. Rev. Lett. 103, 238001 (2009).

8. R. A. Bagnold. The Physics of Blown Sand and Desert Dunes,

247-257. Chapman and Hall, London, UK. 1941.

9. S. Douady, A. Manning, P. Hersen, H. Elbelrhiti, S. Protiere, A. Daerr, and

B. Kabbachi. (2006). Phys. Rev. Lett. 97, 018002 (2006).

10. M. F. Leach, and A. G. Rubin. (1990). Progress in Acoustic Emission V,

Proceedings of the 10th International Acoustic Emission Symposium,

The Japanese Society for Non-destructive Inspection, Japan, 239 (1990).

11. F. Nori, P. Sholtz, and M. Bretz. (1997). Scientific American. 277, 84 (1997).

12. M. F. Leach, D. E. Goldsack, C. Kilkenny, and C. Filion. Proceedings of the 14th

International Acoustic Emission Symposium and 5th Acoustic Emission World

Meeting, Big Island, Hawaii, III 89 (1998).

13. A. W. Lewis. South African Geographical Journal. 19, 33 (1936).

14. B. Andreotti, L. Bonneau, and E. Clement. Geophys. Res. Lett. 35,

L08306 (2008).

15. D. R. Criswell, J. F. Lindsay, and D. L. Reasoner. Journal of Geophysical

Research. 80, 4963 (1975).

16. R. Bachrach, J. Dvorkin, and A. M. Nur. Geophysics. 63, No 4, 1234 (1998).

17. R. Bachrach, J. Dvorkin, and A. M. Nur. Geophysics. 65, No 2, 559 (2000).

18. A. J. Patitsas. Can. J. Phys. 88, 863 (2010).

19. P. K. Haff. American Scientist. 74, 376 (1986).

20. C. Liu and S. R. Nagel. Phys. Rev. B. 48, 15646 (1993).

21. H. F. Winterkorn, and H. Y. Fang. Foundation Engineering Handbook.

Van Nostrand Reinhold Co., New York, USA, 1975.

22. K. Nishiyama, and S. Mori. Japanese J. of Appl. Phys. 21, No 4, 591 (1982).

23. A. W. Brown, W. A. Campbell, J. M. Jones, and E. R. Thomas. Proc. Univ.

40



Newcastle Upon Tyne Philos. Soc. 1, 1 (1964).

24. H. Takahara. J. Acoust. Soc. Am. 53, No 2, 634 (1973).

25. P. Sholtz, M. Bretz, and F. Nori. Contemporary Physics. 38, No 5, 329 (1997).

26. R. A. Bagnold. Proc. Royal Soc. 295, 219 (1966).

27. D. W. Humphries. Sedimentology, 6, 135 (1966).

28. A. J. Patitsas. J. Fluids and Structures. 17, 287 (2003).

29. J. D. Goddard. Proc. R. Soc. Lond. A. 430, 105 (1990).

30. H. A. Makse, N. Gland, D. L. Johnson and L. Schwartz. Phys Rev. E. 70, 061302 (2004).

31. M. Curzon. Tales of Travel. Hodder and Stoughton, London, UK. 1923.

Appendix A. Modes of vibration in a grain column

In what follows, the origin, O in Fig. 1, is assumed to coincide with the center of shear band

# 1 and the direction along x̂ coincides with that along r̂ at θ=0. It is more instructive to

use cylindrical instead of Cartesian coordinates to derive the relevant equations. The particle

displacement, ξs, is written as, ξs = ∇× A, where A satisfies the vector wave equation with

phase velocity cs. A is chosen to lie along θ̂ resulting in, Aθ = [A1cosαz +B1sinαz]J1(βr)ejωt,

where, J1(βr) is the Bessel function of order 1 and, α2 + β2 = k2
s = (ω/cs)

2. This in turn

results in,

ξz = [A1cosαz + B1sinαz]βJ ′
1(βr) ≈ [A1cosαz + B1sinαz]βcosβr (1)

and

ξr = [A1sinαz − B1cosαz]αJ1(βr) ≈ [A1sinαz −B1cosαz]αsinβr (2)

where, prime indicates derivative with respect to the argument and the factor ejωt is under-

stood to be included. On physical grounds, ξz cannot depend on the polar angle θ, and thus

it is assumed that ∂Aθ/∂θ=0. In particular, ξz cannot include the factor cosθ since it cannot

change sign as θ is varied from 0 to 2π.

In shear band #1, the expression for the particle displacement along ẑ simplifies to,

ξ1z = [B1sinαz]βJ ′
1(βr) (3)

assuming that ξ1z=0 at z=0, and that in shear band # 2 becomes,

ξ2z = [A2cosαz + B2sinαz]βJ ′
1(βr) (4)
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In shear band #3, the coefficient subscripts become 3 and so on for the rest of the bands.

The boundary condition on the top of shear band # 1 at z = b is,
∫

σ1zzrdrdθ +
∫

σ2zzrdrdθ = M1∂
2ξ1z/∂t2 (5)

where M1 is the mass of grain # 1 and ∂2ξ1z/∂t2 is evaluated at r=0. The normal stress per

unit area along ẑ is given as, σ1zz = −(λe + 2µe)∂ξ1z/∂z =-ρc2
p∂ξ1z/∂z, while that along -ẑ

at the bottom of shear band # 2 is given as, σ2zz = ρc2
p∂ξ2z/∂z. The mass density in the

bands was assumed to be equal to that in the grains, i.e., that of quartz equal to 2650 kg/m3.

Equation (5) is repeated at the top of shear band # 2 until the top of the last band # 6,

where the normal shear force σ6zz acts on the equivalent pestle mass Mp, i.e.,
∫

σ6zzrdrdθ = Mp∂
2ξ6z/∂t2 (6)

The result of (5), with A1=0, is the following working equation,

[−S1ρc2
pαcos(αb) + M1ω

2sin(αb)]B1 − [S2ρc2
pαsin(α1)]A2 + [S2ρc2

pαcos(α1)]B2 = 0 (7)

where S1, S2 are the areas of bands # 1 and 2, α1 = α(b + d1), and ξz is practically constant

over the contact area since cosβr ≈1.

The grains are assumed to be perfectly rigid, so that ξ1z(z = b) = ξ2z(z = b+d1), resulting

in the working equation,

sin(αb)B1 − cos(α(b + d1))A2 − sin(α(b + d1))B2 = 0 (8)

where d1 is the overall diameter of grain#1. There are 2N + 1 equations and 2N + 1 coeffi-

cients, B1, A2, B2, ...A6, B6 for N=5 grains as in Fig. 1.

The eigenfrequencies, f1, f2, ..fN, are determined by looking for the zeros of the determinant

of the coefficients, B1, A2,.. when ω = 2πf is varied, provided the wavenumber α can be

specified in terms of ω. Then, for a given eigenfrequency, the coefficients can be specified

relative to the arbitrary value of B1=1, and the nature of the corresponding mode of vibra-

tion can be examined. However, the value of the wavenumber β must be specified before

α can be specified from the relation, (ω/cs)
2 = α2 + β2. However, the frequencies of the

column modes of vibration are defined by the rate of change of ξz with z, (5), i.e., the fre-

quencies do not depend on β, as can be seen in (7), and this implies that β →0. A measure of

the magnitude of β in terms of α may be reasonably expressed as, βRb = αb, where, Rb/b ≈25.
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Appendix B. Propagation velocity in a grain column

An attempt is made here to derive an expression for the propagation velocity in a column

(chain) of grains lying on a frictionless horizontal floor in order to emphasize the irrelevance

of the force of gravity. The grains are assumed to be spherical and identical with diameter, d,

mass, m, and the contact shear bands with thickness, b, are replaced by identical short springs

of spring constant, k. If an equivalent Young’s modulus for the thin contact bands is defined

as, Yb = F/(δz/b), then, Yb = kb. On page 305 in Symon [1], the problem of wave propagation

in a string (chain) of point particles of mass m, interparticle distance, h, and string tension, τ ,

is treated. A similar procedure can be used in this case by writing the force equation for the

nth grain as, md2un/dt2 = k(un−1−un)−k(un−un−1) where the displacement of the nth grain

is, un ≈ nd, since b � d. Then, by introducing the mass per unit length, σ = m/d, the wave

equation can be obtained, with phase velocity, Vc =
√

kd/σ =
√

(d/b)(Yb/σ). Furthermore,

if the compression phase velocity in the contact bands is defined as, cp = γ
√

(Yb)(/σb), then,

Vc/cp =
√

(d/b)(σb/σ), where σb is the mass per unit length in the contact bands and γ is a

correction factor. It can be shown that, σb/σ = 3/2(Rb/R)2, where, Rb, R are the radii of the

contact bands and the grains respectively, with the assumption that the mass densities in the

grains and the contact bands are the same. Thus,

Vc/cp = (1/γ)
√

3(Rb/R)
√

R/b (9)

It is worthy of note that the equivalent spring constant, k, varies as R2
b and as 1/b and thus,

Vc varies as Rb

√
1/b.
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